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Abstract

“ An Action Recognition Framework For Uncontrolled

Video Capture based on a Spatio-Temporal Video Graph”

Iveel Jargalsaikhan

The task of automatic categorization and localization of human action in video

sequences is valuable for a variety of applications such as detecting relevant

activities in surveillance video, summarizing and indexing video sequences or

organizing a digital video library according to the relevant actions. However it

remains a challenging problem for computers to robustly recognize action due to

cluttered backgrounds, camera motion, occlusion, view point changes and the

geometric and photometric variances of objects.

An important question in action recognition is how to efficiently and effectively

represent a video scene while maintaining the discriminative appearance, motion

and contextual cues of the scene. Recently, local feature-based action recognition

methods have gained popularity due to their simplicity and

the-state-of-the-performance with various benchmarking datasets. However, the

existing feature representation schemes e.g, Bag-of-Features, Fisher and VLAD,

ignore the the spatial and temporal cues in the local features e.g, the

spatio-temporal location and relationship. Inspired by this fact, this thesis aims to

overcome the underlying limitation of the feature representation by proposing a

new way to construct graph structure that aims to capture the spatial and

temporal relationship between the local features while maintaining discriminative

power. The key contributions can be summarized as follows (i) comprehensive

evaluation of the several key elements in the recognition pipeline (ii) novel video

graph based human action recognition framework (iii) evaluation of the different

techniques involved in the video graph construction process and (iv) extension of

the proposed video graph based video analysis to the challenging problem of action

localization.



Chapter 1

Introduction

1.1 Overview

With the rapid increase in the number of digital videos and archives, the intelligent

management and retrieval of video data have become one of the most active research

topics in the field of computer vision. In particular, human action recognition is

crucial in understanding the semantic meaning of a video sequence. Therefore,

extensive research efforts have been devoted to developing novel approaches for

action-based video analysis. A video analytics system is a critical component for

many video management applications especially in surveillance and security, sports

video and video archive search and indexing. In recent years, researchers have

tackled the problem in various ways. However, due to the complex nature of the

video, it is still considered an open problem.

There are various levels of abstraction for describing human action. Human

activity can be categorized into three different levels [1] based on their complexity:

action primitive (atomic), action and activity. An action primitive is defined as a

basic and atomic motion movement such as raising a hand, stretching a leg etc. In

contrast, an action is built using these action primitives. For instance, walking,

running and punching are examples of action. An activity is a higher semantic act

such as playing sports or dancing that is comprised of a set of actions. Along with

the categories of action, many works have varying degrees of explicit or implicit

assumptions on the environment where the video data is captured. According to

the taxonomy of Klaser [50], this environment can be classified into controlled,

1
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Figure 1.1: Examples of three different data capture environment: controlled ( first
row), constrained ( second row) and uncontrolled (last row)

constrained and uncontrolled as shown in Figure 1.1. Controlled video data is

recorded in a way to encourage for automated processing. For instances, specific

markers can be attached to human actor joints to capture their movement in space

and time. In contrast, constrained video data can influence environmental

parameters to a limited degree. This is the case for commercial video game

platforms based on visual interfaces, such as the Microsoft Kinect, which makes

certain assumptions such as a single person is fully visible or favourable lighting

conditions, etc. Uncontrolled video data is recorded under conditions that cannot

be influenced. This is the case for, i.e., TV and cinema style movie data, sports

broadcasts, music videos, or user generated content. Only very few assumptions, if

any, of a rather general nature can be made, such as humans are present and

visible. The main challenges for analysing uncontrolled video data include multiple

potential subjects of interest; changes in viewpoint, scale, and lighting conditions;

partial occlusion of humans and objects, cluttered backgrounds, abrupt movement;

The thesis focuses on the problem of action recognition in uncontrolled video

2
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data such as surveillance footage, movie and youtube videos. In particular, we

are interested in the case where a video has been temporally segmented to contain

only the execution of human actions (i.e.,., post action detection). The objective

is to identify the action class for such video accurately. The remainder of this

chapter continues with the motivation of this dissertation and introduces how action

recognition from video data works and discusses the potential applications. The

problem statement and the research questions are introduced followed by the thesis

structure.

1.2 Motivation

Over the past two decades, information technology has been one of the most

successful industries throughout the globe. From government to personal level, the

digital revolution has had a tremendous influence on virtually all aspect of daily

life. Growing storage capacity and network infrastructure have enabled us to store

and analyse a large amount of data that was impractical a decade ago. Today,

video data has become more accessible, and its role in our society, in general, is

increasing. Video content can be routinely created by commonly used consumer

devices such the mobile phone and digital cameras and the digital ecosystem now

have the capacity to store and share the content in very efficient ways. For

instance, the social media site Facebook has reported that the video content

upload increased by 75% compared to 20141. According to Cisco Mobile Traffic

forecast, it is projected that the video content bandwidth will reach 15 exabytes2

per month by 20203.

Despite the rapid accumulation of the video content and on-going

improvements in computer vision, there is still no vision-based analytics system

that is capable of performing the range of vision tasks at a human level. However,

there are promising projects in the field of deep neural networks such as DeepMind

1http //tubularinsights.com/facebook-video-uploads-overtake-youtube/
2it would take an individual more than 5 million years to watch such amount of video.
3http //www.cisco.com/assets/sol/sp/vni/forecast highlights mobile/
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Figure 1.2: A typical processing pipeline for the local features-based approaches

AlphaGo4 which has outperformed humans. The ability to automatically analyse

and mine the semantic insight from videos is still in its development stage and has

not progressed significantly into the application. For instance, video search in large

scale database archives requires considerable effort associate with manual

annotation. Web search engines commonly rely mainly on textual information,

such as content descriptions or metadata, to retrieve relevant videos. In

surveillance domain, intensive work to analyse the CCTV video footage is still

mainly performed using human effort5.

1.3 Problem Statement and Research Questions

Vision-based recognition of human action is becoming one of the most prominent

fields of study in computer vision. There exists a vast body of literature on the

subject. However, due to the complicated nature of the problem, it is still regarded

as a challenging task especially in realistic scenarios captured in unconstrained

circumstances. The difficulties arise from a significant amount of intra-class

variation, occlusions, background clutter and illumination changes.

Numerous research has been developed over the last three decades in the action

4http //en.wikipedia.org/wiki/AlphaGo/
5https //www.newscientist.com/article/dn3918-smart-software-linked-to-cctv-can-spot-

dubious-behaviour/
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recognition domain. Earlier methods were focused on the structure of the entire

human body, and the video representation is strongly related to the features such

as silhouette and modelling the action regarding the evolution of shapes over time.

More recently, local feature-based methods have gained popularity due to their

simplicity and the-state-of-the-performance [57] [101] [50] in the various datasets

with different degrees of complexity.

The majority of local feature-based action recognition pipeline consist of three

main steps as shown in Figure 1.2 : feature extraction, video representation

(encoding) and classification. In the first step, a set of local features is extracted

from a given video. These features encode the image cues that is useful for

recognition of the action in a numerical vector form. This is followed by the

feature encoding step where the extracted features are aggregated to form a final

representation of a video. This representation may be as simple as a histogram of

feature occurrence or a high-level model such as action poses. Finally, a

discriminative model for each action of interest is learnt using the obtained

representation using the labelled training videos. Once a model is trained, given a

test video, the system identifies the class of the given video sequence.

The local features have been proved to be not only efficient but also highly

discriminative and less computationally intensive. They are robust even if there

are variations in the scale, illumination and viewpoint and does not require the

actor localisation in comparison to the global features. Therefore it is well suited

for any scenario. However, the existing feature representation (encoding) schemes,

e.g., Bag-of-Features, Fisher and VLAD, ignore the spatial and temporal cues in

the local features e.g., the spatio-temporal location and relationship. The resulting

representation not only limits the discriminative power of the action modelling but

also prevents the identification of the region where the action is taking place. In

particular, it hinders the performance significantly [89] for the uncontrolled video

dataset that consists of videos captured in the complex environment that have

significant background clutter and multiple actors or actions.
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Recently, many authors noted that incorporating the spatial and temporal cues

in an action recognition process can improve the system performance [74] [24]. In

this thesis, the objective is to overcome the underlying limitation of the feature

representation by proposing a graph structure that aims to capture the spatial and

temporal relationship between the local features while maintaining its

discriminative power. The graph is a simple and powerful representation method

to model the relationship between the individual elements of the system. In

particular, for 2D image understanding, it is a well-established data abstraction

approach due to its intuitive representation of capturing the underlying image

spatial structure. Consequently, based on the challenges and potential solutions

discussed about the task of action recognition, the following research questions are

addressed in this thesis:

RQ1. Does incorporating spatio-temporal cues in the video representation

stage increase action recognition performance?

A novel video representation is the fundamental research problem in the

action recognition that aims to build the compact description of the video.

The research question (RQ1) explores the effectiveness of incorporating the

spatial and temporal cue in the video representation process and investigate

the impact on the overall system accuracy. To address this question, the

following implementation and experimental works have been studied in the

thesis.

– Implementation of the baseline recognition framework using a

Bag-of-Features (BOF) representation approach that captures no

spatio-temporal structure and the comprehensive evaluation of the key

processing components in the pipeline. (Chapter 3)

– Implementation of the proposed video-graph action recognition

framework that incorporates the spatio-temporal cue in the video

representation process and comparative evaluation with the baseline

6
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using several datasets (Chapter 4).

RQ2. Can a graph-based video representation provide an effective method

for incorporating spatio-temporal cues?

As earlier mentioned, the major limitation of associated with the popular

encoding schemes (i.e. the Bag-of-Features and Fisher) is that they only take

account of the global statistics of local features for video representation,

ignoring their spatio-temporal information. There are various ways to

overcome this limitation. However, the research question explores the

effectiveness of the graph-based representation to model the relationship

between the local features explicitly. As part of the research question, we

also propose a novel recognition process well suited for the video graph

representation using a graph-cut optimisation. The following works have

been performed to explore the research question:

– Implementation of the proposed video graph based recognition process

and the video graph construction techniques (Section 4.4, Chapter 4)

– Formulation of the action recognition problem on the constructed video

graph (Section 5, Chapter 4)

– Experimental evaluation of the proposed approach to the state-of-the-art

(Section 6, Chapter 4)

RQ3. What is the effective technique for constructing the video graph ?

In practice, there are many ways to achieve a graph representation of video

that encodes the spatio-temporal relationship between the local descriptors.

The research question (RQ3) will explore various techniques involved in this

process. In particular, we investigate their advantages and limitations in the

context of action recognition task and their impact on the recognition accuracy.

The following experimental works have been outlined to address the question:

7
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– Comparative analysis of the different graph construction techniques and

performance evaluation (Section 4.1.1, Chapter 5).

– Parameter sensitivity analysis of the selected graph construction

techniques and their associated computational complexity (Section

4.1.2, Chapter 5).

RQ4. Can the video graph be further improved to address the challenging

problem of action localisation?

The research question (RQ5) explores the effectiveness of the video graph-

based technique for action localisation task. In this context, we develop a

video graph that accommodates not only local features but also region-based

features to encourage the localisation. The action localisation is performed by

maximising the score associated with the node and the edge in the video graph.

The following implementation and experiment are conducted to address the

research question:

– Implementation of the improved video graph with the regional features

i.e. region-based convolutional features for action localisation task

(Section 4.1, Chapter 6).

– Implementation of the maximum-path finding (MPF) technique for action

localisation on the constructed graph (Section 5, Chapter 6).

– The experimental evaluation of the proposed approach with two popular

action localisation datasets (Section 6, Chapter 6).

1.4 Applications

Despite the challenging nature of the task, the successful recognition of human

activities from videos enables several important applications in many interesting

areas. The potential application fields are examined in this section.

8
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Figure 1.3: Video surveillance camera and an example office for CCTV camera
monitoring

1.4.1 Video surveillance

Video surveillance is increasingly becoming an integral part of modern society. Video

surveillance systems aim to monitor people and object of interest using a variety

video capturing devices. In particular, the closed-circuit television (CCTV) camera

is widely adopted at large scale, and it can be found at airports, metro stations,

public buildings and parking lots. For instance, the city of London has installed

about 1 million closed-circuit television (CCTV) cameras and the capital, China

has 0.8 million security cameras operating daily basis.

With the increased demands for and dependence on networks of devices, the

effective video-based surveillance system that is capable of monitoring, identifying

and preventing security breach is becoming a necessity. In particular, for human

induced security threats such as fighting, burglary, disputes, harassment, etc. are

the scenarios where an action recognition system is well suited. Furthermore, given

the availability of vast amounts of surveillance videos, the labour intensive analytics

process will be greatly improved by an automatic action detection system.

1.4.2 Home Monitoring and Elderly care

According to data from UN’s World Population Ageing report 2015 6, almost every

country in the world is experiencing a rapid growth in the proportion of older people

6http //www.un.org/en/development/desa/population/theme/ageing/WPA2015.shtml
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Figure 1.4: Sample video frames of Health Smart Home (HIS) dataset contain
different activity scenarios such as Sleeping, Resting, Eating and Hygiene etc.

in their population. Globally, the number of people aged over 60 years is projected to

grow by 56 percent from 901 million to 1.4 billion between 2015 and 2030. By 2050,

the number is expected to double its size reaching nearly 2.1 billion and people

aged 60 will outnumber the children aged between 0 - 15. Population ageing is

poised to become one of the most significant societal transformation of the twenty-

first century, with implications for nearly all sectors of society, from healthcare to

economics.

The recently, the application of human action and behaviour recognition is

becoming more relevant for the purpose of health monitoring of elderly people in

the home environment. The automatic recognition of human action in daily life

such as food preparation, walking, exercise will allow medical experts to devise

strategies related to exercise, diet and treatment adherence. Related projects in

this area are GatorTech [41] and Dem@care [9]. The system supports the

wellbeing of the people in the home environment by providing feedback on the

daily activities in the house, raising alarms when unexpected activities happen.

10
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Figure 1.5: The application of gesture and action recognition technology for user
interaction with computer without controller devices.

1.4.3 Human computer interaction

A further application area is human-computer interaction such as the computer

games, for which video-based gesture and action analysis has gained a lot of

attention. Popular related project is Microsoft’s Project Natal7. The project’s

framework allows for full-body motion capture, facial recognition, voice

recognition, and acoustic source localisation. This is achieved by combining

information from several sensors: a video camera, a depth sensor and a

microphone. This allows users to play video games without controller devices and

to interact in a virtual world using their full bodies in a natural way. Therefore,

the improved gesture and action recognitions will provide a natural and intuitive

method of human communication with devices.

1.5 Thesis Structure

The remainder of the thesis is structured as follows:

• Chapter 2 introduces a review of the literature in the action recognition

domain. In this chapter, the prominent research works are structured into

three class of approach. Also, a comprehensive summary of popular

benchmarking datasets and their evaluation protocols is presented.

7https //techcrunch.com/tag/project-natal/
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• Chapter 3 presents a baseline recognition system based on the

Bag-of-Features (BoF) model and comprehensively evaluates it. In

particular, we discuss how different encoding schemes, codebook sizes and

other parameters have an impact on the recognition performance using

several datasets. Also, the baseline system performance will act as a

performance reference to the proposed approaches in the following chapter.

• Chapter 4 introduces a novel action recognition framework based on the

video graph. The proposed approach aims to overcome the underlying

weakness of the Bag-of-Features (BoF) by incorporating the spatio-temporal

relationship among the local features as a graph structure. Furthermore, we

explore the application of the Graph-Cut optimisation method from 2D

image segmentation to 3D spatio-temporal volumes to investigate its

effectiveness for action recognition in video. The effectiveness of the

proposed framework is investigated and benchmarked with the state-of-art

using the popular datasets.

• Chapter 5 introduces the various strategies on the video graph construction

and investigates the associated effect on the performance of the recognition

process. In particular, we examine three techniques as a representative to

the identified taxonomy of approaches and perform a comparative analysis

regarding their impact on the recognition accuracy, parameter sensitivity and

computational complexity.

• Chapter 6 propose an action localisation framework based on the video graph.

In the framework, we develop a video graph that accommodates not only

local features but also region-based features to encourage localisation. The

additional cues such as local, motion and region geometry are captured as the

graph edges. We perform the localisation by the maximising the path score

in the constructed video graph. The effectiveness of the proposed approach

is investigated and benchmarked to the state-of-the-art using two different

12
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localisation datasets.

• Chapter 7 summarises and concludes the thesis highlighting the research

contributions, addresses the research questions and discusses future research

directions.
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Chapter 2

Literature Review

2.1 Overview

This chapter introduces a review of the prominent works in action recognition

(Section 2.2) and the related benchmarking datasets (Section 2.3). In particular,

we identify the taxonomy of the existing methodologies (global, local and

mid-level) based on the type of action feature and their associated video

representation strategies in the recognition process.

2.2 Action Recognition Methods

Action recognition methods can be divided into three classes: global, local and

mid-level. Global methods encode the observation in a holistic manner. These

representations are typically obtained in a top-down fashion and on the basis of

accurate human detector, background subtraction or tracking. In contrast, local

approaches are based on a set of local features extracted from an image region

called a patch in sparse or dense manner. This representation is considered to be

resistant to the viewpoint changes and scales. Mid-level representations attempt

to model an action using intermediate level parts designed to encode the spatio-

temporal structure within the video data.
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Figure 2.1: Motion History Images (MHI) and motion energy images (MEI) [14]

2.2.1 Approaches based on global features

Global representations encode the region of interest of an action in a holistic

manner. The region of interest is typically captured through background

subtraction or tracking. This class of approaches typically build an action model

using silhouettes, counter or optical flow. The earliest works examining the use of

silhouettes were done by Yamato et al [118] and Bobick et al [14]. In the work [14],

authors integrated the silhouettes to form the accumulated frame differences over

time, called the binary motion energy image (MEI) and motion history images

(MHI) as shown in Figure 2.1. The MEI and MHI essentially encode the region

where motion takes place. In [106], the scale and translation invariance technique

is proposed for effective silhouettes representation. To deal with the scenes where

background segmentation is difficult, Weinland et al [108] proposed to use the

chamfer distance to eliminate the need for background subtraction. Instead of

silhouettes, some works [26] [105] explored the use of contour based representation.

