
Dublin City University and Partners’ Participation
in the INS and VTT Tracks at TRECVid 2016

Mark Marsden1, Eva Mohedano1, Kevin McGuinness1,
Andrea Calafell3, Xavier Giró-i-Nieto3 Noel E. O’Connor1,

Jiang Zhou1, Lucas Azevedo2, Tobias Daudert2,
Brian Davis2, Manuela Hürlimann2, Haithem Afli4,

Jinhua Du4, Debasis Ganguly4, Wei Li4,
Andy Way4, Alan F. Smeaton1∗.

1Insight Centre for Data Analytics, Dublin City University,
Dublin 9, Ireland

2Insight Centre for Data Analytics, National University of Ireland,
Galway, Ireland

3Universitat Politècnica de Catalunya,
Barcelona, Spain

4Adapt Centre for Digital Content Technology, Dublin City University,
Dublin 9, Ireland

Abstract

Dublin City University participated with a consortium of colleagues from NUI Galway
and Universitat Politècnica de Catalunya in two tasks in TRECVid 2016, Instance Search
(INS) and Video to Text (VTT). For the INS task we developed a framework consisting
of face detection and representation and place detection and representation, with a user
annotation of top-ranked videos. For the VTT task we ran 1,000 concept detectors from the
VGG-16 deep CNN on 10 keyframes per video and submitted 4 runs for caption re-ranking,
based on BM25, Fusion, word2vec and a fusion of baseline BM25 and word2vec. With
the same pre-processing for caption generation we used an open source image-to-caption
CNN-RNN toolkit NeuralTalk2 to generate a caption for each keyframe and combine them.

1 Introduction

A team of researchers from Dublin City University (Insight and ADAPT Research Centres),
National University of Ireland, Galway (Insight Research Centre) and Universitat Politècnica
de Catalunya, took part in the TRECVid 2016 annual benchmarking [1], which is part of the
TRECVid series [17] which first started in 2001. The team completed runs for two tasks, namely
Instance Search (INS) and the new showcase pilot task on Video to Text Description (VTT),
both the matching and caption generation sub-tasks. These are described in this paper.

∗Contact author: alan.smeaton@dcu.ie

2 Instance Search (INS)

This year’s Instance Search task consisted of finding people at specific locations. We proposed
a baseline system based on pre-trained Convolutional Neural Networks (CNN). We used VGG16-
faces [10] and VGG16-Places205 [22] to extract face and place image representations.
We submitted four runs with the following official results:

Type Id submission mAP P5 P100

Run 1 Automatic I A insightdcu 4 0.031 0.593 0.133
Run 2 Automatic I A insightdcu 3 0.059 0.780 0.243
Run 3 Interactive I E insightdcu 2 0.031 0.527 0.139
Run 4 Interactive I E insightdcu 1 0.036 0.780 0.165

Table 1: Runs with associated mean Average Precision (mAP) and Precision at k (P@K)

A brief description for each run follows:
• Run 1: Automatic baseline based in VGG16-faces + BoW VGG16-places205
• Run 2: Automatic baseline (Run 1) augmenting the query face with the top-20 faces obtained.
• Run 3: Interactive run using user annotations of results obtained in Run 1. Final rank consisted

of re-sorting final ranks by fixing positive annotation on top and discarding negative annotations.
• Run 4: Interactive run using user annotations of results obtained in Run 2. Final ranks were

constructed as in Run 3.

2.1 Dataset

Participants in the TRECVid Instance Search were provided with 244 video files (300GB, 464h)
with associated metadata, each containing a week’s worth of BBC EastEnders programs in
MPEG-4/H.264 format. Additionally, each video is divided into shots of short duration (between
5 seconds and 2 minutes).

People and locations query set. The query set consists of 30 topics, each including: (1)
a person textual description from among a total of 7 persons. (2) A location textual description
from among a total of 10 locations. (3) 4 image examples of the person. (4) Between 6 and 12
image examples of the location.1 (5) For each of the 4 person image queries, a binary mask is
also provided. (6) The shot where the keyframes belongs.

