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Abstract

A Machine Learning Approach to the Unsupervised Segmentation of
Mitochondria in Subcellular Electron Microscopy Data

Julia Dietlmeier

Recent advances in cellular and subcellular microscopy demonstrated its potential towards unrav-
elling the mechanisms of various diseases at the molecular level. The biggest challenge in both
human- and computer-based visual analysis of micrographs is the variety of nanostructures and
mitochondrial morphologies. The state-of-the-art is, however, dominated by supervised manual
data annotation and early attempts to automate the segmentation process were based on super-
vised machine learning techniques which require large datasets for training. Given a minimal
number of training sequences or none at all, unsupervised machine learning formulations, such as
spectral dimensionality reduction, are known to be superior in detecting salient image structures.
This thesis presents three major contributions developed around the spectral clustering framework
which is proven to capture perceptual organization features. Firstly, we approach the problem of
mitochondria localization. We propose a novel grouping method for the extracted line segments
which describes the normal mitochondrial morphology. Experimental findings show that the clus-
ters obtained successfully model the inner mitochondrial membrane folding and therefore can be
used as markers for the subsequent segmentation approaches. Secondly, we developed an unsu-
pervised mitochondria segmentation framework. This method follows the evolutional ability of
human vision to extrapolate salient membrane structures in a micrograph. Furthermore, we de-
signed robust non-parametric similarity models according to Gestaltic laws of visual segregation.
Experiments demonstrate that such models automatically adapt to the statistical structure of the bi-
ological domain and return optimal performance in pixel classification tasks under the wide variety
of distributional assumptions. The last major contribution addresses the computational complexity
of spectral clustering. Here, we introduced a new anticorrelation-based spectral clustering formu-
lation with the objective to improve both: speed and quality of segmentation. The experimental
findings showed the applicability of our dimensionality reduction algorithm to very large scale
problems as well as asymmetric, dense and non-Euclidean datasets.
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Chapter 1

Introduction

1.1 Subcellular Imaging and Electron Microscopy

Electron microscopy has emerged as a powerful technique to address fundamental questions in
molecular and cellular biology [66]. It makes possible visualization of the molecular architecture
of complex viruses, organelles and cells at a resolution of a few nanometres. In the last decade
EM has allowed major breakthroughs that have provided exciting insights into a wide range of
biological processes. In particular, in electron tomography the biological sample is imaged with
an electron microscope, and a series of images is taken from the sample at different views. Trans-
mission electron microscopy provides resolutions in the order of nanometer. Hence it is a critical
imaging modality for biomedical analysis at the sub-cellular level. Prior to imaging, the sample has
to be specially prepared to withstand the conditions within the microscope. Subsequently, those
images are processed and combined to yield the three-dimensional reconstruction or tomogram.
Afterwards, a number of computational steps are necessary to facilitate the interpretation of the to-
mogram, such as noise reduction, segmentation and analysis of subvolumes. As the computational
demands are huge in some of the stages, high performance computing techniques are, for example,
used to make the problem affordable in reasonable time [66].

Electron tomography has got the ability to visualize in three dimensions the subcellular ar-
chitecture and macromolecular organization of native cells and tissues at nanometer scale. This
resolution level allows the study of the 3D organization of the structural components at a detail
sufficient for the identification of macromolecular complexes, the quantitative analysis of their
abundance, and their spatial distribution as well as their interactions in the native cellular context.

One area of rapid development is volume electron microscopy, a collective term for EM tech-
niques focusing on analysis of "large" volumes ("large" being a relative description in the EM
world). Most techniques that fall under the volume EM umbrella were initially developed for ex-
amination of the central nervous system [163], a result of the need to analyze axons and dendrites
that span large distances with sufficient resolution to detect individual synaptic vesicles and den-
sities. The associated technical challenge lay in overcoming the "field of view versus resolution”
problem, to enable visualization of a single specimen across different scales, a problem common

to most imaging modalities.



1.2. Challenges in Mitochondria Segmentation and Apoptosis

Volume EM can be performed using transmission or scanning electron microscopes. Each ap-
proach has its own strengths and weaknesses, and the choice is dependant on the required lateral
(x,y) and axial (z) resolution, and the size of the structure of interest. Historically, transmission
electron microscopy was the tool of choice for ultrastructural examination of biomedical speci-
mens at sub-nanometer resolution. However, for many cell biology studies structural resolution
is actually limited by the deposition of heavy metals onto membranes during sample preparation.
In addition, voxel dimensions may only need to be half that of the smallest expected feature of
interest. Advances in Scanning Electron Microscopy technology are now driving a paradigm shift
in electron imaging. SEMs with field emission electron sources and high efficiency electron detec-
tors can achieve lateral resolutions in the order of 3nm, allowing visualization of structures such as
synaptic vesicles and membranes though resolving individual leaflets of membrane.

Analysis of electron microscopy images is normally carried out by specialists with experience
in the identification and interpretation of biological features in the complex grayscale world of
electrons. However, manual analysis is labor intensive and can be excruciatingly slow. It is widely
acknowledged that more automation in the downstream processing pipeline is essential for accel-
erating segmentation and structural analysis [163, 26, 47, 91, 97, 106]. Despite the existence of
computational methods, none has stood out as a general applicable method yet, and manual seg-
mentation still remains the prevalent method . Progress has been made in this area, and in the
development of more sophisticated tools, but these approaches remain limited to defined structures

such as for example mitochondria [76, 50, 79, 132, 151] and synapses segmentation [111].

1.2 Challenges in Mitochondria Segmentation and Apoptosis

The field of nano-biophotonics and imaging of subcellular regions, in particular of mitochondria,
is an extremely complex and dynamic environment. Mitochondria form an important category of
membrane enclosed organelles which reside inside every living cell. Mitochondria have an average
diameter of 200nm with huge variation in size and shape even within one cell, which are likely to
move within a living cell and undergo fission and fusion. Mitochondrial morphology depends on
the type of biological tissue and further undergoes structural changes during induced or naturally
occurring biochemical processes [199]. This fact accounts for the vast range of mitochondrial
shapes and textures and challenges a unified approach to localization and segmentation.
Mitochondria consist of two major compartments: the intermembrane space and the matrix as
can be seen in Fig. 1.2.1. The outer membrane engulfs an inner membrane, which is folded into
christae which is clearly visible in the electron microscope images. Mitochondria play an important
role in the processing of the food molecules into adenosine triphosphate (ATP) which provides
energy for the cells, as well as in several cellular functions such as signaling, differentiations, cell
growth and mitochondrial regulation processes. In addition to their role in cellular bioenergetics,
mitochondria also initiate common forms of programmed cell death (apoptosis) through the release
of proteins such as cytochrome ¢ from the intermembrane and intracristal spaces [199]. Apoptosis
is an evolutionary conserved cell death process that is fundamental to remove superfluous and
damaged cells from the bodies of multicellular organisms. Individual cells within a population

undergo apoptosis at distinct, apparently random time points [169].



1.2. Challenges in Mitochondria Segmentation and Apoptosis
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Figure 1.2.1: (a) EM image of a mitochondrion with its main components. (b) Set of extracted
line segments. (c) Localization hull overlayed on the original image. The method deployed for the
grouping of line segments describing mitochondrial morphology is presented in Chapter 4.

Cell death in general is an essential phenomenon in normal development and homeostasis, but
also plays a crucial role in various pathologies [67]. Specifically, alterations in apoptotic pathways
result in a loss of the balance between cell proliferation and cell death, leading to a number of dis-
eases in humans. For example, abnormal down-regulation of apoptosis is an important contributor
to cancer and autoimmune diseases, whereas excessive up-regulation of cell death is implicated in
neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s [191, 100]. Cur-
rently, there is overwhelming and widely-accepted evidence of impaired mitochondrial function as
a causative factor in these diseases.

Our special interest in apoptosis is connected to the research by our biomedical partners at the
Royal College of Surgeons in Ireland (RCSI), Department of Physiology and Medical Physics. The
researchers are performing experiments on human prostate cells DU-145 treated with the apopto-
sis inducer staurosporine (STS) as well as HeLa cells treated with tumour necrosis factor related
apoptosis inducing ligand (TRAIL) [169]. High-speed subcellular imaging of the cell interior and
mitochondrial outer membrane permeabilisation is being used to analyze cellular mitotic history,
study apoptotic signaling and the mitochondrial response to apoptosis inducing agents.

As has been shown by Sun et al. [199], mitochondria undergo morphological changes during
apoptosis. Especially the change of the intramitochondrial christae structure has been reported
and is likely to coincide with the permeabilisation of the outer mitochondrial membrane. In order
to examine the ultrastructure of mitochondria (present in HeLa cells treated with etoposide) at
defined stages of apoptosis in an asynchronous cell population, fluorescence microscopy was first
used to characterize the state of apoptosis. Then correlated light and three-dimensional electron
microscope tomography was performed on cells growing in special petri dishes that contain a glass
coverslip with an etched grid in order to study the sequence of structural changes. As a result,
the authors have identified five characteristic mitochondrial morphologies based on observation of
electron micrographs of apoptotic HeLa cells as shown in Fig.1.2.2: normal, normal-vesicular,
vesicular, vesicular-swollen and swollen.

The process of segmenting the interior of a cell composed of organelles and cytosol is con-
fronted by a variety of challenges which according to their complexity can be mainly categorized
into minor and major factors. There are minor problems which originate from processing low

contrast and noise degraded images acquired under inadequate lighting conditions.



1.2. Challenges in Mitochondria Segmentation and Apoptosis

different cell types normal vesicula
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Figure 1.2.2: Challenges in subcellular segmentation of apoptotic (here: experimentally induced
programmed cell death process in HeLa cells [199]) mitochondria which exhibit time-varying mor-
phologies (t; to t5). These substantial changes from the normal (t) to the eventually swollen (ts)
morphology have been detected through joint correlated three-dimensional light and electron mi-
croscopy imaging. Image source: NBIP Ireland ITC Workshop [53].

Thus, in low quality TEM images the degradation can be due to speckle noise and non-uniform il-
lumination. Specifically, the contrast of images in electron microscopy is determined by the nature
and extent of interactions between the electron beam and the specimen. Therefore, the resolution
available for untreated biological samples is limited by the physical constraints on EM. Properties
of both the specimen (inherent contrast) and of the microscope system (instrumental contrast) are
of importance. The level of contrast is determined by the average atomic number of the specimen,
and biological specimens consist mainly of carbon, nitrogen, oxygen, and hydrogens atoms. Be-
cause EM is imaging the differences in scattering between low atomic number components such as
carbon (cells) and oxygen (water), the contrast is often low and may depend strongly on the local
concentration of heavier ions [204]. Thus, the weak contrast is a limiting problem in the imaging
of biological specimens. The contrast is generally enhanced by (i) directly increasing the specimen
contrast using various preparation procedures (i.e. staining, shadowing, etc.) or (ii) using longer
exposure times in recording the image. The image processing techniques in enhancing contrast
may include such standard methods as gray level histogram modification.

Nonuniform intensity distribution is another problem associated with TEM images and leads to
variations in brightness due to electron imaging defects or non-uniform support films and specimen
staining. These variations render image processing operations such as segmentation more difficult.
Some correction techniques require estimation of the global illumination field [202]. Intensity
nonuniformity is also referred to as intensity inhomogeneity, shading or bias field. A shading cor-
rection can also be done in the following way. Firstly, the original image is smoothed by applying
a few times a low-pass filter of a large size. Secondly, the difference between the original and the
smoothed images is calculated and the resulting image is autoscaled.

The presence of noise in electron microscopy images can be generally described as the random

variation in the pixel content caused by the acquisition, digitization and transmission processes.



1.2. Challenges in Mitochondria Segmentation and Apoptosis

ellipsoidal

Figure 1.2.3: Major challenges in subcellular segmentation depend on the tissue and cell type and
include varying size and shape of organelles. Image source: NBIP Ireland I'TC Workshop [53].

Microscopy applications often have to contend with low light conditions. This can be, for example,
a case when samples are stained with fluorescent dyes and thus emit very little light. Dyes, which
emit light when irradiated, are used as biomarkers in modern microscopy. Because many dyes
are phototoxic, providing more light to the cell to receive more signals from the biomarker, can
potentially destroy the cell. Therefore, the light exposure is kept as low as possible, leading to the
camera noise which is strongest at low light levels and often has detrimental effect on dark images.
Depending on the application, users have to choose a suitable camera in the tradeoff between high
sensitivity or low noise. However, hardware noise can not be avoided altogether, but it can be
reduced by a process called smoothing or filtering. Often, smoothing by averaging or median
filtering is applied. Low-pass filters are also applied for image smoothing. Their application is
based on the discrete convolution of the original image with a special mask. The effect of the
convolution depends on the type of filter kernel used. One way to make an image sharper is to
apply edge detection filters such as the Laplace, Roberts or Sobel filters and to add the found edges
to the original electron microscopy image.

Major challenges in the analysis of subcellular micrographs, however, come from the complex-
ity of the dynamic intracellular environment and include different sizes and shapes of organelles
and varying internal structure of mitochondria due to the inner membrane folding. That is, dif-
ferent living organisms, different tissues and cell types have all distinct and unique mitochondrial
morphologies, as can be seen in Fig. 1.2.3. In addition, in studies on human cells, apoptotic or-
ganelles have shown to exhibit time-varying changes in shape and texture. Because a cell is in a
fact a three-dimensional object, the standard sample preparation in electron microscopy includes
the freeze and subsequent multiple mechanical slices through the cell. After that process, each
slice is imaged and the volumetric information can be acquired afterwards. The image artifacts
associated with the sample preparation can include, for example, traces of staining. Other artifacts

include signs of slicing and (most profoundly difficult to handle) incomplete shapes of organelles.



1.2. Challenges in Mitochondria Segmentation and Apoptosis

Figure 1.2.4: TEM image of a whole DU-145 human prostate cell showing clustered and deformed
mitochondria even before the apoptosis induced morphological changes. Image source: RCSIL.

Staining in general, however, needs not to be a problem. Substantial advantages in imaging can be
achieved by staining the cells with high atomic number markers such as electrondense stains (heavy
metal staining). Differential staining of organelles inside cells using electrondense materials is a
standard in EM technique. High resolution and specificity of detection can be also achieved by
binding of antibodies or other ligands such as nanoparticle gold labels [204]. Therefore, staining
and labeling on demand can indeed provide valuable markers for the subsequent image analysis.
This work looks specifically at the segmentation of mitochondria which vary widely in size,
shape and internal structure depending on the tissue and cell type, such as depicted in Fig. 1.2.3 and
Fig. 1.2.2. Other significant challenges arise from the presence of clustered and attached mitochon-
dria and cluttered background as shown in Fig. 1.2.4. In many applications, cells, mitochondria
and other nanostructures are frequently neighboring or overlapping on each other, which makes
segmentation and quantification difficult. In addition, the scale and the resolution of the acquired
images have to be taken into account. Overall, the combined challenges determine the segmenta-
tion strategy and applied methods and require the development of advanced techniques. Currently,
there is no unified approach for different acquired micrographs and the research work on cellular

and subcellular segmentation is mostly divergent and application specific [219].



1.3. Advances in Cellular Image Segmentation

TEM images of mitochondria are able to capture the intrinsic structural elements that are caused
by the inner membrane folding. This evidence suggests the feasibility of a feature-driven seg-
mentation approach. In this work, we present a multi-stage segmentation approach composed of
preprocessing, object registration and shape extraction. The preprocessing step is composed of
contrast enhancement, structural noise removal and the compensation for the uneven illumination.
Also, in order to enhance the appearance of the inner membrane folding, the non-linear and shape
preserving feature enhancement techniques are considered. The next step is to determine the loca-
tion of the mitochondrion (seed point/marker) and to extract its boundaries. Localization is based
on the a priori assumption of mitochondrial morphology of interest and foresees the extraction and

grouping of low-level membrane primitives.

1.3 Advances in Cellular Image Segmentation

There are many different methods that were proposed and claimed to be superior in segmenting
some specific type of cells, mitochondria and other nanostructures. Some of these methods are
based on watershed segmentation, region growing or neural networks. Other include Bayesian
methods, linear discriminant preprocessing, tabu search, correlation clustering [229], multilayered
segmentation, membrane pattern method, iterative feedback and machine learning [219]. A mor-
phological method that enables automated morphology analysis of partially overlapping nanopar-
ticles in electron micrographs has been presented in [162]. This method adopted a two-stage ap-
proach: the first stage executed the task of particle separation, and the second stage conducted si-
multaneously the tasks of contour inference and shape classification. Graph cuts-based approaches
were also used, for example, by Al-Kofahi et al. [3] to segment cell nuclei in histopathology
images. The authors concluded that the confounding image characteristics that led to most de-
tection/segmentation errors were high cell density, high degree of clustering, poor image contrast
and noisy background, damaged/irregular nuclei, and poor edge information. Kaynig et al. [103]
addressed the problem of neuron geometry extraction by perceptual grouping in sSTEM images.
The architecture comprised a Random Forest for classifying single pixels, and novel energy terms
for membrane segmentation with graph cut optimization. However, none of the above methods can
meet the general purpose for so many different types of cellular and subcellular structures.

In order to overcome at least some of these drawbacks, authors in [219] proposed, for ex-
ample, a more generalized approach. This method utilized the general property of the cell and
nanoparticle images: intensity and intensity gradient and thus was suitable for different types of
cell and nanoparticle images. Martinez-Sanchez et al. [141] targeted the segmentation of mem-
branes in electron tomography. This method was based on local differential structure and on a
Gaussian-like membrane model. Detection of membranes plays an important role in segmentation
as they encompass compartments within biological specimens, define the limits of the intracellular
organelles, cells and the inner membrane folding of mitochondria. Ghita et al. [76] used the con-
cept of superpixels' to segment membranes in high-resolution EM images. Also, the concept of

superpixels has been applied in [132, 133] and [229] to reduce the initial complexity of EM data

'A superpixel is an image patch which is better aligned with intensity edges than a rectangular patch.
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prior to the graph-based segmentation. More discussion on related works and methods on cellular
image segmentation is provided in Section 2.1. The summary of background research is given in
Section 3.5. Our review show that the requirement for robust segmentation and quantification of
cells, mitochondria and other nanostructures increases significantly due to the rapid development of
microscopy imaging technology. It still remains challenging due to the diversity of cell or nanopar-
ticle types, the arbitrary shapes, and the large numbers of cells or mitochondria. To conclude, most
existing methods are only capable of segmenting some specific types of cells, organelles and other
nanostructures. Most methods are diverging rather than converging to a robust and unified solution
and the performance and applicability of these methods thus remain limited.

A promising approach to the diversity challenge of cellular segmentation and classification is
based on supervised machine learning with convolutional neural networks. For instance, Ronnen-
berber et al. [172] won the ISBI cell tracking challenge 2015 and developed a new convolutional
neural network for biomedical image segmentation. This winning deep-learning architecture can
work with very few training images and has been successfully tested on neuronal structures in EM

stacks as well as on cell segmentation in light microscopy images.

1.4 Overview of Objectives and Contributions

Deep learning with convolutional neural networks and machine learning in general are currently
two popular topics in the computer vision community [161]. These methods gained their deserved
recognition due to their exceptional results in image segmentation quality in many applications
including also biomedical imaging.

While supervised machine learning frameworks foresee large training sets consisting of anno-
tated ground truth data, the guiding idea for this work is to use the unsupervised machine learning
and model-based approach which can be combined with the spectral clustering realization to pro-
duce desired segmentation results. The reason for this choice is two fold. Initially, we have been
limited by the number of images provided by our biomedical partners. Therefore we had to discard
the idea of using the supervised or semi-supervised approaches which require large databases of
manually-annotated images needed to train classifiers. Then, we have observed that in the images
provided, the localization and segmentation of mitochondria can be cast within the framework of
perceptual organization which is the key pre-attentive feature of the evolutional human vision.

In this thesis, the chosen framework of spectral clustering combines both arguments: it belongs
to the unsupervised machine learning class of algorithms, and it is able to integrate different percep-
tual grouping cues into a joint similarity (affinity) model. If the latter has been designed properly
and according to the laws of visual segregation, the resulted foreground background segmentation
in the spectrally induced feature space is known to capture the perceptual organization in images
or networks of co-linear line segments. That is, the machine learning in this context is associ-
ated with the unsupervised discovery of structures (clusters) in the input data, and the modeling,
dimensionality reduction and analysis of the underlying manifold. A special interest in spectral
clustering is also based on its known ability to discover significant relations which otherwise can
not be detected in the input data [220]. Additionally, the stability of spectral clustering algorithms

is well understood and the framework of noise analysis and reduction is well defined [176].
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For the particular type of mitochondria provided a set of descriptive features can be inferred and
defined. These can rely on the low-level primitives such as shape, contours and line segments, and
therefore we may for example discriminate between spherical, elliptical or elongated structures.
Additionally, the textural appearance of the inner membrane folding can serve as a grouping cue.
The set of descriptive features is used to design a similarity model which then serves as input to
the selected spectral clustering algorithm and results in the unsupervised classification.

Therefore, the first main contribution of this research targets the localization of mitochondria
of lamellar or tubular morphology in electron microscopy images. Results of the research on this
topic are presented in Chapter 4. In particular, mitochondria of lamellar and fubular morphology
are characterized by the linear or quasi-linear inner membrane folding which can be represented
by low-level primitives such as line segments. Line extraction results in a network of line segments
which can be grouped to infer the original mitochondrial structure. However, the only similarity
criterion which is able to distinguish the significant and thus non-accidental collection of these
non-parallel line segments in this case is based on the amount of orthogonal projection spanned
between the line segments. As there has not been any reported prior work on the similarity models
or line clustering involving projections, the first contribution constructs and analyzes a pairwise
similarity model which mainly integrates grouping cues based on orthogonal projections and the
Euclidean distance between two line segments. The localization of mitochondria provides us with
a marker or a seed point which can further be used to extract the outer boundary of mitochondria
with for example region growing approaches.

The second main contribution to the segmentation of mitochondria considers the extension of
line segments grouping to the case of grouping pixels with the goal of extracting salient mem-
brane structures of subcellular organisms in gray scale electron microscopy images. For this case
the similarity model designed combines such variables as intensity (brightness cue) and coordi-
nates (proximity cue) which are measured in different quantities and are contained within different
ranges. The research on this topic is presented in Chapter 5 and shows that the normalization of
raw data is important for the performance of classification methods. Furthermore, we introduce a
novel ratio-based similarity model which considers the proper normalization of raw data and sam-
pling adjustment of the nominator and denominator-based probability density functions. The major
challenge encountered was that for the size of an input image N X M, the resulting similarity matrix
acquires the size NM x NM. This makes direct spectral decomposition impractical. We solve this
problem by subsampling and tiling the input image. However, we asked the question if there can
be a low-cost solution to this computational complexity problem of spectral clustering which could
produce equivalent classification results.

Therefore, the third main contribution (see Chapter 6) addresses the current limitation of spec-
tral clustering related to its computational complexity and further questions the optimality of eigen-
vectors. We build on the idea that saliency can be associated with the presence of significant and
non-accidental relationships contained in the constructed similarity matrix. We observe that highly
anti-correlated columns of the centralized Gram matrices carry discriminative information equiv-
alent to that of eigenvectors. Specifically for the class of non-metric or asymmetric data which
results in a generally indefinite similarity matrix, the latter has to be firstly symmetrized and then

embedded into the Euclidean space in order to guarantee the applicability of clustering algorithms



1.5. Publications Emerging from this Research

which are based on Euclidean geometry. There is a number of works specifically targeting the very
large scale limitation. Selected practical implementations therein include parallel and distributed
computing, image subsampling or tiling, subsampling of a similarity matrix, exploiting matrix
sparsity and estimating eigenvalues and eigenvectors. Therefore, motivated by these limitations
we develop a new anticorrelation-based spectral clustering formulation which can be applied to

asymmetric, symmetric but non-Euclidean, and dense datasets.

1.5 Publications Emerging from this Research

This thesis is set to provide a solution to recently dominating manual segmentation of mitochondria.
The contributions achieved towards final developed image segmentation, mitochondria localization

and classification methods are outlined in Fig. 1.5.1.

Proposed line grouping method
based on orthogonal projection
of line segments

limitations

Proposed
Anticorrelation-based
Dimensionality reduction

[P]

Challenges in subcellular
segmentation

VLS soiution

Proposed
Perceptual similarity models based
On Gestalt laws of visual segregation

[B], [F]

Figure 1.5.1: Diagram of the achieved contributions towards the PhD thesis. This diagram also
shows the relationship between the challenges in subcellular segmentation, motivation factors, lim-
itations of the chosen spectral clustering framework and the developed methods.
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[B]: IEEE Transactions on Image Processing (published in IEEE Xplore 23(10), pp:4576-4586,
2014). "Automatic segmentation of mitochondria in EM data using pairwise affinity factorization
and graph-based contour searching" by Ovidiu Ghita, Julia Dietlmeier and Paul F. Whelan [76].
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Chapter 2

Background Research

The motivation for this research comprises of three interconnected factors: (i) High demand for
unsupervised segmentation solutions in molecular imaging; (ii) The established performance and
suitability of spectral clustering as a machine learning tool in the unsupervised classification and
segmentation tasks; (iii) The inherent limitations of spectral clustering regarding its computational
complexity. In fact, the application-specific problem (i) cannot be solved without targeting the
computational challenge in (iii) and the understanding of the theoretical foundation of spectral
clustering in (ii). On the other hand, (ii) and (iii) have been originally motivated by (i) and are set
to deliver the solution to the problem in (i). All these factors determine the layout of this chapter.

Therefore, we organize this chapter as follows: in Section 2.1 we review the state of the art
works on molecular and mitochondria segmentation tools. The machine learning field consists
mainly of two major areas: supervised and unsupervised implementations and there are many al-
gorithms which combine both. First, the most commonly used supervised learning algorithms
and the theory behind are reviewed in detail in Section 2.2.1. Therein, the currently important
category of convolutional neural networks and its relation to image segmentation is discussed in
Section 2.2.2.3. Second, unsupervised machine learning has been narrowed to the clustering and
spectral dimensionality reduction algorithms which are discussed in Section 2.2.6. Spectral cluster-
ing itself is a special combination of both dimensionality reduction and clustering in the projected
low-dimensional manifold. We then proceed with the analysis of the family of conventional graph-
based spectral clustering algorithms in Section 3.1.

As we have already mentioned, our interest in very large scale spectral clustering has originated
from the necessity to solve pixel classification problems. As we have arrived at computational
limits of spectral clustering we cannot process large images without resorting to subsampling, block
processing or approximation techniques. Therefore Section 3.2 reviews the relevant work on the
numerical solutions to very large scale spectral clustering, while its modifications and alternatives
are outlined in Section 3.3. We point to the number of publications on spectral clustering and its
efficient implementations. These papers indicate that this research field is still extremely active.

The quality of spectral image segmentation or input domain partitioning in general (as we also
want to cluster line segments which describe mitochondrial morphology) is directly related to the
cue integration and mathematical formulations of similarity measures. The latter often contain

application-dependent and non-linear kernel functions in order to allow the linear separability of
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2.1. Subcellular Segmentation

clusters in the feature space. The important notion of kernels is first introduced in Section 2.2.3.1
and appears in different formulations such as, for example, kernel-SVM, kernel-PCA or kernel-
ICA throughout this chapter. In our case we also derive similarity models based on perceptual
grouping principles. Therefore, the last Section 3.4.1 briefly discusses the organizational laws of
visual perception, its applicability to molecular imaging and presents related works on similarity

models which integrate perceptual grouping cues.

2.1 Subcellular Segmentation

A recent review on segmentation tools in electron tomography [12] emphasized the need for more
objective segmentation tools. Manual segmentation is the current state of the art [165], and to
illustrate how time-consuming this process is, we refer to the work by Marsh et al. published in
[139]. The authors indicate that image acquisition and the interpretation of the complete Golgi
ribbon required approximately nine months of manual segmentation followed by approximately
three months of additional editing for detailed analysis.

The authors in [158] reported a throughput improvement as compared to the previous study and
remark that by using a manual segmentation software package IMOD [110] they were able to mark-
up all of the mitochondria in less than 15 hours. In their study they demonstrated that an enormous
volume of Electron Tomography (ET) data can be acquired and reconstructed relatively quickly
in two to three weeks. However, they concluded that the extraction of spatial and quantitative
information from such data still remains relatively slow.

Perkins et al. [165] also used the IMOD software package for segmentation of mitochondria.
In their work, the authors concluded that this step is rate-limiting in ET throughput, where usually
more than 100 slices are present in the reconstruction and often more than 30 objects are segmented.
The existing semi-automatic solutions are primarily data-driven and therefore constrained by the
tissue type examined and the morphology of mitochondria or other cellular structures. For example,
the authors in [85] addressed the detection and segmentation of mitochondria in human skeletal
muscles. Mitochondria in these cells are known to have spherical or elliptical shape and uniform
texture. In this study the mitochondrial delineation is automated but still requires the selection of
an initial seed point inside the organelle.

The main hypothesis employed in the development of computer vision solutions for mitochon-
dria segmentation is based on the observation that these sub-cellular organelles are defined by
closed structures with distinct inner textures. Thus, two main directions of research emerged that
attempted to exploit specific knowledge in relation to the morphology and structural characteristics
of mitochondria [50]. In this regard, a good example of this approach is represented by the work
of Narasimha et al. [153] where they propose a texton-based algorithm for mitochondria detection
which involves the joint classification using k-Nearest Neighbor, Support Vector Machines and
adaptive boosting (AdaBoost). This approach has been applied to the segmentation of mitochon-
dria in MNT-1 cells and the authors conclude that their method performed similar and in some
situations better than semi-automatic techniques based on level sets.

A similar idea was followed in [216] where the authors employed the standard Gabor filtering

method in conjunction with a Gentle-Boost classifier to detect mitochondria in rat brain tissues.
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The experiments reported indicated relative large misclassifications (false acceptance rate is 25%
and false rejection rate is 20%), and this fact highlights two major disadvantages associated with
the texture-based methods: the complexity of the training process and the fact that these approaches
are poorly equipped to adapt to changes in the cristae structures that are induced by cellular and
mitochondria membrane events [87].

To counteract the limitations associated with structure-based segmentation methods when ap-
plied to mitochondria segmentation, alternative approaches based on active contours [151, 79] and
graph partitioning [133, 132, 205] have been proposed. Active contours methods in particular
proved successful when deployed in the implementation of semi-supervised segmentation algo-
rithms, but they have shown to be impractical when applied in conventional forms to mitochondria
EM data. This was due to several issues such as difficulty in obtaining accurate contour initializa-
tion, weak gradients caused by low intensity profiles that are often characteristic for mitochondria
membranes, random textures, noise, and more importantly difficulties in deriving statistical models
that describe the modes of variation of the mitochondria shapes.

To mitigate these limitations, Seyedhosseini et al. [184] combined the use of algebraic curves
and texture to identify image patches that resemble mitochondria which are later ranked by a Ran-
dom Forest classifier. They have tested their algorithm on mouse neuropil and Drosophila VNC
(ventral nerv cord) data and they reported promising results. In an effort to redress the problems
associated with traditional level sets implementations when used for segmentation of sub-cellular
structures, Nguyen and Ji [156] initially embedded the watershed segmentation into an energy
minimization framework (watersnake) and then they incorporated prior information in the form of
fixed and variable shape terms that constrain the space that is spanned during the contour propaga-
tion process. They quantitatively evaluated their algorithm on rat liver mitochondria data and they
demonstrated that the inclusion of prior shape information proved a key element in achieving accu-
rate segmentation results. In spite of these performance improvements, the use of active contours
for mitochondria segmentation proved problematic due to contour initialization errors and a large
set of parameters that require optimization. Therefore, these approaches were successful when
applied to cellular data where the range of mitochondria shapes varies within a restricted domain.

The restricted domain limitation was recently addressed by the application of graph partition-
ing algorithms to mitochondria segmentation, and the guiding idea was to identify the cycles cor-
responding to mitochondria contours in undirected graphs. This is usually obtained by enforc-
ing shape minimization constraints to an undirected graph where the nodes are defined in more
simplistic cases by pixels, or in more involved approaches by adjacent regions resulting from a
pre-segmentation step. Building on this idea, Lucchi et al. [133, 132] combined a primary seg-
mentation step that involves the calculation of superpixels with a graph cut algorithm where unary
and pairwise potentials of an energy function were employed to incorporate shape cues that are in-
ferred by SVM classification. While graph partitioning techniques are better equipped than active
contour-based methods for the segmentation of sub-cellular structures, they have several practical
issues. The first problem relates to the complexity of the undirected graphs in which closed con-
tours are detected, and the second is the inference of graph searching constraints that accurately
encode a set of rules that allows the identification of mitochondria membranes when dealing with

the noisy and low contrast nature of the EM data.
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Most recently, Ghita et al. [76] extended the framework proposed in this thesis to the grouping of
superpixels. The authors investigated the segmentation of closed contours in subcellular data using
a framework that also combined model-based spectral clustering (via the Affinity Factorization
algorithm proposed by Perona and Freeman [166]) with a graph partitioning contour searching
approach. One salient problem that precluded the application of spectral clustering methods to
large scale segmentation problems is the onerous computational complexity required to generate
comprehensive representations that include all pairwise relationships between all pixels in the input
data. The authors suggest that in order to compensate for this problem, one has to reduce the
complexity of the input data. This has been done by applying an oversegmentation technique
prior to the application of the computationally demanding strands of the segmentation process.
This approach opened the opportunity to build specific shape and intensity models that could be
successfully employed to extract the salient membrane structures in the input image which are
further processed to identify the cycles in an undirected graph. The authors applied the proposed
framework to the segmentation of mitochondria membranes in electron microscopy data which are
characterized by low contrast and low signal to noise ratio.

As can be seen from this review, most modern molecular segmentation tools at least partly use
methods unified by the machine learning field. Some examples given above include classification
with Support Vector Machines, Random Forest, AdaBoost and Gentle-Boost by training classifiers
with manually annotated data. These approaches fall into the category of supervised machine
learning tools. Some subcellular segmentation approaches use kernel-PCA, affinity factorization,
graph-based spectral clustering and dimensionality reduction algorithms which belong to the class
of unsupervised machine learning tools. Thus, below we review in detail the most popular machine

learning algorithms in biomedical image processing and their theoretic foundations.

2.2 Machine Learning for Biomedical Imaging

Machine Learning techniques automatically learn from a set of examples how to classify new in-
stances of the same type of data. In other words, the goal of machine learning is to make predictions
on data inputs. The capacity to generalize, i.e. the ability to successfully classify unknown data
and possibly infer generic rules or functions, is an important property of these approaches and is

sought to be maximized. Machine learning tools fall mainly into two categories:

Unsupervised machine learning: The underlying structure of the training data, i.e. the desired
output, is unknown and is to be determined by the training algorithm. For example, for a classifi-
cation method this means that the class information is not available and has to be approximated by

grouping the training examples using some distance measure, a technique called clustering.

Supervised machine learning: A training set and the corresponding desired outputs of the
function to learn are available. Thus, during training the algorithm iteratively presents examples
to the system and adapts its parameters according to the distance between the produced and the

desired outputs.
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2.2.1 Supervised Machine Learning

In the literature, many supervised learning algorithms have been applied to the segmentation
tasks such as, for example, [19, 211, 63] and including [4]. Alomari et al. [4] used supervised
learning with a back-propagation neural network and performed segmentation by classification of
histopathology images. Feature reduction was done with PCA. However, their supervised learner
required also training data, which is a tedious and time-consuming step.

On the other hand, unsupervised learning has been also applied to many segmentation prob-
lems. For example, Hall et al. [88] performed a comparison between a neural network and fuzzy
clustering (unsupervised) techniques in segmenting magnetic resonance images of the brain. Liu et
al. [128] improved the spacial spectral clustering technique to a non-local one and used it for im-
age segmentation. They used the kernel k-means algorithm incorporated with the non-local spatial
constraints and applied spectral clustering to their non-local spatial matrix for image segmentation.
The authors then used synthetic and real images for testing and showed a high performance and
reduced noise in their results.

In the application to digital pathology, Hiary et al. [92] proposed a set of clinically motivated
features representing color, intensity, texture and location to segment and localize the tissue from
the whole slide images using purely unsupervised learning with k-means clustering. The authors
reported 96% localization accuracy on a large dataset. Furthermore, they concluded that because
their method utilized unsupervised learning which does not require training, there was no need
to fine-tune the parameters for each lab setting. Moreover, their method produced highly robust
results comparable to supervised learning.