In [26], the star skeleton model is used to represent the action contours. Wang et

al [105] proposed the approach that integrates the contour and silhouettes into a

single representation.

When there are multiple cameras available, silhouettes can be obtained from each

to increase the effectiveness silhouettes based representation. In this context, Huang

et al [116] used the camera setup where two orthogonally placed cameras at similar

height and distance to the actor to obtain envelope shape. Another work [28] also
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Figure 2.2: Space-time volumes for action recognition generated from silhouette
information [110]

Figure 2.3: Optical flow based human-centered action modelling [34]

use orthogonally placed cameras to achieve the combined silhouettes features. Such

methods are view-invariant but fail when the arms cannot be distinguished from the

body. Weinland et al. [110] proposed to combine silhouettes from multiple cameras

into a three-dimensional voxel model (See Figure 2.2). The method is discriminative

however it requires accurate camera calibration. For action representation, authors

use motion history volumes, which is an extended version of the MHI [14] and its

view-invariance is achieved using Fourier transforms.

Instead of silhouettes, the global action representation can be built using

motion information. This type of approaches do not rely on background

subtraction unlike the silhouettes-based representations and encode the region of

interest using dense optical flow or the frame difference from consecutive frames.

An early work using optical flow is done by Polana et al [69] where the authors

propose temporal-texture model that integrates both the first- and second-order

motion statistics. The resulting representation can be used when background

subtraction cannot be performed. Efros et al [34] calculate optical flow in
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human-centered frames ( See Figure 2.3) in sports footage. They divide the optical

flow field into different components to form 4 distinct features which are separately

matched. Ahad et al. [3] use these four flow components to address the

self-occlusion artefact in an MHI approach. Furthermore, inspired by the physics

concept, Ali and Shah [5] proposed the kinematic features (divergence, vorticity

and symmetry) using the optical flow field. In the works [49, 59], the Viola-Jones

object detection is extended by computing image features on the dense optical flow

fields.

2.2.2 Approaches based on local features

This class of methods describe the video scene as a collection of local features or

patches. The key advantages of these approaches are: (i) do not require accurate

human detection/localisation and background subtraction, (ii) invariant to changes

in viewpoint/scale, person appearance and (iii) able to deal with partial occlusions.

Local features can be computed either densely or at a sparse set of regions. Local

action recognition approaches, based on space-time representation [56] 2.4 , were

introduced to extend the concept of local 2D image features already used in image

classification to action recognition domain.

Space-time approaches are based on bottom-up strategies, and they build the

action model by analysing spatio-temporal local regions in videos. A typical

pipeline for space-time approach is as follows. Given a video sequence, first, detect

and describe the salient points and then assign each region to a set of

pre-computed dictionary features. Next, the action model is built using the

statistics of the dictionary feature within the video sequence and used to assign an

action class for unlabelled input video.

In this context, Laptev [56] first developed the space-time interest point detector

by extending the notion of Harris Corner Detector into 3D space (See Figure 2.4).

Scovanner et al. [79] proposed the 3-D extension of the SIFT descriptor, similar to

cuboid features [32]. Liu et al. [64] presented a methodology to prune cuboid features
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Figure 2.4: Spatio-temporal interest points from the motion of the legs of a walking
person: (left) 3D plot of a leg pattern and the detected local interest points; (right)
interest points overlaid on the single frames in the original video sequences [56]

to choose important and meaningful features. Bregonzio et al. [17] proposed an

improved detector for extracting cuboid features, and presented a feature selection

method similar to [64]. Rapantzikos et al. [73] extended the cuboid features to utilise

colour and motion information as well, in contrast to previous features that only

used intensities.

Trajectory based action recognition methods have gained significant interest.

In these approaches, an action is interpreted as a set of space-time trajectories.

The typical procedure for this type of approaches is that they compute dense or

sparse trajectories and then they process these trajectories to represent and recognise

actions. In this context, Sheikh et al. [82] represent an action as a set of joint

trajectories in a four-dimensional space. To derive the view-invariant similarity

between two sets of trajectories, they use an affine projection to obtain normalised

trajectories of an action. Yilmaz et al [120] also use a set of joint trajectories

to compare actions in videos obtained from moving cameras. In the work of [20],
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Figure 2.5: (Top) Visualization of human actions with dense trajectories. (Bottom)
The dense trajectory feature generation pipeline; First, dense feature sampling
is performed. Then, features are tracked using dense optical flow and feature
descriptors are computed [101]

authors transform the joint trajectories into low-dimensional phase spaces to achieve

view invariance and represent human actions. Rao and Shah [72] extract meaningful

curvature patterns from the trajectories for action representation. Wang et al. [101]

proposed the state-of-art approach based on the dense trajectories (See Figure 2.5.

The dense points are sampled and tracked using the displacement information from

a dense optical flow field for a short duration. Local descriptors of HOG, HOF and

MBH are calculated along the resulting trajectories.

Recently, deep learning features for action recognition [46, 48, 84, 93] have been

explored due to the great success in image based tasks [52, 85, 123]. Taylor et

al. [93] used Gated Restricted Boltzmann Machines (GRBMs) to learn the motion

features in an unsupervised manner and then resorted to convolutional learning to

fine tune the parameters. Ji et al. [46] extended 2D ConvNet to video domains for

action recognition on relatively small datasets, and Karpathy et al. [48] tested

ConvNets with deep structures on a large dataset, called Sports-1M. However,

these deep models achieved lower performance compared with shallow hand

engineered local features [32, 50, 101]. This might be ascribed to two facts: firstly,

available action datasets are relatively small for deep learning; secondly, learning

19



Chapter 2. Literature Review

complex motion patterns is more challenging. Simonyan et al. [84] designed

two-stream ConvNets containing spatial and temporal networks by exploiting the

large ImageNet dataset1 for pre-training and explicitly calculating optical flow for

capturing motion information, and it achieved performance on par with the

state-of-the-art. Weinzaepfela et al. [111] introduced a method to combine both

local features and deep learning features by fusing with a track descriptor and

achieved further improvement. This shows that combining the deep learning

features with local features (hand-engineered) that are complementary to each

other improves the performance.

2.2.3 Approaches based on mid-level representations

The approaches based on mid-level representation aim to recognise an action based

on the video parts that encodes the spatial or temporal structure in the data.

Early works have been focused on the stochastic methods to capture the temporal

variability [112] [87] [42] [71]. Robertson et al. [78] model human action as a

stochastic time sequence based on HMM. Brendel and Todorovic [19] used a time

series of activity features for identification of the salient action region in the time

domain using a Markov chain. These approaches, however, make the firm

presumption that the duration of the action spans the whole length of the video

and furthermore their action model is limited encoding only the temporal pairwise

relationship between the video parts.

To overcome this problem, Wang and Mori [107] were the first to propose a

hidden conditional random field (HCRF) part-based model that encodes spatial

pairwise relationships. In particular, a human action was modelled as a configuration

of parts of video observations whereby pairwise relationships among spatial patches

are captured explicitly. The representation of the video part uses the combined

features ( global and local patch-based features). However, the method adopted

the classification process that performs at a frame level while considering only the

1http //www.image-net.org/
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spatial grouping.

Niebles et al. [68] extended the notion of a mid-level part from a spatial

domain [19] [107] to take into account of the temporal evaluation of the video

frames. The proposed method can accommodate both the global and local

features. The discriminative model was derived from the popular part-based

model [37] of the object recognition domain. The local features decompose the

video volume into a set of temporal segments to construct temporal composition.

However, the resulting model requires the ability to spatially localise action parts.

There is a considerable amount of work [61, 66, 113] that exploits the directed

graph network to model the action classes. In particular, various types of Dynamic

Bayesian Network (DBN) have been proposed for recognizing different activities in

the literature. For instance, Muncaster et al [66] use a dynamic Bayesian network

to perform complex event recognition. Wu et al [113] present a DBN that combines

RFID and video data to infer the activity and object label. Also, Laxton et al. [61]

formulate a hierarchical DBN taking account of temporal, contextual and ordering

constraints to recognize complex activities.

Raptis et al [74] proposed an action-part based graphical model and formulated

the action recognition task as a Markov random field (MRF) problem. However,

this method is not generic and fine-tuned only with trajectory features to construct

nodes in the video graph. On the other hand, Chen at al [24] introduced a sub-

graph based model for detection and localisation. It uses high-level features, that

relies heavily on person and object detection. However, the underlying assumption

restricts its applicability where the actor’s figure is occluded in the video scene.

2.3 Datasets

In this section, we present the most popular action recognition datasets that are

used in evaluating action recognition methods.
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Figure 2.6: Sample screen shots of action categories of the Weizmann actions
dataset.

2.3.1 Weizmann actions

The Weizmann dataset is one of the earliest datasets created for action recognition

analysis and was recorded in 2005. The dataset has a homogeneous background,

and a single person is performing in each frame. It contains 90 low-resolution video

sequences showing nine different people, each performing ten natural actions such

as running, walking, skipping, jumping-jack, jumping forward, jumping in place,

gallop sideways, waving two hands, wave one-hand and bending as shown in Figure

2.6. Each frame is accompanied by the respective actor silhouette as ground truth.

2.3.2 KTH actions

The KTH Royal Institute of Technology compiled the dataset [13] in 2004. It is

considered as one of the most popular datasets in the computer vision community.

It consists of six human actions (walking, jogging, running, boxing, waving, and

clapping as shown in Figure 2.7). Each action is performed several times by 25

subjects. The sequences were recorded in four different scenarios: outdoors,

outdoors with scale variation, outdoors with different clothes and indoors. The

background is homogeneous and static in most of the sequences. In total, the data
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Figure 2.7: Example frames of action classes from the KTH actions dataset.

consists of 2391 video samples. The ground truth is given in a text-file format

where each frame is annotated with meta-data that consists of the actor, action

type and environment (static homogeneous background (SHB), SHB with scale

variation, SHB with different clothing, SHB with illumination variation). The

authors provide the evaluation protocol, and the average accuracy is a commonly

accepted performance metric for the dataset.

2.3.3 UCF-Sports

The UCF-Sports dataset [21] consists of multiple action snapshots captured from

various sporting events in 2008. It comprises an original set of actions performed

in several scenes and viewpoints. The video sequences are collected from various

sources such as BBC Motion gallery and GettyImages. The dataset contains 150

videos with 10 different action classes including diving, golf swinging, kicking, lifting,

horse-back riding, running, skating, swinging and walking as shown in Figure 2.8.

The dataset is considered challenging due to the large displacements that most of

the actions contain, the cluttered background, and the large intra-class variability.
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Figure 2.8: Example shots from UCF Sports action dataset.

2.3.4 YouTube Actions

The dataset [63] was compiled in 2009 with videos recorded from a video sharing

website YouTube. It consists of 11 different action categories: cycling, basketball

shooting, diving, horseback riding, golf swinging, soccer juggling, swinging, tennis

swinging, trampoline jumping, volleyball spiking and walking a dog as shown in

Figure 2.9. The dataset is characterised by large variations in camera motion,

object appearance and pose, viewpoint, cluttered background, lighting condition.

For each action category, the video sequences divided into 25 groups with more

than four action clips. The grouping is based on the similarity based on the actor,

background, viewpoint, etc. The ground truth is formatted in VIPER 2 where the

bounding box and action category is provided for each frame.

2.3.5 Hollywood Actions

The Hollywood Actions (HOHA) dataset [58] contains 430 videos with 8 different

actions (See Figure 2.10). This dataset is extremely challenging: each video

sequence, in addition to the action being performed, contains challenging

2Language and Media Processing Laboratory, Viper: The video performance evaluation resource,
November 2011. http://viper-toolkit.sourceforge.net/
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Figure 2.9: Screen shots of the 11 action classes of the Youtube action dataset [63].

conditions such as significant camera motion, rapid scene changes and occasionally

significant clutter. Moreover, even though the included actions (e.g., sit down or

kiss) can manifest themselves in a wide variety of conditions, only a tiny portion of

them are sampled in the training set. Furthermore, many actions are not

performed by a single agent (such as sit down) but involve interactions with other

agents (kiss) or objects (get out of the car). The dataset is divided into a test set

collected from 20 movies and two training sets (automatic and clean training set)

obtained from 12 movies. In particular, the automatic training set is obtained

using automatic script-based action annotation and contains 233 video samples

with approximately 60% accurate action labels. In contrast, the clean training set

contains 211 manually labelled video clips. The ground truth is generated by

frame ranges and the corresponding actions.

2.3.6 HMDB51 and J-HMDB

The Serre lab at Brown University, USA, developed the HMDB dataset. The

videos were obtained from several sources, i.e. Prelinger archive, Y ouTube and

Google videos. The dataset comprises of 6849 clips divided into 51 action

25



Chapter 2. Literature Review

Figure 2.10: Two action class examples from the Hollywood dataset: ( kissing and,
answering a phone)

Figure 2.11: Sample video shots from the HMDB dataset.
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categories, each containing a minimum of 101 clips ( See Figure 2.11). To date, it

is the largest and the most diverse action recognition dataset available. The action

classes can be divided into five groups: general facial actions, facial actions with

object interaction, general body movement, body movement with object

interaction and human interaction. Each video is associated with a comprehensive

meta-data information that includes visibility of body parts, camera motion,

camera viewpoint respective to the actor, the number of people involved in the

action and video quality. The dataset is considered to be very challenging due to

the use of video clips obtained from real-world videos which suffer from a range of

artefacts.

J-HMDB is a subset of the HMDB51 with fewer action categories. This dataset

focuses on the single person action and it is considered more challenging than the

original dataset. In particular, the dataset contains 21 categories involving a single

person in action: brush hair, catch, clap, climb stairs,golf, jump, kick ball, pick,

pour, pull-up, push, run, shoot ball, shoot bow, shoot gun, sit, stand, swing baseball,

throw, walk, wave.

2.4 Summary

This chapter introduced the literature review of various approaches for action

recognition and the related benchmarking datasets. We identify and assess three

class of approach: Global, Local and Mid-level. In the literature, the earlier

methods were developed focused on the relatively simple video settings that have

clean background and single actor in the scene. This led to the development of the

global methods that model the action in a holistic manner. These techniques are

typically based on human localisation that is challenging to be accurately obtained

in the uncontrolled environment. However, the local features based methods can

be applied to various settings. The local features are known to be robust under the

scale, viewpoint changes and and do not require a human body model or
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localisation. The mid-level based approaches aim to model the action decomposed

as parts and capture the spatial and temporal structure in the data. These

techniques often result in a complex recognition process. There are many research

works on-going to attain the effective mid-level representation.

In this thesis, we focus on methods based on local features and targets

uncontrolled video capture. This class of approach is shown to be not only efficient

but also provides excellent results compared to other complex approaches whilst

being of a low computational complexity. However the existing local feature

encoding schemes, i.e., BoF, Fisher, ignore the information of the spatio-temporal

positions of features and relations among the features whereas such cues may be

important for action recognition. In the remainder of the thesis, we propose to

overcome this limitation by developing the notion of a video graph that aims to

capture the spatial and temporal relationship between the local features as a graph

structure. Chapter 4 presents a novel action recognition framework based on the

video-graph. Chapter 5 focuses on the various video graph construction techniques

to encode the spatio-temporal relationship and their potential impact on the

recognition performance. Chapter 6 explores the action localisation problem using

an extended version of the video graph. For validation and evaluation purpose, we

will focus on the J-HMDB dataset in the thesis. This dataset contains videos with

a variety of action classes captured in an uncontrolled environment and it is used

for both the classification and localisation task. Also, each video is provided with

the detailed meta-data information that enables further analysis on the

experimental results. Next chapter presents the baseline framework and the

evaluation of the different processing steps in the recognition system.
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Baseline System

3.1 Overview

This chapter introduces the baseline action recognition framework used in this

thesis. In the literature, Bag-of-Features (BoF) model with SVM is the most

popular method used to compare and benchmark the proposed feature detectors,

descriptors and even recognition algorithms. In this chapter, this framework has

been chosen to investigate the various key components, i.e., the local feature type,

SVM kernel function, in the recognition process and the impact on overall

performance. The baseline framework will be used as the basis for comparison

performance in the following chapters.

3.2 Introduction

Over the years, a considerable amount of research has been conducted into human

action recognition. Among the successful methodologies, the local feature based

approaches have become the most popular. In particular, the Bag-of-Features

(BoF) paradigm has become well-established in the field. Bag-of-Features (BoF)

methods adopt a structure-less model that treats the feature descriptors as an

orderless collection. Due to its simplicity and discriminative nature, the

Bag-of-Features (BoF) based approach has become the standard recognition

pipeline in the action recognition community to compare and evaluate the different

algorithms and their various processing components
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There is research carried out [70] for evaluation of the bag-of-features based

recognition framework. Many efforts have been focused on the individual

components of the framework in different settings. For instance, Wang et al [102]

performed the comprehensive evaluation of various feature descriptors and

encoding schemes with a standard bag-of-features model. However they mainly

focused on the feature extraction technique of the framework and imposed a

restriction on the rest of the framework such as constraining the dictionary size to

a certain value and using the same kernel function in all experimental work. In

contrast, this chapter aims to provide a comprehensive evaluation of the

Bag-of-Features (BoF) framework with datasets of varying degrees of complexity.

In particular, we investigate the choice of the local descriptor, kernel function and

size of the codebook dictionary. Also, this chapter examines the impact of the

choice of the local descriptor has on the performance of human action recognition

in the presence of static occlusion. This question is crucial when designing a

recognition framework to uncontrolled video data that is noisy, complex and

incomplete. To our knowledge, evaluation and comparison of classification

performance of local action description methods, in the presence of occlusion, has

not been done in the past. However, several authors [109] [33] have evaluated the

impact of occlusion on their own work. A number of key survey papers in human

action recognition [70] [11] [2] stated the necessity of occlusion tolerant action

recognition methods. In particular, Poppe [70] wrote “ the question [of] how to

deal with more severe occlusions has been largely ignored”. The rest of the chapter

is organised as follows:

• Section 3.3 gives an introduction to the standard recognition framework and

describes each processing stage in the pipeline. Also, we introduce the popular

classification technique - Support Vector Machines (SVM) and the several

types of kernel and normalisation methods used for building an action model.

