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There is a relative dearth of research into what is being said about MOOCs by users in social 

media, particularly through analysis of large datasets. In this paper we contribute to addressing 

this gap through an exploratory analysis of a Twitter dataset. We present an analysis of a dataset 

of tweets that contain the hashtag #MOOC. A three month sample of tweets from the global 

Twitter stream was obtained using the GNIP API. Using techniques for analysis of large 

microblogging datasets we conducted descriptive analysis and content analysis of the data. Our 

findings suggest that the set of tweets containing the hashtag #MOOC has some strong 

characteristics of an information network. Course providers and platforms are prominent in the 

data but teachers and learners are also evident. We draw lessons for further research based on our 

findings. 
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Introduction 
 

Although MOOCs learners are known to be educated, digitally literature (Jordan, 2104) and, socially networked 

(McAuley et al, 2010) little research has been undertaken into how MOOCs are portrayed in social media 

platforms such as Twitter. Studies to date are limited by relatively small datasets or from having taken samples 

of manually extracted tweets. One study of note in this area looked at users of the Sina Weibo platform, a 

popular Chinese microblogging website (Zhang et al, 2015). This study screen-scraped 95,015 postings with 

mentions of MOOC published by 62,074 users on Sina Weibo from a four year period and analyzed the volume 

of postings according to four time frames: year, month, day of the week, and the time of day. Their work 

outlined some trends and made an exploratory foray into this topic. 

 

This paper contributes to research into MOOCs by a systematic extraction of a dataset from the global Twitter 

stream (utilizing the Twitter GNIP API) and interrogating this data via descriptive and content analyses. Our 

aim was to conduct exploratory analysis of the MOOC discourse on Twitter. We sought to determine, through 

big data analysis, what conversations are being conducted in the MOOC arena by the range of potential actors 

such as MOOC platform providers, traditional educational institutions providing MOOCs, MOOC teachers, 

MOOC leaners and MOOC researchers. Moreover, we sought to probe the use and meaning of the term MOOC 

itself as negotiated by users of the term on public social media via its hashtag. 

 

Data and Methods 
 

Twitter data for the MOOC dataset was extracted from GNIP API for the period September to December 2015 

and augmented with additional data including Klout scores - a social network influencer measure as developed 

by Rao Spasojevic and Dsouza (2015). The GNIP API produces very large volumes of data and we used cloud 

computing, data extraction, storage and processing techniques to handle the data. The GNIP Stream API 

produces more reliable data than more manual techniques such as screen scraping of the public Twitter REST 

API (Driscoll & Walker, 2014), and also offers more data protection such as excluding data from deleted 
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accounts. The hashtag ‘#MOOC’ was used as a keyword to extract the required data. In this we followed the 

work of Zhang et al (2015). 

 

The GNIP Stream API provides a file containing data for each 10 minute interval of a specified period. Complex 

analytics on the data were performed mainly in R (an open-source statistical tool). This study is in line with current 

state-of-the-art frameworks (Chae, 2015; Lynn et al. 2015) for descriptive analytics and content analytics on 

Twitter data. The methodology follows the approach for descriptive and content analytics outlined by Chae (2014) 

and extended by Lynn et al. (2015). 

 

Findings 

 
The MOOC dataset had 32,309 tweets of which 17,910 were original tweets and 14,399 were retweets. Replies 

constituted 8 percent (1,434) of the total number of the original tweets. The dataset had 4,980 unique hashtags. 

Obviously #MOOC features in most of the original tweets (17,263). Other popular co-occurring hashtags included 

#elearning (1,876), #edtech (1,134), #moocs (822), #highered (637), #coursera (631), and #education (594). The 

average number of hashtags in original tweets was 2.68.  

 

There were 14,890 unique user screen names in the dataset. This indicates that each user on an average sends 1.2 

tweets, 0.9 retweets and 0.1 replies. The most active and visible users were identified (See Error! Reference 

source not found.). Activity was calculated as per Chae (2015) i.e. the activity of a user was calculated as the 

sum of the number of tweets, retweets and replies which the user has contributed to the network. The visibility of 

a user was determined by the number of followers for each user as on 31st December 2015. Error! Reference 

source not found. shows a line graph to describe the relationship between active and visible users. It can clearly 

be observed from the figure that the most active users are not the most visible users and vice versa. For instance, 

@MOOCs (the most active user) is not the most visible user. Similarly, @edX, the most visible user, is not among 

the top 30 active users in this network. 