In regard to the automated subcellular segmentation, Narasimha et al. [153] proposed a ma-
chine learning tool for automatic texton-based joint classification and segmentation of mitochon-
dria in microscopic images. Their approach is based on block-wise classification of images into a
trained list of regions. Given manually labeled images, the goal is to learn models that can localize
novel instances of the regions in test datasets. Classification was performed by k-Nearest Neigh-
bor classifier, Support Vector Machines, adaptive boosting with AdaBoost and histogram matching
using a Nearest Neighbor classifier. As with all texture-based machine learning algorithms, this
method requires a considerable number of images for testing and training.

A different texture-based approach was reported by Vitaladevuni et al. [216]. Here authors
considered the detection of mitochondria in TEM images of brain tissue and evaluated their method
on the rat neurophil cell type. In particular, the authors applied the Gentle-Boost classifier which
computes a mitochondria confidence map for each image plane. On the other hand, Nguyen et
al. [156] proposed an energy-driven watershed method for the automatic segmentation of bacterial
walls and mitochondrial boundaries.

Most relevant work to the approach developed in this work is outlined in [103] and combines
spectral clustering (Normalized Cuts algorithm as in [190]), perceptual grouping and supervised
machine learning to provide an automated segmentation solution to the extraction of membranes
in neuroanatomy setting. In particular, the probability output of a Random Forest classifier is used

in a regular cost function, which enforces gap completion via perceptual grouping constraints.

16



2.2. Machine Learning for Biomedical Imaging

Figure 2.2.1: The Perceptron as a mathematical model of a neuron by McCulloch and Pitt [144].
The inputs x; (dendrites) are multiplied by the weights w;, and the neurons sum their values. If this
sum is greater than the threshold 6 then the neuron fires along the axons output; otherwise it does
not. Image source: adapted from [144]

2.2.2 Neural Networks

Artificial neural networks, (or neural networks for short), denote a machine learning technique that
has been inspired by the human brain and its capacity to perform complex tasks by means of inter-
connected neurons performing each a very simple operation. Likewise, an artificial neural network
is a trainable structure consisting of a set of inter-connected units, each implementing a very simple
function, and together eventually performing a complex classification function or approximation
task.

2.2.2.1 Perceptron

In biological terms, a neuron is a cell that can transmit and process chemical or electrical signals.
The neuron is connected to other neurons to create a network. In graph theory this is equivalent to
a graph with nodes and edges. Within humans, there are a huge number of neurons interconnected
with each other - tens of billions of interconnected structures. Every neuron has an input (called a
dendrite), a cell body, and an output (called the axon). Outputs connect to inputs of other neurons
and the network grows. Biologically, neurons can have 10, 000 different inputs, but their complex-
ity is much greater than their artificial analogues. Neurons are activated when the electrochemical
signal is sent through the axon. The cell body determines the weight of the signal, and, if a thresh-
old is passed, the firing of a pulse of fixed strength and duration continues through as output along
the axon [18]. The axons divide (arborise) into connections to many other neurons, connecting to
each of these neurons in a synapse [140]. Each neuron is connected to thousands of other neurons,
so that it is estimated that there are about 100 trillion (= 10'#) synapses within the brain.

The best known mathematical model of a biological neural unit described above is called the
Perceptron and was introduced by Rosenblatt [173]. Its basic structure is illustrated in Fig. 2.2.1,
which depicts the McCulloch and Pitts [144] neuronal model [140] which contains:

1. a set of weighted inputs w; that correspond to the synapses

2. an adder that sums the input signals (equivalent to the membrane of the cell that collects

electrical charge)

3. an activation function (initially a threshold function) that decides whether the neuron fires

(’spikes’) for the current inputs
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Generally this model has m inputs and one output where the output is a simple function of the sum

of the input signals x weighted by w and an additional bias b:

y=gx-w+b)=gh+b), (2.1
where
m
h= Z Wix;, (2.2)
i=1

Often, the bias b is put inside the weight vector w such that wg = b and the input vector X is

extended correspondingly to have xo = 1. Equation 2.1 then becomes:

y=g(x-w) (2.3)

where the activation function g is given as the Heavyside step function:

g:R>R, g(x)Z{ Loifxz0; 2.4)
0, otherwise.
The Perceptron thus implements a very simple two-class classifier where w is the separating hyper-
plane such that w - x >= 0 for examples from one class and w - x < 0 for examples from the other.
In the neuronal model as in Fig.2.2.1 the weights were labeled as w;, with the i index running over
the number of inputs. Here, we also need to work out which neuron the weight feeds into, so we
label them as w;;, where the j index runs over the number of neurons.

The Perceptron Learning Algorithm has two major parts: a training phase and a recall phase.
The training phase uses the recall equation (2.7), since it has to work out the activations of the
neurons before the error can be calculated and the weights trained [140]. Given that y; is the output
and ¢; is a target neuron, the simple error function can be written as (y; — ;). The learning rate
parameter 77 in (2.6) decides how fast the network learns. The Perceptron Learning Algorithm is

summarized in Table 2.2.1.

Table 2.2.1: Perceptron Learning Algorithm

I Set all the weights w;; to small (positive and negative) random numbers

2 For T iterations or until all the outputs are correct and for each input vector x;,
compute the activation of each neuron j using activation function g using (2.5)
Update each of the weights individually using (2.6)

4 Compute the activation of each neuron j using (2.7)

W

- 1, ifzmowijxi>0
= Wijx;) = = 2.5
yj=g( ;:O ijXi) { 0, if X, wyti <0 (2.5)
wij — wij—n(y; — 1) - X (2.6)
2 1, if WijXi >0
= Wijxi) = 2.7
yj=8( ;:0 1j%i) { 0, i wips <0 (2.7)
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Figure 2.2.2: Example of two different Multi Layer Perceptron architectures. Both shown MLPs
are fully connected feed-forward networks. The left architecture has the topology (4-3-2). Input
nodes are shown in blue, the three nodes of the single hidden layer are shown in orange and the
nodes in the output layer are shown in green. An example of a deep MLP is shown in the right
image. This network has three hidden layers and has the topology (3-4-4-4-2). The MLP is also

the key element of a CNN (Convolutional Neural Network). Image sources: adapted from [214].
Diagrams are best viewed in color.

In 1962, Rosenblatt introduced the perceptron convergence theorem [174], a supervised training
algorithm capable of learning arbitrary two-class classification problems. However, Minsky and
Papert [145] pointed out that there are very simple classification problems where the perceptron
fails. This is a case in the XOR-problem, where the pattern (0, 0) and (1, 1) belong to one class
and (0, 1) and (1, 0) to the other. These two classes are not linearly separable. This fact has
motivated the use of several interconnected perceptrons which are able to form more complex
decision boundaries by combining several hyperplanes. The most common type of such neural

networks is the Multi Layer Perceptron.

2.2.2.2 Multi Layer Perceptron

A single biological neuron and its mathematical Perceptron model are very simple structures. Only
a network of neurons in the brain can perform complicated operations. Therefore, the structure of
a neural network is a very crucial matter. Multi Layer Perceptrons are capable of approximating
arbitrarily complex decision functions. With the advent of a practicable training algorithm in the
1980’s, the so-called Backpropagation algorithm [177], they became the most widely used form of
neural networks. Fig. 2.2.3 provides an example of two distinct architectures of a MLP.

In the MLP architecture there is an input layer, one or more hidden layer(s) and an output layer
of neurons, where each neuron except the input neurons implements a perceptron as described
in the previous section. Moreover, the neurons of one layer are only connected to the following
layer. This type of network is called feed-forward network, where the activation of the neurons is
propagated layer-wise from the input to the output layer. If there is a connection from each neuron
to every neuron in the following layer, as in Fig. 2.2.3, the network is called fully-connected.
Further, the neurons’ activation function has to be differentiable in order to adjust the weights by

the Backpropagation algorithm. Commonly used activation functions are for example:

g(x) = x, linear (2.8)

1
8(x) = 17— (¢ > 0), sigmoid 2.9)
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—X

glx) = hyperbolic tangent (2.10)

1+ex’
The MLP is one of the most common neural networks in use. This is due to the fact that the Percep-
tron algorithm can only solve linearly-separable problems. The majority of real-world problems,
however, are non-linear [140]. The MLP learning algorithm consists of two parts. The first part
calculates the outputs for the given inputs and the current weights. The objective of learning is
to minimize the error and the learning in the neural network happens in the weights. Therefore,
the second part updates the weights according to the error, which is a function of the difference
between the outputs and the targets. This process is called the back-propagation of error through
the network. This means that errors are sent backwards through the neural network.

In the Perceptron model the weights are changed in such a way that the neurons fired when the
targets said they should and did not fire when the targets said they should not. For that purpose we
define an error function for each neuron k : E; = y; — t;, and try to make it as small as possible. In

order to quantify the error we can use the sum-of-squares error function such as:

1 N
EY) =5 > k=)’ @.11)
k=1

The gradient of E(t,y) is obtained by differentiation. The gradient descent concept implies that
the error goes downhill until it reaches a local minimum. The weights of the network are trained
in order to achieve the minimization of the error. The complete mathematical description of the
MLP algorithm is provided in [140] and consists of initialization, training (forwards and backwards

phases) and recall components. Table 2.2.2 includes a short summary of the major operations.

Table 2.2.2: Multi Layer Perceptron Learning Algorithm

1 Aninput vector is put into the input nodes
2 The inputs are fed forward through the network
2.1 The inputs and the first-layer weights are used to decide whether the hidden
nodes fire or not. One can use the sigmoid function (2.9) which is differentiable
2.2 The outputs of these neurons and the second layer weights are used to decide if
the output neurons fire or not
3 The error is computed according to (2.11) as the sum-of-squares difference between
the network outputs y and the targets ¢
4 This error is fed backwards through the network in order to:
4.1 First update the second layer weights
4.2 Afterwards update the first layer weights

In order to use the MLP to solve real world problems, a few issues have to addressed. First,
Marsland in [140] explains the criteria needed to terminate the training process. The technique is
called early stopping. Generally, the training process should continue until a local minimum has
been found. At the same time, keeping on training too long leads to overfitting of the network. In
order to overcome this issue it is advised to use the validation set to estimate how well the network
is generalizing. The recipe is to carry on training for a few iterations and then repeat the whole
process. At some stage the error on the validation set starts increasing again, because the network
has stopped learning about the function that generated the data, and started to learn about the noise

that is in the data itself. This is the stage where to stop training.
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Secondly, how much training data is needed depends on the problem. One rule is to use a number of
training examples that is at least 10 times the number of weights. This can be a very large number
of examples leading to the neural network training being a computationally expensive operation
because it is necessary to show the network all of these inputs lots of times. Thirdly, the number of
hidden nodes and the number of hidden layers is important. Marsland in [140] explained that two
hidden layers is the most needed for normal MLP learning as it is possible to show mathematically
that one hidden layer with lots of hidden nodes is sufficient. As to the choice of the number of
hidden nodes, there is no clear advice. Here it is possible to train several networks with different
number of hidden nodes and choose the one that gives the best results.

Neural networks were extensively studied in the 1980s and early 1990s, but with mixed em-
pirical success. In recent years, a combination of algorithmic advancements, as well as increasing
power and data size, has led to a breakthrough in the effectiveness of neural networks. In par-
ticular, deep NNs (i.e., networks of more than two layers) have shown very impressive practical

performance on a variety of domains as has been noted by Shalev-Shwartz and Ben-David [186].

2.2.2.3 Convolutional Neural Networks and Deep Learning

The origin of the applications of deep learning to object recognition and image segmentation tasks
can be traced to the Convolutional Neural Networks in the early 1990s. However, the success of the
early CNNs was limited due to the size of the available training sets and the size of the networks
considered [172]. CNN-based architectures have captured intense interest in computer vision since
October 2012 after the ImageNet competition results were released. The winning CNN architecture
proposed by Krizhevsky et al. [112] consists of a large network with 8 layers, 650, 000 neurons and
60 millions of parameters trained on the ImageNet dataset with 1.2 million high-resolution training
images. The authors reported a huge recognition accuracy gain over competing approaches by
using GPU-like high-performance computing platforms [46]. Their network takes between five
and six days to train on two GTX 580 3GB GPUs. Since then, even larger and deeper networks
have been developed and trained [172].

Leena and Govindan [121] presented a novel CNN-based segmentation of EM data. The CNN
developed is able to extract features directly from pixel images with minimal preprocessing. The
authors claim that it can even recognize a pattern which has not been presented before, provided
it resembles one of the training patterns. After learning from ground-truth images, the CNN auto-
matically generates an affinity graph from raw microscopy images. This affinity graph can be then
paired with any standard partitioning algorithm, such as Ncut [190] or the Connected Component
algorithm, to achieve segmentation. The F-score of this approach is reported to be 78%.

Generally, CNNs consist of a set of layers, and each layer contains one or more planes. The
input to each unit in a plane is accepted from a small neighborhood in the planes of the previous
layer. The shared weight concept is applicable to each plane, and multiple planes in each layer
detect multiple features. After detecting the features, the image is passed to a subsampling layer
which is used to perform a local averaging of the weights. Shared weights help to reduce the
number of parameters of the network [121]. The first step is to generate an affinity graph. Most

affinity functions used to design the edge weights depend on local image features such as intensity,
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—— /
Figure 2.2.3: Example of a deep CNN architecture which comprises eight layers in total. The input
layer is followed by a kernel layer (red circle). Three convolution (or pool) layers are shown in

red. It can be seen that the first five layers are locally connected. The last three layers are fully
connected. Image source: adapted from [214]. This diagram is best viewed in color.

spatial derivatives, texture or color. The CNN is then trained on the raw input image and the
ground truth segmentation generated by human experts. The authors observe that supervised graph
methods outperform their unsupervised peers in various classification tasks. Supervised graphs
are typically constructed by allowing two nodes to be adjacent only if they are of the same class.
However, the performance of a graph-based algorithm can be diminished by poor choices of affinity
function. Nowlan and Platt [160] have introduced a novel CNN to track a hand in a sequence of
video frames. This gesture recognition system is able to classify whether the hand is closed or open
in 99.1 % of the test frames. This system can detect a hand in 99.7 % of the test frames. Garcia
and Delakis [74] have successfully used Convolutional Neural Networks on face detection and
reported a perfect recognition rate. The system developed can detect highly variable face patterns,
even with rotated images. Lawrence et al. [119] proposed a novel CNN topology by using a 1D
Haar wavelet in the first layer. The convolutional face features for the MLP classifier is then used to
recognize the face. In another work, the translation invariance feature of CNN was used by Waibel
et al. [218] to recognize the dynamic structure of phonemes. LeCun et al. [120] showed that the
CNN outperforms all other techniques as it can recognize the variability in characters, and they
proposed a perfect hand-written character recognizer based on CNNs. There are many more CNN
architectures proposed for various applications. The dissertation by Saidane [178] gives a good
review of CNN architectures for the years before 2011. A recent review is given by Ronnenberber
et al. [172] who won the ISBI cell tracking challenge in 2015. The authors developed a modified
CNN and a new training strategy for biomedical image segmentation so that it can work with very
few training images. They showed impressive results on the segmentation of neuronal structures
in EM stacks as well as cell segmentation in light microscopy images. With very few annotated
images such a CNN has a very "reasonable" training time of only 10 hours on a NVidia Titan GPU
(6 GB) platform.

2.2.2.4 Neocognitron

In the neocognitron model proposed by Fukushima in [72], a network acquires a structure similar

to the hierarchy model of the mammal’s visual nervous system proposed by Hubel and Wiesel [95].
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Figure 2.2.4: Input-output characteristics of an S-cell: an example of the cells used in the neocog-
nitron model which has been developed by Fukushima in [73]. Image source: adapted from [73]

According to the hierarchy model of the cat’s visual cortex, the neural network in the visual cortex

has the following hierarchy structure :

LGB (lateral geniculate body) — simple cells — complex cells — lower order hypercomplex cells

— higher order hypercomplex cells.

The neural network between lower order hypercomplex cells and higher order hypercomplex cells
has a structure similar to the network between simple cells and complex cells. A cell in a higher
stage has a tendency to respond selectively to a more complicated feature of the stimulus pattern.
The neocognitron-based network, as proposed by Fukushima in [72], consists therefore of lay-
ers of simple cells corresponding to feature extracting cells called S-cells, and layers of complex
cells corresponding to recognition cells called C-cells. The layout of an S-cell can be seen in
Fig. 2.2.4. These layers of S- and C-cells are arranged alternately in a hierarchical manner into
a network. Furthermore, S-cells or C-cells in a layer are sorted into subgroups according to the
optimum stimulus features of their receptive fields. Fukushima uses the terminology of S-plane
and C-plane representing cell-planes consisting of S-cells and C-cells, respectively. The network
in [72] has forward and backward connections between cells as explained in [178]. In this hier-
archy, the forward signals manage the function of pattern recognition, while the backward signals
manage the function of selective attention, pattern segmentation, and associative recall. Some of
the connections between cells are variable, and the network can acquire the ability to recognize
patterns by unsupervised learning. A model of an S-cell is provided in Fig. 2.2.4. Besides the input
from the receptive field, called the excitatory input e, there is also an inhibitory input 4 which has
a negative effect on the activation of the neuron [60]. If & is greater than e, the output of the neuron

is zero. The excitatory input is calculated as follows:

N
e = Z a(i)u(i) 2.12)
i=1

where a(i) are the training weights, u(i) denote the inputs from the preceding cells, and N is the
number of weights. The S-cell receives variable excitatory connections from a group of C-cells of
the preceding layer. The cell also receives a variable inhibitory connection from an inhibitory cell,
called a V-cell. The V-cell receives fixed excitatory connections from the same group of C-cells as

does the S-cell, and always responds with the average intensity of the output of the C-cells.

23



2.2. Machine Learning for Biomedical Imaging

The inhibitory input /% is calculated as follows:
h=bv (2.13)

where b is a trainable weight. In the neocognitron, the input v is calculated as the weighted root-
mean-squared values coming from the receptive field and thus represents some kind of normaliza-

tion [60]. The activation of a S-cell is:

Lre 1) (2.14)

us () = ¢(1 +h

where the activation function ¢ is defined as:

x, ifx>0
é(x) = { (2.15)

0, otherwise

Fukushima [73] showed that the outputs of the S-cells approximate a convolution normalized by
the length of the weight vector and the input vector. Several S-planes, each containing a different
set of weights, can be used to extract different features at the same locations. The set of S-planes
at one particular level form a S-layer. The exact position of each feature is not very important
in most cases. Therefore, each S-plane is followed by a C-plane which reduces the resolution of
the respective S-plane by a constant factor, e.g. two and thus performs a kind of sub-sampling or
blurring. The sub-sampling also reduces the sensitivity of the neural network to small shifts and
distortions of the input pattern. By alternating C-layers and S-layers and combining the outputs of
the respective maps, one can construct more complex feature extractors. In the neocognitron the
first S-planes extract simple visual features, such as oriented edges or corners, and the following

layers combine them to extract more complex features, such as combinations of line segments [60].

2.2.2.5 Architecture of the LeNet-5 CNN

In the nineties, LeCun and his colleagues [120] developed a series of convolutional neural net-
works, called LeNet-5. Their network architecture, shown in Fig. 2.2.5, consists of a cascade of
feature detection layers. Instead of having an S-layer followed by a C-layer, the networks have
alternating convolution and sub-sampling layers. Moreover, the model of the individual neurons is
the basic perceptron with the sigmoid activation function, which was not the case in the neocogni-

tron. Similarly to the neocognitron, these CNNs are based on three architectural ideas [178]:

Table 2.2.3: Architectural ideas of the LeNet-5 CNN.

Local receptive fields: | Inspired by the mammalian visual cortex and which
are used to detect elementary visual features in images

Shared weights: Extract the same set of elementary features from the
whole input image and reduce the computational cost

Sub-sampling: Operations which reduce the computational cost and the sensitivity
to affine transformations such as shifts and rotations
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Figure 2.2.5: Architecture of LeNet-5, a Convolutional Neural Network designed by LeCun and
his colleagues for digits recognition application. In this architecture, each plane is a feature map
with a set of units whose weights are constrained to be identical. Image source: [120]

Table 2.2.4: Parameters of the LeNet-5 Convolutional Neural Network.

C1 S2 C3 S4 C5
Feature maps 6 6 16 16 120
Size of feature maps 28x28 14x14 5x5
Neighborhood 5%5 2x2 5%x5 2x2 5x5
Total number of trainable parameters 156 12 32
Total number of connections 122,304 5,880 2000 48,120

An important difference between the Fukushima and the LeCun models concerns the training pro-
cedure. LeCun and his team were the first to apply back-propagation to CNNs [178]. The archi-
tecture of LeNet-5 corresponds to a feed-forward MLP network and comprises seven layers, not
counting the input, all of which contain trainable parameters. Each layer of the first five layers
contains one or more planes where each plane is made up of a 2D lattice of neurons. Each neuron
is locally connected to a set of neurons located within its local receptive field in the planes of the
previous layer. These planes are called feature maps. We summarize the parameters of the LeNet-5
CNN in Table 2.2.4. All the neurons in feature maps of C1 share the same set of 25 tunable weights
constituting a 5 X 5 trainable kernel and a bias. Each convolution map in C1 is followed by a sub-
sampling map which performs averaging and reduces the dimension of the respective convolution
map by a factor of two. The 2 X 2 receptive fields are non-overlapping, therefore feature maps
in S2 have half the number of rows and columns of feature maps in C1. Layers C3 and S4 are
implemented similarly to layers C1 and S2 respectively. The last hidden layer has 84 neurons and
has full connection with C5. In total, the LeNet-5 architecture has 345,308 connections, but due to
the weight-sharing mechanism, there are only 60,000 free parameters [120, 178].

The most notable advance using CNNs was achieved in the 2012 ImageNet LSVRC compe-
tition, in which the task was to train a model with 1.2 million high-resolution images to classify
unseen images to one of the 1000 different image classes. On the test set consisting of 150k
images, the deep CNN developed by Krizhevsky et al. [112] achieved error rates considerably
lower than the previous state of the art. Very large deep CNNs were used, consisting of 60 mil-
lion weights, 650,000 neurons, five convolutional layers together with max-pooling layers and two
fully-connected layers on top of the CNN layers [46].
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Figure 2.2.6: The idea of SVM classifiers. The margin M is the largest region that separates the
two classes without there being data points inside. The separation box is made from two lines that
are parallel to the decision boundary. Image source: adapted from [140].

2.2.3 Support Vector Machines

A Support Vector Machine (SVM) is essentially a technique for classifying objects. Support vector
machines are used in a variety of classification scenarios, such as image recognition and hand-
writing pattern recognition. The SVM is according to Marsland [140] one of the most popular
algorithms in modern machine learning. SVMs were introduced by Boser et al. in 1992 [23] and
modified by Cortes and Vapnik in 1995 [39].

Image classification can be greatly improved with the use of support vector machines. Being
able to classify thousands or millions of images is becoming more and more important with the
use of smartphones and applications like Instagram as noted by Jason Bell [18]. Support vector
machines can also do text classification on normal text or web documents, for instance. Machine
learning with support vector machines takes the concept of a perceptron a little bit further to max-
imize the geometric margin. It is one of the reasons why SVM and artificial neural networks are
frequently compared in function and performance.

The classifier in Fig. 2.2.6 has a large linear margin M. The datapoints in each class that lie
closest to the classification line are called support vectors. The best classifier is the one that goes
through the middle of space between two classes "+’ and 'o’. Therefore the margin should be as
large as possible and the support vectors are the most useful datapoints because they are the ones
that we might get wrong. In order to proceed with a formal description of these ideas we first define
a weight vector w (a vector, not a matrix, since there is only one output) and an input vector x. The
output y that we defined in the Perceptron section in the equation (2.1) isequaltoy = w-x+ b
where the ” - denotes the dot product (also called inner or scalar product) between w and x, and b
is the contribution from the bias weight as defined in the Perceptron model and a threshold in the
Support Vector Machine model. In this section we use the notation for the dot product - (w, x) as
used by Scholkopf [182].

Suppose we are given a dot product space H, and a set of pattern vectors X, ..., X,, € H. We

then define a class of hyperplanes in H by:
{xeH |(w,x)+b =0} (2.16)
where w € H, b € R, corresponding to decision functions

S(x) = sgn(w,x) + D) (2.17)
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In this formulation, w is a vector orthogonal to the hyperplane: if w has unit length, then (w, x) is
the length of x along the direction of w. For general w, this number is scaled by ||w||. In any case,
the set (2.16) consists of vectors that all have the same length along w. In other words, these are
vectors that project onto the same point on the line spanned by w. Among all hyperplanes sepa-
rating the data, there exists a unique optimal hyperplane with the maximum margin of separation
between any training point and the hyperplane. It is the solution of the optimization problem:

max min{||x — x| | xe H,(w,x)+b=0,i=1,...,m} (2.18)
weH beR

An example illustrated in Fig. 2.2.7 shows how the linear classification works. Any x value that
gives a positive value for (w, X)+b is above the line, and so is an example of the "+" class, while any
x that gives a negative value is in the "0" class. In order to include the margin M into computation,
instead of just looking at whether the value of (w,X) + b is positive or negative, we also check
whether the absolute value is less than the margin M, which would put it inside the grey box in

Fig. 2.2.6. According to Scholkopf [182], for a given hyperplane {x € H|{w,x) + b = 0}, we call:
Mw.p)(X, 1) := t((W,X) + b)/||w]| (2.19)
the geometrical margin of the point (x,#) € H x {+1}. For a given margin value M (see Fig. 2.2.6):
e any point X where (w,X) + b > M belongs to the "+" class,
e any point X where (w,X) + b < —M belongs to the "0" class,
e the separating hyperplane is specified by (w,x) + b = 0 (see also Fig. 2.2.7),

e a support vector is for example a point x* that lies on the "+" class boundary line, so that
(w,xt)y = M.

The pair (w,b) € H X R is called a canonical form of the hyperplane (2.16) with respect to
X1, ..., X € H if it scaled such that:

~nllax Kw,x;) + bl =1 (2.20)
= U

i=1,..., m

which amounts to saying that the point closest to the hyperplane has a distance of 1/||w||. Note that
the condition (2.20) allows two such pairs: given a canonical hyperplane (w, b), another one sat-
isfying (2.20) is given by (—w, —b). For the purpose of pattern recognition, these two hyperplanes

are different as they are oriented differently and thus they correspond to two decision functions:
Sfwp : H — {£1} X b fwp(X) = sgn({w,X) + b) 2.21)

which are inverse of each other. In the absence of class labels y; € {1} associated with the x;,
there is no way of distinguishing the two hyperplanes. For a labeled dataset, a distinction exists:
the two hyperplanes make opposite class assignments. In pattern recognition, we attempt to find
a solution fy , which correctly classifies the labeled examples (x;,y;) € H X {+1}; in other words,

which satisfies fy 5(X;) = y; for all i. In this case the training set is said to be separable [182].
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Figure 2.2.7: (a) The optimal hyperplane is the one bisecting the shortest connection between the
convex hulls C; and C, of the two classes. (b) An example of a neural network which can perform
kernel-SVM by non-linearly mapping input vectors to a very high-dimensional space where the
linear decision boundary can be constructed. Image sources: adapted from [182] and [214].

2.2.3.1 Kernel-SVM

The SVM algorithm computes the optimal margin hyperplane and the support vectors x; which
lie directly on the margin. The related optimization problem and its solutions are provided in
[140, 146, 186]. However, the SVM algorithm has a major drawback in that it assumes the linear
separability of the underlying dataset. To allow for much more general decision surfaces, we can
use kernels to nonlinearly transform the input data xp, ..., x, € X into a high-dimensional feature
space using a map @ : x; — ¢(x;) and then perform a linear separation there. According to
Scholkopf [182], such a kernel mapping increases the chances of a separation because using a
kernel means using a larger function class. Therefore, this increases the capacity of the learning
machine and finds a linear decision boundary that separates the classes in the feature space.

We first introduce new functions ¢(x) of some input features. Then, in order to use the SVM

algorithm for the prediction of the new test point z, we replace x; by ¢(x;) and z by ¢(z) such that:
n T
wliz+b= (Z /liti¢(x,-)) #(z) + b (2.22)
i=1

where A; are Langrange multipliers, X; are the support vectors for which A; > 0 and #; are the known
targets. Further, given a function &k : X 2 5 Kand xq, ..., x, € X, the n x n matrix K with elements:

Kij := k(xi, x;) (2.23)

is called the kernel (or Gram) matrix of k£ with respect to x, ..., x,. Thus, K is made from the dot
product of the original vectors. The evaluation of the decision function f(x) requires computation

of dot products (®(x), P(x;)) in a high-dimensional space using a positive definite kernel k:
(D(x), D(x;)) = k(x, x;) (2.24)

With k(x, x;) we obtain decision functions of the form:

Jx) = sgn( Z tidik(x, xi) + b) (2.25)
i=1
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Any symmetric function that is positive definite can be used as a kernel. In the literature, such ker-
nels are frequently called PDS (Positive Definite Symmetric) kernels [146]. Note that a symmetric
matrix is positive definite if and only if all its eigenvalues are nonnegative. It is also possible to

convolve kernels together to obtain another kernel. The most widely used kernels are:

e Polynomial classifiers of degree v:
k(x, x;) = (x, x;)" or k(x, x;) = (1 + {x, x;))” (2.26)

with y = 1 for a linear kernel

e Radial Basis Function classifier with Gaussian kernel of width ¢ > 0 (¢ = 202):

k(x, x7) = exp(=llx = xill*/c) 227)
e Neural Networks with tanh activation function:

k(x, x;) = tanh(x{x, x;) + 0) (2.28)

where the parameters k > 0 and § € R are the gain and horizontal shift respectively [182]. This
kernel is also called the sigmoid kernel. Using sigmoid kernels with SVMs leads to an algorithm
that is closely related to learning algorithms based on simple neural networks which are also often
defined via a sigmoid function [146]. In most application cases, the best kernel and its parameters
are found by experimenting with different values using a validation set.

The commonly used polynomial or Gaussian kernels are all PDS kernels over vector spaces.
In many learning tasks found in practice, the input space X is not a vector space. The examples to
classify in practice could be protein sequences, images, graphs, parse trees, finite automata, or other
discrete structures which may not be directly given as vectors. For these types of problems the class
of sequence kernels have been developed and applied [146]. Another domain of problems includes
multi-class classification, such as OCR (Optical Character Recognition) problem where the class
labels can take more than +1 binary values. Modified SVMs have been successfully applied in
other computer vision tasks, which relate to the OCR problems. Examples include object and face

detection and recognition and image retrieval [182].

2.2.4 AdaBoost

The AdaBoost algorithm is conceptually very simple. It is an algorithm that sequentially selects
weak classifiers from a candidate pool and weights each of them based on their error. Each iteration
of AdaBoost assigns an importance weight to each example. Examples with a higher weight,
classified incorrectly on previous iterations, will receive more attention on subsequent iterations,
tuning the weak learners to difficult examples. Testing examples with AdaBoost is therefore simply
a weighted vote of the weak learners. Therefore, AdaBoost can be seen as a general method for
improving accuracy of any given learning algorithm. Also, AdaBoost can produce very complex

non-linear decision boundaries (closed contour) by combining several weak classifiers [140].
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In the context of biomedical imaging, AdaBoost has been used in [193, 153] for cells, in [193,
153, 125] for mitochondria and in [14, 154] for synapses segmentation. There is a reason why
these authors preferred using AdaBoost rather than SVMs. As we have seen above, SVMs seek
a hypersurface in the space of all features that both minimizes the error of training examples and
maximizes the margin, defined as the distance between the hypersurface and the closest value in
feature space. Kernel-SVMs can use any type of hypersurfaces by making use of the kernel trick.
SVMs are also quicker to train and evaluate than AdaBoost [148]. On the other hand, AdaBoost
can select informative features from a potentially very large feature pool. This is based on the fact
that AdaBoost belongs to the class of ensemble learning algorithms which make use of several
weak classifiers. A weak learner is any statistical classifier that does not perform perfectly when
used on its own, but still performs better than pure chance. The idea is that by putting the weak
learners together it is possible to make an ensemble learner that can perform arbitrarily well.

Cascaded AdaBoost classifiers have been applied, for example by Smith et al. [193] for mi-
tochondria segmentation. The authors praised the efficiency of AdaBoost in detecting objects in
images. Smith and his team used their proposed Ray features to define a weak learner and to train a
boosted classifier. Furthermore, AdaBoost was used to reject some negative samples while passing
on positive samples to the next more discriminative stage.

Gentle-Boost is one of the many extensions to AdaBoost developed. Gentle-Boost allows us to
increase performance of a classifier and to reduce computation in comparison to AdaBoost. Vita-
ladevuni et al. [216], for example, used Gentle-Boost in their approach to detecting mitochondria in
EM images. The authors concluded that Gentle-Boost was well suited for handling large numbers
of potentially irrelevant and redundant features. The classifier computed a mitochondria confidence

map for each image plane. Pixels with high values were likely to belong to mitochondria.

2.2.5 Random Forest

Random Forest is another popular supervised classification technique which is frequently used for
biomedical image segmentation [103, 111, 184, 203, 229]. Also, the Random Forest classifier is
frequently used with superpixels [111, 203, 229] which reduce the complexity of the input data.

Random Forest, similar to AdaBoost, belongs to the class of ensemble learners. The core idea
is that if one tree is good, then many trees should be better, provided that there is enough variety
between them. The most prominent fact about the Random Forest is how it creates randomness
from a standard dataset. In order to create a forest, the trees can be made different by training them
on slightly different data. An additional way to add more randomness is to limit the choices that the
decision tree can make. At each node, a random subset of the features is given to the tree and it can
only pick from that subset rather than from the whole set. As well as increasing the randomness in
the training of each tree, this approach also speeds up the training [140].

There is a conceptual algorithmic difference between AdaBoost and Random Forest. Classifi-
cation with AdaBoost is expensive because this algorithm searches over the whole set of features at
each stage, where each stage depends on the previous one. Therefore, boosting has to run sequen-
tially, and the individual steps can be expensive. In contrast, the parallelism of the Random Forest

and the fact that it only searches over a fairly small set of features at each stage, speed the algorithm
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up a lot. This is the reason that Random Forest can deal very well with very large datasets.

For the cell detection and segmentation tasks, Zhang et al. [229] firstly computed a cell bound-
ary probability map from a trained edge Random Forest classifier. Furthermore, they constructed
superpixels and built a weighted superpixel adjacency graph. Segmentation is then generated from
partitioning this graph using their proposed correlation clustering procedure which belongs to a
spectral clustering class of algorithms. Seyedhosseini et al. [184] developed a mitochondria seg-
mentation approach which started with the extraction of overlapping patches with different sizes
for a given image. Next, polynomials of different degrees were fitted to each patch and the shape
and textural features were computed for each patch. These features were then passed to the Ran-
dom Forest classifier. If a patch was classified as positive by the Random Forest classifier, all the
connected pixels of the center pixel in that patch were marked as mitochondria in the input image.

In their work on cell segmentation in EM datasets, Tek et al. [203] used the open source tool
ilastik to interactively train a Random Forest classifier. Then the authors performed thresholding
and connected component analysis on the classifier output probabilities. The authors noted that
further improvement in classification performance could be achieved by using more training data
for the final stage classifier. Another avenue for improvement could be to enhance nuclear staining
through the use of nuclear specific heavy metal stains. Kaynig and her colleagues [103] used the
probabilistic output of the Random forest classifier trained on annotated data for membrane detec-
tion. The authors incorporated this output into an energy cost function that was further minimized

in the Graph Cut framework.

2.2.6 Unsupervised Machine Learning

The goal of supervised learning is to learn the classifier which predicts the labels of future examples
as accurately as possible. Furthermore, a supervised learner can estimate the success, or the risk, of
its hypotheses using the labeled training data by computing the empirical loss. Supervised learning
algorithms aim to minimize some external error criterion, based on the difference between the
targets and the outputs. Calculating and minimizing this error is possible because the target data is
available. This is not the case in unsupervised learning. Targets are useful since they enable us to
show the algorithm the correct answer to possible inputs. However, in many cases they are difficult
to obtain, as in the present case with the manual annotation of mitochondria.

In unsupervised learning there are no targets available. The problem of unsupervised learning
is also related to manifold learning and dimensionality reduction. The objective of this concept is to
recover meaningful low-dimensional structures hidden in high-dimensional data. An example from
the computer vision domain might be a set of pixel images of an individual’s face observed under
different pose and lighting conditions. The task here can be to identify the underlying variables
(angle of elevation, direction of light, etc.) given only the high-dimensional pixel image data
[192]. The classical techniques of manifold learning are metric multidimensional scaling, PCA
and its nonlinear extension to kernel-PCA. Many more dimensionality reduction methods exist
which consider linear or non-linear transformations and which are based on different concepts.

