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Abstract  

Ceria-based solar-driven thermochemical conversion is a promising solution 

for efficient and sustainable hydrogen production. This is mainly due to the 

oxygen storage capacity (OSC) property of ceria (CeO2), which results from 

the fact that CeO2 can oxidise and reduce molecules. Oxygen vacancy defects 

can be rapidly formed and eliminated, giving CeO2 its high OSC. The ability 

to combine this unique material property with improvements in optical 

absorption, through the use of a novel light management structure geometry 

based on low-quality factor whispering-gallery resonant modes inside a 

spherical nanoshell structure, is a matter of great interest. The growth of 

spherical ceria nanoshells will support whispering-gallery resonant modes 

with enhanced light absorption, enabling an efficient solar thermal-driven 

process, while the nanostructure morphology will also lead to enhanced 

redox activity due to the large surface to volume ratio. These features will 

both lead to efficient solar-driven thermochemical hydrogen production. In 

this work, nanostructured CeO2 thin films are deposited by pulsed DC 

magnetron sputtering (PDCMS) and wet chemical techniques. The influences 

of using various gas ambients in the sputtering chamber on the films during 

deposition are studied. The film compositions, OSC, electrochemical and 

optical properties are characterised using several characterization techniques 

including: scanning electron microscopy (SEM), atomic force microscopy 

(AFM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), 

secondary ion mass spectrometry (SIMS), photoluminescence (PL) and ultra-

violet and visible (UV-Vis) absorption spectroscopy. The film composition 

spectra shows a phase transition related to the transformation of Ce4+ to Ce3+ 

and indicates a chemically reduced state of CeO2. This transformation is due 

to both the sputtering process and gas ambient. TGA and electrochemical CV 

studies show that films deposited in an Ar atmosphere have a higher oxygen 

storage compared to films deposited in the presence of O2.  Moreover, the 

effects of oxygen partial pressure and temperature during post-deposition 

annealing on the properties of PDCMS CeO2 thin films including crystalline 

structure, grain size and, shape and optical properties are investigated and it 

is shown that these quantities play important roles influencing the size and 

shape of the nanocrystals. Finally ZnO and CeO2 coated ZnO spherical 

nanoshell structures were successfully engineered and their optical 

absorption properties are extensively studied. 
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INTRODUCTION 

1.1 INTRODUCTION 

Nowadays, there are several challenges facing the world. They include a 

transition away from fossil fuel-based energy, reducing harmful side-effects 

caused by manufacturing and transportation, preventing future pollution, 

remediating environmental issues, and producing safe pharmaceuticals. 

However, energy shortages and environmental pollution are the two crucial 

challenges that need to be resolved; which can be achieved by developing 

new sources of fuel and energy and new environmental friendly 

technologies. An alternative energy carrier such as hydrogen (H2) must be 

developed to face problems linked to the continuous rising of oil prices and 

to the global warming issue due to greenhouse effects [1]; as well as the fact 

that fossil fuels draw on finite resources that will eventually dwindle. 

Therefore, employing conversion systems based on renewable energies such 

as a solar energy for the production of H2, which is a promising solar fuel, is 

one very viable potential solution to the problem [2, 3]. Correspondingly, 
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new materials could help to develop new energy sources and treat pollution. 

The literature shows promising materials for such applications to be mostly 

metal-oxide based. This implies that  metal-oxide based conversion systems, 

such as cerium-oxide based water-splitting thermochemical cycles coupled to 

a solar energy source, constitute one favourable option for H2 production 

(and solar energy storage) since this pathway does not use fossil fuels [4-6].  

 

1. 2  SOLAR ENERGY & FUEL GENERATION 

Energy in thermodynamics is defined as the capacity to do work but from a 

more practical point of view energy is the mainstay of any industrial society 

and it exists in a variety of forms including electrical, chemical, thermal, 

mechanical and radiative. It has a S. I. unit of Joules (J = kg m2 s-2). The 

energy unit watt-hour (Wh) is used extensively in metering of electrical 

energy from the grid as a commercial electricity unit of energy. In terms of 

power, the S. I. unit is the watt (W=J/s). This unit is applied for measures of 

power or the rate of energy generation/demand. In Ireland, energy is 

currently provided by several primary sources: oil, natural gas, coal, 

petroleum, peat, hydroelectric, wind energy, biomass and other renewable 

energy sources [7].  Ninety percent of these fuels are imported and the 

remainder are mainly based on renewable energy. The first four sources are 

fossil fuels which are used so rapidly that they soon will be depleted. To 

maintain Ireland’s present social structure and prevent non-renewable 

energy environmental impacts, it is desirable that Ireland supply an 

increasing portion of its energy from renewable sources. Currently, the target 

for renewable energy in Ireland is 16% by 2020.  

 The radiation solar energy reaching the earth during each month is 

approximately equivalent to the entire world supply of fossil fuels. 
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Therefore, the global potential of solar energy is many times larger than the 

current energy consumption. Approximately 30% of the solar energy striking 

the earth is reflected out into space. The remaining 70% (approximately 

120,000 terawatts [1 terawatt is equal to 1012 watts]) is absorbed by the earth 

and its atmosphere. The solar radiation reaching the earth degrades in 

several ways. Some of the radiation is directly absorbed as heat by the 

atmosphere, the ocean and the ground. Other components produce 

atmospheric and oceanic circulation, while some evaporates, circulates and 

precipitates water in the hydrologic cycle. Finally, a very small fraction is 

captured by green plants and drives the photosynthetic process [8]. The 

earth’s solar energy distribution is represented schematically in Figure 1.1.   

 

Figure 1.1: A schematic diagram of the earth’s solar energy distribution. 

 

 Currently, and in the past several decades, most of the proposed 

applications of solar energy are based on collection and conversion of 

sunlight into a usable energy such as heat for example, which is used directly 

in space and water heating, or electricity by means of a Carnot engine [9]. 

Some applications allow for the direct conversion of sunlight to electricity as 
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in the silicon solar cell [10]. However, additional steps are then required for 

energy storage and distribution. As fossil fuels are presently being depleted 

quite rapidly, it is highly desirable to have an efficient and economical way 

of directly converting and storing solar energy as a chemical fuel [9]. This is 

mainly because there is a high demand for chemical fuel as a result of the 

dramatic increase in the worldwide annual motor vehicular production; as 

well as the huge negative impact that automobiles are having on the 

environment. For that reason, H2 energy is one of the most promising 

solutions to store and transport renewable energy in a chemical form. It can 

be efficiently converted into electricity through fuel cells and it is also useful 

in resolving the issue of greenhouse gas emissions since H2 is 

environmentally friendly, and is produced by a clean process involving 

renewable energy.  

 To utilise the abundant solar energy referred to above, large-scale H2 

production from solar energy is an appealing route. This is particularly the 

case as among all the thermochemical and photochemical energy storage 

reactions proposed in literature, the production of H2 and oxygen (O2) from 

water (H2O) is certainly the most attractive: 

                                                         H2O →  H2 +  
1

2
O2                                                     (1.1) 

 H2 is an almost ideal form of fuel and the starting material (H2O) is 

certainly cheap and abundant. H2O is transparent to solar radiation in the 

ultraviolet and visible regions. It does not begin to absorb until below 200 

nm. Therefore, the direct photolysis of H2O with solar radiation is not 

possible and as a consequence, the reaction must be sensitised by oxidation 

reduction catalysts in cyclic reactions.  

Presently, three main pathways (and some combinations) are 

developed with solar energy for H2 production; electrochemical, 

photochemical and thermochemical. A well-known electrochemical 
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technology, water electrolysis, has already been investigated for many years, 

whereby an electrical current passes through two electrodes, submerged in 

an electrolyte. The process can occur at both ambient and high temperatures. 

At high temperature, steam is the raw material instead of water. For 

electrolysis at high temperatures, the most used technology is based on solid 

oxide cells. These consist of a solid electrolyte, a cathode (where hydrogen is 

produced) and an anode (where oxygen is released). Water is heated with 

solar energy before entering the electrolysis cell as steam. The steam is 

supplied to the cathode, where it decomposes into oxygen ions and 

hydrogen. The hydrogen is then separated as one decomposition product 

and oxygen ions move through the solid electrolyte to the anode, where 

oxygen is obtained as the other decomposition product [11, 12]. 

Photochemical processes, on the other hand, use solar light to produce 

hydrolysis of water. These may require an electrical energy to aid the 

hydrolysis process; such procedures are known as photoelectrochemical. In 

the photoelectrochemical process, water is split into hydrogen and oxygen in 

a single step on a single device. In a photoelectrochemical device, a 

photovoltaic cell can transform solar energy and be used as one of the 

electrodes. The photovoltaic device has to generate enough voltage to 

chemically split water (at least 1.6 V) and its surface has to conduct 

electricity, as well as resist the corrosion produced by the electrolyte and 

catalyse the electrochemical reactions [12, 13].   

This thesis concentrates on the thermochemical approach which is 

based on the use of concentrated solar radiation as the driving force to split 

the H2O molecules for H2 production. This approach represents a very 

promising technology for sustainable H2 production in support of the future 

energy system as it uses the full solar spectrum unlike the electrochemical 

and photochemical approaches.  There are five different thermochemical 

routes for solar H2 production which are illustrated in Figure 1.2. These 
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routes differ in the chemical source of H2: H2O for the solar thermolysis and 

solar thermochemical cycles; fossil fuels for the solar cracking; and a 

combination of fossil fuels and H2O for the solar reforming and solar 

gasification. All these routes involves endothermic reaction through the use 

of concentrated solar radiation as the energy source of high-temperature 

process heat [14]. The overall motivation for moving to renewable energies is 

to avoid using fossil fuels and therefore, the only two routes that use the 

abundant raw material water as the main source for H2 production are solar 

thermolysis and solar thermochemical cycles. Ideally single-step thermal 

dissociation of H2O (also known as water thermolysis) is the most simple 

conceptual process (Equation 1.1) which directly concentrates solar energy 

into a chemical reactor that performs the decomposition of H2O into H2 and 

O2. However, due to the need of a high-temperature heat source at above 

2500 K to obtain a significant H2 and O2 conversion yield and the necessity 

for an effective technique for H2/O2 separation to avoid recombination or an 

explosive mixture, the development of direct water splitting has been very 

challenging [15-17]. On the other hand, H2 production by water-splitting 

thermochemical cycles bypass the problem of H2/O2 separation and further 

allow operating at a lower temperature than the water thermolysis process 

[14]. Therefore, the development of water-splitting thermochemical cycles 

has been extensively explored in recent times.  
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Figure 1.2: The five thermochemical routes for solar hydrogen production [14]. 

 

1. 3  TWO-STEP THERMOCHEMICAL CYCLE 

As mentioned above, two-step solar-driven water-splitting thermochemical 

cycles appear to be very attractive among the different H2 production 

methods because the resources, solar energy and water, are abundant and 

clean and also require a lower temperature than the water thermolysis 

process. Additionally, they are potentially more efficient than electrolysis 

because the intermediate conversion of heat to electricity does not limit the 

global solar energy to H2 energy efficiency [2, 5]. Water-splitting 

thermochemical cycles are processes in which H2O is decomposed into H2 

and O2 by chemical reactions using intermediate reactions and substances. 

All of these intermediate substances are recycled within the processes i.e. the 

sum of all the reactions is equivalent to the dissociation of the water molecule 

[18]. Theoretically, it only requires heat to process these chemical steps. 
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 There have been several significant works that have reviewed 

thermochemical cycles for the production of H2 [19, 20]. One of the earliest 

investigations for multistep thermochemical H2 production from H2O was by 

Funk and Reinstorm in the 1960s [21]. These authors evaluated the energy 

requirements and possibility of employing two-step processes for H2O 

dissociation and H2 production by oxides and hydrides. The research interest 

in thermochemical H2O-splitting cycle grew further in the later 1970s and 

early 1980s with the oil crisis and since then many research papers regarding 

these cycles have been published [22-24]. Previous studies performed on 

water-splitting thermochemical cycles for H2 production are mostly 

characterised by using process heat temperatures below 1200 K using nuclear 

and other thermal sources. These cycles required multiple steps, usually 

more than two, which lead to inherent inefficiencies associated with heat 

transfer and product separation at each step [14]. However in recent years, a 

significant progress in the development of large-scale optical systems capable 

of achieving mean solar concentration ratios exceeding 5000 suns (1 sun = 1 

kW/m2, equivalent to stagnation temperatures exceeding 3000 K) has been 

accomplished. This allows the conversion of concentrated solar radiation to 

thermal reservoirs at 2000 K and above. This has created the opportunity for 

the exploration of a more efficient two-step water-splitting thermochemical 

cycle for H2 production using solar energy [20]. 

 In a two-step water-splitting thermochemical cycle over a 

nonstoichiometric oxide, the first step is the thermal reduction of the metal 

oxide into the metal or the lower-valence metal oxide. This is achieved using 

concentrated solar radiation (endothermic reaction) as the source of high-

temperature process heat (Equation 1.3) and as a result oxygen is released. 

The second step is non-solar (exothermic), where the metal or lower-valence 

of the metal oxide is oxidised by the H2O (hydrolysis) to produce H2 and the 

corresponding metal oxide (Equation 1.4).  
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Higher temperature, TH – solar-driven endothermic step 

                                           MOx → MOx−δ +
δ

2
O2(g)                                                (1.3) 

Lower temperature, TL – non-solar, exothermic step (hydrolysis) 

                                 MOx−δ+ δH2O(g) → MOx + δH2(g)                                      (1.4) 

Net H2 dissociation 

                                         H2O(g) →
1

2
O2(g) + H2(g)                                              (1.5) 

 In the above equations, M denotes a metal. The net reaction (H2) 

dissociation is presented in Equation 1.5, but since H2 and O2 are formed in 

different steps, the need for high-temperature gas separation is thereby 

eliminated. This cycle was originally proposed by Nakamura [25] using the 

redox pair Fe3O4/FeO. This method required a high temperature above 2500 

K for the thermal reduction process. This extremely high temperature 

resulted in severe sintering and melting as well as the thermal decomposition 

of Fe3O4 due to vaporisation, thereby making the cycle impracticable. 

Nevertheless, this introduced the notion of metal oxides as thermochemical 

reaction media and a new materials strategy for thermochemical fuel 

production. In order to lower the temperature of the first step, further work 

was carried out including substituting Fe in Fe3O4 by other metals, such as 

Mn and Ni, to form mixed metal oxides. These new combinations can be 

reduced at lower temperatures than those required for the reduction of 

Fe3O4, while the reduced phase of the mixed oxide remains capable of 

splitting water [26, 27]. 

 

1. 4  REDOX PAIR METAL OXIDES 

The most promising reactions involved in thermochemical cycles are based 

on metal compounds such as iodine, chlorine and bromine as well as metal 

oxides. Most of the cycles have either increased complexity or involve 



 
 

10 
 

management of highly toxic and corrosive reactants. However, in the two-

step solar thermochemical H2O-splitting cycle, the redox pair of metal oxides 

aids the process, allowing for less complex chemical steps and involvement 

of noncorrosive materials [28]. The concept behind the redox pair metal 

oxides is the utilisation of metals with multiple oxidation states for the 

removal/storage of oxygen from water during the exothermic step.   

 Apart from the originally proposed cycle by Nakamura using the 

redox pair Fe3O4/FeO, a number of other redox pairs such as WO3/W, 

ZnO/Zn, CdO/Cd, Mn3O4/MnO, Nb2O5/NbO2, Co3O4/CoO, In2O3/In, etc. 

have been studied. Lundberg for example did thermodynamic calculations 

for the redox pairs of Co3O4/CoO, Mn3O4/MnO, and Nb2O5/NbO2, in 

addition to Fe3O4/FeO [29]. Results showed that Mn3O4 and Co3O4 could be 

thermally decomposed in air at 1810 K and 1175 K, respectively. However, 

the H2 yields are only 2×10-3% and 4×10−7% at 900 K for Mn3O4/MnO and 

Co3O4/CO, respectively. The H2 yield at 900 K reached 99.7% for 

Nb2O5/NbO2, but the thermal decomposition temperature of 3600 K in air is 

extremely high and is much higher than their melting points [29]. For the 

In2O3/In, WO3/W etc. redox pairs, higher thermal reduction temperatures 

than that of Fe3O4/FeO are required. The thermal reduction of CdO is at a 

low enough temperature, below 1600 K, but melting restricted the hydrolysis 

of Cd [30]. Among all these redox pairs ZnO/Zn is a potential candidate and 

most promising redox pair in two-step thermochemical water splitting and 

this system has been extensively examined [31]. However, more newly 

proposed redox pairs, such as SnO2/SnO, CeO2/Ce2O3, GeO2/GeO, 

MgO/Mg etc., have been demonstrated in the most recent period. But 

CeO2/Ce2O3 in particular has emerged as an attractive redox active material 

because of its ability to rapidly conduct O2- contributing to fast redox kinetics 

[2, 32], as compared to ferrite-based and other non-volatile metal oxides [33, 

34]. CeO2/Ce2O3 was first demonstrated by Abanades and Flamant as a new 
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cycle for H2 production and the feasibility of the new thermochemical two –

step cycle has been experimentally investigated at lab-scale [4]. This allowed 

researchers to explore CeO2 and CeO2–based metal oxides in relation to their 

applicability as reactive intermediates in solar thermochemical redox cycles 

[35, 36]. 

 

1. 5 CERIA 

Cerium oxide or ceria (CeO2) is an oxide of the rare earth element cerium 

(Ce), which is a member of the fourteen lanthanides, and is one of the most 

abundant rare earth elements that is present at about 64-66 parts per million 

(ppm) as a free metal or oxide in the earth's upper crust. Stoichiometric CeO2 

has a cubic fluorite lattice (Figure 1.3), a face centred cubic (fcc) crystal 

structure, with four cerium and eight oxygen (O) atoms per unit cell. CeO2 

can be synthesized directly from cerium metals or from salts/precursors of 

cerium such as cerium sulphate [Ce2(SO4)4], cerium nitrate [Ce(NO3)3], 

ammonium cerium nitrate [NH4Ce(NO3)4] and cerium chloride (CeCl3). 

 
Figure 1.3: Crystal structure of the cubic fluorite lattice of CeO2. Here Ce and O 

atoms are shown by grey and white circles, respectively [2]. 
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1.5.1  CERIA NANOPARTICLES 

Nanomaterials have recently become one of the most active research fields in 

the areas of solid state physics, chemistry and engineering [37]. 

Nanostructured materials are defined as being assembled of ultra-fine 

particles with a dimension below 100 nm. They exhibit properties that are 

usually somewhat different to those of bulk materials. The local solid-state 

structure of nanomaterials is often of prime importance. The prospective 

impact of nanomaterials in science and technology is high and stems from 

their unique property that deviates from bulk solid properties [38]. These 

properties include novel mechanical and magnetic properties, high surface to 

volume ratio, ordered self-assembly of nanocrystals, size and shape 

dependent catalytic properties [38, 39].  Recent technological developments 

in instrumentation for production and characterisation of nanostructures, in 

combination with increased computing power for quantum chemical 

calculations and development of theoretical models have meant ever greater 

ranges of applications and expected applications, for these materials. 

 In particular, CeO2 nanoparticles have been used efficiently in various 

advanced technologies, such as catalytic materials [40], solid-oxide fuel cells 

[41], and as a high-temperature oxidation protection material in an O2 sensor 

[42], solar cells [43] and two-step thermochemical cycling [2]. The remarkable 

catalytic chemistry involved with nanostructured CeO2 is mainly due to its 

high mobility of surface O vacancies. This feature results from the material’s 

ability to easily and repeatedly switch between its oxidation and reduction 

states (Ce3+ and Ce4+) [44]. From room temperature to the melting point and 

under ambient pressures, fully oxidized CeO2 adopts the ideal cubic fluorite 

crystal structure shown in Figure 1.3 above. However, under reducing 

conditions, some of the Ce converts to the Ce 3+ oxidation state. These 

reduced species are charge-balanced by O vacancies, where δ in the 

stoichiometry formula CeO2-δ represents the vacancy concentration. A 
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remarkable feature of CeO2 is that, particularly at high temperatures, 

exceptionally high vacancy concentrations can be accommodated without a 

change in crystallographic structure (or phase) [2].  Among native defects in 

CeO2, the O vacancy is by far the most extensively studied and the most 

stable defect under a wide range of conditions. As previously mentioned, the 

formation of neutral O vacancies in CeO2 involves a reversible change in the 

oxidation state of two cerium ions from Ce(IV) to Ce(III). This process can be 

written as: 

                                               O2− + 2Ce4+ → 2Ce3+ +
1

2
O2(g)                                  (1.6) 

or in Krӧger-Vink notation: 

                                           Oo
x + 2CeCe

x → Vo
⦁⦁ + 2CeCe

′ +
1

2
O2(g)                              (1.7) 

 Where an O ion (formally O2−) leaves the lattice as a neutral species 

(
1

2
O2(g)), the two electrons left behind in the process get trapped at two 

cerium sites. At each cerium site, the electron occupies an empty Ce4f-state 

and the Ce4f band in CeO2 is split into two bands: an occupied Ce4fFull band 

and an empty Ce4fEmpty band (see Figure 1.4b). In CeO2, a number of higher 

oxides of cerium with composition CeO2-δ (0 ≤  δ ≤  0.5) exist and the 

practical reduction limit of nonstoichiometic CeO2 is Ce2O3, where all cerium 

ions are found in a Ce(III) oxidation state [45]. 

 

1.5.2  CERIA OXYGEN STORAGE CAPACITY 

As mentioned earlier, the literature often attributes the catalytic activity of 

CeO2 to its high oxygen storage capacity (OSC), which is largely due to the 

multi-valence nature of cerium and the high mobility of oxygen vacancies at 

the surface of materials. The shift between the Ce3+ and Ce4+ states leads to a  
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Figure 1.4: Schematic electronic structures of (a) stoichiometric CeO2, (b) partially 

reduced CeO2-δ and (c) Ce2O3. Filled bands are drawn as filled boxes and empty 

bands are drawn as empty boxes [46]. 

 

high oxygen mobility in the CeO2 lattice that in turn leads to a strong 

catalytic potential [47]. However, the degree of oxygen mobility in the CeO2 

lattice can be attributed to the size, dispersion, and quantity of oxygen 

vacancy defects (OVD) [48, 49]. These phenomena can be explained by the 

synthetic method and conditions and by post processing methods used to 

deliberately introduce defects into the crystal structure. It is important to 

note that ceria with a significant concentration of OVD is the most stable 

configuration under a range of conditions. Figure 1.5 shows the formation of 

OVD in the ceria lattice. 

 The process of oxygen storage and transport in ceria can be described 

by the defect mechanism and there are two types of defects: intrinsic and 

extrinsic [50, 51]. The former is due to the oxygen anion vacancies created 

upon the reduction of ceria, and; the extrinsic defects are due to the oxygen 

anion vacancies created by the charge compensation effect of foreign cations, 

which have a valence lower than that of the host Ce ions they substitute. 
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Both of these vacancies are believed to provide a practical way to increase the 

OSC of CeO2.  

 
Figure 1.5: Formation of an OVD in CeO2. OVD formation follows the basic step of 

O diffusion through the lattice. When an O encounters another O atom, a bond is 

formed and the O2 molecule is able to diffuse away from the surface of the crystal. 

Each O atom that diffuses away from the surface leaves behind two electrons to be 

shared between three cerium atoms. This results in a partially reduced cerium atom 

to a valency between 3+ and 4+ states. [52] 

 

1.5.3  CERIA IN THERMOCHEMICAL CYCLES 

As mentioned above, CeO2 and CeO2-based materials are capable of 

achieving remarkably high vacancy concentrations at elevated temperatures 

and as a result, CeO2 is attractive as a reactive intermediate in 

thermochemical redox cycles for the production of solar fuels [50, 53]. The 

CeO2 splitting cycle consist of two separate thermochemical reactions, similar 

to the reactions described in section 1.3, a high temperature endothermic 

reduction and a low temperature exothermic oxidation, as represented in 

Equation (1.8) and (1.9), respectively. 

                                                     CeO2 →  CeO2−δ + 
δ

2
O2(g)                                       (1.8) 

                                           CeO2−δ + δH2O (g) →  CeO2 +  δH2(g)                          (1.9) 
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 As the reduction proceeds, oxygen vacancies are formed and O2 gas is 

released resulting in the subsequent change in stoichiometry (δ). Oxidation 

proceeds with H2O, thereby releasing H2 and reincorporating oxygen into the 

lattice. As a result, the number of oxygen vacancies created during reduction 

is directly related to the yield of fuel production that can be achieved. As 

ceria is recycled, the net reaction is simply the splitting of H2O, whose 

products can be used directly as a fuel [36]. 

  A number of dopants have been used successfully in thermochemical 

redox cycles to promote the reduction of CeO2 to a nonstoichiometric state at 

moderate temperatures. In particular, zirconium oxide [6, 54] and chromium 

oxide [55] doped CeO2 have exhibited remarkably lower thermal reduction 

temperatures than CeO2 that has not been doped. Additionally, Fe, Ni, Mn, 

and Cu oxide based dopants have been investigated with various degrees of 

success [56]. The thermodynamics of nonstoichiometric ZrO2−CeO2 have 

been studied at elevated temperature, but experimental data is limited to 

much higher ZrO2 mole fractions than are feasible for thermochemical redox 

cycles [57]. Several dopants have been thermodynamically examined based 

on O2 nonstoichiometry data. Most of these studies are conducted at 

temperatures much lower than those required for solar thermochemical fuel 

production. The motivation for most of the thesis work has arisen from the 

application of CeO2 as a solid electrolyte in solid oxide fuel cells and two-

step thermochemical cycles. 

  

1. 6  WHISPERING GALLERY MODES 

In the thermochemical cycle process and in order to increase the H2 

production, it is important that the surface area is maximised. In the majority 

of previously completed research, this is done through the formation of 

porous structures (see Figure 1.6) [58]. In the context of this thesis, the aim is 
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to increase the surface area through the engineering of spherical nanoshell 

structures of the materials. This type of structure will also support 

whispering-gallery mode (WGM) resonances with enhanced light 

absorption, enabling an efficient solar thermal-driven processes and efficient 

H2 production. The term "whispering gallery" refers to a round room 

designed in such a way that sound is carried around its perimeter. This 

allows a person standing on one side to hear words whispered by a person 

on the other. Recently, scientists from Stanford University have developed a 

new type of photovoltaic material that essentially does for sunlight what 

whispering galleries do for sound. Not only does the material have a 

structure that circulates light entering it, but it could also result in cheaper, 

less fragile and less angle-sensitive solar panels [59]. This discovery of 

enhanced broadband light absorption is specifically described by Yao et al. 