• Section 3.4.1 presents a comprehensive evaluation of a various processing
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components of the framework and their effect on the overall system

performance. In particular, we evaluate four state-of-the-art local

descriptors, four different dictionary sizes in three prominent action datasets.

• Section 3.4.2 focuses on the evaluation of the learning step in the pipeline. In

this section, we examine the popular kernel methods using a SVM classifier.

• Section 3.4.3 evaluates the local feature descriptors and their possible

combinations in the presence of varying degrees of occlusion. The

experimental work is focused on static occlusion and the objective is to

understand how the missing local descriptors, i.e. due to occlusion, affect

action recognition performance.

3.3 Baseline Recognition Framework

The standard recognition pipeline is adopted for the baseline recognition system as

shown in Figure 3.1. The recognition pipeline consists of four main processes: feature

detection, feature description and video representation followed by classification.

The feature detection process aims to find a point or a set of points of the video that

corresponds to a potentially informative local region. Feature description captures

the local statistics of the patch or region. For the video representation, firstly,

the visual dictionary is constructed by clustering the features extracted from the

training stage. Given a video, feature descriptors are assigned to their nearest

matching cluster centre (visual-word) from the visual dictionary. The histogram of

the quantized feature descriptors will form a vectorized representation of the video

sequence that is used to train or validate the classification model.

3.3.1 Feature Detection

Intelligent selection and detection of feature points plays an important role in an

action recognition system. According to the sampling strategy, the feature detection

process can be divided into two categories: sparse and dense. In the former methods,
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Figure 3.1: The typical Bag-of-Features ( BoF) based action recognition framework
pipeline
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the feature points are selected from the salient regions determined by intensity

changes. The popular methods include the Harris3D detector [86], and the Cuboid

detector [115]. In contrast, the dense approaches sample the feature points at regular

grids in space and time. According to the local feature survey [102], it was found that

dense sampling methods typically outperform the sparse representation as it is more

discriminative and robust. In particular, the dense trajectory-based representation

resulted in outstanding performance. Hence in this research, the dense trajectory

was adopted in the experimental work.

Dense Trajectory (DT) Detector

Wang et al [101] proposed a feature detection technique based on dense motion

trajectories (DT). In this method, the dense motion trajectories are extracted at

multiple different spatial scales using optical flow fields. They applied the global

smoothness constraints to obtain more robust trajectories compared to tracking or

matching points independently. Each point Pt is matched to the next frame by a

median filtered optical flow as follows:

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ w)|(xt,yt)
(3.1)

where w is the optical flow field, M is the median filter kernel and (xt, yt) is

the approximated position of (xt, yt). Then tracked points form a trajectory. To

avoid the drifting problem1, the length of the trajectory is limited to a fixed L long.

When a trajectory length reaches this threshold, it is removed from the tracking

process. A new trajectory is initialized when there are no tracking points found in

a W ×W spatial neighbourhood. To deal with the homogeneous area, the method

adopts the criterion proposed by Shi and Tomasi [83]. During the feature point

sampling process, the smaller eigenvalue of the autocorrelation matrix is checked.

If the value is below a threshold, these points will not be included in the tracking.

The dense trajectories are shown to be more robust than the trajectories obtained

1the error associated with the trajectory registration in the consecutive frames
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Figure 3.2: The information captured by the different descriptors; HOG (Gradient
Information), HOF (Optical Flow) and MBH (Motion Boundaries) [101]

via the KLT (Kanade-Lucas) tracker.

3.3.2 Feature Description

Along with the determination of where feature exists in a video, there is a separate

field of study focused on how to represent the local spatio-temporal region of the

detected feature. The process is called feature description. The naive approach is

to use the pixel intensity values of the particular region. Ideally, a local descriptor

should have a compact representation of the local neighbourhood that is robust to

various changes such as illumination, view points and camera angle. In practice, a

spatio-temporal video patch is extracted from the detected features and information

inside the volume is used to form a representative descriptor vector. The most

popular descriptor methods typically use a histogram of responses of various gradient

filters.

In the experiment, four different descriptors are used to describe the features of

the detected trajectory features. The local neighbourhood is chosen as

spatio-temporal volumes along the detected trajectories. The size of the volume is

N ×N pixels and L frames, with N = 32 and L = 15 in our experiments. For each

trajectory, the four different types of descriptors are calculated, in a constructed

3D volume, to capture the different aspects of motion trajectory. Among the
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existing feature descriptors, HOG and HOF [57] have shown to give excellent

results on a variety of datasets. Therefore we have computed HOG and HOF along

our trajectories. HOG (Histograms of oriented gradient) [29] captures the local

appearance around the trajectories whereas HOF (histograms of optical flow)

captures the local motion. Additionally, MBH (motion boundary histogram) which

is proposed by Dalal et al. [30] and TD (trajectory descriptor) [101] are computed

to represent the relative motion and trajectory shape. The feature vector

dimensions of HOG, HOF, MBH and TD are described in detail in [101].

Trajectory descriptor (TRAJ)

The trajectory descriptor is proposed in the work of Wang et al. [101]. The descriptor

encodes the shape characteristic of a given motion trajectory. Since motion is an

important cue in action recognition, this representation allows motion characteristics

to be exploited. The descriptor is straight-forward to compute using the points

sampled on the trajectory in the image domain. Given a trajectory of length L, the

shape is described by a descriptor vector S :

S =
∆Pt, ...,∆Pt+L−1∑j=t

t+L−1 |∆Pj |
(3.2)

where ∆Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − yt). In our experiment, the

trajectory length was chosen to be L = 15 video frames as recommended in [101].

The HOG/HOF descriptor

The HOG/HOF descriptors were proposed by Laptev et al. [57] for action

recognition. To characterize local motion and appearance, the authors compute

histograms of spatial gradient and optical flow accumulated in space-time

neighbourhoods of the selected points. The points can be detected using any

interest point detectors [56] [32]. In our experiment, these points are selected along

the motion trajectory as in [101]. For the combination of HOG/HOF descriptors

with interest point detectors, the descriptor size is defined by
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∆x(σ) = ∆y(σ) = 18σ, ∆t(τ) = 8τ where σ, τ are spatial and temporal scale

factors. Each volume is subdivided into a nx × ny × nt grid of cells. The histogram

of gradient orientations (HOG) and histogram of optical flow (HOF) are computed

for each cell. Then the normalized histograms are concatenated into HOG/HOF

descriptor vectors similar to the image descriptor SIFT. In the experiment, we use

the grid parameters nx = ny = 3, nt = 2 as recommended by the authors [57].

The Motion Boundary Histogram (MBH) descriptor

Dalal et al. [30] proposed the Motion Boundary Histogram (MBH) descriptor for

human detection, where the second-order motion components are computed for the

horizontal and vertical channel of the optical flow. The descriptor encodes the

higher-order motion between consecutive frames. The MBH descriptor separates

the optical flow field Iω = (Ix, Iy) into its x and y component. Spatial derivatives

are calculated for each of them, and orientation information is quantized into

histograms, similarly to the HOG descriptor. We obtain an 8-bin histogram for

each component and normalise them separately with the L2 norm. Since MBH

represents the gradient of the optical flow, constant motion (i.e., camera

movement) information is suppressed, and only information on changes in the flow

field (i.e., motion boundaries) is retained. In our evaluation, we used the MBH

parameters used in the work of Wang et al. [101].

3.3.3 Video Representation

The video representation method used to describe the compact description of the

scene. In particular, for local-features based methods, this process is known as

encoding and corresponds to aggregating local features into a fixed-sized vector

representation. This allows leveraging standard classification algorithms. In the

literature, there is a number of existing local feature representation methods.

However, the Bag-of-Bag-of-Features approach is the most popular due to its

simplicity and good performance.
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Figure 3.3: A typical process to construct the codebook dictionary

3.3.3.1 Bag-of-Features (BoF)

A popular video representation method based on the local features is the Bag-of-

Features ( BoF) model. It was originally adopted from the document retrieval

domain and it is an orderless representation of frequencies of visual-words from a

dictionary. In the BOF representation, the video is encoded in two main steps:

dictionary construction and BoF-vector generation as shown in Figure 3.3.

• Dictionary Construction: There are many dictionary construction methods

using different clustering methods such as k-means, hierarchical and spectral.

Among them, k-means is the most popular method to construct a dictionary.

Given a set of local features, the goal is to partition the feature set into clusters

then each cluster will be referred as visual word.

• BoF-vector generation: Given a dictionary with K visual words, the

objective of encoding is to compute a K-dimensional BoF histogram h for

input features.

3.3.4 Classification Technique

In the last stage, a general model for each action of interest is learnt using the

computed representation in a supervised manner. Once a model is learned, given

a query video, the system classifies the video into given action classes. In the
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literature, a support vector machines (SVM) is the most popular method used to

compare and benchmark the proposed computer vision algorithms.

3.3.4.1 Support Vector Machines

Support vector machines ( SVMs) become a standard classifier across the domain

of image and video recognition approaches. SVMs have several key advantages

such that its objective function is convex, although the training involves nonlinear

optimisation. Hence the optimisation achieves the global minimum. Also, the

number of support vectors in the resulting model is typically much smaller than

the number of training points. There are many SVM implementations

available [22] [47]. In the experimental works, an SVM classifier is chosen due its

the popular use in many action recognition works [103] [59] [24] and because it

allows the performance of the recognition pipeline to be compared with these

prominent works.

An SVM constructs a hyperplane or a set of hyperplanes in an N-dimensional

space that divides a set of given examples into two regions with maximum margin.

In practice, SVMs perform poorly with a dataset that is not linearly separable.

Hence for achieving non-linear classification, kernel methods are used that enables

the classifier to operate on a higher dimensional implicit space without actually

computing the coordinates of the data points in that space.

3.3.4.2 Kernel Methods

Kernel methods provide a systematic and principled approach for training learning

algorithm and have a good supporting theoretical background. In a nutshell, this

technique uses kernel functions, which transform the low dimensional feature space

into higher dimensions to uncover more hidden characteristics about the data points.

For an input feature vector x, the kernel method φ(· ) maps the feature vector

from input space X into a higher-dimensional space H where the goal is to

separate two sets of points. The Figure 3.4 shows the effect of the mapping of
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Figure 3.4: Let us assume that data separating surface is the ellipse (non-linear)
drawn on the left figure. However, transforming the data into a 3-dimensional space
through the mapping shown in the figure would make the problem much easier
since, now, the points are separated by a linear plane. This embedding on a higher
dimension is called the kernel trick

φ(x1, x2) = (x21,
√

2x1x2, x
2
2) where the two dimensional feature vector is

transformed into higher dimension where linear structure emerges. In practice, the

explicit mapping is computationally expensive. In the execution of an SVM, only

inner products between data vectors are considered i.e expressed in

〈φ(x,x′)〉 = φT (x)φ(x′). The specific map function φ(· ) is used that allows to

compute inner product directly from x and x′ without explicitly calculating φ(x)

and φ(x′). This computational technique is known as the kernel trick.

A kernel is a symmetric function of two arguments and its main property is

that it implicitly defines a mapping φ(· ) from X to a Hilbert space H such that

k(x,x′) = 〈φ(x,x′)〉. Due to the fact that they correspond to the inner products in

higher dimensional space, a kernel can be considered as a similarity measurement

between data points. Many different types are kernels known and the popular

functions used in the action recognition task are shown in Table 3.1.
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Type Formulation

K
er

n
el

Linear K(x,x′) = x>x′

Jenson K(x,x′) = x
2 log2

x+x′

x + x′

2 log2
x+x′

x′

Radial Basis Function (RBF) K(x,x′) = exp(−γx− x′2)
Intersection K(x,x′) = min(x, x′)

Chi-Square (χ2) K(x,x′) = exp(−γ
∑

i
(xi−x′

i)
2

(xi+x′
i)

)

Table 3.1: Popular kernel functions and feature normalization techniques

3.3.4.3 Normalization

Normalization, also referred as “re-scaling” or “standardizing” in machine learning

literature, is an effective method used to standardize the range of the feature

vector attributes. Since the range of the raw training data varies widely, the

learning algorithm results in poor performance without normalisation. For

instance, normalisation is an important step for BOF feature vectors as the

number of local features extracted from video sequences varies widely. The

practical advantage is that it avoids numerical difficulties during the calculation.

Kernel values usually depend on the inner product of feature vectors, i.e. the

linear kernel and polynomial kernel, and large attribute values may result in

numerical overflow issue.

There are various way to achieve normalization and the optimal technique is

typically determined heuristically. The different methods of normalization, as listed

below, can be used to normalize the feature vector for classification:

• Min-Max : x = x−min(x)
max(x)−min(x)

• l2 − norm : x =
√∑

i x
2
i

3.4 Experimental Evaluation

In this section, we present the experiments carried out in order to determine the

optimal configuration for the baseline action recognition method. The

experimental work can be categorised into three parts and structured in the
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following sub-sections. Section 3.4.1 presents a comprehensive evaluation of a

various processing components of the framework and their effect on the overall

system performance. In particular, we evaluate four state-of-the-art local

descriptors, four different dictionary sizes in three prominent action datasets.

Section 3.4.3 evaluates the local feature descriptors and their possible

combinations in the presence of varying degrees of occlusion. The experimental

work is focused on static occlusion and the objective is to understand how the

missing local descriptors, i.e. due to occlusion, affect the action recognition

performance. Section 3.4.2 focuses on the evaluation of the learning step in the

pipeline. In particular, we examine popular kernel methods along with the

different feature normalisation techniques with a standard SVM classifier.

3.4.1 Evaluation of Local Features and Codebook Generation

3.4.1.1 Evaluation Framework

This section presents the experimental work focused on the feature description

element in the recognition pipeline and aims to provide a guidelines on the

effective type of feature in the presence in the presence of occlusion. In particular,

we choose four widely used local descriptors, namely HOG, HOG, HOF, MBH and

TD that discussed in detail in the previous section. For feature detector, we use

the dense trajectories method. The dense trajectory (DT) detector source code

from the author’s website was used 2. We choose the default parameter settings for

the feature detector. Regarding codebook sizes, a subset of 250,000 descriptors

sampled from the training video, where the codebook dictionaries with different

size are formed using k-means. In the experiment, we use the mini-batch K-Means

algorithm proposed by Sculley [80]. Then each descriptor type is assigned to its

nearest cluster centroid using the Euclidean distance. The co-occurrence histogram

with a dimension of k is constructed for each type of features to represent the BoF.

For evaluating the combination of the different local descriptors, the co-occurrence

2http://lear.inrialpes.fr/people/wang/dense trajectories
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histograms of the feature types are concatenated to form a single feature vector.

Finally, since the number of extracted trajectories may change depending on the

given video, the magnitude of the combined feature histogram undergoes

normalisation. This is achieved as F = F ′

|F ′| where F is the normalized feature

vector, F ′ is the vector before the normalization, and |F ′| is the l2 norm of the

vector. The normalised feature vector represents actions performed in the videos.

3.4.1.2 Classification Technique

A support vector machine (SVM) with a χ2 kernel is used as a classifier to evaluate

the performance of different local descriptors and codebook sizes. The χ2 kernel

function is a standard kernel method that is widely used in many recognition tasks.

For multi-class classification task, a one-against-the-rest approach is used during

the during training process. Next, we present the experimental results for various

datasets with different descriptor and dictionary size.

3.4.1.3 KTH Dataset

Table 3.2 presents the results for the KTH dataset with different descriptor and

dictionary size (k) combinations. The table shows average accuracy on a total of

6 action class of the dataset. For dictionary size, there is a positive correlation

with the accuracy. The best result (94 %) is achieved with k = 3000 which is

less than dictionary size k = 4000 that many works [97] [57] assumed to be the

optimum value for BoF based action recognition systems. The explanation can be

related with the simplicity of KTH dataset with a relatively small number of action

class. Thus, a low level of partitions of descriptor space can result in a sufficiently

discriminative dictionary model. Regarding descriptor, MBH and HOF consistently

perform well in comparison with TRAJ and HOG. This suggests that motion is the

effective cue in action recognition. In particular, MBH captures the higher order

motion components that are resistant to the camera motion [101]. However, the

top performance is achieved by combining all descriptor that results in a combined
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description of the local region.

3.4.1.4 UCF-Sports

Table 3.3 presents the results for UCF-Sports dataset. Similar to the result with

KTH dataset, a positive trend is observed for dictionary size with average accuracy.

However, a dictionary size k = 4000 gives the best result performance. The UCF-

Sports dataset contains a total of ten action classes compared to six for KTH. This

might have influenced the optimal dictionary size as a higher dimensional dictionary

is required to discriminatively identify between the increased number of classes. In

terms of descriptor, again, MBH and HOF outperform the rest. The descriptor

combination strategy improves the result further in comparison with the individual

descriptor.

3.4.1.5 HOHA

The experimental result for HOHA dataset is presented in Table 3.4. The table

shows mean-average-precision (MAP) on a total of 8 action class where the action

segments are collected from original Hollywood movies [57]. The HOHA is

considered to be a highly complex dataset [101] [74] [17] as it contains significant

shot boundaries and intra-class variations. As expected, the combined descriptor

produces the best result followed by MBH and HOF. In terms of dictionary size k,

MAP increases along with k and it reaches its peak at k = 4000. Similar to the

result with UCF-Sports, a higher value (k) performs well with HOHA. It

demonstrates that a higher dimensional dictionary space is suited to deal with a

video database that contains complex scenes.