Clustering also belongs to the class of unsupervised machine learning methods and is one of

the most widely used techniques for exploratory data analysis. Here, the objective is to organize
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the data in some meaningful way. With clustering, however, there is no clear success evaluation
procedure. Even with the knowledge of the underlying data distribution, it is not clear what is the
correct clustering for that data or how to evaluate a proposed clustering [186]. A given set of objects
can be clustered in various meaningful ways. This may be due to having different definitions of
distance or similarity between objects. Generally, there may be several very different clustering
solutions for a given dataset. As a result, there is a wide variety of clustering algorithms that, on

the same input data, output very different results.

2.2.6.1 Clustering and Grouping

The hierarchical or linkage-based clustering algorithms proceed in a sequence of iterations as can
be seen in Fig. 2.2.8. First, they start from the clustering that has each data point as a single-
point cluster. Then, repeatedly, the algorithm merges the closest clusters of the previous clustering.
Consequently, the number of clusters decreases with each such iteration. If kept going, such an
algorithm would eventually result in the clustering in which all of the domain points share one
large cluster. These types of algorithms require two parameters. The first considers the decision on
how to measure or define the distance between clusters. The second parameter is needed to decide
on when to stop merging the clusters. The input to a clustering algorithm is a between-points
distance function d. The most common ways of extending d to a measure of distance between

clusters D(A, B) are single (2.29), average (2.30) and max (2.31) linkage distances:

D(A, B) = min{d(x,y) : x € A,y € B} (2.29)
1

D(A,B) = —— d(x, 2.30

(A.B) = o %B (x,y) (2.30)

D(A, B) = max{d(x,y): x € A,y € B} (2.31)

A single linkage algorithm operates directly on a proximity matrix and is closely related to finding
a minimal spanning tree on a weighted graph problem [186]. In order to obtain the partitioning of

the space using dendrogram one needs to apply stopping criteria shown in Table 2.2.5.

Table 2.2.5: Stopping Criteria for Single Linkage Hierarchical Clustering.

Fixed number of clusters: | Fix some parameter k. Stop merging clusters
as soon as the number of clusters is k

Distance upper bound: Define a threshold r. Stop merging as soon as all the
between-clusters distances are larger than r. It is also possible
to set r to be @ = max{d(x, y)} for some @ < 1 [186]

SLHC (Single Linkage Hierarchical Clustering) has a property known as chaining. A few points
that form a bridge between two clusters cause the single linkage clustering to unify these two
clusters into one. This can sometimes be a disadvantage in some applications. The advantage
of SLHC is, however, that it maintains good performance on data sets containing non-isotropic

clusters, including well-separated, chain-like and concentric clusters. The main disadvantage of
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Figure 2.2.8: An example of a single linkage hierarchical clustering which uses the set of input
elements X = {a,b,c,d,e} ¢ R? and Euclidean distance as a distance measure in R? (left) and
produces the clustering dendrogram (right). A possible cut-off line (dashed red) is shown on the
right. Image source: adapted from [186]. Diagrams are best viewed in color.

hierarchical methods is the inability to scale well. The time complexity of hierarchical algorithms
is at least O(m?) (where m is the total number of instances), which is non-linear with the number
of objects. Also, hierarchical methods do not have the back-tracking capability.

In contrast to hierarchical clustering, k-means clustering is a partitioning approach of the input
space into mutually exclusive clusters. The k-means approach works with the Euclidean metric
and aims at minimizing the sum-of-squares error from each datapoint to its cluster center. The
algorithm starts by defining a cost function over a parameterized set of possible clusterings. The
goal of the clustering algorithm is to find a partitioning of minimal cost. This is equivalent to
an optimization problem where the objective function is a function from pairs consisting of an
input and a proposed clustering solution. If we denote the objective function by G, the goal of the
clustering algorithm is defined as finding for a given input (X, d) a clustering C so that G((X, d), C)
is minimized [186].

The k-means objective function is one of the most popular clustering objectives. In k-means,
the data are partitioned into disjoint sets Cy, ..., Cy where each C; is represented by a centroid ;.
The k-means objective function measures the squared distance between each point in X to the

centroid of its cluster. The centroid of C; is defined as:

piC) = min 3 dx. )’ (2.32)
peX’
xeC;
Then, the k-means objective can be written as:

k
Gromeans(X, ), (C1,.., COY = min " > d(x ) (2.33)

..... (EX £
e

In practical applications, finding the optimal k-means solution is often computationally infeasi-
ble [186]. An alternative is an iterative implementation which runs until the cluster centers stop
moving [140]. In many cases, the term ’k-means clustering’ refers to the outcome of the itera-
tive algorithm rather than to the clustering that minimizes the k-means objective cost. Using the

Euclidean distance function (2.34), that algorithm is summarized in Table 2.2.6.

di = min d(X,‘,ﬂj) (2-34)
J
1 N;
= . 2.35
Ui N ; X; (2.35)
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Table 2.2.6: The k-means Algorithm

1 Set a value for the number of clusters k, choose k random positions in the input space and
assign the cluster centers u; to these positions

2 For each datapoint x; compute the distance to each cluster center y; and assign
the datapoint to the nearest cluster center with distance according to (2.34)

3 For each cluster center move the position of the center to the mean of the points in that
cluster (N; is the number of points in cluster j) according to (2.35)

4  Repeat until the cluster centers stop moving

5 For each test point compute the distance to each cluster center and assign the datapoint to
the nearest cluster center with distance according to (2.34)

The k-means algorithm has two serious limitations. First the solution depends heavily on the initial
positions of the cluster centers, resulting in poor minima, and second it can only find linearly sep-
arable clusters. In addition, k-means has problems when the data contain outliers and clusters have
different sizes and densities. The authors in [209], for example, proposed a kernelized extension of
the standard k-means algorithm that maps data points from input space to a higher dimensional fea-
ture space through a nonlinear transformation and minimizes the clustering error in feature space.
Thus nonlinearly separated clusters are obtained in input space.

Many more clustering algorithms exist which specifically target the geometry of clusters, such
as convex, non-convex or elongated clusters. Other algorithms consider such difficult problems
as overlapping clusters, different densities and distributions, very large scale clustering and asym-
metric datasets. A comprehensive review on various classical clustering algorithms is provided by
Everitt et al. [64]. Since then, many new clustering concepts and formulations are continuing to
emerge which are being inspired by different application domains. In Section 2.2.7.2 we review

the SOM (Self-Organizing Map) algorithm which can be used to visualize overlapping clusters.

2.2.6.2 Dimensionality Reduction

Recent trends in machine learning see increasing interest in kernel methods, Bayesian reasoning,
causality, information theoretic learning, reinforcement learning and nonnumeric data processing.
In signal processing, Bayesian methods and graphical models are gaining popularity, while kernel
approaches are still less prominent [149]. In machine learning, kernel-based learning has become
a well-established technology within the last two decades. Kernel methods have enriched the spec-
trum of machine learning and statistical methods with a large number of nonlinear algorithms. In
applications where the data have a large number of features, the dimensionality reduction finds a
lower-dimensional representation preserving some of its properties. The key arguments for dimen-
sionality reduction techniques are summarized in Table 2.2.7 [146].

Many linear scalar product-based algorithms can be kernelized with kernel-PCA, given that a
positive definite kernel is used [149]. The so-called empirical kernel map allows processing of data
by projecting it onto the leading kernel-PCA components. Thus, nonlinear variants of algorithms
can be constructed via a nonlinear transformation. Such application areas as neuroscience, compu-
tational biology, natural language processing and physics have motivated the work, and these fields

largely benefited from the novel set of tools. Kernel-based learning also enabled the addressing
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Table 2.2.7: Key Arguments for Dimensionality Reduction.

Computational: Compress the initial data as a preprocessing step to speed-up
subsequent operations on the data. The curse of dimensionality implies
that the higher number of dimensions requires more training data [140]

Visualization: Visualize the data for exploratory analysis
by mapping the input data into two- or
three-dimensional spaces

Feature extraction: | Generate a smaller and more effective or useful set of features

of emerging industrial problems including social networks, text mining, and the general urge to
understand better large and complex data. In computer vision, dimensionality reduction methods
that are based on eigenvectors of the similarity matrix have also demonstrated good performance.
These approaches are attractive because they are based on simple eigendecomposition algorithms
whose stability is well-understood. Nevertheless, the use of eigendecomposition in the context
of image segmentation is far from being a closed research topic [220]. Despite many empirical
successes of spectral clustering methods, there are several unresolved issues. First, there is a wide
variety of algorithms that use the eigenvectors in slightly different ways. Second, many of these
algorithms have no proof that they will actually compute a reasonable clustering [155].

For VLS (Very Large Scale) problems such as pixel classification tasks, the computational cost
of spectral decomposition quickly becomes prohibitive. This is amplified by the fact that in order
to analyze the global saliency relationships, a dense similarity matrix which contains all pairwise
similarity relations between all the pixels in the image, has to be constructed and processed. Spar-
sity in terms of reduced comparison space is often seen as a solution to speed-up computations.
However, this is achieved at the cost of sacrificing global saliency information. An active field
of theoretical research is the sub-sampling and low rank approximations of the similarity matrix.
Some related methods are based on the highest column-wise second norm criterion and some are
using eigenvalue and eigenvector estimation methods. Another topic of interest is concentrated on
the development of parallel and distributed algorithms for spectral decomposition and processing
of VLS similarity matrices. A list of dimensionality reduction algorithms which contains linear,
non-linear, supervised and unsupervised formulations is provided in Table 2.2.8.

All the methods reviewed here are unsupervised except LDA. MDS, PCA and LDA are linear
techniques. PCA is an unsupervised algorithm since it ignores class labels. In contrast to PCA,
LDA is supervised and computes the directions (linear discriminants) that will represent the axes
that maximize the separation between multiple classes. LDA finds the projection with maximum
discrimination and is effective for classification. LDA is computed by solving a generalized eigen-
value problem. LDA is optimal when each class is Gaussian and has the same covariance matrix.

Classical kernel-PCA, Isomap and LLE algorithms can be applied to non-linear manifolds.
Isomap generalizes MDS to non-linear manifolds, because it is based on replacing the Euclidean
distance by an approximation of the geodesic distance on the manifold. LLE eliminates the need to

estimate pairwise distances between widely separated data points. LLE recovers global non-linear
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Table 2.2.8: Dimensionality Reduction Algorithms.

Algorithms linear non-linear | Neural Networks ‘ spectral
MDS (Metric Multidimensional Scaling) =~ +/ v
PCA (Principal Component Analysis) 2V, v
FA (Factor Analysis) v v
ICA (Independent Component Analysis) v Neural-ICA

LDA (Linear Discriminant Analysis) v v
kernel-PCA v Neural-PCA v
Non-linear FA v MLP

LLE (Locally Linear Embedding) v MLP v
Isomap v v

structure from local linear fits. A parametric mapping between the observation and embedding
spaces could be learned by supervised neural networks whose target values are separable by LLE.

Factor analysis is based on probabilistic modeling that is defined in terms of uncorrelated fac-
tors or latent variables. In contrast to PCA, there are no orthogonality constraints for the factors.
The non-linear extension to FA can be implemented by the standard MLP network. The learn-
ing procedure is completely unsupervised because in non-linear FA only the outputs of the MLP
network are known. More discussion on unsupervised neural networks is provided in Section 2.2.7.

Dimensionality reduction carried out either by PCA or kernel-PCA seeks to construct a fea-
ture space and to extract the significant orthogonal and uncorrelated principal components using
the notion of the largest variance. Therefore, these methods are based on the assumption that the
significant information is related to the eigenvectors which capture the highest variability in the
data. The result of PCA and kernel-PCA is a set of orthogonal eigenvectors and a diagonal ma-
trix containing eigenvalues ordered according to decreasing variance. PCA and metric MDS are
simple spectral methods for linear dimensionality reduction. PCA is based on computing the low-
dimensional representation of a high-dimensional dataset that preserves its covariance structure up
to rotation. In PCA, the input patterns x; € R? are projected into the m-dimensional subspace that

minimizes the reconstruction error,

m
€= Z X — Z(xi eg)eqy
i a=1

where the vectors {e,}’_, define a partial orthonormal basis of the input space. It follows from

2
(2.36)

(2.36) that the subspace with minimum € is also the subspace with maximum variance. The basis
vectors of this subspace are given by the leading m eigenvectors of the covariance matrix,
1
C=- Z xixiT (2.37)

n -
i

assuming that the input patterns x; are centered at the origin. The outputs of PCA, denoted by ¢;,
are the coordinates of the input patterns in this subspace, using the directions specified by these
eigenvectors as the principle axes. Identifying e, as the o top eigenvector of the covariance
matric, the output ¢; € R” for the input pattern x; € R has elements ¢;, = x; - ¢,. The eigenvalues

of the covariance matrix in (2.37) measure the projected variance of the high-dimensional dataset
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along the principal axes. Thus, the number of significant eigenvalues measures the dimensionality
of the subspace that contains most of the data’s variance. A large gap in the eigenvalue spectrum

indicates that the data are mainly confined to a lower dimensional subspace.

2.2.6.3 Metric MDS

Metric MDS (MultiDimensional Scaling) is based on computing the low-dimensional representa-
tion of a high-dimensional dataset that preserves the inner products between different input pat-
terns. Suppose we are given n objects, and for each pair (i, j) we have a measurement of the dis-
similarity A;; between the two objects. In MDS the aim is to place n points in a low-dimensional
space (usually Euclidean) so that the dissimilarities are well-approximated by the interpoint dis-
tances d;;. Let the coordinates of n points in p dimensions be denoted by x;,i = 1,...,n, then
d?j = (x; — Xj) " (X; — X;). In metric MDS the relationship is of the form d;; ~ f(A;;) where f is a
specific analytic function, and for example polynomial transformations have been suggested [223].

The outputs ¢; € R™ of metric MDS are chosen to minimize the error function:

2
G:Z(x,--xj—@-@) (238)
ij
The minimum error solution is obtained from the spectral decomposition of the Gram matrix G of
inner products, G;; = x; - x;. Denoting the top m eigenvectors of this Gram matrix by {v,}"’_, and

their respective eigenvalues by {1,}_,, the outputs of MDS are given by ¢;, = VAgVai.

MDS is motivated by the idea of preserving pairwise distances and is designed to preserve inner
products. Let A : A;; = |lx; — x j||2 denote the matrix of squared pairwise distances (dissimilarities)
between input patterns. MDS is often specified in this form. Assuming that the inputs are centered

on the origin, a Gram matrix consistent with these squared distances is:
G=-5d-—pp AT - -pp’) (2.39)
n n

where I is the n X n identity matrix and p = (1, 1, ..., DT is the uniform vector of length n. More
details on MDS can be found in [41]. Metric MDS yields the same outputs ¢; as PCA — essentially
a rotation of the inputs followed by the projection into the subspace with the highest variance.
The outputs of both algorithms are invariant to global rotations of the input patterns. The Gram
matrix of metric MDS has the same rank and eigenvalues up to a constant factor as the covariance
matrix of PCA. If X denotes the n x n matrix of input patterns, then C = 1XX” and G = X"X.
The equivalence of MDS and PCA follows from the singular value decomposition [223]. In both
matrices, a large gap between the m™ and (m + 1) eigenvalues indicates that the high dimensional

input patterns lie to a good approximation in a lower dimensional subspace of dimensionality .

2.2.6.4 Kernel-PCA

Principal components analysis [101] is a classical method that provides a sequence of best linear
approximations to a given high-dimensional observation. The subspace modeled by PCA captures
the maximum variability in the data, and can be viewed as modeling the covariance structure of

the data [77]. However, its effectiveness is limited by its global linearity. MDS, which is closely
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related to PCA and for Euclidean distances produces the same results, has the same drawback.
Suppose then we are given a real-valued function k : RY x R? — R with the property that there

exists a map @ : RY — % into a dot product space K such that for all (x, x") € R?, we have:
D(x) - D(x') = k(x,x") (2.40)

Examples of kernel functions that satisty the above criteria include polynomial kernels k(x, x") =
(1+x-x’)? for positive integers p and Gaussian kernels k(x, x’) = exp[—||x — x’||*/co%]. Many linear
methods in statistical learning can be generalized to nonlinear settings with (2.40) by substituting
the generalized dot products in feature space for Euclidean dot products in the input space [182].
Nonlinear generalization of PCA can be framed as kernel eigenvalue problems [181]. Given
input patterns (xy, ..., x,) where x; € R?, kernel-PCA computes the principal components of the fea-
ture vectors (®@(xy), ..., D(x,)), where ®(x;) € K. Since in general K may be infinite-dimensional,
it is not possible to explicitly construct the covariance matrix in feature space. The problem has to
be reformulated so that it can be solved in terms of the kernel function k(x, x"). Assuming that the

data have zero mean in the feature space %, its covariance matrix is given by:
1 n
C=-> o))" (2.41)
n
i=1

The duality of PCA and MDS allows us to find the top eigenvectors of C. Kernel-PCA can there-
fore be interpreted as a nonlinear version of MDS that results from substituting generalized dot
products in feature space for Euclidean dot products in input space [223]. By using MDS, the
top m eigenvalues and eigenvectors of the kernel matrix can be computed. The low-dimensional
outputs ¢; of kernel-PCA are then given by ¢;, = VAaVei. In (2.41), it is assumed that the feature
vectors have zero mean. In general, the mean (1/n) }}; ®(x;) has to be subtracted from each feature

vector before computing C in (2.41). This leads to a different eigenvalue problem with:
G =QCQ (2.42)

where Q =1 - %ppT. G is a centralized Gram matrix or a pseudo-covariance matrix. Additional
constraints arise from the fact that the input data contained in the dissimilarity matrix A may not
obey metric axioms [9] and therefore the intermediate step of Euclidean embedding becomes nec-
essary [118, 176]. The embedding procedure attempts to construct a positive semidefinite G given
generally indefinite G. A particular method for Euclidean embedding, which is used throughout
this work, is the Constant Shift Embedding introduced by Roth et al. [176]. Equation (2.43) shows
five steps which are necessary in order to obtain the reconstructed feature vectors ®(x;) given that

the similarity matrix S is not PSD and thus represents the underlying non-metric dataset.
x;—>S—>C—>G—>(~}—>I~J1~\I~JT—><I)=I~J\/X (2.43)

Transition C — G consists of the choice of the kernel function and the normalization procedure.
Step G — G is optional with respect to the embedding into Euclidean space if the matrix S is
indefinite. Step UAU” represents the spectral decomposition on the embedded G, and the last
step leads to the N-dimensional reconstructed feature space contained in the columns of ®. The

dimensionality reduction (L < N) is carried out by considering the first L column vectors of ®.
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2.2.7 Unsupervised Neural Networks

Unsupervised machine learning techniques can also be implemented using artificial neural net-
works. For instance, there are various neural algorithms which perform dimensionality reduction
with neural-PCA and neural-ICA (Independent Component Analysis) models. The reason behind
this is that using neural networks in unsupervised fashion can help to learn better representations
of the input data.

In most supervised classification problems, finding and producing labels for the data is difficult
and time consuming. In many application cases, plenty of unlabeled data exist and using them
may improve the results. For example, a neural network can learn a mapping from an image to
real-valued vector in such a way that resulting vectors are similar for images with similar content.

In most image classification tasks there are vastly more bits of information in the statistical
structure of input images than in their labels [212]. In the context of deep learning, we have dis-
cussed the CNN developed by Krizhevsky et al. [112] in Section 2.2.2.3. Valpola [212] explained
that in the ImageNet dataset with 1000 target classes, each label carries less than 10 bits of infor-
mation. On the other hand, the amount of information contained in the 256 x 256 RGB images
used as input, is several orders of magnitude more than 10 bits. This fact provides the motivation
for research on deep unsupervised learning architectures.

The combination of the supervised and the unsupervised learning can be very efficient. The
unsupervised learning aims to represent structure in the input data often by means of features. The
resulting features can then be used as input for classification tasks or as initialization for further
supervised learning. For example, Hinton et al. [93] proposed an unsupervised pre-training scheme
which made subsequent supervised learning efficient for a deeper network than before. Valpola
[212] has extended the above framework so that unsupervised learning can continue alongside

supervised learning rather than be restricted to a preprocessing or a pre-training phase.

2.2.7.1 Neural-PCA and Neural-ICA

Kernel-PCA can also be framed as a neural networks model. Nonlinear neural-PCA is based on a
MLP with an autoassociative topology, also known as an autoencoder or a bottleneck-type network.
Such an autoencoder is trained to reconstruct original vectors from smaller representations (hidden
layer activations) with reconstruction error as the cost function. This process creates meaningful
low-dimensional representations of the input data that can be used for clustering. Scholz [183]
explained neural-PCA with the five layers (3-4-1-4-3) MLP. This architecture is shown in Fig. 2.2.9
(left image) and consists of input x and output X layers, two hidden layers (each with four nodes)
and one component layer z. The component layer in the middle is the bottleneck of the network
because it has fewer units than in the input or output layers. Thus, the data have to be projected or
compressed into a lower dimensional representation Z. The network consists of two major parts:
the first part represents the extraction function @, : X — Z, whereas the second part represents
the inverse function, the generation or reconstruction function @, : Z — X. The hidden layers
enable nonlinear mappings, and without them the network could only perform the linear Principal
Component Analysis. Some other neural-PCA networks include the hierarchical, the circular and

the inverse model for missing data [183].
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Figure 2.2.9: Left image shows a neural architecture of a bottleneck type autoassociative network
(autoencoder) which can perform nonlinear PCA. The topology of this five-layer network is (3-
4-1-4-3). The autoencoders are always symmetrical around the middle layer. Right image shows
a neural network (3-2-2-3) for linear ICA. The second hidden layer is needed for data sphering.
Image sources: Adapted from [183] and [150]. Diagrams are best viewed in color.

<

™~

A linear neural-ICA algorithm based on information maximization, has been proposed, for exam-
ple, by Bell and Sejnowski [16]. This algorithm did not assume any a priori knowledge of the input
distributions and was designed for the zero noise limit. The proposed neural network was able to
separate statistically independent components in the inputs. An example of a neural-ICA architec-
ture is provided in Fig. 2.2.9 (right image). This feedforward neural network can perform Blind
Source Separation and can provide the basis vectors of ICA as columns of the estimated mixing
matrix. The second layer is optional if the data have to be sphered (or whitened) [150]. Whitening
a matrix is one of the first steps in most ICA algorithms. A whitening transformation is a linear
transformation that transforms a vector of random variables with a known covariance matrix into
a set of new variables whose covariance is the identity matrix. This means that the new variables
are uncorrelated and all have unity variance. This transformation is called *whitening’ because it
changes the input vector into a white noise vector. This procedure also decorrelates all possible
“features’ in the signal mixture. When the covariance matrix is identity matrix, the features are
clustered in spheres' and therefore terms ’sphering’ and ’whitening’ are frequently interchange-
able in the literature. According to Bell and Sejnowski [16], the information maximization-based
neural-ICA network described is limited in discovering nonlinear optimal mappings, while the
addition of more hidden layers could be more powerful.

Nonlinear ICA is a more difficult task because it depends on the a priori knowledge of the
nonlinear mixing process. Therefore, special nonlinear ICA models simplify the problem to par-
ticular applications in which some information about the mixing system and the source signals is
available. A review of many ICA algorithms and applications is given, for example, by Hyvirinen
and Oja [96], and the mathematics of ICA is provided in Section 3.3.1.

2.2.7.2 Self-Organizing Maps and Neural k-means

There are also a number of different clustering algorithms based on neural networks. The most
widely known one is the Self-Organizing Map or Kohonen’s networks [171], which was proposed

by Teuvo Kohonen in 1988. An example of this type of neural network in provided in Fig. 2.2.10

!See Section 3.3.1 for more detailed explanation.
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Figure 2.2.10: Left image shows an example of a Self-Organizing Map neural network. Right

image shows a Recurrent Neural Network. The two middle layers contain neurons with feedback
connections. Image sources: Adapted from [214]. Diagrams are best viewed in color.

(left image) and contains two layers. The input layer consists of p-dimensional observations x.
The output layer consists of k nodes for the k clusters, each of which is associated with a p-
dimensional weight w [64]. This is a competitive-type learning neural network that has a set of
neurons connected to form a topological grid. When some pattern is presented to the SOM, the
neuron with the closest weight vector is considered a winner and its weights are adapted to the
pattern, as well as the weights of its neighborhood. In this way, the SOM naturally finds data
clusters. The ability to self-organize facilitates adaptation to previously unknown input data. This
process appears to be a natural way of neural biological learning where the patterns take shape
during the learning process. The other feature of self-organization is that a global ordering of the
input space is achieved by using only a set of local interactions. This is based on the fact that the
neurons that are very far apart do not interact with each other.

Various extensions of SOMs have been proposed since 1988. One strategy was to apply a
competitive learning rule that minimizes the mean absolute error between the input samples and
the weight vectors. Here an information-theoretic criterion can be optimized directly, instead of
minimizing a distortion criterion. In the context of topographic map formation, Ralph Linsker
was among the first to explore this idea. He studied self-organization in a perceptual network and
proposed a principle of maximum information preservation [126] according to which a process-
ing stage has the property that the output signals will optimally discriminate, in an information-
theoretic sense, among possible sets of input signals applied to that stage. This algorithm is also
referred to as infomax. Furthermore, Linsker developed a learning rule for topographic map forma-
tion in a probabilistic network by maximizing the average mutual information between the output
and the signal part of the input which was corrupted by noise [127].

In order to overcome the topology mismatches that occur with the original SOM algorithm,
as well as to achieve an optimal use of the neurons, the geometry of the lattice has to match
that of the data manifold it is intended to represent [213]. For that purpose, several incremental
or structure-adaptive growing self-organizing map algorithms have been developed. They all share
one property where the lattices do not have a pre-defined structure, but are rather gradually build up.
Therefore the number of neurons and the lattice dimensionality can vary. The lattice is generated
by a successive insertion and an occasional deletion of neurons and connections between them.

The other family of SOM algorithms, which is relevant for this thesis, is Kernel Topographic
Maps. In the SOM algorithm, topographic maps have disjoint and uniform activation regions. In

order to accommodate neurons with overlapping activation regions, the kernel topographic maps
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include various kernel functions. Such algorithms model the input density with a kernel mixture.
The use of kernels has biological relevance and is seen to improve density estimation properties of
topographic maps. The advantage is that the unique visualization properties of topographic maps
are combined with an improved modeling of clusters in the data. The first example of kernel-based
topographic maps is the elastic net developed by Durbin and Willshaw [61]. The elastic net has
found application in a number of areas. Some examples include finding trajectories of charged
particles with multiple scattering in high energy physics experiments and the prediction of the pro-
tein folding structure. It has been also used for clustering applications. In computer vision, the
elastic net has a close relationship with "snakes". This algorithm has been, for example, used in
magnetic resonance imaging for finding lung boundaries and extracting the shape of a closed object
[213]. Another kernel-based SOM is the Generative Topographic Map algorithm, introduced by
Bishop et al. [21, 22]. This algorithm allows general non-linear transformations from latent space
to data space. This algorithm develops a topographic map that attempts to find a representation for
the input distribution in terms of a number of latent variables. Generative topographic mapping
has found many real-world applications. Some examples include visualization of oil flows along
multi-phase pipelines, visualization of electropalatographic data for investigating the activity of the
tongue in normal and pathological speech. Other applications include classification of in vivo mag-
netic resonance spectra of controls and Parkinson patients, word grouping in document data sets,
the exploratory analysis of web navigation sequences and spatiotemporal clustering of transition
states of a typhoon from image sequences of cloud patterns. Another application is the micro-array
analysis of gene expression data with the purpose of finding low-confidence value genes [213].
Finally, the neural k-means clustering algorithm is another example of competitive learning. In
this formulation, the neurons compete with each other to fire and the winning neuron is the one
that best matches the input. Marsland [140] showed how a neural network can implement the k-
means solution. A set of neurons can be used to imitate the k-means algorithm which, for example,
consists of one layer of neurons, some input nodes and no bias node. The first layer contains the

inputs, which do not do any computation and the second layer is a layer of competitive neurons.

2.2.7.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) is another class of deep networks for unsupervised learning,
where the depth can be as large as the input sequence. The RNNs are used to predict a data sequence
in the future using previous data samples, and no additional class information is used for learning.
In the artificial RNN, as illustrated in Fig. 2.2.10 (right image), neurons are fed information, not
just from the previous layer, but also from themselves from the previous time step. The concept
is based on the biological evidence that the human brain is a recurrent neural network. Artificial
RNNs are very powerful for modeling sequence data, but are difficult to train to capture long-
term dependencies [46]. Nevertheless, it is currently acknowledged that RNNs are more powerful
and biologically more plausible than other adaptive approaches such as Hidden Markov Models,
feedforward neural networks and Support Vector Machines [180].

RNNs have been also applied to the BSS problem which is usually done with ICA. Authors

in [8], for example, reported that their developed RNN needed a much smaller operational range

42



2.2. Machine Learning for Biomedical Imaging

for the synaptic weights. Therefore, the hardware requirement for the RNN was less that the one
for the usual feedforward neural network. Stephen Grossberg of Boston University has done many
studies on the modeling of human visual system with a system of neurons and has compiled a
comprehensive summary on biological RNNs that are found in the brain [82].

Another unsupervised neural network architecture is based on the Adaptive Resonance Theory
(ART) developed by Carpenter and Grossberg [29]. This theory of human cognitive information
processing has inspired many neural models for pattern recognition and unsupervised learning.
ART systems have been used to explain a variety of cognitive and neurobiological data. The adap-
tive ART neural networks self-organize a stable pattern recognition code in real-time in response
to arbitrary input patterns sequences. ART principles have further helped explain parametric be-
havioral and brain data in the areas of visual perception and object recognition. A combination of
an ART and a RNN which adaptively learns an input-output mapping using both supervised and
unsupervised formulations is presented, for example, by Vieira and Lee in [215]. An application of
a multidimensional RNN to the segmentation of neuronal structures in three-dimensional Electron
Microscopy images is given by Stollenga et al. [198].

In summary, this chapter provides a comprehensive survey on traditional and emerging ma-
chine learning techniques and their applications to biomedical imaging. We conclude that the
state of the art in cellular and subcellular image segmentation consists often of both supervised
and unsupervised machine learning formulations. We covered the relevant mathematical founda-
tions of dimensionality reduction, kernels and clustering because they are used in the subsequent
contribution-related Chapters 4, 5 and 6. In particular, we apply embedded kernel-PCA, k-means
and single linkage hierarchical clustering to solve the problems of localization and segmentation of
mitochondria in electron microscopy images. In addition, this thesis is set within the model-based
spectral clustering framework and provides also an alternative solution to the eigendecomposition-
based spectral clustering algorithms. In the next chapter, we review the graph-based spectral clus-
tering algorithms, alternative and combined dimensionality reduction approaches, solutions to the
very large scale spectral clustering, and discuss the importance of perceptual grouping and its po-

tential for biomedical image segmentation.

43



Chapter 3

Model-based Spectral Clustering

We have reviewed the foundations of machine learning in the previous chapter. In particular, an un-
supervised learning approach to the segmentation of mitochondria has been applied in the research
developed in this thesis. Spectral clustering combines the two principle elements of unsupervised
machine learning: dimensionality reduction and clustering in the projected feature space. In gen-
eral, spectral clustering is concerned with the clustering of points using eigenvectors of model-
based similarity matrices derived from the data. In these approaches the data are firstly mapped to
a low-dimensional space where it can be separated and be easily clustered. We have reviewed the
spectral dimensionality reduction methods in the previous sections and in this thesis we are par-
ticularly interested in kernel-PCA which computes the eigenvectors of the normalized covariance
matrix. There are also many different algorithms on spectral clustering which differ in the ways that
the similarity or dissimilarity matrices are constructed and normalized, in how the eigenvectors are

computed, and by which (largest or smallest) and how many eigenvectors are used for clustering.

3.1 Graph-Based Spectral Clustering Algorithms

Below we review some selected algorithms with links to spectral graph partitioning which aim to
identify a graph partition such that the edges between different groups have low weights and the
edges within a group have high weights. Good reviews of these approaches are given in [155, 190]
and [134]. An important notion in graph-based spectral clustering is graph Laplacian matrices.
There exists a whole field dedicated to the study of those matrices, called spectral graph theory
(e.g., see [36]) and there are many different definitions of graph Laplacians. The unnormalized

graph Laplacian is the square m X m matrix L = D— W where D is a diagonal matrix with elements:

m
D;; = Z Wi 3.1
j=1
and where W;; = s(x;, x;) is the weight of the graph edge, and is basically the similarity s(x;, x;)
between two graph vertices x; and x; representing two data points. The matrix D is called the
degree matrix. Let Cy, ..., C¢ be a clustering and let H € R™* be the matrix [186] such that

1

—1[~€C.] (3.2)
Tof I

ij =

44



3.1. Graph-Based Spectral Clustering Algorithms

Then, the columns of H are orthonormal to each other and
RatioCut(Cy, ...,Cy) := trace(H LH) (3.3)

Therefore, to minimize RatioCut we can search for a matrix H whose columns are orthonormal
and such that each H; ; is either O or 1/ \/@ This is, however, an integer programming problem
which cannot be solved efficiently. Instead, we can relax the latter requirement and search for an
orthonormal matrix H € R"* that minimizes trace(H ' LH). The unnormalized spectral clustering
algorithm therefore starts with finding the matrix H of the k-eigenvectors corresponding to the

smallest eigenvalues of the graph Laplacian matrix.

Table 3.1.1: Unnormalized Spectral Clustering Algorithm.

Construct similarity matrix S € R™ and set the number k of clusters

Construct a similarity graph. Let W be its weighted adjacency matrix

Compute the unnormalized graph Laplacian L

Let U € R™* be the matrix whose columns are the eigenvectors of L corresponding
to the k smallest eigenvalues

Let vy, ..., v,, be the rows of U

Cluster the points vy, ..., v, using k-means

7  Output clusters Cy, ..., Ck of the k-means algorithm

RN R S

AN W

There are two matrices which are called normalized graph Laplacians in the literature. Both matri-

ces are closely related to each other and are defined as:
Lym =D'2LD™'? = [ - p~'2wD™!/? (3.4)
Ly=D"'L=1-D"'w 3.5)

We denote the first matrix by Ly, as it is a symmetric matrix, and the second one by L, as it is
closely related to a random walk. There are two different versions of normalized spectral clustering,

depending which of the normalized graph Laplacians is used.

Table 3.1.2: Normalized Spectral Clustering Algorithm according to Shi and Malik [190]

Construct similarity matrix § € R™" and set the number k of clusters

Construct a similarity graph. Let W be its weighted adjacency matrix

Compute the unnormalized Laplacian L

Compute the first k generalized eigenvectors uy, ..., u; of the generalized eigenproblem
Lu = ADu

Let U € R™ be the matrix containing the vectors uy, ..., ux as columns
Fori=1,..,n,lety; € R¥ be the vector corresponding to the i-th row of U

Cluster the points (y;)i=1...» in Ry with the k-means algorithm into clusters Cy, ..., Ck
Output clusters Ay, ..., Ay with A; = {jly; € C;}

B W =

0N O

The above Shi and Malik algorithm uses the generalized eigenvectors of L, which correspond to
the eigenvectors of the matrix L, [134]. So in fact, the algorithm works with eigenvectors of the

normalized Laplacian L,,,, and hence is called normalized spectral clustering.
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The next algorithm, developed by Ng et al. [155] also uses a normalized Laplacian, but this time
uses the matrix Ly, instead of L,,,. This algorithm introduces an additional row normalization in

step 6 which is not needed in the other algorithms.