[59] and it is considered an important new design parameter for high 

performance solar cells and photodetectors. This new method of light 

management using low-quality factor WGM resonances inside a spherical 

nanoshell structure is demonstrated by Yao et al., where the geometry of the 

structure dramatically improves absorption and reduces adverse 

directionality effects due to the substantial enhancement of the effective light 

path in the active material. Figure 1.7 highlights some results obtained by 

Yao et al. on the effectiveness of the spherical geometry on enhancing light 

absorption. 

 WGM resonators operating at optical frequencies have been 

successfully used to build filters [60], laser cavities [61], wave mixers [59] and 

sensors [62]. These applications require resonators with a quality factor 

ranging from 105 to 109 or even higher. This is because high-Q resonators 

have very little energy leakage and high-frequency selectivity at the expense 

of a low coupling efficiency of light into the resonator. In comparison, the 

application of WGMs to broadband absorbers requires the opposite resonator 
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characteristics, such as high absorption, low frequency selectivity and strong 

in-coupling, which favour low-quality resonators (Q < 105).  In the optical 

region, the quality factor of a resonant is defined by 

                                                                    𝑄 = 2𝜋𝑓𝑜

𝐸

𝑃
                                                   (1.10) 

where 𝑓𝑜 is the resonant frequency, 𝐸 is the stored energy in the resonant 

cavity and 𝑃 = −
𝑑𝐸

𝑑𝑡
 is the power dissipated.  

 Yao et al. takes advantage of low-quality WGMs in spherical 

nanoshells to dramatically enhance broadband absorption, where most of the 

incoming light couples into the WGMs in the spherical nanoshells and 

circulates in the active materials with a considerably longer path length than 

the same material in the form of planar film thereby substantially reducing 

the amount of material required for significant light absorption.  

 

 
Figure 1.6: Photograph of the reticulated porous ceramic made of ceria. Inset: SEM 

micrograph of a break plane of its struts. [63]   
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Figure 1.7: Nanocrystalline Si spherical nanoshell morphology and optical 

absorption. (a) SEM cross-sectional image of a monolayer of Si spherical nanoshells 

on a quartz substrate. Scale bar equals 300nm. (b) Electron diffraction pattern 

showing the nanocrystalline nature of Si nanoshells. (c) Integrating sphere 

measurement of absorption spectra under normal incidence for the thin film sample 

(black line) and nanoshell sample (red line). (d) Integrated absorption over the 

global solar spectrum (ASTM G173-03) for different incidence angles relative to 

normal incidence. [59]. 

  

1. 7 THESIS SCIENTIFIC QUESTIONS 

In the context of the brief introduction above about the importance of 

hydrogen production and the great potential of the redox active ceria for the 

future two-step thermochemical cycles in mind, the thesis seeks to address 

several scientific questions. They are as follows:  

1. How can we develop optimal ceria thin films and nanostructures, and 

what are the properties of these materials?  

2. How does the oxygen storage property of ceria deposits vary with the 

change of the deposition gas ambient?  
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3. What effects do different temperatures and gas ambients have on the 

structure, morphological and optical properties of the ceria deposits? 

4.  How can we effectively increase the surface area of the ceria 

nanostructures?  

5. Is it possible to engineer spherical ceria nanoshell structures?  

6. Do the spherical ceria nanoshell structures enhance the desired optical 

properties of the materials?  

 This thesis reports methods of growing ceria thin films and 

nanostructures and the characteristics of the resulting deposits. It also 

examines the engineering of spherical ZnO and CeO2 coated ZnO nanoshells 

for enhanced light absorption, which is absolutely essential for the future 

research and solar thermal-driven applications based on these materials. 

 

1.8 THESIS OVERVIEW 

The work addressed in this thesis is part of a broader project; its ultimate 

goal is the development and testing of an enhanced solar-driven 

thermochemical cycling using low-quality whispering gallery modes in 

spherical CeO2 and CeO2 coated ZnO nanoshells. This thesis is concerned 

with the initial results obtained to date. We present results on the deposition, 

characterisation and optimization of CeO2 nanocrystalline thin films required 

for the engineering of the two-step thermochemical cycling and the 

engineering of spherical ZnO and CeO2 coated ZnO nanoshells. The 

following is an overview of the thesis structure: 

 Chapter 2 provides a description of the various experimental 

techniques used for the deposition of the thin films and the 

characterisation techniques used for their analysis. It contains detailed 

information about the two growth techniques: pulsed DC magnetron 
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sputtering and spin coating deposition; as well as the characterisation 

techniques such as XRD, XPS, AFM, SEM, SIMS, UV-Vis, PL, TGA and 

CV. 

 

 Chapter 3 addresses the development of nanostructured CeO2 thin 

films by pulsed DC magnetron sputtering. It also concentrates on the 

control and enhancement of the oxygen storage capacity of CeO2 

films by facile tuning of the deposition gas ambient in the deposition 

chamber. The influence of the deposition gas atmosphere on the film 

stoichiometry and surface topography is also highlighted. 

 

 Chapter 4 concentrates on the crystal structure, morphology and 

optical properties of post-deposition annealed CeO2 thin films 

deposited by pulsed DC magnetron sputtering. There is a detailed 

account of the effect of post-deposition annealing temperature and gas 

atmosphere on film crystalline structure and morphology, with clear 

evidence for variation of the RMS roughness and grain size and shape 

due to varying the oxygen flow rates during the post-deposition 

annealing. It also calls attention to the effect of post-deposition 

annealing on the film stoichiometry and optical properties. 

 

 Chapter 5 describes the development of high surface to volume ratio 

by the growth of hollow domed-shaped CeO2 nanostructured on a 

polystyrene monolayer template using pulsed DC magnetron 

sputtering. It also contains a study on the optical properties resulting 

from the hollow dome-shaped nanostructures. 

 

 Chapter 6 demonstrates a simple and reproducible wet chemical 

method to fabricate ZnO and CeO2 coated ZnO nanostructures. It also 
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describes the preparation of spherical structures of ZnO and CeO2 

coated ZnO nanoshells using polystyrene sphere monolayer 

templates. Within this chapter is a detailed account of structural, 

morphological and compositional properties of the deposited 

materials. It also underlines the significant enhancement in the ultra 

violet (UV) and visible light absorption, through the engineering of 

spherical nanoshells, due to the whispering gallery modes in such 

nanoshell cavities as well as the addition of the CeO2 layer. 

 

 Chapter 7 focuses on a novel wet chemical-spin coating technique 

that consists of the growth of CeO2 on amorphous substrates using a 

Ce(NO3)3/PVA aqueous solution. It also covers the initial 

characterisation of the deposit.   

  

 Chapter 8 concludes the thesis and highlights future work to be 

considered for the further development of CeO2 nanoshell structures 

for light trapping and efficient energy production and testing devices 

for H2 production.   
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GROWTH AND CHARACTERISATION 
TECHNIQUES 

 

2.1 INTRODUCTION 

Numerous techniques are available for the deposition of thin films. Among 

these, pulsed DC magnetron sputtering and chemical deposition methods 

have become widely used in thin film technology [64, 65] for the production 

of thin, uniform films on planar substrates. This thesis explores the 

development of high surface to volume ratio CeO2 nanocrystalline thin films 

using pulsed DC magnetron sputtering and chemical deposition methods. 

The structural, morphological, optical and electrochemical characterisation of 

the deposited films are investigated using a number of different techniques, 

including x-ray diffraction (XRD), spectroscopic ellipsometry, atomic force 

microscopy (AFM), scanning electron microscopy (SEM), energy dispersive 

x-ray (EDX), ultra violet and visible absorption spectroscopy (UV-Vis), x-ray 

photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and 
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cyclic voltammetry (CV). The details of the growth processes and 

characterisation methods used in the study of these CeO2 samples are 

explained briefly in this chapter. 

 

2.2 FILM GROWTH TECHNIQUES 

2.2.1 SPUTTERING 

Sputtering is one of the most commonly used physical vapour deposition 

(PVD) techniques for the deposition of thin films [64, 66].  Sputtering is the 

ejection of atoms and/or molecules of a material from the target (or cathode) 

due to the bombardment of energetic ions on a surface generated in glow 

discharge plasma, located in front of the target. The energy transfer resulting 

from the bombardment process creates a collision cascade in the target 

material leading to the removal of target atoms, ions, molecules, secondary 

electrons and photons. The released target atoms and/or molecules may then 

deposit on the substrates as a thin film whereas the secondary electrons, 

emitted from the target as a result of bombardment, contribute to the 

stability and maintainability of the plasma discharge for the sputtering 

process. 

To begin a sputtering process, inert gas such as argon (Ar) is 

introduced into the vacuum chamber (sputtering chamber) to provide an 

operating pressure in the mTorr range and a sufficiently high operating 

voltage is applied to the cathode to ionise the inert gas and initiate the 

plasma. This results in the bombardment process that causes the removal of 

target atoms and/or molecules, followed by the deposition of same on to the 

substrate. During the sputtering process (and due to the lower collision 

cross-section for electrons at lower gas operating pressures) the probability 
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for electrons to escape without colliding with gas increases. Therefore to 

obtain the required thin film deposition, the energetic ion bombardment 

should have sufficient energy to knock-off (sputter) the material atoms from 

the target surface and the emitted material atoms should move with minimal 

gas collisions toward the substrates. These conditions can be achieved by 

producing efficient ionization at lower pressures using magnetron designs. 

Furthermore, sputtering at low operating pressure results in more 

reproducible characteristics of thin films with minimal contamination [67]. 

 

2.2.1.1 MAGNETRON SPUTTERING 

Magnetron sputtering has advanced rapidly over the last decade, to a point 

where it has become popular in many diverse market sectors due to 

advantageous features such as ease of technical adjustment and high-quality 

functional films. Magnetrons have been routinely used to rapidly deposit 

thin metal films for a broad range of applications from architectural glass 

and food packaging to thin films microelectronics [68] and solid oxide fuel 

cells [69]. In many cases, magnetron sputtered films now outperform films 

deposited by other PVD processes, and can offer the same functionality as 

much thicker films produced by other surface coating techniques. 

Consequently, magnetron sputtering now makes a significant impact in 

application areas including hard, wear-resistant coatings, low friction 

coatings, corrosion-resistant coatings, decorative coatings and coatings with 

specific optical or electrical properties [64]. 

 The basic sputtering process has been known for many years and 

many materials have been successfully deposited using this technique. 

However, the process is limited by low deposition rates, low ionization 

efficiencies in the plasma even at lower pressures, a large number of 

electrons escaping in the vicinity of the cathode, and high substrate heating 
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effects. These limitations have been overcome by the development of 

magnetron sputtering and, more recently, unbalanced magnetron sputtering. 

In order to overcome limitations such as lower deposition rate and gas 

ionization efficiencies associated with the basic sputtering process, normally 

magnets are placed behind the target and the field is configured parallel to 

the target surface. The magnets are arranged in such a way that one pole is 

positioned at the central axis of the target and the second pole is formed by a 

ring of magnets around the outer edge of the target, which creates crossed 

electric and magnetic fields. The schematic of arrangement of the magnetron 

cathode and the sputtering deposition process is illustrated in Figure 2.1. 

 

 

Figure 2.1: Schematic of the magnetron cathode and the sputtering deposition 

process. 

 If the electrons have a velocity component perpendicular to the 

magnetic field, they can spiral around the magnetic field (i.e. electrons 

become trapped) with a well-defined frequency and radius, which is a 

function of the strength of the magnetic field [70]. The increased ionisation 

efficiency due to this method leads to increased ion bombardment on the 

target and thereby an increased sputtering rate. This also causes a decrease of 

the plasma impedance which can help magnetrons to operate at much lower 

voltages than diode/DC systems. Permanent magnets are commonly used in 
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magnetrons, with several different possible geometries. In addition to the 

conventional (balanced) type of magnetron assembly, there is another 

configuration available, known as an unbalanced magnetron. In balanced 

magnetrons, the plasma is closely confined to the target, up to ~ 60 mm from 

the target surface. Hence, films deposited within this region will undergo ion 

bombardment, which can strongly influence the structure and properties of 

the growing film. Substrates placed out of this region will be in the lower 

plasma density region, and hence not be affected by sufficient ion 

bombardment. Contrary to the conventional balanced magnetron type, in an 

unbalanced system some of the electrons are deliberately allowed to escape 

from the target surface, by adjusting the magnetic field. Hence, these 

electrons create plasma closer to the substrate, which helps the reactive gases 

to reach the substrate surface for reactive sputtering or for ion plating [70]. 

Depending on the nature of the power supply that is used to drive the 

magnetron, sputtering includes different types, such as DC sputtering, RF 

sputtering, pulsed DC sputtering etc. 

 

2.2.1.2 PULSED DC MAGNETRON SPUTTERING 

Pulsed DC magnetron sputtering (PDCMS) is a well-developed deposition 

technique widely used for coating and thin film deposition in industrial 

applications and has received increased attention in the last number of 

decades [71, 72]. This development combines the benefits of both DC and RF 

magnetron sputtering. Even though RF sputtering can make good quality 

films, the deposition rate is very low (~μm/h range). Moreover, RF 

sputtering systems are complex and difficult to scale up for industrial 

applications. Correspondingly, the problems associated with the DC 

sputtering are intricacy of the deposition process for insulating layers and 

poor long term stability of non-metallic processes [64]. Furthermore, during 
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the DC reactive sputtering of an insulating material using a metal target and 

a reactive gas in Ar plasma, a film of the insulating material will deposit on 

the surface of the metallic target itself. As the deposition progresses, this 

insulating layer will charge up positively due to the accumulation of positive 

ions from plasma, until breakdown occurs in the form of an arc. These arc 

events can create an ejection of droplets of materials from the target, which is 

detrimental to the required properties of the growing film. 

 Additionally, arcing can make rapid changes to the deposition 

parameters, and thereby change the stoichiometry of the film; it can even 

damage the magnetron power supply. The problem due to the accumulation 

of charge can happen in the case of the DC sputtering of insulating targets as 

well. A photograph of the sputtering system used for the deposition process 

in this study is presented in Figure 2.2. It consists of a magnetron (A) 

connected to the sputtering chamber (B), which is separated from a loading 

chamber (C) by a transfer valve (D). Pulsed magnetron sputtering can be a 

better choice to overcome many of the problems one comes across with the 

deposition of the insulating films. It has been reported that pulsing the 

magnetron discharge in the medium frequency range (20-250 kHz) can 

significantly reduce the arcing and hence reduce the formation of defects in 

the film [73]. In addition, it can increase the deposition rate to a value of the 

order of tens of microns per hour, which is similar to that for pure metal 

films. 

 A pulsed magnetron sputtering process usually employs pulsed DC 

power. It can generate a condition by applying a short positive pulse in 

between pulses by disrupting the negative voltage to the target to eliminate 

the chances of arcing. An ENI RPG-100 asymmetric bipolar pulsed power 

supply is used for the film deposition in this work (Figure 2.3). 
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Figure 2.2: Photograph of the sputtering system used for the experiment: A) 

Magnetron, B) Sputtering chamber, C) Loading chamber and, D) Transfer valve. 

 

 It is possible to dissipate the accumulated charges on the insulating 

layer on the target, completely or partially, through the plasma during the 

pulse-off period by switching the target voltage to a more positive value. 

There are two modes of operation: unipolar pulsed sputtering and bipolar 

pulsed sputtering. In the former, the target is operated between the normal 

voltage and ground and in the latter; the target voltage is reversed and 

becomes positive during the pulse-off period. As the mobility of the electrons 

in the plasma is much higher than the ions, it is usually only essential to 

reverse the target voltage to between 10% and 20% of the negative operating 

voltage in order to fully discharge the charged regions and avoid arcing [64]. 

 
Figure 2.3: Photograph of the asymmetric bipolar pulsed power supply (ENI RPG-

100) used for the deposition. 
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 The bipolar pulsed DC power generates either a bipolar symmetric or 

a bipolar asymmetric pulse. The schematic of the illustration of the target 

voltage waveform for a pulsed DC power supply operating in the 

asymmetric bipolar pulse mode is as shown in Figure 2.4. Pulse parameters, 

like pulse frequency and pulse duty cycle, have significant influence on the 

properties of the deposited films. 

 

 
Figure 2.4: Schematic of the asymmetric bipolar pulsed DC signal used for the 

deposition. The deposition by sputtering of the target on the substrates takes place 

during the pulse-on time of the pulse. 

 

 The pulse duty cycle (δ) can be defined as the relative duration of the 

pulse on time (τ): 

δ =
τon

τon + τoff
                                                              (2.1) 

 The duration of the negative polarity to the cathode is represented as 

the pulse-on time (τon) and that of the positive polarity is indicated as pulse-

off time (τoff). Thus, sputtering of the target material occurs during the pulse-

on time and the discharging of the accumulated charge through the plasma 

takes place during pulse-off time [74]. 

In this thesis, the sputtered CeO2 films were prepared in a PDCMS 

system fitted with a CeO2 target (99.99% purity, Kurt J. Lesker Company). 

The sputtering process was performed under pure argon (Ar) ambient 
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(unless otherwise stated) with a working pressure of 0.7 Pa for the duration 

of 60 minutes. A sputtering power of 65 W at 150 kHz without intentional 

heating, with a target to substrate distance of 60 mm, was used to deposit 

uniform CeO2 films of thickness 50 ± 10 nm. 

 

2.2.2 SPIN COATING DEPOSITION 

The spin coating process is a very useful technique owing to its versatility, 

effectiveness, and practicality. It has been used for several decades for the 

realisation of thin films. The operation can be done in ambient conditions 

and thus a vacuum system is not required. A typical spin coating process 

involves depositing a small puddle of a chemical solution resin onto the 

centre of a substrate followed by spinning the substrate at high speed, 

typically 3000 rpm. The centripetal acceleration will cause the chemical 

solution resin to spread to, and eventually off, the edge of the substrate.  As 

the spin process continues, evaporation of the chemical solution takes place 

leaving behind a thin film on the substrate surface (see Figure 2.5). 

  

 

Figure 2.5: Schematic of the chemical solution spin coating process. 
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 In many chemical solutions used for spin coating, rapid solvent 

evaporation is a problem; therefore, accelerating the substrate from rest to 

the final spinning speed is highly important. Moreover, the final film 

thickness and other film properties depend on the nature of the chemical 

solution (viscosity, drying rate, surface tension, etc.) and the parameters 

(rotational speed, acceleration and fume exhaust) chosen for the spin coating 

process. The chemical solution used for the spin-coating deposition to obtain 

the CeO2 films is prepared by placing 2g of cerium (III) nitrate hexahydrate 

(Ce(NO3)3.6H2O, 99% purity, purchased from Sigma-Aldrich) and 0.2g of 

10% polyvinyl alcohol (PVA) in 20 ml de-ionised water (DI H2O). The 

solution is then stirred, using a magnetic stirrer, for three hours to ensure a 

complete dissolution. This fully dissolved chemical solution is then used to 

deposit a small puddle (~ 1 ml) onto the centre of the clean Si (100) 

substrates prior to spin coating deposition of CeO2 films. The spin coating 

deposition system used to fabricate the CeO2 is from the Laurell 

Technologies Corporation. 

 

2.3 CHARACTERISATION TECHNIQUES 

2.3.1 X-RAY DIFFRACTION 

X-ray diffraction (XRD) is a versatile, non-destructive technique widely used 

to analyse the crystal structure of materials. It is also an indispensable 

method for obtaining valuable information about the material such as phase 

analysis, texture analysis and grain size which assist in understanding 

sample quality. 

 XRD passes a beam of x-ray of a known wavelength through a sample. 

When the beam of x-ray is incident on a crystalline sample, it is scattered by 

atomic planes in all directions. The three dimensional lattice of a crystalline 
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material consists of repeated planes of atoms arranged in a regular manner. 

Inter atomic distances in crystalline solids are of the order of a few 

Ångstroms and the wavelength of the x-ray is also of the same order. When a 

beam of x-ray interacts with these atomic planes, it gets scattered. In some of 

these directions, the scattering beams from the planes, with a distance of 

separation (d) analogous to the known wavelength of the x-ray, of the 

sample are completely in phase and these beams constructively interfere and 

reinforce one another to form diffracted beams. The variation of the scattered 

signal with x-ray angle forms a diffraction pattern. These diffraction patterns 

act as a fingerprint for that particular material under examination.  

 

 
Figure 2.6: Illustration of Bragg's law. The figure indicates the conditions for the 

occurrence of Bragg diffraction. Planes of atoms are indicated using the black solid 

lines. 

 

 The essential condition for the occurrence of diffraction pattern 

(Figure 2.6) is developed by English physicists Sir W.H. Bragg and his son Sir 

W.L. Bragg. It is given by: 

nλ = 2dsinθ                                                                (2.2) 

 n is the order of reflection, λ is the wavelength of the x-ray used, d is 

the inter-planar distance and θ is the angle of incidence and reflection of x-

ray. The structure of the CeO2 thin films are examined using a Bruker 

Advance D8 XRD instrument (see Figure 2.7) with a CuKα monochromatic 
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radiation beam (λ = 1.54 Å) produced in an x-ray tube operated at 40 kV and 

40 mA. The scanning range (2θ) is performed from 20º to 60º with a step size 

of 0.1°. 

 In this present work, XRD is used to assess the quality of the CeO2 

samples by reviewing the crystallinity and phase purity of CeO2 thin films as 

well as the sample crystallographic properties, such as crystallite size and 

lattice parameters. 

 
Figure 2.7: Photograph of Bruker AXS Advance D8 XRD system. 

 

2.3.2 SCANNING ELECTRON MICROSCOPY 

Scanning Electron Microscopy (SEM) is one of the most adaptable types of 

electron microscopy for the investigation of surface topography and chemical 

composition of materials. The SEM is developed to overcome the limitations 

of the optical microscope such as resolution of ~ 2000 Å. The crucial 

advantage of SEM over the ordinary optical microscope is its significantly 

higher magnification (>100,000X) and resolution of ~ 100 Å, which results 

from the use of an electron beam for imaging as opposed to visible light. 
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 In SEM (Figure 2.8), a high energy beam of electrons produced by an 

electron gun is focused in high vacuum into a fine probe that is raster 

scanned over the surface to be examined. This electron beam passes through 

objective lenses and scan coils that deflect the beam vertically and 

horizontally so that the electron beam can scan the sample surface. As the 

electrons interact with the sample surface, a number of interactions occur 

which results in the emission of electrons (or photons) from (or through) the 

surface. These emissions are detected and analysed to give point by point 

information about the surface which is then built up to form the sample 

image. Secondary electrons are ejected from the surface atoms by inelastic 

scattering with the beam electrons and these are the main emission signal, 

which can then be collected by appropriate detectors to yield information 

about the topography, composition and crystallography of the material 

under investigation. These emitted electrons are detected and analysed to 

give an image of the surface. The resolution of the SEM is dependent on the 

beam spot size, which depends on the wavelength of the electron and the 

lenses and aberrations in the electro-optic system that produces the electron 

beam. The samples need to be conductive to be imaged in the SEM because 

of the combined effects of the incident electron beam and the loss of electrons 

from the sample and the consequent potential for charging effects for non-

conductive samples. 

 Figure 2.9 shows the generation of various signals as a result of the 

interaction of the sample atoms with the incoming electron beam. These 

consist of secondary electrons (used to form images of the sample surface 

and visualise topography), back scattered electrons (used to identify regions 

of the sample that differ in atomic composition, as this difference shows up 

as a variation in the contrast of the sample image during the SEM's raster 

scan.), transmitted electrons (which can be used in a scanning transmission 

electron microscope), x-ray, heat, photons etc. As stated above, the creation 
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of secondary electrons is strongly related to the topography of the sample. 

Similarly, the creation of the backscattered electrons varies with sample's 

atomic number. 

 
Figure 2.8: Schematic of a SEM system. The electron gun and the lensing system to 

focus the electron beam on to the sample surface are illustrated. 

 
 

 

Figure 2.9: Illustration of the different signals generated by the electron beam-

specimen interaction in SEM and the regions from which the signals can be detected 

[74]. 
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 The SEM used to analyse the CeO2 thin films and nanostructures in 

this study is a Carl Zeiss EVO LS-15 SEM system (see Figure 2.10) fitted with 

secondary electron, backscattered electron and EDX (further described in 

section 2.3.3) detectors. This system consists of two chambers under vacuum, 

i) the upper chamber containing the electron gun column, and ii) the lower 

chamber consisting of the sample holder, stage and stage control, where the 

lower chamber can be brought to atmosphere without breaking vacuum in 

the upper chamber. This is done by using a differential pumping system with 

pressure limiting apertures. 

 
Figure 2.10: Photograph of the Zeiss EVO LS-15 SEM system. 

 

2.3.3 ENERGY DISPERSIVE X-RAY SPECTROSCOPY 

Energy dispersive x-ray spectroscopy (EDX or EDS), generally called micro 

analysis, is an analytical technique used for elemental analysis of the sample 

material. As described in section 2.3.2, electrons are emitted due to the 

interaction of the electron beam with the sample surface during the SEM 

analysis. These interactions of the primary beam electrons on the sample 

surface can give rise to the ejection of the inner shell electrons of the sample, 
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and transitions of the outer electrons to fill up these vacancies in the inner 

shells causing the production of characteristic x-rays. The x-ray signals form 

a finger print of the elements present in the sample which are then collected 

by the EDX spectrometer to provide an elemental analysis using the x-ray 

peak intensity and spectral position information with the help of the 

software associated with the system. The elemental analysis of the CeO2 

samples is investigated using INCAx-act detector attached to the Carl Zeiss 

EVO LS-15 SEM system. 