3.4.1.6 Discussion

In summary, for effective performance, a dictionary size in range of k = 3000 to

k = 4000 is a good choice. It is observed from the experiments that (i) the complexity

of a video database (camera motion, shot boundary, etc.) and (ii) the diversity in
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Vocabulary TRAJ HOG HOF MBHx MBHy Combined

1000 71.8% 72.4% 78.4% 71.3% 82.1% 82.6%
1500 65.6% 71.4% 80.8% 70.8% 81.1% 92.4%
2000 73.9% 72.2% 80.7% 70.1% 84.9% 94.0%
2500 68.4% 70.6% 80.0% 70.6% 84.5% 93.3%
3000 66.5% 71.4% 81.9% 71.5% 83.0% 94.0%
3500 74.7% 72.1% 81.1% 71.0% 82.8% 94.0%
4000 66.0% 71.4% 81.5% 70.5% 84.0% 92.7%
5000 65.6% 71.4% 81.1% 70.5% 83.0% 92.4%
6000 65.6% 70.6% 80.0% 70.1% 82.8% 91.6%

Table 3.2: The mean average accuracy (MAP) performance on the KTH dataset

Vocabulary TRAJ HOG HOF MBHx MBHy Combined

1000 46.6% 50.0% 60.6% 49.6% 62.0% 71.2%
1500 48.4% 52.3% 62.4% 52.2% 63.3% 72.6%
2000 49.1% 50.7% 61.3% 54.0% 62.8% 71.2%
2500 47.7% 50.2% 60.7% 52.3% 65.0% 73.6%
3000 47.3% 52.3% 61.0% 52.7% 64.8% 74.0%
3500 51.6% 51.6% 61.4% 50.3% 62.7% 74.0%
4000 52.0% 49.3% 60.9% 50.7% 62.8% 73.5%
5000 51.6% 49.3% 60.7% 50.3% 62.7% 72.9%
6000 47.7% 48.5% 59.5% 49.6% 62.0% 71.2%

Table 3.3: The mean average accuracy (MAP) performance on the UCF-Sports
dataset

the action classes to be identified should be considered for choosing an optimum

value k. Also, it is found that the choice of descriptor is crucial for accurate action

classification. A poor selection can result in a considerable loss in accuracy. For

instance, for the KTH dataset, the average accuracy performance with HOG is

less than 30% in comparison with MBHx. The motion-based descriptor (HOF and

MBH) is proved to be the most efficient and consistently performs best in all dataset.

Finally, the descriptor combining strategy (concatenation) is found to be a simple

and effective way to increase overall performance.

3.4.2 Evaluation of different kernel functions

This subsection presents the evaluation of the effect of different kernel method using

the SVM classifier model. The performance of the SVM classifier strongly influenced
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Vocabulary TRAJ HOG HOF MBHx MBHy Combined

1000 13.9% 11.0% 14.6% 11.7% 18.1% 32.9%
1500 14.8% 11.9% 15.3% 12.1% 19.1% 31.6%
2000 15.4% 12.4% 17.6% 13.6% 20.3% 33.0%
2500 14.2% 11.3% 17.8% 13.0% 22.4% 32.7%
3000 12.5% 12.5% 22.3% 11.2% 23.6% 34.9%
3500 12.1% 11.2% 22.9% 12.0% 25.0% 35.8%
4000 11.6% 11.5% 24.0% 12.4% 25.9% 36.3%
5000 11.6% 11.2% 24.0% 12.4% 25.5% 36.1%
6000 10.9% 10.9% 17.8% 11.2% 22.4% 35.5%

Table 3.4: The mean average accuracy (MAP) performance on the HOHA dataset

Kernel Type TRAJ HOG HOF MBHx MBHy Combined Average

Jenson 15.3% 19.2% 22.4% 19.6% 32.9% 38.5% 24.6%
Intersection 14.2% 15.1% 21.6% 16.9% 28.1% 36.8% 22.1%
Chi-Square 14.8% 17.5% 23.5% 19.6% 30.5% 37.8% 23.9%

Linear 10.1% 11.9% 18.9% 15.5% 28.3% 37.0% 20.3%

Table 3.5: The kernel function performance with different descriptor on the HOHA
dataset

by the type of kernel function utilised in the algorithm. In particular, four different

kernel functions (Table 3.1) are studied with the baseline evaluation framework

mentioned in Section 3.4.1. In the experiment, the HOHA dataset is used. The

dataset is characterised by videos collected from different sources of Hollywood

Movies and has huge variation of people and actions. The evaluate the kernel

function on this dataset, we use the evaluation splits provided by the authors and

report the results in MAP (mean average precision) over the action classes.

3.4.2.1 Results

The results are presented in both Table 3.5. On average, Jenson(23.9%) kernel

outperforms followed by χ2 (24.6%), Intersection (22.1 %) and Linear (20.3 %) as

shown in Table 3.5. Interestingly, the many previous works [50] [101] have assumed

that χ2 kernel is well suited and used as the default kernel. Another useful

observation is that the Linear kernel outperforms Intersection and obtains results

close to that of χ2 using the combined descriptor (the concatenated vector of
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Figure 3.5: The sample shots where the different degree of random occlusion is
applied into KTH video sequence. The red boundary is manually drawn in order to
set an action boundary for each action performer. The green rectangles are occlusion
regions randomly selected with 4 different occlusion sizes: 10%, 25%, 50% and 75%
of the active region

TRAJ, HOG, HOF and MBH).

3.4.3 Evaluation of local descriptors in the presence of occlusion

This section examines the impact that the choice of the local descriptor has on

action classification performance in the presence of static occlusion. This question

is important when selecting a suitable descriptor for a local-feature based

recognition pipeline for uncontrolled video data that is noisy, complex and

incomplete. In an uncontrolled environment, it is natural that a human can be

occluded by an object while carrying out different actions. However, it is unclear

how the performance of the descriptors are affected by the associated loss of

information. This subsection evaluates and compares the classification accuracy of

different local descriptors in the presence of varying degrees of static occlusion. We

consider the same local descriptors investigated previously, namely Trajectory

(TRAJ), Histogram of Orientation Gradient (HOG), Histogram of Orientation

Flow (HOF) and Motion Boundary Histogram (MBH). In the experiment, the

descriptors are combined with a standard bag-of-features (BoF) representation and

a SVM classifier for action recognition. We investigate the performance of these

descriptors and their possible combinations on varying amounts of artificial

occlusion in the KTH action dataset.
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3.4.3.1 Synthetic Occlusion

Occlusion may occur due to static and dynamic occluding objects. For example, if

an action performer is occluded by a moving object like a moving car or a person, it

is considered as dynamic occlusion. On the other hand, the occluding object may be

static like a building or a table in which case an occlusion represents static occlusion.

In our experiment, we focus our attention on static occlusion. Our objective is to

understand how the missing action features, i.e. because of static occlusion, affect

action classification performance. To model static occlusion, we occlude human

action regions with rectangular shaped uniform colour objects, so that the action

descriptors are not extracted within those regions. The uniform colour ensures no

interest points are detected.

Since the KTH action dataset does not contain any occlusion, we have integrated

random static occlusion only for the test set sequences. First, action boundaries are

manually selected in each test sequence as a bounding box as shown in red boundary

in Figure 3.5 . The action boundary (AB) should be selected with a specific height

HAB, width WAB, position (xAB, yAB), in order to accommodate the region of video

where the action is performed. Once we label the action boundaries for all test

video sequences, occlusion bounding box (OB) is automatically generated within

the action boundary region specified by HAB, WAB,xAB, yAB with varying sizes of

occlusion area A(OB). The occlusion position is randomly generated and remained

static for each test sequence. In our experiment, we have chosen the occlusion areas

A(OB) to be 10%, 25%, 50% and 75% of the action boundary area A(AB) as shown

in Figure 3.5. In a given action boundary AB and occlusion percentage Occ%, the

parameters HOB, WOB, xOB, yOB of the occlusion bounding box OB are randomly

selected as follows:

HOB ∈ [HAB − (1−Occ%)×HAB, HAB] (3.3)

WOB ∈ [WAB − (1−Occ%)×WAB,WAB] (3.4)
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xOB ∈ [xAB, xAB + (WAB −WOB)] (3.5)

yOB ∈ [yAB, yAB + (HAB −HOB)] (3.6)

where Occ% = A(OB)
A(AB) and HAB, WAB, (xAB, yAB) is height, width and top-left

corner coordinate of the action boundary box, AB, whereas HOB, WOB, (xOB, yOB)

is height, width and top-left corner coordinate of the occlusion boundary box, OB,

and HOB,WOB, xOB, yOB ∈ N.

3.4.3.2 Experimental Results

Table 3.7 shows the ranking of different combinations of descriptors in the partial

occlusion case based on F-Score. The F-Score measure is the harmonic mean of

precision and recall to balance their trade-off and defined as

F = 2 × precision×recall
precision+recall . The best three combinations are TRAJ+MBH (90.1 %),

TRAJ+HOF+MBH (88.9%) and HOF+MBH (88.4%). The worst performance is

with HOG and HOF features. HOG descriptor obtained 64.3%, and HOF

descriptor obtained 83.3%, and their combination is 83.5%.

The heavy occlusion ranking is presented in Table 3.8. TRAJ (67.7%),

TRAJ+MBH (66.9%), TRAJ+HOF+MBH (64.7%) combinations perform best.

The HOG, HOF and their combination perform poorly. The best descriptors are

TRAJ, MBH and their combination. They consistently outperform any other

combination for different scales of occlusion area in our experiments.

We now present experimental results for various descriptor combinations. We use

multi-class classification where we apply the one-against-rest approach and compare

the performance based on precision, recall and F-score. The scores are reported as

an average of the 6 action classes. To measure impact of occlusion, we compute the

above-mentioned scores for four different cases of occlusion: 10%, 25%, 50% and

75% occlusion of the action area. We also group the cases into partial occlusion

(10% - 25% occluded) and heavy occlusion (50% - 75% occluded). The classifier is

trained with non-occluded training data. Therefore all occlusion cases are classified
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Descriptor Combination No Partial Occlusion
Rank TRAJ HOG HOF MBH Occ. 10% 25% Avg.

1 X X 92.0% 93.4% 86.7% 90.1%
2 X X X 92.5% 91.5% 86.2% 88.9%
3 X X 91.1% 89.1% 87.7% 88.4%
4 X 91.1% 89.0% 87.2% 88.1%
5 X X X X 91.5% 90.5% 84.8% 87.7%
6 X X X 91.6% 90.1% 84.9% 87.5%
7 X X X 89.6% 89.5% 84.9% 87.2%
8 X X 89.6% 88.5% 84.0% 86.2%
9 X X 91.1% 88.4% 83.1% 85.7%
10 X X X 90.7% 88.8% 82.2% 85.5%
11 X X 89.8% 87.8% 81.6% 84.7%
12 X X 88.3% 87.3% 81.1% 84.2%
13 X 86.9% 87.3% 79.8% 83.5%
14 X 87.3% 85.0% 81.7% 83.3%
15 X 74.0% 68.6% 59.4% 64.0%

Table 3.7: The ranking is computed on the F-Score measure. The F-score is a
measure of accuracy that considers precision and recall rates to compute the score
as follows: F% = 2× Precision×Recall

Precision+Recall . This table shows the ordered list of descriptor
combination in terms their F-Score measure in the partial occlusion case. A higher
value indicates better performance

with the same trained classifier.

Table 3.6 shows the recall and precision scores for all combinations of the

descriptors we evaluated. The recall is calculated for partial and heavy occlusion

scenarios. In partial occlusion, MBH and its combination with other descriptors

performed significantly better than other combinations. Especially the

combination of TRAJ + MBH outperforms the without-occlusion case by 2%.

This can be explained by the fact that occlusion also acts like a noise filtering. It

increases the discriminative power of the representation. Regarding heavy

occlusion, the best performance is shown with all four combinations of trajectory

descriptor. It makes the trajectory descriptor particularly suitable for scenarios

with large occlusions. For example, with 75% occluded area, TRAJ individually

obtained 57% recall rate which is the highest score compared to any other

combination where most barely reached 50%.

Regarding precision, the same trend is observed in both occlusion scenarios. The
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Descriptor Combination No Heavy Occlusion
Rank TRAJ HOG HOF MBH Occ 50% 75% Avg.

1 X 87.3% 79.2% 56.1% 67.7%
2 X X 92.0% 76.7% 57.2% 66.9%
3 X X X 92.5% 76.6% 52.7% 64.7%
4 X X 91.1% 74.9% 52.8% 63.8%
5 X X X 91.6% 73.7% 53.0% 63.3%
6 X X 91.1% 77.0% 49.7% 63.3%
7 X X 89.8% 74.0% 51.5% 62.8%
8 X X X 89.6% 74.3% 50.8% 62.5%
9 X X X X 91.6% 73.8% 50.2% 62.0%
10 X 91.1% 72.0% 50.1% 61.1%
11 X X X 90.7% 74.3% 47.8% 61.1%
12 X X 89.6% 70.8% 48.5% 59.7%
13 X X 88.3% 72.3% 45.3% 58.8%
14 X 86.9% 68.3% 45.8% 57.0%
15 X 74.0% 42.2% 22.5% 32.3%

Table 3.8: Here shows the F-Score based ranking in heavy occlusion case for local
action descriptors and their possible combinations.

partial occlusion is predominantly handled significantly better than others when

there is a combination of MBH descriptors. For heavy occlusion, TRAJ + MBH

descriptors topped the precision rank.

The poorest performance is exhibited by HOG and its combination with other

descriptors. In both partial and heavy occlusion cases, the HOG descriptor obtained

the worst precision and recall rate. Therefore it is unsuitable to use HOG even with

other occlusion tolerant features like MBH or TRAJ as it significantly decreases the

performance.

3.4.3.3 Discussion

The experimental results confirm that the motion based descriptors (TRAJ, HOF

and MBH) are more discriminative when recognising human actions in an

occluded scene. Among the motion based descriptors, MBH and TRAJ descriptors

significantly outperform other descriptors. In the partial occlusion case, MBH is

the best choice, whereas the TRAJ descriptor is good for heavy occlusion. Texture

or appearance based descriptors (HOG) performed poorly in the presence of
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occlusion because the object’s shape undergoes significant changes. We observed

that combining MBH and TRAJ descriptors outperform other possible

combinations in case of both partial and heavy occlusion. The performance under

very heavy occlusion, in particular, is surprising. While showing a significant

decrease in performance compared with no occlusion, average precision over the six

actions of greater than 60% is still achieved. We speculate that this is due to the

extremely simplified nature of the KTH dataset, a facet noted in a review of

datasets for human action recognition [23].

3.5 Summary

This chapter provides a comprehensive evaluation based on the Bag-of-Features

(BoF) representation. Many researchers have performed an evaluation of Bag-of-

Features based action recognition. However, the main focus is typically on the

evaluation of individual components in the framework or the framework within a

limited experimental setting. In this chapter, this problem has been addressed

with a comprehensive evaluation including several key elements in the pipeline, i.e.,

codebook dictionary construction, analysing the effect of kernel functions and the

choice of local descriptors. This allows us to provide conclusion and suggestion

regarding the optimal strategy and settings. Also, the performance of the local

descriptors under different degrees of static occlusion was analysed. Nevertheless,

the BoF-based framework still suffers the lack of spatio-temporal information. In

the next chapter, we propose a graph-based approach to solving this problem.
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Action recognition based on a

video graph

4.1 Overview

This chapter presents a new action recognition framework based on a video graph.

The proposed approach aims to overcome the underlying limitation of the Bag-of-

Features (BoF) model by introducing a video graph representation and a graph

processing recognition pipeline. The video graph efficiently captures the spatial and

temporal relationship between the local features while maintaining its discriminative

power. We formulate action recognition as an energy minimization problem on the

constructed video graph and perform the graph-cut optimisation to identify the

action class for the corresponding video. The performance of the proposed approach

is investigated using datasets of varying complexity and benchmarked against the

state-of-the-art.

4.2 Introduction

An important question in action recognition is how to efficiently and effectively

represent a video scene while maintaining the discriminative appearance, motion

and contextual cues of the scene. In recent years, Bag-of-Features (BoF) based

methods [101] [50] [32] [56] have demonstrated excellent results in action

recognition. However, as identified in a number of works [114] [90] [67], such
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approaches typically ignore the spatial and temporal cue of the local features in

the recognition process, limiting fine-grained analysis of the video. Many authors

noted [74] [24] that capturing the spatiotemporal patterns in an action recognition

framework can improve system performance. In this context, this chapter

introduces an action recognition framework based on graph-structured local

features to explicitly exploit their spatial and temporal connections. The graph

representation is a simple and powerful method for a modelling interaction

between a system’s individual elements. It is a well-established data abstraction

approach in computer vision, in particular for 2D image understanding, due to its

intuitive representation of capturing the underlying image spatial structure. For

instance, in many successful object segmentation methods [15] [16], they

interpreted the image parts as the graph nodes and their pairwise spatial

relationship in terms of edges (See Figure 4.1). Recently, this representation has

attracted researchers [25] [74] [95] from the action recognition community to focus

on adding structural cues into effective video representation. Many of them have

exploited the graph representation to capture the spatial-temporal relationship

between the local features extracted from video data and thus increase the

discriminative power of recognition.

This chapter presents two contributions. First, we propose to extend the

popular dbscan clustering algorithm [35] towards a graph-based video

representation. In this video graph, each cluster ci of local features forms a node

ui and its connectivity (edge) is determined by proximity in space and time (see

Figure 4.2). Each node, vi, is associated with a discriminative score indicating the

degree of support for an action class based on the corresponding set of a local

descriptor. Second, this chapter explores the application of the graph-cut

optimisation method from 2D image segmentation to 3D spatio-temporal volume

analysis to investigate its effectiveness for action recognition in video. Graph-cut

based methods have achieved impressive performance for object segmentation,

even on difficult image datasets [27]. It is interesting to study how successful
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(a) The video segmentation process that utilizes the graph structure
to impose the spatio-temporal relationship between the video parts
[38].

(b) The image is interpreted as a graph for the object segmentation problem [121].

Figure 4.1: The application of graph structure in computer vision problems

Figure 4.2: Action recognition is formulated as a graph cut optimization problem
over a constructed video graph.
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approaches could be extended to the action recognition problem. The proposed

approach has several important properties. First, the method accommodates a

variety of features and classifiers, making it flexible as a general action recognition

tool. To illustrate, we have used four descriptors effectively for action

classification. Second, as Chen et al [24] highlighted, the graphical representation

is equivalent to that of an exhaustive sliding window search, yet requires orders of

magnitude less search time. Finally, the graph-based representation is sufficiently

generic that one can directly apply any graphical probabilistic inference methods

to gain insight into the video data.

The remainder of the chapter is structured as follows - Section 4.3 describes

the action recognition framework; Section 4.4 presents an extension to the dbscan

algorithm and video graph construction and Section 4.5 introduces an action

recognition process based on a video graph followed by the result (Section 4.6) and

the chapter summary (Section 4.7).