Table 3.1.3: Normalized Spectral Clustering Algorithm according to Ng, Jordan and Weiss [155]

Construct similarity matrix § € R™" and set the number k of clusters

Construct a similarity graph. Let W be its weighted adjacency matrix

Compute the normalized Laplacian Ly,

Compute the first k eigenvectors uy, ..., uy of Ly,

Let U € R™* be the matrix containing the vectors uy, ..., ux as columns

Form the matrix 7 € R™* from U by normalizing the rows to norm 1, that is set

tij = wij) Sy up)'

Fori = 1,..,n, lety; € R¥ be the vector corresponding to the i-th row of T

Cluster the points (y;);=1...., in Ry with the k-means algorithm into clusters Cy, ..., Ck
9  Output clusters Ay, ..., Ay with A; = {jly; € C;}

AN N B W=

[e BN |

All three algorithms stated above look quite similar, apart from the fact that they use three different
graph Laplacians. Experimentally it has been observed that using more eigenvectors and directly
computing a k-way partitioning gives better clustering results [155, 5, 136]. In their original paper,

Ng et al. construct the similarity (affinity) matrix S by using the Gaussian model:
Sij = exp(=lls: = 5,1%/20) (3.6)

if i # jand S; = 0. Here the scaling parameter o> controls how rapidly the affinity falls off with
the distance between s; and s; and the authors show how to tune that parameter automatically.

A simple spectral clustering algorithm which does not use the graph Laplacian matrices, but
rather directly operates on the constructed similarity matrix is given by Perona and Freeman
in [166]. The authors have observed a new property of the scene by calculating the pointwise
eigenvector-based approximation p; of the pairwise affinity S;; of the elements in the scene. This
global property describes the partition of a scene into foreground and background where p can be
seen as a saliency function of the points. After discovering the concept of foreground, the authors

specify the algorithm (see Table 3.1.4) for calculating the foreground group.

Table 3.1.4: Affinity Factorization Algorithm according to Perona and Freeman in [166]

1 Form a matrix §;; containing the pairwise affinity of each pair of elements in the scene
2 Call p the eigenvector of S that is associated to its largest eigenvalue
3 Define the foreground F as the set of objects i whose corresponding p; is not equal to zero

It is important to note at this stage that all four graph-based spectral clustering approaches reviewed
use a similarity (sometimes also called affinity) matrix as an input. By way of comparison, spectral
dimensionality reduction methods such as MDS, PCA and kernel-PCA require a dissimilarity (pair-
wise distances) measure as an input. Therefore, in the latter case one has to apply a dissimilarity
mapping on the defined similarity model.

The advantages of spectral clustering are that this method does not make strong assumptions
about the statistics of the clusters, it is easy to implement by means of linear algebra, it provides

good clustering results and it has been proven to capture the perceptual organization of data.
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We review work on visual perception and similarity models for perceptual grouping in Section 3.4.1.
Spectral clustering is also reasonably fast for sparse datasets of several thousand elements. The
disadvantages include the sensitivity to the choice of model parameters and the fact that spectral
clustering may quickly become computationally expensive for large datasets such as for example

high-resolution natural images.

3.2 Related Work on Large Scale Spectral Clustering

Because for natural images of size N X M the similarity matrix acquires a size of NM X NM, clus-
tering approaches which rely on the direct analysis of affinity or similarity matrices are infeasible
for large scale problems (large matrices). We address this computational limitation by deriving a
new anticorrelation-based formulation of spectral clustering in Chapter 6 [52]. In order to under-
stand our motivation and strategy for this work, we first review related publications on large scale
spectral clustering in the following sections.

We start with the work by Donoser et al. [54] where the authors noted that for efficiency rea-
sons they split the image into non-overlapping equal-sized blocks. In each of these blocks they
independently clustered the pixels based on their 36-dimensional feature space by applying affinity
propagation clustering [70] to the affinity matrix. Furthermore, they merged the local solutions
obtained based on clustering the mean feature vectors (of each block then), again by affinity prop-
agation. Mahamud et al. [135] noted that ordinary techniques for the computation of eigenvectors
and eigenvalues are infeasible for large images. In an attempt to solve this problem, the authors
developed a technique which exploits the sparseness and symmetry of the similarity matrix and
claimed to be able to reduce significantly the time required to compute the eigendecomposition.

For the case of using spectral clustering methods on natural images, the cost quickly becomes
prohibitively high and makes spectral methods impractical [102]. In this regard, the problem of
extracting the eigenvectors and eigenvalues of large similarity matrices is approached from the per-
spective of either estimation or distributed computing. A relatively recent work towards a practical
implementation strategy is the work on parallel spectral clustering in distributed systems where the
authors design a parallel and distributed spectral clustering algorithm [35]. This work also shows
that the problem is still open for a theoretical solution. The most commonly used approach to
address the computational and memory difficulties is to zero out some elements in the similarity
matrix, i.e., to sparsify the matrix. From the sparse similarity matrix obtained, one then finds the
corresponding Laplacian matrix and calls a sparse eigensolver. Several methods are available for
sparsifying the similarity matrix [134].

A sparse representation effectively handles the memory bottleneck, but some sparsification
schemes still require calculating all elements of the similarity matrix. An example here is provided
by the work of Crum [42] on voxel classification in 3D brain MRI images. In order to sparsify
the similarity matrix, the author adopted a stochastic sparse sampling approach where the similar-
ity matrix S is sparsily filled by computing pairwise similarities between each point and m other
randomly selected points. The sparse eigenvector decomposition for computing the first k+1 eigen-
values is achieved with the Jacobi-Davidson method and the author further noted that the stochastic

sampling process affects the quality of classification.
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Another popular approach to speed up spectral clustering is to use a dense sub-matrix of the simi-
larity matrix by using for example the Nystrom approximation. In their work, Chen et al. [35], for
example, aimed at developing a parallel spectral clustering package on distributed environments.
For that reason, the authors presented a comparison between the traditional method of sparsifying
the similarity matrix and the Nystrom method. The authors also highlighted that the main bottle-
neck is in computation of similarity matrix. In this regard, Liu et al. [129] also stated that the
majority of the time is actually spent on constructing the pairwise distance and affinity matrices.
Comparatively, the time spent on actual clustering is almost negligible.

Low rank approximations have recently gained broad popularity in computer science. For ex-
ample, in areas such as computer vision, information retrieval and machine learning, they are used
as a basic tool for extracting correlations and removing noise from matrix structured data. How-
ever, application of this technique to massive matrices quickly runs against practical computational
limits. Specifically, orthogonal iteration and Lanczos iteration, the two most common algorithms
for computing low rank approximations, operate through repeated matrix-vector multiplication,
thereby requiring superlinear time and large working sets [80].

When only a few eigenvectors and eigenvalues are required, there exist less computationally
intensive techniques such as the Jacobi, the Arnoldi and the more recent Hebbian methods [80, 81].
These iterative methods also require computation of matrix-vector products at each step and involve
several passes through the data. When the matrix is sparse, these techniques can be implemented
relatively efficiently. However, when dealing with a large dense matrix these products become
expensive to compute. In this regard, Talwalkar et al. [201], for example, reported that when
working with 18 million data points, it is not possible even to store the full matrix (~1600TB),
rendering the iterative methods infeasible. Belabbas and Wolfe [15] also stressed that for the
growing number of applications dealing with very large high-dimensional datasets, the optimal
approximation afforded by an exact spectral decomposition is too costly, because its complexity
cost is the cube of either the number of training examples or their dimensionality.

Motivated by such applications, a number of approaches to obtaining alternative low-rank de-
compositions have been applied in the statistical machine learning literature, many of them relying
on the Nystrom method to approximate a positive definite kernel. The Nystrom method belongs to
the class of random sampling techniques that provide a powerful alternative for approximate spec-
tral decomposition and only operate on a subset of matrix. The Nystrom approximation has been
primarily studied in the machine learning community [57, 224]. An alternative Column-sampling
technique has been analyzed in the theoretical computer science community [48]. A spectral clus-
tering formulation for very large scale problems based on the Nystrom method has been presented,
for example, by Fowlkes et al. [68] where the authors avoided calculating the whole similarity
matrix. This approach traded accurate similarity values for shortened computational time.

Generally, in order to approach the computational limitation of spectral clustering there are cur-
rently three major strategies: sparsification of the similarity matrix, low rank matrix approximation

[201] and the Nystrom method, which due to its popularity is reviewed in detail next.
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3.2.1 Nystrom and Column-sampling Methods

Historically, the Nystrom extension was introduced to obtain numerical solutions to integral equa-
tions [15]. Let g : [0, 1] X [0, 1] — R be a Symmetric Positive SemiDefinite kernel and (u;, A7), i €
N, denote its pairs of eigenfunctions and eigenvalues as follows:

1
f g(x, ui(y)dy = Afui(x),i € N 3.7)
0

Eigenfunction notation refers to the continuous form of eigenvectors. The Nystrom extension

provides a means of approximating k eigenvectors of g(x, y) based on an evaluation of the kernel at

k

k? distinct points {(x,, x,,)}m el

in the interval [0, 1] X [0, 1]. Defining a kernel matrix G(m, n) =

G = g(xm, x,,) composed of these evaluations leads to the m coupled eigenvalue problems:

k
Z G(m,n)ui(n) = Afui(m),i =1,2,....k (3.8)
n=1

=

where (u;, A7) represent the k eigenvector-eigenvalues pairs associated with G. These pairs may

then be used to form an approximation #; = u; to the eigenfunctions of g as follows:

k
) =~ > 806w (3.9)
" m=1
The essence of the method is thus to use only partial information about the kernel to first solve
a simpler eigenvalue problem, and then to extend the eigenvectors obtained therewith by using
complete knowledge of the kernel. Specifically, one may approximate k eigenvectors of G by
decomposing and then extending a k X k principal submatrix of G. Let us use Nystrom submatrix

notations A, B, C and Z in this Section. Let G be partitioned as:

2 el la)
G= , L = (3.10)
B C B

With A € R we define two spectral decompositions: G = UAU” and A = UAAAUg. The

Nystrom extension then provides an approximation for k eigenvectors in U as:

8 U
U= A (3.11)
BU4A!

The above result in given by Belabbas and Wolfe [15] without derivation. The approximations

U = Uand Ay = A may be composed to yield an approximation G = G according to:

A BT

G = UAUT =
A [ B BA'B’

] =ZA'Z" (3.12)
In the above formulation, G is called the Nystrom approximation of G. Equation (3.11) shows that
the main computational burden now takes place on a principal submatrix A of dimension k < n,
and hence the Nystrom extension provides a practical means of scaling up spectral methods in
machine learning to very large kernels. From (3.10) and (3.12) it can be deduced that the resultant

approximation error is:

IG - Gl = |IC - BA™'B7], (3.13)
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where Sh(A) := C — BA™'B7 is known as the Schur complement of A in G. The equation in
(3.13) ties the quality of the Nystrom approximation explicitly to the partitioning of G. Intuitively,
this error reflects the loss of information that results from discarding submatrix C while retaining
A and B. The Nystrom method yields a means of approximating G conditioned on a particular
choice of partition, hence shifting the computational load to determining that partition. To calculate
approximations to the top k eigenvectors and eigenvalues of G, the runtime of this method is
O(m? + kmn), that is, m? for eigendecomposition of A and kmn for multiplication with B.

In contrast to the Nystrom method, the Column-sampling method [201] uses the direct decom-
position of the matrix Z. More detailed, it approximates eigen-decomposition of G by using the
SVD of Z directly. In equation (3.12) the Column-sampling method replaces A~! with \/%(ZTZ)%
[201]. The SVD on Z has a cost of O(nm?), but since it can not be easily parallelized, it is still
quite expensive when n > 18 million as in the study conducted by Talwalkar et al. [201]. Gener-
ally, the time needed to calculate approximations to the top k eigenvectors and eigenvalues of G is
O(nm2 +m’ ), that is, nm? to generate 777 and m?> for SVD on Z”Z. In addition, the authors also
investigated how the two described approximation techniques differ in their treatment of negative
eigenvalues and the corresponding eigenvectors. The authors concluded that the Nystrom method
allows one to use eigenvalue decomposition of A to yield signed eigenvalues, making it possible
to discard the negative eigenvalues and the corresponding eigenvectors. On the contrary, it is not
possible to discard these in the Column-based method, since the signs of the eigenvalues are lost

in the SVD of the rectangular matrix Z (or the eigenvalue decomposition of Z Z).

3.2.2 Low-rank Approximations

There is an ongoing research on the optimal low rank approximations of large matrices in terms
of random sampling theory. As pointed out by Talwalkar et al. [201], in the Nystrém method, the
matrix A is usually constructed by randomly sampling m columns of G, where m < n. Other sam-
pling schemes have been suggested which consider the optimal selection of optimal submatrix A
from all possible partitions of G. Karoui and d’ Aspremont [102] for instance, proposed a random-
ized, distributed algorithm to estimate eigenvectors and eigenvalues which makes spectral methods
tractable on very large scale matrices. In fact, their approach falls into the category of subsampling
of similarity matrices in order to lower the complexity of spectral methods. The idea is to find a
good approximation of a matrix, G that has low rank. Achlioptas and McSherry [1] introduced
a technique for accelerating the computation of such approximations when G has strong spectral
features, i.e. when the singular values of interest are significantly greater than those of a random
matrix with size and entries similar to G.

The first mathematically rigorous approach to speeding up the computation of low rank ap-
proximations by employing randomization was given in the work of Frieze, Kannan and Vempala
[71], where it was shown that one can efficiently approximate G from a submatrix whose size is

independent of m, n. Specifically, the authors showed how to compute a rank k£ matrix A such that
IG - All7 < IG - Gyl + €llG[7 (3.14)
from a square submatrix of G having dimension d > 107k*/e3. The above approach was extended

in subsequent works of Drineas et al. [55, 56] motivated by practical considerations. Specifically,
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by sampling entire columns of G, the algorithms in [55, 56] greatly improve the dependence of d
on k and e at the cost of introducing a linear dependence of d on m < n.

Instead of sampling random submatrices of G, Achlioptas and McSherry [1] independently
sampled individual entries of G. By breaking the correlation between the elements of the same
row/column in the sampling process, the authors gained access to a wealth of results from the
theory of random matrices. These enable the derivation of the very sharp matrix perturbation
bounds. Moreover, this entry-wise independence allows one to perform the sampling in a single
pass over the matrix. In contrast, the correlation among row/columns requires the algorithms in
[55, 56, 71] to make two passes over the matrix G: the first to sample a set of indices and the second
to collect the contents of the corresponding submatrix. Such a second pass can be impractical or

even impossible for massive data sets, where one often has only streaming access to the data [1].

3.3 Modifications and Alternatives to Spectral Methods

Practical spectral clustering approaches to biomedical image segmentation usually resolve the com-
plexity problem of the input data by using block-processing, downsampling, compression or the
concept of superpixels. Also, emerging and more efficient new hardware platforms as well as dis-
tributed and parallel computing architectures allow one to deal with this complexity problem more
effectively. In addition, a set of extracted low-level features, for example, may be much smaller
than the number of pixels in the original image. Usually, one can expect the number of low-level
primitives, such as contours or line segments to be in the order of 100s or 1000s. By considering
pixel classification tasks, the number of features to analyze becomes astronomical, thus revealing
the bottleneck of spectral clustering. Therefore, the main motivation for our work which we present
in Chapter 6 comes from the established fact that presently available spectral clustering algorithms
cannot directly be applied to general very large scale problems. One example at this point can be
given by the work of Crum [42] where the author presented a case study on tissue classification in
brain MRI images. MRI volumes are typically of size n = 256 x 256 x 128 ~ 8 million voxels
total. The computational problems are immediately apparent: first the number of voxel similarity
comparisons in the feature generation stage is n(n — 1)/2, and second, an eigen-analysis of an n X n
symmetric matrix is required. When number of voxels n >~ 1 million as for three-dimensional
MRI brain images this calculation is impractical [42].

Anther factor, relating to the development of possible theoretical alternatives to very large scale
spectral clustering in this work, comes from the hypothesis that the information about the cluster
arrangements in the feature space is already contained in the similarity matrix (though maybe in
a different form), and therefore can potentially be extracted ahead of the spectral decomposition.
Weiss [220], for example, has noted that "...from visual inspection, the affinity matrix contains
information about the correct segmentation". Bie and Cristianini [20] noted that the kernel matrix
contains sufficient information to run many classical and new linear algorithms in the embedding
space. The question which naturally arises then is whether an eigenvector is the only conveyor of
the information necessary to achieve the correct clustering? From a separate direction determined
by research on ICA also comes the idea that physically meaningful signals underlying a data set

should or could be independent. The statistical independence between two random vectors implies
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Figure 3.3.1: Simplified architecture of our proposed model-based spectral clustering approach to
the unsupervised segmentation of mitochondria [50]. For a given dataset of size H of different mi-
tochondrial morphologies, we derive a set of low-level features fi, ..., fi (e.g. distance between the
pixels, similarity in brightness, orientation, texture, etc.) according to the Gestalt laws of percep-
tual organization. Then, the features are factored into corresponding similarity models S, ...S g.
For a given test image, i.e. S| we construct the corresponding Gram matrix G|S | and run the kPCA
algorithm in order to obtain the set of feature vectors @. By applying k-means in the feature space
we obtain the desired partitioning of the input (image) space.

that the mutual information between these two random vectors is zero. In other words, the inde-
pendence of signals implies the maximization of information and it is reasonable to assume that
this information is also related to the feature space cluster formations.

The theoretical research in very large scale implementations of spectral clustering is motivated
also by other application domains. An efficient very large scale implementation of spectral cluster-
ing is not only of interest for pixel or voxel classification tasks, but for any application concerning
knowledge discovery in very large datasets. Some applications could, for instance, involve large
scale analysis of gene expression, large clinical and administration, or sensor datasets.

Inferences made through an efficient very large scale spectral clustering implementation may
also help to understand cognitive processes and neural processing. Very large scale spectral clus-
tering implementations based on similarity models with perceptual constraints have also interdis-
ciplinary links to psychology, human vision and neural processing. Nevertheless, the research on
applications of spectral clustering to segmentation is only about 30 years old, considering the paper
by Perona and Freeman as seminal [166]. Research towards alternatives to the conventional com-
ponent analysis based on spectral decomposition is also an active field which indicates that there
is a demand for more efficient implementation algorithms and novel theoretical formulations. A
comprehensive survey on classical and more recent dimensionality reduction methods is given in
[101] and more recently in [230] and [140].
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As described in Section 2.2.6.4, kernel-PCA attempts to construct a set of orthogonal and uncorre-
lated components. In some applications, the statistical independence of components can be directly
related to the amount of information conveyed in the feature space. Therefore, one possible direc-
tion of research would be to investigate methods which consider the same objective. One of such a

candidate for this task is ICA which is reviewed in the next section.

3.3.1 Independent Component Analysis

In the standard PCA formulation it is not necessary to assume any particular distribution for the
input data x; [101]. One way of handling possible non-normality in PCA, especially if the dis-
tribution has heavy tails, is to use robust estimation of the covariance or correlation matrix or of
the principle components themselves. ICA, on the other hand assumes the non-Gaussianity of the
data. ICA is a relatively new signal processing and data analysis technique. It has primarily found
applications in wireless communication, biomedical signal processing, data mining and pattern
classification. ICA may be also used for the Blind Source Separation problem.

The derivations in ICA are based on traditional probability theory and include notations for
random variables. Here, all random objects are written in typewriter font, e.g. X, in order to
distinguish them from deterministic ones, e.g. x. For random vectors, e.g. X, we use the vector
symbol in order to separate them from scalar random variables. For deterministic objects, bold face
lower case letters are used for vectors and the bold face upper case letters are used for matrices.
Using these notations, the ICA problem can then be defined by using a statistical latent variables

model. Assume that we observe n linear mixtures Xy, ..., X, of independent components:
Xj=ajyy +apy,+..+tauy,, VJ (3.15)

We assume that each mixture x; as well as each independent component y, is a random variable.
The observed values x; are then a sample of this random variable. It is assumed that the mixture
variables and the independent components have zero means. If this is not true then the observable
variables x; can always be centered by subtracting the sample mean.

Let X denote the random vector whose elements are the mixtures X1, ..., X,,, and likewise let ¥
be the random vector with elements yy, ..., y,. Let M denote the mixing matrix with elements a;;.

Using this vector-matrix notation the above noiseless mixture model is written as:
X = My (3.16)

The goal of ICA is to recover the original source vectors ¥ from the observation vectors X blindly
without explicit knowledge of the sources of the linear mixing system M. The ICA model is a
generative model, which means that it describes how the observed data are generated by a process
of mixing the components y;. Also the mixing matrix M is assumed to be unknown. All we observe
is the random vector X, and we must estimate both M and ¥ using it. After estimating the matrix

M, we can compute its inverse, say W, and obtain the independent components simply by:
y = WX (3.17)

The idea that physically meaningful signals underlying a data set should be independent is a major

motivation for ICA.
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The degree of independence is measured by the mutual information between the components of ¥:

p(y)

— _av. 3.18
e Petyo) ™ (5-18)

MI(y) = f pNlog—=——=—

When the joint probability p(¥) can be factored into the product of the marginal densities py(ay),
the various components of ¥ are statistically independent and the mutual information is zero.

Bell and Sejnowski in [17] considered a nonlinear, component-wise mapping ¥ = g(5), y; =
8k(sy) into a space in which the marginal densities are uniform. The linear transformation followed
by the nonlinear map may be accomplished by a single-layer neural network in which the elements
of W are the weights and the K neurons have transfer functions g;. Since the mutual informa-
tion is constant under invertible, component-wise change of variables, MI(s) = MI(¥), and since
the g are, in theory at least, chosen to generate uniform marginal densities, p(y,), the mutual

information MI(¥) is equal to the negative of the entropy (negentropy) of y:

MI(Y) = -H(Y) = f p(Nlogp(Ndy (3.19)

Principles of ICA estimation include various optimization criteria such as:

1. Minimization of the mutual information given by (3.18)
2. Maximization of the negentropy given by (3.19)
3. Minimization of the higher order moments, which measure the non-Gaussianity

4. Maximum likelihood estimation, where the log-likelihood for a single observation x() is:

logP(x(t)|W) = logldetW| + Z logpi(ai(t)) (3.20)
k

The above list represents the so called contrast functions. For two random variables x; and x»,
a valid contrast function is always non-negative, and equal to zero iff the variables x; and x; are
independent [11]. The choice of L dominant independent components S; = WX is an important
subject. Tian et al. [206], e.g., adopted the procedure of calculating negentropy of each component
and arranging the components in descending order according to their negentropy values. The
authors further set a non-Gaussianity threshold and only kept the components whose negentropy
values were larger than the threshold. The desired threshold value could only be found empirically.

There is an important connection between statistical independence, physical meaningfulness
of signals and maximum of information carried by those signals. The notion of information maxi-

mization is related to the joint entropy H(X], X3) between two random vectors X} and X3:
H(xX1,%3) = H(X1) + H(X3) — MI(X1,%3) (3.21)

Some ICA algorithms require a preliminary sphering or whitening of the data. A random vector X is
said to be spatially white, if cov[X] = o21,,. Here, I, denotes the n x n identity matrix and o? > 0.
Sphering means that the observed variable X is linearly transformed to a variable V as Vv = QX
such that the covariance matrix of V equals unity E[¥¥'] = L. Therefore the terms sphering and
whitening have essentially the same meaning. The result of sphering is the whitened space. The
sphering can be accomplished by classical PCA. Usually, by whitening data the mutual information

is reduced, so that the whitened data are closer to independence [2].
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The objective of PCA is to maximize the variance and to remove the unreliable dimensions caused
by insufficient or unrepresentative data [99]. The orthogonality and uncorrelatedness constraints
are included to ensure that different components are measuring different things. By contrast, ICA
takes the separation of components as its main aim. ICA starts from the view that uncorrelatedness
is rather limited as it only considers a lack of linear relationship, and that ideally components
should be statistically independent. This is a stronger requirement than uncorrelatedness, with the
two only equivalent for Gaussian random variables. ICA thus can be viewed as the higher-order

generalization of PCA to non-normal data.

3.3.2 Combined Approaches

Alzate and Suykens [7], for example, proposed a novel multiway spectral clustering implementa-
tion with out-of-sample extensions without relying on low-rank approximation such as Nystrém
method. Their model is based on a weighted kernel-PCA scheme. The formulation was initially
based on a binary classification scheme and further extended to the multiway clustering case with
encoding and decoding schemes. The formulation fits into the least-squares SVM framework
by considering weighted versions. The proposed approach was cast in a constrained optimiza-
tion framework. This interpretation allowed the clustering model to be extended to out-of-sample
points. The eigenvectors of a modified similarity matrix derived from the data were shown to be
a dual solution to a primal optimization problem formulated in a high-dimensional feature space.
These solutions contain clustering information and show a special structure when the clusters are

well-formed. A number of combined dimensionality reduction algorithms are listed in Table 3.3.1.

Table 3.3.1: Combined Dimensionality Reduction Algorithms.

Algorithms Concept Manifold
LDA + CDA [99] single discriminant evaluation assymetric
CCA (Canonical Correlation Analysis) [230] optimal coordinate system linear

KICA (Kernel-ICA) [11] mutual information non-linear
Kernel-PCA + ICA [228] ICA in the feature space non-linear
Multiway KICA [206] feature subsampling non-linear

The work by Jiang [99] analyzed the role of PCA in classification and addressed the problem
of applying PCA on the asymmetric classes or the unbalanced training data. The author noted
that in order to extract a set of features quickly and efficiently there is a need for a discriminant
analysis which maximizes the discriminatory power of the extracted features. In addition, the work
proposed an asymmetric discriminant analysis method that integrates LDA (Linear Discriminant
Analysis) and CDA (Covariance Discriminant Analysis) in a single discriminant evaluation and
regularizes the two covariances matrices.

Dhillon et al. [49] proposed a new formulation of the Graph-Cut algorithm. This method does
not use eigenvectors, but assumes the availability of the similarity matrix. This approach is related
to, but different, from the standard spectral clustering. Without the eigendecomposition step, it
does not produce a low-dimensional representation of the data. In other words, their method does

not conduct dimensionality reduction as spectral clustering does.
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CCA (Canonical Correlation Analysis) is a multivariate statistical technique similar in spirit to
PCA. While PCA works with a single random vector and maximizes the variance of projections of
the data, CCA works with a pair of random vectors or in general with a set of m random vectors and
maximizes correlation between sets of projections. While PCA leads to an eigenvector problem,
CCA leads to a generalized eigenvector problem [11, 101, 230].

A method which merges the ideas from kernel-PCA and ICA and utilizes the idea from CCA is
given in the paper by Bach and Jordan [11]. The authors noted that the fundamental problem with
ICA is that it generally fails to separate the nonlinearly mixed source due to its intrinsic linearity.
The authors presented an algorithm called KICA (Kernel Independent Component Analysis) which
is not the kernelization of the ICA algorithm. Rather, it is a new approach to ICA, based on novel
kernel-based measures of dependence. Specifically, the authors addressed the problem of imple-
menting the mutual information as the contrast function. The mutual information for real-valued
variables is difficult to approximate and optimize on the basis of finite samples. The authors pro-
posed two novel contrast functions. Minimizing them leads to two different KICA algorithms. The
authors defined the 7 -correlation as a measure of statistical dependence among random variables
X1, ..., Xn. Given a reproducing-kernel Hilbert space ¥ on R, with kernel K(x, y) and feature map
®(x), the ¥ -correlation is defined as the maximal correlation between the random variables fj(x;)

and f>(x»), where f; and f» range over ¥ :

py = maxy, per|corr(fi(xn), f2(x2))] - (3.22)

The KICA algorithm can be summarized as follows: Given a set of data vectors yl,y2, ...,yN s
and given a parameter matrix W, set X' = Wy, for each i, and thereby form a set of estimated
source vectors {x', X2, ...,x"V}. The m components of these vectors yield a set of m centered Gram
matrices, G, Gy, ..., G,. These Gram matrices (which depend on W) define the contrast function,
CW) = ipq-(Gl,Gz, ..., Gy), as the solution to a generalized eigenvalue problem, Ka = ADa,
where K and D are block matrices constructed from the Gram matrices G;. The KICA (kernel-
CCA) algorithm involves minimizing this function C(W) with respect to W. The main idea of this
algorithm is to maximize independence by minimizing correlation with the kernel.

The applications of the Bach and Jordan’s realization of KICA to the computer vision domain
are given as a face recognition study [142] and removal of reflections from images [226]. Martirig-
giano et al. [142] were first to apply KICA on bi-dimensional signals such as images. Yamasaki et
al. [226] concluded that KICA is more effective than ICA in removing reflections from the images
even if the observed image is non-linearly transformed through the lenses of camera.

Yang et al. [228] presented an alternative formulation of KICA as a two stage algorithm:
whitened kernel-PCA plus ICA. Their algorithm is formulated in the kernel-inducing feature space
— that is they performed ICA in the feature space. Firstly, kernel-PCA spheres data and makes the
data structure become as linearly separable as possible by virtue of an implicit nonlinear mapping
determined by a kernel. Then, ICA seeks the projection directions in the kernel-PCA whitened
space, making the distribution of the projected data as a non-Gaussian as possible.

The multiway implementation of this KICA formulation was presented by Tian et al. [206]
to detect faults in the batch-fed penicillin fermentation process. In order to solve the computa-

tional problem associated with a large kernel matrix, the authors introduced a novel feature sample

56



3.4. Perceptual Grouping Strategies in Biomedical Imaging

extracting technique before implementing the kernel transformation.

The very large scale dimensionality reduction methods reviewed are based on Nystrom, column-
sampling and low-rank approximation techniques. We have also discussed the alternative and
combined approaches such as ICA, kernel-ICA, CCA, and a combination of kernel-PCA and ICA.
These approaches are relevant to our research on the anticorrelation-based dimensionality reduc-
tion which is developed in Chapter 6. However, this thesis is primarily cast within the framework
of spectral clustering, and the input to every spectral clustering algorithm is a similarity matrix. In
many cases, similarity relationships can be derived from the visual appearance of cellular and sub-
cellular organisms in electron microscopy images. In the next section, we discuss the applicability
of perceptual organization to biomedical imaging and review mathematical models which integrate

various perceptual grouping constraints into similarity matrices.

3.4 Perceptual Grouping Strategies in Biomedical Imaging

The study of perception is concerned with identifying the process through which we interpret and
organize sensory information to produce our conscious experience of objects and object relation-
ships. Perceptual grouping plays a critical role in both human and computer vision. Research in
perceptual grouping began in the 1920’s with Gestalt psychologists, whose goal was to discover
the underlying principles that would unify the various grouping phenomena of human perception.

Historically, the visual phenomenon associated with perceptual organization is grouping. In-
deed, perceptual grouping and perceptual organization are sometimes presented as though they
were synonymous, though this is incorrect as noted by Wagemans et al. [217]. Grouping is only
one particular kind of organizational phenomenon and the figure-ground organization. In general,
grouping determines what the qualitative elements of perception are, and figure-ground determines
the interpretation of those elements in terms of their shapes and relative locations in the layout of
surfaces in the 3D world. Presently, biological vision is the only measure of the incompleteness of
the current stage of computer vision, and illustrates that the problem is still open to solutions.

In biomedical imaging, the data annotation problem is inherently connected with human vi-
sion and the perception paradigm. The major challenge in applying computer vision methods to
this imaging domain is the variety of different shapes and textures. Furthermore, variations such
as different animal species, sample preparation, staining protocols etc., can lead to very different
image characteristics. A potential solution to the above complexity challenge can be cast within
the machine learning framework. Depending on the type of biological structures, a set of different
features can be derived from images. These descriptors could target, for example, the segmentation
of membranes, cells, mitochondria or generally irregular structures. Textures, for example, can be
modeled as a joint distribution of filter responses, where the distribution is represented as a fre-
quency histogram of filter responses. Other features such as intensity, distance, contours, boundary
information, edges, color and gradient flux can be factored into the affinity models. The param-
eters for these models can be learnt from training images, or adjusted manually according to the
available experimental data. There are a number of features which can be connected to percep-
tual organization. Affinity models which integrate such perceptual grouping constraints, generally

follow the Gestaltic rules of pre-attentive perception.
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Figure 3.4.1: Selected laws of perceptual organisation. (a) No significant salient relations present.
(b) Perception of a salient closed contour due to Proximity, Closure and Continuation principles.
(c) Perception of three bright objects overrides the proximity of dark pixels. This phenomenon is
based upon Figure-Ground Gestalt law which describes the need for sufficient contrast in visual
stimuli. (d) TEM image showing two adjacent mitochondria with salient membrane structures.

3.4.1 Related Work on Perceptual Grouping with Similarity Models

Gestalt theory is a psychological approach originated in Germany in the late 19th century. Its con-
cept is that human cognition has a self-organizing tendency to consider properties of independent
parts in conjunction with structural laws of the whole [221]. According to this theory, grouping
is one of the key elements of the human visual system. Gestalt psychologists were among the
first to address the issues of pre-attentive perception. Their theory refers to the fact that the visual
stimuli received by the retinal receptors further tend to be cognitively grouped in specific ways or
structures [108, 221]. The manner in which perceptual grouping occurs is governed by a num-
ber of organizational laws including Proximity, Similarity, Continuation, Symmetry, Closure and
Familiarity [24]. The Figure-Ground law defines the mechanisms behind visual segregation [62].

The grouping processes associated with the human visual perception attempt to form structural
organizations of different complexities. An example is provided by the cognitive process of join-
ing the dots along a perimeter to infer a circular shape and also more complex scenarios such as
extrapolation of three-dimensional computer generated images from a series of pixels arranged on
the screen [210]. The visual stimuli in Fig. 3.4.1 demonstrate how some of organizational laws can
be applied to group low-level primitives into perceptually uniform shapes. Fig. 3.4.1(a) shows a
random stimulus field containing uniformly distributed dots with no Gestalt properties, and thus no
salient structures can be perceived in the image. Conversely, the distribution of dots in Fig. 3.4.1(b)
allows us to clearly locate a closed salient contour. The underlying cognitive process behind such
a phenomenon is known as contour integration [124] and is governed by Gestalt principles such as
Proximity, Continuation and Closure.

The Proximity rule states that items placed near to each other tend to be grouped together. The
law of Continuation describes the perceptual tendency to follow a direction derived from a visual
field. The law of Closure describes how human cognition completes the gaps in the collection
of closely located points. Lowe’s work [131] was the first to introduce computational models of
perceptual grouping processes, derived from image statistics.

The simplest pairwise similarity model §;; which is based only on the Proximity principle for

grouping datapoints x; and x; in an experimental setting similar to the one in Fig. 3.4.1(b) is, for
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example, given by Perona and Freeman [166] as well as by Ng et al. [155] as:

—llx; = x;I?

2
s ] (3.23)

Sij=exp|
where dj is a reference distance below which two points are thought to be similar and beyond
which two points are thought to be dissimilar. Another example of perceptual grouping is provided
in Fig. 3.4.1(c) where it is illustrated how in a complex visual arrangement containing black,
gray and white pixels our attention is easily drawn to brighter areas. This phenomenon is mainly
based on the law of Figure-Ground segregation which is connected to the notion of the sufficient
global contrast in the visual stimuli in order for Gestalt factors to act on it [62]. Gestalt laws can be
extended to the perceptual interpretation of biomedical images, and for instance Fig. 3.4.1(d) shows
an inverted TEM image containing two adjacent mitochondria with salient membrane structures.

Over the past few decades, the grouping principles of the Gestalt theory found interesting
practical applications, particularly in the field of visual neuroscience [222], visual screen design
[32] and computer vision [143]. From the implementation point of view, the most frequently used
tools for salient classification in gray scale images are the generation of saliency maps [185] in the
image domain and various implementations of spectral clustering [118, 166, 190] in the feature

domain.

3.4.1.1 Intensity and Proximity Models

The authors in [166] explored the behavior of their spectral clustering algorithm on synthetic bright-
ness images with the aim of finding the optimal foreground-background segmentation. For that

purpose the following similarity model was defined:

d*(p1, p2) N ((p1) — I(p2))*

3.24
p T (3.24)

S pr(p1, p2) = exp[—

where i and j are image pixel indices, / is indicating brightness values and d(p1, p») is the geometric
distance between two pixels p; and p,. Parameter values of dy = 3 and dlp = 1 have been used by
the authors in the experimental section. We note that the above model uses the Gestaltic grouping
principles of Proximity (distance between pixels) and Similarity (brightness values). S pr had also
been used by Shi and Malik [190]. The authors in [166, 190], however, did not mention whether
S pr was defined for raw or normalized data and instead adjusted the model parameters manually.

The other similarity model, which we use here for comparison, is called a segmentation energy
term by Boykov et al. [25] and Kaynig et al. [103] (see also (3.27)) and has the form:

U(p)—I(p)*, 1
202 d(p1.p2)

S srr(p1, p2) = exp |- (3.25)

The only difference of Sy to S pr is that the denominator term is not exponentially mapped.
Both S pr and S prr penalize discontinuities in the segmentation of neighbored pixels of similar
intensities. By comparing (3.27) and (3.25) we can see that the segmentation energy term Eg. from
[103] is the extension of S gr; by the gradient flux term [(v, up,)|. The authors noted that for the
segmentation of thin and elongated structures, like membranes, it is common to incorporate the

flux of the gradient vector field into the segmentation.
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Figure 3.4.2: Variables involved in the computation of the similarity S;; of two line segments i and
Jj according to Perona and Freeman [166] applied to the grouping if co-linear line segments.