 

2.3.4 SPECTROSCOPIC ELLIPSOMETRY 

Spectroscopic ellipsometry is a non-destructive, optical analysis technique 

used to characterise thin films. It determines optical constants (refractive 

index, extinction coefficient, etc.), surface and interfacial roughness and thin 

film thickness (for single or multiple layers). Ellipsometry means measuring 

an ellipse. Linearly polarised light reflecting from a flat surface generally 

becomes elliptically polarised after reflection. As the light reflects from the 

material surface, it is polarised in two directions, parallel and perpendicular 

to the plane of incidence. These are denoted as p-polarised and s-polarised, 

respectively. This change in the polarisation state of the light reflected from 

the sample surface is measured as the complex ratio (𝜌) of s- and p-polarised 

reflectances (rs and rp respectively) and can be analysed to obtain various 

information about the material of the sample. The measured value is 

expressed in terms of the ellipsometric angles Ψ (psi) and Δ (delta), where 

the angles Ψ and Δ represent the change in phase and amplitude, 

respectively, between the s- and p-polarised that occur upon reflection and, 

are related to the ratio (𝜌) of the Fresnel reflection coefficients rs and rp in 

Equation 2.3. In Equation 2.5, δs and δp  refer to the relative phase of these 

components. 



 
 

39 
 

                                                         𝜌 =
rp

rs
= tan(Ψ) ei∆                                                  (2.3) 

where 

                                                        tan(Ψ) =
|rp|

|rs|
= |p|                                                    (2.4) 

and 

                                                                 ∆= δp − δs                                                           (2.5) 

 Since ellipsometry measures the ratio of two values, this technique 

provides highly accurate, very reproducible measurements that are not 

dependent on the incident beam intensity. In this work, the average layer 

thickness of the CeO2 thin films on Si (100) wafers is measured with a J. A. 

Woollam Co., Inc. M-2000UI ellipsometer, Model XLS - 100 and controlled by 

EASETM (version 1.16). A schematic of the ellipsometry system used is shown 

in Figure 2.11. 

 

 
Figure 2.11: Schematic of the spectroscopic ellipsometry system. 
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2.3.5 ATOMIC FORCE MICROSCOPY 

An atomic force microscope (AFM) is optimized for measuring surface 

features that are extremely small, such as that of a carbon atom 

(approximately 0.25 nm). It was developed by Gerd Binnig in 1986 as a 

method to overcome the serious limitations of the scanning tunnel 

microscope (STM) [75]. An AFM can be used to image any material's surface 

and unlike a STM it does not require the surface to be conductive. During the 

scanning of a sample using the atomic force microscope a constant force is 

applied to the surface. This force is controlled by the probe at the end of the 

cantilever. When performing the scanning, measuring the force with the 

cantilever in the AFM is achieved by two techniques. In the first technique 

the deflection of the cantilever is directly measured, while the second 

technique vibrates the cantilever and the changes in the vibration properties 

are measured. 

 A standard AFM instrument consists of a laser focused onto the upper 

surface of a small cantilever. The cantilever in turn is mounted on piezo 

crystals in a tripod configuration that allows the cantilever to be moved in 

the X, Y and Z directions. The laser spot focused on the cantilever is reflected 

towards a mirror which then directs the beam to a split photodiode detector. 

Movement of the cantilever is then detected as a shift in the detection signal 

from the split photodiode. Figure 2.12(a) shows a typical AFM configuration 

while Figure 2.12(b) shows the effect of the cantilever movement on the laser 

beam path during measurement. 

 In this thesis work, the surface morphology and surface roughness of 

the CeO2 films, prepared under different conditions, are investigated using a 

Veeco Nanoscope Dimension 3100 AFM instrument operating in tapping 

mode using aluminium-coated silicon (Si) AFM probes (Tap300Al-G, 

purchased from Budget Sensors), for all the AFM imaging. These probes 
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operated at a resonant frequency and force constant of 300 kHz and 40 N/m, 

respectively. 

 

 
Figure 2.12: (a) Schematic representation of a typical AFM instrument, (b) a 

schematic representation of the effect of bending the cantilever on the laser beam 

path during tapping mode oscillations [76]. 

  

2.3.6 X-RAY PHOTOELECTRON SPECTROSCOPY 

Photoelectron spectroscopy (photoemission spectroscopy, XPS) is a 

characterisation technique that is extremely sensitive to surface chemistry, 

allowing surface chemical state information to be examined.  It is a well-

known method used for the investigation of the electronic structure of atoms 

and molecules. It is developed by Kai Siegbahn and his group in the 1960's 

[77]. Surface analysis using XPS can be realised by the irradiation of the 

samples with mono-energetic soft x-rays followed by the analysis of the 

kinetic energy of the electrons directly ejected (without subsequent scattering 

or energy loss) as a result of the photoelectric effect, and the deduction of the 

electron binding energy in the material from the kinetic energy using the 

Einstein equation. A typical XPS spectrum is a plot of the electron binding 
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energy as determined from the kinetic energy of the emitted electron versus 

the number of electrons detected at this energy. 

 In order to accurately measure the kinetic energy of the photoemitted 

electrons from a chemically stable surface, as well as ensuring the detection 

of a significant number of the photoemitted electrons, experiments are 

performed under ultra-high vacuum (UHV) environments; where UHV is 

defined as pressures lower than 10-9 mbar. Another reason for the 

importance of UHV is to minimise sample contamination. As XPS is limited 

to an approximate sampling depth of 4 to 7 nm [78], depending on material, 

it is important to ensure the sample being measured has minimal 

environmental contamination, such as the presence of environmental carbon 

on the surface. Since the surfaces are the prime region of investigation by 

XPS, the surface reconstruction can be altered by the adsorption of 

contaminants. Surface contamination also complicates controlled systematic 

investigations such as anneal or deposition studies. Therefore a UHV 

environment ensures that the surface under investigation remains chemically 

stable during the photoemission experiment.  

  

 
Figure 2.13: Photograph of dedicated three chambered XPS system. 

 

In this work, a detailed chemical analysis of the CeO2 film surfaces is 

carried out using the VG Microtech electron spectrometer (see Figure 2.13) at 
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a base pressure of 10-9 mbar. The photoelectrons are excited with a 

conventional Mg Kα (hv = 1253.6 eV) x-ray source and an electron energy 

analyser operating at a 20 eV pass energy, yielding an overall resolution of 

1.2 eV. The samples are subjected to a mild degassing procedure in UHV at 

300 °C in order to eliminate any surface contamination (this treatment is at 

too low a temperature to affect the properties being studied as a function of 

post deposition annealing), which may have arisen as a result of the transfer 

in atmosphere between the deposition and analysis chambers. All XPS 

spectra are collected and peak fitted by Dr Anthony McCoy in the School of 

Physical Science, Dublin City University, Ireland. 

 

2.3.7 SECONDARY ION MASS SPECTROMETRY 

Secondary ion mass spectrometry (SIMS) is one of the most appealing 

physical methods used to provide specific chemical information about solid 

surfaces and thin films. The surface of the samples is bombarded using a 

high energy focused ion beam, which causes sputtering of the sample (see 

Figure 2.14). The ejected secondary ions are then collected and analysed 

using a mass spectrometer. The composition of the sample can be extracted 

from the information on the count rate of different secondary ion species 

ejected from the sample. It is a very sensitive technique and allows 

measurements of trace elements at very low concentration (ppb).  

 
Figure 2.14: Schematic of the SIMS analysis. 
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 The CeO2 sample studies are carried out using a bench-top secondary 

ion mass spectrometer fitted with a quadrupole mass analyser apparatus 

called the Millbrook MiniSIMS Alpha and developed by Millbrook 

Instruments Ltd (Figure 2.15). It incorporates a raster scanned gallium (Ga) 

liquid metal ion gun for the primary beam and low-energy optics for 

secondary ion extraction into a 300 Dalton (Da) quadrupole mass 

spectrometer. Ga+ ions (6 keV) are focussed perpendicularly to the sample. 

As the CeO2 samples charge up when it is being studied without charge 

neutralisation, an electron gun charge neutralisation was used during all the 

measurements. SIMS needs a high vacuum of the order of 10-5 Pa in order to 

minimise both the collision of the ejected secondary ions with the 

background gas and surface contamination of the samples due to the 

adsorption of the background gas during the measurements. The operating 

pressure used is 3.1 × 10-5 Pa. 

 
Figure 2.15: The Millbrook MiniSIMS Alpha system. 

 

2.3.8 THERMOGRAVIMETRIC ANALYSIS 

Thermogravimetric Analysis (TGA) is a technique in which the mass of a 

substance is monitored as a function of temperature or time as the sample 

specimen is subjected to a controlled temperature program in a controlled 

atmosphere. A TGA consists of a sample holder that is supported by a 
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precision balance. That sample holder resides in a furnace and is heated or 

cooled during the experiment. The mass of the sample is monitored during 

the experiment and a purge gas controls the sample environment. This gas 

may be inert or a reactive gas that flows over the sample and exits through 

an exhaust. 

 In this thesis work, TGA is performed using Setaram SetSys 16/18 

instrument (sensitivity 0.4 μg). Each TGA sample consisted of several pieces 

of CeO2 film covered substrate placed in an alumina crucible. The initial total 

masses of the samples are in the range 140 - 210 mg. The experimental 

procedure included heating the sample in air to 600 C, equilibration at this 

temperature with air for 3 hours, flushing with Ar for 1 hour, and then 

reduction in a flow of 10% H2 – N2 mixture for 5 h. The thermogravimetric 

data are corrected for buoyancy effects by subtracting a baseline recorded 

under identical conditions using an inert alumina reference sample. The O2 

partial pressure in the 10% H2 – N2 mixture at 600 C corresponded to ~10-21 

Pa. Thermogravimetric data are performed by Dr Aleksey A. Yaremchenko 

and Dr Rajesh Surendran in the Department of Materials and Ceramic 

Engineering, CICECO, University of Aveiro, Portugal. 

 

2.3.9 ELECTROCHEMICAL CYCLIC VOLTAMMETRY 

Cyclic voltammetry (CV), also known as linear sweep voltammetry, is one of 

the most versatile techniques available for acquiring qualitative information 

about electrochemical reactions. This technique is first introduced by 

Matheson and Nichols in 1938, and independently advanced and 

theoretically described by Randles and Sevcik ten years later [79].  Cyclic 

voltammetry has become a powerful technique due to its ability to provide 

substantial information promptly on the thermodynamics of redox processes, 

both on the kinetic of heterogeneous electron-transfer reactions and on the 
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coupled chemical reactions and adsorption processes [80]. A typical cyclic 

voltammogram for a reversible single electrode transfer reaction is shown in 

Figure 2.16, with a solution containing only a single electrochemical reactant. 

The cyclic voltammogram shows the influence of voltage scan rate on the 

current for a reversible electron transfer reaction. 

 

 

Figure 2.16: Scan rate and rate constant dependence of the I-V curves [81]. 

 

 In this thesis electrochemical measurements are conducted using CH 

Instruments 660 potentiostat in anhydrous N,N-Dimethylformamide (DMF) 

solution with 1 M LiClO4 as a supporting electrolyte, unless otherwise stated.  

A typical three-electrode cell configuration is used with cerium oxide (CeO2) 

coated ITO glass as the working electrode and two platinum electrodes, one 

acting as counter electrode and the other as a pseudo reference electrode (see 

Figure 2.17).  The active area of the working electrode is maintained constant 

at 1.44 cm2 (1.2 cm x 1.2 cm). All potentials have been standardized and 

quoted versus the SCE reference electrode. All chemical and solvents used 

for electrochemical measurements are purchased from Sigma-Aldrich and 

are of analytical grade. All solutions are deoxygenated for 30 minutes using 

nitrogen gas prior to use. All measurements are carried out at room 

temperature, 22 ± 2 °C. Electrochemical cyclic voltammetry is completed 
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with the help of Dr Anita Venkatanarayanan from the Biomedical 

Diagnostics Institute, School of Chemical Sciences, Dublin City University, 

Ireland. 

 
Figure 2.17: Schematic of the cyclic voltammetry three-electrode cell configuration. 

 

2.3.10 ULTRAVIOLET-VISIBLE SPECTROSCOPY 

Ultraviolet-visible absorption spectroscopy (UV-Vis) is a technique used to 

perform optical absorption measurement as a function of wavelength due to 

its interaction with a material. It examines the optical absorption of radiation 

and it is one of the most common methods for investigating the energy level 

structure of materials. From the semiconductor point of view, it is a simple 

method for the determination of the bandgap value of the material. Here, the 

optical absorption properties of the CeO2 and CeO2-coated ZnO samples are 

studied at room temperature using a Perkin Elmer Lambda 40 UV–Vis 

spectrometer (see Figure 2.18) in the wavelength range from 400 to 800 nm 

with a resolution of 4 nm. 
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Figure 2.18: Photograph of the Perkin Elmer Lambda 40 UV-Vis spectrometer. 

  

2.3.11  PHOTOLUMINESCENCE  

The emission of radiation from a material by providing some form of energy 

for excitation is generally referred to as luminescence. Photoluminescence 

(PL) is an extremely sensitive technique used to characterise optoelectronic 

semiconductor materials. During PL measurements, luminescence happens 

due to excitation produced by the absorption of photons. It is an extensively 

used method to examine the electronic structure, photochemical and optical 

properties of semiconductor materials. PL involves the impingement on the 

sample by photons of an energy value greater than the bandgap value (Eg) of 

the sample material. The irradiation of photons with sufficient energy can 

create electrons in the conduction band and holes in the valence band.  If the 

relaxation of these excited electrons is radiative, then the process is called 

photoluminescence. In this study, the following two PL spectroscopies are 

used: 

1) Temperature dependent PL measurements are carried out on CeO2 

samples using a closed cycle helium cryostat and a 325 nm line of a 

HeCd laser operating at a power less than 200 mW. The 

luminescence is analysed using a 1m grating spectrometer (SPEX 

1704) with a photomultiplier tube (Hamamatsu model R3310-02) in 
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photon counting mode and cooled to 20°C by a Peltier system EMI 

FACT50 Cooler (see Figure 2.19).  

 

 
Figure 2.19: Schematic of the PL experimental set-up. 

 

 

2) Room temperature PL measurements are carried out on CeO2 and CeO2-

coated ZnO samples using a 244 nm (~ 5.1 eV) excitation produced 

by an Ar ion Innova laser from 20K to room temperature. The 

luminescence is recorded using TRIAX 190 Jobin Yvon-Horiba 

spectrometer with a resolution of 0.3 nm. 
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MAGNETRON SPUTTERING GROWTH 

AND CHARACTERISATION 

 

3.1 INTRODUCTION 

As mentioned previously, CeO2 and CeO2-based materials have attracted 

enormous interest industrially; in particular for their OSC. This is due to the 

fact that CeO2 can oxidise and reduce molecules which interact with its 

surfaces and thus oxygen vacancy defects can be rapidly formed and 

eliminated, giving CeO2 its high OSC [82].  This capacity makes various 

modern devices containing CeO2 much more effective than their 

predecessors without CeO2. The presence of CeO2 contributes significantly to 

the effectiveness of three-way catalysts [83], catalysts for H2 production from 

fuel [84], optical films [85], oxygen sensors [42] and thermochemical two-step 

water-splitting cycle [2]. Apart from the ability of CeO2 to easily and 

repeatedly switch between oxidation states and accommodate different 

levels of surface and bulk oxygen vacancies [44], the abundance of metallic 
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Ce on earth makes CeO2 a low-cost and highly attractive material for 

applications in solar cells and photocatalysis. CeO2 has a cubic fluorite-type 

crystal structure, with a lattice spacing of 0.5411 nm, and unique material 

properties such as high dielectric constant, high refractive index and 

excellent stability at high temperatures [86, 87]. The valence of the Ce ion is 

very important in determining the structure of cerium oxides; trivalent Ce 

forms the sesquioxide Ce2O3, which has a hexagonal lattice (P3 ̅m1 space 

group), while tetravalent Ce forms CeO2, which has a cubic fluorite lattice 

(Fm3m space group) [45, 89, 90]. Thin films of CeO2 (the most common form 

of oxidised cerium) exhibit unique physical properties, such as a lattice 

constant similar to that of Si (α = 0.541 nm), a high refractive index and 

dielectric constant [87, 91]. Hence, CeO2 films are also appropriate for many 

applications in optical devices [92, 93], microelectronic devices [94, 95], 

optoelectronic devices [96] and sensors [42]. In addition CeO2 is a non-toxic 

and stable material with a wide band gap and can demonstrate high ionic 

conductivity if doped with aliovalent cations [88]. 

  CeO2 in bulky and porous structures are widely used in many 

applications related to the material’s enhanced catalytic behaviour and redox 

properties as mentioned above. Likewise, thin films can be incorporated in 

the same catalytic activities through the creation of thick porous CeO2 

structures by effectively incorporating porosity between intermediate thin 

film layers [97, 98], where an understanding and enhancement of the oxygen 

storage properties of the thin films are essential. Therefore, using thin films 

with higher OSC to create the bulk porous structures would effectively 

enhance the performance of the final structure. Additionally, since the 

physical and chemical properties of CeO2 can be tuned by doping, these 

CeO2 thin films can be doped with materials such as SiO2, TiO2 or ZrO2 in 

order to improve and further support the thermal stability and oxygen 

storage (redox) properties of CeO2 [44].   
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  Since CeO2 is stable, even in sub-stoichiometric form (CeO2-δ), it has 

been produced by several growth techniques including sol-gel deposition 

[99], electron-beam evaporation [100], laser ablation [101], molecular beam 

epitaxy [102], chemical vapour deposition [95], ion-beam-assisted deposition 

[103, 104], pulsed laser deposition [105] and reactive and non-reactive 

magnetron sputtering [91, 106], which is one of the best methods for the 

preparation of CeO2 films due to its many advantages [91, 107]. These 

include low substrate temperature, good surface roughness characteristics 

and scalability, as well as being a well-established and relatively low cost 

industrial technique. The bipolar PDCMS process has recently attracted a 

great deal of attention because it shows higher deposition rates of defect-free 

ceramic films than the more conventional RF magnetron sputtering process 

(as mentioned in Chapter 2). In particular it can alleviate the occurrence of 

arcing events at the oxide targets involved in the continuous DC sputtering 

process. The creation of pulses in the magnetron discharge in the mid-

frequency range has been found to prevent arc events and stabilise the 

reactive sputtering process. Thus, PDCMS is a commercially suitable method 

for large-area deposition of good quality ceramic films with high yield under 

various processing conditions.  

  Many reports have addressed the electrochemical, redox and oxygen 

storage properties of CeO2 [108-110]. For example, Wang et al. [111] 

introduced a simple OSC measurement technique using cyclic 

thermogravimetric analysis where the mass changes of the CeO2 samples, 

using extra low-temperature, are measured and correlated to OSC. Other 

groups have also reported on the electrochemical properties and charge 

storage of CeO2 such as Brezesinski et al.’s report [97] on enhancement in the 

electrochemical charge storage capacity of the mesoporous ceria compared to 

bulk ceria and on the oxidation state of Ce in CeO2 using XPS [108, 112, 113]. 

Park et al. [114] reported the first studies of CeO2 films deposited by PDCMS 
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where comparative studies of the microstructure and mechanical properties 

of deposited films are carried out.  

  In this chapter, a reliable method for the deposition of stable CeO2 thin 

films using PDCMS has been successfully demonstrated. A uniform film 

thickness of 50 ±10 nm is obtained for all the deposited samples. The effect of 

two sputtering gas ambients on the electrochemical and oxygen storage 

properties has been studied and the following key conclusions have been 

reached on the basis of our results. Firstly, deposition of nanostructured 

CeO2 thin films by PDCMS is successfully achieved. Secondly, the deposition 

gas ambient influenced the film stoichiometry, surface morphology and 

crystallinity of the CeO2 films. Thirdly, a relative oxygen deficiency in the 

sample sputtered in Ar has been confirmed by AFM, SIMS, XPS, CV and 

TGA. Finally, electrochemical measurements and TGA analysis both indicate 

that CeO2 samples sputtered in Ar have a higher CSC and OSC than those 

deposited in the presence of O2, making CeO2 samples sputtered in Ar better 

suited for many applications.  

 

3.2 EXPERIMENTAL METHODS 

Nanostructured CeO2 thin films are prepared on Si(100) and ITO coated glass 

substrates by PDCMS from CeO2 target (99.99% purity). The sputtering 

target was supplied by the Kurt J. Lesker Company. Prior to growth, the 

substrates were cleaned using acetone and decontamination foam followed 

by deionised (DI) water (obtained from a Millipore filtration system) to 

remove surface impurities. An ENI RPF-100 pulse generator is used to drive 

a planar magnetron fitted with the target in the power regulation mode. The 

chamber is first pumped down to a base pressure of 2 × 10−7 mbar (2 × 10−5 

Pa) by cryogenic pumping. The target is pre-sputtered for about 10 minutes 

prior to deposition in order to eliminate target surface contamination and to 
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obtain a stable plasma density. Sputtering is then performed under either 

pure Ar ambient or an Ar/O2 mixed ambient and the working pressure is 

adjusted and kept at 7 × 10−3 mbar (0.7 Pa) for the duration of deposition in 

both cases. The Ar:O2 partial pressure ratio in the Ar/O2 mixed ambient is 

2:1.The target to substrate distance is adjusted to 60 mm. The sputtering is 

completed with a power of 65 W at 150 kHz without intentional heating. The 

substrates are held at floating potential and the sputtering time is adjusted to 

60 minutes to obtain a uniform film thickness of 50 ± 10  nm for all the 

samples grown (thicknesses are measured using spectroscopic ellipsometry 

post film growth). 

 The crystallographic structure of the deposited CeO2 films is 

determined using XRD. The surface morphology and roughness of the CeO2 

films were studied by AFM operating in tapping mode with a tip radius of < 

10 nm. Detailed chemical analyses of the CeO2 films is performed using XPS 

while the elemental nature of the films are investigated using SIMS. 

Electrochemical measurements are conducted using CV in anhydrous N, N-

Dimethylformamide solution with 1 M LiClO4 as the supporting electrolyte 

unless otherwise stated. The OSC of the CeO2 films is investigated using 

TGA. Further details on these characterisation techniques are provided in 

Chapter 2. 

 

3.3 RESULTS AND DISCUSSION 

As discussed in chapter 2, the freedom to freely vary the sputtering 

parameters to improve the quality of the deposited films is very wide in the 

case of PDCMS, compared to other types of sputtering methods. The 

selection of suitable sputtering parameters for the development of good 

quality CeO2 films was performed after several repetitions of the 

experiments, with varying sputtering parameters. The optimisation of the 
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process conditions was established by observing the structural, 

morphological and optical properties of the films. The pulse duty cycle and 

other variables such as sputtering pressure, target power and target substrate 

distance etc. had to be optimised. An optimised pulsed power of 65 W was 

used for the preparation of the films due to the fact that, as the power 

increases to the range of 70-75 W, the deposition rate increases, but there is 

significant target heating. This even caused the CeO2 target sides to crack 

after repeated sputtering as a result of the uneven heat through the ceramic 

target. 

 The working gas pressure of the sputtering chamber also had an effect 

on the scattering of the sputtered species from the target and thereby on the 

properties of the deposited films. The sputtering pressure was optimised to a 

value of 7 × 10−3 mbar (as mentioned above), by observing the structural, 

morphological and optical properties of the deposited films. Once the 

sputtering parameters were optimised, two distinct studies were carried out: 

 
1) Control and enhancement of the oxygen storage capacity of CeO2 

films by variation of the deposition gas atmosphere during 

PDCMS (described and discussed in this chapter). 

 
2) Control of crystal structure, morphology and optical properties of 

the CeO2 films by post-deposition annealing temperatures (a 

detailed account of this study is given in Chapter 4). 

 

3.3.1 STRUCTURAL & MORPHOLOGICAL STUDIES 

Figure 3.1 shows the θ-2θ XRD patterns in a locked-coupled (θ-2θ) mode of 

the as-deposited nanostructured CeO2 films deposited in a pure Ar and 

Ar/O2 mixed ambients, in a 2θ range from 25° to 60°. The sample deposited 

in a pure Ar ambient is clearly amorphous and shows no presence of any 
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CeO2 peaks. On the other hand, the sample deposited in an Ar/O2 mixed 

ambient shows a polycrystalline structured CeO2 film (cubic fluorite, JCPDS 

No.: 34-0394) that clearly exhibits the presence of CeO2 (111), (200), (220) and 

(311) reflections, with predominant texture along the [111] direction and with 

no indication of other phases. These diffraction peaks are in good agreement 

with the standard CeO2 patterns [115-117]. There is also a single weak peak 

at 2θ = 46.6° that is assigned to the hexagonal Ce2O3 phase (JCPDS No.: 23-

1048). 

  
Figure 3.1: XRD pattern of CeO2 thin films deposited on Si (100) substrates by 

PDCMS under two different gas conditions, Ar (blue) and Ar/O2 (red). 

 

The surface morphologies of the CeO2 sputtered films are shown in 

Figure 3.2. The root mean square (RMS) value (Rq) of the deposited CeO2 

films  are measured from the AFM topography images and Rq values of  0.06 

nm and 0.19 nm have been observed for the Ar and Ar/O2 sputtered 

samples, respectively.  Films sputtered in pure Ar show a smooth surface 

morphology, whereas the films sputtered in an Ar/O2 mixture show 

evidence of a rougher surface, albeit with some isolated larger grains. These 

isolated grains of different sizes are observed throughout the Ar/O2 samples 

possibly due to the formation of polycrystalline CeO2 as a result of 
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introducing oxygen in the plasma. Suchea et al. [118] reported that the 

introduction of oxygen in the plasma is generally believed to support the 

formation of grains in metal-oxide films due to the impact or presence of 

high-energy neutral oxygen atoms [118]. Furthermore, oxygen in the plasma 

could enhance the formation of stoichiometric CeO2 films [119]. These results 

can be correlated to the XRD pattern shown in Figure 3.1, where the 

polycrystalline XRD patterns observed in Figure 3.1 can be correlated to the 

isolated grains detected in the AFM topography image and similarly for the 

amorphous film deposited in pure Ar ambient. 