4.3 Framework Overview

In the proposed recognition framework (Figure 4.3), the training stage adopted

a Bag-of-Features (BOF) model to train a classifier model that is used to assign

discriminative node score during the graph construction. For graph construction,

first, the local feature extraction is performed while maintaining its spatio-temporal

location information. Next, based on spatio-temporal location and feature similarity,

a video graph is constructed. In this video graph, each node indicates a set of local

features and the associated discriminative score is assigned by a learned model

during the training stage. Finally, graph-cut optimisation is performed to solve the

optimum labelling problem by minimising the objective energy function associated

with the video graph. We assign the most frequent node label in the graph as a

class label for the corresponding video.
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Figure 4.3: The recognition pipeline of our proposed system. During training, the
standard BOF model is applied. However, at prediction stage, we have exploited
the graph structure to embed spatio-temporal cue for video representation which is
a major weakness in BOF model.

57



Chapter 4. Action recognition based on a video graph

4.4 Video Graph Construction

This section describes how to construct a video graph for a video sequence. In the

case of a 2D image, the graph construction can be straightforward by considering

individual pixels into a node. In practice, the image segmentation algorithm [15]

typically use this strategy to interpret an image in the graph representation.

However, let us say that the input is 360× 240 dimensional video with 100 frames,

the total number of nodes in the resulting graph will exceed 8 million. The amount

of memory space and the computational power required for processing such a

graph results in slower processing speed or it requires special purpose processing

tools and hardware such as graphical processing unit (GPU). The graph

construction technique should produce a sparse as well as a discriminative graph

structure. We propose to exploit the popular dense clustering method (dbscan) for

the development of the video graph.

4.4.1 Local features

The proposed technique can be used with any spatio-temporal local features.

However, we adopt the same approach described in the previous chapter. The

feature extractor (DT) is used extract volumetric motion trajectories. The size of

the volume is N × N pixels and L frames, with N = 32 and L = 15 used in the

experiments. For each trajectory volume, the different descriptor is calculated to

capture the local video region properties. Similar to the baseline framework

(Chapter 3), we compute HOG and HOF [57] to capture the local appearance and

motion around the trajectories. Also, MBH [30] and TD [101] are computed in

order to represent the relative motion and trajectory shape. The feature descriptor

dimensions of HOG, HOF, MBH and TD are respectively 96, 108, 192 and 30.
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Figure 4.4: The extended dbscan algorithm does not suffer from restriction of a
pre-defined grid boundary and the resulting graph is sparse and intuitive.

4.4.2 Video Graph Construction

This section describes the video graph G(V,E) for the input video sequence, where V

is a set of nodes and E is a set of edges. Each node in the graph is the abstraction of a

set of local features extracted within a spatio-temporal neighbourhood. The smallest

possible node is a single feature point, and the largest possible one would be the

full test sequence, i.e., all features from all frames. The factors to be considered for

choosing the scale is the granularity of detection and the computational complexity.

Note that nodes with a larger number of feature points are favourable not only for

computational efficiency, but also their aggregated descriptor statistics have better

discriminative power. The node structure and edge formation strategy are as follows:

• Node Structure : For constructing the graph node, we propose a

feature-point clustering method inspired by the density-based clustering

method, particularly the dbscan algorithm. The density-based clustering

approach does not require one to specify the number of clusters in the data

as a prior and can find arbitrarily shaped clusters by tuning only two

parameters, a maximum search radius ε and the minimum number of points
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Figure 4.5: The node structure variation with varying parameter values of spatial
radius and minPts where the dark blue colour represents the disconnected node
(noise).
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Figure 4.6: The node structure variation with varying parameter values of spatial
radius and temporal radius. Each colour represents a different cluster group.
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minPts. As shown in Figure 4.4, the algorithm groups only feature points

that are densely inter-located. If the density of the feature point’s

spatio-temporal neighbourhood is less than the threshold value, minPts,

such a feature point is considered as noise and does not contribute towards

an action class. Sometimes, the feature sampling technique or the context of

video may result in densely distributed local features. The dbscan algorithm

can not handle dense data points. It merges each data point to produce a

single giant cluster, which is not ideal.

Therefore we extended the dbscan algorithm designed for clustering the

feature points to take into account not only their location [x, y, t] but also

the local descriptor characteristic. In addition, the maximum search radius

parameter, ε is split into two components: spatial radius rsp and temporal

radius ttmp. This allows us to reduce the pairwise distance calculation space

by bounding using ttmp radius and independently treating spatial and

temporal dimensions, respectively measured in pixels and video-frames. To

account for the trajectory shape, we calculate a lower dimensional “trajectory

code” (vCat) over randomly sampled trajectory descriptors. The trajectory

descriptor is a sequence of displacement vectors, for scale invariance, scaled

by the sum of the magnitudes. Therefore, the extended dbscan algorithm

operates on 4-dimensional data points, (x, y, t, vCat), where x, y, t is a mean

coordinate of the extracted trajectory and vCat is the nearest codeword

associated with this trajectory. A cluster is formed if its neighborhood

contains enough points (minPts) with the same “trajectory code”

(vCat ∈ {1, .., 64}). This ensures similar trajectories between the feature

points. This technique may occasionally produce a disconnected node if the

local feature density within the spatio-temporal neigbhourhood is less than

the threshold minPts. It could create problem by resulting in a significant

number of disconnected nodes if the parameter value for minPts is not set

properly (See Figure 4.5).
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• Linking Strategy : The connectivity between nodes also affects both the

shape of the graph structure and the cost of graph-cut optimisation. We

adopt a distance based linking strategy for connecting the constructed nodes

from the extended dbscan clustering algorithm. We have chosen the distance-

based strategy as it is a simple and effective measure that is able to add

spatio-temporal proximity among the constructed nodes. Additionally, the

edge has no direction as we use graph cut optimisation that operates only on

non-directed graphs. The connectivity between nodes vi and vj is determined

by the distance between their corresponding group gi and gj . If the resulting

node corresponds to hla non-spherical 3D region in the video, the group centre

is calculated as the mean coordinate of the local features in the region. In

the experiment, we use Euclidean distance measure. However, any distance

metric can be utilized such as minimum distance which is more suitable for

non-spherical nodes. For example, if the distance between g1 and g2 is greater

than a pre-defined threshold value, then an edge between node v1 and v2 will

not be formed.

4.5 Recognition problem formulation over the video

graph

Given a video sequence represented as a graph of clustered feature nodes, we now

seek to determine regions where there is significant label agreement. The 3D graph

cut algorithm solves the labeling problem by minimizing the following energy

function defined using a video graph G:

E(L) =
∑
r∈V
−E1(lr) + λ

∑
(r,s)∈V

−E2(lr, ls) (4.1)

where lr is the action label of node r, and L = (lr : ∀r). The first term E1

(likelihood) measures the conformity of the local features extracted in the region
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Algorithm 1 The pseudo code for our extended dbscan algorithm. It clusters local
features based on their spatio-temporal location.

D, Rsp, Rtmp, MinPts, vCat Cluster G for D data points

Initialization

for each unvisited point P in dataset D do

mark P as visited

NeighPts = regionQuery(P , Rsp, Rtmp, vCat)

sizeof(NeighPts) < MinPts

mark P as NOISE

C = next cluster

expandCluster(P , NeighPts, C, Rsp, Rtmp, MinPts, vCat)

function expandCluster(P , NeighPts, C, Rsp, Rtmp, MinPts, vCat)

mark P as visited

for each point P ’ in NeighPts do

if P ’ is not visited then

mark P ’ as visited

NeighPts′ = regionQuery(P ’, Rsp, Rtmp, vCat)

if sizeof(NeighPts′) > MinPts then

NeighPts = NeighPts ∪ NeighPts′

if P ′ is not yet member of any cluster then

add P ′ to cluster C

function regionQuery(P,Rsp,Rtmp, vCat)

return all points within P ’s temporal, Rtmp, and spatial, Rsp,
neighborhood, with the same visual category vCat(P )

end function
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r to the action class label. The second term E2 measures the agreement between

two adjacent nodes. An important property of this formulation is that it can be

theoretically justified regarding maximum posterior estimation of a Markov Random

Field (MRF).

4.5.1 Energy Minimization Methods

In the domain of 2D image understanding, energy minimization approaches have

had a renaissance, due to its simple and powerful representation of structural data

and availability of effective optimisation algorithms such as graph cuts [15] and

Loopy Belief Propagation (LBP). For instance in stereo vision research, according

to the widely-used Middlebury stereo matching benchmarks, the majority of top-

performing methods rely on energy minimization approaches. In addition, the range

of applications of labelling problems has successfully expanded, starting from early

applications such as image restoration [31], texture modelling [54], image labelling

[16] and interactive object segmentation [15].

This family of methods aims to assign to each site a label which can be any

quantity ( e.g disparity, object and foreground/background) in such a way as to

minimise the objective energy function E . The energy function E , which can also

be viewed as the log of the posterior probability of a Markov Random Field that

consists of a data energy Ed and smoothness energy Es. In the MRF framework,

energy term Ed comes from the negative log likelihood of the measurement noise

and Es is related to the negative log of the prior probability.

There are a number of optimisation algorithms; that finds an exact or

approximate solution of the energy function E , such as ICM, Graph Cuts, LBP

and ICM. Relatively little attention paid to the relative performance of the various

optimisation algorithm. Among the few survey papers [92], Szeliski at el [91] have

performed a comprehensive evaluation and highlighted Graph Cuts and LBP

regarding accuracy and efficiency among other methods. In this chapter, we have

used Graph-Cut based optimisation in our experimental work.

65



Chapter 4. Action recognition based on a video graph

4.5.1.1 Graph Cuts Optimization

Energy minimization problems can be reduced to instances of the maximum flow

problem in the graph. Graph cut based algorithms are known to rapidly compute

a local minimum. We have used the Graph Cuts algorithm proposed by Boykov et

al [14] and the implementation is available online1. This method efficiently calculates

the approximate solution in the multi-label scenario.

The Graph Cuts algorithm finds a local minimum by making local improvements.

The most popular graph cuts algorithms are called “swap-move” and “expansion-

move”. The “swap” algorithm performs local improvements by selecting two possible

states of α and β, then finds those nodes, labelled as α, that must be changed to β

or vice-versa in order to minimise the total energy. However, based on the min-cut

and max-flow technique, the optimal swap for the whole graph can be efficiently

calculated. The “expansion move” algorithm obtains a local minimum state when

there is no expansion move further improves the total energy level. For expansion

moves, the criteria for a local minimum is strong compared to standard moves that

results in less minima.

4.5.2 Estimation of Likelihood (E1) and Prior (E2)

To measure node likelihood, the discriminative classifier should satisfy two

properties. First, it must be able to score an arbitrarily shaped set of feature

points. Second, it must be defined such that features computed within local

space-time regions can be combined additively to obtain the cumulative

classification for a larger region. Suitable additive classifiers include linear support

vector machines (SVM), boosted classifiers, or Naive Bayes classifiers. In our

experiments, we use a linear SVM with histograms (bags) of quantized space-time

descriptors. We consider BoF’s computed over several types of local descriptors

discussed in Section 3.1.

We compute a vocabulary of K visual words by quantizing a subset of randomly

1http://vision.ucla.edu/ brian/gcmex.html
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sampled features from the training videos. A training video subvolume with N local

features is initially described by the set S = {(xi, vi)}Ni=1 , where each xi = (xi, yi, ti)

refers to the 3D feature position in space and time, and vi is the associated local

descriptor. Then the volume is converted to a K-dimensional BoW histogram h(S)

by mapping each vi to its respective visual word ci ,and tallying the word counts

over all N features.

We use the training instances to learn a linear SVM for each action label, which

means the resulting scoring function has the form: f(S) = β+
∑

i αi < h(S), h(Si) >

where i indexes the training examples, and α, β denote the learned weights and bias.

This can be rewritten as a sum over the contributions of each feature. Let hj(S)

denote the j-th bin count for histogram h(S). The j-th word is associated with

a weight wj =
∑

i αh
j(Si), for j = 1, ...,K. Thus the classifier response for any

subvolume S is:

f(S) = β +
K∑
j=1

wjhj(S) = β +
N∑
i=1

wci (4.2)

where ci is the index of the visual word that feature vi maps to, ci ∈ [1,K]. By

writing the score of a video region as the sum of its N features’ “word weights”, we

now have a way to associate each local descriptor occurrence with a single weight

based on its contribution to the classifier score.

This same property of linear SVMs is used in [24] to enable efficient subgraph

search for action detection.

Likelihood, E1, is defined as:

E1(lr) =
∑
xj∈r

wcj (4.3)

where xj is the 3D coordinate of the j-th local descriptor falling within node

r ∈ V , and cj is its quantized feature index. Note that xj is the feature point

position of the low-level descriptors. Consequently, nodes with high positive weights

indicate that the action presence in the video region where node corresponding while
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negative value means the absence.

Prior energy, E2, simply measures the label agreement between adjacent nodes,

defined as:

E2(lr, ls) =


1, if lr = ls

0, otherwise

(4.4)

The prior energy definition can be extended to include additional information

such as the similarity between different action classes.

The objective function of Equation (1) can be globally minimised by an efficient

graph cut algorithm [15] and the resulting most frequent labels over graph nodes

will determine an action label for the test sequence, that can be found by a simple

voting strategy. The default parameter is empirically fixed to λ = 0.85 in all our

experiments. The λ value is calculated based the validation set of the KTH dataset.

4.6 Experimental Evaluation

This section presents the evaluation of the proposed approach. For the purpose

of comparative analysis, the identical training stage with the baseline approach is

adopted. The evaluation framework uses the same local descriptors ( i.e., TRAJ,

HOG, HOF and MBH) investigated previously (Chapter 3). In the experiment, the

co-occurrence BoF histograms of the above descriptors are concatenated to form

a single descriptor vector. The linear SVM model is learned using the combined

descriptors. For the recognition stage, first, the video graph is constructed where

each node’s discriminative score is assigned by a SVM learned model. Then graph-

cut optimisation is performed to solve the optimum labelling problem by minimising

the objective energy function defined in Section 4.5. Finally, the most frequent node

label in the graph is chosen as a class label for the corresponding video.

The experimental work is split into two sections. Section 4.6.1 presents the

comparative analysis between the baseline and the proposed approach. In this
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Action class BoF baseline Proposed Difference

brush hair 66.7% 53.6% -13%
catch 20.0% 11.7% -8%
clap 23.1% 31.5% 8%

climb stairs 66.7% 61.2% -6%
golf 83.3% 91.5% 8%

jump 0.0% 0.0%
kick ball 20.0% 2.9% -17%

pick 8.3% 21.4% 13%
pour 68.8% 75.9% 7%

pullup 68.8% 85.5% 17%
push 50.0% 71.5% 22%
run 18.2% 26.3% 8%

shoot ball 11.1% 35.2% 24%
shoot bow 26.7% 39.8% 13%
shoot gun 12.5% 24.3% 12%

sit 60.0% 81.4% 21%
stand 45.5% 26.2% -19%

swing baseball 20.0% 76.0% 56%
throw 0.0% 12.5% 13%
walk 75.0% 56.1% -19%
wave 8.3% 15.8% 8%

MAP 35.9% 42.9%

Table 4.1: The performance by action class for J-HMDB dataset

context, we perform the experiment with the J-HMDB dataset. This dataset is

chosen since (i) the dataset contains a large number of different action categories

(a total of 21 classes) and (ii) the setting where the video sequence is captured is a

good representation of an uncontrolled environment. Also, the dataset is provided

with meta-data information that enables to analyse the effect of different

environment factors. In the section 4.6.2, we present the evaluation of the

proposed approach using several datasets and a comparative analysis to the

respective state-of-the-art.
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Action class
Camera Video Camera view-point Visible body part
motion quality back front left right full head lower upper

brush hair 21% 98% 41% 41% 15% 2% 10% 90%
catch 76% 45% 19% 33% 25% 23% 75% 25%
clap 32% 51% 93% 2% 5% 7% 93%

climb stairs 79% 49% 75% 20% 5% 68% 33%
golf 59% 68% 19% 7% 74% 100%

jump 59% 5% 15% 26% 31% 28% 100%
kick ball 45% 44% 67% 22% 6% 6% 89% 8% 3%

pick 73% 53% 15% 33% 23% 30% 90% 3% 8%
pour 32% 65% 89% 11% 100%

pullup 56% 60% 51% 36% 2% 11% 60% 40%
push 89% 12% 21% 10% 29% 40% 95% 5%
run 66% 50% 35% 28% 20% 18% 93% 3% 5%

shoot ball 30% 50% 80% 8% 13% 65% 35%
shoot bow 9% 50% 9% 85% 6% 17% 83%
shoot gun 32% 54% 13% 13% 27% 47% 27% 73%

sit 61% 54% 51% 28% 21% 64% 36%
stand 67% 43% 64% 19% 17% 61% 39%

swing baseball 44% 40% 17% 81% 2% 81% 19%
throw 24% 48% 57% 11% 17% 15% 37% 63%
walk 72% 49% 32% 39% 10% 20% 80% 20%
wave 46% 55% 2% 86% 2% 10% 19% 7% 74%

Table 4.2: The meta-label statistics by action class for the J-HMDB (Split 1) dataset.
The column “Camera Motion” represents the percentage of the videos for a certain
class ,e.g golf, that has the camera motion whereas the column “video quality”
represents the average video quality where the good quality being ’1’. The column
“camera view-point” represents the percentage of the video by shot camera angle
likewise the “Visible body part” column by four type.

Variables BoF baseline Proposed

Camera view-point variation -0.06 -0.22
Camera motion presence -0.19 -0.07
Visible body part variation -0.05 -0.02
Video quality 0.42 0.30
Action region size 0.13 0.08

Table 4.3: The environment variable correlation with the classification performance
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4.6.1 Comparative analysis result with the baseline

4.6.1.1 J-HMDB dataset

Table4.1 shows the result on the J-HMDB dataset. The result is shown with

performance metric of average precision (AP). The metric is recommended by the

dataset author, and thus we adopt this metric. In terms of average performance

over all action classes, the proposed approach (42.9%) significantly outperforms

the baseline (35.9%) by 7 percent in MAP (mean AP). Interestingly, as you can

notice in the 4th column of the same table, the performance increment is not

uniform and varies highly among the action classes. In particular, we found several

classes i.e. brush hair, kick ball, stand and walk for which the baseline is

outperforming. To explain the result in a justified manner, we perform a statistical

analysis on the meta data provided with the dataset with an assumption that

environmental factors might have influenced on the performance. Table 6.2 shows

each class and the environmental settings where the corresponding videos are

captured. We have selected “camera Motion”, “video quality”, “camera

view-point” and “visible body part” factors. The “camera motion” represents the

percentage of the videos for a certain class that have camera motion whereas the

“video quality” represents the average video quality where the good quality is ‘1’ ,

medium ‘0.5’ and bad ‘0’. The “camera view-point” represents the percentage of

the videos shot from different camera positions (back, front, left, right). The

“visible body part” represents the percentage of the videos that have a certain

type of visibility (full, head, lower, upper) of an actor/action. Let us examine the

top performing classes from each method. For instance, the action class brush hair

has an excellent result with the baseline. The class has only 28% videos where the

camera motion is present and furthermore 90% of the videos dominated by a

specific body part (upper body). In contrast, the action class push has obtained

22% improvement by the proposed approach in comparison with the baseline.