 

 

 
Figure 1: Active Users Vs Visible Users in #MOOC Dataset 
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Content analytics is primarily concerned with uncovering the patterns hidden inside content. Word analysis, 

hashtag analysis and sentiment analysis are the analyses which were performed in this category. For performing 

word analysis, the ‘tm’ library in R was used. Frequent words appearing in the tweets were discovered in order to 

identify the most popular words among the users in the network. The most popular words were unsurprising i.e. 

‘MOOC’ (occurring 21,199 times), ‘course’ (2,733), ‘learn’ (2,686), ‘online’ (2,442), ‘elearn’ (2,079), ‘free’ 

(1,911), ‘coursera’ (1,410), ‘edxonline’ (1,332) and so on were some of the most popular words. The ‘ngram’ 

library in R was used to identify the most frequently co-occurring words in the dataset. The most popular co-

occurring words included ‘mooc elearn’ (1,412 times), ‘online course’ (1,333), ‘edxonline mooc’ (869), ‘mooc 

course’ (496), ‘free mooc’ (478) and ‘mooc onlinecourse’ (467). The dataset had 4,980 unique hashtags. Some of 

the most popular hashtags were #mooc (17,263), #elearning (1,876), #edtech (1,134), #moocs (822), #highered 

(637), #coursera (631) and #education (594). 

 
Peak detection algorithms were used to identify events of significance in the dataset. In line with Healy et al. 

(2015), the peak detection algorithms were those presented by Du et al. (2006), Palshikar (2009) and Lehmann et 

al. (2012). Due to the relatively small number of true peaks and low volume of tweets per peak, the topics were 

identified manually. Table 1 summarises the topics identified from the true peaks within the dataset. The table 

also mentions the originated tweet for the topic. 

 

Table 1: Topics of True Peaks 

Timestamp Topic Originating Tweet of the Topic 
21st September 

2015, 1900 

Promotion of MOOC on “Cognitive 

Technology and its growing importance for 

business” by David Schatsky, course instructor 

and senior manager Deloitte LLP. 

@dschatsky leads Deloitte’s #MOOC on #CognitiveTechnology 

and its growing importance for business: 

http://t.co/AxNIAePgDL 

29th September 

2015, 1400 

Promotion of Deloitte’s MOOC on 3D printing. Data from @DU_Press' #MOOC paints a picture of the future 

applications of #3DPrinting. #DeloitteReview 

http://t.co/PiCnozQ0ed 

14th October 

2015, 1300 

Successful Societies (by Princeton University) 

promoting MOOC on ‘How can Governments 

Improve Citizen Services and Cabinet Office 

Coordination.’ 

@crownagents ISS #MOOC examines how govts improve citizen 

svcs, cabinet office coordination &amp; more. Starts 10/21/15 

http://t.co/LJDCKKXL90 

16th October 

2015, 1400 

Successful Societies promoting MOOC on 

‘Making Government work in Hard Places’. 

@USGLC These leaders made government work in hard places. 

Learn how. #MOOC:  http://t.co/iZveyixK4B 

http://t.co/7aP0zRShE3 

19th October 

2015, 1500 

Successful Societies promoting MOOC on 

‘How Leaders Overcome Governance 

Challenges’. 

@USGLC Still time to enroll! Princeton #MOOC on how leaders 

overcome #governance challenges. Starts 10/21/15. 

http://t.co/iZveyixK4B 

23rd October 

2015, 1600 

Successful Societies promoting MOOC on 

‘Writing Science of Delivery Case Studies’ 

@USGLC Enroll today! ISS #Princeton #MOOC on writing 

“Science of Delivery” case studies. Starts 10/28. 

https://t.co/AZuu2qFylP 

27th October 

2015, 1300 

Successful Societies promoting MOOC on 

‘Writing Science of Delivery Case Studies’ 

@EU_Commission Starts 10/28! Learn to write case studies on 

“Science of Delivery” in new free ISS #Princeton 

#MOOC.  https://t.co/AZuu2qFylP 

29th October 

2015, 1400 

Successful Societies promoting MOOC on 

‘Writing Science of Delivery Case Studies’ 

@USGLC Just started 10/28! Learn to write case studies on 

“Science of Delivery” in new free ISS #Princeton 

#MOOC.  https://t.co/AZuu2qFylP 

2nd November 

2015, 1500 

NutritionMOOCs promoting MOOC on 

‘Nutrition and Health: Micronutrients and 

Malnutrition’. 

@APH008 Please RT: 9 November start #MOOC #NUTR102x 

“Nutrition and Health: Micronutrients and Malnutrition” 

https://t.co/q0NBluOac9 

13th November 

2015, 0900 

NutritionMOOCs promoting 2nd part of MOOC 

on Nutrition and Health from Wageningen 

University. 