   

          
Figure 3.2: 2 ×2 μm2 top and 3D view AFM images of CeO2 thin films sputtered in a) 

pure Ar and b) an Ar/O2 gas mixture. 
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3.3.2 FILM COMPOSITION – SIMS 

To provide information on the elemental composition of the bulk material 

deposited by the PDCMS, SIMS measurements were undertaken at different 

locations throughout the deposited films. Figure 3.3 shows the SIMS spectra 

of the sputtered CeO2 films, grown in Ar and Ar/O2 ambient, for the mass 

region from 110 to 200 amu/e. The most intense secondary ion peaks 

detected are CeO+ for Ar and CeO2+ for Ar/O2 samples. As more scans are 

performed and the probing depth increased due to surface sputtering by the 

Ga ion beam, the secondary ions from both samples displayed similar peaks 

to that shown in Figure 3.3, with a constant intensity for all CeOδ peaks 

throughout the samples. It is important to note that although the intensity of 

the CeO2+ secondary ion peak is the highest for the Ar/O2 sample, the 

intensity value of this peak is much lower than the intense peak (CeO+) 

detected for the Ar sample.  The usual cerium-oxygen molecular ions that 

can be seen include CeO+, CeO2+, Ce2O+, Ce2O2+ and Ce2O3+ ions. However, 

the three typical secondary ions most commonly seen in CeOδ mixed oxide 

spectra, as reported in the literature, are summarised in Table 3.1 together 

with their corresponding m/q values [120]. In the case of CeO+ and CeOH+, 

there is mass interference and/or overlapping hence multiple peaks are 

detected between 155.4 amu/e and 157.9 amu/e with a higher CeOH+ 

intensity observed for the Ar/O2 sputtered sample.  

 

Table 3.1: m/q values of different observed CeOδ ion clusters. 

Ion m/q (amu/e) 

Ce+ 140 

CeO+ 156 

CeO2+ 172 
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Figure 3.3: SIMS spectra in the range from 100 to 200 amu/e measured from CeO2 

thin films sputtered in a) Ar and b) Ar/O2. 

   

3.3.3 CHEMICAL ANALYSIS – XPS 

The CeO2 film surface chemical compositions have been studied by XPS to 

probe the presence of Ce in the Ce4+ and Ce3+ charge states in the material. 

CeO2 films in a chemically reduced state should display XPS peaks 

corresponding to the Ce3+ state [121] while oxidised CeO2 films should show 

XPS peaks corresponding to the Ce4+ state. XPS scans show the Ce3d peaks 
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(Figure 3.4) and characteristic O1s peak (Figure 3.5) from which the film 

stoichiometry and bonding type can be determined. Figure 3.4 displays the 

core Ce3d levels of the two CeO2 sputtered films, deposited in Ar and Ar/O2 

atmospheres. The XPS spectrum from the CeO2 is complex and split into 

Ce3d3/2 and Ce3d5/2 peaks, due to spin-orbit coupling effects. The peaks in 

the region 875-895 eV correspond to the Ce3d5/2 while peaks in the region 

895-910 eV correspond to the Ce3d3/2 levels [108, 122]. The characteristic 

peak energies associated with different Ce charge states are indicated by the 

vertical dotted lines. The spectra clearly show the greater concentration of Ce 

in the Ce3+ oxidation state in the sample grown in Ar, indicating a chemically 

reduced state of CeO2. This greater concentration of the Ce3+ oxidation state 

in the sample grown in Ar is easily seen by virtue of the peaks at 886.5 ± 0.3, 

901.2 ± 0.5 and 904.5 ± 0.3 eV [112]. The Ce3+/Ce4+ ratio of CeO2 samples 

sputtered in Ar and Ar/O2 are 4.29 and 1.92, respectively. These values are 

calculated by comparing the integrated area of the fitted Ce3+ and Ce4+ peaks. 

 

 
Figure 3.4: Ce 3d core level photoemission spectra from CeO2 thin films sputtered in 

a) Ar and b) Ar/O2 gas atmospheres. 

 

 Figure 3.5 shows an O 1s spectrum fitted with two Voigt functions. 

The main component labelled ‘i’ has a binding energy of 529.4 eV and is due 
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to O2- ions [113]. At the high-binding-energy side there is an additional peak 

labelled ‘ii’. Based on the fitting used, the binding energy is 531.1 eV, but the 

exact value is difficult to determine. Due to the fact that the peaks are rather 

broad and feature ‘ii’ is not very pronounced, the formation of Oδ- species 

and the presence of OH groups or carbon contamination at the surface, have 

been discussed as possible explanations for this component [108, 113]. 

 

 
Figure 3.5: O 1s core level photoemission spectra from CeO2 thin films sputtered in 

a) Ar and b) Ar/O2 gas atmospheres. The component labelled ‘(i)’ is attributed to O2- 

ions. The component labelled ‘(ii)’ is assigned to Oδ- species or OH groups. 

 

3.3.4 ELECTROCHEMISTRY – CV 

It is widely known that oxygen vacancies contribute to and enhance the 

charge storage capacitance of metal-oxides such as MnO2 [123], ZnO [124], 

SiO2 [125] and TiO2 [126]. It is also known that ceria is a suitable material for 

charge storage due to the ability of Ce to cycle between Ce4+/Ce3+ redox 

states [127]. Therefore, oxygen vacancies can be correlated directly to the 

charge storage capacity (CSC) since these may act as a charge carrier [126]. 

Here, CV of the sputtered CeO2 films (shown in Figure 3.6) is recorded at 

various scan rates ranging from 10 to 800 mVs-1. This is done to examine the 
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redox process present in DC sputtered CeO2 thin films and to determine the 

CSC of the films. Figure 3.6 shows CV curves of the sputtered CeO2 films 

grown in Ar and Ar/O2 gas atmospheres in 1 M LiClO4. CeO2 films 

sputtered in Ar display two peaks at 0.5 V and 1.2 V where partial oxidation 

of CeO2 may occur. These peaks only appear on the CeO2 films sputtered in 

Ar, as opposed to CeO2 films sputtered in Ar/O2. The negative currents 

observed during the negative scan suggest a reduction process, which can 

most likely be attributed to the  reduction of oxygen ions [110]. Equation 3.1 

is used to determine the double layer capacitance, i.e. the CSC of the films for 

different scan rates. 

                                  𝑖 =  𝑣𝐶𝑑𝑙                                                                (3.1)  

 where, 𝑖 is the charging current, 𝑣 is the scan rate and 𝐶𝑑𝑙 is the 

electrochemical double layer capacitance [128]. Charge storage in CeO2 

results from the ability of cerium to cycle between different redox states and 

therefore this can be correlated to the OSC of the films [97]. 

 
  

          

Figure 3.6: CV scan of 50 nm thick nanostructured CeO2 films deposited by PDCMS 

technique in a) a pure Ar environment and in b) an Ar/O2 mixture environment in 

anhydrous DMF solution with 1 M LiClO4 as supporting electrolyte and a scan rate 

of 0.1 Vs-1. 
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 The current is measured at -0.1 V for the CeO2 films sputtered in 

Ar/O2 and at -0.2 V for the CeO2 films sputtered in Ar, in order to avoid 

inclusion of any Faradaic current or pseudo capacitance effects. Significantly, 

the peak anodic currents (capacitive current, ia) for both the films varied 

linearly with scan rate as shown in Figure 3.7. Double layer capacitance (Cdl) 

values are calculated as (1.6 ± 0.2) × 10-4 F for the CeO2 films sputtered in 

Ar/O2 and as (4.3 ± 0.5) × 10-4 F for the CeO2 films sputtered in Ar. These 

values show that there is a more than a two fold increase in the CSC when 

the film is deposited in Ar compared to the sample deposited in the presence 

of Ar/O2. The reason for this increase in CSC is thought to be due to absence 

of oxygen atoms within the deposition chamber, which does aid the oxygen 

diffusion process through the lattices. It is important to note that the active 

surface area of both the films is maintained constant at 1.44 cm2. Thus, these 

results demonstrate that CeO2 films grown using a pure Ar sputtering 

ambient significantly enhances the electrochemical charge storage properties. 

 

 
Figure 3.7: Relationship between capacitive current (ia) and scan rate for CeO2 films 

deposited in a) pure Ar and b) Ar/O2 ambients. 
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3.3.5 OSC MEASUREMENTS - TGA 

Typical OSC measurements require relatively complicated experimental 

setups. These methods involve gas-phase reactions in pulse mode (flow 

titration, and gas chromatography or mass spectrometry for detection) [129, 

130]. Therefore, a simple OSC measurement technique introduced by Wang 

et al. [111] is used in this work, where the mass changes of the CeO2 samples 

(shown in Figure 3.8) are measured and correlated to OSC using cyclic TGA. 

Here we used a single TGA cycle to assess the mass change of a supported 

CeO2 sample on reduction. After 5 hours of reduction at 600C, the overall 

mass change for Ar/O2 - CeO2 sample is below the detection limit, i.e. < 0.01 

mg which corresponds to experimental uncertainty (due to natural baseline 

drifts). In contrast, the Ar - CeO2 sample under similar conditions 

demonstrated a detectable mass loss of ~ 0.024 mg which corresponds to 

approximately 0.017% of the total sample mass or to ~ 4.7% of theoretical 

mass of nanostructured CeO2 thin film. It is important to note that the 

equilibrium oxygen nonstoichiometry () in the bulk microcrystalline CeO2- 

under similar conditions (600C and p(O2) ~ 10-21 Pa) is reported to be as low 

as ~ 0.01 [39]. Very small nonstoichiometry variations at this temperature 

make it impossible to determine the OSC of thin films with higher precision. 

Nevertheless, the results of thermogravimetric studies clearly show that the 

samples sputtered in argon atmosphere have a tendency to greater oxygen 

losses (and therefore higher OSC) upon reduction in a 10 % H2 flow at 600 C 

compared to the films sputtered in Ar/O2 mixed atmosphere. This implies 

that samples sputtered in pure Ar atmosphere are reduced CeO2 deposits 

containing oxygen vacancies.   
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Figure 3.8: TGA curves of CeO2 films deposited in a pure Ar ambient and in Ar/O2 

mixed ambient, on reduction in 10%H2-N2 flow at 600C. 

 

3.4 CONCLUSIONS 

In this study, nanostructured CeO2 thin films are deposited on Si(100) and 

ITO coated glass substrates by PDCMS technique using a CeO2 target. The 

influence of using various gas ambients on the films, such as a high purity Ar 

and a gas mixture of high purity Ar and O2, in the sputtering chamber 

during deposition are studied. The film compositions are studied using XPS 

and SIMS. These spectra show a phase transition from cubic CeO2 to 

hexagonal Ce2O3 due to the ambient atmosphere during the sputtering 

process. This is related to the transformation of Ce4+ to Ce3+ and indicates a 

chemically reduced state of CeO2 due to the formation of oxygen vacancies. 

TGA and electrochemical CV studies show that films deposited in an Ar 

atmosphere have a higher OSC compared to films deposited in the presence 

of O2. CV results specifically show a linear variation with scan rate of the 
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anodic peak currents for both films and the double layer capacitance values 

for films deposited in Ar/O2 mixed and Ar atmosphere are (1.6 ± 0.2) x 10-4 F 

and (4.3 ± 0.5) x 10-4 F, respectively. Also, TGA data shows that Ar sputtered 

samples have a tendency to greater oxygen losses upon reduction compared 

to the films sputtered in an Ar/O2 mixed atmosphere. The new key outcome 

from this work is to demonstrate that the OSC of CeO2 thin films can be 

controlled and enhanced by varying the gas atmosphere during deposition.  
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FILM ANNEALING TREATMENTS 
AND CHARACTERISATION 

 

4.1  INTRODUCTION 

According to various reports in the literature, highly crystalline CeO2 can be 

obtained by applying heat to the substrate during deposition [131, 132]. 

However, this can also be achieved by post-deposition annealing of the CeO2 

film at high temperatures. Varying the substrate temperature during growth 

has an effect on the structural, chemical and optical properties but these 

effects are different to those obtained from varying oxygen flow rates (OFRs) 

during post-deposition annealing, especially in terms of microstructure 

(grain size and shape) of the films. Varying the post-deposition annealing 

temperature or the OFRs also results in changes in the concentration of 

oxygen vacancies, due to the altered thermodynamic equilibrium [133].  

These factors can also influence the structure and morphology of CeO2 films 

[134-136], which play an important role in solid/solid catalysis and the 

electrical properties of CeO2 [137, 138]. Thus, varying OFRs and temperature 
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during post-deposition annealing, offers potential for control and 

engineering of thin film properties.  

  In this chapter, the effects of post-deposition annealing temperature 

and atmosphere on the properties of pulsed DC magnetron sputtered CeO2 

thin films deposited in pure Ar ambient, including crystalline structure, 

grain size and shape and optical properties are investigated. As mentioned in 

Chapter 3, CeO2 films deposited in pure Ar atmospheres showed a smooth 

surface morphology and displayed higher charge and oxygen storage 

properties than films deposited in the presence of O2.  Therefore, these films 

were investigated further by post-deposition annealing the films at three 

different temperatures (500 °C, 800 °C and 1000 °C) and at a fixed 

temperature of 800 °C under different OFRs. The structural and 

morphological properties of annealed films were examined using XRD and 

AFM, respectively. Experimental results obtained from XRD, showed that 

the prepared films crystallised predominantly in the CeO2 cubic fluorite 

structure, although evidence of hexagonal Ce2O3 is also seen. The thermal 

anneal temperature and oxygen content of the Ar/O2 annealing atmosphere 

both played important roles in determining the size and shape of the 

nanocrystals as determined by AFM. The average grain size (determined by 

AFM) as well as the out of plane coherence length (obtained from XRD) 

varied with increasing OFR in the annealing chamber. In addition, the shape 

of the grains seen in the AFM studies transformed from circular to triangular 

as the OFR was raised from 20 sccm to 30 sccm during an 800 °C thermal 

anneal. XPS is used to measure near-surface oxidation states of the thin films 

with varying OFR in the annealing chamber. The bandgap energies are 

estimated from the UV-Vis absorption spectra and low-temperature 

photoluminescence (LPL). An extracted bandgap value of 3.04 eV is 

determined for as-deposited CeO2 films and this value increased with 
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increasing annealing temperatures. However, no difference was observed in 

bandgap energies with varying annealing atmosphere. 

 

4.2 EXPERIMENTAL METHODS 

Nanostructured CeO2 thin films are prepared on Si(100) (for structural, 

morphological and chemical composition studies) and quartz (for optical 

studies) substrates (2 x 2 cm) by PDCMS from a 99.99% pure CeO2 target. 

Prior to deposition, the substrates are ultrasonically cleaned using acetone, a 

decontamination solution (30905 Aldrich), de-ionised water and blown dry 

with a nitrogen stream to remove surface impurities.  The same deposition 

procedures are used to obtain the CeO2 thin films as that described in 

Chapter 3, where an ENI RPG-100 pulse generator is used to drive a planar 

magnetron fitted with the CeO2 target in power regulation mode. The 

chamber is first pumped down to a base pressure of 2 × 10-5 Pa by cryogenic 

pumping. The target is pre-sputtered for 10 minutes prior to deposition to 

reduce target surface contamination and to obtain a stable plasma density. 

Sputtering is carried out in a pure Ar atmosphere only (as discussed in 

Chapter 3) and the working pressure is adjusted and maintained at 0.7 Pa for 

the duration of the deposition. The target to substrate distance is adjusted to 

6 cm. The sputtering is done at room temperature using a power of 65 W at 

150 kHz without intentional heating.  The substrates are at floating potential 

and the sputtering time is adjusted to 60 minutes to obtain a uniform film 

thickness of 50 ± 10 nm for all the deposited samples. 
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4.2.1 ANNEALING  

After deposition and a short contact time with air at room temperature, the 

CeO2 thin films samples were transferred into a quartz glass cell, where 

annealing treatments were performed. Samples were ramped up to target 

temperatures of 500 °C, 800 °C and 1000 °C at a rate (r) of 40 °C min-1 in an air 

ambient, and held at these temperatures for 1 hour (the dwell time, td), in 

order to study the effect of annealing temperature on the film properties.  An 

optimum temperature of 800 °C (r =40 °C min-1, td = 1 hour), which produced 

good quality polycrystalline CeO2 films, was chosen and further annealing 

experiments were carried out to study the effect of varying the O2 partial 

pressure (p(O2)) during annealing on the PDCMS CeO2 deposited films. This 

is done by heating CeO2 thin films deposits in an Ar/O2 atmosphere with 

different OFRs at 800 °C, while keeping the Ar flow rate (AFR) constant at 50 

sccm. The OFR is varied in the range 0 – 50 sccm. After 1 hour of annealing, 

the sample is allowed to cool down to room temperature (cooling time ≈ 30 

min) before characterisation. Note that before each new annealing step, the 

gas atmosphere is refreshed by pumping and refilling. 

 

4.2.2 CHARACTERISATION 

The structural properties of the films are measured using the XRD to 

determine the crystallinity of the films. The XRD measurements in this 

chapter are carried out in locked coupled (θ-2θ) mode in a 2θ range of 20° to 

60°. A qualitative and quantitative phase analysis of the different phases is 

done by Rietveld analysis of the diffraction data using the FullProf program 

[139]. The surface morphology and roughness of the CeO2 films were studied 

by a Veeco Nanoscope Dimension 3100 AFM instrument operating in 

tapping mode using aluminium-coated silicon (Si) probes (Budget Sensors, 
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Tap300Al-G) with a tip radius of < 10 nm. The intrinsic height resolution of 

the system is determined by the piezoelectric element and electronic noise 

and is ~ 0.4 nm, which provides a base level for measurement reliability. The 

surface roughness of each sample was determined as the root mean square 

(RMS) value Rq of the distribution of heights in the AFM topography images. 

The row/column statistical tool of Gwyddion software was used to calculate 

the standard deviation of Rq of all individual row/column values, and the 

values obtained were considered when determining the roughness error bars 

[140]. Where the calculated standard deviation of all individual row/column 

values is greater than the intrinsic height resolution of the system, the 

standard deviation is used as the error bar, and where it is less than the 

intrinsic height resolution, a value of 0.4 nm is used as the error bar. 

Chemical structure analysis of the CeO2 films is studied using XPS. The 

optical absorption properties of the CeO2 films are studied at room 

temperature using UV-Vis spectrometer. LPL measurements are carried out 

from 10 K to 22 K using a closed cycle helium cryostat system and a 325 nm 

excitation (He-Cd laser) described in Chapter 2. 

 

4.3 RESULTS AND DISCUSSION 

As discussed in Chapter 3, the selection of suitable sputtering parameters for 

the development of good quality CeO2 films is important and can only be 

obtained after several repetitions of the experiments, with varying sputtering 

parameters. However, and as concluded in Chapter 3, CeO2 deposited in a 

pure Ar ambient displayed higher OSC compared to films deposited in the 

presence of O2. Also and according to various literature reports, varying the 

post-deposition annealing temperature or the oxygen partial pressure results 

in change in the concentration of oxygen vacancies, due to the altered 

thermodynamic equilibrium [133]. These factors can also influence the 
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structure and morphology of CeO2 films [134-136]. Therefore, high OSC films 

deposited in pure Ar atmosphere are further treated to carefully examine the 

influence/effect of varying the post-deposition annealing temperatures and 

atmosphere on the film characteristics (microstructure and morphology, 

composition and stoichiometry, and optical properties). Detailed accounts of 

the results obtained are provided in this chapter. New and useful 

information in terms of controlling thin film properties, especially grain 

shape and size, by varying the annealing temperature and gas atmosphere is 

provided by the results in this chapter. 

 

4.3.1 STRUCTURE AND MORPHOLOGY 

Figure 4.1(a) shows the XRD θ-2θ pattern of the CeO2 sputtering target used 

in this study, which shows prominent diffraction peaks indexed to the cubic 

fluorite structure (PDF No. 00-034-0394). Figure 4.1(b) shows a series of XRD 

patterns from the CeO2 thin films: as-deposited and post-deposition 

annealed at temperatures of 500 °C, 800 °C and 1000 °C for 1 hour in an air 

ambient. As seen in Figure 4.1(b) and described previously in chapter 3, the 

as-deposited CeO2 films show a broad and featureless XRD pattern, 

characteristic of an amorphous structure. The CeO2 films annealed at 500 °C 

shows the emergence of prominent diffraction peaks indexed to the cubic 

fluorite structure, revealing that the CeO2 films are being crystallized by the 

annealing process. For the films annealed at 800 °C and 1000 °C, we observe 

a higher intensity for the CeO2 diffraction peaks which clearly reveals that 

the crystallinity fraction of the CeO2 films is improved upon increasing the 

annealing temperature. At these temperatures several weak diffraction peaks 

corresponding to the Ce2O3 phase (PFD No. 00-049-1458) are also observed 

[141], possibly associated with the oxygen deficient growth environment (Ar 

gas only). These phases are further investigated using Rietveld refinement 
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analysis of the CeO2 diffraction patterns annealed at 500 °C and 800 °C and 

1000 °C (shown in Figure 4.1(b)) and this analysis provided some 

temperature dependent phase change information, but the main conclusion 

is that the deposit is mainly composed of cubic CeO2, with some contribution 

from Ce2O3 in all samples, very possibly with a degree of localisation at the 

surface when the XPS data, described in Section 4.3.2, is considered in 

conjunction with the XRD data and Rietveld analysis [142, 143]. The details 

of these impurity phases and their variation with annealing appears rather 

complex and because of the evidence of surface localisation further work will 

be needed to elucidate it more fully. Figure 4.2 shows the analysis for the 

CeO2 for the three temperatures (500 °C, 800 °C and 1000 °C). To refine the 

different phases, the structure model (space groups) Fm3m was used for 

CeO2, CeO and Ce2O3, and; P3̅ml for Ce2O3 (although no evidence of the CeO 

and Ce2O3 phases were ultimately seen in the results of the XRD θ-2θ 

patterns (Figure 4.1)). Analysing the diffraction data it became obvious that 

some Ce2O3 impurity phase occurs in the 800 °C and 1000 °C samples, where 

there is evidence of the Ce2O3 cubic type structure. However, this phase is 

present only in smaller concentrations (wt.%) of 7.5, 6.6 and 8.1 for 500 °C, 

800 °C and 1000 °C, respectively. It can also be seen that the crystallinity 

deduced from the CeO2 diffraction data improves with increasing 

temperature, by comparison of pattern (a) to (b) and (c) in Figure 4.2. As 

stated above there is no existence of any CeO impurities in any of the 

samples as determined by the Rietveld analysis. The ratio of Rwp/Rexp, 

referred to as the goodness of fit (χ2-factor) is reported in Table 4.1. For all 

annealed samples, the χ2-factor is less than 1.5 indicating a high quality 

refinement [144]. However, in the XRD refinement of the samples annealed 

at 500 °C, not all peaks are well fitted/defined and this can be explained to 

be due to the fact that these samples contain both amorphous and crystalline 

fractions. Furthermore, the out of plane coherence length of the samples are 
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reported in Table 4.1, obtained using both the Rietveld refinement analysis 

and compared to data obtained from the Debye-Scherrer formula using the 

full width at half maximum (FWHM) of the CeO2 (111) XRD peak. The values 

acquired from the refinement are quite similar to those calculated using the 

Debye-Scherrer equation and therefore we have confidence in employing the 

Debye-Scherrer equation using the FWHM of the diffraction peak (111) to 

calculate the out of plane coherence length in all XRD figures including 

Figure 4.3. 

 

Table 4.1 Rietveld refinement ‘goodness of fit’ values and out of plane coherence 

length for the CeO2 films annealed at 500 °C, 800 °C and 1000 °C.  

Annealing 
Temperature 

(°C) 

Out of plane coherence length (nm) Goodness of 
fit values (χ2) Rietveld 

Refinement 
Analysis 

Debye-Scherrer 
Formula  CeO2 (111) 

Peak Data 

500 7.7 7.6 1.13 

800 11.0 10.1 1.15 

1000 18.5 20.5 1.23 

 

 

A series of XRD patterns showing the effect of OFR variation during 

post-deposition annealing (800 oC anneal for 1 hour) on the crystallinity of 

the CeO2 are shown in Figure 4.3. The OFR ranges from 0 sccm to 50 sccm 

with a constant AFR of 50 sccm. The diffraction patterns for all samples are 

crystalline and clearly exhibit the presence of CeO2 (111), (200), (220), (311) 

and (222) reflections. There are also weak diffraction peaks corresponding to 

the Ce2O3 phase. 
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Figure 4.1: XRD θ-2θ patterns of (a) the CeO2 sputtering target and (b) the CeO2 

films (i) as-deposited and post-deposition annealed at temperatures of (ii) 500 °C,  

(iii) 800 °C and (iv) 1000 °C in an air ambient. 
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Figure 4.2: Rietveld analysis of three diffraction patterns of CeO2 annealed samples. 

a) 500 oC anneal, b) 800 oC anneal and c) 1000 oC anneal. The refinement of data is 

obtained using three different phases (CeO2, Ce2O3; order corresponds to indicated 

Bragg peak positions from first to second line and we note that no evidence of the 

CeO phase is seen). 
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Figure 4.3: XRD patterns of nanostructured CeO2 thin films grown on Si(100) 

substrates. The films are annealed at 800 °C, with various OFRs (a) 0 sccm, (b) 1 

sccm, (c) 20 sccm, (d) 30 sccm, (e) 40 sccm and (f) 50 sccm. The AFR is kept constant 

at 50 sccm for all samples. 

 

The FWHM of the (111) XRD peak is used as a measure of the 

crystalline quality of the CeO2 crystallites. The out of plane coherence length 

is calculated using the Debye-Scherer formula [145]: 

τ =
0.94λ

β cos θ
                                                                   (4.1) 

As plotted in Figure 4.4, the out of plane coherence length, based on 

calculations using the (111) peak data, decreases from 24.3 nm to 16.4 nm as 

the OFR increased from 0 sccm to 30 sccm, and increased to 23.5 nm as the 

OFR is raised further to 50 sccm. These values are all less than the film 

thicknesses (which are constant in the range 50 ± 10 nm as mentioned 

previously) and reveal a nanocrystalline deposit morphology. The oxygen 

content in the annealing chamber appears to have a small influence on the 

out of plane coherence length, which can also be correlated to the AFM 
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images shown in Figure 4.5, assuming the crystallites are approximately 

equiaxed, but the variation is close to limit of resolution of our XRD system. 

 
Figure 4.4: Influence of OFR during post-deposition annealing on the out of plane 

coherence length of the CeO2 films. 