However, the portion of the corresponding videos that have camera motion present
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Methods (Avg.Acc)

Laptev et al. [57] 91.8%
Kovashka et al. [51] 94.5%
Gilbert et al. [39] 95.7%
Le et al. [62] 93.9%
Wang et al. [101] 94.2%

Baseline 94.0%
Proposed 98.1%

Table 4.4: The state-of-art comparison for KTH dataset

is significantly higher (89 %) compared to brush hair. We can test hypothesis that

the baseline (BoF) is suitable for the relatively simple scene and environment, i.e.,.

fixed camera, fewer variations in the scene. The proposed approach shows

robustness under the different variations in the scene. To generalise the claim, the

statistical correlation between the environmental variable and the performance of

the baseline and the proposed approach is calculated (Table 4.3). As expected, the

variations in the view-point, visible body part and the camera motion have

negative correlation with the performance of both approaches. In particular, the

camera motion and body part variation have a higher influence on the baseline.

However, the camera view-point variation has a significant impact on the proposed

approach. We hypothesis that this is due to the smoothness assumption of the

proposed approach as it builds the spatio-temporal connection between the video

frames. The video quality and action region size has the positive correlation with

the performance. In particular, unexpectedly, the video quality has the highest

impact on the performance among all factors for both approaches.

4.6.1.2 KTH dataset

4.6.2 Comparison to the state of the art

The KTH dataset [13] is the most popular dataset used in the evaluation of action

recognition methodologies. We follow the original experimental setup of the

dataset publisher [13]. The average accuracy is a commonly accepted performance
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Figure 4.7: The confusion matrix for the KTH dataset.

measurement for this dataset. Table 4.4 shows the comparison of methods applied

to the KTH dataset. It is observed that the proposed approach obtains an

excellent result ( 98.1 %) that improves the current state of the art. Figure 4.7

shows the confusion matrix of the action classification. The boxing, handclapping,

walking classes have an excellent accuracy of 1 whereas handwaving, jogging,

running have minor miss-classification cases.

4.6.2.1 HOHA dataset

The HOHA dataset contains 430 videos with eight different actions. This dataset

is extremely challenging due to significant camera motion, rapid scene changes and

occasionally significant clutter. We followed the experimental setting previously

proposed in [55]. As compared with the state-of-art methods in HOHA dataset

(Table 4.5), our method is less accurate with MAP (mean average precision) of

35.2 %. This can be attributed to the use of the simple linear SVM classifier in

our method, while the latter methods [114] [74] use flexible learning techniques

such as multi-instance based learning and non-linear kernel methods. Also, our
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Methods MAP

Raptis et al. [18] 40.1 %
Yeffet et al. [36] 36.8 %
Laptev et al. [81] 38.4 %
Matikanien et al. [6] 22.8 %
Shandong et al. [103] 47.6 %

BoF Baseline 36.3 %
Proposed 35.2 %

Table 4.5: The state-of-art comparison for HOHA dataset

classifier is learned from the training set where only the temporal extent of the

depicted action is unknown. For instance, Raptis et al [74] work, that is similar

to our approach, performed with MAP of 40.1 % however, the authors used the

manual annotated spatio-temporal bounding box for each training sequence to learn

the model. Interestingly, the baseline outperforms the proposed approach. We

hypothesise that the this is due: (i) long duration and significant motion boundaries

associated with the HOHA compared to the other datasets (ii) the prior assumption

in the graph model that enforces the adjacent nodes to have the same class label

might have a negative impact on these shot boundary regions.

4.6.2.2 UCF-Sports dataset

For the UCF-Sports dataset, we used the experimental protocol proposed by Lan

et al [55]. The dataset is split into 103 training and 47 test samples. The

performance confusion matrix is shown in Figure 4.8. As one can see in Table 4.6,

our method improves the state-of-art performance by 5% in terms of average

accuracy. We associate this good performance with the following points. First, the

characteristic of the UCF-Sports dataset is rather simple compared to the HOHA,

and the average action duration is relatively short. Thus, this facilitates learning a

cleaner classifier (noise free). Secondly, we believe the graph-structure has a

significant impact on the system’s performance, given that we notice a significant

improvement over the baseline performance ( the same classifier applied for the
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Figure 4.8: The confusion matrix of the proposed approach for the UCF dataset.

test set using BoF representation).

4.6.2.3 Localisation results on the J-HMDB dataset

This section presents the localisation results on the J-HMDB dataset. The dataset

contains about 900 videos of 21 different actions and the mAP (mean average

precision) metric is used in the evaluation. The IOU (intersection over union)

parameter is set to σ = 50% which is used by other methods [111] [40]. We have

used the coordinates associated with the nodes to determine the location of the

Methods (Avg.Acc)

Ma et al. [65] 81.7 %
Lan at al. [55] 73.1 %
SDPM [37] 75.2 %
Xu et al. [117] 78.8 %
Raptis et al. [119] 79.4 %

BoF Baseline 73.5 %
Proposed 86.7 %

Table 4.6: The state-of-art comparison for UCF-Sports dataset
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J-HMDB ( σ = 0.5)

Action Tube [40] 53.3 %
STMH [111] 60.7 %

Our method 22.1 %

Table 4.7: The state-of-art comparison for J-HMDB localisation dataset

recognized action in space and time. Table 4.7 shows the performance result. The

application of the proposed method in the localisation problem showed poor

performance in comparison to the localisation-dedicated state-of-the-art

algorithms. However, our approach only relied on the local descriptor without

using a high-level descriptor such as regional [111] and object-level descriptors [24].

4.6.3 Discussion

This section presents a discussion of the experimental evaluation performed in

Section 4.6.1 and 4.6.2. The experimental works have shown promising result

across the various datasets. Also, a statistical analysis is performed to investigate

the robustness under the different environmental factors. It is found that the

approach effectively deals with the various environmental changes i.e. camera

motion, the visible body variation as long as there are smooth changes in the

scene. However, in a scenario where there is a discontinuity in the spatio-temporal

relationship (shot boundaries, view-point variation changes, etc.), the video graph

model fails to capture the scene accurately and consequently it causes a drop in

the performance.

4.7 Summary

This chapter proposes an action recognition framework based on a video graph.

For the video graph construction, we introduced an effective strategy based on the

extension of the density clustering method dbscan. In addition, a new action

recognition formulation in terms of an energy function that operates on the nodes
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and edges of the video graph node is presented. For the energy optimisation, we

apply the effective graph-cut technique in the application of action classification

problem. The experimental results prove the effectiveness of the proposed

approach. The approach consistently outperforms the Bag-of-Features (BoF)

baseline and achieved state-of-the-art result with KTH and UCF-Sports datasets.

In the next chapter, we focus on the graph construction technique and perform the

comprehensive evaluation.
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Evaluation of different video

graph construction techniques

5.1 Overview

The previous chapter introduced an action recognition framework that operates on

a graph representation of video data. In practice, there are numerous ways to

obtain a graph-based representation of a video volume that encodes its

spatial-temporal relationship among the local regions of a video. This chapter

introduces the various techniques that can be used for this process and investigates

the impact of the video graph construction strategies on action recognition. We

examine three techniques as representatives of the identified taxonomy of

approaches and perform a comparative analysis among them. The experimental

setup is designed to evaluate such techniques in terms of recognition accuracy,

parameter sensitivity and computational complexity.

5.2 Introduction

The graph representation is a well-established data abstraction approach used in

many computer vision algorithms. Examples include image segmentation [15],

shadow/light detection [122] and object detection [100]. Recently, it has attracted

many researchers [25] [74] [95] from the action recognition domain due to (i) the

availability of a wide range of sophisticated graphical inference and learning tools
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Figure 5.1: A possible taxomony of the different graph construction techniques for
video-data representation

(ii) its intuitive representation for capturing the underlying spatial and temporal

patterns among the local regions of the video or the local features. The typical

processing pipeline for this class of approaches consists of graph interpretation of a

video volume followed by a model building step that involves learning or inference.

The majority of the related work focuses on building a model that is well suited

for a specific graph or not tested with diverse variations in the graph structure. To

the best of our knowledge, there is no work in action recognition that studies the

impact of the video graph construction process. However, it is an important

question as to what degree the performance of recognition system depends on

structural variations of video graph representation. In this context, this chapter

investigates the different video graph construction techniques and how they affect

the overall recognition performance in terms of parameter sensitivity and

computational complexity. In particular, we perform a comparative analysis on

three graph construction techniques, namely fixed-grid (FG), adaptive-region (AR)

and supervoxel-based (SV). The rest of the chapter is organised as follows. Section

5.3 presents the detailed description of the evaluated graph construction

techniques, and Section 5.4 presents the comparative analysis results regarding

their impact on the recognition accuracy, parameter sensitivity and computational

complexity. Three different benchmarking action datasets (KTH, J-HMDB and
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UCF-Sports) are used in the experimental works.

The graph-based action recognition methodologies [95] [25] [88] [75] can be

classified into three categories (Figure 5.1) according to how the input video is

translated into a graph representation: proximity-based, clustering-based and

segmentation-based. The proximity based methods [95] [24] consider only

spatio-temporal proximity for setting a video graph structure. The typical process

is to subdivide the video volume into a non-overlapping regular grid of cell regions,

with each video graph node corresponding to individual cells. For instance, Chen

et al [25] use a set of contiguous voxels to create nodes in the ST − Subgraph and

two different linking strategies for edge connection between the nodes. In contrast,

the clustering-based [8] [75] methods use a clustering algorithm to group the local

features based on their spatio-temporal distribution. The clustering process takes

into account not only the spatio-temporal proximity but also the local feature

characteristics. In the work of [74], a greedy agglomerative hierarchical procedure

is used to produce the group of local trajectories. The resulting groups constitute

the graph element. The work in [104] uses the hierarchical clustering to iteratively

merge similar trajectories (proximity and shape) to obtain an action component

graph. The segmentation-based approaches [44] [88] rely on the segmentation

method that produces a 3D local region that forms a node in the video graph. For

instance, Soomro et al [88] generates so-called context graph by using a video

segmentation technique to produce the supervoxel region that corresponds to its

node. This class of approach obtains the graph nodes where action boundaries are

well preserved. However, a segmentation process on video data results in a higher

memory and computational cost.

5.3 Graph construction techniques

This section describes the evaluated video graph construction techniques. We

denote:
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Figure 5.2: Different types of cell connectivity in 3D space

• a video volume withN local features as S = {(xi, ui)}Ni=1, where xi = (xi, yi, ti)

is a spatio-temporal location, ui is a local descriptor extracted from a video

volume.

• the corresponding video graph as G = (V,E), where V , E is a set of nodes

and edges respectively

In a nutshell, the video graph construction S 7→ G(V,E) can be understood as

a partitioning process S = {S0,S1, ...,SM} whereby the resulting set Si (a local

3D region of the video) forms a node ui ∈ V and its pairwise spatio-temporal

relationship with Sj determines an edge ei,j ∈ E. The partitioning strategy varies

according to the technique involved in the process. However, the common aim is to

obtain a graph node that represents a semantically homogeneous region (a human

body excluding the background) or a part of the region (a limb of the human body).

Once a node region Si is identified, the discriminative score for the node ui

is assigned similar to the re-formulated linear SVM scoring function introduced in

Section 5.2 of Chapter 4:

score(ui) = βl +

K∑
j=1

wj
l h

j(S(r)) = βl +
∑
i∈ri

wci
l (5.1)

where the discriminative score is a measure of a support that action l is performed

within the region Si of node ui and wl, βc are the learned bias and support vector

of the learned SVM classifier for action label l.

The next subsections present a detailed description of the different graph
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construction techniques studied.

5.3.1 Fixed-Grid (FG) approach

This approach is the most simple and fastest technique to achieve a video graph

representation in comparison with AR and SV methods. The implementation of

this technique is based on the work of Chen et al. [24]. In the constructed graph,

nodes correspond to the non-overlapping contiguous cell regions in the video (Figure

5.3). In principle, the smallest cell can be a pixel and the largest possible cell can be

a full video volume. In practice, it is observed that a larger cell scope is preferred.

Because it reduces computational efficiency (a sparse number of nodes), but also

increase the discriminative power of the individual nodes (accumulation of local

features statistics). Next, we discuss node structure and their linking strategy in

detail.

5.3.1.1 Node Structure

The fixed-grid approach subdivides the video volume into a regular grid of cells with

a size of δt×δx×δy as shown in Figure 5.3. The local features extracted within each

cell constitute a video graph node ui ∈ V . In the experiment, we set δt = 5 and 10,

and δx, δy = 1
3 and 1

5 of the video frame spatial dimension. After defining the node

scope in the video volume, the discriminative score for each node vi is calculated

based on the corresponding local features according to Equation 5.1.

5.3.1.2 Linking Strategy

In image processing, pixel connectivity is the well-known technique that relates a

pixel to its neighbours. The node structure (Figure 5.3) generated by the FG

approach can be viewed as an array of the image pixels in the 3D space. Therefore

we apply a pixel connectivity strategy to create a link between the graph nodes. In

the experiments, we explore three types of connectivity (Figure 5.2). In

6-connected neighbourhood, cell qi are linked to qj that are adjacent along the
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Figure 5.3: The fixed-grid (FG) approach divides a video volume into a fixed grid
of δt× δx× δy and the feature points inside the space-time volume constitutes node
ui in the video-graph.

primary axes. In the case of 18-connected neighbourhood, cell qi forms edges

between cells that are connected along either one of two of the primary axes. In

26-connected neighbourhood, the cells are connected along either one, two or all

three of the primary axis.

5.3.2 Adaptive-Region (AR) approach

The Adaptive-Region (AR) approach belongs to the class of clustering-based

methodologies. In particular, AR is based on the extension of dbscan [35]. In this

technique, graph node is determined using a density clustering procedure using the

spatio-temporal density of local trajectories. The method is proposed in the

previous chapter and the implementation details can be found in Section 4.4.2 of

Chapter 4. However next we briefly discuss on how node and edge are formed with

this method.

5.3.2.1 Node Structure

In comparison to similar methods [74] [8], The AR approach does not require one to

specify the number of clusters as a prior and can find arbitrarily shaped clusters. The

method uses an extended dbscan algorithm ( Section 4.4.2 of Chapter 4) to cluster

the local features into groups G. The algorithm takes account of local descriptor
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Figure 5.4: The adaptive − region (AR) approaches do not suffer from restriction
of a pre-defined grid dimension and the resulting graph is sparse and more intuitive
compared to fixed-grid (FG)

location information but also descriptor similarity. After the clustering step, each

group gi forms node ui in the resulting video graph as shown in Figure 5.4.

5.3.2.2 Linking Strategy

The strategy is based on the Euclidean distance between nodes. Edge ei,j between

nodes vi and vj is determined by the distance between their corresponding cluster

group gi and gj . For instance, let us say that the distance between gi and gj is less

than a pre-defined threshold value, then edge ei,j is formed and otherwise vice versa.

5.3.3 Supervoxel-based (SV) approach

This subsection describes a video graph construction technique called supervoxel-

based (SV). This method implementation is inspired by the work [44] and it is

based on the video segmentation process that extracts local 3D regions where the

object boundaries are well preserved by utilising a rich set of cues such as spatio-

temporal proximity, appearance and motion. However, the main drawback is that

it requires loading all or a part of the video, which significantly increases memory

and computational cost. The recent advances in the parallel programming field

(using a GPU accelerator) has a potential to improve the computational speed

associate with the segmentation step. In the experiment, the graph-based (GB)

84



Chapter 5. Evaluation of different video graph construction techniques

Figure 5.5: The Supervoxel-based (SV) uses a video segmentation method in the
pre-processing step which results in a superior region where the object boundaries
are well preserved. The colour-code indicates the different segmented regions.

[38] segmentation algorithm is used due its efficiency in terms of computational

complexity and accuracy trade-off compared to its hierarchical counterpart [38].

The algorithm uses the colour and motion information to determine the supervoxel

regions in the video. Therefore it should be noted that the colour information is

used only in the graph building process of the SV approach but not in any other part

of the SV approach. Further investigation is required to measure the performance

contribution from the colour information in the SV method. Next, we describe the

SV technique in detail in terms of how it constructs node and edge of the video

graph.

5.3.3.1 Node Structure

The video graph node structure (Figure 5.5) is straightforward as it is based on

the pre-segmented video regions. For a given input video volume, the segmentation

algorithm partitions it into M non-overlapping local 3D regions, called supervoxels,

denoted as C = {C0, C1, ..., CN−1} and each Ci is comprised of arbitrary shape and

sized pixel points xi = {x0
i ,x

1
i , ....,x

P
i } in space and time. A supervoxel region

Ci describes node vi ∈ V in the video graph G(V,E). The cardinality of |V | is

equal to a total number of the segmented regions. A set of local descriptors Si are

extracted from a supervoxel region Ci and determine the discriminative score for
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node vi according to Equation 5.1.

The practical challenge is to represent the supervoxel regionmathcalCi efficiently

without compromising on memory. The supervoxel is represented as a set of pixel

points where each point is a three-dimensional vector pi = (xi, yi, ti). For instance,

a supervoxel comprises of N = 1500 pixel points will occupy an array memory

of 1500 × 3 that would have been reduced by approximately 600 times 1 if a 3D

bounding box is fitted to represent such a supervoxel. We apply a simple solution

to divide the video frame into regular m×m sized cells and represent supervoxel in

terms of such cell region rather than a pixel. It reduces the memory load by m2.