Target database. In order to handle the large amount of video information provided, a
target database was built by uniformly extracting keyframes from every shot with a sample rate
of 1 fps. The resulting dataset contained 1,569,502 keyframes (with resolution 768x576), 471,526
shots and had a total size of 120GB.

2.2 Framework

Two independent systems based on pre-trained CNN models were used to extract representations
for faces (Section 2.2.1) and places (Section 2.2.2). As illustrated in Figure 1, two ranking lists
per topic were generated, one for candidate faces and one for candidate locations. The ranking
lists contain the final similarity scores, generated by computing the Cosine similarity s ⊂ [−1,1]
between l2-normalized vectors. Before fusing scores, both lists (for faces and places) were filtered

1Both the image examples for person and locations are keyframes from the first video out of the 224 videos
provided by TRECVid.

to return a unique score by shot, which is the maximum score of all their frames. Final ranking
lists were generated by taking the minimum value of place and face scores per shot.

Figure 1: Framework for DCU TRECVid Instance Search 2016

2.2.1 Face detection and representation

We used dlib face detector integrated in the Menpo2 software library to obtain a total of 964,263
faces in the target dataset. Since dlib misses some faces, we used the query mask to detect
faces on the query face image set. For that we divide the mask into three parts (Figure 2) and
generate a bounding box around the top part for the final detection in the query image.

Figure 2: Face detection in query images

For feature representation, all bounding box detections were increased by 10%, re-sized to
224x224 (no face alignment is applied) and then input into the VGG16-faces [10] network from
where we extract fc7 layer activations. This layer generates a 4096-D feature vector that is l2-
normalized. We index all faces taking advantage of the sparsity of the vectors. Only around 12% of
4096-D were non-zero elements. This allows us to use a CUDA-based sparse matrix library3 to per-
form inverted index lookups via sparse matrix vector products on an NVIDIA GTX Titan X GPU.

For each query person, we obtained 4 face representations (corresponding to the 4 examples
provided for the query face set). These descriptors were averaged and used to generate the final
face ranking for Run1. Query expansion is performed by averaging the face descriptors of the
top-20 retrieved faces to generate more robust face representations (Run2). With this strategy
we improved our final mAP from 0.031 to 0.059.

2https://github.com/menpo/menpodetect
3cuSPARSE: https://developer.nvidia.com/cusparse

2.2.2 Place representation

We use a Bags of Local Convolutional Features approach [9] using VGG16 architecture pre-trained
on Places205 [22]. Local descriptors were extracted from conv5 1 layer with the purpose of
preserving the fine-grained details of the image. For that, fully connected layers were removed
and images were resized to 288x336 resolution while keeping the original aspect ratio. The model
generates feature maps of size (18x21) that were spatially interpolated to (36x42). With this
procedure, we obtain a total of 1,512 local features of 512-D per image. Local features were
l2-normalized and PCA-whitening is applied reducing dimensions to 256-D. After that, a second
l2-normalization is applied. Local features were aggregated into a BoW vector of 25k centroids.

Figure 3: Bag of Local Convolutional Features Pipeline

Figure 3 summarises the CNN-BoW encoding, where the Assignment Maps refer to the spatial
location of each visual word within the image. The 25k dimensional visual vocabulary is learned
from a random subset of 3M local CNN features by using an Approximate Nearest Neighbour
k-means algorithm from the VLfeat library [19]. Similarly, the PCA model is also learned in
a random subset of 3M features using scikit-learn [11] Python implementation. As described for
the face representations (Subsection 2.2.1, descriptors obtained for places are also sparse so, again,
it is possible to benefit from the sparse CUDA-based sparse matrix for fast lookup of the queries.

For place query representation, we aggregate into a single BoW vector all visual words
extracted from all keyframes provided as examples for each location. Rankings generated for
locations were fixed for all runs submitted.