 

The surface morphologies of the samples are investigated using an 

AFM. The top-view AFM images for the surfaces of the CeO2 films are 

presented in Figure 4.5 for films annealed at 800 °C in various OFRs (0 sccm, 

20 sccm, 30 sccm and 50 sccm). The XRD pattern and AFM image of the as-

deposited CeO2 films deposited in pure Ar is shown in Figure 3.1 and 3.2 of 

Chapter 3. As stated previously, as-deposited CeO2 films have a very smooth 

and uniform surface. However, the surface morphology roughens after 

annealing at 800 °C, due to the crystallisation of the amorphous CeO2 films.  

For samples annealed in OFRs of 0 sccm and 20 sccm (Figure 4.5 a and b), the 

shape of the CeO2 grains is roughly circular and the RMS roughness values 

are 3.2 ± 1.2 nm to 2.5 ± 0.4 nm, respectively. By contrast, the grain shape for 

the samples annealed in OFRs of 30 sccm - 50 sccm (Figure 4.5 c and d) is 

triangular in nature and the RMS roughness increased from 1.0 ± 0.4 nm to 

5.2 ± 2.0 nm. The RMS roughness values (nm) of the films for a 2×2 μm2 scan 
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area are summarized in Table 4.2. For comparison, the as-deposited CeO2 

film RMS roughness is very smooth (at or below the intrinsic height 

resolution of the system, 0.4 nm).  

 

Table 4.2: Summary of post-deposition annealing AFM and XRD results with 

variation in OFR. Samples are annealed at 800 oC for 1 hour. 

Sample OFR 

(sccm) 

(111) XRD 

Peak 

FWHM (o) 

Out of Plane 

Coherence 

Length (nm) 

RMS 

Roughness 

(nm) 

Grain Shape 

(a) 0 0.35 24.3 3.2 ± 1.2 Circular 

(b) 10 0.37 23.4 2.8 ± 0.4 Circular 

(c) 20 0.42 20.5 2.5 ± 0.8 Circular 

(d) 30 0.52 16.4 1.0 ± 0.4 Triangular 

(e) 40 0.45 19.2 2.3 ± 0.6 Triangular 

(f) 50 0.36 23.5 5.2± 2.0 Triangular 
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Figure 4.5: 2 x 2 μm2 plan-view AFM images of nanostructured CeO2 films post-

deposition annealed at 800 °C in an OFR of (a) 0 sccm, (b) 20 sccm, (c) 30 sccm and (d) 

50 sccm. The AFR is kept constant at 50 sccm for all samples. 
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4.3.2 CHEMICAL COMPOSITION –XPS 

The chemical compositions of the films are studied by XPS in order to probe 

the presence of Ce4+ and Ce3+ oxidation states and their relative 

concentrations. Figure 4.6 displays the Ce3d core level spectra of the as-

deposited sample (same as Figure 3.4 a in Chapter 3) and samples annealed 

at 800 °C for 1 hour in different OFRs. There is no significant effect from 

varying the OFRs in the annealing chamber. The binding energy positions of 

the Ce3+ and Ce4+ oxidation state established by previous reported work [112] 

are indicated by the vertical dotted lines [106]. The spectrum clearly shows a 

higher concentration of Ce in the Ce3+ oxidation state in the as-deposited 

sample (as shown in Chapter 3) compared to those annealed at 800 °C in Ar 

gas only, indicating a chemically reduced state of CeO2  possibly associated 

with the oxygen deficient growth environment (Ar gas only). Thus the as-

deposited CeO2 sample shows a mixed phase Ce3+/Ce4+ charge state, while 

the annealed CeO2 samples in 0 sccm and 50 sccm OFRs are solely due to 

Ce4+ (within the limits of sensitivity of our system). It should be noted that 

although the presence of Ce3+ and Ce4+ could easily be identified in the Ce 3d 

as-deposited spectra, the relative concentrations could not be determined 

due to the complexity of the peak shape and the difficulty in fitting the peak. 

 Figure 4.7 shows the corresponding O 1s XPS data for the as-

deposited CeO2 and CeO2 annealed samples. The binding energy positions of 

the various Ce oxidation states in the O 1s core level spectra are almost 

identical and overlap considerably [113], mainly due to the O2- nature of the 

oxygen atom in both Ce2O3 and CeO2. These two contributions give rise to 

the feature labelled (i) in Figure 4.7 and consequently, it is very difficult to 

deconvolve the O 1s peak into Ce2O3 and CeO2 components. However, by 

assuming that the O 1s peak is in a single CeO2 phase at the surface of the 

annealed samples due to the absence of a Ce3+ oxidation state in the Ce 3d 

spectra in Figure 4.6, it was possible to establish peak fitting parameters for 
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the O 1s CeO2 Ce4+component. These parameters were used to fit the O 1s 

spectrum for the as-deposited sample, where both Ce3+ and Ce4+ states exist 

as shown in the Ce 3d spectra in Figure 4.6. It was evident that an additional 

peak is needed to achieve an adequate fit and it is suggested that this 

additional peak is due to the Ce3+ oxidation state and is separated from the 

Ce4+ by ~0.3 eV in agreement with Mullins et. al [108]. Using these 

parameters the relative concentrations of the Ce3+ : Ce4+ as determined by the 

O 1s core level spectra in the as-deposited film is roughly 1 : 1.  

 
Figure 4.6: XPS Ce3d core level spectra for a) as-deposited CeO2 and 800 °C 

annealed CeO2 samples with OFRs of b) 0 sccm and c) 50 sccm. 

 

 The presence of OH groups or C-O contamination on the surface have 

previously been discussed as possible explanations for the feature labelled 

(ii) in Figure 4.7, at a binding energy ~ 1.8eV higher than that of the Ce4+ 

oxidation state in the O 1s spectrum [108, 113]. Samples with exposure to 

different OFRs conditions and samples annealed at a temperature of 800 °C 

contain larger relative contributions (up to ~31% of the signal in this spectral 

region) from these contaminant species. As stated above, the annealed 
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samples, regardless of annealing OFR, show evidence of Ce in the Ce4+ 

oxidation state only and a higher percentage of the contaminant feature (ii). 

 
Figure 4.7: O 1s XPS spectra of CeO2 samples: a) as-deposited, and annealed at 800 

°C in b) an OFR of 0 sccm and c) an OFR of 50 sccm. 

   

 In Figure 4.8, the annealed CeO2 samples are further investigated by 

performing an off-normal emission scan. The scan indicated that the 

contaminant species O-H/C-O are indeed surface localised, as expected, and 

are most likely due to atmospheric exposure. All the samples are exposed to 

atmosphere at room temperature for a short period; thus it is possible that 

the surfaces of all samples are more heavily oxidised in contrast to the bulk 

at least within the sampling depth of the XPS, and especially so for the case 

of some of the annealed samples. Lohwasser et al. [146] described an inward 

diffusion process of O2 into CeO2 sputtered films in the temperature range 

from 700 °C to 950 °C which results in CeOδ material being surface localised.  

However due to the proximity of the various oxidation states in the O 1s 

spectra, it is very difficult to verify these findings using XPS in this study.  
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Figure 4.8: O 1s XPS spectra of 800 °C thermal annealed CeO2 sample (the data 

shown is from a sample annealed at an OFR value of 50 sccm, but essentially the 

same spectra and behaviour are seen regardless of OFR value for all samples 

annealed at 800 °C), normal emission and off-normal emission. 

 

In summary, XPS indicates that the surface of the as-deposited film 

consisted of a Ce3+/Ce4+ mixed phase, while the annealed sample surfaces 

appeared to contain just the Ce4+ oxidation state which is consistent with a 

more heavily oxidised surface for the annealed samples. It should be noted 

that XPS is extremely surface sensitive and its findings do not generally 

accurately reflect bulk properties. Nevertheless, these XPS data are consistent 

with the XRD data above which show evidence only for Ce2O3 and CeO2 

phases, as XPS data from all samples shows the presence of only the Ce4+ and 

Ce3+ oxidation states (and no evidence for the Ce2+ charge state, associated 

with the CeO phase, which is not seen in XRD), though the relative 

concentrations indicated by XRD and XPS cannot be compared for the reason 

alluded to above.  
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4.3.3 UV-VIS ABSORPTION AND BANDGAP ENERGY 

It was previously reported [147-149] that a change in particle size due to 

exposure to different temperatures leads to a shift of absorption edge in UV-

Vis absorption spectra. Figure 4.9 shows the UV-Vis data from our samples, 

and the data indicates that the absorption edge shifts toward shorter 

wavelengths i.e. a blue shift, despite the increase in crystal size, with 

increasing post-deposition annealing temperature. The direct bandgap 

energy is estimated by extrapolating the absorption coefficient (α) from the 

absorbance data using a Tauc plot.  

  
Figure 4.9: UV-Vis absorption spectra of CeO2 sputtered films, as-deposited and 

post-deposition annealed at temperatures of 500 °C, 800 °C and 1000 °C in an air 

ambient. 

 

 From the Tauc plot of (αhν)2 versus hν (Figure 4.10), one clearly sees 

that the extracted bandgap value increases from 3.3 eV to 3.6 eV as the 

annealing temperature increases from 500 °C to 1000 °C. For comparison, the 

extracted bandgap value is 3.04 eV for as-deposited CeO2 films. No changes 

are observed when the OFR is varied in the annealing chamber compared to 
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the data from a sample annealed at 800 °C in air.  The physical meaning of  

℃the extracted values and their variation with process conditions must 

however be treated with caution, because the influence of excitonic effects, as 

well as Urbach tail effects, on the spectra is not clear, and it is known that 

such effects are not accounted for within the Tauc plot formalism [150]. 

 
Figure 4.10: Tauc plot of (αhν)2 vs. hν for nanostructured CeO2 sputtered films, as-

deposited and post-deposition annealed at temperatures of 500 ℃, 800 ℃ and 1000 

℃ in an air ambient. 

 

4.3.4 LOW-TEMPERATURE PHOTOLUMINESCENCE 

LPL is performed on as-deposited and nanocrystalline CeO2 films annealed 

at 800 °C in various OFRs. There were difficulties measuring the LPL spectra 

of the as-deposited CeO2 films which showed no presence of any peaks, 

which may be related to the films’ amorphous nature, as highlighted 

previously.  Yet, all nanocrystalline CeO2 samples displayed similar LPL 

spectra to that shown in Figure 4.11, so only the data for a sample annealed 

in an OFR of 50 sccm is shown. It can be clearly seen that the peak intensity 

at 3.36 eV increases with increasing LPL measurement temperature. This 
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behaviour indicates that the 3.36 eV emissions are associated with the films 

(unlike the laser plasma line at ~ 3.43 eV which does not vary with 

temperature). The emission at 3.36 eV is associated with near bandedge 

emission from the film material and correlates well with the known value of 

the CeO2 bandgap at room temperature (3.2 eV) [43, 151], albeit slightly 

larger due to the cryogenic measurement temperatures and associated 

bandgap increase. Furthermore, from our LPL data, it does not appear that 

the bandgap is significantly affected by the OFR value during the annealing 

treatment, consistent with the UV-Vis data mentioned earlier. 

 
Figure 4.11: LPL spectra of a nanocrystalline CeO2 thin film annealed at 800 oC at an 

OFR of 50 sccm, measured at 10, 15, 18 and 22 Kelvin (K). 

 

4.4 CONCLUSIONS 

From the results presented in this chapter, the crystalline structure and 

morphology of the amorphous CeO2 thin films, deposited by PDCMS in pure 

Ar ambient, described in Chapter 3 are further examined. They are found to 

be strongly dependent on the post-deposition annealing temperature and 
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OFR of the Ar/O2 annealing atmosphere. As highlighted in Chapter 3, the 

oxygen storage properties are controllable by varying the sputtering 

deposition parameters; in particular the deposition ambient, where the CeO2 

films grown in Ar ambient displayed higher OSC than films grown in the 

presence of O2. Here, the average grain size of the Ar sputtered films can be 

controlled by either varying the annealing temperature or the OFR during 

the thermal anneal process. Raising the OFR from 20 to 30 sccm resulted in 

the grain shape changing from roughly circular to triangular. Analysis of the 

chemical composition showed that the as-deposited films had contributions 

from both Ce3+ and Ce4+ charge states, while the annealed CeO2 films had 

contributions predominantly from the Ce4+ charge state and this charge state 

dominated at the film surface. These data are also consistent with XRD data. 

The thermal anneal temperature also plays an important role in the optical 

property of the films where an increase in temperature leads to a blue-shift 

and a decrease in the bandgap value. Our data and analysis clearly show that 

key material properties such as the bandgap value and the Ce ion charge 

state can be varied by a suitable thermal annealing treatment. These results 

are useful in enabling future materials and device development, in terms of 

being able to control key film parameters for important applications, in 

particular in the areas of solar-thermal fuel generation and catalysis.  
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NANOSPHERE LITHOGRAPHY OF 
CERIA NANOSTRUCTURES 
 

5.1. INTRODUCTION 

It was mentioned previously in Chapter 1, that the rate of H2 production is 

directly related to the surface area of the metal oxides; hence, many previous 

researchers have used porous structures to enhance this parameter. In the 

context of this thesis, the aim is to increase the surface area through the 

engineering of spherical nanoshell structures. Not only do the spherical 

nanoshell structures achieve this but this morphology also increases light 

absorption, which is essential to enhance the two-step solar driven 

thermochemical cycling process. This method was proposed by Yao et al. [59] 

as a light management technique whereby light is trapped inside the 

spherical nanoshell structures to form whispering-gallery resonant modes, 

enhancing the light absorption of the metal oxide to enable an efficient solar 

thermal-driven process. In order to create a CeO2 nanoshell structure, a cost 

effective alternative to conventional lithographic techniques such as 
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photolithography, x-ray lithography etc. is needed. Nanosphere lithography 

(NSL) is one such alternative and can be successfully employed to create all 

ordered nanoshell structure.  

 NSL is an inexpensive, novel fabrication technique that enables 

nanoscale resolution patterning over large areas [152, 153]. It produces 

regular and homogenous arrays of nanoparticles with different sizes [154]. 

This key attribute of NSL is due to its effective self-ordering of polystyrene 

(PS) latex nanospheres where continuous monolayers can be formed. These 

nanosphere monolayers can then be treated to reduce their diameter, 

chemically treated to enhance their hydrophilic character etc., before coating 

with a film deposit. This results in the formation of nanodimensional features 

and patterned structures upon the removal of the nanospheres. The 

formation of an ordered monolayer on a glass plate was first reported, in 

1981, by Fischer and Zingsheim [155]. They simply deposited a suspension of 

colloidal spheres (with a diameter of ~ 300 nm) and allowed it to evaporate. 

They obtained small-area particle monolayers. This introduced the technique 

of “naturally” assembled PS latex nanospheres. A year later, Deckman and 

Dunsmuir extended the scope of the approach of Fischer showing that a 

monolayer of nanospheres can be used either as a deposit material or as a 

lithographic mask [156]. Several point defects or dislocations were present in 

their samples over the scale of tens of micrometers because the mask 

preparation process is obtained by self-assembly phenomenon rather than by 

photolithography. They named this strategy “natural lithography”. In the 

90s, the method was renamed by the Hulteen and Van Duyne group to NSL, 

and this term is still commonly used nowadays [157, 158]. Over the 

intervening years, NSL attracted growing interest due to its potential to 

manufacture a wide variety of one-, two- and three-dimensional 

nanostructures [159-161].   
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 Following the successful fabrication and characterisation of the CeO2 

films grown using PDCMS in pure Ar environment, as described in details in 

Chapter 3 and 4, this chapter focuses on increasing surface to volume ratio of 

these CeO2 films using NSL.  The generation of nanosphere monolayers by 

self-assembly of PS nanospheres on the surface of DI water and subsequent 

transfer onto the CeO2 film coated substrates are demonstrated. Attempts to 

grow CeO2 spherical nanoshells using a line of sight technique such as 

magnetron sputtering are presented. Moreover, two mathematical models, 

created and used to estimate the increase in surface area as a function of the 

nanosphere diameter and deposited thickness, are presented. 

 

5.2 GENERATING NANOSPHERES MONOLAYER 

The nanosphere colloidal monolayers are generated by a self-assembly on the 

surface of DI water as shown schematically in Figure 5.1. A low form 

crystallising glass dish is three-quarter filled with DI water (obtained from a 

Millipore filtration system). A clean microscope slide is inserted into the 

water and held still at an angle (~30°) using a retort stand. A nanosphere 

solution (10% by weight in aqueous solution), containing spheres with a 

diameter of ca. 600 nm (Fisher Scientific), is diluted with an equal amount of 

ethanol and mixed thoroughly by sonication. A typical value of 100 μL × 2 

(100 μL of nanosphere solution and 100 μL of ethanol) is prepared. Using a 

micropipette, 20 μL of the mixed solution is slowly applied to the glass slide, 

immediately above the DI water surface. The tip of the pipette is moved 

slowly from side to side in order to spread the nanosphere solution across 

the glass slide until it covers approximately 1 cm of the slide. Care must be 

taken to ensure the tip of the pipette does not come into contact with the 

surface of the water as this will lead to spheres being dispersed into the body 

of the water under the monolayer. This is repeated until enough solution has 
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been applied to the slide for it to flow down to the water surface. When this 

occurs, the nanospheres disperse over the water surface. The process is 

continued until a large area of the water surface is covered, while leaving a 

clear area large enough for samples to be submerged in the water without 

coming in contact with the spheres. The substrate is then gently lifted up 

through the monolayer where the colloidal crystal is transferred to the 

substrate sample surface. The substrate is allowed to dry at room 

temperature, leaving the self-assembled monolayer attached to the substrate 

surface. During this process the application of solution should be continuous; 

the nanosphere solution should not be allowed to dry on the glass slide as 

this causes the formation of clumps of nanospheres. The nanosphere solution 

may also be applied to the side of the glass dish if it has been cleaned 

thoroughly. 

 
Figure 5.1: A schematic of the equipment and procedures used to obtain nanosphere 

monolayers on CeO2 thin films deposited on Si(100), glass and quartz substrates; a) 

the nanosphere solution is applied to the glass slide just above the DI water surface, 

b) a self-assembled nanosphere monolayer is created and then lifted off the DI water 

surface and onto the substrate, c) this results in a nanosphere monolayer deposited 

on the substrate sample [76]. 

 

5.3 NANOSPHERE OXYGEN PLASMA ETCH 

The self-assembled colloidal PS nanosphere monolayers deposited on the 

sample surfaces (described in Section 5.2) are etched using O2 plasma 
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(Oxford Instruments Plasmalab 80Plus fitted with an ALCATEL pump) to 

reduce the nanosphere diameter and thus allow for an interconnection 

between the CeO2 (further detailed in Section 5.4) and CeO2 coated ZnO 

nanoshell structures (described in Chapter 6). These interconnections 

between the nanoshells help stabilise and mechanically support the spherical 

nanoshell structures that are required to enhance the light absorption of the 

samples. Figure 5.2 shows a graph of the sphere diameter versus O2 etch time 

and three SEM images displaying the PS nanosphere monolayers unetched 

and etched at 60s and 120s exposure times, respectively. These 

measurements were obtained and analysed by Dr Aidan Cowley and Dr 

Daragh Byrne, Dublin City University, Ireland. These data are used to 

control the size of the desired PS nanosphere diameter following etching. The 

nanosphere monolayers presented in this thesis are all treated in O2 plasma 

with an applied power of 300 W, at a pressure of 100 mtorr and an O2 flow 

rate of 50 sccm for various periods to reduce the PS nanosphere diameter. 

The etch time was adjusted to 25 seconds. This etch time reduced the 

diameter of the PS nanosphere used in this thesis from ca. 600 nm to ca. 520 

nm.  

 

5.4 STRUCTURE FORMATION 

The cleaned substrate is covered with a monolayer of PS nanospheres. The 

nanospheres are deposited onto the substrate surface by self-assembly on the 

surface of the DI water (as described in Section 5.2). In the self-assembly 

method for depositing a monolayer of nanospheres, a solution containing 

ethanol and diluted nanospheres in water is applied to the surface of the 

water. The nanospheres become trapped in the surface of the water due to 

their hydrophobic character. On the surface of the water, they naturally self - 
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Figure 5.2: a) A graph of PS nanosphere diameters versus O2 etch time and SEM 

images of PS nanosphere monolayer samples etched for different times; b) unetched, 

c) 60s exposure and d) 120s exposure. 

 

assemble into a large colloidal monolayer due to capillary action. This layer 

can then be transferred onto substrates by gently lifting the substrates 

through the colloidal monolayer. Using this technique, colloidal crystals have 

been prepared up to several cm2 in size, suitable for complete coverage of 

substrates of a similar area. Substrates coated in this manner are free from bi 

and tri layers, with fewer domain boundaries and lattice defects. These lattice 

defects include vacancies and line defects, which are common in all NSL 

deposition methods reported. 

 Following the nanosphere deposition on the sample surface, the PS 

nanosphere monolayer is treated with O2 plasma in order to slightly reduce 

the diameter of the nanospheres (as detailed in Section 5.3). This is done not 
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to only separate the spheres but also to provide enough space between the 

spheres to enable oxide deposition and mechanically enhance the rigidity of 

the CeO2 and ZnO nanoshells (see Chapter 6) to be deposited thereafter. 

Figure 5.3 shows the SEM images of the PS sphere monolayer template, 

before and after the O2 plasma treatment. As shown in Figure 5.3a, a PS 

sphere monolayer is observed on a Si (100) substrate without aggregation or 

multiple layer accumulation. Figure 5.3b clearly shows a reduction in the 

sphere diameters (from 600 nm to ~ 520 nm) after the O2 plasma treatment, 

allowing enough space around the spheres for the metal-oxide nanoshell 

structures to fully interconnect during growth to ensure mechanical stability 

(further details in Chapter 6). There are some examples of slight movements 

of spheres, or of a sphere detaching, during the etch despite prior heating at 

90 °C for 30 seconds to ensure good adhesion but these are very occasional 

and do not compromise the overall nanostructure integrity. 

 

     
Figure 5.3: SEM images of the PS spheres monolayer deposited on a Si (100) 

substrate a) before and b) after O2 plasma treatment. The spheres diameter reduced 

from ca. 600 nm to 520 nm when exposed to O2 plasma for 25 seconds. 

 

The samples, with an O2 plasma treated PS nanospheres monolayer, 

are transferred into the sputtering chamber in order to coat the PS 

nanospheres with CeO2 using the PDCMS system and the sputtering 

parameters described in Chapter 2 and 3 to generate the CeO2 nanoshell 

structures. It is important to note that the sputtering is completed in a pure 

b) a) 
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Ar atmosphere only. The deposited CeO2 on the treated PS nanospheres is 

shown schematically in Figure 5.4. It can be clearly seen in Figure 5.4 and 5.5 

that the nanospheres are not completely covered with CeO2. This can be 

explained to be due to both the spherical shape of the spheres and the fact 

that the sputtering process is a line of sight technique. Hence, the sputtered 

CeO2 deposit is only able to reach exposed surfaces. Dome-shaped CeO2 

structures are thus realised after PS nanosphere removal, as shown in the 

plan and 60° view SEM images (Figure 5. 5). To visualise the nanostructures 

better, the sample was deliberately scratched and further examined using 

SEM. As can be seen in Figure 5.5 d, the scratched sample clearly shows the 

dome-shaped CeO2 nanostructures with clear evidence of the voids. 

 
Figure 5.4: 3D images of a) O2 plasma treated PS nanosphere monolayer deposited 

on a substrate and b) CeO2 coated PS nanospheres. 

  

 PS nanospheres have a glass transition temperature at 90 °C, a 

softening temperature at 240 °C, and a full gasification/decomposition 

temperature at 450 – 500 °C. Therefore, the PS nanosphere monolayer is 

completely removed by annealing the sample at 500 °C for 30 minutes, which 

causes the polymer to gasify. 
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Figure 5.5: SEM images of the dome-shaped CeO2 nanostructures after the removal 

of the PS nanospheres (i.e. annealed at 500 °C for 30 minutes in air). The SEM 

images show a) plan view, b) 45°view, c) and d) 60° view of the dome-shaped 

structure with a clear evidence of the voids in image d. 

 

5.5 RESULTS AND DISCUSSION  

As highlighted previously, the characteristics of the CeO2 films, used in this 

chapter, grown by PDCMS in pure Ar ambient have already been examined 

and discussed in Chapters 3 and 4. Here, we focus on the attempt to create 

CeO2 spherical nanoshells using the line of sight magnetron sputtering 

system. These were explored with the aid of a monolayer of PS nanoshpere 

template. The unsuccessful attempt resulted in dome-shaped CeO2 

nanostructures rather than spherical shells.  These nanostructures were 

investigated further by examining the structural and morphological 

properties using XRD and SEM, respectively. The chemical composition was 

a) b) 

c) d) 
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confirmed using EDX. The optical absorption of the nanostructures was then 

examined and compared to a flat surface with the same physical thickness.  

 

5.5.1 STRUCTURAL OBSERVATIONS 

The structures of the as-deposited and 500 °C annealed CeO2 films and dome-

shaped nanostructures, are examined using XRD, as shown in Figure 5.6. The 

XRD patterns are recorded at room temperature and the scan is performed 

through 20 – 60° (2θ), with a step size of 0.1° and an acquisition time of 

40s/step. The annealed samples are thermally annealed at 500 °C for 30 

minutes in air as stated above, to fully eliminate the PS nanospheres. The 

XRD scan of the as-deposited CeO2 film is featureless indicating an 

amorphous nature (as previously stated in Chapter 3). However, this is not 

the case in the as-deposited dome-shaped CeO2 nanostructures. The as-

deposited dome-shaped CeO2 displayed  polycrystalline structure with all 

peaks being identified as those for CeO2 with a cubic structure (2θ = 28.5°, 

33.0°, 47.4°, 56.3°, and 58.9°), with predominant texture along the [111] 

direction and with no indication of other phases. This could possibly be due 

to the uneven surface of the PS nanosphere template, which can be linked to 

literature studies that showed the effect of the substrate surface roughness, 

and ion bombardment during the sputtering process, on the crystallinity of 

the deposits[162-164]. Annealing the sample at 500 °C not only removed the 

PS nanospheres, it also further crystallised the nanostructures and decreased 

the FWHM value of the XRD reflections from the dome-shaped structures 

from 1.148° to 0.922°. Furthermore, the annealed CeO2 film shows prominent 

diffraction peaks indexed to the cubic fluorite CeO2 structure, revealing the 

effect of annealing on the film, although evidence of Ce2O3 is also seen. This 

is addressed in detail in Chapter 4. 
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Figure 5.6: XRD θ-2θ pattern (locked coupled) of CeO2 film (top) and dome-shaped 

(bottom) nanostructures grown on Si (100) substrates, as-deposited and annealed at 

500 °C for 30 minutes. XRD peak located at ~ 28.5° corresponds to the predominant 

CeO2 (111) peak. 