3.4.1.2 Grouping Co-linear Line Segments

In modern work, the Gestaltic principle of Continuation has been largely linked with work on
contour integration and visual interpolation [27]. Contour integration studies examine what factors
promote grouping of separate (not connected) oriented elements into contours which are detectable
in a field of otherwise randomly oriented elements. In line and contour grouping, collinearity, co-
circularity, smoothness, and a few other features play prominent roles in models of good continu-
ation effects on contour integration. An intuitive similarity model S;; for grouping co-linear line
segments (see also Fig. 3.4.2) is provided by Perona and Freeman [166] as:
d7 2 - cos(2a;) - cosaj) 1 —cos(a; — 2a))

Sii= -
s B 1 — cos(26y) 1 — cos(2660)

(3.26)

This model assumes that two line segments are similar when they are close by, when they are
aligned and, failing that, when they are co-circular, i.e. tangent to the same circle. In (3.26), the first
term in the exponential is a distance-related affinity, the second term penalizes the average deviation
of the line segments from being collinear, and the third term penalizes the non-co-circularity of the
two line segments. Perona and Freeman [166] suggested that *good’ values for dy should range
between the spacing of the elements and five times that value. ’Good’ values for 6 typically range

from /2 to /10, while 66, typically should be half to one-fourth as large as 6.

3.4.1.3 Continuation and Membrane Gap Completion

Kaynig et al. [103] approached the problem of perceptual grouping with the analysis of funda-
mental Gestalt properties of data studied, and embed Ncut within a machine-learning framework
in order to extract membranes in serial section TEM images. In the graph cut framework each
pixel p is mapped to corresponding labels y, € {0, 1} such that the entire labeling y for all pixels
minimizes a given energy function E(y). In their work, the authors focused on the development
of a new energy term E,. that models the Continuation principle with the aim of obtaining more
accurate gap completion in the membranes imaged. Intuitively, lines as well as membranes are di-
rected structures. By the principle of good Continuation, well-classified parts of directed structures
should enforce smoothness in labels along their orientation. This can be formulated by E,.(y,, y4):
05 (ps Yg)

: 3.27
| d(p,q) G:27)

where u,, is a unit vector with the orientation of a straight line between pixels p and ¢, and v, is

(xp - xm)2
202

Eoc(yp,yg) = Kvp, tpg)| - €xp [-

a vector directed along the membrane. The length of v, reflects the orientedness of the image at

p. For this purpose the authors used a directed filter consisting of a straight line with a thickness
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equal to the average membrane thickness in the training images. The inner product (v,, u,,) is
then estimated by the response to this filter oriented according to u,,. The value of x,, is given as
the average gray value of membrane pixels, and o> can be estimated as the variance of these gray
values. Thus, the difference (x, — x,,) weights the energy term according to the similarity of x, to
the typical gray value of a membrane. The factor 6, (y, y4) is not symmetric and 6, (y,, y,) = 1 for
vp = 1,y, = 0and 6_,(yp,y,) = O for all other cases. This asymmetric definition ensures that Eg.
only penalizes cuts that violate smoothness along the direction of membrane pixels. The proposed

energy terms allow for contour completion in situations where gradient flux-based methods fail.

3.4.1.4 Combining Color and Boundary Information

By using the color cue where close-by pixels with similar colors are likely to belong to the same

image region, one can define the color-based model S 5 [105]:
Sij = exp[ = Oullxi = )1 = Ollgi - 2,1°] (3.28)

where x; and g; denote position and color of a pixel i respectively. Kim et al. [105] noted that
connecting pixels by color is useful when linking disjointed object parts, but results in errors if the
background has a similar color distribution to the object parts. The authors also noted that edgeness
is one important boundary cue to detect a potential object boundary. The boundary-based similarity
model § 5. is formulated by measuring the magnitude of image edges between two pixels:

S = exp[ — max 0yl ] (3.29)

i'eij

where ij is a straight line joining two pixels i and j, and f; is the edge strength of a pixel i. This
boundary-based model is particularly useful when background clutter has a similar color to the
object body. However, since it uses only edgeness along the straight line between two pixels
without considering all possible paths, texture edges often disturb the long-range affinity estimation
[105]. To make the appropriate similarity model in all natural images, it is helpful to combine these

two grouping cues with a parameter « for the combined similarity model S f‘J” as follows:

s = ,/ngsf;.msf;.. (3.30)

However, this model still has some weakness in the long-range affinity estimation, since it is for-

mulated by naively mixing two simple color and boundary affinity models.

3.4.1.5 Grouping Superpixels

For the purpose of grouping superpixels' into a saliency structure that approximates the mitochon-

dria contours, Ghita et al. [76] defined the following three separate similarity functions:

1G) + 1())

813, j) =exp[ - 2 | (3.31)
1G) - 1(j
$a(i. ) = exp[ - LI, (3:32)
2a2

IPlease, refer to page 7 for the definition of a superpixel.
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d(ci, cj)
2
2a3

S3(i, j) = exp[ - | (3.33)
where /(i) and ¢; are the mean intensity and the centroid of the superpixel with index i. These
three functions return values in the interval (0, 1] and they implement low-level properties that
encode the intensity and spatial constraints that are characteristic of mitochondria contours. The
function §'; implements the constraint that the superpixels associated with mitochondria contours
are defined by low intensity values. The function S, enforces an intensity continuity constraint
(i.e. S returns values closer to 1.0 when the mean intensity values of the superpixels i and j are
similar). The function S5 implements a spatial continuity constraint that assigns larger values for
superpixels whose distance between their centroids ¢; and c; is small. The parameters a1, a, and a3
are parameters that weigh the strength of each constraint in the calculation of the similarity matrix.
In addition, the intensity values and superpixel distances are normalized in the range [0, 1]. The

combined final similarity model S;; is then calculated as follows:

Sij =810, ) x Sa(i, j) X §3(, J) (3.34)

3.4.1.6 Integrating Texture and Contours

Malik et al. [137] proposed a similarity model that integrates texture and contour information.
Pairwise texture similarities were computed by comparing windowed texton histograms, where the
windows are centered around the two pixels being compared. Then, one approach to cue integration
is to define the weight between pixels i and j as the product of the contribution from texture and

that from the contour:
Sij=Si5 xST¥ (3.35)

The formulation of the orientation energy S leC in (3.36) allows one to extract sub-pixel localization
of the contour by finding the local maxima in the orientation energy OFE(x) perpendicular to the
contour orientation, where the confidence of this contour is given by:

OE(x)
Sy =ewl-mx o
ij

(3.36)

and where M;; is the set of local maxima along the line joining pixels i and j. In other words, two
pixels have a weak link between them if there is a strong local maximum of orientation energy
along the line joining the two pixels. On the other hand, if there is little energy, for example in
a constant brightness region, the link between the two pixels is strong. In order to derive texture-

based similarity model, authors use the y? test for comparing windowed texton histograms:

1 <& [hik) = hj(k)T?

2 24 o + s 337

X’ (his hj) =
where h; and h; are the two histograms. Then, Sl.TjX is defined using y? distance between texton
histograms at pixels i and j:
X 2(hi, b))

SiTjX =exp|
orx

] (3.38)
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Table 3.4.1: Summary of Reviewed Similarity Models.

Ref. Eq. Proximity Intensity Texture Contin Lines Color Edges Contour SP
[155] (3.23) v

[166] (3.24) v v

[25]  (3.25) v v

[166] (3.26) v v

[103] (327) v v

[105] (330) v N

[76]  (3.34) v v v
[137] (335 v v

The abbreviations used are SP (for Superpixels) and Contin (for Continuation).

In graph-based spectral clustering approaches, the overall segmentation quality depends mainly
on the graph affinities [105]. Therefore, to produce high-quality segmentation with object-level
details, it is important to integrate different local grouping cues. Table 3.4.1 shows that all models

use the Proximity cue to define distances between image pixels, lines, data points or superpixels.

3.4.1.7 Learning Affinity Models

The trend in machine learning applications to biomedical image segmentation is in learning affinity
functions. Fowlkes et al. [69], for example, studied the problem of combining region and boundary
cues for natural image segmentation within the semi-supervised machine learning framework. The
authors employed a large database of manually segmented images in order to learn an optimal
affinity function between pairs of pixels. These pairwise affinities can then be used to cluster the
pixels into visually coherent groups. Region cues are computed as the similarity in brightness, color
and texture between image patches. Boundary cues are incorporated by looking for the presence
of an intervening contour, a large gradient along a straight line connecting two pixels.

The authors in [69] used a dataset of human segmentations to individually optimize parameters
of the patch and gradient features for brightness, color, and texture cues. Then they quantitatively
measured the power of different feature combinations by computing the precision and recall of
classifiers trained using those features. The mutual information between the output of the classifiers
and the same-segment indicator function provided an alternative evaluation technique that yielded
identical conclusions. The best classifier made use of brightness, color, and texture features, in
both patch and gradient forms. For brightness, the gradient cue outperformed the patch similarity.
In contrast, using color patch similarity yielded better results than using color gradients. Texture
was the most powerful of the three channels, with both patches and gradients carrying significant
independent information. Interestingly, as reported by authors, the proximity of two pixels did not
add any information beyond that provided by the similarity cues.

Another work on learning affinity functions is given by Kim et al. [105] where the authors
employed a semi-supervised learning technique in order to learn optimal affinities from the test
image without iteration. Since these well-defined full-pairwise affinities are directly used in the
multi-layer spectral segmentation framework, the algorithm produced high-quality segmentation

results with object details in natural images.
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3.5 Summary of Background Research

We have reviewed the state of the art on cellular and mitochondria segmentation in Section 1.3 and

Section 2.1. A summary of the reviewed methods is given in chronological order in Table 3.5.1.

Table 3.5.1: Summary of background research on cellular and subcellular segmentation methods.

Authors ‘ Structures Supervised Unsupervised Other Methods | Year
[157] cells CNN EBM | 2005
[216] mito Gentle-Boost Gabor filters | 2008
[156] memb, mito, cells Watersnake | 2008
[4] cells NN PCA 2009
[193] cells, mito Adaboost Ray | 2009
[153] cells, mito Nearest Neighbor Textons | 2009
SVM, AdaBoost Level Sets
[205] cells Graph Cut 2009
[103] membranes Random Forest Graph Cut Haar, PG | 2010
[113] memb, mito Radon | 2010
[3] cells Graph Cut 2010
[141] membranes Scale-Space | 2011
[111] membranes Random Forest Superpixels | 2011
[132] mito, cells SVM k-means Superpixels | 2012
Graph Cuts Ray
[37] membranes DNN 2012
[14] synapses AdaBoost Superpixels | 2012
[122] membranes CNN Graph Cut PG | 2012
[92] cells k-means 2013
[184] mito Random Forest Algebraic | 2013
Curves
[162] particles Morphology | 2013
[154] synapses SVM, AdaBoost Texture,Shape | 2013
[76] mito Affinity Superpixels | 2014
Factorization PG
[203] cells Random Forest ilastik | 2014
[227] cells Watershed | 2014
[229] cells Random Forest Multicut Superpixels | 2014
[172] cells, membranes CNN 2015
[198] membranes RNN 2015
[188] cells SVM HMM, Viterbi | 2015
Baum-Welch Superpixels
[109] cells CNN MIL | 2016
[219] cells Thresholds | 2016
[196] particles Watershed | 2016
[125] mito AdaBoost Sparse Region | 2016
Growing
[138] synapses, mito Bayes PCA, Graph Cut CRF | 2016

The columns in gray show the combined (supervised and unsupervised) machine learning methods.

Abbreviations used are memb (membranes) and mito (mitochondria).
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In this thesis, we have reviewed many more neural networks architectures, dimensionality reduc-
tion algorithms, cellular and subcellular segmentation approaches, graph-based spectral clustering
algorithms, classifiers, affinity models and feature extraction techniques. Table 3.5.1 shows only
the 33 reviewed methods which are related to the cellular and subcellular image segmentation. It
can be seen that many modern segmentation approaches often combine unsupervised and super-

vised machine learning formulations in addition to the feature extraction techniques.

Table 3.5.2: Statistics of the reviewed segmentation methods.

Methods References

9 [205,103, 3,132, 133, 122, 76, 229, 138]
Combined Supervised and Unsupervised 7 [4, 103,132, 133, 122, 229, 138]
Superpixels 7 [111, 133,132, 14, 76, 229, 188]
Deep Learning (CNN, DNN) 5 [157, 37,122,172, 109

5

5

5

7

Spectral Clustering

1
AdaBoost [193, 153, 14, 154, 125]
Random Forest [103, 111, 184,203, 229]
1
]

SVM [153, 154, 188, 132, 133
Not Machine Learning-based Methods

[156, 113, 141, 162, 227, 219, 196

The numbers in Table 3.5.2 show how many authors out of the 33 reviewed papers are falling
into the corresponding categories of methods. In general, the methods reviewed targeted segmen-
tation of three types of structures. These are cells (nanoparticles), mitochondria and membranes
(synapses). It can be seen that there are many diverse solutions which targeted specific structures
and which are based on different concepts. Most approaches to the segmentation of mitochondria
have applied supervised machine learning with such classifiers as Adaboost, SVM and Random
Forest. To compare the performance of the methods reviewed is difficult because they are based on
different architectural ideas and are validated on different datasets.

The synapses and membranes are elongated thin structures and are usually darker than intra-
cellular space. The features reviewed included Continuation Energy, Gradient flux, Haar, Radon,
intensity and superpixels. These features can also be applied to mitochondria in cases where the
outer boundary is clearly defined by the membrane. For irregularly shaped mitochondria, Ray fea-
tures have been shown to outperform the Haar features [193]. Superpixels were frequently used in
combination with spectral graph-based methods to reduce the inial complexity of the input data.
Superpixels are also used in the open source machine learning and segmentation software toolkit
ilastik which is available since 2011. This user-interactive tool also uses Random Forest-based
training on the labeled data, and can be used for the detection of cells [203] and membranes [111].

All supervised and combined machine learning methods rely on large manually annotated data.
Our review shows that unsupervised machine learning can be superior in discovering the underly-
ing structure in the input data without prior knowledge about the targets. There are also some
reviewed papers which use purely unsupervised machine learning in the context of biomedical
imaging. Graph-based spectral clustering approaches attempt to integrate various feature cues into
the affinity models. Some papers considered Gestalt properties of the perceptual organization of

the human visual system? and used additional classifiers to learn parameters of the models.

2Table 3.5.1 has an entry PG (Perceptual Grouping) for these works
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Deep learning is a rapidly growing research area. Because of this emerging field, we have included
works on CNNs. Most of the reviewed CNN-based methods are purely supervised. Leena et al.
[122] combined a CNN to learn the affinity graph based on perceptual grouping constraints, with
the Graph Cut algorithm. A modified CNN which has max-pooling layers instead of sub-sampling
layers, was proposed by Ciresan et al. [37] to segment neuronal structures in EM images. Ning
et al. [157] have combined the CNN with EBM (Energy Based Model) and Marquez-Neila et al.
[138] have used CRF (Conditional Random Field) to model arising probabilistic dependency.

Due to emerging new hardware platforms, CNNs have recently shown a considerable speed-
up factor in computational time. However, CNNs are still very complex and require an immense
amount of annotated data. In addition, they have a very large number of parameters to train and
their results are difficult to reproduce. Currently, deep learning solutions appear to outperform
the established computer vision approaches. Some concerns have been expressed that CNNs may
actually replace these approaches to segmentation and classification tasks and discourage the the-
oretical research [161]. However, we can see from Table 3.5.1 that non-machine learning-based
methods are being also developed in parallel to CNNs and machine learning tools. Some works
reviewed included such classical image processing methods as Thresholds, Mathematical Mor-
phology, Watershed and Sparse Region Growing. Also, Active Contours, Level Sets, Watersnake
and Algebraic Curves have been applied in a number of publications.

The quality of spectral image segmentation or input domain partitioning in general is directly
related to the cue integration and mathematical formulations of similarity measures. The latter
often contain application-dependent and non-linear kernel functions in order to allow the linear
separability of clusters in the feature space. Because this topic is very relevant to this thesis, we
have discussed the concepts of kernel-SVM, kernel-PCA and kernel-ICA algorithms in detail.

A survey on unsupervised neural networks provide insight into how dimensionality reduction
and clustering algorithms can be implemented using neural architectures. The networks reviewed
which are based on AE (AutoEncoder) architectures included Neural-PCA (which can perform
kernel-PCA) and linear Neural-ICA. Kernel-SVM can also be implemented with a feedforward
neural network consisting of two hidden layers [39]. We have found only one account of applying
an RNN to the segmentation of neuronal structures in EM images in the work by Stollenga et al.
[198]. Here, the authors developed a multidimensional RNN architecture which is based on the
idea that three-dimensional data can be modeled as a sequence of two-dimensional planes. So far,
we have not seen any biomedical imaging applications of SOM-based networks.

Our interest in very large scale spectral clustering has originated from the necessity to solve
large scale pixel classification problems. We have discussed the numerical solutions to very
large scale spectral clustering, its modifications, alternatives and possible solutions for asymmet-
ric datasets. These methods can be used for any large datasets which arise in areas other than
image processing. Some works presented hardware-based HPC implementations. Other methods
are based on Nystrom, column-sampling and low rank approximation techniques. One alternative
to spectral dimensionality reduction is ICA, which enforces an additional constraint of statistical
independence between the source signals. Other combined approaches were kernel-ICA, CCA, a
combination of kernel-PCA and ICA and the Asymmetric Discriminant analysis method. We did

not find any work which applied these algorithms to electron microscopy image segmentation.
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Chapter 4

Localization of Mitochondria based on
Clustering Extracted Line Segments

This chapter is concerned with the grouping of elementary line segments which are comprised of
pairwise projected entities'. In a dynamic and densely-cluttered scene we consider a feature-driven
recognition of objects with predominantly linear or quasi-linear structural elements. The motiva-
tion arises from the field of biomedical imaging such as the detection of mitochondria in a complex
subcellular environment, and we specifically target the localization of mitochondria of lamellar
and tubular morphology. Subsequent line extraction operations result in a set of line segments
with different lengths, density and orientations. We observe that a distinct criterion to distinguish
such a salient group of line segments from the background can be formulated as Projectivity. We
introduce a new similarity measure Projection-to-Distance Ratio which combines the proximity
and the amount of spanned orthogonal projections between two line segments. Furthermore, we
perform investigations on the Euclidean properties of the proposed similarity measure. We con-
struct the similarity matrix and show that it translates into an indefinite pseudo-covariance matrix.
In order to test the similarity measure introduced we examine the applicability of nearest neighbor
and k-means clustering methods for the grouping of line segments.

We organize this chapter as follows: in Section 4.4 we establish notations for elementary line
segments and derive the relations for pairwise orthogonal projections. Furthermore, we introduce a
combined similarity measure, construct a similarity matrix and analyze its properties. The grouping
strategy follows the combined framework of the kernel-PCA and CSE (Constant Shift Embedding)
which has been outlined in Chapter 2. We present experimental results for synthetic data sets
in Section 4.7 and the results for application-specific TEM data in Section 4.8. We finish with

discussion and concluding remarks in Sections 4.9 and 4.10.

4.1 Introduction

Eight decades ago Gestalt psychologists formulated the fundamental principles of the human vi-
sual recognition system. Our ability to perceive and identify non-accidental and significant ob-

jects in a complex environment relies on the fact that we intuitively favour the organization of

The shorter version of this chapter has been published in Pattern Recognition Letters Journal (Elsevier, 2015) [51]
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Figure 4.1.1: Line Grouping objectives. (a) Set of line segments with different lengths, density and
orientations. (b) Two distinct elongated objects of interest. (¢) Lamellar-type mitochondrion from
mouse epididymis (image source: American Society for Cell Biology (ASCB)). (d) Tubular-type
mitochondria from hamster’s adrenal cortex cell (image source: courtesy of ASCB).

objects exhibiting Proximity, Similarity, Continuation, Symmetry, Closure and Familiarity proper-
ties [24, 131]. The formalism of perceptual organization governs and influences artificial grouping
strategies. Grouping itself as a process can vary from grouping of low-level geometric primitives to
grouping of complex objects. Any object can be parameterized and represented by a token which
can be used for grouping.

A line segment, often referred to as an Elementary Line Segment (ELS), forms an important
category of low-level primitives. A network of short line segments is usually extracted from an
image using Hough transform, line fitting or curve smoothing operations on the edge map. Lowe
[131, 130] examined the connectivity relations between line segments from the perspective of
perceptual organization, and postulated inferences of Proximity, Collinearity, Parallelism, Equal
Spacing, Cotermination and Convergency To A Common Point as a combination of basic Gestalt
laws. The decision on how to analyze a set of linear segments and to extract salient structures
from the complex background depends greatly on the underlying application. Much attention in
the literature is given to the detection of salient curves and lines composed of a number of short line
segments [6, 75, 185]. Sha’ashua and Ullman [185] defined a global saliency measure to identify
smooth curves and use the instances of Collinearity, Cotermination and Parallelism among straight
line segments. Jang and Hong [98] considered the detection of long line segments and indirectly
applied the inferences of Collinearity and Proximity. Stahl and Wang [195] applied the Symmetry
principle to the detection of closed convex boundaries with symmetry.

We now examine a new principle for the grouping of line segments. Fig. 4.1.1(b) shows two
synthetic elongated objects A and B with flexible shapes and transverse elements. In the following
we consider two perspectives from which this example can be viewed. The first is closely related to
the field of perceptual organization and concerns our ability to recognize the objects A and B from
the set of lines in Fig. 4.1.1(a) without any a priori knowledge about their shape and composition.
The second belongs to the computer vision domain and attempts to establish analytic relationships

between line segments which are necessary for the recovery of both objects.
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Despite being conceptually different, the two approaches are more complementary than contra-
dictory. Naturally, the visual scan of Fig. 4.1.1(a) results in a number of different interpretations
depending on the observer’s preference for factors such as parallelism, density, size or collinearity,
and also on the observer’s experience with similar structures.

At first one may argue that the lower part of Fig. 4.1.1(a) appears to be the more salient.

However, it is an acceptable assumption that in a search for a smooth contour, we may at some
stage discover object B by cognitively filling the gaps between its transverse elements.
This process can be described by the Continuation and Closure principles. Having realized, in
other words learned, that this discovery may stem from a causal relationship, we may proceed with
scanning the space to register object A. Encouraged by this perspective, we introduce a new simi-
larity criterion denoted as Projectivity. We reason that this measure uniquely resolves the problem
of forming object B, and more particularly object A, which otherwise exhibits no similarity in size,
orientation or density of its line segments. Indeed, every line segment in A and B is bounded by a
"just right" amount of projection of its two spatial counterparts.

The aspect of randomness is particularly interesting in this context. It has been noted by Lowe
[131] that features that resemble a non-accidental object are likely to be located close in space.
This fact constitutes our preference for an orthogonal projection which has an inherently geometric
connection with the notion of a shortest distance. Although orthogonal projections are an integral
part of various grouping methods [45, 195], an investigation on a stand-alone similarity which
would describe orthogonally projected line segments has not been previously reported.

Lowe [131, 130] applied parallel projections to the detection of three-dimensional objects
from two-dimensional images. Studies on trapezoid constructions indirectly anticipated the usage
of orthogonal projections of line segments onto a common reference axis. Applications therein
considered the problem of point location and trapezoidal maps [45] and the detection of symmetric
boundaries [195]. This formalism is also related to the work by Jang and Hong [98] of measuring
the overlap between two line segments in the case of co-linear grouping and endpoint linking.

Contour integration problems have been well studied in the literature. Some important works
include contour processing by Heitger et al. [90], the stochastic completion fields of Williams and
Jacobs [225], the work of Guy and Medioni [86] and that of August et al. [10] on contour frag-
ment grouping. In particular, August et al. [10] explored the idea that occlusion can give rise to
large gaps. This process creates a long-distance contour fragment grouping problem. The authors
proposed the long-distance principle that those fragments should be grouped whose fragmentation
could have arisen from a shared, simple occluder. The gap skeleton was introduced as a represen-
tation of this virtual occluder. The algorithm sought the groups that most naturally accounted for
the data in the sense of perceptual occlusion. In particular, two curve endpoints could be grouped
only if they had a gap skeleton computed using projection for all skeletal points.

Guy and Medioni [86] introduced an algorithm capable of highlighting features due to co-
curvilinearity and proximity. The authors suggested a maximum likelihood directional vector field
describing the contribution of a single unit-length edge element to its neighborhood in terms of
length and direction. This field could reveal perceptual phenomena such as endpoint formations
and straight lines. The output of the algorithm is a set of oriented features with an associated

strength reflecting its saliency. In the assignment of probabilities to the field, the authors considered
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two short edge segments, perpendicular to each other and apart. This scenario was a middle point
between a choice of a connection by a sharp junction and a connection by a smooth curve. In
addition, angles <« 90° suggested a corner, while angles > 90° suggested a smooth connection.

Heitger et al. [90] presented a computational model of a contour mechanism first identified by
neurophysiological methods in monkey visual cortex. The scope was the definition of occluding
contours in static monocular images. The authors considered the formation of occluding contours
to be a statistical process. They assumed that foreground and background are statistically inde-
pendent. The authors introduced a concept of ortho curvilinear grouping. Ortho grouping can be
applied to terminations of the background, which tend to be orthogonal to the occluding contour.
This grouping model also identifies the direction of figure and ground at such contours.

Williams and Jacobs [225] introduced an algorithm and the representation-level theory of il-
lusory contour shape and salience. Their model was derived from an assumption that the prior
probability distribution of boundary completion shape can be modeled by a random walk in a
lattice the points of which are positions and orientations in the image plane. The authors character-
ized the distribution of completion shapes using the mathematical device of a particle undergoing
a stochastic motion. Their random walk model embodied the Gestalt principles of proximity and
good continuation, which originate in the statistics of the environment in which human visual sys-
tems evolved.

Grossberg and Mingolla [83] investigated the neural dynamics of form perception and bound-
ary completion. In their paper, the authors described the use of a real-time visual processing theory
to analyze real and illusory contour formation and contour and brightness interactions. Two par-
allel contour-sensitive processes interacted to generate brightness, color and form estimates. A
boundary contour process was sensitive to orientation and amount of contrast, but not to the di-
rection of contrast in scenic edges. It synthesized boundaries sensitive to the global configuration
of scenic elements. A feature contour process was insensitive to orientation, but sensitive to both
amount of contrast and to direction of contrast. The proposed model of illusory contour formation
involved repeated convolution with a large-kernel filter. This kernel resembled the one of Williams
and Jacobs [225], but did not represent the Green’s function of a stochastic process. Grossberg and
Mingolla’s network was complex and its convergence properties were difficult to analyze. Part of
this complexity stemmed from their desire to model, in a comprehensive way, the many different
forms of stimulus which can elicit illusory contours. No other model, including that of Williams
and Jacobs, attempted to be this comprehensive [225]. Although, contour integration and shape
completion problem is not the main topic of this chapter, we discuss the applicability of our Pro-

Jjectivity measure to the grouping of co-linear and co-circular line segments in Section 4.9.

4.2 Feature Extraction Methods

Our motivation to explore the role of projections in line grouping originates in the field of nano-
biophotonics and imaging of subcellular regions. Mitochondria form an important category of
membrane enclosed, on average 200nm large organelles which reside inside every living cell. Mi-
tochondrial morphology depends on the type of biological tissue and undergoes changes during

induced or naturally occurring biochemical processes [199]. This fact accounts for the vast range
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(a) (b)

Figure 4.2.1: Comparison of TEM images of clustered versus well-separated mitochondria. (a)
A TEM image provided by our biomedical partners from RCSI containing clustered mitochondria
in DU-145 human prostate cell. (b) An electron micrograph from [199] showing relatively well
separated mitochondria in human HeLa cells.

of mitochondrial shapes and textures, and challenges a unified approach to localization and seg-
mentation of these structures in electron microscopy images.

In many cases, transmission electron microscope images of mitochondria show characteris-
tic quasi-linear structural elements (Fig. 4.1.1(c)-(d)) which can be converted to the proper line
segments. Therefore a structural approach to the recognition of mitochondria exhibiting a predom-
inantly linear or quasi-linear pattern may benefit from our Projectivity inference. However, we also
make some assumptions when processing the subcellular microscopy images. We assume that the
mitochondrion is always present, and that we know the number of mitochondria a priori. Because
we are using the k-means clustering algorithm, this fact requires setting the value for the number
of clusters k. We also assume that the inner folding patterns are consistent and always present.
For abnormal cases of mitochondrial morphology at the later stages of apoptosis, the inner folding
patterns change and our proposed method does not work.

Fig. 4.2.1 shows two different subcellular image settings. Fig. 4.2.1(a) shows a challenging
feature extraction scenario, as in our case with clustered and deformed organelles. Well-separated
mitochondria with distinctive inner membrane folding and shapes are shown in Fig. 4.2.1(b). In
such a setting, a pattern recognition and segmentation approach could focus, for example, on the
boundaries or the shape features of mitochondria.

Geometric descriptors such as, for example, Histograms of Oriented Gradients [43] have been
proven to be highly efficient in the human detection task. The feature vector for the HOG im-
plementation is obtained by dividing the image into small connected regions and for each region
compiling a histogram of gradient directions for the pixels within the region. Haar-like features
are based on the gray intensity and are insufficient to describe an object’s texture. As noted by
Smith [193], Haar features and HOG are inefficient at detecting highly deformable objects such as

biological cells. Haar- and HOG-based weak learners are not particularly well-suited to this task
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because they depend on reliable cues defined at precise locations, such as the nose appearing in
the center of a face. To overcome these limitations, Smith et al. [193] developed a Ray feature
detector for well-separated mitochondria with irregular shapes. Rays exploit the observation that
while we cannot predict the precise locations of characteristic image features for highly deformable
objects, we can predict their locations relative to one another, or relative to certain other locations.
Although Ray descriptors were specifically designed to describe structures with strong edges, such
as mitochondria, they achieve their best performance when used in combination with gray value
histograms [132]. Similarly, Local Binary Patterns have been extensively used for describing tex-
tures, one of their features being their robustness to illumination changes. However, as shown by
Cetina et al. [30], they do not perform well in electron microscopy images possibly because the
latter have a very strong background noise. An object’s texture information can be also obtained
through the statistics of Gray Level Co-occurance Matrix. Combining GLCM and Haar features
can improve the descriptive capability.

It has been shown empirically that trying to segment subcellular structures in neural tissue im-
ages, for example, using only geometric or textural features, is not very effective [30]. The Radon
descriptors, which also involve computation of line segments, were proposed as a solution to this
problem. Such feature descriptors are designed to leverage both the texture and the geometric in-
formation present in such images to segment mitochondria. However, in the case of both deformed
and clustered mitochondria, as shown in Fig. 4.2.1(a), these approaches may not work. The task of
finding mitochondria here is made even more difficult by the presence of many other irregular ob-
jects. It can be seen from Fig. 4.2.1(a) that at least some of mitochondrial inner membrane folding
can be well-approximated by line segments. In this case, the Haar [103] or Radon [113] features
can be used to enhance the membranes. Thus, the guiding idea of our approach is to extract and
to group the line segments, and thus to obtain a localization marker which can be used in the sub-
sequent outer mitochondrial contour extraction. Also, extracting and connecting line segments is
a less difficult and less computationally expensive task than detecting the mitochondrion regions

using, for example, the texture and boundary feature detectors discussed.

4.3 Grouping Objective

We outline the basis for the grouping methodology presented in this work by providing an exam-
ple. Fig. 4.3.1(a) shows two synthetic objects C and D with intrinsic linear features and dynamic
shape. All line segments belonging to object C feature different lengths, orientations and density.
One possible way to recover the original shape of either object is to link closest line segments by
their spanned orthogonal projections. In Fig. 4.3.1(b), we proceed from the "head" line segment to
the "tail" line segment of object C, while iteratively constructing one-sided orthogonal projections
of one line segment onto its next neighbor. In Fig. 4.3.1(c) we construct double-sided or pairwise
orthogonal projections and observe that the total connected area yields a more accurate estimate
of the original shape of both objects. Therefore, for the aim of grouping we do not pose any con-
straints on the length, orientation or density of line segments, but rather consider the combination

of the following grouping cues:
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Figure 4.3.1: (a) Two synthetic objects C and D, composed of groups of line segments. (b) Case
of one-sided orthogonal projections between two closest line segments. (¢) Case of double-sided
orthogonal projections. Objects C and D aim to model mitochondrial morphology.

(i) Projectivity: Line segments form a cluster with pairwise orthogonally projected entities.

(i1) Proximity: Line segments in a cluster follow some proximity principle in Euclidean space.

4.4 Similarity Measures

A line segment X can be described by a vector notation x and can be sufficiently parameterized by
its two end points s, and ey: X = [sy, e,]. From this representation, the secondary parameters such
as center cy, length [, and direction a, of a line segment, and the angle between two line segments
A, @ ZX,y, can be directly inferred by means of elementary trigonometry and algebra. The basic
relationships between two line segments are shown in Fig. 4.4.1(a). We define the distance D

between two line segments, X and Y, as the Euclidean distance between the centers ¢, and cy:
D(X,Y) : D(cy, Cy) =lcx - Cyl lex = Cle = ”cwH “4.1)

The "spine" IT of the detected cluster can be represented by a polygon with vertices ¢y, Cpyt15 s Ct
given by the centers of elementary line segments. The polygonal length between the start ¢; and
the end ¢y, of a polygon is given as:

M-1
M(cr,em) = ), D(ems Crt) 4.2)

m=1
The vector ¢,, describes the polygon edge (cy, cy) and determines the angle ¢, : ZX,¢,,. The
complete set of parameters used in all of the follow calculations comprises: {s, e, c, @, Ay, @}.
4.4.1 Orthogonal Projections
Let PxY be named the left-projection and represent the orthogonal projection of line segment Y

onto line segment X. The right-projection is the orthogonal projection of line segment X onto line
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Figure 4.4.1: Variables involved in the computation of a pairwise similarity measure for grouping
two line segments. (a) Notations. (b) Right-orthogonal projection. (c) Left-orthogonal projection.

segment Y and is denoted by Py X. In order to obtain PyX in closed form, we define two supporting
vectors a and b (see Fig. 4.4.1(b)) as follows: a = [s,,e,] and b = [s,, s,]. The angles 6, and 6, are
directly related to the dot product between the corresponding vectors: cos8, = (a - yT) /d1all - lylD
and cos 6, = b - y' /(||b]| - |lyl]). The orthogonal projections of vectors a and b onto line segment Y
therefore are Pya = ||a|| - cos 6, and Pyb = ||b|| - cos 6. As an analogy, in order to obtain the PxY
projection, we define two additional support vectors ¢ and d as: ¢ = [sy,e,] and d = [sy, s,]. Let

us introduce a binary cost function €Q:

1, ifcos8 > 0;
Q= _ 4.3)
0, otherwise.

Then the orthogonal projections PyX and PyY are:

PyX =| Pya-Q, — Pyb-Qy |,

4.4
PXy=|PXc'QC—de'Qd|.

The projected areas A;, and Ag, spanned by the left- and the right- projections can be obtained as:

Ag = |la]| - sin6, - PyX — 1/2 - (PyX)? - tan A,

] 5 4.5)
Ap =|c|| - sinb, - PxY —1/2 - (PxY)~ - tan A,

The proposed Projectivity grouping cue is defined by the orthogonal projections in (4.4) and is

further factored into the final similarity model presented next.