5.3.3.2 Linking Strategy

We employ the distance-based edge formation technique similar to adaptive-region

(AR) method. The center point pi = (xi, yi, ti) is calculated for each supervoxel

Ci region. The Euclidean pairwise distance di,j is used to determine edge linking

between node ui and uj . If the distance exceeds a certain threshold value, an edge

is formed.

5.4 Evaluation of graph construction techniques

This section presents the evaluation framework and the comparative analysis results

on the selected graph construction techniques: adaptive-region (AR), fixed-grid (FG)

and supervoxel-based (SV).

5.4.1 Evaluation framework and results

The recognition framework introduced in Chapter 4 has also been used to

investigate the different video-graph construction techniques. As highlighted in

Figure 5.6, “Spatio-Temporal Video Graph Construction” step is replaced with the

corresponding technique discussed in the previous section. Similar to the previous

1 The vector with a total length of 4500 is needed to store a supervoxel with 1500 pixel points
whereas 8 for the case of 3D bounding box and the ratio will be 562.
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Figure 5.6: The evaluation framework.

experiments, we have adopted the same feature detector (dense trajectory) and

also computed TRAJ, HOG, HOF and MBH descriptors. To build the SVM

classifier, we use a standard Bag-of-Features (BoF) model using the computed

descriptors. In the recognition stage, the energy function formulated in Section 4.5

of Chapter 4 is used to calculate the optimum label configuration. The voting

scheme is applied to find the action label for a test video. In the experiment, the

value of scalar parameter λ is varied among the different technique, and it is

chosen empirically to give the best performance for each technique. The remainder

of this section presents the results on the KTH, UCF-Sports and J-HMDB

datasets followed by an investigation of the parameter sensitivity and the

computational complexity of each approach.

5.4.1.1 KTH dataset

KTH actions is the most commonly used dataset in evaluations of action

recognition system. Table 5.1 shows the evaluation result for the different graph
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(a) FG technique

(b) AR technique

(c) SV technique

Figure 5.7: Visualization of different graph construction techniques where each node
is color coded.
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construction methods and the descriptor types. Note that the standard BoF

approach is used as a baseline. All techniques outperform the baseline approach.

This shows the effectiveness of graph-based techniques in general. In particular,

the best result is obtained for AR (98.1%) followed by SV (97.7 %) and FG (96.21

%). The KTH dataset has a homogeneous and stationary background. This might

help for the clustering-based approach (AR) to obtain a noise-free and intuitive

graph. In contrast, the segmentation-based approach (SV) does not improve the

discriminate power as the video sequences are already implicitly segmented (the

dataset contains a single actor in the scene). In terms of individual descriptors, the

motion descriptor (MBH) significantly outperforms the others as seen many times

in the previous experiments. Combining the different descriptors is also proven to

be more effective than using individual features.

TRAJ HOG HOF MBHx MBHy Combined

AR 71.54% 72.52% 81.20% 74.61% 86.13% 98.09%
FG 76.65% 73.51% 81.89% 71.52% 82.65% 96.21%
SV 69.12% 71.54% 82.55% 73.85% 85.41% 97.75%

Baseline 66.00% 71.39% 81.50% 70.46% 84.04% 92.75%

Table 5.1: Average accuracy for graph construction/descriptor combinations for the
KTH dataset

5.4.1.2 UCF-Sports dataset

We now present experimental results for UCF-Sports dataset. The experimental

results are shown in Table 5.2. In comparison with the KTH result, we notice a slight

change in the performance order. The best performance is obtained with SV (88.4%)

followed by AR (86.4%), FG (78.2 %). The hypothesis is that the segmentation-

based approach (SV) can capture the action region efficiently by relying on extra

cues, i.e., colour. In particular, the UCF-Sports dataset contains a complex scene

with camera motion and dynamic background. In terms of the descriptors, the same

trend is observed i.e. that the combined descriptors give the best result followed by

MBH and HOF.
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TRAJ HOG HOF MBHx MBHy Combined

AR 56.1% 53.5% 69.3% 57.0% 74.3% 86.4%
FG 53.0% 49.2% 65.9% 52.7% 65.5% 78.2%
SV 59.4% 57.5% 71.2% 58.4% 72.5% 88.4%

Baseline 52.1% 49.3% 60.9% 50.7% 62.8% 73.5%

Table 5.2: Average accuracy for graph construction/descriptor combinations for the
UCF-Sports Dataset

Action Categories AR FG SV Baseline

brush hair 53.56% 59.89% 49.15% 66.67%
catch 11.65% 18.81% 14.50% 20.00%
clap 31.46% 21.16% 28.56% 23.08%
climb stairs 61.16% 64.98% 63.46% 66.67%
golf 91.45% 84.17% 92.01% 83.33%
jump 0.00% 0.00% 0.00% 0.00%
kick ball 2.94% 15.11% 5.09% 20.00%
pick 21.39% 11.85% 19.98% 8.33%
pour 75.94% 69.55% 72.85% 68.75%
pullup 85.54% 65.56% 88.22% 68.75%
push 71.45% 50.01% 75.21% 50.00%
run 26.32% 19.99% 25.12% 18.18%
shoot ball 35.15% 15.06% 47.19% 11.11%
shoot bow 39.80% 25.15% 36.89% 26.67%
shoot gun 24.32% 13.32% 26.16% 12.50%
sit 81.35% 65.46% 86.32% 60.00%
stand 26.19% 46.89% 29.02% 45.45%
swing baseball 76.00% 26.95% 81.20% 20.00%
throw 12.50% 5.70% 15.10% 0.00%
walk 56.10% 71.00% 55.96% 75.00%
wave 15.80% 9.60% 13.00% 8.33%

MAP 42.86% 36.20% 44.05% 35.85%

Table 5.3: The recognition accuracy for each action in the J-HMDB Dataset ( Split
1)
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Action
Camera motion Visible Part Camera View-Point
pre. abs. full upp. ba fr le ri

action group where baseline performs best

brush hair 20% 80% 2% 98% 48% 36% 9% 7%
catch 76% 24% 73% 27% 11% 43% 24% 22%
stand 73% 27% 54% 36% 0% 77% 8% 15%

Avg. 56% 44% 57% 43% 20% 52% 14% 15%

action group where graph-based approach performs best

pick 68% 32% 90% 10% 16% 45% 10% 29%
pullup 62% 38% 64% 36% 48% 40% 2% 10%
sit 54% 46% 63% 37% 0% 63% 5% 32%

Avg. 61% 39% 28% 72% 21% 49% 6% 24%

Table 5.4: Two group action categories that performed best for the baseline and
graph-based approaches

5.4.1.3 J-HMDB dataset

Table 5.3 shows the experimental result for the different graph construction

methods for the J-HMDB dataset. Note that the combined descriptor type (TRAJ

+ HOG + HOF + MBH) is used. The dataset contains different varieties of single

person action performed in the uncontrolled scenario. In terms of MAP (Mean

Average Precision), all three techniques (AR: 42.8%, FG: 36.2% and SV: 44.0%)

outperform the baseline (35.8 %). In particular, SV and AR techniques have a

significant margin of improvement. This result demonstrates the effectiveness of

SV and AR techniques in uncontrolled scenes. Also, it confirms that the graph

construction process has a significant effect on the overall performance ( 9 %

(MAP) improvement over the baseline). However, interestingly, there is a few

action classes that the baseline outperforms: brush hair, catch, climb stairs and

walk. The J-HMDB dataset provides the meta-data of each action category, i.e

camera motion, performer visible part, camera view-point and video-quality. Table

5.4 shows the two groups of top outperforming action categories for both the

baseline and graph-based approach ( AR, FG, SV) represented according to the

meta-data. The camera motion and visible-part cue have the most significant

difference between the two groups of actions. From this observation, the standard
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Dataset Resolution AR FG SV

KTH 160× 120 36 fps 262 fps 2.5 fps
UCF-Sports 720× 480 21 fps 136 fps 0.8 fps

Table 5.5: The average frame rate at runtime for the two datasets

BoF (model) is well suited for the scenario where there is no or less

camera-motion. This claim can be supported by the results on the simple KTH

dataset where there is the small margin between the baseline and our graph-based

approach. In contrast, in complex situations such as view-point changes and

camera motion, the proposed graph-based approach is more suitable.

5.4.1.4 Computational complexity considerations

This subsection compares the graph construction techniques based on their

computational speed. The comparison is performed on a set of videos from KTH

and UCF-Sports dataset with the resolutions of 160 × 120 and 720 × 480

respectively. The run time is measured on a machine with 64-bit Ubuntu 14.04

OS, Intel Core i5-4690K CPU (3.50 GHz ×4) with 24GB RAM. Note that the

entire construction process, i.e., the video segmentation for SV, is included in the

run-time. Among the techniques, FG is the fastest (KTH: 262 fps and UCF: 136

fps) followed by AR (KTH: 36 fps and UCF: 21 fps). The slowest technique is SV

(KTH: 2.5 fps and UCF: 0.8 fps). Obviously, the video segmentation step for SV is

the most resource intensive operation. However, note that the computational cost

can be improved by adapting the video segmentation code using a parallel

programming model based on either multi-core processor or GPU (graphical

processing unit). Further investigation is needed to validate the speed

improvement for the SV method with the optimised processing pipeline.

5.4.1.5 Parameter sensitivity evaluation

We further investigate the performance of the various graph construction techniques

in terms of different parameter settings with KTH and UCF-Sports datasets. This
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Parameters
KTH UCF-Sports

16 32 64 128 16 32 64 128

rsp = 5, ttmp = 5 92.5% 94.0% 94.0% 91.5% 73.8% 78.2% 75.5% 70.1%
rsp = 5, ttmp = 10 94.3% 97.2% 97.2% 92.6% 74.6% 82.6% 84.2% 72.2%
rsp = 10, ttmp = 5 95.7% 97.2% 95.2% 93.3% 78.7% 86.4% 85.7% 73.8%
rsp = 10 ,ttmp = 10 95.8% 93.3% 95.5% 91.6% 75.5% 79.4% 78.2% 73.8%

Table 5.6: The parameter sensitivity evaluation for AR technique

analysis helps us to understand the robustness of the graph construction techniques.

We have studied the following parameter setup:

• Adaptive Region (AR): The technique is based on the extension

density-clustering and the algorithm depends on the following parameters:

the minimum number of points (minPts) and maximum search spatial

radius (rsp) and temporal radius (ttmp). We evaluate two values of rsp and

ttmp and four different minPts values.

• Fixed-Grids (FG): In this method, there are three parameters (i.e. δt,

δx and δy) that control the subvolume size. In the experimental work, we

set δt = {5, 10} and δx, δy = {13 ,
1
5} of the video frame dimension. For

connection, we study all possible linking in 3D space, i.e 6-neighourhood, 18-

neigbhourhood and 26-neigbhorhood.

• Supervoxel-based (SV): This technique uses a video segmentation

algorithm called Graph-based (GB) to generate supervoxels. There are two

main parameters that control the size of the resultant supervoxel regions, i.e

merging threshold C and minimum segment area Min. We also examine the

effect of cell size m and the total 12 combinations of different parameter

values are evaluated in the experiment.

Table 5.6 shows the results for the AR method. The parameter minPts has

the highest performance gain at values of minPts = 32, 64 for both datasets. This

parameter can be understood as density control and a lower value tends to form a

larger node in the video graph or smaller node at larger values. We speculate this
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Approach parameter
KTH UCF-Sports

N = 6 N = 18 N = 26 N = 6 N = 18 N = 26

5 × 1/5 × 1/3 93.3% 94.0% 94.0% 72.2% 72.2% 73.6%
10 × 1/5 × 1/3 94.0% 95.2% 95.2% 74.4% 75.2% 74.6%
5 × 1/3 ×1/5 95.7% 96.2% 94.0% 73.3% 76.4% 76.4%

10 × 1/3 × 1/5 95.8% 95.0% 95.5% 74.5% 76.4% 75.5%

Table 5.7: The parameter evaluation for FG technique

parameter is dependent on the type of feature detector used because the feature point

density in the video volume varies significantly among different detectors. In our

case, for both datasets, the same detector is utilised, and the same performance gain

is observed at the same value interval. Regarding the maximum search parameters,

the top performance results are obtained at rsp = 10 and ttmp = 5 and these

parameters are also responsible for the resulting node size and the optimum values

should be tuned accordingly. We assume that these parameter values can be set

constant for different datasets as long as the framework is using the same feature

detector.

Table 5.7 shows the performance result which has been obtained by changing

the parameter settings for the FG technique. We have observed no significant

improvement for different sub-volume scales. However, it can be seen that smaller

sub-volume size does not increase the performance. For KTH and UCF-Sports, the

highest performance is measured when sub-volume parameter values are δt = 10

and δx, δy = 1
3 . Regarding neighbourhood type, for KTH, the simple connection

achieved the top performance gain. In essence, sparse edge connectivity implies

that the action label for a sub-volume region is determined more independently i.e.

without undue influence from its surrounding regions. In the case of a simple

dataset KTH, the discriminative power of local region alone is sufficiently accurate

to achieve good performance. In contrast, in UCF-Sports which is the more

challenging dataset, dense neighbourhood connection has a positive impact on the

performance. The top gain (76.4%) is observed when the neighbourhood

parameter N = 26.
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Figure 5.8: Video frames showing the effect of merging threshold C and minimum
segment area Min on the number of resulting supervoxels using a LIBSVX video
segmentation tool (each supervoxel is color-coded)

Approach parameter
KTH UCF-Sports

m = 4 m = 8 m = 16 m = 4 m = 8 m = 16

C = 400, Min = 500 97.8% 97.8% 91.6% 88.4% 85.7% 78.7%
C = 400, Min = 1000 95.9% 94.2% 89.2% 87.6% 85.7% 77.9%
C = 100, Min = 5000 89.2% 91.6% 88.7% 79.4% 79.4% 75.5%
C = 100, Min = 1000 88.7% 89.2% 87.5% 81.7% 79.4% 76.9%

Table 5.8: The parameter sensitivity evaluation for SV technique
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In the supervoxel-based SV graph construction technique, the evaluation result

is shown in Table 5.8. As you can see, the best result has obtained for KTH (97.8 %)

and UCF-Sports (88.4%) with C = 400 and Min = 500. These parameters control

the size of the individual supervoxel region and higher values result in a number of

supervoxel cells as shown in Figure 5.8. However, the discriminative power of video

graph node constructed on top of the smaller cells is weakened when associated

with fewer local descriptors. The same trend is also observed with the FG technique

where a larger sub-volume results in better accuracy. The worst performance is

measured with C = 100 and Min = 1000. In comparison with other techniques

(AR and FG), SV is the most sensitive to the different parameter values. In both

datasets, SV’s best performance is higher than other two techniques. Interestingly,

the worst performance is also less than AR and FG worst performance. Therefore,

when using the segmentation-based technique, one should be careful about tuning

the optimal parameter values.

5.5 Summary

This chapter presents various classes of approaches for video graph construction and

their comparative analysis. The objective is to perform a comprehensive evaluation

of the different strategies considering their impact on the overall performance of the

recognition system as well as considering the associated computational complexity

and parameter sensitivity. In most of the tests, SV obtains the best results, closely

followed by AR. This confirms the robustness and the effectiveness of the supervoxel-

based technique, specifically in the case of the complex scene. However, from a

computational perspective, SV is computationally expensive in comparison to the

other evaluated techniques. Overall, based on the trade-off between computational

cost and performance for the action classification task, the graph-based recognition

framework with a video graph configuration using the AV method gives the best

performance across the different datasets. Finally, the chapter demonstrates that
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the graph construction technique has a significant impact on action recognition

performance.
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Chapter 6

Spatial-localization of human

action in video

6.1 Overview

This chapter presents a graph-based action localisation framework as an extension of

the proposed approach discussed in Chapter 4. Action localisation is a challenging

task as it requires the classified action to be spatially and temporally localised. In

this chapter, we develop a video graph that accommodates not only local features

but also region-based features to facilitate the localisation. The action localisation

is performed by maximising the score associated with nodes and edges in the video

graph. The effectiveness of the proposed approach is investigated and benchmarked

to the state-of-the-art using various localisation datasets.

6.2 Introduction

Recent methods [101] for action recognition mostly focus on action classification

rather than action localisation. Mostly the top-performing classification

approaches in the action modelling process [56, 73, 97, 101] explicitly or implicitly

use the background information, i.e., the region where the action is not performed.

This significantly contributes to the classification performance [21,89] but prevents

the identification of the region where the action is taking place. However, the

action localisation task requires the classified action to be localised both spatially
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and temporally. The temporal localisation can be efficiently [88] detected using the

typical classification method coupled with the sliding window technique. However,

the spatial localisation is complicated for the classification-based methods due to

the above mentioned use of the background. This chapter aims to address the

localisation problem emphasising the spatial localisation of the action. In

particular, we propose an action localisation framework based on a directed

video-graph and present two major contributions as follows:

First, we propose a new directed video graph suited for the localisation task.

In the graph, the node describes a candidate action region and its connectivity

(edge) describes the similarity with the adjacent region regarding cues such as

region colour, motion and region geometry. The discriminative score of each node

is calculated using a late fusion technique based on the corresponding local and

regional features. The late fusion provides a means to integrate a variety of

features of different type and dimensions (local, global and regional). Also, it

makes the video graph representation sufficiently flexible to combine a richer set of

features that has a potential to increase the performance. In Section 4.6.2 of

Chapter 4, we noted that local descriptors are not sufficiently discriminative to

tackle the challenging localisation task. Hence the regional descriptor is added in

the pipeline to complement the local descriptor. Secondly, this chapter presents

the application of the maximum-path finding algorithm to identify the localised

action. This method has been successfully adopted in an object tracking

problem [12] where it showed its effectiveness. We propose that action localisation

can be understood as semantic concept tracking over time. Therefore we

investigate whether this approach can be extended to the challenge of action

localisation. In comparison to the undirected graph strategies introduced in the

previous chapter, the directed graph is chosen to incorporate the sequential

element in the representation.