  

5.5.2 CHEMICAL COMPOSITION  

EDX analysis of the CeO2 dome-shaped samples was performed to confirm 

the chemical composition of the nanostructures. It can be clearly seen from 

the EDX spectrum, in Figure 5.7, that the only constituents detected are Si, Ce 
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and O for the CeO2 dome-shaped samples before and after the removal of the 

PS nanospheres, with a high concentration of Ce being detected on the 

sample with the PS nanospheres still present. The Si detected is from the 

substrate and the atomic percentage ratios of the various elements on both 

samples are shown in Table 5.1. Because there is an underlying SiO2 layer, 

the CeO2 composition/stoichiometry is difficult to calculate with the present 

data. Using these data the Ce to O ratio can be calculated as ~ 1.6 and 1.2 for 

the sample with and without the PS nanospheres, respectively. However, it is 

important to note that these values are not comparable as they depend on 

many factors including the scanned area, sampling depth and the possible 

complexity of the chemical reactions during the annealing process. 

 

 
Figure 5.7: EDX spectrum for the CeO2 dome-shaped before (top) and after (bottom) 

the removal of the PS nanospheres. 
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Table 5.1: EDX atomic percentage ratios of the various elements on the CeO2 dome-

shaped nanostructures, before and after the removal of the PS nanospheres. 

CeO2 with PS spheres CeO2 without PS spheres 

Element Weight 

(%) 

Atomic 

(%) 

Element Weight 

(%) 

Atomic 

(%) 

Si 46.41 30.97 Si 87.56 88.59 

Ce 8.77 1.17 Ce 6.79 1.38 

O 5.33 6.24 O 5.65 10.03 

C 39.49 61.62  

 

5.5.3 UV-VIS ABSORPTION 

The optical properties of the 500 °C annealed CeO2 film and dome-shaped 

nanostructure samples were investigated by spectroscopic measurements. 

The UV-Vis optical absorbance spectra of the samples deposited on quartz 

substrates are recorded in the wavelength range from 200 to 800 nm. Typical 

absorbance curve for the CeO2 film is shown in Figure 5.8. An approximately 

50% increase in absorption is exhibited as a result of the dome-shape 

structure. Note that both films and dome-shaped CeO2 sample have the same 

physical thickness of ~ 120 ± 10 nm achieved by three separate sputtering 

deposition using same parameters as that described in Chapter 3 and 4.  

Although spherical nanoshell structures of CeO2 are not achieved using the 

PDCMS process, a significant enhancement in the ultra violet (UV) light 

absorption is achieved. This enhancement can be related to the increase in 

surface area resulting from the dome-shaped CeO2 nanostructures and the 

multiple optical reflections interacting within the domed nanostructure 

morphology. The increase in area due to dome-shaped nanostructure, using 

the mathematical model 1 (described in Section 5.6 below), is estimated to be 

4 times the surface area of a flat film, which will of course be very beneficial 

in terms of the surface reactions required in solar-driven thermochemical 

processes. Figure 5.8 also shows the UV-Vis absorption spectra of the CeO2 
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coated PS nanospheres. It can be clearly seen that there is a significant 

increase in absorption, similar to that seen for the dome-shaped 

nanostructures, in comparison to the flat film. However, it is essential to 

remove the PS spheres to optimise light trapping by the different media, 

considering that the refractive index (n) of PS (1.65) is similar to that of CeO2 

(2.2) and air (n=1).  

 

 
Figure 5.8: Room temperature UV-Vis absorption spectra of CeO2 film, CeO2 coated 

PS nanospheres and CeO2 dome-shaped structures samples, under normal 

incidence, with a clear indication of absorption increase (ΔA) as a result of the 

dome-shaped structure geometry. 

  

 The absorbance enhancement is relatively insensitive to the angle of 

incidence as shown in Figure 5.9. Spectrally integrated relative absorbance 

enhancement, over the wavelength range 200 – 800 nm, shows a maximum 

variation of less than 50% between values measured at normal incidence and 

at an incidence at 70° from the normal for the dome-shaped CeO2 samples 

without PS nanospheres, compared to the relevant thin film sample annealed 

at the same temperature (500 °C) and time (30 minutes). This high value in 

absorption variation could possibly be due to the geometry and the 



 
 

 103   
 

unattached nature of the dome-shaped CeO2 structures, as can be clearly 

seen in Figure 5.5b.  

 
Figure 5.9: Integrated absorption for different incidence angles relative to the 

normal incidence for the CeO2 dome-shaped structures sample deposited on quartz 

substrate. 

 

The relative absorbance enhancement at angle 𝑖° is calculated using 

the following formula: 

                                Relative Absorbance Enhancement (𝑖°) =
𝐼𝐴𝑖°

𝐼𝐴0°
                         (5.1) 

𝐼𝐴𝑖° and 𝐼𝐴0° are the spectrally integrated absorbance enhancements at normal 

incidence and at an incidence angle of 𝑖° from the normal, respectively. The 

spectrally integrated absorbance enhancement at all incident angles was 

determined using 

                                                      𝐼𝐴𝑖° =  𝐼𝐴𝑖° (NS) −  𝐼𝐴𝑖° (F)                                           (5.2) 

Where 𝐼𝐴𝑖° (NS) and 𝐼𝐴𝑖° (F) are the spectrally integrated absorbance for the 

nanoshell and thin film samples with the same physical thicknesses of the 

materials in both the film and nanoshell morphologies, respectively. 
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5.6 MATHEMATICAL MODELING 

Two mathematical models used, in the context of this research in order, to 

determine the increase in surface area based on the diameter (D) of the PS 

nanosphere and the film thickness (t) are described in detail in this section. 

These models define the ratio of the newly increased metal-oxide surface 

area (𝐴𝑗), following NSL , to uniform flat surface area (𝐴𝑖) The first model 

incorporates an increase in surface area for dome-shaped metal-oxide 

structures similar to that produced in this chapter and is shown in Figure 5.5. 

The second model incorporates an increase in surface area for hollow 

spherical metal-oxide nanoshell structures such as that engineered and 

described in Chapter 6. 

 

5.6.1 MODEL 1: DOME-SHAPED STRUCTURES 

The metal-oxide uniform flat surface area (Ai), prior any surface area increase 

using NSL, can be simply described as: 

                                                                    𝐴𝑖 = 𝐿𝑊                                                            (5.3) 

where L and W are the length and width of the substrate, respectively.  

 After NSL patterning is used to increase the surface are of the  metal-

oxide deposits using a line of sight method, such as the PDCMS, the 

increased surface area (Aj) for  dome-shaped metal-oxide nanostructures,  

such as that shown in Figure 5.10, is given by: 

Aj = Area of substrate − n(area of circle)

+ n (surface area of internal and external hemispheres)          (5.4) 

where the term 𝑛 in the above equations is the number of nanospheres on the 

substrate surface which is  approximated using 
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                                                                    𝑛 =
𝐿𝑊 

𝐷2
                                                            (5.5) 

 
 Therefore, substituting in the appropriate formulas into Equation (5.2), we 

get 

                             𝐴𝑗 = (𝐿𝑊) − 𝑛𝜋(
𝐷

2
)2 + 2𝑛𝜋[(

𝐷

2
+ 𝑡)2 + (

𝐷

2
)2]                            (5.6) 

This simplifies to 

                                        𝐴𝑗 = (𝐿𝑊) + 𝑛𝜋 (
3

4
𝐷2 + 2𝐷𝑡 + 2𝑡2)                                   (5.7) 

And  

                                         𝐴𝑗 = (𝐿𝑊) + 𝜋𝐿𝑊 (
3

4
+

2𝑡

𝐷
+

2𝑡2

𝐷2
)                                       (5.8) 

Hence, the surface area ratio (
𝐴𝑗

𝐴𝑖
) of the increased surface area relative to the 

uniform flat surface area is (𝐴𝑖) is 

                                         
𝐴𝑗

𝐴𝑖
=

4 (𝐿𝑊) + 𝑛𝜋(3𝐷2 + 8𝐷𝑡 + 8𝑡2)

4 𝐿𝑊
                                (5.9) 

 This can be simplified to 

                                                    
𝑆𝑗

𝑆𝑖
= 1 + 𝜋 (

3

4
+

2𝑡

𝐷
+

2𝑡2

𝐷2
)                                       (5.10) 

 It is clear that equation (Equation 5.10) does not require the length and 

width of the substrate/sample to be known in order to obtain the relative 

increase in surface area, as a result of the dome-shaped structure, relative to 

the flat surface. It only requires inputs of the nanosphere diameter (D) post 

O2 plasma etch treatment and the deposit film thickness (t).  
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Figure 5.10: SEM image of dome-shaped metal-oxide nanostructures. 

 
 Using the above model for nanosphere diameters of 620 nm, 520 nm 

and 420 nm with the same thickness, the increase in surface area are found to 

be approximately 3.9, 4 and 4.2 times that of a uniform flat surface area, 

respectively. Hence, reducing the nanosphere diameter resulted in a slight 

increase in surface area in comparison to a flat surface.   

 

5.6.2 MODEL 2: SPHERICAL NANOSHELL STRUCTURES 

Post NSL and metal-oxide deposition using techniques that provide full 

coverage of the nanospheres, the surface area (Aj) for the spherical metal-

oxide nanoshell structures similar to those shown in Chapter 6 and Figure 

5.11 can be described as: 

       Aj = Area of substrate − n(area of circle)

+ n (surface area of internal and external spheres)               (5.11)   

                            𝐴𝑗 = (𝐿𝑊) − 𝑛𝜋(
𝐷

2
)2 + 4𝑛𝜋[(

𝐷

2
+ 𝑡)2 + (

𝐷

2
)2]                           (5.12) 

This simplifies to 

                                     𝐴𝑗 = (𝐿𝑊) + 𝑛𝜋 (
7

4
𝐷2 + 4𝐷𝑡 + 4𝑡2)                                    (5.13) 
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 Therefore, the increase in surface area ratio as a result of the spherical 

nanoshell structure is 

                                    
𝐴𝑗

𝐴𝑖
=

4 𝐿𝑊 + 𝑛𝜋(7𝐷2 + 16𝐷𝑡 + 16𝑡2)

4𝐿𝑊
                                 (5.14) 

 This can be simplified further to Equation 5.15 by substituting in for 𝑛 

using Equation 5.5 above. 

                                                  
𝑆𝑗

𝑆𝑖
= 1 + 𝜋 (

7

4
+

4𝑡

𝐷
+

4𝑡2

𝐷2
)                                         (5.15) 

 

Figure 5.11: SEM image of hollow spherical metal-oxide nanostructures [59]. 

 

 Therefore, for nanosphere diameters of 620 nm, 520 nm and 420 nm 

with the same thickness, the increase in surface area using model two are 7.6, 

7.8 and 8.2 times that of a uniform flat surface, respectively. Thus, the smaller 

the diameter of the nanospheres, the higher the surface area obtained. 

However, this may vary with variations in the deposit thickness i.e. this 

model is only valid when t ≤ 
d

2
, where d is the distance separating between 

two adjacent spheres (see Figure 5.12).  

 
Figure 5.12: Representation of the distance (d) separating two adjacent 

spheres. 
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5.7 CONCLUSION 

In this chapter, studies of dome-shaped CeO2 nanostructures obtained by 

depositing CeO2 on a monolayer of patterned PS nanospheres template using 

PDCMS, with same parameters as that reported in previous chapters, are 

reported. This is achieved as result of both the spherical shape of the spheres 

and the fact that the sputtering process is a line of sight process that only 

deposits exposed areas. Although a spherical nanoshell CeO2 structure is not 

accomplished in this chapter, the dome-shaped CeO2 resulted in a 50% 

increase of UV light absorption, compared to a flat surface with the same 

physical thickness. It also increased the relative surface area by a factor of 

approximately four compared tothe flat surface. Furthermore, the structural 

properties and morphology of the nanostructures are examined by XRD and 

SEM, respectively. XRD shows that the deposits crystallise when deposited 

on the PS nanosphere template and after a high temperature treatment. 

Finally, two mathematical models are established to estimate the relative 

increase in surface area with and without lithography.   
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ENHANCED OPTICAL ABSORPTION 
VIA SPHERICAL NANOSHELLS 
 

6.1 INTRODUCTION 

As stated in Chapter 5, increasing the surface to volume ratio is essential in 

enhancing the process of a solar driven thermochemical process, as is 

increasing the light absorption efficiency. Achieving this through the 

engineering of spherical nanoshell structures using NSL, to enhance both 

surface to volume ratio and broadband light absorption, remains a challenge. 

Successful achievement of this important new design will dramatically 

improve both the light absorption (and reduce adverse directionality effects 

due to the substantial enhancement of the effective light path in the active 

material) and the effective surface area for surface reactions [165, 166]. 

Applying this important recent development in  in conjunction with a redox 

mediator and a UV absorber, such as CeO2 and ZnO [167, 168], can result in 

the enhancement of UV light absorption and surface chemical properties, 

which can in turn be used for more effective applications in a variety of 

technologies.  
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 Materials based on CeO2 are extensively used in many applications 

including the oxygen ion conductor in solid oxide fuel cells  [169], UV 

absorption [168, 170], gas sensors [171] and many more applications 

previously mentioned. Apart from the well-known oxygen storage capacity 

of CeO2 and its redox properties, CeO2 is also suitable for many personal care 

products specifically related to its ability for blocking ultraviolet radiation 

[172-174]. Similarly, ZnO is an important and promising material with many 

potential applications in short-wavelength optoelectronic devices [175], such 

as transparent conductive films, surface electro-acoustic wave devices, 

ultraviolet (UV) emitters, cold cathode emitters, etc.  It has a wide and direct 

bandgap energy of 3.3 eV at room temperature [176]  and many typical 

properties such as transparency in the visible range, electrochemical stability 

and non-toxicity [177, 178]. Therefore, combining both materials (ZnO and 

CeO2) can results in an enhanced/unique UV absorption material as well as 

high stability at high temperature and high hardness [168].  

 ZnO nanostructures recently attracted a great attention due to their 

interesting properties for photonic applications and the variety of 

morphological structures which can be achieved including nanorods [179], 

nanorings [180], nanowires [181] and nanobelts [182]. Among these various 

structures, hollow nanostructures are interesting structures for applications 

such as photocatalysis [183], solar cells [184], drug delivery [185] and much 

more [186-188]. Synthesising hollow ZnO nanostructures has been recently 

done using various templates. For example, Jiang et al. [189] synthesised 

ZnO hollow spheres using ethanol droplets as soft templates while Duan et 

al. [190] synthesised ZnO hollow spheres by coating PS beads. Others, like Li 

et al. [191], Shen et al. [192] and Deng et al. [193], synthesised ZnO hollow 

particles using a template-free solution method, template-free evaporation 

method  and template-free sonochemical fabrication method, respectively. 

Although these proposed methods are described as simple and inexpensive, 
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the drop coating method (proposed by Byrne et al. [179, 194]), using a 

template of PS beads, yields samples with a patterned spherical nanoshells of 

ZnO with improved crystallinity, purity and optical properties.  

 In this chapter, which is a continuation of Chapter 5 ZnO 

nanostructures, CeO2 nanostructures and CeO2-coated ZnO nanostructures 

were synthesised by simple and efficient low temperature deposition 

methods on Si (100) and quartz substrates. This approach was considered 

following the unsuccessful attempts of generating pure CeO2 nanoshell 

structures using the line of sight (PDCMS) and the chemical bath deposition 

methods described in Chapter 5 and 7, respectively. The ZnO films were 

prepared by a novel drop coating deposition method. This was then 

combined with a thin layer of the redox active material CeO2 (similar to that 

deposited and characterised in Chapter 3 and 4) to form CeO2-coated ZnO 

films.  Spherical ZnO nanoshell structures and CeO2-coated ZnO nanoshells 

have been successfully prepared using PS sphere monolayer templates. The 

samples used in this study are shown in Figure 6.1. The structural properties 

and morphologies of the nanostructures are analysed by XRD and SEM. XRD 

data shows that the prepared films and nanoshells crystallised 

predominantly in the ZnO wurtzite and CeO2 cubic fluorite structures when 

post-annealed at 500 ˚C and 800 ˚C in air. The nanostructure compositions 

are studied in more detail using SIMS. The optical properties of the 

nanostructures are measured using UV-Vis absorption spectroscopy and 

room temperature PL in order to ascertain the effects of the nanoshell 

structures and the WGMs associated with these structures on the optical 

properties of the deposits. To the best of our knowledge, using drop coating 

of PS sphere templates to engineer patterned spherical nanoshells of ZnO has 

not been reported previously, and is a very simple and versatile method. 

This work provides useful information on the influence of the nanoshell 

geometry on the absorption properties of various combinations of these two 
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types of materials. The addition of the CeO2 thin film on top of the ZnO 

hollow nanostructured deposit enhances the UV light absorption further and 

provides additional functionality such as oxygen storage capacity via 

changes in stoichiometry. The redox properties of these types of PDCMS 

grown CeO2 films are reported in Chapter 3. 

 

 
Figure 6.1: Morphologies used in this study: a) CeO2, b) ZnO and c) CeO2-coated 

ZnO films, and; d) ZnO and e) CeO2-coated ZnO spherical nanoshell structures. 

All samples were deposited on both Si (100) and quartz substrates and have the 

same physical thickness of 120 ± 10 nm. 

 

6.2 FILM SYNTHESIS 

Prior to deposition, Si (100) and quartz substrates were cleaved to the desired 

size (2 × 2 cm) and the substrates were ultrasonically cleaned using acetone 

and a decontamination solution (30905 Aldrich) and then rinsed with 

deionised water and blown dry with a nitrogen stream. The ZnO layers used 

to generate ZnO films were prepared by a method initially proposed and 

demonstrated by Greene et. al. [195, 196] and further developed by Byrne et 

al. [76, 179, 194]. This method involved drop coating a mixture of zinc acetate 
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(5 mM) anhydrous ethanol solution onto the substrate surface. The solution 

is prepared by dissolving zinc acetate dehydrate in absolute ethanol (EtOH). 

This solution is then sonicated for up to one hour and allowed to cool in 

order to ensure a complete dissolution of the zinc acetate. A drop of this 

solution (typically 3.5 μl per cm2) is applied to the previously cleaned 

substrate surface and allowed to spread across the surface. The droplet is 

then allowed to remain on the substrate surface for a period of 20 seconds 

before being rinsed with copious quantities of ethanol and dried with a 

nitrogen stream. This process is repeated approximately 60 times (each 

application yields approximately a film thickness of 2 nm). The substrates 

were then annealed at 350 °C for 30 minutes, to decompose the residual zinc 

salt into zinc oxide and yield a uniform textured nanocrystalline ZnO film 

with a film thickness of 120 ± 10 nm.  

 The nanostructured CeO2 films are prepared on previously cleaned 

substrates by PDCMS using the same deposition procedures to the ones 

described in Chapter 3 and 4. The sputtering was performed in pure Ar 

atmosphere and the working pressure is adjusted and kept at 0.7 Pa for the 

duration of the sputtering. The sputtering is done at room temperature using 

a power of 65 W at 150 kHz and for 60 minutes. The process was repeated 

three times to yield a uniform CeO2 film thickness of 120 ± 10 nm.   

 For the CeO2-coated ZnO films, the substrate is coated with 

approximately 40 layers of the 5 mM zinc acetate solution to yield a uniform 

ZnO film thickness of 80 ± 10 nm. The sample is then transferred to the 

sputtering chamber to deposit a layer of nanostructured CeO2 with an 

approximately 50 ± 10 nm thick film on top of the ZnO. This resulted in ~ 120 

± 10 nm thick CeO2-coated ZnO film to allow for a straight comparison 

study. Figure 6.2 shows a process flow chart simplifying the deposition steps 

used to obtain the ZnO, CeO2 and CeO2-coated ZnO films. 
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Figure 6.2: Flow chart of the overall process in the fabrication of ZnO, CeO2, and 

CeO2-coated ZnO films. 

 

6.3  PATTERNED NANOSHELL SYNTHESIS 

Patterned spherical ZnO nanoshells were fabricated on a PS sphere template 

using the same deposition method for the ZnO film.  PS sphere template is a 

monolayer of PS spheres with a diameter of ca. 600 nm (solid content of ~ 10 

wt. %, Fisher Scientific) that is generated by a self-assembly process on the 

surface of DI water (as detailed in in Chapter 5), at room temperature, and 

then transferred onto bare substrates [194].  The deposited close-packed PS 

sphere monolayer was then heated at 90 °C for 30 seconds to cause  them to 

adhere better to the substrate surface without  deforming the spheres [197]. 

This prevents the nanosphere monolayer lifting away from the substrate 

when the zinc acetate solution is applied. The PS spheres are then O2 plasma 

treated at a power of 300 W, a pressure of 100 mbar, an oxygen flow rate of 

50 sccm for 25 seconds, as highlighted in Chapter 5, to reduce the sphere 

diameter from ca. 600 nm to ca. ~ 520 nm allowing enough space between the 

spheres for a connected and mechanically stable ZnO nanoshell structure 
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post-deposition. Following the O2 plasma treatment, a drop of the 5 mM zinc 

acetate solution is applied on the PS sphere coated substrate and allowed to 

spread across the surface. The droplet is then allowed to remain on the PS 

template and substrate surfaces for a period of 20 seconds before being 

rinsed with copious quantities of ethanol and dried with a nitrogen stream. 

This process is repeated approximately 60 times and 40 times to obtain 

nanoshell thicknesses of 120± 10 nm and 80 ± 10 nm, respectively.  The 

samples are then annealed at 350 °C for 30 minutes, to decompose the 

residual zinc salt into zinc oxide. This temperature is higher than the 

softening temperature of the PS spheres. However, the SEM images below 

(Section 6.4.2) showed spherical ZnO nanoshell structures with voids which 

maintained their spherical shape post-annealing at 350 ℃.  

 The ZnO spherical nanoshells with the nanoshell thickness of 80 ± 10 

nm were then transferred to the sputtering chamber where a thin CeO2 film 

of approximately 50 ± 10 nm is deposited on top of the ZnO nanoshells by 

PDCMS in an Ar environment, using the same deposition parameters 

reported in Section 6.2 and Chapter 3. This provided the sample shown 

schematically in Figure 6.1e. A process flow chart and three dimensional 

schematic images of the nanoshell structures are given in Figure 6.3 and 6.4, 

respectively. Figure 6.3 describes the fabrication process of the ZnO and 

CeO2-coated ZnO spherical nanoshells.    
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Figure 6.3: Flow chart of the overall process in the fabrication of ZnO and CeO2-

coated ZnO spherical nanoshell structures by zinc acetate drop coating and PDCMS 

deposition methods on bare substrates. 

 

 
Figure 6.4: 3D images of a) a monolayer of the PS spheres deposited on the 

substrate surface, b) O2 plasma etched PS spheres, c) ZnO spherical nanoshells 

and d) CeO2-coated ZnO spherical nanoshells. 
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6.4 RESULTS AND DISCUSSION 

To enable easy identification of samples, each structure used in this study is 

given an associated label which is summarised in Table 6.1. Note, the surface 

analysis of the ZnO seed layer and the sputtered CeO2 films used in this 

chapter are obtained using XPS and further described in Appendix A.1 and 

Chapters 3 and 4, respectively.   

 
Table 6.1: Associated labels for sample structures used in this study. 

Sample Label Sample Structure Description 

C_F CeO2 Films 

Z_F ZnO Films 

C_Z_F CeO2-coated ZnO Films 

Z_NS ZnO Nanoshells 

C_Z_NS CeO2-coated ZnO Nanoshells 

 

6.4.1 XRD OBSERVATIONS 

 XRD patterns of the Z_F and Z_NS structures, as-deposited and annealed at 

500 °C and 800 °C in air for 30 minutes are shown in Figure 6.5. The XRD 

scans of all the Z_F and Z_NS structures show a dominant peak at 34.4°, 

corresponding to the (002) plane of the ZnO wurtzite phase (JCPDS card 

number 36-1451). This indicates the ZnO nanostructures are highly textured 

with their c-axis normal to the substrate [76, 198], which indicates that the 

nanocrystals in the seed layer remain textured normal to the substrate in 

both the film and nanoshell samples, and indicate the dominate effect of 

inter-nanocrystal basal plane interactions during deposition. The annealed 

Z_F structures also show two small peaks at 31.7° and 36.2° which 

correspond to the ZnO (100) and (101) planes, respectively  

 In the as-deposited Z_NS sample, two polystyrene ((C8H8)n) related 

peaks are detected. These peaks are only present on the as-deposited 
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nanoshells as they were only annealed at 350 °C for 30 minutes during 

growth to decompose the zinc salt onto zinc oxide, which is less than the 

evaporation temperature needed to eliminate the PS spheres. A broad peak 

at 34.4° is detected indicating an intermediate nanocrystalline/poorly 

crystalline ZnO deposit. It is important to note that the samples annealed at 

500 °C and 800 °C for 30 minutes have no remaining peaks associated with 

PS nanospheres. In these annealed nanoshell samples we once again see the 

dominant peak at 34.4°, corresponding to the (002) plane of the ZnO wurtzite 

phase, as well as two small peaks at 31.7° and 36.2° which correspond to the 

ZnO (100) and (101) planes, respectively.    

