Development of optical sensor technology for

environmental applications of nutrients, bacteria and algal toxins.

Fiona Regan

Europt[r]ode March 20-23 2016, Graz

Outline

Multidisciplinary approach to platform design

generic platform where possible

System development

Autonomous System: Integrated sensor with comms/telemetry

- Algal toxins & emerging contaminants
 - Microcystin
 - Antibody development for new toxins
 - Device design & development

Sensor platform Integration Plan

Generation of antibody-based biosensors using recombinant antibody technology

Methodologies

Development of anti-microcystin recombinant antibodies

Antibodies produced from each round of biopanning

The most sensitive binder was determined by inhibition ELISA

Domoic Acid Chicken Serum Titre

Azaspiracid

New emerging chemicals – Recombinant antibody generation

Diclofenac

Mecoprop

Carbamezapine

Recombinant antibody-based microfluidic sensor

Recombinant antibody assessment

Centrifugal sensing platforms

Fluidic movement on rotating platform

Forces on acting on a rotating disc

Particle sedimentation through a fluid on anticlockwise rotating disc Direction

of

particle

ToxiSense microfluidic System

Single assay proof of concept using pneumatic pressure valving

ToxiSense – optical arrangement

Analysis of capture raw optical data generated

Lab-On-A-Disc platform

- Poly(methyl methacrylate) (PMMA) (Red) (Radionics™) and pressure sensitive adhesive (PSA) (Green)(Adhesives Research Inc. ™)
- Easily modifiable
- Microcystin-LR detection: Proof of concept
- Low sample size, cheap to manufacture

Some microfluidic valve solutions

- EU Water
 Framework
 Directive (WFD)
- Phosphate limit:
 0.1 mg L⁻¹

Nutrients in Agriculture
Phosphate
Selection of wet chemical method
Design of sensor

Selection of method

- High stability (>1 year)
- Widest linear range of all methods (0.1 – 20 μg L⁻¹ P)
- Easiest to automate (Single step reaction)
- Improve LOD by increasing path length

- Poor stability (1 week)
- Smaller linear range (0.01 –
 2.0 μg L⁻¹ P)
- More difficult to automate (Two step reaction)
- Lower LOD

Autonomous phosphate sensor

Wireless communications

Pumps

Microprocessor

Microfluidic chip

Reagent bottles

Microfluidic Chip

Reaction occurs on a microfluidic chip; µL volumes

Sensor Data

Centrifugal microfluidic device

Selection of method for centrifugal system

Vanadomolybdophosphoric acid 'yellow' method Ascorbic acid method

Stannous chloride method Hydrazine-stannous chloride method

Optical path length study

Centrifugal microfluidic device

Portable NutriSense system

ter, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

E-coli
Freshwater and bathing water
Chemical assay development
System & protocol design

▶2006/7/EC BWD

Inland waters									
	Parameter	Excellent	Good quality	Sufficient	Reference methods of				
		quality		quality	analysis				
1	Intestinal Enterococci (cfu/	200(*)	400(*)	330(*)	ISO 7899-1 or ISO				
	100mL)				7899-2				
Fs	cherichia coli (cfu/100ml)	ISO 9308-3 or							
		ISO 9308-1							

(*) Based upon a 95-percentile evaluation, (**) Based on a 90-percentile evaluation.

Coastal and transitional waters									
	Parameter	Excellent	Good quality	Sufficient	Reference methods of				
		quality		quality	analysis				
1	Intestinal Enterococci (cfu/100			105(1)	ISO 7899-1 or ISO				
	mL)	100(*)	200(*)	185(*)	7899-2				
Fa	cherichia coli (cfu/100ml)	250(*)	500(*)	500(**)	ISO 9308-3 or				
		2.50()			ISO 9308-1				

(*) Based upon a 95-percentile evaluation, (**) Based on a 90-percentile evaluation.

GUS activity measurement

Substrate uptake

□ Continuous fluorometric method for the measurement of GUS activity.

□ Sample preparation protocol to maximise GUS recovery from *E. coli* contaminated samples

□ Sensing platform for *E. coli* detection in environmental waters.

Protocol Description

Continuous Fluorometric Method for GUS

Cite this: Analyst, 2015, 140, 5953

Continuous fluorometric method for measuring β-glucuronidase activity: comparative analysis of three fluorogenic substrates†

Ciprian Briciu-Burghina, Brendan Heery and Fiona Regan*

OH OH 6-Chloro-4-Methylumbelliferyl-β-D-Glucuronide (6-CMUG)

6-Chloro-4-Methyl-Umbelliferone (6-CMU)

ColiSense (GUS Detection)

The Detection Platform

NVV Photodiode response

River and Seawater Samples

Observations

Method developed and applied for the detection of *E. coli* from environmental water samples and was successful in predicting *E. coli* concentrations below the EU threshold for "excellent quality" < 1.5 h.

♦Continuous fluorometric method for the determination of GUD activity has been developed (minimal sample manipulation, reagent consumption minimised)

✤Sample preparation protocol for recovery of GUS from *E. coli* contaminated environmental samples

♦Bathing water monitoring May-September 2016 Dublin Bay

Biological Sciences, DCU

Dr. Caroline Murphy, Postdoctoral Researcher

Prof. Richard O'Kennedy, Prof. Dermot Diamond, Insight & Prof. Jens Ducree, Physics.

Professor of

Acknowledgements

DCI

National Centre for Sensor Research

This Beaufort Marine Research Award is carried out under the Sea Change Strategy and the Strategy for Science Technology and Innovation (2006-2013), with the support of the Marine Institute, funded under the Marine Research Sub-Programme of the National Development Plan 2007–2013.