4.4.2 Projection-to-Distance Ratio

We are interested in expressing a similarity between two line segments X and Y as a combination
of their pairwise orthogonal projections P as well as their center-to-center distance D. Initially, we
reserve higher similarity scores for higher values of P. In order to factor D into the joint similarity
expression, we consider now the situation where we are given a set of three parallel and equal
length line segments X, Y and Z with equal orthogonal projections PxY = PyZ = PxZ such that
D(X,Y) < D(X,Z). Here, we would like to assign a higher similarity score to the closer-lying pair
of line segments (X, Y) and a lower score to the more remote pair (X, Z). This relational tendency of

maximizing the outcome with the increase of P and the simultaneous reduction of D can generally
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be represented by a variety of models. In this work, we refrain from using a linear P — D model in
order to avoid negatively valued similarities. Instead, we apply a non-linear inverse model in the
form of a Projection-to-Distance ratio which we denote as the R similarity ratio. With the notations
for the left- and right-orthogonal projections defined above, the combined similarity measures are
defined as:

PxY PyX

R&X.1) = DX, Y)’ R(¥.X) = DX, Y)

(4.6)

Generally, for a similarity measure R to be considered a metric on the finite measurement space £
it has to satisfy the following four conditions for every X, Y, Z € E [9, 152]:

o R(X,Y)=o0if X =Y, (Identity Axiom)

e R(X,Y) > 0, (non-negative and real valued)

o R(X,Y)=R(,X), (Symmetry Axiom)

e R(X,Y) <R(X,Z)+ R(Y,Z) (Triangular Inequality)

We examine the R ratio for compliance with the above conditions. The identity axiom is the
declaration of self-similarity, which implies that the distance measure D(X, X) is zero, but the joint
similarity measure R(X, X) is an infinitely large number. It can be seen from Figure 4.4.1, that if
X =Y, thenvectorsa=X,b=0,¢=Y,d=0and cosb,, = 1. Furthermore, as P(X, X) = | X]|
and P(Y,Y) = ||Y||, we arrive (supported by continuity arguments) at the self-similarity expression:

P(X, X . IX
R(X,X) = lim ( ) =11mu=oo
D—0 D(X,X) D-0 D

(4.7)

We therefore infer that the identity property is satisfied because R(X, Y) = oo for the case of identi-
cal line segments X and Y.

The second axiom holds on the basis of the definitions of orthogonal projections in (4.4) which
are defined as non-negative and real valued numbers, R(X,Y) > 0.

By providing a counter example in Fig. 4.4.2 and Table 4.4.1, we demonstrate that the sym-
metry condition is not satisfied as the left projection PxY does not equal the right projection PyX.
This further translates to R(X, Y) # R(Y, X). The weak Triangular Inequality does not hold for all
X,Y,Z € E as in the example of R(X, Y) ﬁ R(X,Z) + R(Y,Z) (Fig. 4.4.2 and Table 4.4.1).

Table 4.4.1: Supplementary Data for the Set of Line Segments in Fig. 4.4.2

L [ XY X [X2) | @X) [ (Y2 | ZY) ]
P 4.8 5.75 3.55 3.6 0 0.3

D| 52 5.2 6.6 6.6 632 | 6.32
R | 092 1.1 0.54 | 0.55 0 0.05

To conclude, two out of four necessary conditions are not fulfilled and thus the R-ratio is not metric.
Because the R-ratio is not metric, we conclude that it is also a non-Euclidean similarity. Caution
should be exercised in the reverse case: if a similarity measure has been proven to be metric, then

it still remains to prove that it is Euclidean [64].
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14

--- D(Y,Z)
‘‘‘‘‘ D(X,2) ||

12r

101

Figure 4.4.2: An example of a set of line segments {X,Y,Z} that meet neither the symmetry nor the
triangle inequality metric requirements for the R similarity measure.

Table 4.4.2: Notations used throughout this chapter.

2
3

ARRCOX

skew

E
g

TERLE RO NT Z AP Q

m§§

asymmetric matrix containing pairwise orthogonal projections
symmetric matrix containing pairwise Euclidean distances
asymmetric similarity matrix

symmetric part of R

skew-symmetric part of R

Gram matrix used in the kernel-PCA framework

dissimilarity matrix with elements a;;

matrix containing squared dissimilarities a?

1

number of line segments !

N-vector of ones

N X N identity matrix

projection matrix on the orthogonal complement of py
centralized pseudo-covariance matrix

matrix containing eigenvectors as columns

matrix containing eigenvalues on the main diagonal
minimal eigenvalue of A

embedded centralized pseudo-covariance matrix
kernel-PCA based feature vectors

number of dimensions retained after the dimensionality reduction step
number of k-means clusters

number of noise-related line segments

number of signal-related line segments

deviation from Euclideaness

4.4.3 Similarity Matrix and its Properties

For the grouping of N line segments, we construct a square N X N similarity matrix R which

captures the pairwise relationships between all N line segments. The corollary of the violated
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symmetry axiom is the asymmetric structure of the similarity matrix R with the following entries

for row i and column j indices:

R(X,Y), if i< j, left-projections;
R(, j) =1 R, X), if i> j, right-projections; 4.8)
00, if i = j, diagonal.

As can be seen from (4.8), the upper triangular part of matrix R intrinsically contains left-projections
PxY while the lower triangular part contains right-projections PyX as defined in (4.4). The ma-
trix in (4.9) is an example which demonstrates the inherent asymmetry property and depicts the

relationships between four line segments vy, v2, v3 and v4.

Vi V2 V3 V4
Vi 00 0.9073 0.5867 0
vy 1 0.5145 00 1.4202 0
R = 4.9)
vy | 0.6199 1.3868 00 0.0163

V4 0 0 0 [©9)

In addition to the co-valued diagonal, the presence of zero-valued or "missing" elements is also
peculiar. A zero entry in matrix R, such as R(v4,v3) = 0 indicates that the orthogonal projection
of line segment v3 onto line segment v4 simply does not exist. This feature may lead to a high per-
centage of zero-valued entries, such as 85% in the example shown in Fig. 4.4.3(b). This plot also
demonstrates that the non-zero entries of R are randomly distributed. We highlight that this appar-
ent randomness is induced through the random permutation of spatial locations of line segments
before the construction of R. In order for the similarity matrix R to acquire a block-diagonal struc-
ture, the spatial coordinates of line segments have to be sorted either in ascending or descending
order. Our decision to refrain from this practice has been influenced by Novembre and Stephens’s
work [159]. The authors point out that such an ordered spatial sampling introduces mathematical
artefacts in the exploratory data analysis and may impair the interpretation of results. However, in
applications where the emphasis is put on the computational benefits of the block-diagonal struc-
ture [166], the uniform sampling scheme is clearly an option.

Because of its asymmetry, R may have complex eigenvalues and eigenvectors and cannot be
generally considered being a PSD matrix. This condition is necessary for a loss-free Euclidean
embedding of a similarity measure [28, 64] and for the feasibility of factorization-based group-
ing approaches [104, 166]. The asymmetric and non-Euclidean properties of R also question the
applicability of centroid-based grouping methods such as k-means and Fuzzy C-Means [64]. The
latter assume that a similarity matrix contains data vectors rather than asymmetric relations. As a
consequence, the computed center of gravity of a centroid may not have a valid geometric interpre-
tation in non-Euclidean space. Thus, a symmetrization step is necessary when pairwise similarity
relations are inherently asymmetric as in our projection-based similarity model. The resulting sim-
ilarity matrix R is then inherently asymmetric, and there are several possibilities to transform R

into a symmetric matrix. According, for example, to Constantine and Gower [38], an asymmetric
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Figure 4.4.3: Spectral properties of matrix R. (a) Set of N=174 line segments extracted from
the image in Fig. 1.1(c). (b) Similarity matrix R containing 85% zero-valued entries which are
shown in white. (c¢) Imaginary part of the complex eigenspectrum of the G, constructed with the
asymmetric R. (d) Plot of eigenvalues of G, constructed with the symmetrized matrix Ry,,,. Here,
the deviation from Euclideaness is coded by negative eigenvalues and amounts to € = 6.84%.

matrix R can be decomposed into a symmetric Ry, and a skew-symmetric Ry, as follows:

R = Rsym + Rkews
Rsym(ia = Rsym(j, i) = %(R(l, J) +R(j, D), (4.10)
Ryien(i, J) = 3(RG, /) = R(j D)

In this formulation, every element of Ry, equals the arithmetic mean between r;; and rj;. The
skew symmetric part Ry, is frequently disregarded in the subsequent calculations, but it is worth
noting that this practice results in a loss of information related to correct cluster assignments. The
symmetrizing transformation in (4.10) as stated by Roth et al. [176], is a necessary condition
for loss-free Euclidean embedding by means of the Constant Shift Embedding procedure. Let
us denote a dissimilarity (distance) matrix by A. We can then write the combined dissimilarity
mapping and symmetrization as R — Ry, — A.

Alternatively, it is also possible to perform the dissimilarity mapping first and to symmetrize
A afterwards. Let us denote the symmetric part of the dissimilarity matrix by Ay,. Then the
latter is obtained through the transformation R — A — Aj,,,. However, by taking the averaging
symmetrizing transformation in (4.10) as given, the order of operations R — Ry, — A and
R — A — A, is not commutative in general, except for linear dissimilarity mapping.

To exclude the possibility that the non-linearity of the inverse exponential operation on a non-
metric R translates into a metric A, we revisit the example provided in Fig. 4.4.2. We define two

different dissimilarity transformations Ay and A», and the A»,,,, which is the symmetric part of A,.
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The results from Table 4.4.3 show that neither transformation leads to a valid Triangular Inequality,
such that A1 (Y,Z) < A1(X,Y) + A1(X, Z) or Apgym(Y, Z) < Apym(X, Y) + Argym(X, Z).

Table 4.4.3: Dissimilarity Mapping for the Set of Line Segments in Fig. 4.4.2

| XY (XX ]| X2 [ZX)] Y2 [ @ZY)]

P 48 | 575 | 355 | 36 0 03
D 52 | 52 | 66 | 66 | 632 | 632
R 092 | 1.1 | 054 | 055 | 0 | 005
Rym 1.01 0.545 0.025
Al = e R [0.3642 0.5798 0.9753
Ay=¢® | 04 | 033 | 058 |0577| 1 | 095
Asgm | 03657 0.5798 0.9756

Since there are no other restrictions, we first decompose R as R = Ry, + Rey, and then apply the
inverse exponential mapping on the symmetric Ryy,, to obtain a valid matrix A.

We denote the asymmetric matrix containing pairwise orthogonal projections as P, and the
matrix containing pairwise Euclidean distances between the centres of line segments as D. The
asymmetric matrix R is constructed using element by element division P/D. Using the defined

notations, the processing pipeline for the dissimilarity mapping can be written as:
P ‘
(P.D} > R=5 >Ry > A= e Roym 4.11)

Due to the symmetry of D, the symmetrization of R according to (4.10) is also equivalent to the
approach of symmetrizing P at first and constructing R afterwards. The skew-symmetric matrix
R, contributes to the existence of a complex eigenspectrum of the pseudo-covariance? matrix G
as can be seen in Fig. 4.4.3(c). After symmetrization, the deviation from Euclideaness is generally
coded in the negative part of the eigenspectrum [117, 164]. The symmetrized matrix Ryy,, yields
real, but not necessarily positive eigenvalues as can be seen in Fig. 4.4.3(d). These observations fit
well with previous studies which also emphasize the fact that data coded in the complex part which
describes the departure from symmetry, and in the negative part of the eigenspectrum, can in prin-
ciple be informative. Therefore any reduction of the eigenspectrum results in loss of information

[117, 164, 176]. We examine the resulting Ry, and A for the example given in (4.9):

Vi V2 V3 V4
vi (oo 0.7109 0.6033 0
1) 0o 1.4035 0
Roym = (4.12)
V3 00 0.0081
V4 0
V1 V2 V3 V4
vi [0 0.4912 0.5470 1
0 0.2457 1
A=" (4.13)
V3 0 0.9919
V4 0

2The notation G is used in the kernel-PCA framework which is described in Section 2.2.6.4
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This turns out to be a case where Triangular Inequality holds for every triplet in A. Therefore
this example seems to result in a metric dissimilarity matrix A. There is, however, a chance that
the effect of decimal rounding accounts for the latter observation. To investigate this assumption
further, we analyze the eigenspectrum of the corresponding centralized Gram matrix G [176]. The
spectral decomposition of G returns a set of four eigenvalues 4 = [6.9695, 1.7128,0.2795, —2.15¢—
012]. Even though it is very small, the negative-valued entry A,,;, = —2.15¢ — 012 indicates that G
is not positive semidefinite and therefore is not derived from squared Euclidean distances.

The occurrence of the negative spectra of G can be traced back to the fundamentally non-
metric behavior of orthogonal projections P, and should not be only viewed as a result of a
competition between two features (in our case P and D) in a ratio model [9, 118]. Based on
the data in Table 4.4.3 and with the symmetrization step given by (4.10), one can easily see that
Poym(X,Y) £ Pym(X,Z) + Psyn(Z, Y). The violated Triangular Inequality verifies the non-metricity

of Pyy,, which further propagates into the ratio model.

4.5 Grouping Strategy

We have already highlighted the reasons for choosing the unsupervised machine learning tool of
spectral clustering in this thesis. In particular, we chose the embedded kernel-PCA [176], and
the integration of perceptual grouping constraints into the similarity model as the key elements of
the approach to the localization and segmentation of mitochondria in microscopic images. When
applied, this strategy results in a reconstructed low-dimensional feature space where the classifi-
cation follows and where the inherent and meaningful structures in the input data are represented
by visible clusters of feature points. The next step is then to partition the feature space into the
appropriate clusters.

A key consideration for the selection of any grouping method is how it treats asymmetric
non-Euclidean similarity data, arbitrary cluster shapes and possibly varying cluster densities. For
instance, Single Linkage Hierarchical Clustering which is a nearest neighbor grouping method, op-
erates on a symmetric, but not necessarily a metric dissimilarity matrix, and may result in chained
and branched [9] clusters. A number of partitioning methods deal separately either with non-
Euclidean data or with non-convex cluster shapes. The CURE (Clustering Using REpresentatives)
[84] algorithm is capable of detecting arbitrarily shaped and sized clusters, but assumes a Eu-
clidean metric. In contrast, the NERF (Non Euclidean Relational Fuzzy) C-Means algorithm by
Hathaway and Bezdec [89] introduces the S-spread transformation of symmetric non-Euclidean
PSD similarity matrices, but as the "-means" term suggests, yields spherical or ellipsoidal clusters.

In 2007, the Affinity Propagation (AP) algorithm was introduced by Frey and Dueck in Science
magazine [70]. It is a machine-learning clustering approach which can directly be applied on
asymmetric, non-metric and sparse matrices. Despite this unique generality, the original form of
AP assumes more or less convex-shaped clusters. Several improvements have been proposed in this
regard, for instance the soft-constrained AP (SCAP) algorithm in [123], which was successfully
tested on interlocking "U" shaped clusters. Yet, none of the mentioned algorithms has a nearly as
well-defined and acknowledged framework of noise analysis and reduction as that of eigenvectors-

based clustering methods [176].
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Table 4.5.1 compares two selected grouping strategies I and II. Both accept a similarity matrix R
as a single precursor and further symmetrize and transform it into the distance-related dissimilarity
matrix A. While single linkage hierarchical clustering (I) works directly on the distance matrix A,
spectral (II) methods combined with k-means clustering, frequently seek vectorial representation of
A and embed the non-metric data into Euclidean space prior to the eigendecomposition [164, 175].
In this regard, the flow of events encapsulates three major steps: formation of a pseudo-Covariance
matrix S¢, Euclidean embedding of $¢ and then PCA on the embedded S¢.

Table 4.5.1: Comparison of two selected grouping strategies

Transformation step ‘ I ‘ II

1 Similarity Matrix R R
2 | Symmetrizing Transformation | Ry, Rgym
3 Dissimilarity Mapping A A
4 Kernel Matrix K
5 pseudo-Covariance Matrix Se
6 Euclidean Embedding S¢
7 kernel-PCA S¢ = UAUT

= vectorial representation X=UVA
8 | non-Nearest Neighbor Grouping v

(k-means)
9 Nearest Neighbor Grouping v
(Single Linkage Hierarchical)

As a preliminary to understanding the grouping strategy II outlined in Table 4.5.1, we introduce a

centralized dot product (Gram) matrix S¢ such as:

S¢ = —%QKQ,Q =Ty - %PNPI{I (4.14)

where K : [a%j] is a matrix of squared dissimilarities, Iy is a N X N identity matrix and py =
(1, 1,..., DT is an N-vector of ones. Therefore, Q is the projection matrix on the orthogonal com-
plement of py. For the case of squared Euclidean dissimilarities, matrix K is a Gram matrix and
matrix S€ is also a PSD covariance matrix — a sufficient indication of the Euclideaness [176] of the
data. The selected dissimilarity mapping in (4.11) has the advantage of emphasizing small-scale
dissimilarities a;; by suppressing the effect of large distances and thus potentially the noise. The
resulting dissimilarity values are distributed in the range [0, 1]. The fact of using a Gaussian ker-
nel provides us with the advantage of performing clustering in non-linear space where the linear
boundary between two partitions can be better found while applying the linear k-means algorithm.

To quantify the deviation from Euclideaness, we adopt a measure & suggested by Podani and

Miklos in [167] as the ratio between the sums of positive A, and negative 4, eigenvalues X 100%:
_ 24
| 2 Al

In order to enable a loss-free embedding of dissimilarity data into a vector space, the spectral

€

-100% (4.15)

embedding approaches seek to alter A(S¢) by analyzing its departure from Euclideaness, €. Rela-

tively small values of € are frequently considered as being an indicator for non-informative content
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[164]. Therefore, approaches which remove noise-related dimensions represented by € also reason

that this procedure efficiently resolves the problem of noise reduction.

4.6 Metric Embedding and kernel-PCA

The negative part of the eigenspectrum, in some cases, can represent significant relations in the
input data and thus its removal can result in the loss of information [164]. The disadvantage can be
avoided by transposing A(S°) into the positive range. This is a guiding idea for approaches such as
Non-metric Multidimensional Scaling as well as for CSE (Constant Shift Embedding), introduced
by Roth et al. [176, 175]. In particular, in the CSE framework the complete eigenspectrum is
raised by the smallest negative eigenvalue A,,;,. According to Roth et al. [176, 175], the following
Lemma states that for any indefinite, real and symmetric matrix S¢, a positive semidefinite matrix

S¢ can be derived by subtracting the smallest eigenvalue from its diagonal elements [175].

Theorem 1 The kernel matrix K contains squared Euclidean distances, i.e., K = ||x; —x j||2,

if and only if 8¢ is positive semidefinite.

Lemma 1 Ler S¢ =S¢ — Anin(SO Ny, where Apin(+) is the minimal eigenvalue of its argument.

Then S¢ is positive semidefinite.

Furthermore, the reconstructed Euclidean vectorial data X is obtained through spectral decomposi-
tion of the embedded S = UAUT and the subsequent re-scaling of eigenvectors such as X = U VA.
This framework forms the basis for the kernel-PCA approach with a quadratic kernel matrix K.
The rows of X correspond to the multidimensional vectors x;,i = 1, ..., N. The dimensionality re-
duction step is carried out by taking the first L columns of X; = U; vVA;. The complete embedding

and reconstruction path is given as:
1 -
A—-K: {al-zj} — 8¢ = _EQKQ — 8 = 1uin(SHILy = S¢ = UAUT - X, = U, VAL (4.16)

The Gram matrix S¢ essentially represents the dot product in the feature space. S€ plays the role of
a pseudo-covariance matrix and is the starting point for both linear (PCA) and non-linear (kernel)
PCA-based dimensionality reduction algorithms. The major mutual effect of CSE and kernel-PCA
is that this approach, if used in conjunction with a shift-invariant clustering method such as k-

means, results in the complete preservation® of the group structure in the embedding space [176].

4.7 Experiments on Synthetic Data Sets

In this section, we describe a set of synthetic experiments with the purpose of exploring the con-
stellation of the reconstructed data in the kernel-PCA feature space, and of studying the effects of
additive noise. The first experiment in Fig. 4.7.1 shows two synthetic objects comprised of line seg-
ments with different lengths and orientation, without structural noise, and clustered with different

R models. The objective of this experiment is to show clustering results using different kernels.

3For non-metric data and without the embedding with CSE, the k-means algorithm will not return the correct clusters.
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Figure 4.7.1: Different kernels and clustering results. Two objects of interest (from Fig. 4.3.1)
consist of projected line segments without structural noise. Rowl: R = P/D; A = max(R) — R;
Row2: R = P; A = exp(—R); Row3: R = (1+P)?/(8.5+D), where P = P/max(P),D = D/max(D).
Here the parameters in the R-model are manually tuned such that k-means produces correct cluster
assignments. Diagrams are best viewed in color.

The second synthetic experiment relies on the immersion of different signal structures into the
stationary low-variance structural noise. Conversely, the structural noise in the last synthetic ex-
periment is set to vary, while the signal structures remain unchanged.

Generation of noise-related line segments involves first, the generation of uniformly distributed
center points, and second, the generation of end points drawn from the normal distribution. We re-

late the signal-to-noise ratio to the similarity matrices R of signal and noise structures and specifi-

83



4.7. Experiments on Synthetic Data Sets

cally to the average number of all non-zero (NZ) entries of corresponding matrices.

:u(Rsignal,NZ)

SNR = 10lo .
810 :u(Rnoise,NZ)

4.17)

The results obtained from the second synthetic experiment can be observed in Fig. 4.7.2 and
Fig. 4.7.3. The first row shows the four original synthetic structures with the number of signal-
related line segments Ns, and the number of noise-related line segments Nn. The second row
shows hierarchical cluster trees constructed using the dissimilarity matrix A. One advantage of
SLHC is that preselection of the final cluster number is not required, allowing a domain expert
to analyze the resulting cluster hierarchy. However, the optimal number of clusters in SLHC is
sensitive to the selection of the dendrogram cut-off value. The discussion on this topic as well as
results of using SLHC on mitochondria images are presented in Section 4.7.2.

The spectral decomposition of the embedded S¢ yields two interesting observations. Firstly, we
observe a low variability of the S¢ eigenspectrum (Fig. 4.7.2, Fig. 4.7.3 Row3), where the leading
eigenvectors account only for a small cumulative percentage of the total variance. One of the rules
for the dimensionality reduction is to choose a number of eigenvectors which account for most
of the variation of the eigenspectrum. Jolliffe [101] places this number approximately within the
range of 70% to 90% of total variance. Based on the latter requirement, we are constrained to
analyzing approximately the first L = 290 dimensions. Alternatively, applying a more subjective
rule of "elbow" [101], this number reduces to L = 8 and L = 30. The extent of the flat part of the
eigenspectrum ranges approximately from 70% to 90%. This is not unexpected in view of the fact
that these numbers directly depend on the amount of noise-related line segments, Nn = 302 and
precisely on the ratio (100 — Nn/Ns) - 100%. The deviation from Euclideaness is generally low for
all four cases and ranges between € = 0.8% and € = 4.3%.

To investigate the arrangement of reconstructed data points, we consider the first L = 2 di-
mensions and plot the first two eigenvectors U; and U,. This leads us to the second important
observation that highly distinctive structures do emerge within the feature space. Results presented
in the first column of Fig. 4.7.2, illustrate the case of two groups of parallel line segments with equal
P and D. The two-dimensional feature space shows a 90° corner with signal points arranged on
each side. On the other hand, the "closed" structures studied in Fig. 4.7.2 (column 2) and Fig. 4.7.3
result in trajectory-like signal point arrangements. Regardless of the signal structures used in this
synthetic experiment (shown in Fig.4.7.2 and Fig. 4.7.3), the plots of the first two corresponding
eigenvectors exhibit a certain consistency in the constellation of feature space. Points which ac-
count for low-variance and non-intersecting structural noise are densely clustered near the origin,
whereas the signal points occupy the outer feature space.

For insight into why the noise-related points appear densely clustered near the origin, it is not
sufficient to consider the scale factor of the noise alone. It is rather the combination of the latter
effect and of additional factors such as: (i) a 2D-PCA plot is the projection of multiple dimensions
onto the 1% and 2"¢ eigenvector; (ii) approximately 80% of all data points account for the noise
which is (iii) spread over approximately L = 290 dimensions. Therefore, this observation can be
explained by the joint effect of scale and number of noise-related line segments and by the number

of noise-related dimensions. The k-means clustering algorithm does not assume Gaussianity of the
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Figure 4.7.2: Synthetic structures with added stationary noise. Part I. Rowl: Synthetic set of line
segments with added noise and SNR values. Row2: Dendrograms constructed by using the sym-
metric dissimilarity matrix A and the single linkage algorithm. Row3: Plot of ordered eigenvalues
of the pseudo-covariance matrix S¢ and the CSE-embedded S°¢. The spectrum is partitioned into 4
bands, each showing the number of eigenvalues in that band and the percentage of total variance.
Row4: 2-dimensional PCA space (S¢ = UAU”, not CSE-embedded), showing the constellation
of points (ground truth) corresponding to the line segments with structural signal (red, green) and
noise (shown in blue) information. Diagrams are best viewed in color.

85



4.7. Experiments on Synthetic Data Sets

Ns =2 x 41, Nn = 302 Ns=81, Nn = 302
140 T T T WO
100 \\\W/// \\l//// 100 \\\ \, N ’ ////’\ - s
80 \ /4§ / gof | — _;:E\w) =
[ — B —_— TS~ —— B
60 S . ol ~ = Uy =~
///// \\ V |\\\\/ \ \,?/ TN ,\\\,: \
40 ! ! N 407/'\ /"li/// :‘/\.\ \ \\ o ’\ ‘
" 1,; SN : ol T’f,/:\f,\\\ﬁ o
o~ ‘ " SNR=28.5dB o~ | - - SNR=252dB
0 50 100 150 0 50 100 150
Dissimilarity cut-off = 0.2 Dissimilarity cut-off = 0.5
1 1
< 08 < 08
2 =
T o6 506
E E
@ 0.4 @ o.4
0 0
o 0.2 e o.z

2 288 30 30! 278 32!
A.45% 70.9% 9.74% 4[17.42% 73.17% 5.55%
7] W | |
— A5 250k b o A(59) B
---A(S9) 3 ---A(89) e
s £ = 4.2975% !
2 |
Al el

o ) |
m L
100 200 300 0 100 200 300
Index of ordered eigenvalues Index of ordered eigenvalues
03 ‘ 03
I I
I I
0.2 ! 0.2 !
i R
0.1 o 0.1 . AN
e p . %,
N N e e . ]
=N | o2 0””"’.’5:#»’(”
LIV e
-0.1 Yoo o -0.1 .
| .o' se o °
0.2 N -0.2 |
| |
L L
-02-01 0 01 0.2 -02 -01 0 01 0.2
Ug Ug

Figure 4.7.3: Synthetic structures with added stationary noise. Part II. Row1: Synthetic set of line
segments with added noise and SNR values. Row2: Dendrograms constructed by using the sym-
metric dissimilarity matrix A and the single linkage algorithm. Row3: Plot of ordered eigenvalues
of the pseudo-covariance matrix S¢ and the CSE-embedded S°¢. The spectrum is partitioned into 4
bands, each showing the number of eigenvalues in that band and the percentage of total variance.
Rowd4: 2-dimensional PCA space (S¢ = UAU7, not CSE-embedded), showing the constellation
of points (ground truth) corresponding to the line segments with structural signal (red, green) and
noise (shown in blue) information. Diagrams are best viewed in color.
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Figure 4.7.4: Synthetic line structures with added varying noise. Part I. Rowl: Three synthetic
signal objects with no added noise segments; Row 2: Addition of the structural noise-related line
segments with S NR = 15.484B. 2D plots of the reconstructed feature space show the arrangements
of color-coded signal points and black-coded noise points. Row3: Grouping results in the image
domain achieved with the noise pre-filtering with a circle of radius r = 0.105, and subsequent
k-means with k = 3. Diagrams are best viewed in color.

data and works best with spherical or ellipsoidal clusters. These facts motivated us to include a
de-noising stage prior to signal classification with k-means.

The third experiment on synthetic data sets involves three elongated signal structures and the
addition of structural noise of increasing variance, as shown in Fig. 4.7.4 and Fig. 4.7.5.
The original arrangement (ground truth) of color-coded signal and noise points can be seen in
the first row of Fig. 4.7.4. We observe that in the absence of noise, the three signal structures
are represented by ray-like agglomeration of points, with the projected intersection point near the
origin and with the relative orientation of approximately 120°. In a similar manner, the addition of
Nn = 212 noise line segments and S NR = 15.48dB resulted in the majority of noise-related data
points clustered predominately near the origin. With decreasing S NR, noise-related line segments
increase their interactions with signal-related line segments as the number and the amount of joint

orthogonal projections in the image domain increases. In the reconstructed PCA feature space,
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Figure 4.7.5: Synthetic structures with added varying noise. Part II. Row1: Experiment with added
noise with SNR = 7.33dB; Row2: Experiment with S NR = 4.1dB. The 2D plot shows the actual
ground truth signal and noise datapoints. Row3: 3-means grouping results. Noise filtering is
implemented with a circle of radius r = 0.2. Diagrams are best viewed in color.

this translates to noise-related points spreading among the signal rays and progressively distorting
the original constellation. For the purpose of clustering we apply our idea of de-noising the data
starting outwards from the origin. This step is equivalent to defining a filtering circle with a radius r
and performing the initial classification based on the circle membership. The third row in Fig. 4.7.4
shows the 3-means clustering solution on the prefiltered data with a manually tuned r = 0.105,
and illustrates how well the signal and the noise pattern can be differentiated by selecting the
appropriate threshold. In other words, such a signal-noise classification results in a partitioning of
the scene into foreground and background. In this context, the radius » may also be viewed as the
saliency threshold of the scene. Although this formulation of saliency in a different domain agrees
with the idea of Perona and Freeman [166], it differs in its definition.

The last experiment of SNR = 4.1dB, presented in the second row in Fig. 4.7.5, shows that
signal and noise are almost inseparable by visual observation. Nevertheless, the three objects still
can be detected by choosing the appropriated prefiltering radius of » = 0.2 and the subsequent 3-

means clustering. This can be seen in the last row in Fig. 4.7.5. The patterns detected are contained

88



4.8. Application to Mitochondria Localization

within the hull determined by the original signal structures. Generally, our synthetic experiments
verify a more or less trivial fact that noise has a mitigating effect on the detection of original signal
structures. Quantitatively, this is confirmed by the number of true positives we observe in the last
row of Fig. 4.7.5. Surprisingly, under the experimental settings considered a noise appears to have
a little effect on the hull detection. Quantitatively, this is evident in the number of false positives
enclosed within the corresponding hulls. Further increase in r progressively shrinks the signal
space until the points which correspond to the strongest, and thus the most salient R-links, remain.
This fact agrees with our initial assumption that salient structures are represented by strongest
R-similarity links. Furthermore, it suggests the applicability of the filtering approach to the task
of mitochondria localization, where we primarily seek to determine the location of a subcellular
structure, but not necessarily its exact composition.

In the last experiment with three synthetic mitochondria, we know in advance the number of
k clusters. As can be seen in the first row in Fig. 4.7.4, for example, there are three non-convex
signal structures in the feature space. In this case, the selection of k = 3 gives us the desired result
as can be seen in the last row in Fig. 4.7.5. If we select either £ < 3 or k > 3 then we do not obtain
the correct partitioning. This is due to a number of facts, such as that the ground truth clusters are
not convex, and that the addition of noise progressively decreases the inter-cluster variance while

at the same time increases the intra-cluster variance in the feature space.

4.8 Application to Mitochondria Localization

In this section we describe experiments on subcellular TEM images of mitochondria. Grouping
was performed on three sets of line segments extracted using line fitting operations on the edge
map. In the first experiment which is illustrated in Fig. 4.8.1(Rows1-2), we examined grouping
of line segments extracted from the TEM image of a lamellar-type mitochondrion from a mouse
epididymal cell* In scatter plots of the reconstructed X, shown in Fig. 4.8.1(Row 1), we observe
two orthogonal ray-like clusters. According to (4.16), the low-dimensional feature space X, has a

dimension L. In the following, we define the distribution of the magnitude of X, as:

pL =Xzl (4.18)

We use the distribution of p;-, to perform signal noise classification. The same formalism can
easily be extended for L > 2. Ideally, we would prefer to have a well-separated bimodal distribution
with one part representing the noise and the other representing the signal content. However, the first
plot in the second row of Fig. 4.8.1 shows a multimodal and positively skewed distribution with the
main density below mean. Our previous observation that the signal data tend to be concentrated
in the outer range of Xy suggests that we need to consider the decaying tail of the p, distribution.
In this example in Fig. 4.8.1(Row 2), we can see that the cut-off value of r = u(p,) yields two
clusters which jointly represent the mitochondrial structure. The other possibility for obtaining
the cut-off value worth considering, would be to decompose the multimodal distribution using a
Gaussian Mixture Model. To address the question of how well our mitochondria detection works,

Fig. 4.8.1(Row 2, last image) displays the localizations hulls on the original image.

“Image source: courtesy of ASCB (American Society for Cell Biology).
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Figure 4.8.1: Application experiments. Row 1: TEM image of a lamellar-type mitochondrion
from mouse epididymis; Extracted line segments; 2D-PCA of the reconstructed X data. Row 2:
X data separation with r = u(p>) and the successive clustering of data outside the r-circle with
k = 2; Clustering result in image domain; Localization hull superimposed on the original image.
Row 3: TEM image of mitochondria from a human prostate cell treated with the apoptosis inducer
STS; Three cluster solution to k-means clustering of 2D-X data outside the circle with the radius
r = md(py) + 0(p2); Line clustering result in image domain. Diagrams are best viewed in color.

The second experiment was carried out on the TEM image of a human prostate cell®, treated with
apoptosis inducer staurosporine STS. The TEM image in Fig. 4.8.1 shows two adjacent mitochon-
dria. The extracted kernel-PCA representation reveals three distinct ray clusters with a relative
orientation of approximately 120°. In this example, the cut-off value for de-noising was chosen as
r = md(py)+ 0 (p2), where md(p;) denotes the median of the p, distribution. The result of clustered
line segments is shown in Fig. 4.8.1(Row 3, last image).

The third experiment was conducted on the TEM image of tubular-type mitochondria from
hamster’s adrenal cortex cell® as shown in Fig. 4.8.4(g). The set of extracted line segments which
can be seen in Fig. 4.8.2(a), shows a weak presence of structural noise, yet six dominant signal
structures. The distribution of points in the 2D-PCA space can be seen in Fig. 4.8.2(b). Based
on our experience with synthetic elongated objects in Section 4.6, we anticipate the presence of

>Image source: RCSI (Royal College of Surgeons in Ireland).
®Image source: ASCB.
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Figure 4.8.2: Clustering results for k > 2 and L > 2. (a) Extracted line segments: 6 visible clusters.
We also see that the signal content is well above 50%. (b) 2D constellation of the reconstructed
data X: 4 visible ray-like clusters. (¢) 7-means clustering (’Distance’="cosine’) in L = 2 with
r = 0. (d) Clustering results in image domain. (e) 7-means clustering in L = 6 with r = 0. (f)
Clustering results in image domain. (g) 7-means clustering in L = 6 with r = u(pe). (h) Clustering
results in image domain. (i) Localization hulls superimposed on the original image for the case of
L =6, r=u(pe), k =7. Diagrams are best viewed in color.

six signal rays in the feature space. However, we only observe four major rays of data. Because
of the different orientation of signal rays through the multiple dimensions, in the two-dimensional
representation, the remaining two signal clusters may be scrambled within the four rays and be
mixed with the noise-related data. This fact revokes the previous assumption that only the noise-
related data can appear near the origin. It also suggests that more dimensions are needed to resolve

the remaining two clusters.

91



4.8. Application to Mitochondria Localization

(17 Pon
R | distribution
¢ r
RN (12),(15) X | ><2,N—P | k-means
N=N-P —> 2N - XZ,P i 2.N-P
) P v
k—clusters

Figure 4.8.3: Proposed Dimensionality Unfolding Principle in L=2 dimensions.

To test this hypothesis, we experimented with finding a k-means solution in L > 2 dimensions. The
results of this experiment are presented in Fig. 4.8.2. In order to obtain all seven (six signal plus
one noise) clusters, we do not apply prefiltering in this experiment. Rather, we attempt to cluster
the data according to the following methodology:

(i) in L = 2 dimensions by setting k = 7; see Fig. 4.8.2(c,d);

(i) by increasing the number of dimensions to L = 6; see Fig. 4.8.2(e.f) and

(iii) by prefiltering the 6-dimensional data with » = u(pe) and the subsequent
clustering with k = 7 and L = 6; see Fig. 4.8.2(g,h).

We conclude that the clustering results obtained in the image domain vary significantly for the
above three cases. Because the basis for the unsupervised selection of parameters k and L is unclear,

we propose an alternative Dimensionality Unfolding method which is illustrated in Fig. 4.8.3.