2.3 User Interface

Annotations generated by a user were used to re-sort final ranks obtained in Run 1 and Run 2.
The front-end is based on the one created by the Insight Centre for Data Analytics the TRECVid
Instance Search 2014 [7]. The interface was modified to be able to quickly annotate a large amount
of keyframes and was programmed using HTML5 and AngularJS. The back-end was also modified
in order to adapt it to the new annotation requirements for the TRECVid Instance Search task. As
explained in Section 2.2, this benchmark requires us to create a system by fusing two approaches,
one for persons and another for locations meaning three possible approaches should be evaluated
separately: one for persons, one for locations and one assessing both persons and locations.

2.4 Evaluation and Normalization strategies

Despite no groundtruth data being provided, we can evaluate system performance by annotating
the top-K shots in the rankings. For evaluation we use Precision at position K (P@K) for each
topic, as defined in Equation (1), where M is the set of relevant images in the dataset for the
query topic, and NK is the set of the top-K elements in the ranked list under evaluation. The
mean P(K) across the whole set of query topics Q defines the Mean Precision at K (mP(K)).

P@K =
|M ∩NK|

K
(1)

in order to evaluate the fusion strategies, the first step is to make sure that the different parts work
well separately. This implies evaluating the rankings from both parts before making the fusion.

Ranklist mP@100 mP@50

Faces 90.36 91.73

Faces + top20 94.53 95.80

Locations 94.10 98.53

Table 2: mP(100) and mP(50) for different ranking lists.

Table 2 contains P@100 and P@50 for the different systems independently. We recall that
both systems for location and for faces are highly precise considering the top-100 annotations.
Furthermore, we can validate that performing query expansion using the top-20 faces will lead
to better rankings for faces and better final ranks.

Normalization type Person
mP@50

Location
mP@50

Final mP@50

None 73.00 45.86 22.26

Max-min 68.53 42.13 13.86

Z-score 95.60 9.46 9.26

Extreme value [14] 15.80 97.06 15.46

Table 3: Different fusion strategies

Table 3 presents different fusion strategies evaluated using the interface and computing P@50.
Note that best performance is obtained when no normalization is applied, so final rank is
computed just by taking min value between faces and places scores per shot. This is the strategy
applied for our final submissions.

2.5 Summary and Conclusions

We proposed a framework based on CNN pre-trained models to represent face and locations
and a tool to annotate and evaluate different approaches by computing Precision on top-K.
Performance independently generates highly precise results on top-50 and top-100, which allows
us to perform query expansion by aggregating descriptors of the top-N locations or places to
generate better rankings that we will combine later with late fusion. Experiments quantitatively
show the effect of applying this query expansion technique on the top-20 detected faces (mAP
increases from 0.031 to 0.059).

Unfortunately, after submission, we found that there was a mistake in generating the final
ranked list for locations: Rankings were cropped to the top relevant 1,000 keyframes and filtered
to obtain unique shots, which reduced the candidates to only 400 or less for each location.
The short retrieved list explains why other normalisation types (in Table 3) that model score
distributions perform worse than applying no normalisation since parameters to model localisation
scores have significantly fewer samples than in the ranked list for faces. Furthermore, this is
responsible for the nearly random mAP of our runs. Since candidate locations are limited to

max 400, the number of shots belonging to the intersection generated by the face and place ranks
will be less then 400, and then the rest of the 1,000 submitted results will be ranked by similarity
face scores that may or not contain the target place.

The simple strategy of re-sorting results using annotated data used to consistently improve
results in our two last submissions, do not improve results in this submission since only a
maximum of 400 results are potentially relevant among the 1,000 shots annotated by the user.
Even though negative results were removed from the lists, the new ranks were filled with shots
with high face score which correspond to random filling in terms of place scores and translates
into a deterioration in performance (results obtained with run 3 and run 4).