@EatNutritious Please RT: Learn more about #nutrition and 

#health in 2nd part of our #MOOC @UniWageningen now: 

https://t.co/q0NBluOac9 

8th December 

2015, 1500 

Promotion of Coursera’s MOOC on ‘Training 

TESOL Certificate Part 1: Teach English’. 

RT NewsNeus More #Coursera #MOOC #Training TESOL 

Certificate, Part 1: Teach #English Now! 

25th December 

2015, 1800 

Retweet of Quizalizeapp’s tweet ‘How to say 

Merry Christmas in 77 Languages’.   

How to say Merry Christmas in 77 Languages. #Edtech #GBL 

#Langchat #MOOC #English https://t.co/5pBv47vjFP 

 

Sentiment analysis is used to examine overall orientation (positive and negative) and intensity (strong or weak) 

of opinions in text (Pang & Lee, 2008). The ‘qdap’ library in R was used to perform sentiment analysis on this 

dataset. The average sentiment was found to be 0.095; suggesting that the tweets are highly neutral. The standard 

deviation of the sentiments across the tweets was found to be 0.202; indicating that the spread of the sentiments 

across the tweets was less. Further, a customized algorithm to analyse the distribution of tweets across different 

sentiment scores was implemented in R. If a tweet has more positive words, it will get a higher positive sentiment 

score. On the contrary, if a tweet has more words negative words then its sentiment score will be more negative. 

If a tweet has words which do not belong to either category then it qualifies as ‘neutral’. A tweet having a greater 

proportion of neutral words will have a neutral sentiment; that is a sentiment score of 0. Figure 2 provides a 

graphical representation for the sentiments distribution in the tweets. 

http://t.co/AxNIAePgDL
http://t.co/PiCnozQ0ed
http://t.co/LJDCKKXL90
http://t.co/iZveyixK4B
http://t.co/7aP0zRShE3
http://t.co/iZveyixK4B
https://t.co/AZuu2qFylP
https://t.co/AZuu2qFylP
https://t.co/AZuu2qFylP
https://t.co/q0NBluOac9
https://t.co/q0NBluOac9
https://t.co/5pBv47vjFP
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Figure 2: Sentiment Scores in the #MOOC Dataset 

As can be easily observed from Figure 2, the MOOC dataset has a substantial amount (55 %) of neutral tweets. 

Positive tweets make up 38% of the total tweets and the remaining 7% percent constitutes negative tweets. Table 

2 lists some exemplar tweets with strong sentiment. 

 

Table 2: Tweets Showing Strong Sentiment 

Exemplar Tweet Sentiment  
@thesiswhisperer I think the #MOOC is providing wonderful supportive pillow of trust &amp; honesty- glad 

I'm taking part- thank u #survivephd15 

6 

STUNNING #mathed animations from .@robertghrist in his calculus #MOOC. Beautiful and effective. Kudos. 

http://t.co/GgdN2KHFZf 

4 

Just discovered a great free #Social Innovation online course, on this cool  learning platform - #iVersity 

#MOOC ~ http://t.co/kGPzmqONFq 

4 

#ememitalia Teixeira: focusing on dropout as a problem to criticize #MOOC education is a conceptual mistake -4 

CloudComputingApplications - definitely the worst @coursera #MOOC I've ever taken. Irrelevant videos 

&amp; useless tuts #unenrolled 

-3 

 

Finally URL analysis was performed in order to identify the popular URLs (most mentioned) in the network. It 

was found that URLs were widely used in the network with almost 60 percent of the tweets containing links. A 

subset of the top URLs are shown in Table 3. 

Table 3: Top 15 URLs in the MOOC dataset 

URL Tweets 

https://www.edx.org/course/nutrition-health-part-2-micronutrients-wageningenx-nutr102x 327 

http://www.owensage.com/2/post/2015/04/how-i-lost-24-pounds-in-12-weeks-amidst-severe-personal-

turmoilwithout-dieting-or-going-to-the-gym.html  204 

https://www.futurelearn.com/courses/climate-from-space  168 

http://www.europeanschoolnetacademy.eu/en/web/developing-digital-skills-in-your-classroom/course 161 

http://www.startup365.fr/entrepreneur-courses/ 159 

https://www.canvas.net/browse/salto/courses/erasmus-funding-opportunities-2 156 

https://www.edx.org/course/making-government-work-hard-places-princetonx-mgwx#! 143 

https://www.edx.org/course/writing-case-studies-science-delivery-princetonx-casestudies101x 140 

http://blog.coursera.org/post/132434298847/introducing-coursera-for-apple-tv-bringing-online 126 