4.8.1 Dimensionality Unfolding Principle

We have seen that L = 2 dimensions are insufficient in detecting all six mitochondria. In this
section, we propose a principle where clustering is repeatedly done in L = 2 dimensions and is
performed after the partitioning of the data X in the i stage. We denote the partitioned data X
for each clustering stage i. Partitioning depends on the amount of signal in the image and on how
well the distribution of Pg):z can be separated. In this example, as we can see from Fig. 4.8.4(h), the

signal content (line segments describing mitochondria) is well above 50%. This fact justifies the

)
2

The P points, which are located outside of the r-circle are sequentially grouped with the k-means

initial i = 1 partitioning of X'V by taking the second quartile of the p}’ distribution (median point).
algorithm. Next, we unfold the N — P points inside the r-circle by computing the new kernel-PCA
solution X® on the reduced Ry_p. In this stage, to extract the remaining unknown x% of the
signal, we need to assume more than the 50% of the noise content. We can see in Fig. 4.8.4(e,f)
that the remaining two clusters have emerged after the second i = 2 clustering stage with the cut-off
value of r = md(p(zz)) + O'(p(zz)). The combined localization hulls for all six mitochondria can be
seen in Fig. 4.8.4(1). This localization result proves also to be the best achieved as compared to the
k > 2 and L > 2 methodology, illustrated in Fig. 4.8.2.
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Figure 4.8.4: Results of the proposed Dimensionality Unfolding method in L = 2 dimensions.
Application experiment on the TEM image of tubular-type mitochondria from hamster’s adrenal
cortex cell. (a) 4-means clustering solution for XD outside the circle of radius ! = md(pgl)).
(b) Image domain representation after the i = 1 clustering stage. (c¢) Remaining line segments
which correspond to the points inside the r-circle. (d) p(zz) distribution and separation thresholds.
(e) 2-means clustering solution for X®@ outside the circle of radius r® = md(p(zz)) + O'(p(zz)). )
Image domain representation after the i = 2 stage. (g) Original image. (h) Set of extracted line
segments. (i) Final localization hulls as a combination of the intermediate results after i = 1 and
i = 2 clustering stages. Diagrams are best viewed in color.

4.8.2 Results of Single Linkage Hierarchical Clustering

Single Linkage Hierarchical Clustering is the simplest and the oldest method of clustering which
is robust to both non-Euclidean data and non-convex cluster shapes [9, 114]. It detects naturally
occurring groups and allows the hierarchy of data to be examined. SLHC merges two clusters on
the basis of the minimal distance between its entities, and can detect "U"-shaped and long serpen-

tine clusters [9]. Though this chaining property, being a form of "tracing", is well suited for our
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Figure 4.8.5: Single linkage hierarchical clustering results for mitochondria images. Localization
is based on the analysis of the hierarchical cluster tree (SLHC). Row 1: Extracted line segments;
Row 2: Dendrograms with manually selected cut-off values - resulting clusters are color-coded;
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Row 3: Localization hulls superimposed on original images. Diagrams are best viewed in color.

grouping objective, it is often considered to be a shortcoming in many other applications [9, 94].
The reason for this is that the two opposite ends of a cluster may be highly dissimilar or not be
similar at all. Gibbons and Roth [78] remarked that in their application of clustering to gene ex-
pression analysis, the Single Linkage Hierarchical Clustering performs worse than random. In this
section, we performed grouping directly on the non-metric dissimilarity matrix A by means of Sin-
gle Linkage Hierarchical Clustering. The cut-off value, the size and the number of clusters were
selected manually with the purpose of demonstrating the capability of the detection. The major
shortcoming of Single Linkage Hierarchical Clustering, however, is the unsupervised decision on
a suitable threshold for the analysis of the dendrogram. For the mitochondria segmentation appli-
cation, we would first seek a localization marker inside a mitochondrion. Thus, a single pair of
line segments describing one single inner membrane folding would suffice for that task. Therefore,
we could start with a low threshold of dissimilarity values in the dendrogram, which would give
us a high number of small clusters at first. Then, we could increase the threshold and evaluate
the cluster properties and their compactness. However, too high a dendrogram cut-off value may

produce incorrect partitioning results.
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4.9. Contour Integration with Rotated Line Segments

(@) (b)

Figure 4.9.1: Ilustration of the difference between restricted (a) and full (b) similarities for the
case of N = 4 line segments X, Y, Z and W. (a) Left-sided orthogonal projections P onto the line
segment X are defined by the number of line segments intersecting the plane generated by X. Only
PxY exists, while projections PxyW = 0 and PxZ = 0. (b) Distance-based similarity D is defined
for all line segments on the full space of N = 4. Diagrams are best viewed in color.

We realize by looking back at the "S"-shaped mitochondrion C shown in Fig. 4.3.1, that the tracing
property of SLHC may be desirable in our case when applied to the localization of mitochondria
of highly deformed shapes. The other important point to consider when grouping line segments
of the mitochondrion C in Fig. 4.3.1 with a high length variability, is that the amount of orthog-
onal projections partly depends on the length of line segments. Therefore, it is possible that the
kernel-PCA framework could benefit from normalization of raw data and grouping cues. Nonethe-
less, we observe and acknowledge that by choosing the appropriate dendrogram cut-off parameters,
the SLHC-based localization results in Fig. 4.8.5 exceed those achieved in Section 4.8 which uses
the kernel-PCA framework. On the other hand, the foreground to background segregation is incon-
testably well-defined within the PCA-based framework. Therefore one line of future research could
consider the combination of both clustering methods: kernel-PCA to discard the noise-related line
segments and to obtain the initial clusters of projected line segments, which would then be used as

seed points for SLHC-based tracing.

4.9 Contour Integration with Rotated Line Segments

The critical question which needs to be answered is whether the signal-related pattern formation in
the feature space is mediated by the intrinsic property of R similarity, or if it is conditioned by our
experimental settings. To address this question we examine the existence rules of an orthogonal
projection P of a line segment. Similarities which involve any pairwise combination of a distance
or angle are defined for all N line segments (Fig. 4.9.1(b)), as naturally the distance and angle
between all line segments simply exist. Conversely, the existence of orthogonal projections P onto
a line segment X is restricted to a number much smaller than N, and it precisely depends on the
number of line segments intersecting the orthogonal plane spanned by X (Fig. 4.9.1(a)). In our
experiments we have seen that this fact leads to the initial classification of all non-projecting line
segments as being not significant. We conclude that when combined with the proximity measure
D in a ratio model, the restricted nature of orthogonal projections P aid the sparsity of the resulting

similarity matrix R and promote the chaining effect of the strongest signal line segments.
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4.10. Discussion

Salient curves can also be viewed as being composed of chained line segments. This reasoning
raises a question if the R similarity can potentially be used in the extraction of salient curves where
traditional approaches primarily target the affine properties of line segments. Fig. 4.10.1(Row 1,
left) shows a synthetic image similar to the one from Sha’ashua and Ullman’s work on structural
saliency in [185]. Fig. 4.10.1(Row 1, right) shows a synthetic image similar to the one from
Perona and Freeman’s work on affinity factorization in [166]. In order to describe local and global
saliency, the authors considered similarity measures based on the co-linearity and the proximity of
line segments. We have discussed this model in Section 3.4.1.2.

Generally, contour saliency relies upon the human ability to cognitively fill the gaps between
adjacent line segments [24, 131, 166, 185] and also depends on the global context within which the
contour appears [124]. Without any doubt, we detect two strongly salient contours in the first row
of Fig. 4.10.1. By inspecting the second row of Fig. 4.10.1, we may also distinguish two structures,
which in this case are composed of pairwise projected line segments. Based on these observations,

we now consider a different view of the contour integration problem:

(i) in the original image we rotate each ELS by 90° around its center (see Fig. 4.10.1(Row 2))
(ii) in the transformed image we reinstate the problem of contour integration by using R.

This experimental setting also fundamentally differs from the one in Li and Gilbert’s work [124],
where the authors studied the effect of orientation on global contour saliency by rotating the en-
tire stimuli rather than each particular line segment. With our methodology, the rotation of every
line segment in the stimuli greatly disrupts the saliency, as can be seen in Fig. 4.10.1(Row 2).
However, we still perceive the two signal structures as being significant. In this experiment we
assume the rotational invariance of structural noise, generated under the conditions from Sec-
tion 4.7. Fig. 4.10.1(Row 3) shows the now familiar segregation between the noise, which is
clustered at the origin and the signal which occupies the outer region. With the saliency threshold
r = md(py) + o(p2), both contours have been successfully extracted, as demonstrated by the rever-
sal of the rotation of all line segments illustrated in the last row of Fig. 4.10.1. These experimental
results indicate that a dual relationship may exist connecting the R-based detection in 90° rotated

space with the perceptual contour integration process in the original image.

4.10 Discussion

In this chapter we target the localization of mitochondria of lamellar and tubular morphology. We
observe that in a densely cluttered scene, a unique criterion to localize a salient group of extracted
line segments with different lengths, orientations and density may be stated as Projectivity. Further
studies, however, are needed to support or reject the hypothesis that Projectivity has a link with
perceptual organization. Furthermore, we introduce a new similarity measure which combines the
Projectivity and the Proximity grouping principles. More precisely, it combines the amount of
spanned orthogonal projections P and center-to-center distance D in a pair of line segments. We

denote the new metric as Projection-to-Distance ratio.
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4.10. Discussion

Figure 4.10.1: Contour integration experiment and proposed explanation of duality in the detection
of salient contours. Row 1: Synthetic image similar to Sha’ashua and Ullman’s work in [185];
Synthetic image similar to Perona and Freeman’s work in [166]. Row 2: The same set of line
segments as in Row 1, but all now are rotated by 90°. These data sets are used for the calculation
of the R similarity. Row 3: 2D-PCA representation and foreground to background separation. Row
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4.10. Discussion

We conclude from the experiments conducted and described here that the most prominent feature
of P is that it belongs to a class of restricted similarities and thus results in an inherently sparse
similarity matrix. We apply our grouping approach to a set of line segments extracted from TEM
images of mitochondria and observe that grouped line segments efficiently model the inner parts of
organelles. While several experiments were conducted using mitochondria images, we would like
to emphasize that the development of an automatic segmentation algorithm was not the main aim of
this chapter. We rather addressed a theoretical problem concerning the role of projection similarity
in line grouping, which has relevance to the extraction of salient features in cluttered backgrounds.
We have shown that our method can be used to identify the hull of the salient structures in subcel-
lular environments. However, the validation of our method would benefit from a larger database of
mitochondria images and their ground truth segmentation for quantitative comparisons with other
line grouping methods.

Investigations on the conformity of the introduced similarity measure with metric requirements
reveals an inherently non-metric and thus a non-Euclidean behavior of the R similarity. We con-
struct the similarity matrix R and analyze its properties, drawing the conclusion that it generally
does not translate into the positive semidefinite pseudo-covariance matrix S. We infer that pre-
cisely this fact constraints the use of available grouping methods and demands the strategy of
intermediate Euclidean embedding. Furthermore, we apply Constant Shift Embedding and the
kernel-PCA framework to the grouping of line segments in the reconstructed vectorial space. The
experiments based on synthetic data sets yielded two main results. Firstly, we confirm that signif-
icant structures do emerge within the two-dimensional kernel-PCA space. Secondly, we observe
that salient signal structures represented by the strongest R-links in the image domain manifest
themselves as statistical outliers in the kernel-PCA feature space. Supported by these findings, we
assume that the points densely concentrated near the origin can be interpreted as noise. Therefore,
we first tried to implement a prior signal-noise classification by defining a prefiltering circle with a
radius r. Our experimental results indicated that this step is equivalent to partitioning the scene in
the image domain into foreground and background. Taken together, our results suggest that p; as
given in (4.18) can be associated with a saliency function.

We treat the detection of mitochondria not as a textural but rather as a purely structural problem.
We have anticipated that the feature space would contain linearly separable clusters. However, we
have also observed that for the large number of mitochondria to be detected, the two-dimensional
kernel-PCA representation is not sufficient to resolve all mitochondrial structures, and that the se-
lected kernel does not work in the way it should. Our results indicate that the success of optimizing
the k-means solution in L > 2 dimensions is largely constrained by finding a tradeoff between
the number of clusters £ and the number of dimensions L. Based on this fact, we introduce the
Dimensionality Unfolding principle. It can be viewed as a joint iterated partitioning and k-means
clustering approach in L = 2 where each iteration involves unfolding of the data within the classi-
fication circle r and subsequent clustering with the k-means algorithm.

It is possible that the non-linearly separable feature space resulting from our selected group-
ing strategy is due to the fact that the combined kernel-PCA and k-means clustering framework
is actually ill-posed for this problem and that "tracing" should be used instead. We did apply

"tracing" alias nearest neighbor grouping of line segments by choosing single linkage hierarchical
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4.10. Discussion

(a) (b) (©

Figure 4.10.2: Localization hulls superimposed on the original image of mitochondria. (a) Cluster-
ing results for k > 2 and L > 2. (b) Results achieved by using Dimensionality Unfolding principle.
(c) Results of SLHC applied directly on the distance matrix A. Diagrams are best viewed in color.

clustering on the dissimilarity matrix A as has been shown in Section 4.7.2. Qualitative compari-
son of SLHC-based results for the tubular-type adjacent mitochondria is given in Fig. 4.10.2. This
summary shows that Single Linkage Hierarchical Clustering (Fig. 4.10.2(c)) outperforms both the
{k > 2, L > 2} and the Dimensionality Unfolding grouping methodologies. The experiment shown
in Fig. 4.10.2(a) returned small disjoint clusters which still could be used as a localization marker
for the subsequent segmentation process. In comparison, Single Linkage Hierarchical Clustering-
based localization (see Fig. 4.10.2(c)) resulted in the correct detection of all six adjacent organelles
and in the best hull approximation of mitochondrial shapes.

The major difficulty encountered in this chapter, is with the distribution of points in the feature
space. This fact lead us to the experiments with higher dimensions and number of clusters. It is
also possible that by trying different kernels we can obtain more favorable and linearly separable
clusters in the feature space. For example, the synthetic experiment in Fig. 4.7.1 showed the effect
of using three different kernels on the geometry of clusters. Other remaining unsolved issues are
the automatic selection of the number & of clusters in the k-means clustering, as well as automatic
selection of the cut-off value for the analysis of dendrograms in SLHC.

It is clear that by using the symmetrization procedure on R and by retaining the symmet-
ric Ryy,, while discarding the Ry, we are actually loosing some information contained in the
asymmetric part. However, in order to make some inferences on if and how this fact may af-
fect the feature point arrangement, we first need to quantify the degree of asymmetry, and also to
benchmark against some clustering method which uses the whole asymmetric matrix R. These
issues may be addressed in future work on line segments grouping. In Chapter 6, we propose a
new anticorrelation-based formulation of spectral clustering which can then be directly applied on
asymmetric pairwise proximity data. The dissimilarity data which originates from our proposed
formalism of projected line segments can be seen as a contribution to the class of visually repre-

sentative asymmetric and non-Euclidean data in a pattern recognition environment.
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Chapter 5

Model-based Spectral Clustering
Framework for Segmentation of
Mitochondria

The unsupervised segmentation method proposed in the current study follows the evolutional abil-
ity of human vision to extrapolate significant structures in an image'. In this work we adopt the
perceptual grouping strategy by selecting the spectral clustering framework, which is known to
capture perceptual organization features, as well as by developing similarity models according to
Gestaltic laws of visual segregation. Our proposed framework applies but is not limited to the
detection of cells and organelles in microscopic images, and it attempts to provide an effective al-
ternative to presently dominating manual segmentation and tissue classification practice. The main
theoretical contribution of the work developed in this chapter resides in the formulation of robust
similarity models which automatically adapt to the statistical structure of the biological domain
and return optimal performance in pixel classification tasks under the wide variety of distributional

assumptions.

5.1 Introduction

The most prominent challenge in human- and computer-based visual inspection of micrographs
is the complexity and variety of biological structures at the micro- and nano-scales. The image
characteristics of cellular and subcellular environments differ widely according to the organism,
tissue type, anatomical sample preparation practices, staining protocols and not at least the applied
imaging modality. A recent review on segmentation tools in electron tomography [12] emphasizes
the need for more objective segmentation tools. We review the recent works on cellular and sub-
cellular segmentation in Section 1.3 and Section 2.1. The conclusion on background research is
that manual segmentation is still the present clinical practice.

A highly active research direction towards the pursuit of automation in biological image anal-

ysis is based on statistical machine learning within the class of semi-supervised methods [230].

I'This chapter has been published in the Journal of Structural Biology (Elsevier, 2013) [50]
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5.1. Introduction

The guiding idea behind these approaches is that given manually labeled images, the goal is to learn
models that can identify novel instances of the regions in test datasets [153]. Within this field, a
commercial software package to support the automatic segmentation of subcellular structures such
as mitochondria, for example, has yet to become available, and to date only a few applied solutions
have been reported. Due to their central role in cellular bioenergetics, apoptosis and autophagy, the
identification and classification of mitochondria is an area of increasing biomedical importance.
A timely review of training-based pattern recognition techniques with application to biological
image analysis is provided in [187], where the authors also emphasize the major limitation of the
framework as being the considerable amount of data required during the training process.

Fully unsupervised learning methods, on the other hand, skip the training stage and do not
necessarily require a priori knowledge about the structure of an object. Here, the partitioning of an
image into a set of discrete clusters is implemented with dimensionality reduction techniques such
as Principal Component Analysis, its non-linear extension to kernel-PCA, Linear Discriminative
Analysis, Independent Component Analysis and many others [101]. In particular, spectral meth-
ods which consider eigenvector-based analysis of features [7, 54] are known to capture perceptual
organization features, and to efficiently separate important (foreground) from non-important (back-
ground) information [7, 166]. This ability is based on the fact that the leading eigenvectors of a
similarity matrix account for most variability in the data and contain the information about the most
dissimilar regions of an image. A similarity model that serves as an input to a spectral clustering
algorithm, encompasses various image features such as texture, color, motion, brightness or higher
level primitives such as extracted line segments and contours.

In this work we utilize the perceptual grouping strategy, firstly by selecting the spectral clus-
tering framework and secondly by developing our similarity models according to Gestaltic laws
of visual segregation [24, 62], such as Closure, Proximity, Similarity and Figure-Ground. Within
this framework, we view a mitochondrion as a closed membrane organism and specifically tar-
get the detection of membranes. Therefore, we approach the diversity challenge of mitochondrial
morphologies by targeting the global appearance properties of membranes in electron microscopy
images. One immediate asset of our approach is that the outer membrane is the only descriptive
feature of a mitochondrion which can be considered invariant under the apoptotic (pathogenic)
changes of inner mitochondrial morphology [199]. Another advantage is based on the fact that
perceptual systems reflect scale-invariance of the environment provided that they are adapted to its
statistical structure [34]. This inference is of special importance when working with large scale im-
ages, and allows us to apply low-resolution block-based processing with the objective of reducing
computational load. Finally, the manually annotated data used in our study for algorithm validation
builds an additional interface between artificial and human vision. Another interdisciplinary link
with human vision and psychology is the clinical annotation of micrographs which is the result
of human perception, experience and judgement towards the validity of the manual mitochondria
segmentation performed under often challenging conditions.

The major contribution of our work is the development of an unsupervised segmentation frame-
work based on a combination of principles governing perceptual organization and unsupervised
machine learning. In Section 5.3 we propose the concept of adaptive similarity mixtures which

eliminates the need for user intervention in the selection of parameters.
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5.2. Recursive Spectral Clustering Framework

Table 5.1.1: Notations used throughout this chapter.

number of pixels in an image

similarity matrix

kernel matrix (dissimilarity matrix)
double-centered kernel matrix

n vector of ones

n X n identity matrix

projection matrix on the orthogonal complement of 1,,
matrix containing eigenvectors

matrix containing eigenvalues on the main diagonal
kernel-PCA based feature vectors

number of dimensions

number of k-means clusters

image downscaling factor

Gaussian filter size

Gaussian-filtered image

inverted Gaussian-filtered image (membranes are in bright pixels)
image gradient

image intensity

intensity-based similarity nominator
distance-based dissimilarity denominator

Z-score based matrix

adaptive similarity parameters (5.5)

SUM~<dQQ=so >N clo=IAaprns

R
= N
\<

In the experimental Section 5.4, we validate our algorithm on two datasets of mitochondria’. These
datasets have been selected to test the sensitivity of detection, and exhibit such unfavorable image
characteristics as low contrast, non-uniform illumination, speckle noise, absence of staining mark-

ers, varying image sizes and varying resolution.

5.2 Recursive Spectral Clustering Framework

In order to compare n image features we construct the corresponding n X n similarity or affin-
ity matrix S and the corresponding dissimilarity matrix A. Although the spectral methods differ
widely in the type of normalization of the matrix used for diagonalization, in this chapter we
adopt the clustering framework based on kernel-PCA, Euclidean embedding and k-means that is
detailed in [176]. The option of non-linear kernelization of the feature space allows us to em-
ploy a clustering algorithm with the linear cut capability, such as k-means. We briefly review the
main processing path of kernel-PCA and introduce the notion of a centralized dot product matrix
C=-05QAQ, withQ =1, - %1,,1;. Here, I, denotes an n X n identity matrix, 1, = (1, 1,...,1)T
is an n vector of ones and Q is the projection matrix on the orthogonal complement of 1,,. Recon-
structed data @ are obtained through spectral decomposition of C = UAU” and the subsequent

re-scaling by applying ® = U VA [176].

2Provided by the ASCB (American Society for Cell Biology).
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5.2. Recursive Spectral Clustering Framework
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Figure 5.2.1: Proposed processing pipeline showing the progression from the input electron mi-
croscopy (EM) image on the far left to the set of detected organelles in the far right images. The
three clustering stages m = {1,2, 3} are denoted by S . Diagrams are best viewed in color

The rows of ® correspond to the multidimensional vectors ¢;,i = 1,...,n. The dimensionality
reduction step is carried out by taking the first L columns of ®; = U; VA;. We retain the leading
component @ and apply k-means in the feature space to obtain the set of discrete clusters.

The complete processing path is shown in Fig. 5.2.1 and does not include any a priori models
for mitochondria shapes, textures, or the customized energy functionals which are usually needed
for training purposes. The main hypothesis employed in the development of our segmentation solu-
tion was based on the observation that subcellular organelles are defined by closed structures with
distinct inner textures. Thus, we attempted to exploit specific knowledge in relation to the morphol-
ogy and structural characteristics of mitochondria and to target the global appearance properties of
mitochondrial membranes. For that purpose, our designed similarity models specifically integrate
the intensity and spatial properties of the mitochondria membranes.

The segmentation architecture proposed consists of a multi-stage largely unsupervised scheme
in which the first step involves data preprocessing in order to reduce noise and to enhance local
structure coherence. In the proposed architecture we segment the membranes first, then fill the
inner part of the mitochondria and separate the inner and outer wall of the outer membrane. Finally,
we apply contour matching to segment adjacent organelles and to remove other connected blob-
like or membrane-line objects which do not belong to mitochondria. Due to the size of the high-
resolution images, we designed our algorithm to work with tiled and further downscaled (by a
factor of ¢) images. Then, from the constructed similarity matrix for each tile, the global salient
and non-salient membrane structures can be determined by means of spectral clustering.

In the first stage of clustering our objective is to close and segment dark membranes. For the
purpose of membrane closure, we create a filtered image G by convolving the original input image
with a designed Gaussian-based filter, multiplying the result with the original image and further
re-normalizing the final product to the [0, 1] range. The degree of closure is controlled by the
scale of the Gaussian filter. The gradient magnitude |V| is also used in the similarity model S

in the first clustering stage. However, the gradients obtained are weak as they are caused by low
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5.3. Proposed Adaptive Similarity Models

intensity profiles that are often characteristic for mitochondria membranes. Separate classification
maps for each tile are further combined to yield the binary result of figure-ground segmentation of
membranes. A postprocessing step based on mathematical morphology performs the flood-fill of
the inside of mitochondria. The final outer contour (shown in red) can be seen in Fig. 5.2.1. In
the second recursive clustering stage, we recluster the filled foreground obtained, with a different
similarity model S ), where the objective is to classify the inner part of a mitochondrion. By doing
so we aim to separate the inner membrane from the outer membrane, and to obtain the inner part of
a mitochondrion as a convex contour where the inner folding is included in that contour. The third
stage of clustering S () involves a contour processing step and the computation of a minimum
distance between the set of extracted inner contours S(?) and the outer contour S(1). The final

segmentation result in Fig. 5.2.1 shows the identification of adjacent organelles.

5.3 Proposed Adaptive Similarity Models

In this work we connect the notion of adaptivity with non-parametric learning models [24, p. 32]
which can adjust to the biological domain without user intervention and perform equally well under
a wide variety of distributional assumptions. In many studies, however, the selection of parameters
to accompany a similarity model is a sensitive issue and is primarily data-driven [25, 166]. One
example of a state-of-the-art similarity model is given in (5.1) [25, 166] and involves squared

difference of intensities / between two pixels p; and p;:

Far(p1, p2) = exp[—-(I(p1) = I(p2))*/al 5.1

where a is a penalization parameter. The goal of (5.1) is to discover regions with small variations
in intensities. Thus small intensity differences Al representing similarly bright pixels are weighted
equally with similarly dark pixels of the same Al. Such a model, therefore, is inherently inefficient
in capturing structures represented by bright pixels. This limitation is of particular importance to
the selected perceptual grouping strategy, as in a complex visual arrangement of gray and white
pixels, the human attention is easily drawn to brighter areas — a phenomenon based on the Gestalt
law of Figure-Ground [62].

In this work and in the first clustering stage, we introduce an additional intensity-based term
F gl) which weights similarly bright pixels higher than similarly dark pixels in the inverted filtered
image G where the salient membrane features are given by bright pixels. In order to weigh the
pixels occurring near to the gradient edge higher, we utilize in addition the inverse exponentially
mapped and normalized gradient magnitude |V| of the input image. Our final intensity-based func-
tion FU is a maximization between the brightness criterion represented by F il) and the region-
based contrast criterion represented by F' ;1). The weighting constants k; and k, provide an option

to balance the influence of an either term, as shown in (5.2):

F 1, pa) =k [Gp1) - 00 + Gp) - 70,

F{(p1.p2) = ko - [max(G - 1) = [G(pr) - 700 = G(py) - T,
FO(py, pa) = max(FD, FD),

FO(py, p2) = expl-lI(p1) = I(p2)]] -

5.2)
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5.3. Proposed Adaptive Similarity Models

We use the gradient magnitude-based term to include sharpness variation in microscopic images.
The term included in square brackets in F’ 51) is the normalized region-based contrast criterion, and
the exponential mapping is included for the same reason of normalization. F( is the winning
choice between the brightness and contrast criteria. The last equation in (5.2) shows the intensity-
based model F® for the second recursive stage of spectral clustering where the objective is set
to recluster the foreground extracted after S (. In order to include the Gestalt law of Proximity
into our model, we consider the squared Euclidean distance D between pixels p; and p,. In the
final similarity model, our objective is to let F decay with increasing D in a ratio relationship. In
order to alleviate the problem that coordinates and intensity are measured on different scales and in
different quantities, we propose the following three normalization procedures (see also Fig.5.3.2).

First, contrary to formulations presented for example in [25, 166], we avoid user-based se-
lection of a distance penalization parameter o% by defining D in terms of Z-score normalized

coordinates z, and zy:

DD (py, p2) = DD (py, p2) = expl(za — z2)* + (21 — 22)°] (5.3)

Second, in every clustering stage we construct two matrices F and D according to pairwise sim-
ilarities (5.2) and pairwise distances (5.3), and define the final similarity matrix S as a pairwise
ratio of F- and D-based Z-scores, denoted Zg and Zp, where higher Z-scores correspond to higher
probability of non-accidental occurrence. Standardization is attained with arithmetic mean ¢ and
standard deviation o, both being computed over all matrix entries [44].

Third, in order to control the degree of mixing Z and Zp, we introduce two constants, & € R*
and 8 € R, in the denominator, as can be seen in (5.5). In this formulation, the parameter @ can be

thought of as the standard deviation of the new distribution:
Z,=a-(Zp+pP), (5.4)

and the parameter 8 can be thought of as the mean of Z},. Thus, « controls the increase or decrease
in the variability of the Z7, distribution, and 8 controls the shift of Z/, to the left for 8 < 0 or to
the right for § > 0, where the goal is to align the right tail of Zy and the left tail of Zp. In every

clustering stage m, the final similarity matrix S is obtained according to:

S - 51 = [t - (2 + B,

B =y 4 min[ZP]],

(5.5)

yg;; = max(Z%m)),

(m) _
Ay = 1.

For the case of an approximately Gaussian probability density function of Zg, one possible sce-
nario for optimal sampling is to position the left end of Zp at 3o0zr = 3, which captures 99.7%
of the random variation in Zr. Applications seeking to increase the influence of the distance term
may scale Zp by a < 1.

For the general case of a non-Gaussian pdf of Zp, we propose to align the right end of Zr with

the left end of Zp (5.5), and by doing so to completely separate the two distributions.
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Figure 5.3.1: Concept of adaptive similarity mixtures S where F and D are modeled as probability
density functions Zr and Zp through the introduced standardization of matrix elements. The bright
membrane structures (here in inverted EM images) are captured in the right half of Zx

Two examples in Fig. 5.3.1 are provided to illustrate that by varying @ and y we can control the
accuracy of membrane detection in terms of thickness and gap completion. Specifically, by com-
paring columns (c) and (e) in Fig. 5.3.1, it can be seen that moving Zp away from Zr (compare
Fig. 5.3.1(b) and Fig. 5.3.1(d)) reduces the amount of false positives identified.

The final step in data preparation before proceeding with spectral decomposition is the dissim-
ilarity mapping and kernelization. These procedures are necessary in order to transform the final
similarity matrix S into a centralized pseudo-covariance matrix C which is used later as an input to
kernel-PCA (explained for example in [176]). For our two spectral clustering stages we applied the
linear dissimilarity mapping, and for the first stage cD, we additionally applied the square root

kernel:

Cch = -1QVmax(®)-9Q.LV =1, kb =3

5.6
C? = ~1Qmax(§) -9)Q, LD =1, kP =2 60

After the diagonalization of C, the final set of discrete clusters is obtained with a k-means clustering
algorithm on the retained first (L = 1) kernel-PCA output feature vector @;.

As can be seen in (5.6), the first clustering stage returns 3 clusters {k1, k2, k3}, where the decision
on the foreground is made in the image domain according to u(W(k;)) < u(W(kz)) < w(W(ks)).
Thus we select the cluster with the minimal average brightness. Our choice of the 3-class partition
was motivated by the assumption that with k > 2, we can segment thinner structures while closing
the membrane gap with the width d and at the same time maintaining the separation of close lying
organelles with the same d. The above mentioned effect of k = 3 can, for example, be observed in
the returned pixel classification maps in Fig. 5.2.1.

The third clustering stage S 3) is outside the spectral clustering framework. For the extracted
inner contours obtained after S %) we compute and evaluate Euclidean distances between the inner
contour and the outer contour obtained after S (1) with the objective of retaining only those outer
contour points with the minimal distance to the currently analyzed inner contour. Our proposed
four-stage cascaded raw data normalization and data fusion is illustrated in Fig. 5.3.2. This diagram

shows how the unnormalized input data are factored into the joint similarity model S'.
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Figure 5.3.2: Proposed four-stage cascaded raw data normalization and data fusion. Stage (I)
consists of standardization of the raw coordinates x and y. Stage (II) consists of the computation
of the Z-score matrices Zr and Zp. Stage (III) determines the optimal shift of Zp. Stage (IV)
determines the final data fusion.

5.4 Experimental Results

We applied our model to two datasets each consisting of 17 EM images provided by the Ameri-
can Society of Cell Biology. The images contain mitochondria from the ductulus efferens of the
ground squirrel, Cittelus lateralis [65]. All mitochondria of this type have an elongated profile.
However, some organelles appear spherical or elliptical with the "washed-out" cristae and/or outer
membrane and some organelles contain shadow characteristics in the outer region as can be seen
in Fig. 5.4.2(a). These problems are related to the section thickness in typical EM studies ranging
from 50-90nm and thus not being thick enough to include the whole mitochondria [65]. Thus,
the shadow artefacts mentioned above are the result of tangentially oriented membrane within the
section thickness. Therefore, based on the suggestion made by our biomedical partners, the data
annotation was carried out as a smooth closed contour extrapolation. Figure 5.4.1 shows two ex-
amples of manual annotation of the inner and outer mitochondrial membranes.

In order to construct the Dataset I, we extracted the regions of interest at different magnifica-
tions. Thus, images in the first dataset have different resolution and therefore the thickness of the
membrane is assumed to be unknown. In the acquisition of the second dataset, we applied equal
magnification while extracting the regions of interest. All images have different sizes and generally
the image quality and the contrast are extremely low, which on the other hand allows us to test the
sensitivity of our detection algorithm. The weighting constants k; and k;, introduced in (5.2), are
selected according to the robust Qn spread estimator of the input data G [44] such that k| = 0'2Q 2(G)
andk, =1 — o-an(G).

Selected qualitative segmentation results for the ASCB Dataset I are provided in Fig. 5.4.2.

Here, the comparison is given between the original image, manually annotated and further clini-
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Figure 5.4.1: Ground truth manual segmentation with Adobe Photoshop 7.0. All annotations have
been validated by our biomedical partners from RCSI. Diagrams are best viewed in color.

cally validated ground truth data, our segmentation results after the first clustering stage SV and
our final segmentation results of the outer mitochondrial membrane. Selected segmentation results
on the ASCB Dataset II are provided in Fig. 5.4.3.

The 2D user-interactive semi-automated tracing software Livewire is a popular medical seg-
mentation tool [200]. Fig. 5.4.4 provides the results of the segmentation of mitochondrial outer
membrane, achieved by using Livewire. Specifically, these segmentation results demonstrate high
accuracy in semi-automated segmentation using this tool as compared to the ground truth data of
these organelles in Fig. 5.4.2 column (f).

For quantitative assessment, the result of segmentation and the ground truth data is given by
filled closed segmented contours, such that the foreground object (mitochondria) is 1 (white) and
the background is O (black). In order to evaluate quality of binary segmentation we selected Pre-
cision, Recall, Accuracy [168] and the Dice coefficient [231] as performance measures. These
metrics are based on the combination of the number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN) classified pixels.

Precision = % 5.7
Recall = % (5.8)
Aceuracy = 75— 1{11: I sz TN 9
Dice =757 FP2 ?;P T FN (5.10)

A true positive is 1 when output of the segmentation is 1 and the ground truth is 1. A true negative
is 1 when the result of segmentation is O and the ground truth is 0. A false positive is 1 when
the result of segmentation is 1 and ground truth is 0. A false negative is 1 when the result of
segmentation is 0 and the ground truth data is 1. For perfect segmentation the Precision and Recall

is 1. Oversegmentation is the case when Precision is low.
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(€) 758x710 image 17 (f) Ground Truth (g) Our after SV (h) Accuracy = 96.98%

Figure 5.4.2: Selected qualitative results for the ASCB Dataset 1. (a,c,e): original Electron Mi-
croscopy images; Column (f): clinically validated Ground Truth segmentation; Column (g): Our
intermediate figure-ground segmentation results after the first clustering stage; (b,d,h): Our final
segmentation results after the contour matching step. Diagrams are best viewed in color.

Undersegmentation is the case with low Recall. Accuracy is the ratio of the sum of TN and TP to
the total number of pixels. The Dice coefficient is a simple and useful measure of spatial overlap
which is applied to assess the accuracy in image segmentation. The value of the Dice coefficient
ranges from 0, indicating no spatial overlap between two sets of binary segmentation results, to 1,
indicating complete overlap [231].

Quantitative results are shown in Fig. 5.4.5 where the Precision, Recall, Dice and Accuracy
measures have been calculated with respect to the accuracy of membrane points in the segmentation
and ground truth data. The quantitative results in Fig. 5.4.5 show that the average accuracy of our
approach is above 90% except for the image 7 where the segmentation accuracy drops to 87.72%
(Fig. 5.4.5a) and 87.19% (Fig. 5.4.5d).

The performance graph for the second dataset DII in Fig. 5.4.5(b) shows one current limita-
tion of our approach such as the automatic selection of the closure-related filter size f and the

downscaling factor ¢. The closure profile of the image 8 is shown in Fig. 5.4.5(c) and suggests

109



5.4. Experimental Results

Figure 5.4.3: Segmentation results on the ASCB (American Society for Cell Biology) Dataset 11
where all images have different sizes but equal resolution. Quantitative segmentation results for
both datasets are provided in Fig. 5.4.5. Diagrams are best viewed in color.

the appropriate filter size ranging from 9 to 31. The results with optimized c and f parameters in
Fig. 5.4.5(d) show the improved performance as compared to Fig. 5.4.5(b).