3 Video to Text Description (VTT)

The VTT task was a showcase/pilot task to explore issues around how well we can automatically
describe a video in natural language as we aim to move from image to video captioning. Given
a set of 2,000 Vine videos, each with 2 manual captions (A and B), participants were asked to
return for each video a ranked list of the text descriptions from each set, A and B. A second
sub-task was to automatically generate a text description for each of the 2,000 Vine videos. The
manual captions were created with a briefing for the annotators to concentrate on who is in the
video, what are the objects in the video, where it is taking place and when. These captions, A
and B, provided the ground truth for evaluations.

3.1 Pre-Processing Vine Videos for the VTT Tasks

Object Concepts: We used the VGG-16 deep convolutional neural network [16] to map
keyframes in the videos to 1,000 object concept probabilities. We used 10 equally spaced keyframes
per Vine video. The model was pre-trained on the ImageNet ILSVRC training data [13], which
consists of approx 1.3 million training images in 1,000 non-overlapping categories. Keyframes
were re-sized (via warping) to 224× 224 before input to the network. We did not apply any
data augmentation like overcropping or flipping. The output of this phase is 10× 1,000 object
probabilities per Vine video.

Behaviour Concepts We applied crowd behaviour recognition to categorise the motion
characteristics of a given Vine sequence. Keyframes are extracted and probability scores calculated
for 94 crowd behaviour concepts such as fight, run, mob, parade and protest. The mean concept
score vector is then taken across the keyframes for a given Vine. These 94 concepts are taken from
the WWW (Who What Where) crowd dataset [15] which contains 10,000 video sequences fully
annotated for all concepts. This dataset is used to train a multi-column CNN which produces
behaviour concept probability scores using both motion and appearance information. The
appearance column is fed raw pixel data while the motion column is fed a dense optical flow field
before the column outputs are fused and 94 concept probability scores are produced. The Alexnet
architecture [6] is used for both columns. The model achieves an ROC curve AUC of 0.8656 on the
WWW test set and produces a vector of concept scores than can be directly used for the VTT tasks.

Locations Locations were represented by extracting the probability scores from the softmax
layer of the VGG16 network [16] pre-trained on the Places2 Dataset [21]. This dataset contains over
1.8M images from 365 different scene categories (e.g. airport terminal, cafeteria, hospital room),
which makes prediction of this network very suitable for this task. The typical pre-processing
for extraction of the CNN descriptor was applied to the images, resizing to 224× 224 resolution.

3.2 The Caption Ranking Sub-Task

3.2.1 Methodology

We undertake a traditional information retrieval-based approach for ranking captions, treating
them as retrievable documents and each video as a query. The concept description of each frame
of a video comprises a fixed number of three weighted vector descriptors:
• Place descriptor of 365 dimensions, each dimension corresponding to a type of place, e.g.

‘airplane’, ‘mansion’ etc.
• Object descriptor of 1,000 dimensions, each dimension pertaining to a particular type of

animate or inanimate object, e.g. ‘tiger’, ‘gold-fish’ etc.
• Action descriptor of 95 dimensions, each dimension pertaining to a type of action, e.g. ‘picnic’,

‘marathon’ etc.
The text query constructed from the descriptors comprises a list of weighted query terms, corre-
sponding to each component of the descriptor. To obtain a single query formulation for an entire
video, we simply take the average of the concept descriptor vectors over each individual image frame.

For each descriptor type, we take the text from the top-5 components. In total, the query used
to rank the captions is a weighted query comprised of 15 terms (5 corresponding to place descriptor
and so on). The more accurate the weights of the descriptors, the better the query representation,
e.g. if for a video of an airplane take off, the weight associated with the place descriptor
corresponding to the type ‘airplane’ is high in comparison to others, this query term dominates
and the retrieval model will give higher rank to captions containing this term. The weight of
each descriptor type (i.e. place, object and action) is controlled by linear combination parameters
αp (weight for place), αo (for object), and αa (action descriptor), which sum to 1. After some
initial experiments on the training dataset of queries, we set: αp = 0.3, αo = 0.4 and αa = 0.3.