https://www.edx.org/xseries/data-science-analytics-context 120 

http://www.moocsurvey.org  108 

http://www.startup365.fr/the-1-small-business-guide-to-online-marketing/  103 

http://Twitter.com/JimKim_WBG/status/661682878393266177/photo/1  96 

https://www.youtube.com/watch?v=ahvuPvm-1YU  96 

http://www.europeanschoolnetacademy.eu/web/introducing-computing-in-your-classroom 93 

https://hbr.org/2015/09/whos-benefiting-from-moocs-and-why 92 

 
  

http://t.co/GgdN2KHFZf
http://t.co/kGPzmqONFq
https://www.edx.org/course/nutrition-health-part-2-micronutrients-wageningenx-nutr102x
http://www.owensage.com/2/post/2015/04/how-i-lost-24-pounds-in-12-weeks-amidst-severe-personal-turmoilwithout-dieting-or-going-to-the-gym.html
http://www.owensage.com/2/post/2015/04/how-i-lost-24-pounds-in-12-weeks-amidst-severe-personal-turmoilwithout-dieting-or-going-to-the-gym.html
https://www.futurelearn.com/courses/climate-from-space
http://www.europeanschoolnetacademy.eu/en/web/developing-digital-skills-in-your-classroom/course
http://www.startup365.fr/entrepreneur-courses/
https://www.canvas.net/browse/salto/courses/erasmus-funding-opportunities-2
https://www.edx.org/course/making-government-work-hard-places-princetonx-mgwx%23!
https://www.edx.org/course/writing-case-studies-science-delivery-princetonx-casestudies101x
http://blog.coursera.org/post/132434298847/introducing-coursera-for-apple-tv-bringing-online
https://www.edx.org/xseries/data-science-analytics-context
http://www.moocsurvey.org/
http://www.startup365.fr/the-1-small-business-guide-to-online-marketing/
http://twitter.com/JimKim_WBG/status/661682878393266177/photo/1
https://www.youtube.com/watch?v=ahvuPvm-1YU
http://www.europeanschoolnetacademy.eu/web/introducing-computing-in-your-classroom
https://hbr.org/2015/09/whos-benefiting-from-moocs-and-why
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Discussion and Conclusion 
 

Peak detection algorithms highlighted tweets of significance in the dataset which largely revolved around the 

promotion of several MOOCs. The course pages of several MOOCs from the peak detection are referred to in 

the top URLs. However, the URLs also indicate that the MOOC hashtag may be sometimes appropriated by, or 

be susceptible, to spam effects e.g. the prominence of weight loss slimming posts. URL 24 points to a book on 

amazon which contains negative reviews of people who claim to have been duped into following a Twitter link 

to the page. 

 

The term MOOC may be a problematic one for use in defining networks of MOOC actors. The promotional 

nature of many tweets suggests this may be more of an informational than a social network (Myers et al., 2014). 

Beyond the scope of this paper are the findings of our Social Network Analysis (SNA) which confirmed these 

findings. Moreover, it may be that the term MOOC has particular currency only within particular communities 

such as the academic one. Some of the top tweets and URLs would appear to bear this out such as a link to a 

MOOC survey being conducted as part of an MSc. thesis – an item of as much interest to MOOC researchers as 

students. It is unknown how widely prevalent the term “MOOC” is in popular discourse and hence many 

MOOC students may go undetected. This may limit the value of using the term MOOC to make inferences 

about learners. Using other search constructs that would comprise course, platform, provider or some 

combinations of these might bring more learners into the dataset.  

 

The sample of top tweets from the sentiment analysis does appear to show interesting data from MOOC learners 

however. All but one of these five tweets are from what we may infer to be a MOOC learner, or in one case 

prospective learner. The other tweet appears to be from a MOOC commentator/researcher. Of course 

researchers may also be MOOC students. Research has shown that MOOC learners have disproportionally high 

levels of educational attainment (Jordan, 2014). This is borne out here in that one of the sample tweets from the 

sentiment analysis is from well-known academic relating to a MOOC about “surviving” PhDs. Our findings 

suggest there may be a value in using sentiment analysis to filter a Twitter dataset before performing other types 

of analyses for researchers.  For instance, it can be seen from a visual scan that peak tweets which are 

informational (and promotional) are relatively lacking in or have weak positive sentiment. This requires further 

analysis. 

 

This paper has outlined the techniques we used and the theoretical basis by which we adopted these approaches 

in examining MOOCs in a Twitter dataset. We used descriptive and content analysis techniques to probe a 

sample of tweets using the hashtag #MOOC. Our results pose perhaps more questions that give definitive 

answers but we contribute by conducting exploratory analyses in an underexplored area namely research on 

MOOC actors using large Twitter datasets.  
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