 
Figure 6.5: XRD θ/2θ scan (locked coupled) of Z_F (top) and Z_NS (bottom) 

structures grown on Si (100) substrates. The samples are as-deposited and 

annealed at 500 °C and 800 °C for 30 minutes. The dominant XRD peaks located 

at 34.4° correspond to the ZnO (002). 
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Similarly, the XRD patterns of the C_Z_F and C_Z_NS structures, as-

deposited and annealed at 500 °C and 800 °C in air for 30 minutes, are shown 

in Figure 6.6. The XRD of the as-deposited films is similar to that of the Z_F 

structures as no peaks associated with CeO2 are detected. This indicates the 

poorly crystalline nature of the as-deposited CeO2 films, which is 

characteristic of as-deposited PDCMS CeO2 films deposited on a smooth 

surface (see Chapter 3). However, as the C_Z_F structures are annealed at 

500°C and 800 °C, more peaks are detected. These peaks are identified as 

either ZnO with wurtzite hexagonal structure (2θ = 34.4°) or CeO2 (JCPDS 

card number 34-0394) with cubic structure (2θ = 28.5°, 33.0°, 47.4°, 56.3°, and 

58.9°). Again, this indicates highly textured ZnO films with their c-axis 

normal to the substrate. No peaks assignable to CeIII compounds, such as 

Ce2O3 and Ce(OH)3 are seen in  the pattern. However, a small peak indicated 

(*) is detected in the 500°C C_Z_NS structure whose origin has not yet been 

identified. Furthermore, two small peaks at 31.7° and 36.2° assigned to 

ZnO(100) and ZnO(101), respectively, are detected in the 800°C C_Z_F 

structures. There are no substantial differences between the XRD patterns of 

the C_Z_F structures compared to those of the C_Z_NS structures shown 

below, and the 800 °C annealed samples are virtually identical. The 

crystallinity of the CeO2 and ZnO after the 500 °C anneal is much higher for 

the films compared to the nanoshell structures, based on the FWHM values 

of the dominant peaks. However, it is important to note that the XRD pattern 

of the as-deposited C_Z_NS structure displays all the peaks associated with 

both the CeO2 and ZnO phases. The origin of this difference in crystallisation 

behaviour is not yet clear but has been explained in literature to possibly be 

caused by surface roughness, in our case due to presence of the PS 

monolayer (as highlighted in Chapter 5) and/or the ZnO nanoshell structure.   
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Figure 6.6: XRD θ/2θ scan (locked coupled) of C_Z_F (top) and C_Z_NS (bottom) 

structures grown on Si (100) substrates. The samples are a) as-deposited and 

annealed at b) 500 °C and c) 800 °C for 30 minutes. The dominant XRD peaks 

located at 34.4° and 28.5° correspond to the ZnO (002) and CeO2 (111), respectively. 

  

 The reflected x-ray intensity and reflection peak FWHM of the CeO2 

(111) and ZnO (002) XRD peaks are used as an indicator of the crystallinity 

quality of the CeO2 and ZnO deposits. As can be seen in Figure 6.5 and 6.6, 

an increase in the annealing temperature resulted in an increased XRD 

reflection intensity and a decrease of the FWHM of the CeO2 (111) and ZnO 

(002) XRD peaks (similar to results reported in Chapter 4). In the 500 °C 

annealed C_Z_F, structure for example, FWHM values of 0.9852° and 1.9078° 
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are measured for CeO2 (111) and ZnO (002) XRD peaks, respectively. These 

values decreased to 0.5055° and 0.3047° for the samples annealed at 800 °C. 

This trend is the same for all the other ZnO and CeO2-coated ZnO samples 

(see Table 6.2); indicating that the crystalline quality of the samples is 

systematically improved as a result of annealing. 

. 

Table 6.2: Summary of the FWHM values of the ZnO(002) XRD peaks of the various 

samples.  

 FWHM (°) 

Sample As-deposited 
Annealing Temperature (°C) 

500 800 
Z_F 1.1196 1.0082 0.2860 

Z_NS - 0.4622 0.4130 

C_Z_F 1.2060 0.5413 0.3047 

C_Z_NS - 1.9078 0.3047 

 

6.4.2 SEM OBSERVATIONS 

Following the initial preparation stages (deposition and O2 plasma treatment 

of the PS nanosphere monolayer template, described in detail in Chapter 5) 

in order to create the ZnO nanoshell structures and the deposition of the zinc 

acetate films on the PS spheres, the structural morphology of the ZnO 

deposits depended on the post-deposition annealing temperature. Figure 6.7 

shows the plan view of the zinc acetate decomposed into ZnO 

nanostructures by annealing the sample at 350 °C for 30 minutes. Spherical 

nano core-shell structures consisting of the PS sphere core and ZnO shell 

with a total diameter of ca.~ 600 nm are formed, as shown in Figure 6.8. The 

thickness of the ZnO is estimated to be ~ 80 nm on the CeO2 coated ZnO 

sample, as shown in the cross sectional view of the fractured nanostructures 

(Figure 6.8e and f). Other views of the spherical nanostructures, after a 

complete removal of the PS spheres by gasification (i.e. following annealing 
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at 500 °C for 30 minutes in air) and the addition of the thin CeO2 film (~ 50 ± 

10 nm thick), are also shown in Figure 6.8b, c, d and e.  

 
Figure 6.7: Plan view SEM image of the spherical ZnO nanoshells before complete 

removal of PS nanospheres i.e. simply heated at 350 °C for 30 minutes to decompose 

the zinc acetate into zinc oxide. 

 

6.4.3 CHEMICAL COMPOSITION 

To provide information on the chemical composition and impurity content in 

the samples and confirm the composition of the C_Z_F structure, SIMS 

measurements were undertaken at different locations throughout the 

deposit. Figure 6.9 shows the SIMS spectra of the C_Z_F structure for the 

mass region from 60 amu/e to 200 amu/e at the boundary where the two 

materials meet. As reported previously [106], sputtered CeO2 SIMS spectra 

showed an intense secondary ion peak of CeO+ and two lower intensity 

peaks of Ce+ and CeO2+. This can be clearly observed in Figure 6.9 (spectrum 

370). As more scans are performed and the probing depth increased due to 

surface sputtering by the Ga ion beam, Zn+ and ZnO+ peaks start to appear 

and their intensity increased with the increase in the number of scans. Three 

different Zn isotopes are observed for the Zn ions, 64Zn, 66Zn and 68Zn, with 

the highest intensity observed for the 64Zn isotope, consistent with the 

natural isotopic distribution. SIMS spectra from Z_F structure displayed 

similar peaks to that of spectrum 490 in Figure 6.9, with a constant intensity 

for all the Zn and ZnO peaks throughout the sample. Note that (i) the 
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intensity of the peaks depend significantly on the sputtering rate of the 

components during the SIMS scan and (ii) that each spectrum is taken over a 

10.2 second sputtering period i.e. spectrum 370 is recorded after 62.9 minutes 

(3774 seconds) total sputtering time. 

 

Figure 6.8: SEM images of the spherical nanoshell structures after the removal of the 

PS spheres (i.e. annealed at 500 °C for 30 minutes in air). The samples are deposited 

on both Si (100) and quartz substrates. The SEM images show the a) and d) plan 

view, b) and e) 60° view, c) and f) zoomed 60° view of the Z_NS (right) and C_Z_NS 

(left) structures with a clear evidence of the internal voids following PS sphere 

removal. 

ZnO 



 
 

 124   
 

 
Figure 6.9: SIMS spectra of positive secondary ions at the boundary of the C_Z_F 

and C_Z_NS structures. Increasing spectrum number indicates increased overall 

sputtering time, as discussed in the main text. 

  

 The SIMS depth profiling data of the relative secondary ion emission 

yields (64Zn+, Ce+, CeO+ and CeO2+) as a function of depth at the boundary of 

the CeO2-coated ZnO composite layers grown on Si(100) substrate is 

presented in Figure 6.10. Since the sputtering rate of the different ions varies 

from one element or compound to another, the count intensity or observed 

signal strengths are not directly inter-comparable in terms of chemical 

concentrations. Multiple scans are performed at the same location on the 

C_Z_F structure. An almost uniform signal level is seen for the Ce+, CeO+ 

and CeO2+ ion profiles throughout the CeO2 layer at depth numbers between 

1 and 310. As the exposure time increased, the effect of surface sputtering 

also increased resulting in a deeper penetration through the films. Therefore, 

a significant decrease in magnitude of the CeO+ count intensity with respect 

to the Ce+ and CeO2+, and an increase of the 64Zn+ count intensity is seen, 

indicating the location of the ZnO/CeO2 interface. Although a significant 

reduction of CeO+ intensity is recorded as the Zn signal begins to increase, it 

remains the signal with the highest intensity. The SIMS data show clear 
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evidence of an abrupt interface between the ZnO and CeO2 materials. The 

difference in intensities is due to the sputtering rates of the various elements 

and components and therefore, lower intensities are recorded for Ce+ and 

CeO2+.  

 

Figure 6.10: Relative secondary ion emission yields for Zn, Ce, CeO and CeO2 

positive ions as a function of depth at the boundary of the composite C_Z_F 

structure grown on a Si (100) substrate. 

 

6.4.4 UV-VIS ABSORPTION AND BANDGAP ENERGY 

The optical properties of the as-deposited samples (C_F, Z_F C_Z_F, Z_NS 

and C_Z_NS) were investigated by spectroscopic measurements. The optical 

absorbance spectra of the films deposited on quartz substrates are recorded 

in the wavelength range from 200 to 800 nm. Typical absorbance curves for 

the films are shown in Figure 6.11. The influence of adding a CeO2 film to the 

ZnO film is clearly observed in these absorbance spectres. The C_Z_F 

structure has high absorption in the UV and visible regions followed by a 

fall-off in the absorption at wavelength greater than approximately 380 nm. 
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Both pure C_F  and Z_F structures (with approximately the same film 

thickness of 120 ± 10 nm) have lower absorbance in the visible region and 

the absorbance spectra of the composite C_Z_F structure seems to be due to 

the joint effects of the two constituent oxides. Torres-Huerta et al. [176] 

attributed  this behaviour to the introduction of CeO2 defective states within 

the forbidden band, which may lead to absorption of incident photons in the 

visible region. Therefore, adding CeO2 to the ZnO films clearly increases the 

absorption in visible and UV spectral regions. It’s important to note that 

although the thicknesses of the CeO2 films is greater than that described in 

Chapter 5, the UV-Vis absorbance spectra for both samples are almost 

identical.   

 
Figure 6.11: Room temperature UV-Vis absorbance spectra of Z_F, C_F and C_Z_F 

(thickness ~ 120 ± 10 nm) on quartz substrates. 

 

  By analysing the absorption data using Tauc plots of (αhν)n versus hν 

[199], where α is the measured absorption coefficient, the optical bandgap 

(Eg) can be determined and, ideally, can distinguish between allowed direct 

(n =2), forbidden direct (n = 2/3), allowed indirect (n = 1/2) and forbidden 

indirect (n = 1/3) transitions. However, the interpretation of data can be 
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subjective and is not always conclusive. In Figure 6.12, absorption data for 

the film samples (C_F, Z_F and C_Z_F) are analysed in the form of Tauc 

plots for the allowed direct ((αhν)2) optical transitions. From the Tauc plot 

(Figure 6.12), it can be clearly seen that the extracted bandgap value for pure 

Z_F sample is 3.26eV which is a close match to the typical ZnO band gap 

value of 3.3 eV. On the other hand, the value of the extracted optical band 

gap for pure C_F sample is 3.44 eV, which is greater than the as-deposited 

CeO2 bandgap value reported in Chapter 4 (3.04 eV for film thickness of 50 ± 

10 nm). It is also higher than the direct bandgap values reported on fully 

oxidised CeO2 films (3.01 – 3.1 eV) [200] and bulk CeO2 powder (3.19 eV) 

[201]. However, this estimated bandgap value (Eg = 3.44 eV) for CeO2 is in 

close agreement with other reported direct bandgap values for CeO2 

nanoparticles [147, 202-204]. This mismatch can be explained in terms of the 

cerium oxide structures (stoichiometric and non-stoichiometric) forming the 

film as a result of the sputtering process [106]. Finally, the bandgap energy 

extracted for the C_Z_F structure is 3.25 eV, which is very close to that of the 

Z_F structure. Hence, the C_Z_F structure shows higher UV-Vis absorption 

in the visible region than pure oxides (ZnO and CeO2) as a consequence of 

the addition of CeO2 to the ZnO structure.  
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Figure 6.12: Tauc plot of (αhν)2 as a function of photon energy (hv) for C_F, Z_F  

(top) and C_Z_F (bottom) samples. 

  

 Figure 6.13 shows the UV-Vis absorption spectra of the pure Z_F, 

C_Z_F, Z_NS and C_Z_NS samples, with the same physical thicknesses of 

the two materials in both the planar and nanoshell morphologies. All 

samples are annealed at 500 ˚C in air for 30 minutes in order to completely 

eliminate the PS spheres from the nanoshell samples and to enable a direct 

comparison between the nanoshells and the films. Other Z_F, C_F, Z_NS and 

C_Z_NS  samples were also annealed at 800 ˚C to crystallise the materials; 
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however, no significant differences in absorption, compared to samples 

annealed at 500 ˚C, are seen in these samples (similarly to results reported in 

Chapter 4, Section 4.3.3). It can be clearly seen in Figure 6.13 that pure Z_NS 

and C_Z_NS samples exhibit a much higher UV light absorption level of ~ 3 

times and 1½ times the comparable thin film absorption, respectively. This 

strongly confirms that a significant enhancement in the UV light absorption 

is achieved by the engineered spherical nanoshells, for identical sample 

material thicknesses; hence the geometry of the structure dramatically 

improves the absorption. It is important to note that the sharp peak at ~ 330 

nm is due to an instrumental artefact (change in grating response) as it is 

detected in most of our UV-Vis absorption spectra. The samples with the 

nanoshell morphologies also show distinctly higher apparent absorption in 

the visible region, compared to equivalent thickness samples with thin film 

morphologies. We believe that this is due to the effects of increased light 

scattering and diffraction of energy out of the incident beam, due to the 

ordered spherical nanoshell structures, which have a periodicity of similar 

order (600 nm) to visible light wavelengths. Note that the engineering of 

these spherical nanoshells not only enhanced the optical properties, it has 

also increased the surface to volume area by a factor of 7.8 times that of a 

planar (using the mathematical model 2 described in Chapter5). This increase 

in surface area, combined with the enhanced light management obtained, 

should increase the redox activities and improve the solar-driven 

thermochemical process. 
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Figure 6.13: Room temperature UV-Vis absorption spectra of Z_F, C_Z_F, Z_NS and 

C_Z_NS samples, under normal incidence, with a clear indication of an increase in 

the absorption (ΔA) as a result of the nanoshell structure geometry. 

 

 

6.4.4.1 DIRECTIONALITY STUDIES  

The absorbance enhancement is also relatively insensitive to the angle of 

incidence as shown in Figure 6.14. Spectrally integrated over the wavelength 

range of 300 – 800 nm, the relative absorbance enhancement shows a 

maximum variation of less than 30% between values measured at normal 

incidence and at an incidence angle of 70° from the normal for both the 

C_Z_NS and Z_NS samples, compared to the relevant thin film samples. This 

variation is significantly lower than the one reported, in Chapter 5, for the 

CeO2 dome-shaped nanostructures (50%). Although the UV-Vis absorbance 

spectra of the dome-shaped nanostructures displayed higher values than the 

spherical nanoshell structures, these results cannot be directly compared due 

to the different metal-oxides used. Note also that the relative absorbance 
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enhancement at angle 𝑖° is calculated using the same formula (Equation 5.1) 

provided in Chapter 5, Section 5.5.3.  

 
Figure 6.14: Integrated relative absorbance for different incidence angles relative to 

normal incidence for samples Z_NS and C_Z_NS.  

 

6.4.5 PHOTOLUMINESCENCE  

The luminescence properties of the Z_F, C_Z_F, Z_NS and C_Z_NS 

structures are investigated and shown in Figure 6.15. The high intensity 

luminescence peak is related to ZnO and this strong emission at around 3.31 

eV (375 nm) is in close agreement with the previous reports from room 

temperature PL studies of ZnO [205, 206]. There is a significant reduction of 

the intensity of the PL peaks in the Z_NS and C_Z_NS samples with respect 

to the Z_F and C_Z_F samples. This can be explained as being due to the 

uneven surface, which will reduce the focusing effect of the laser, since the 

spectrometer slit size used, is approximately 1 μm. The FWHM of the strong 

PL spectra of C_Z_F structure obtained using Gaussian fitting is 

approximately 0.1795 eV. No PL peaks are observed associated with CeO2. 
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Moreover, three very low intensity peaks are observed at 3.74 eV (332 nm), 

3.67 eV (338 nm) and 3.60 eV (344 nm) in Figure 6.15, whose origin is the 

subject of ongoing study, but which do not appear to be associated with laser 

plasma line emission leakage, as shown in Figure 6.16.  

 
Figure 6.15: Room-temperature PL spectra of Z_F, C_Z_F, Z_NS and C_Z_NS 

samples. 

 

 
Figure 6.16: Room-temperature PL spectra of the short wavelength emission region 

for metal-oxide films in the range of 3.6 – 3.75 eV, compared to the emission seen 

from a bare Si wafer under identical conditions. 
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6.5 CONCLUSIONS 

In this chapter, we have demonstrated a simple and reproducible method to 

fabricate ZnO and CeO2-coated ZnO films and nanoshell structures on Si 

(100) and quartz substrates. The ZnO nanostructures are grown by a facile 

drop coating method using zinc acetate in anhydrous ethanol solution as a 

starting material, while the CeO2 are produced by a PDCMS method, similar 

to the films produced in Chapter 3, 4 and 5. XRD, SEM and SIMS 

measurements confirmed the structural, morphological and compositional 

properties of the deposited materials. In particular, XRD data indicated an 

amorphous/poorly crystalline nature of the as-deposited ZnO and CeO2 

nanostructures and the crystalline quality improved after post-deposition 

annealing at higher temperatures. SEM images showed the successful 

engineering of the spherical nanoshell structures with a clear indication of 

the central voids. SIMS analysis of the chemical composition showed the 

presence of the Ce+, CeO+, CeO2+, Zn+ and ZnO+  ionic species in the various 

relevant samples as well as the three different Zn isotopes (64Zn, 66Zn and 

68Zn), and depth profiling showed the location of the ZnO/CeO2 interface in 

relevant samples. UV and visible light absorption is very significantly 

enhanced through the engineering of spherical nanoshells on a PS monolayer 

template, most likely due to the whispering gallery modes in such nanoshell 

cavities, as well as the addition of the CeO2 layer. The reported results and 

analysis clearly show that key materials properties such as the UV and 

visible light absorption can be significantly enhanced by nanostructure 

engineering of the deposits to create spherical nanoshell cavities. They had a 

maximum absorbance enhancement variation of less than 30% between 

normal incidence and incidence at 70° from the normal, which is much lower 

than the variation resulted from the dome-shaped nanostructures (described 

in Chapter 5). These results are important in terms of enabling future 
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materials and device developments, with the aim of controlling key film 

parameters for technologically important applications. In particular,  in the 

areas of solar-thermal fuel generation and catalysis, the combination of 

spherical nanostructure engineering possible with ZnO materials combined 

with the oxygen storage and variable stoichiometry properties of CeO2 will 

provide an unique set of advantageous material and structural properties.  
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CERIA WET CHEMICAL GROWTH 
AND CHARACTERISATION 
 

7.1 INTRODUCTION 

Spin coating, a solution-based (wet chemical) deposition process, is used to 

deposit thin CeO2 films in standard atmospheric environments from a cerium 

nitrate solution. As mentioned in Chapter 2, this kind of technique offers the 

advantage of a simple, low cost and high throughput process that enables the 

fabrication of high performance and ultra-low-cost CeO2 thin films for many 

industrial applications. In this chapter, detailed accounts of the substrate and 

the cerium salt chemical solution preparation are provided in sections 7.2 

and 7.3, respectively. After the decomposition of the cerium nitrate solution 

into CeO2 thin films by applying thermal anneal, a successful nanocrystalline 

CeO2 film with a uniform thickness of 40 ± 5 nm is produced. The structural 

and elemental analysis of these decomposed CeO2 films are examined using 

XRD, SIMS, XPS and EDX, as described in section 7.5. Moreover and  due to 

the simplicity and effectiveness of this wet chemical deposition method, 
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increasing the surface area to volume ratio via spherical nanoshell structures 

was possible. Therefore, various attempts were conducted in order to 

generate spherical nanoshell structures on a PS nanospheres template. 

Unfortunately, these attempts were unsuccessful as explained below, mainly 

due to the high value of the thermal anneal temperature required to 

decompose the cerium salt solution deposit into pure CeO2 films. Due to the 

unsuccessful attempts  of engineering the nanoshell structures using this 

deposition method, other metal-oxides such as ZnO (further detailed in 

Chapter 6), with lower Zn salt to pure ZnO decomposition temperature, 

were considered as an alternative option to  engineer the  spherical nanoshell 

structures.  

  

7.2 SUBSTRATE PREPARATION 

The Si(100) substrates (SIGMA ALDRICH) are cleaved into pieces (2 cm × 2 

cm). Clean dry air is then blown on the substrate to get rid of any debris from 

the cleaving. The Si(100) substrates are then rinsed by DI water (obtained 

from a Millipore filtration system) and etched with a base piranha solution to 

remove any organic residue on the surface prior to spin coating. The base 

piranha etch solution is a mixture of three parts ammonium hydroxide 

(NH4OH) and one part hydrogen peroxide (H2O2). The mixture will oxidise 

and remove organic materials present on the surface leaving behind a clean 

surface. The reaction is not self-initiating under normal conditions; hence it is 

necessary to heat the mixture to 100 °C to start the reaction. The Si(100) 

pieces are immersed in the mixture for 45 minutes to complete the cleaning 

process. The pieces are then removed from the etch solution and rinsed 

thoroughly with DI water. The pieces are left in a clean container immersed 

in DI water to avoid any further contamination, and are dried using clean 

compressed air prior to the wet chemical deposition process. The quartz 
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substrates are also cleaved into pieces of ~ 2 cm × 2 cm. However, the quartz 

substrates are cleaned differently. They are ultrasonically cleaned using 

acetone, a decontamination solution (30905 ALDRICH), DI water and blown 

dry with a nitrogen stream to remove any surface contamination. 

 

7.3 CHEMICAL SOLUTION PREPARATION 

The chemical solution used to obtain the polycrystalline CeO2 films, as 

briefly described in Chapter 2, is prepared by placing 2g of cerium (III) 

nitrate hexahydrate (Ce(NO3)3.6H2O, 99% purity, purchased from Sigma-

Aldrich) and 0.2g of 10% polyvinyl alcohol (PVA, prepared from 99+% PVA 

purchased from Sigma-Aldrich) in 20 ml DI water. The solution is then 

stirred, using a magnetic stirrer, for three hours to ensure a complete 

dissolution. A small puddle (~1 ml) of the fully dissolved chemical solution 

is dropped onto the centre of the pre-cleaned substrate, which is rotated to 

form a film of the chemical solution material onto the substrate. This is then 

decomposed to yield pure polycrystalline CeO2 films, as detailed below. 

 

7.4 DEPOSITION PROCESS 

Thin films of CeO2 are prepared by a spin coating process where ~1 ml of 

CeO2 salt solution (described in section 7.3) is deposited on  2 × 2 cm Si(100) 

and quartz substrates. Prior to the deposition, the substrates are cleaned 

using the methods described in Section 7.2. A spin coater supplied by Laurell 

Technologies Corporation (highlighted in Chapter 2) is used to spin coat 

CeO2 salt solution on the substrates. The spin coating process is completed in 

air and the substrates are held in position using a vacuum. The spin coating 

parameters are adjusted to a spin velocity of 3000 rpm, a spin acceleration of 
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540 rpm/s and a spin time of 40 s to obtain a uniform film thickness of 40 ± 5 

nm for all deposited samples (thicknesses of the final decomposed CeO2 

layers are measured using spectroscopic ellipsometry). The number of spin 

coating layers used to obtain the film thickness value of 40 ± 5 nm is ten 

layers, where each layer was left in air for 5 minutes to dry before the next 

deposited  layer was added. Note, there were no other curing methods 

required between applications.  

The chemical solution used has two components, Ce(NO3)3.6H2O and 

PVA which need to be decomposed in order to produce a pure 

nanocrystalline CeO2 film. This Ce(NO3)3.6H2O/PVA to CeO2 decomposition  

is achieved by annealing the samples after completing the spin coating 

deposition process and a short contact time with air at room temperature. 

The decision on the annealing temperature was finalised, after a variety of 

literature was reviewed on the decomposition of Ce(NO3)3.6H2O and the 

elimination of the PVA. Vratny et al. [207] and Srydom et al. [208] reported 

that Ce(NO3)3.6H2O fully decomposes at 400°C to produce CeO2 [209]. PVA 

undergoes various reactions at different temperatures; however it can be 

fully eliminated at 500 °C [210]. Therefore, the deposit samples are 

transferred into a quartz glass cell, where annealing treatment is performed. 

Figure 7.1 shows a graphical representation of the annealing cell and the 

annealing parameters used to yield the pure nanocrystalline CeO2 films. 

Samples are ramped up to a target temperature of 400 °C at a rate (r) of 40 °C 

min-1 in an air ambient and held at these temperatures for 30 minutes (the 

dwell time, td). It is then further annealed at a temperature of 500 °C, at a 

ramp rate of 40 °C min-1, for another 30 minutes to complete the 

decomposition reaction and yield pure nanocrystalline CeO2 films. Another 

sample was produced by annealing the cerium salt deposit at 400 °C for 30 

minutes and annealing it at the higher temperature of 800 °C for another 30 



 
 

 139   
 

minutes, again using a ramp rate of 40 °C min-1. Table 7.1 summaries the 

samples used in this chapter with their associated labels.   

 

 

Figure 7.1: A schematic representation of the annealing furnace and annealing 

parameters used to decompose the chemical solution to yield pure nanocrystalline 

CeO2 films. 

 

Table 7.1: Summary of decomposed CeO2  thin film deposits, with their associated 

labels. 

Label Description 

400 °C-500 °C CeO2  CeO2 thin film yield by decomposing cerium nitrate 
and PVA deposits by post-deposition annealing 
sample at 400 °C and 500 °C for 30 minutes at each 
temperature. 

400 °C-800 °C CeO2 CeO2 thin film yield by decomposing cerium nitrate 
and PVA deposits by post-deposition annealing 
sample at 400 °C and 800 °C for 30 minutes at each 
temperature. 