The retrieval model used for the caption ranking task is BM25. We set b (the length
normalization parameter to 0.75 as reported to be optimal on the TREC collections [12]). We
did experiments on the training data in order to find an optimum value for the BM25 parameters
K (term frequency importance) of 0.8.

3.2.2 Runs Submitted

We submitted 4 runs, a BM25 baseline, a fusion run, a word2vec-based run, and a fusion between
our baseline and word2vec with the performance shown in Figure 4.

The word2vec-based caption re-ranking approach relies on data from two different sources: (i))
the objects, actions and locations identified using VGG-16 (cf. Section 3.1) and (ii) automatically
generated captions generated by the NeuralTalk2 system (cf. Section 3.3.1). Word similarity
from word2vec [8], a Distributional Semantic Model (DSM) accessed through our Distributional
Infrastructure (DInfra) [2], is used to re-rank the provided captions using these sources. The
process consists of the following steps:

Generating object-action-location triples based on VGG-16 data For each video, we
use the ten objects (cp. Section 3.1), actions (cp. Section 3.1) and locations (cp. Section 3.1) with
the highest confidence scores. Based on these, we generate all possible object-action-location triples,
resulting in a total of 1000 triples. Each of these triples then receives a score which is calculated
according to Equation (2) where rel() is the relatedness score derived from the word2vec DSM and
conf() denotes the confidence score assigned by the visual recogniser (averaged across keyframes).
The intuition behind this scoring step is that objects, actions and locations with similar semantic
contexts (as captured by the DSM relatedness measure) are more likely to co-occur in the video. We

Figure 4: Scores for Caption Ranking

additionally give preference to concepts which have been identified with high confidence by VGG-16.

triple score(o, a, l) = rel(a, o) ∗ conf(a) ∗ conf(o) +

rel(o, l) ∗ conf(o) ∗ conf(l) +

rel(a, l)∗
(2)

Extracting object, action and location words from automatically generated cap-
tions. In this step, we use automatically generated captions as an additional source of visual
information. We run a custom text analysis pipeline using the GATE toolkit [4] to extract object,
action and location words from the automatically generated captions (cf. Section 3.3.1). The
pipeline applies tokenisation, POS-tagging as well as NP- and VP-chunking on each caption.
A custom JAPE4 grammar [5] is then used to to manipulate the annotations produced from
this linguistic preprocessing to extract the relevant words as follows:
• locations: location expressions from a predefined list (e.g. “indoors”, “outdoors”) as well as

nouns contained in prepositional phrases (e.g. “at the bar”)
• actions: verbs and nouns contained in verb phrase chunks and their nominal complements

(e.g. “riding a skateboard”)
• objects: nouns contained in all other types of nominal chunks
Interestingly, we noted performance gains when using social media-specific tokenisation and POS
tagging models from the TwitIE5 pipeline [3], presumably due to the short and informal nature
of the captions. With this structured extraction we aim to achieve better precision compared
to using a simple bag-of-words approach on the captions.

4Java Annotations Pattern Engine
5Twitter Information Extraction (TwitIE) is the adaptation of the default low-level linguistic analysis resources

for rule-based named entity classification in GATE to the microblogging domain.