This chapter presents a new approach to the unsupervised segmentation of mitochondria in EM
images based on a combination of principles governing perceptual organization and unsupervised
machine learning. The major theoretical novelty of our work lies primarily in the introduction of
adaptive similarity models which eliminate the need for user intervention towards the selection
and tuning of penalization parameters. In this way, while our segmentation algorithm runs on
each image tile separately, the model parameters can be adjusted automatically. We demonstrate
the successful separation of adjacent organelles with segmentation accuracy of above 90% when
working with low contrast large scale electron microscopy images.
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Figure 5.4.4: Selected segmentation results using the user-interactive semi-automated tracing soft-
ware Livewire [200]. Diagrams are best viewed in color.
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Figure 5.4.5: Quantitative mitochondria segmentation results. (a) Dataset I (DI). The drop in
performance for the image number 7 is due to an additional mitochondrion which has been detected
by our algorithm but omitted in the ground truth segmentation. (b) Results for Dataset II (DII) with
the parameters optimized for DI. (¢) Closure profile for the image number 8. (d) Performance graph
for DII with optimized ¢ and f. Diagrams are best viewed in color.

Because we have been limited by the number of images supplied by our biomedical partners,
obtaining a larger dataset along with the ground truth annotations would be beneficial for the eval-
uation of the method. We have approached the computational complexity of spectral clustering by
subsampling and partitioning input images into a set of non-overlapping rectangles. Next chapter
presents the novel Spectral Clustering Equivalence algorithm, which avoids the use of eigenvectors
in the feature space, and which can be applied to very large scale, asymmetric, non-Euclidean, and

generally dense datasets and similarity matrices.
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Chapter 6

Anticorrelation-based Dimensionality
Reduction

This chapter introduces the Spectral Clustering Equivalence (SCE) algorithm which is intended to
be an alternative to spectral clustering with the objective of improving both the speed and quality
of segmentation'. Instead of solving for the spectral decomposition of a similarity matrix as in
spectral clustering, SCE converts the similarity matrix to a column-centered dissimilarity matrix
and searches for a pair of the most anticorrelated columns. The orthogonal complement to these
columns is then used to create an output feature vector (analogous to eigenvectors obtained via
spectral clustering), which is used to partition the data into discrete clusters. We demonstrate the
performance of SCE on a number of artificial and real datasets by comparing its classification and
image segmentation results with those returned by kernel-PCA and Normalized Cuts algorithm.
The column-wise processing allows the applicability of SCE to very large scale problems and
asymmetric datasets.

This work provides a theoretical alternative to model-based spectral clustering approaches
which are based on the direct eigenvector analysis — infeasible for very large and particularly dense
and indefinite similarity matrices. Therefore, the method developed also directly addresses the
present and inherent limitations of spectral clustering in regard to its computational complexity
of O(N?). Initially the method is developed for two-class problems in view of the unsupervised
foreground to background segmentation in the image space. The main research direction is set
to explore second order statistics and possible alternative interpretations of similarity matrices in
attempt to construct a set of orthogonal and uncorrelated components — a result achieved by the
selected benchmark method of embedded kernel-PCA. A further objective is that the developed
SCE algorithm be robust to the symmetry and metric violations of the pairwise proximity data and

remove the unreliable dimensions more effectively than the conventional spectral clustering.

6.1 Introduction

Recent years have witnessed an enormous increase in research and applications devoted to spec-

tral clustering where the problem of grouping is reformulated in an induced feature space. This

I'This chapter has been published in the Lecture Notes in Computer Science series (Springer, 2011) [52]

112



6.1. Introduction

attention is not undeserved for several reasons. Firstly, spectral clustering can be referred to as a
fully unsupervised classification method [230]. Secondly, spectral clustering excels in discovering
hidden and secondary relationships [164], managing non-convex cluster shapes, non-metric data
[118] and noise reduction [101] in a well-defined and theoretically sound framework. Finally, the
segmentation and grouping based on eigenvectors is able to return the perceptual organization fea-
tures present in an image [147, 166, 220]. Conceptually, spectral clustering belongs to the domain
of manifold learning methods aimed at the unsupervised extraction of a low-dimensional represen-
tation [201]. The term spectral therein refers to a broad family of clustering methods that make
use of the eigenvectors of some normalized similarity matrix [7]. Different spectral clustering al-
gorithms formalize the grouping problem in different ways, and differ widely in the number and
ranking of eigenvectors and matrix normalization steps retained [155, 190]. One application to
image segmentation is the spectral graph-based normalized cuts (Ncut) algorithm presented by Shi
and Malik in 1997 as the first application of spectral clustering to computer vision domain [189].

Despite its merits, spectral clustering also has limitations associated with the computational
complexity of spectral decomposition [201, 220], and the problem of discretization of continuous
eigenvectors [147]. In particular, pixel classification tasks for large indefinite (possibly asymmet-
ric) and fully dense similarity matrices form a considerable computational bottleneck for spectral
clustering. Given an image with N pixels, the size of the similarity matrix increases to N> x N and
the decomposition-based implementations of spectral clustering quickly become infeasible. This
is a well-known fact which has been regularly emphasized over the past decade [201, 220]. Ap-
proaches dealing with this paradigm range from exploiting the sparsity, to subsampling of an image
or similarity matrix, to low-rank approximation methods such as Nystrom algorithm [15, 68]. We
infer that this is still an open problem from the most recent work by Chen et al. [35] where the team
of researchers presented a parallel HPC implementation of spectral clustering. Another work by
Tung et al. [208] approached the scalability problem of spectral clustering by using a combination
of blockwise processing and stochastic ensemble consensus.

In this contribution, we do not seek numeric or platform-related solutions to speed-up spectral
clustering, but rather seek a method which questions the optimality of eigenvectors. We therefore
raise a question if the important aspects of the data can be represented through a less expensive
alternative. This consideration opens the door to a much broader range of techniques in statistical
machine learning and dimensionality reduction which forms the basis for any spectral clustering
implementation. Therein, the family of learning methods encompasses but is not limited to Prin-
cipal Component Analysis, kernel-PCA, Linear Discriminant Analysis, other generative, discrimi-
native, latent variable [179] and Independent Component Analysis methods [101].

In this work, we assume an underlying low-dimensional manifold and search for a computa-
tionally less expensive alternative to eigenvector-based analysis. We highlight the idea behind our
algorithm that given a separable dataset [179], the core information related to the leading eigen-
vectors is contained in the columns of a kernel matrix. We call our algorithm Spectral Clustering
Equivalence (SCE), and in the next sections we show its connection with kernel-PCA, Ncut and the
Ising model [31]. A major contribution of our work, presented in this chapter, is the reformulation
of the standard spectral clustering concept through the construction of uncorrelated, orthogonal

and centered components without the use of eigenvectors.
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6.2 Development of the Spectral Clustering Equivalence

In multidimensional scaling, the spectral decomposition is carried out on the inner product (Gram)
matrix G in the feature space, with the main emphasis on preserving the inner-point distances
[176]. Let us denote a similarity matrix by S and a dissimilarity matrix by A. The matrices A or
S can either be viewed as a dot product matrix G in some feature space, according to Scholkopf
and Smola [182], or transformed to G with kernelization and normalization [176], according to a
particular spectral clustering formulation and application [220].

We assume that A is a generally indefinite (possibly asymmetric) matrix and interpret it as a
multidimensional space spanned by its columns. Furthermore, we center the columns of A, call
the new matrix C and consider a 2-class data partitioning problem. In order to answer the question
about which columns in C carry more information about the binary class labels, we proceed with
the analysis of linear dependencies present in C. From the related works on linear dependency
analysis, Srebro and Jaakkola [194] for example, also seek to identify a low-dimensional subspace
that captures the dependent and the "important” aspects of the data, and separate them from inde-
pendent variations. Thus, a natural way to conduct dependency analysis is to analyze correlations
between different variables, and the first step, prior to applying correlation analysis, is the center-
ing of variables. Contrary to the formation of G in kernel-PCA, which involves double-centering
[176], our normalization of A in order to obtain C does not involve row centering. Next, we define
the correlation between two centered columns, ¢; and ¢;, according to the formula of Pearson’s

product-moment correlation coefficient [170]:

N

P12 = Z [e1.ic2,]/

i=1

(6.1)

A strong negative correlation provides a suitable measure of discrimination according to [207], for
example, and also indicates that the decrease in one variable is controlled by the increase in the
second variable. With regard to natural images, it is reasonable to view foreground and background
as the two most distinct and thus most anticorrelated image structures. We therefore are interested
in the lower bound of p € [—1, 1], and define a pair of observations (columns of C) with a strong
negative correlation p;; — —1 dissociation patterns.

In order to construct the orthogonal and uncorrelated kernel-PCA estimates we first draw on the
idea of canonical spaces [197]. In statistics, the canonical (or principal) angles are closely related
to the measure of dependency and covariance of random variables. When applied to column spaces
of matrices, the principal angles describe canonical correlations of a matrix pair [107].

Let X and Y be the two unknown subspaces spanned by the columns of C. The largest canon-
ical angle (X, Y) between X and Y is defined according to [197] as:

0X,Y) = max mgl Z(x,y) (6.2)

xeX y€
We know that the correlation coefficient between centered variables is equivalent to the cosine of
the angle between these variables [170]. The cosine of the largest canonical angle 6 — m can
therefore be interpreted as the minimal signed Pearson correlation coefficient p,,;, — —1 between

a pair of mostly anticorrelated columns of C.
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Figure 6.2.1: Algorithm description and the comparison of spectral clustering (6.3) and SCE (6.4).
Both methods take a similarity matrix S as an input and produce a pair of orthogonal and uncorre-
lated feature vectors. Spectral clustering is based on the eigendecomposition of the pseudo-Gram
matrix G. Conversely, SCE is a decomposition-free method which is based on the dependency
analysis of the column-centered kernel matrix C. Because SCE works on the columns of C, it can
generally be applied on asymmetric, non-PSD and rectangular datasets.

In the next step, we construct the symmetric matrix R with entries corresponding to the correlation
coefficients p;; computed between the columns i and j of the matrix C. According to the cosine
definition, rr is the maximum possible angle corresponding to cos(6) = ppin = —1 [170]. Thus, ppmin
not only defines a pair of mostly anticorrelated columns ¢; and ¢, but also provides the link with
the first canonical angle 6.

According to Stewart [197], the number of canonical angles in the case of dim(X) < dim(Y) is
equal to dim(X), which in our case is dim(X) = 2. This fact allows the construction of the second
SCE-based feature component by employing the orthogonality constraint to obtain 6, — /2. For
this purpose and Yk € [1, N?] we seek an orthogonal complement vector ¢, to ¢;2, and in this

process we discard the least orthogonal pair of vectors:

Clk if |Zey, ¢ — /2| < |Zep, ¢ — /2|
t1,2:{ 1k 1,Ck 2, Ck 6.5)

C2k» otherwise .

This gives us a pair t; » of somewhat orthogonal columns of matrix C where p(t;,t;) — 0. Itisa
rather strong assumption that the t; » obtained would result in p = 0. Furthermore, we multiply t; »
by C* (i.e. C to the power of z) to maximize linear dependency and subsequently decorrelate and
center using PCA on the computed 2 X 2 covariance matrix. By doing so, we obtain the pair @,
of completely orthogonal, uncorrelated and centered SCE feature vectors.

In this formulation, the SCE approximation of kernel-PCA feature vectors X 5 is controlled
by the coefficient z. After decorrelation and centering, and similarly to the approach used in the
ranking of PCA components [101], our selection of the leading feature vector @ is based on the
maximum variance principle such as o2(®)) > 02(®,) where o denotes standard deviation.

The complete description of the SCE algorithm, its comparison with the selected kernel-PCA

based spectral clustering implementation and the progression from c¢ to @ is outlined in Fig. 6.2.1.
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Figure 6.3.1: Comparison of classification results on asymmetric data with binary k-means in
spectral clustering (a) and SCE (c) constructed feature spaces. An interlocked two spirals dataset
is considered as a challenging benchmark for spectral clustering [33]. As can be seen in (c),
SCE results in a better inter-cluster separation in the feature space. As the symmetry condition
constitutes one of the four metric axioms [9], this example tests the non-metric invariance of SCE.

6.3 Results of Comparison to kernel-PCA

In this section we compare the SCE-based classification to the kernel-PCA based result and applied
them to an experiment with an asymmetric dataset. We used an interlocked spirals dataset, shown
in Fig. 6.3.1, which is considered to be a challenging benchmark for spectral clustering [33]. To
tackle this challenging clustering problem, Chang and Yeung [33], for example, presented a robust
path-based spectral clustering algorithm with the use of a Gaussian kernel. Nearest neighbor-based
grouping methods such as, for example, single linkage hierarchical clustering with the simple
Euclidean distance metric are also known to solve this type of a problem. Throughout this chapter
we use the k-means algorithm for clustering purposes in both spectral clustering and SCE returned
feature spaces. The main objective of our experiment was to test the asymmetric and non-metric

invariance of SCE and thus we designed the following asymmetric similarity measure:

sij = by - (dx; — dx;),
sji = by - (dy; — dyj) .

In the experiment outlined in Fig. 6.3.1, each spiral consists of 151 data points and is generated

(6.6)

according to the equation of Archimedean spiral. Two separately computed coordinate vectors
have been further concatenated to form x and y vectors. In (6.6) we use the differentials dx and dy
of the raw coordinates x and y. The model parameters b, and b, control the degree of asymmetry
and with by = 20 and b, = 2 we obtain a highly asymmetric S with s;; # s;;. Due to the symmetric
formulation of spectral clustering we decompose S into its symmetric and skew-symmetric parts
S = Sgym + Sskew according to [38]. Because of its symmetric formulation, the kernel-PCA based
implementation disregards S, and diagonalizes only the remaining symmetric matrix Sqy,,.
Given a high degree of induced asymmetry (b; > b,), the combination of spectral clustering
with k-means failed to correctly identify the two separate spirals as illustrated in Fig. 6.3.1(b).
Conversely, SCE fully utilized the information in the asymmetric component of S to achieve the
correct separation as shown in Fig. 6.3.1(d). Furthermore, SCE with k-means on the asymmetric
S resulted in a better projection and thus higher inter-cluster separability than kernel-PCA. In this

experiment, the anticorrelation amounted to the global value of p,;;, = —0.4 in the matrix R.
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SCE, thresholding @1  Ncut returned result seg=2

SCE, thresholding @1  Ncut retumed result seg=2

Figure 6.4.1: Original 321 x 481 images from the Berkeley database are shown in the first column
and SCE-based results in the second column. The last three columns show the Ncut-based result
and the first and the second eigenvector returned by Ncut. This diagram is best viewed in color.

6.4 Connection of SCE with Normalized Cuts

Ncut is the graph-theoretic formulation of spectral clustering with the objective of minimizing a
normalized measure of disassociation [190]. Ncut operates on the 2nd generalized eigenvector of
a normalized weight matrix W where the normalization procedure has the purpose of penalizing
large image segments. Ncut then computes the diagonal matrix D containing the sum of all edges,
and solves for the eigenvectors of N = D-2WD~2 with NG, j) = W(, j)/ VDG, i) VD(j, j). The
second smallest generalized eigenvector A, of W is a componentwise ratio of the second and first
largest eigenvectors of N [220]. We are interested in whether or not our ®-based approximation can
provide computational savings over the Ncut while maintaining the same binary image partition.

For comparative purposes, we have acquired the Ncut demo software from [40] and used the
parameters supplied for the calculation of the adjacency matrix based on intervening contour sim-
ilarities. In order to compare the segmentation results, we take the N matrix returned and compute
@ as outlined in Fig. 6.2.1. There are two aspects which are non-trivial in connection with Ncut:
definition of a feature similarity, and selection of a partitioning threshold which can take the values
of 0, median or a point that minimizes Ncut(A, B) [190]. In our SCE formulation we center the
columns of N before mixing with t for a number of z iterations. We can also implement N*t mixing
iteratively by centering only the mixed N> X 2 components after each iteration. The successive
centering results in the ideal non-parametric case, where we partition the graph according only to
the signs (A = {®; > 0}, B = {®; < 0}).

For our experiments we used a Dell Precision M6300 dual-core notebook with 2GB RAM
and the Matlab R2009a environment. The results of an experiment on the full resolution 321 x 481
images from the Berkeley segmentation database are shown in Fig. 6.4.1. The binary Ncut partition

returned (Fig. 6.4.1, third column) is given by the second computed eigenvector (fifth column).
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We observe the qualitative equivalence between the SCE segmentation based on @1, and the first
eigenvector (fourth column) returned by the Ncut algorithm, which also outputs a very narrow-
banded sparse matrix N with ~ 0.1% non-zero elements. Due to the inherent sparsity advantage
which has its roots in the definition of similarities [190], Ncut does not rely on the direct eigen-
decomposition of N. Instead, it uses the iterative Lanczos eigensolver [197] which, similarly to
SCE, is also based on sparse matrix-vector multiplications. In our experiments with the returned
sparse matrix N, the smallest correlation coefficient p,,;;, is marginally low (0., = —8.6025¢ —004)
which explains the high number of SCE iterations (z ~ 1 x 10*) needed to approximate the first

Ncut eigenvector.

6.5 SCE Extension with Latent Variables

It is known that eigenvectors are efficient in capturing perceptual organization features [147, 166,
220]. Ncut is also based on the view that perceptual grouping should be a process that aims to
extract global impressions of a scene, and it provides a hierarchical description of it [190]. In our
SCE formulation, the approximation to the first Ncut eigenvector is connected with the rotation
and scaling of two hyperplanes, implemented through iterative N X t multiplications. Therefore, it
is reasonable to assume that the foreground innovations can be extracted ahead of the eigenvector
equivalence condition and in a much shorter time. To approach these problems, we followed the

idea of a ’greedy search’ and designed the optimization procedure detailed in Table 6.5.1.

Table 6.5.1: Ising-based SCE extension.

function [Q, A, B] = scecut(N, t, itmax)
k = cov(t); [u,v] = eigs(k); t =t=u;t =t —t; it = 0;
while it<itmax
b=Nsxt;b=b-b;
if std(by) > std(b,)
t; = —sign(b;) = by; t; = by;
else
t; = —sign(by) = by; t; = by;
end
it=1it+ 1;
end
QG D =t;Q0,2) =t

A:QG1)>0;B:Q(:,1)<0;

Here, we view the matrix N as the matrix of features and consider N to be sparse. We view the
signs of a pair of columns as two latent (hidden) binary support variables, and thus establish the
connection with the Ising model which is a special Markov Random Field [31].

In Table 6.5.1, "std" denotes the standard deviation. Instead of using the Ising model to repre-
sent pixels, we work with similarities contained in the normalized sparse matrix N. We denote the

optimized feature vectors by Q.
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Figure 6.5.1: Concept of the Ising-based SCE. We analyze the dynamic oscillatory behavior of the
correlation coefficient to find the optimal transition. For the two iterations near the transition point
we compute the binary classification and combine the results to yield the optimal figure ground
segmentation. The transition is given by the point where the hyperplanes are flipped around the
(strongest) axis as can be seen in the second column. On our computer, SCE runs faster than Ncut
(see the computational time above the diagrams), and returns more perceptually meaningful binary
segmentation. Diagrams are best viewed in colour.

The initial condition is given by the pair of columns t; » which, with the change in notation such

that S = N, can be obtained according to:
No>PeRY S p=p-pi>Rocen—t . 6.7)

For the experiments in this Section we used Matlab R2009a with 2GB RAM to process images
from the Berkeley database. Because the image size is 321 X481 pixels, it was not possible to store
the resulting similarity matrix in Matlab. Due to these limitations we did not search for the global
minimum on correlation in N, but instead operated on a subset matrix P of H randomly computed
columns of S. Thus, in the experiment shown in Fig. 6.5.1 we selected the reduced subspace of
H = 100 in order to process a 321x481 image from the Berkeley database. Although the automatic
selection of the stopping criterion is still an ongoing work, we note that one possibility to obtain
the optimal partition is to analyze the dynamic oscillatory behavior of the correlation coefficient
p(ty, tp) (first column in Fig. 6.5.1) and we observed that the optimal figure-ground cut occurs at
the change in phase of p. The binary A (figure) and B (ground) partitions have to be computed

twice for the two successive iterations corresponding to the p transition.
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6.5. SCE Extension with Latent Variables

The final segmentation result F' combines the intermediate results at different iterations such that
F=F NF,, where F{ = A; UBj and F, = Ay U B; (see Fig. 6.5.1 last row).

Random subsampling of N (6.7) explains somewhat different (but consistent with perceptual
meaning) segmentation results in the second and the third row of Fig. 6.5.1, where we used different
random subsets of N. The results in Fig. 6.5.1 show that the Ising-based SCE algorithm developed
in this work not only detects the foreground innovations in the analyzed image, but also has a factor
of two speed-up compared to Ncut algorithm.

To summarize, in this chapter we have developed an alternative to eigenvector-based feature
classification. We started the research by examining the conditions of the feature space equiva-
lence between the proposed SCE and the kernel-PCA outputs. We have shown that the proposed
algorithm reduces the dimension of the feature space while improving classification performance
and thus results in a better projection and higher inter-cluster separability than kernel-PCA.

With regard to image segmentation, we demonstrate that the proposed method has potential to
replace eigenvector-based computation at least for applications considering the detection of fore-
ground innovations. Our future work will concentrate on generalizing SCE to multiclass problems
as well as investigating the regularization and stopping criteria of the proposed Ising-based SCE
extension. Although the Ising model takes SCE beyond the equivalence pursuit, it shows that
segmentation without eigenvectors is a more flexible framework than that offered by the standard

spectral clustering.
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Chapter 7

Thesis Conclusion and Future Work

The aim of this chapter is to highlight the main contributions associated with this research and to
provide conclusions in relation to the objectives of this thesis. In the second section, future work

and its significance for this research is outlined and examined.

7.1 Contributions and Conclusions

In this work, we attempt to unify different lines of research drawn from the areas of perceptual
grouping, machine learning, image processing, kernel-based dimensionality reduction and spectral
clustering. This thesis aimed to primarily deliver the solution to the automatic localization and
segmentation of mitochondria in subcellular electron microscopy images and was cast within the
framework of machine learning. Specifically, we adopted the spectral clustering approach which
belongs to the family of unsupervised machine learning tools. Three major contributions [51, 50,
52] have emerged from this research and are summarized below.

Firstly, we considered the problem of modeling and extracting lamellar and tubular mitochon-
drial morphologies defined by the inner membrane folding. The aim was to obtain a localization
marker which could be used to extract the outer contour of a mitochondrion. This was the point
where we first diverted our attention to the grouping of low-level primitives by using Gestalt laws
of visual segregation or perceptual grouping. We have observed that in a network of line seg-
ments extracted from microscopic images, the mitochondrial structure of the above morphologies
can be captured through a new grouping principle of Projectivity. Furthermore, we have investi-
gated properties of the proposed similarity measure and have shown how to cluster line segments
with the embedded kernel-PCA and also the single linkage hierarchical clustering approaches. The
discussion on the experimental findings for this topic has been provided in Chapter 4.

Next, we extended the idea of grouping line segments to the grouping of pixels in gray scale
microscopic images with the goal of segmenting mitochondrial membranes. We have observed
that we can use such perceptual grouping cues as Similarity, Proximity and Figure-Ground for
the construction of the similarity measure. The major contribution is therefore an unsupervised
segmentation framework (proposed in Chapter 5) which follows the evolutional ability of human
vision to extrapolate significant structures in an image. In Chapter 5 we adopt a perceptual group-

ing strategy by selecting the spectral clustering framework, which is known to capture perceptual
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7.1. Contributions and Conclusions

organization features, as well as by developing similarity models according to the Gestalt laws of
visual segregation. Our proposed framework can be applied to the detection of cells and organelles
in microscopic images. The recursive spectral clustering processing pipeline is the main build-
ing block of our method and consists of preprocessing, two-stage binary image segmentation and
subsequent contour matching.

Another theoretical contribution of this work resides in the formulation of robust similarity
models which automatically adapt to the statistical structure of the biological domain, and owes op-
timal performance in pixel classification tasks under the wide variety of distributional assumptions.
This has been achieved by introducing proper normalization of input variables and subsequent data
fusion to yield adaptive similarity measures. Such adaptive similarity models eliminate the need
for the manual tuning of model parameters. Full size high-resolution images can not be directly
processed due to the resulting size of the similarity matrices and therefore we had to downsample
and tile the input image in the preprocessing step. Because of the adaptive nature of the similarity
models introduced, there is no need to adjust the model parameters in each tile. The experimental
results have shown segmentation accuracy above 90% on average, but more data and ground truth
is desirable for evaluation. The expensive nature of spectral decomposition has motivated us to de-
velop a new eigenvector-free Spectral Clustering Equivalence algorithm that can output orthogonal
and uncorrelated components equivalent to that of the selected spectral clustering algorithm based
on the embedded kernel-PCA.

We have addressed the computational limits of spectral clustering in the third major contribu-
tion of this thesis presented in Chapter 6. Here, we first followed the intuition that in the model-
based spectral clustering formulation, physically meaningful signals are already contained in the
kernel or Gram matrices, and the correct cluster assignments can be inferred by higher order sta-
tistical analysis. This work provides an alternative to model-based spectral clustering approaches
which are impractical for large, particularly dense, asymmetric and generally indefinite similarity
matrices. The major contribution here resides in the introduction of the SCE (Spectral Clustering
Equivalence) algorithm which is intended to be an alternative to spectral clustering with the ob-
jective of improving both speed and quality of segmentation. Instead of solving for the spectral
decomposition of a similarity matrix as in spectral clustering, SCE converts the similarity matrix to
a column-centered dissimilarity matrix and searches for a pair of the most anticorrelated columns.
The orthogonal complement to these columns is then used to create an output feature vector (anal-
ogous to eigenvectors obtained via embedded kernel-PCA), which is used to partition the data into
discrete clusters. We demonstrated the performance of SCE on a number of artificial and real
datasets by comparing its classification and image segmentation results with those returned by the
embedded kernel-PCA and graph-based Normalized Cuts algorithm. The column-wise processing
allows the applicability of SCE to very large scale problems and asymmetric datasets.

In this contribution we did not seek numeric or platform-related solutions to speed-up spec-
tral clustering but rather a method which questions the optimality of eigenvectors. We therefore
raised the question of whether the important aspects of the data can be represented through a less
expensive alternative. This consideration opens the door to a much broader range of techniques
in statistical machine learning and dimensionality reduction which form the basis for any spectral

clustering implementation. Therein, the family of learning methods encompasses, but is not limited

122



7.2. Future Work

to PCA, kernel-PCA, Linear Discriminant Analysis, other generative, discriminative, latent vari-
able and Independent Component Analysis methods. We assumed an underlying low-dimensional
manifold and searched for a computationally less expensive alternative to eigenvector-based anal-
ysis. We next highlighted the idea behind our algorithm that given a separable dataset, the core
information related to the leading eigenvectors is contained in the columns of a kernel matrix. We
also show the connection of the proposed SCE with embedded kernel-PCA, Ncut and the Ising
model. The major contribution presented in Chapter 6 is thus the reformulation of the standard
spectral clustering through the construction of uncorrelated, orthogonal and centered components
without the use of eigenvectors.

In summary, the work presented in Chapter 6 provides a theoretical alternative to model-based
spectral clustering approaches which are based on the direct eigenvector analysis — infeasible for
very large and particularly dense and indefinite similarity matrices. Therefore, the developed
method also directly addresses the present and inherent limitations of spectral clustering in regard
to its computational complexity. Initially the method has been developed for two-class problems
in view of the unsupervised foreground to background segmentation in the image space. Based
on inferences and improvements made therein, the problem is expected to be generalized to mul-
tiple classes. The main research direction explored second order statistics and possible alternative
interpretations of similarity matrices in an attempt to construct a set of orthogonal and uncorre-
lated components — a result achieved by the selected benchmark method of embedded kernel-PCA.
The method developed proved to be robust to non-metric violations and was able to remove the
unreliable dimensions more effectively than the conventional spectral clustering.

At the very beginning of this research, our choice of using supervised machine learning was
constrained by the amount of data provided by our biomedical partners. All our developed algo-
rithms would benefit from larger datasets, both raw and annotated ground truth images. It can be
seen in a number of publications that shape- and texture-based classifier training on the annotated
images is able to extract mitochondria of arbitrary morphologies in pre-defined tissue and cell type.
In a subcellular setting with well-separated mitochondria, such methods have been shown to suc-
ceed in the detection and delineation of organelles. However, we note that in case of apoptotic
tissues, these approaches may not work because the mitochondrial morphologies change from im-
age to image with a time. To conclude, the mitochondria segmentation quest and the selection of
the spectral clustering framework have proven to be a very interesting, and challenging, but also in-
spiring combination as it resides at the interface of computer vision, theoretical machine learning,

biology and perceptual organization properties of the evolutional human vision.

7.2 Future Work

While the objectives of this study have been accomplished, some future work can be considered to
extend the ideas presented in this research thesis. In this section, we discuss possible future lines
of research regarding localization and segmentation of mitochondria, and the anticorrelation-based
dimensionality reduction approach developed in this thesis. We also address the open problems of

automatic selection of the number of clusters in the clustering algorithms used.
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7.2. Future Work

7.2.1 Clustering Projected Line Segments

In relation to the first contribution, we have shown that our line grouping method together with the
Projectivity cue introduced can be used to identify hulls of mitochondrial structures in subcellular
environments. However, in future the validation of our method could benefit from a larger database
of mitochondria images and their ground truth segmentation for quantitative comparisons with
other line grouping methods. We have noted that the resulting non-linearly separable feature points
arrangements are due to the fact that the selected kernel-PCA clustering framework may be ill-
posed for this problem, and that "tracing" should be used instead. We applied "tracing" of line
segments by choosing single linkage hierarchical clustering on the dissimilarity matrix A. The
future work here could focus, for example, on the development of other different kernel functions
in order to obtain more linearly separable clusters in the feature space in the kernel-PCA context.

We have addressed the applicability of our proposed similarity measure to the grouping of co-
linear and co-circular line segments in Section 4.9. The analysis of existing algorithms for contour
integration problems and the development of a more general line grouping method could also be
an interesting direction for future work to pursue. Our experimental results on clustering of line
segments for the purpose of mitochondria localization showed that Single Linkage Hierarchical
Clustering outperformed kernel-PCA. However, the automatic selection of the kK numbers of clus-
ters in the k-means algorithm as well as the automatic selection of the dendrogram threshold for
Single Linkage Hierarchical Clustering could also be addressed in future work. Roth et al. [176],
for example, also reported the problem of selecting the correct number of clusters. To alleviate this
problem, the authors used the concept of cluster stability, which has been introduced by Dudoit
and Fridlyand [59] and further refined by Lang et al. [115].

In our experiments we have assumed that a mitochondrion is always present and that the inter-
nal structure represented by line segments, is consistent. Everitt et al. [64] highlighted the fact that
the logical starting point for a cluster analysis would be a test for the absence of cluster structure.
Such tests are not usually employed in practical applications of clustering. However, if they are
aimed at detecting an unknown underlying structure, then testing becomes more relevant. What is
required is a model that describes the data-generating process in the absence of clustering, and a
test statistic which will reflect departures from the model.

In relation to Single Linkage Hierarchical Clustering, a possible future line of research could,
for example, investigate the dynamic tree cutting introduced by Langfelder et al. [116]. This
method allows for different branches of the tree to be cut at different levels. The process iterates
until the number of clusters is stable by combining and decomposing clusters, making successive
cuts of the sub-dendrograms within clusters based on their shape. For the nested structures inherent
in hierarchical trees, there are two relevant works by Duda and Hart [58] and Beale [13]. Both
methods are based on the ratio of between-cluster to within-cluster sums of squares, when the
cluster optimality is divided into two [64].

Radon-like features, which also involve computation of line segments, were proposed in the
literature to leverage both the texture and the geometric information present in microscopy images
to segment mitochondria. Future experiments could involve the computation of such descriptors

and their performance comparison to our line-grouping method.
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7.2. Future Work

7.2.2 Mitochondria Segmentation

While working on the spectral clustering-based segmentation framework for mitochondria, we have
been limited by the number of images supplied by our biomedical partners. Thus obtaining a large
dataset along with the ground truth annotations would be beneficial for the evaluation of the method
in the future. This would also provide us with the opportunity to test supervised machine learning
tools such as SVM and CNN. The selection of the optimal k numbers of clusters was not the issue
in this contribution because we considered the binary segregation of an image into foreground and
background. We have approached the computational complexity of spectral clustering mainly by
sub-sampling and further partitioning of input images into a set of non-overlapping rectangles. For
example, Ghita et al. [76] developed a spectral clustering framework based on the Affinity Factor-
ization algorithm [166]. In particular, the authors explored the concept of clustering superpixels
instead of pixels in an image. This approach substantially reduced the complexity of the input data.
We also recommend using the feature enhancement techniques in the preprocessing step in order
to improve the quality of segmentation.

Other line of research could focus on an improved strategy for the integration of perceptual
grouping cues, such as continuation, in order to obtain more accurate membrane segmentation
in noisy and low contrast microscopic images. One example of related work in the context of
spectral clustering, is given by Kaynig et al. [103] on the segmentation of neuronal structures in
ssTEM images. Because of varying mitochondrial morphologies, we have initially targeted the
global perceptual appearance properties of membranes in electron microscopy images. Our affinity
models are pixel-based and therefore are limited in describing directional features. Therefore, in
order to enforce the gap completion of disconnected membranes, our affinity model could benefit
from incorporating, for example, the flux of the gradient vector field into the segmentation. Many
other directional feature extraction methods and affinity models exist, and testing them on our
datasets could also be within the scope of future research. This topic is worth of extension and

further investigation.

7.2.3 Anticorrelation-based Dimensionality Reduction

The third contribution addressed the computational limitations of spectral clustering. We have
initially assumed the underlying low-dimensional manifold and thus attempted to construct only
the first and the second SCE feature vector. Therefore, we could investigate synthetic and real-life
scenarios where the cluster information is coded by more than two eigenvectors.

Also, there is an unanswered question about why the information about the correct cluster as-
signments and the equivalence to higher ranked eigenvectors is contained in the most anticorrelated
columns of the normalized similarity matrix. It appears that maximizing anticorrelation would be
a direction to obtain more informative feature vectors. But, in the case of perfect anticorrelation,
knowing a gives us immediately b = —a, where a and b are perfectly anticorrelated. There is no
gain in information apart form the sign. What is desirable here, is a logical explanation and quan-
titative analysis of the "information" term. Two information maximization-based approaches have
been proposed by Bell and Sejnowski [16] and by Ralph Linsker [126]. We have discussed these

approaches in Section 2.2.8 in the context of unsupervised neural networks. Both works could be
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relevant for the explanation of our anticorrelation-based dimensionality reduction concept.

The proposed SCE framework would benefit from the further investigation of the computational
algorithm behavior on dense as well as sparse similarity matrices. We highlight that in cases where
very large scale matrices can not even be fully computed and stored, the SCE algorithm has the
advantage of working on a small subspace of a dense similarity matrix. However, we still do not
know if this strategy can be applied on a sparse matrix, and thus more insight is needed in the future
work. More experiments could be designed in the future to address the classification of synthetic
datasets with additive noise, clustering of line segments extracted from real images containing
mitochondria, and quantitative and computing time comparisons between SCE and standard kernel-
PCA techniques.

Through our background research, we have seen that there are a number of different dimen-
sionality reduction and clustering algorithms which are based on neural networks. An interesting
line of future research could investigate their suitability to the localization and segmentation of
mitochondria and comparison with our proposed methods. Experiments could include comparison
between self-organizing maps and k-means, for example, in classification of non-linearly separa-
ble datasets. A relevant work on the kernel topographic map formation is given by Bishop et al.
[21, 22] where the authors presented the Generative Topographic Mapping algorithm. Van Hulle
[213] applied this algorithm in order to visualize highly clustered data and has compared the re-
sults to that returned by the PCA. The author reported that by using the Generative Topographic
Mapping algorithm, the three classes are better separated with a topographic map than with PCA.

Finally, although we did not apply segmentation following the localization of mitochondria, it
is possible to link the work in Chapter 4 with that in Chapter 5 together. The experimental evidence
indicates that both strategies should be used together in order to maximize the overall segmentation

performance.
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