  

7.5 RESULTS AND DISCUSSION 

As discussed in Chapter 2, the selection of suitable spin coating parameters 

for the development of good quality, uniform decomposed pure CeO2 film 

deposits are important and can only be obtained after several repetitions of 
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the experiments, by varying the spin parameters. The optimisation of the 

process conditions is established by observing the structural, morphological 

and optical properties of the films. Most importantly, the impact of various 

spin parameters such as spin speed (rpm), spin acceleration (rpm/s) and spin 

time (s) on the thickness (nm) and thickness uniformity (%) of the deposited 

films are studied. To begin, the spin time is fixed at 40 s since the longer the 

spin time, the thinner the film and 40 s gave a suitable film thickness of ~ 40 

nm. It is important to note that this average thickness value is obtained as a 

result of ten separate spin coating layers. The typical spin speed value from 

literature is found to be 3000 rpm [211, 212]. Therefore, the impact of spin 

acceleration on the quality of the film is investigated first. The spin speed 

value and spin time are kept constant at 3000 rpm and 40 s, respectively. 

Figure 7.2 shows the average thickness and thickness uniformity of the 

decomposed CeO2 film (400 °C – 500 °C) generated by depositing cerium salt 

at spin accelerations of 90, 180, 270, 540, 990, 1530, 2160 and 2970 rpm/s. 

 

 
Figure 7.2: The impact of spin acceleration (a) on the average thickness and 

thickness uniformity of the 400 °C – 500 °C CeO2 film, vconstant = 3000 rpm and Tconstant 

= 40s. 

 
 The average thickness values obtained after the deposition of ten 

layers, for the samples are within the 39 – 45 nm range. However, the 

thickness uniformity is above 90% for all acceleration values except for 1530, 
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2160 and 2970 rpm/s, with the highest thickness uniformity (95.5%) for a 

spin acceleration value of 540 rpm/s. This acceleration value is then used to 

find the optimum spin speed value. 

 Although the typical spin speed value used in literature and 

industries is 3000 rpm, the impact of the spin speed on the average thickness 

and thickness uniformity is investigated and the results obtained are shown 

in Figure 7.3. The initial speed value used is 2000 rpm. The speed is then 

increased, in increments of 500 rpm to 5000 rpm.  

 

 
Figure 7.3: The impact of spin speed (v) on the average thickness and thickness 

uniformity of the 400 °C – 500 °C CeO2 film, aconstant = 540 rpm/s and Tconstant = 40s. 

 The thickness values are then measured, at ten different locations, 

using spectroscopic ellipsometry and the thickness uniformity is calculated 

using Equation 7.1. 

                                  Uniformity (%) = (1 −
𝑡max − 𝑡min

𝑡average
) × 100                            (7.1) 

 where tmax is the maximum thickness, tmin is the minimum thickness 

and taverage is the average thickness of a spin coated decomposed CeO2 

deposit. 

 Based on the outcomes of these investigations, the optimised spin 

coating parameters are used to obtain a uniform decomposition of a pure 

nanocrystalline CeO2 film with a thickness of 40 ± 5 nm. Figure 7.4 shows the 

plan view SEM image of the decomposed CeO2 film using cerium nitrate as a 
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starting material. These optimum parameters are summarised in Table 7.2 

and they are used to deposit the CeO2 films characterised below.  

 

Figure 7.4: Plan view SEM image of the decomposed 400 °C -500 °C CeO2 film 

deposited by spin coating using cerium nitrate as a starting material to yield CeO2. 

 
Table 7.2: Optimised spin coating parameters to obtain the decomposed CeO2 films 

with uniform thicknesses of 40 ± 5 nm, after ten distinct coating layers. 

Parameter Symbol Value Unit 

Spin Time T 40 S 

Spin Speed V 3000 Rpm 

Spin Acceleration A 540 rpm/s 

 

7.5.1 STRUCTURAL STUDIES 

XRD θ-2θ patterns of the decomposed 400 °C -500 °C CeO2 and 400 °C -800 

°C CeO2 films are shown in Figure 7.5. Four diffraction peaks ascribed to 

(111), (200), (220) and (311) reflections, which are prominent diffraction peaks 

indexed to the cubic fluorite CeO2 structure (PDF No. 00-034-0394), are 

detected in all decomposed CeO2 samples. Figure 7.5a shows a predominant 

orientation peak along the [111] direction. The presence of the diffraction 

peaks indicates the crystalline nature of the CeO2 films. However, in Figure 
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7.5b, the (200) peak displays the highest intensity at 2θ = 33°.  Although CeO2 

has a (200) peak at this angle, the intensity of that peak is usually 25% of the 

CeO2(111) peak and it may be the case that the Si(100) kinematically 

forbidden peak described by Hwang [213] also contributes to the intensity of 

this peak (and this forbidden peak intensity varies with the diffractometer 

phi angle, which is uncontrolled and varies from scan  to scan). This is 

confirmed by rotating the samples which resulted in different XRD 

intensities for the (200) peak in particular. Further evidence for the presence 

of two components is seen in the asymmetric line shape seen in Figure 7.5b. 

For this reason the full width at half maximum (FWHM) of the CeO2 (111) 

peak is used as an indicator of the crystallinity quality of the CeO2 deposits. 

Using Gaussian fitting, the FWHM is calculated for the two samples. As 

expected, lower CeO2 (111) peak FWHM values are obtained for CeO2 films 

annealed at higher temperatures (400 °C -800°C).  

 
Figure 7.5: XRD θ-2θ patterns of decomposed CeO2 film deposited by a spin coater 

and annealed at a) 400 °C- 500 °C and b) 400 °C -800 °C for 30 minutes at each 

temperature. 
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7.5.2 COMPOSITION ANALYSIS 

EDX analysis of the wet chemical deposited 400 °C -500 °C CeO2 film was 

performed to determine the elemental composition of the film. It can be 

clearly seen from the EDX spectrum of the decomposed CeO2 film, in Figure 

7.6, shows that the only constituents detected are Si, Ce and O. The Si is from 

the substrate, and the atomic percentage ratios of the various elements are 

shown in Table 7.3. However, the fact that there is a SiO2 layer, as previously 

mentioned in Chapter 5, makes accurate calculation of the CeO2 

composition/stoichiometry difficult with the present data. 

 
Figure 7.6: EDX spectrum for the 400 °C -500 °C CeO2 film. 

 

Table 7.3: EDX atomic percentage ratios of the various elements on the 400 °C -500 

°C CeO2 film. 

Element Weight 

(%) 

Atomic 

(%) 

Si 42.74 51.31 

Ce 38.56 9.28 

O 18.71 39.42 

 

 The surface chemical compositions of the films are further studied by 

XPS in order to probe the presence of Ce4+ and Ce3+ oxidation states. Figure 

7.7 displays the Ce3d core level spectra of the 400 °C-500 °C CeO2 and 400 °C-

800 °C CeO2 films.  The 400 °C-500 °C CeO2 film shows a mixed Ce3+/Ce4+ 

charge state, while 400 °C-800 °C CeO2 film shows a dominant Ce4+ charge 
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state. The established binding energy positions of the Ce3+ and Ce4+ 

oxidation states are indicated by the vertical dotted lines. It is important to 

note that although the presence of the Ce3+ and Ce4+ could easily be 

identified in the Ce 3d spectra of both samples, the relative concentrations 

could not be determined due to the complexity of the peak shape and the 

difficulty in the fitting the peak, as discussed previously. 

 
Figure 7.7: XPS Ce 3d core level spectra for spin coated a) 400 °C-500 °C CeO2 and b) 

400 °C-800 °C CeO2 films. 

 

 Figure 7.8 shows the corresponding O 1s XPS data for the 400 °C-500 

°C CeO2 and 400 °C-800 °C CeO2 samples. The binding energy positions of 

the various Ce oxidation states in the O 1s core level spectra are almost 

identical and overlap considerably, mainly due to the O2- nature of the 

oxygen atom in both Ce2O3 and CeO2. These two contributions give rise to 

the feature labelled (i) in Figure 7.8 and consequently, it is very difficult to 

deconvolve the O 1s peak into Ce2O3 and CeO2 components. This is because 

it is well established that the very top layer of a CeO2 system is usually rich 

in Ce3+ cations [8-9].  
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 The presence of C-O contamination on the surface has previously been 

discussed, in Chapter 3 and 4, as a possible explanations for the feature 

labelled (ii) in Figure 7.8, at a binding energy ~ 1.8 eV higher than that of the 

Ce4+ oxidation state in the O 1s spectrum. But this energy shift value is 

slightly higher 1.8 eV in Figure 7.8, with ~ 2.1 eV and ~ 2.6 eV for the 400 °C-

500 °C CeO2 and 400 °C-800 °C CeO2 samples, respectively. This is likely 

related to the presence of carbonate species that could be desorbed during 

the decomposition and/or the formation of O-C or O-Ce-C related 

components from the PVA present in the chemical solution used to 

decompose the CeO2 films used in this experiment. However, regardless of 

the annealing temperatures, the samples displayed  evidence of Ce in the 

Ce4+ oxidation state only, with a smaller percentage of Ce in the Ce3+ 

oxidation state in the 400 °C-500 °C CeO2 sample, and a higher percentage of 

the contaminant/carbonate species (ii) in the 400 °C-800 °C CeO2 sample. It is 

important to note that the samples are only annealed at the stated 

temperatures in air atmosphere; no further annealing is carried-out in UHV 

prior to the XPS experiment. 

 
Figure 7.8: O 1s XPS spectra of spin coated 400 °C-500 °C and 400 °C-800 °C CeO2. 
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7.5.3 OPTICAL PROPERTIES 

The optical properties of the spin coated 400 °C-500 °C and 400 °C-800 °C 

CeO2 films are investigated by UV-Vis absorption spectroscopy. The 

decomposition temperatures used to fully decompose the cerium nitrate and 

PVA solution into CeO2 films lead to no significant difference in the 

absorption property as shown in Figure 7.7. The absorption of the 400 °C-500 

°C CeO2 film displayed slightly higher absorbance intensity, both in UV and 

visible regions, compared to the 400 °C-800 °C CeO2 film.  

 
Figure 7.9: Room temperature UV-Vis absorption spectra of CeO2 film deposited by 

a spin coater on quartz substrates a) 400 °C-500 °C and b) 400 °C-800 °C. 

 

 The bandgap energies of the CeO2 films are estimated by extrapolating 

the absorption coefficient (α) from the absorbance data using a Tauc plot as 

shown in Figure 7.10. Figure 7.10 clearly shows that the extracted bandgap 

values of the two decomposed CeO2 films are 3.38 eV and 3.46 eV for the 400 

°C-500 °C and 400 °C-800 °C CeO2 samples, respectively. Comparing the 

estimated bandgap energies to literature, the values are slightly larger than 

those of bulk CeO2 powders (3.19 eV for direct transition and 3.01 eV for 

indirect transition) [214]. However, these values are similar to the bandgap 
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energy values recorded for the sputtered CeO2 annealed samples, as 

highlighted in Chapter 4. Those values were 3.32 eV and 3.48 eV for the 

sputtered samples annealed at 500 °C and 800 °C, respectively.  

 
Figure 7.10: Tauc plot of (αhν)2  vs. hν for the CeO2 films deposited by a spin coater 

on quartz substrates a) 400 °C-500 °C sample and b) 400 °C-800 °C sample. 

 

7.5.4 NANOSHELL ENGINERING 

As mentioned earlier in the chapter, the chemical bath method using 

Ce(NO3)3.6H2O/PVA solution was adopted and extensively investigated, 

mainly to try develop and achieve spherical CeO2 nanoshell structures, after 

the unsuccessful attempts using the PDCMS technique (described in Chapter 

5).  Multiple (ultimately unsuccessful) trails were attempted to engineer CeO2 

spherical nanoshell structures.  

 For example, the binder (PVA) quantity was reduced to 0.15 g, 0.1 g 

and 0.05 g from the initial value of 0.2 g, and the new chemical solutions 

were annealed either at 400 °C for 30 minutes or at lower temperatures (350 

°C, 300 °C, 250 °C, 200 °C, 150 °C, 100 °C and 50 °C) for longer periods of 

time to fully decompose the cerium salt. This was followed by a 30 minute 

thermal anneal at a temperature of 500 °C to fully eliminate both the PVA 

and the PS nanospheres and yield pure CeO2 nanostructures. The final 
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results of the CeO2 deposits obtained were investigated using SEM. Figure 

7.11 presents plan and 60° views SEM images of the 400 °C-500 °C CeO2 

nanostructures (where, as before, in our naming convention the first 

temperature refers to the anneal used to decompose the cerium salt and, in 

this case, the second to the anneal used to eliminate both the PVA and the PS 

nanospheres), from a cerium salt containing 0.2 g PVA.  

 

 

 

Figure 7.11: SEM images (top and 60° views) of the 400 °C-500 °C CeO2 

nanostructures after the decomposition of the residual cerium salt into CeO2 and the 

removal of the PVA binder (0.2 g) and PS nanospheres.  
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The SEM images for all other samples with a reduced binder quantity 

and those first annealed at lower temperatures displayed similar results to 

that in Figure 7.11. As can be clearly seen in Figure 7.11, these attempts at 

generation of the spherical nanoshell structures failed. 

 Furthermore, a literature review of other cerium salts, with lower 

decomposition temperatures was conducted. However, the decomposition 

temperatures for all cerium salts were higher than the glass transition and 

melting temperature of the polystyrene nanosphere. Therefore, no further 

trials using different cerium salt solutions were attempted.  

 

7.6 CONCLUSIONS 

In this chapter, a simple low cost and high throughput wet chemical process 

is successfully used to fabricate a uniform 40 ± 5 nm thick nanocrystalline 

CeO2 thin film post-decomposition of the cerium salt. Structural studies 

using XRD confirmed the crystalline nature of the decomposed CeO2 films. 

The crystallinity of the films increased as a result of increasing the annealing 

temperature. EDX is used to identify the chemical constituents of the 

decomposed CeO2 films. Only Ce, O and Si elements are detected, which 

indicates a full decomposition of the cerium salt and PVA into 

nanocrystalline CeO2 film was achieved by annealing. XPS data showed Ce 

mainly in the Ce4+ oxidation state on both samples, 400 °C-500 °C CeO2 and 

400 °C-800 °C CeO2,with a smaller percentage of the Ce in the Ce3+ oxidation 

state in the 400 °C-800 °C CeO2 sample. It also displayed a higher percentage 

of contaminant/carbonate species on the 400 °C-800 °C CeO2 sample. The 

optical properties of the spin coated decomposed CeO2 films were examined 

and no significant differences are seen for the samples as a result of the 

different decomposition temperatures. Although a pure uniform CeO2 film 

was successfully achieved using this method, increasing the surface to 
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volume ratio through the development of spherical nanoshells remains a 

challenge. Therefore, PDCMS technique is presently considered more 

feasible than this wet chemical technique for the case of pure CeO2 materials.  

  



 
 

 152   
 

 

CONCLUSIONS AND FUTURE WORK 
 

8.1 CONCLUSIONS 

Among the entire metal-oxide material candidates which show numerous 

functional properties suitable for  efficient H2 production in a H2O- splitting 

two-step thermochemical cycle, this thesis  focused on the redox active 

metal-oxide CeO2. This material has emerged as a promising candidate for 

energy related applications but more specifically in two-step thermochemical 

cycling processes. This is mainly due to its rapid fuel production kinetics and 

high selectivity resulting mainly from its unique properties and specifically 

its highly efficient O2 storage capacity. The ability to combine these unique 

material properties with a novel light management structural geometry, 

based on the creation of low quality-factor whispering gallery resonant 

modes inside spherical nanoshell structures, is crucial for the future 

applications in the solar fuel-cell industry. Engineering the spherical 

geometry of the metal-oxide (as described in Chapter 6) is a matter of great 

interest because, as mentioned previously, the spherical geometry enhances 

the light absorption, while the metal-oxide nanomorphology will provide 
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higher redox activities as a result of the larger surface area (spherical 

geometry), which will lead to an efficient thermochemical process and 

improved H2 production.  

 The successful development and characterisation of the CeO2 

nanostructured thin films, by PDCMS of the CeO2 target is described in 

Chapter 3 of the thesis. The influences of two sputtering gas ambients on the 

structural and morphological properties are studied using XRD and AFM 

measurements, respectively. It is observed that there is no structural effect on 

the as-deposited CeO2 in an inert gas (Ar) sputtering ambient. An 

improvement in the crystallinity of the as-deposited CeO2 is observed when 

O2 gas is introduced in the sputtering chamber. The film compositions are 

studied using XPS and SIMS. The results indicated a transformation of the Ce 

from the Ce4+ state to the Ce3+ state, indicative of a chemically reduced state 

of CeO2 due to the formation of oxygen vacancies. TGA and electrochemical 

CV on both sputtered samples showed higher oxygen storage capacity for 

films deposited in an inert gas (Ar) compared to films deposited in the 

presence of O2. The CV results specifically exhibited a linear variation with 

scan rate of the anodic peak currents for both films. The double layer 

capacitance values for films deposited in Ar and Ar/O2 mixed atmospheres 

are found to be (4.3 ± 0.5) x 10-4 F and (1.6 ± 0.2) x 10-4 F, respectively. TGA 

results on the films confirmed that Ar sputtered samples have a tendency to 

greater oxygen losses upon reduction, compared to the films sputtered in an 

Ar/O2 mixed atmosphere. This key outcome demonstrates that the oxygen 

storage capacity of the sputtered CeO2 films can be controlled and enhanced 

by varying the gas atmosphere during the deposition process.  

 As mentioned in Chapter 1, in a metal-oxide two-step thermochemical 

cycle, the first step occurs as a result of an endothermic reaction where a high 

temperature is required to start the reaction. Therefore, since CeO2 sputtered 

in an Ar ambient displays higher oxygen storage capacity, it is extremely 
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worthwhile to investigate the effect of post-deposition annealing 

temperature and atmosphere on the properties of these thin CeO2 films, 

including crystalline structure, grain size and shape and optical properties. 

The results obtained from XRD showed that prepared films crystallised 

predominantly in the CeO2 cubic fluorite structure, although evidence of 

hexagonal Ce2O3 is also seen, as a result of post-deposition annealing. These 

results are described in Chapter 4. The thermal anneal temperature and the 

oxygen content of the Ar/O2 annealing atmosphere played important roles 

on the size and shape of the nanocrystals, as determined by AFM. The 

average grain size as well as the out of plane coherence length varied with 

varying OFR in the annealing chamber. Additionally, the shape of the grains 

seen in the AFM studies transformed from circular to triangular as a result of 

increasing the OFR from 20 sccm to 30 sccm during an 800 °C thermal anneal. 

Furthermore, a bandgap energy value of 3.04 eV is estimated from the UV 

absorption for the as-deposited CeO2 and this value increased with 

increasing annealing temperature. An emission at 3.36 eV associated with 

nanocrystalline CeO2 is also observed in low-temperature PL.   

 The engineering and development of high surface to volume ratio 

CeO2 structures using a PS nanosphere template is described in Chapter 5. 

This was studied due to the importance of high surface area for an efficient 

H2 production in the two-step thermochemical cycle. Firstly, the nanosphere 

colloidal monolayer deposition was generated by a self-assembly method on 

the surface of DI water. This is used as a starting template to create CeO2 

spherical nanoshell structures using PDCMS However, due to both the shape 

of the nanospheres and the fact that the sputtering process is line of sight, the 

sputtered CeO2 deposit can only reach exposed surfaces and as a 

consequence, domed shaped structures are realised. Nevertheless, the optical 

properties of the domed-shaped structures are studied using UV-Vis 

absorption spectroscopy. The results showed an increase in UV and light 
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absorption as a result of the domed-shape nanostructure compared to thin 

CeO2 films. 

 The development of hollow spherical nanoshells of metal-oxides with 

a low decomposition temperature, as an alternative structure to the 

conventional porous structures used in present two-step thermochemical 

processes, is described in Chapter 6. This is a novel aspect of this thesis work 

since the spherical geometry of the metal-oxide is believed to enhance light 

absorption through the creation of whispering gallery resonant modes within 

the spherical nanostructures and thus enable a more efficient solarthermal-

driven process (see Chapter 1). The generation of ZnO and CeO2 coated ZnO 

films and nanoshells are demonstrated in Chapter 6. The ZnO nanostructures 

are grown by a facile drop coating method using zinc acetate in anhydrous 

ethanol solution and the CeO2 nanostructures are produced by a PDCMS 

method. XRD, SEM and SIMS measurements confirmed the structural, 

morphological and compositional properties of the deposited materials. UV 

and visible light absorption is quite significantly enhanced through the 

engineering of spherical nanoshells on a PS monolayer template, most likely 

due to the whispering gallery modes in such nanoshell cavities, as well as the 

addition of the CeO2 layer. These results are significantly important in terms 

of enabling future materials and device developments, with the aim of 

controlling key film parameters for technologically important applications, 

specifically in the areas of solar-thermal fuel generation and catalysis, where 

the combination of the nanostructure engineering possible with ZnO 

materials and the oxygen storage and variable stoichiometry properties of 

CeO2 provides a unique set of advantageous material properties.  

 A wet chemical process is successfully used to fabricate 

nanocrystalline CeO2 thin films from cerium nitrate as a starting material,  as 

described in Chapter 7. Two final decomposition temperatures of 500 °C and 

800 °C are used to fully decompose the cerium nitrate into CeO2 films. The 
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film properties at both final temperatures are investigated. The structural 

properties, studied using XRD, revealed diffraction peaks associated with the 

cubic fluorite CeO2 structure only. The compositions of the films are 

examined using both EDX and XPS. The EDX results showed the existence of 

the elements Si, Ce and O on both samples. XPS Ce 3d data for the samples 

consisted mainly of Ce in the Ce4+ oxidation state and no significant 

differences are detected between the samples further annealed at 500 °C and 

800 °C. The optical absorption of the samples shows no significant difference 

between the two samples, annealed at 500 °C and 800°C, respectively.    

 

8.2 FUTURE WORK 

After the successful deposition of CeO2 thin films by both PDCMS and wet 

chemical spin coating techniques, useful and important future work could 

obviously include the fabrication of CeO2 spherical nanoshell structures by 

adopting other methods. This work is now in progress. Although the ZnO 

nanoshell and CeO2-coated ZnO nanoshell structures show improved optical 

properties compared to thin films, directly engineering CeO2 spherical 

nanoshells will enhance the UV and light absorption further, providing for a 

better performance of solar fuel-cell and two-step thermochemical cycle 

processes, especially with its high ultraviolet absorbance which also enables 

other applications such as UV protection coatings. This can be executed 

through the use of SiO2 nanosphere monolayers as a template; however, 

more knowledge on the fabrication and etching of the nanospheres is 

essential as simple gasification techniques will not work.  

 Alternative deposition methods can be investigated since many recent 

reports have successfully fabricated spherical shells of ceria, cerium and 

ceria-based materials for photocatalytic activities. For example, Zhang, L. et. 

al. [215] prepared hollow shells of CeO2 with TiO2 photocatalysts by a 



 
 

 157   
 

precipitation-co-hydrothermal method. Deng, W. et. al. [216] synthesized 

monodisperse ceria hollow spheres via a sol-gel method, where the spheres 

were successfully fabricated by calcination. Other chemical techniques were 

successfully used to fabricate ceria spheres including cerium nitrate on silica 

cores [217], potentiostatic electrodeposition of CeO2 on PS sphere templates 

[218], and; a one-step hydrothermal method [219]. All these different 

deposition techniques could be adapted to successfully fabricate CeO2 

spherical shell structures.  

 Further work could also include the study of oxygen storage 

properties of the wet chemical deposited CeO2 films using TGA and 

electrochemical CV. The effect of multiple spherical nanoshell structure 

layers (possessing higher surface areas and more whispering gallery 

structures) on the oxygen storage and optical absorption properties could 

also be explored. The effect of using different spherical diameters on the 

optical absorption could also be examined. As mentioned in Chapter 1, 

metal-oxide and metal doped CeO2 have exhibited remarkably lower thermal 

reduction temperatures compared to undoped CeO2, which is an important 

property in the two-step thermochemical cycle production. Therefore, 

engineering metal and metal-oxide doped CeO2 spherical nanoshell 

structures is potentially an important element of the future work and a study 

of the oxygen storage properties of these doped CeO2 structures and the 

thermal reduction temperature required could be investigated.  Finally, a 

two-step thermochemical cycle unit can be built and tested for H2 production 

using spherical nanoshell structures of CeO2, ZnO, CeO2 coated ZnO and 

metal and metal-oxide doped CeO2 samples. These data can then be 

compared to the H2 production rate from the available porous CeO2 two-step 

thermochemical cycle. 

  



 
 

 158   
 

Appendix  

A.1 Chemical Analysis - XPS 

XPS was also used to study and characterise the surface of the ZnO seed 

layer films used in Chapter 6. Figure A.1 shows the Zn 2p spectra of these 

ZnO seed layer films, with high intensity peaks located at 1044.50 eV and 

1021.33 eV assigned to the Zn 2p1/2 and Zn 2 p3/2, respectively.  

 
Figure A.1: XPS Zn 2p spectra of ZnO seed layer film deposited on Si (100) substrate 

using zinc acetate as a starting material. 

 

 In the survey scan (Figure A.2), only C, O and Zn elements are 

observed, thus demonstrating that no other contaminants are present in the 

ZnO seed layer specimens. Higher resolution scans of O and C are 

conducted. For O 1s spectrum (Figure A.3), two peaks at binding energies of 

530.1 eV and 531.8 eV are observed. An oxygen peak at a binding energy of 

531.8 eV is associated with C-O bonds originating from oxygen physically 

and chemically adsorbed on the surface. The oxygen peak at a binding 

energy of 530.1 eV corresponds to O-Zn bonds. The main Zn peak at binding 

energy of 1021.33 eV (Figure A.1) originates from Zn-O bonds. Figure A.4 
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shows the C 1s spectrum of the ZnO seed layer. There is a very weak peak at 

299.1 eV, the binding energy of adventitious carbon, indicating a low 

contaminant level at the surface of these ZnO films.  

 
Figure A.2: XPS survey spectrum on ZnO seed layer film deposited on Si (100) 

substrate. 

 

 
Figure A.3: O 1s XPS spectrum of ZnO seed layer film deposited on Si(100) 

substrate. 
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Figure A.4: C 1s XPS spectrum of ZnO seed layer film deposited on Si(100) 

substrate. 
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