Re-ranking candidate captions using weighted triples and words from automati-
cally generated captions. In order to rank the candidate captions, the GATE pipeline
is also applied to them to identify object, action, and location words. These words are then
input to our ranking measuring the relatedness (using word2vec again) between them and a)
the triples based on VGG-16 data, and b) the GATE extracted locations, actions, and objects
from the automatically generated captions. In step a), a caption score for each candidate
caption is obtained by using the N top-ranked triples and summing the relatedness scores
between the triple object & candidate caption object, triple action & candidate caption action,
and triple location & candidate caption location across all of them, as in Equation (3). In
case the candidate caption contains multiple objects/actions/locations words, the relatedness
is averaged. The N top-ranked triples are acting as inputone, the candidate captions as in-
puttwo.

input1 = [io obj,io act,io loc]

input2 = [it obj,it act,it loc]

caption score(input1, input2) =

1

io obj.length ∗ it obj.length
×
∑io obj.length

ioo=1

∑it obj.length
ito=1 rel(io obj[ioo], it obj[ito])

+
1

io act.length ∗ it act.length
×
∑io act.length

ioa=1

∑it act.length
ita=1 rel(io act[ioa], it act[ita])

+
1

io loc.length ∗ it loc.length
×
∑io loc.length

iol=1

∑it loc.length
itl=1 rel(io loc[iol], it loc[itl])

(3)

Step b) carries out the same relatedness scoring between the object/action/location words from
the automatically generated captions and the candidate captions. In addition, an averaging as
in step a) is applied (Eqn 3). The automatically generated captions are acting as inputone, the
candidate captions as inputtwo.

The final ranking (Eqn. 4) uses a weighted combination of the output of steps a) and b)
and thus has three different parameters:
1. triple weight (α): the weight assigned to the triple score from step a)
2. top triples (N): the number of triples used for calculating the triple score in step a)
3. caption weight (β): the weight assigned to the caption score from step b)

weighted score(α,β,N) = α ∗ caption score(triples[0 : N], candidate caption words)

+β ∗ caption score(auto generated caption words, candidate caption words)
(4)

Based on experiments on a development set of 200 images and captions, we found the following
parameters to be best: α = 0.8, N = 10, β = 0.1.

3.3 The Caption Generation Sub-Task

3.3.1 Runs Submitted

Inspired by recent work in multimodal natural language processing such as the Multimodal Machine
Translation (MMT)6 task [18], caption generation models become a strong technique to capture and

6http://statmt.org/wmt16/multimodal-task.html

determine objects in the images and express their relationships in natural language. For this reason,
we used an attention-based model for automatic caption generation of images extracted from the
VTT videos. Despite the difficult nature of this task, recent work shows a significant improvement
in the quality of caption generation by using a combination of CNNs to obtain vectorial
representations into natural language sentences [20] aided by advances in deep neural networks [6].

An open sourced image-to-caption CNN-RNN toolkit – NeuralTalk2 – was used in generating
captions from the extracted images.7 NeuralTalk2 is written in Torch and it is batched and runs
on a GPU. It also supports CNN finetuning, which helps with performance. In our task, we
directly use the pre-trained model that was trained on the MSCOCO8 data set. NeuralTalk2
takes an image and predicts its sentence description with a Recurrent Neural Network. Since
we segmented the video into several static images, we generate one caption for each image of
the video as one of the candidates for the video caption.

3.3.2 Examples

Figure 5 shows two examples of attending to the correct/wrong object and the description of
the video using NeuralTalk2 on the extracted images.

Figure 5: Examples of attending to the correct/incorrect object and description

The performance of our single submitted run is shown in Figure 6 showing it low ranked
for BLEU and mid-ranked for METEOR. There are issues with the validity of the evaluation
metrics used for the caption generation sub-task and documented in [1] meaning we will not
analyse these results in too much detail.

4 Conclusions and Future Work

The aim of our participation in the INS task was to extend our previous work in this area while
the aim of our participation in VTT was purely exploratory. Motivated by our performance

7https://github.com/karpathy/neuraltalk2
8http://mscoco.org/

Figure 6: Scores for the Caption Generation sub-task

in caption ranking and caption generation we will refine our methods used in both tasks by
broadening the number of underlying concepts.

Acknowledgement: The work reported here is based on research conducted with the support
of Science Foundation Ireland under grant numbers SFI/12/RC/2289 (Insight Centre) and
SFI/13/RC/2106 (ADAPT Centre).

References

[1] George Awad, Jonathan Fiscus, Martial Michel, David Joy, Wessel Kraaij, Alan F. Smeaton,
Georges Quénot, Maria Eskevich, Robin Aly, and Roeland Ordelman. TRECVID 2016: Evaluating
Video Search, Video Event Detection, Localization, and Hyperlinking. In Proceedings of TRECVID
2016. NIST, USA, 2016.

[2] Siamak Barzegar, Juliano Efson Sales, Andre Freitas, Siegfried Handschuh, and Brian Davis.
Dinfra: A one stop shop for computing multilingual semantic relatedness. In Proceedings of the
38th International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 1027–1028. ACM, 2015.

[3] Kalina Bontcheva, Leon Derczynski, Adam Funk, Mark A Greenwood, Diana Maynard, and Niraj
Aswani. Twitie: An open-source information extraction pipeline for microblog text. In RANLP,
pages 83–90, 2013.

[4] Hamish Cunningham, Diana Maynard, and Kalina Bontcheva. Text processing with GATE.
Gateway Press, CA, 2011.

[5] Hamish Cunningham, Diana Maynard, and Valentin Tablan. JAPE: a Java annotation patterns
engine, 1999.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.

[7] Kevin McGuinness, Eva Mohedano, ZhenXing Zhang, Feiyan Hu, Rami Albatal, Cathal Gurrin,
Noel E. O’Connor, Alan F. Smeaton, Amaia Salvador, Xavier Giró i Nieto, and Carles Ventura.
Insight Centre for Data Analytics (DCU) at TRECVid 2014: instance search and semantic indexing
tasks. In Proceedings of TRECVID 2016. NIST, USA, 2014.

[8] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[9] Eva Mohedano, Amaia Salvador, Kevin McGuinness, Ferran Marqués, Noel E. O’Connor, and
Xavier Giró i Nieto. Bags of local convolutional features for scalable instance search. CoRR,
abs/1604.04653, 2016.

[10] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. In British
Machine Vision Conference, 2015.

[11] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olicier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[12] S. E. Robertson, S. Walker, and M. Beaulieu. Okapi at TREC-7: Automatic ad hoc, filtering,
VLC and interactive track. In In Proceedings of TREC 7. National Institute of Standards and
Technology (NIST), January 1999.

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[14] Walter Scheirer, Anderson Rocha, Ross Micheals, and Terrance Boult. Robust fusion: Extreme
value theory for recognition score normalization. In European Conference on Computer Vision,
pages 481–495. Springer, 2010.

[15] Jing Shao, Kai Kang, Chen Change Loy, and Xiaogang Wang. Deeply learned attributes for crowded
scene understanding. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4657–4666. IEEE, 2015.

[16] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014.

[17] Alan F. Smeaton, Paul Over, and Wessel Kraaij. Evaluation Campaigns and TRECVid. In MIR
’06: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval,
pages 321–330, New York, NY, USA, 2006. ACM Press.

[18] Lucia Specia, Stella Frank, Khalil Sima’an, and Desmond Elliott. A Shared Task on Multimodal
Machine Translation and Crosslingual Image Description. In Proceedings of the First Conference
on Machine Translation, Shared Task Papers, volume 2, page 543–553, 2016.

[19] Andrea Vedaldi and Brian Fulkerson. VLFeat: An open and portable library of computer vision
algorithms. http://www.vlfeat.org, 2008.

[20] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. In Proceedings of ICML 2015, pages 2048–2057, 2015.

[21] B. Zhou, A. Khosla, A. Lapedriza, Xiao J., A. Torralba, and A. Oliva. Places: An image database
for deep scene understanding. CoRR, abs/1610.02055, 2016.

[22] Bolei Zhou., Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning deep
features for scene recognition using places database. In Advances in Neural Information Processing
Systems 27, pages 487–495. Curran Associates, Inc., 2014.