The proposed approach is evaluated using two benchmark action datasets,

namely J-HMDB and UCF-Sports. In the literature [55, 94, 111], these datasets
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have been extensively used for action localization. The remainder of this chapter is

organized as follows: Section 6.4 presents a overview of the proposed framework

followed the video graph construction (Section 6.4.1) and the maximum-path

(MPF) formulation on the video graph (Section 6.5) and the experimental result

(Section 6.6).

6.3 Related Work

Action localisation is becoming crucial for effective analysis of the uncontrolled video

capture scenario that consists of videos captured in complex settings that have

significant background clutter or contain multiple actors or actions. The earlier

works [94] propose to directly use a classifier on the action localisation task using

3D sliding window or similar technique. The main advantage is that the mid-

level representation may not be necessary. However, the sliding window approach

substantially increases the computational complexity when an input video has a

long duration or high-resolution.

In other approaches, the localisation is primarily based on the action proposal

[40] inspired by the success of the region proposal methods for the object localisation

task in 2D images. For instance, the objectness technique [4] for object localization

is extended to video by [12] and selective search [96] is modified into spatio-temporal

tubelets in [111]. This class of method overcomes the short-coming of classifier-based

approach by investigating the selected part or region of the video rather than the

entire video. The region proposal approach is computationally efficient and obtains

good results for action localisation in comparison to the other methods. We adopt

this strategy in the development of the video graph.

Recently the approaches based on features from convolutional neural

networks [53] [60] have achieved significant progress in the object detection and

image classification task. In particular, the approaches based on regional

convolutional neural networks (RCNN) [76] are the state-of-the-art that have
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produced best results with a high-margin of difference compared to competing

approaches for the object localisation task. Gkioxari et al [40] first applied the

region-based convolutional feature (R-CNN) in the action localisation task and

achieved promising results. However, the action detection is frame-based and can

not take into account the temporal dynamics of the action which is an important

cue in any action recognition system. More recently, Weinzaepfela et al. [111]

introduced a method to overcome this weakness by fusing the region-based feature

(R-CNN) with a track descriptor, that is similar to the trajectory feature used in

our approach, and achieved further improvement. This shows that combining the

frame-level descriptor, such as R-CNN, with local temporal features (motion

trajectories) that are complementary to each other and improves the performance.

Our framework embeds both the region-based convolutional features (R-CNN) and

the local trajectory features to obtain the discriminative graph model.

In an approach similar to our work, [99] introduces an action localisation

framework based on action proposals from dense trajectories features. However

our proposed framework differs in several key aspects: first, we develop the

effective graph structure that is capable of integrating the different feature types

i.e., local trajectory and RCNN features. Furthermore, the additional cues such as

local, motion and region geometry are captured as the graph edges. Finally, the

localisation is performed by maximising the path score (MSP) in a video graph.

6.4 Proposed Framework

In the localisation framework, given a video, we first apply a region proposal

technique at the frame level. This step produces the candidate action regions that

form the basis for constructing the video graph. In the video graph, the node

represents the region along with its corresponding features and the edge describes

the similarity with its adjacent region. To assign the discriminative node score,

support vector machines (SVMs) classifier is built with training videos for each
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Figure 6.1: A directed video graph construction process

type of feature (local and regional) and integrated using a late fusion method

(details in Section 6.4.1.3). Finally, the maximum-path finding (MPF) algorithm is

used to find the maximum scoring path in the video graph of a test video. The

regions associated with the maximum path is considered as the localised action.

Next, we describe construction of the video graph.

6.4.1 Video Graph Construction

Given a video sequence I = {I1, I2, .., In}, where It is a static frame at the time

instance t, we construct the corresponding video graph G(V,E). As shown in

Figure 6.1, the node ujt describes the action candidate region regions defined by a

rectangular region rjt = (xjt , y
j
t , h

j
t , w

j
t ) in the static frame It. There are various

ways to acquire candidate regions such as dense sampling [24] that subdivides the

frame into fixed grids at different scales. However, it has an implication to

substantially increase the number of candidate regions whereby the computational

complexity increases. Consequently, the alternative strategy is to use the region

proposal method that efficiently identifies the likely object regions using only

texture and edge information. Although any object proposal can be used in our

framework, the selective-search method [96] is used in the experiment due to the

availability of its implementation 1. The region proposal is applied on the video

1http //koen.me/research/selectivesearch/
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Figure 6.2: The regional feature calculation process

frames to generate approximately 2000 candidate action regions per frame.

Furthermore, we filter the candidate regions where there is no significant motion

according to the method [40]. This significantly reduces the number of a region by

85% with a loss of only 4% (action positive regions).

Once the node region is determined, the next important step is feature

extraction process. The recently [40, 111] successfully used region-based neural

network (RCNN) features for action localisation, are adopted for describing the

node region. The RCCN is shown to be highly discriminative as well as able to

describe the region with arbitrary size. However, it does not capture the temporal

dynamics of the action beyond two consecutive frames. Thus, the local dense

trajectory feature is extracted from the node region to complement the RCCN

feature. Next, we discuss how the features are extracted in detail.

6.4.1.1 Regional feature

Gkioxari et al [40] introduced RCNN features that operate separately on the image

and optical flow. We use the same set of RCNN features i.e., rgb-RCNN and flow-

RCNN. Given a region re-scaled to the dimension of 227 × 227, the rgb-RCNN

operates on a three-channel of the colour image. It captures the static appearance
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of the actor/scene. For flow-CNN feature extraction, the flow image is first formed

by transforming the dense optical flow into a 3-channel image (the flow x & y

component and its amplitude) followed by the re-scaling and convolutional process.

The flow-RCNN captures the motion pattern of the action. In the experiment, the

pre-trained RCNN network2 is used to compute the rgb-RCNN and the flow-RCNN

features from the video frame region associated with the graph nodes as show in

Figure 6.2. We use the concatenation of the fc7− layer (4096 dimension) features

of rgb-RCNN and flow-RCNN network. We refer to the concatenated vector (9192

dimension) as vfi for the node ui with the corresponding region ri.

6.4.1.2 Local feature

Although the proposed approach is not constrained by the type of local features,

we select the same feature/descriptor as in the previous chapters. In particular,

we use the dense trajectory [101] that extracts the motion trajectories. In the

experiment, the trajectory length is set short L = 15 frames to avoid the drifting

trajectory problem. We apply the feature extraction for the entire video. Then the

video graph node ui is associated with the local features located in its region rk.

For each feature, four descriptors (TRAJ, HOG, HOF, MBH) are calculated and

concatenated to form a single vector.

6.4.1.3 Classifier training and node discriminative score

Since we use two sets of features, two separate classifiers (regional and local) are

trained. For the regional feature, we train SVM classifiers for each action class c ∈ C,

where ground truth regions are considered as positive examples and regions that

overlap by factor of less than 0.3 times the area with the ground truth as negative.

During training, the hard-negative mining technique is used. This strategy has

shown significant improvement compared to traditional training [77] in the object

localisation task.

2https://github.com/gkioxari/ActionTubes
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Figure 6.3: The procedure of calculating the node score of the action graph. We use
two different feature types: local and region-based. Each feature is aggregated into
final node score using late-fusion method.

For training a classifier for local features, we use the Bag-of-Features (BoF)

model with the re-formulated scoring function introduced in Chapter 4. In the

experiment, the one-against-rest strategy is used to produce a binary classifier for

each action class l. Once the SVM classifier is learned, the discriminative score for

node ui is calculated as follows:

Regional Classifier: Given a region ri of node ui with the extracted regional

feature vector vfi and the trained classifiers for action class. Each node ui in the

video graph is assigned with a discriminative score for action class l:

scorefl (ui) = βl + w′l · v
f
i (6.1)

where the discriminative score is the estimate of a likelihood that action l is

performed within the region ri of the node ui and wc, βc are learned bias and

support vector of the trained regional SVM classifier for action label l.

Local classifier: As we formulated the localisation as the maximum path, the

discriminative score should be able to be combined additively to give the cumulative

score for traversing the path in the video graph. The additivity requirement on the

classifier property (discussed in Section 4.5.2 in Chapter 4) is also applicable here.

Therefore, we use the linear (additive) SVM classifier for training. In particular,
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for each training video, we compute the BoF encoding with K visual words. A

training video with N local features is described by the set S = {(xi, vi)}Ni=1 ,

where xi = (xi, yi, ti) refers to the local feature position in space and time, and

vi is the associated local descriptor. Let h(S) be function maps feature set S into

K-dimensional BoF coded vector.

The one-against-rest strategy is to learn a linear SVM for each action class c ∈ C.

The resulting score function can be re-formulated as a sum over the contribution

from each feature (according to the Section 4.5.2 in Chapter 4) and this formulation

is used calculate the discriminative score for node ui ,

scoretl(ui) = βl +

K∑
j=1

wj
ch

j(S(r)) = βc +
∑
i∈ri

wli
l (6.2)

where hj(S) denotes the j-th bin count for histogram h(S). The j-th word is

associated with a weight wj =
∑

i αh
j(Si) and wl, βl are learned bias and support

vector of the learned SVM classifier for action l.

Late-Fusion: To calculate the final discriminative score for a given node ui, we

use the fusion technique to combine the respective scores as follows:

scorel(ui) = α · scorerl (ui) + (1− α) · scorell(ui) (6.3)

where α is a scalar. In the experiment, we use this parameter to investigate the

respective feature type contribution to localisation performance.

6.4.2 Edge weight

The edge e(ui, uj) represents the similarity between given nodes ui, uj . In the

proposed video graph, the edge is formed between temporally adjacent nodes as

shown in Figure 6.4 and the edge direction is used to enforce the path to flow

in time. The action localisation can be understood as semantic concept tracking

over time. In tracking methods [7] [10], the authors use the color, motion cues for

successful object tracking. A rich set of cues is crucial for the accurate registration
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of the object over different frames. Therefore we propose to combine multiple cues

(colour, descriptor and geometric) to determine the edge weight:

e(ui, uj) =


fc(ri, rj) + fg(ri, rj) + fd(ri, rj), if ri and rj temporally adjacent

0, otherwise

(6.4)

where ri, rj are the corresponding region for the node ui and uj , respectively

and the term fc, fg and fd are defined as follows:

• Color Similarity Term (fc): Many colour descriptors have been proposed

in the literature. In the experiment, we use the region-based color descriptor

proposed by Van et al. [98] due the availability of its implementation3. The

color descriptor (108 dimension) is extracted from the region rk for each

color hannel (RGB) and concatenated to create the combined descriptor ck.

Then color similarity term fc(ri, rj) is defined as a cosine measure between

cosine(ci, cj) where ck is concatenated color descriptor extracted from a

region rk of the node uk. The cosine similarity is selected due to it has

positive space, where the outcome is neatly bounded in a range of [0, 1].

• Descriptor Similarity Term (fd): This term is based on the assumption

that the features extracted from the same actor/action should resemble

similarity. In the experiment, we use the regional feature to determine the

descriptor similarity term as follows: fc(ri, rj) = cosine(vi, vj) where vj vi is

the regional features extracted at the region ri and rj respectively.

• Geometric Similarity Term (fg): This term encourages the spatial

coherence between the node regions. In other words, the term scores high if

the spatial extent significantly overlaps. The geometric similarity is defined

as intersection of over union measure, fg(ri, rj) = IOU(ri, rj) i.e the full

overlap between the regions gives a score of 1.
3http://lear.inrialpes.fr/people/vandeweijer/color descriptors.html
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Figure 6.4: The maximum path in the graph considered to be the localized action. In
the experiment, we use the Boykov-Kolmogorov method to calculate the maximum
flow between node S, T .

6.5 Action localization in the video-graph

Assuming a video sequence is mapped into directed video-graph V (G,E) as

discussed in Section 6.4.1. We now describe how to localize action in the graph.

Given a path p, the score Mc(p) is defined as:

Ml(p) =
∑
i∈p

scorel(ui) + λ
∑

(i,j)∈p

e(ui, uj) (6.5)

where l is the action class and λ is a scalar. The edge weight e(ui, uj) scores

high if the corresponding node regions ri, rj overlap and agree in terms of color and

regional feature. To localize the action, the problem becomes to find the optimal

path p∗ with highest accumulated score:

(p∗, l∗) = arg max
l∈L

arg max
p∈path(G)

Ml(p) (6.6)

where p∗ = [u1, u2, ..., ut] is the trajectory that maximizes the video graph with

action class l∗. Finally the corresponding regions [r1, r2, ..., rt] will be considered as

the localised action in the video sequence. The Maximum path problem is efficiently

solved using dynamic programming. In the experiment, we have used Boykov-
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Kolmogorov algorithm to find the maximum flow in the graph by adding zero-

weighted source S and terminal T node as shown in Figure 6.4.

6.6 Evaluation

6.6.1 Datasets

We evaluate our approach on two widely used datasets, namely UCF Sports [63]

and J-HMDB [45]. On UCF sports we compare against other techniques and show

substantial improvement from state-of-the-art approaches. We present an ablation

study of our CNN-based approach and show results on action classification using our

action tubes on JHMDB, which is a substantially larger dataset than UCF Sports.

The UCF Sports dataset consists of 150 videos with 10 different actions. There

are on average 10.3 videos per action for training, and 4.7 for testing 1 . J-HMDB

contains about 900 videos of 21 different actions. The videos are extracted from the

larger HMDB dataset [24], consisting of 51 actions.To date, UCF Sports has been

widely used by scientists for evaluation purposes.

6.6.2 Experimental Protocol

To quantify our results, we report AUC curves for the UCF-Sports dataset, a metric

commonly used by other approaches. A number of recent methods have used AP

metrics, and we have compared our method performance against these reported

methods for both the J-HMDB and UCF-Sports dataset.

6.6.3 Results

6.6.3.1 UCF Sports

In Figure 6.5 we plot the average AUC (Area Under Curve) for different values of

σ (IOU parameter). The curve is created by plotting the true positive rate (TPR)

against the false positive rate (FPR) at various threshold settings. We plot the

curves as produced by the state-of-the-art approaches, Jain et al. [43] , Wang et
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Figure 6.5: AUC for varying IoU thresholds for UCF-Sports Dataset

al. [103], Tian et al. [94], Lan et al. [55], Action Tube [40] and SMTH [111]. Our

approach outperforms most of these techniques, showing the most improvement for

high values of overlap. In particular, the proposed method achieves the competitive

performance with the recent state-of-the-art work [111] only falling short by a slight

margin. For comparison with the state-of-the-art methods, as shown in column 2

at Table 6.5, our method achieves competitive performance of MAP = 88.7 % with

IOU parameter σ = 0.5.

6.6.3.2 J-HMDB dataset

First, we report the performance of the 21 actions of the J-HMDB dataset. Table

6.1 presents the result by the different combination of features used: local (TRAJ,

HOG, HOF, MBH), regional (flow RCNN + RGB RCNN) and fused (local +

regional). It is apparent that the fused approach consistently outperforms the

individual features. The regional feature performs significantly better for almost

all actions in comparison with the local counterpart. It proves the highly

discriminative nature of the convolutional feature. However, interestingly, the local

feature outperforms the regional only in one action class: climb stairs which has

an huge camera motion (79%) (Table 6.2). Regarding MAP, feature fusing (57.1%)
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action class local region combined

brush hair 79.1% 59.8% 84.9%
catch 27.8% 11.6% 33.6%
clap 57.3% 20.1% 60.3%

climb stairs 21.8% 23.0% 63.9%
golf 92.3% 29.7% 95.7%

jump 14.4% 9.0% 14.5%
kick ball 14.5% 3.7% 15.5%

pick 42.4% 14.4% 53.9%
pour 92.3% 70.3% 97.1%

pullup 89.8% 52.1% 96.2%
push 63.3% 31.6% 55.8%
run 37.9% 13.7% 42.9%

shoot ball 23.0% 19.9% 26.5%
shoot bow 79.1% 31.0% 79.6%
shoot gun 25.7% 19.6% 48.5%

sit 40.0% 30.5% 50.2%
stand 39.1% 32.3% 42.6%

swing baseball 79.5% 9.6% 81.3%
throw 25.9% 11.1% 28.5%
walk 70.7% 33.7% 77.8%
wave 37.0% 23.9% 50.0%
MAP 26.2% 50.1% 57.1%

Table 6.1: The performance by action class for J-HMDB dataset (Split 1)
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Action class
Camera Video Camera view-point Visible body part
motion quality back front left right full head lower upper

brush hair 21% 98% 41% 41% 15% 2% 10% 90%
catch 76% 45% 19% 33% 25% 23% 75% 25%
clap 32% 51% 93% 2% 5% 7% 93%

climb stairs 79% 49% 75% 20% 5% 68% 33%
golf 59% 68% 19% 7% 74% 100%

jump 59% 5% 15% 26% 31% 28% 100%
kick ball 45% 44% 67% 22% 6% 6% 89% 8% 3%

pick 73% 53% 15% 33% 23% 30% 90% 3% 8%
pour 32% 65% 89% 11% 100%

pullup 56% 60% 51% 36% 2% 11% 60% 40%
push 89% 12% 21% 10% 29% 40% 95% 5%
run 66% 50% 35% 28% 20% 18% 93% 3% 5%

shoot ball 30% 50% 80% 8% 13% 65% 35%
shoot bow 9% 50% 9% 85% 6% 17% 83%
shoot gun 32% 54% 13% 13% 27% 47% 27% 73%

sit 61% 54% 51% 28% 21% 64% 36%
stand 67% 43% 64% 19% 17% 61% 39%

swing baseball 44% 40% 17% 81% 2% 81% 19%
throw 24% 48% 57% 11% 17% 15% 37% 63%
walk 72% 49% 32% 39% 10% 20% 80% 20%
wave 46% 55% 2% 86% 2% 10% 19% 7% 74%

Table 6.2: The meta-label statistics by action class for the J-HMDB (Split 1)
dataset. The column “Camera Motion” represents the percentage of the videos
for a certain class,e.g golf, that has the camera motion whereas the column “video
quality” represents the average video quality where the good quality being ’1’. The
column “camera view-point” represents the percentage of the video by shot camera
angle likewise the “Visible body part” column by four type.
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Video settings region local fused

Camera view-point variation -0.25 -0.14 -0.29
Camera motion presence -0.21 -0.23 -0.17

Visible body part variation -0.31 -0.06 -0.15
Video quality 0.43 0.55 0.54

Table 6.3: The different video settings correlation with the performance

shows the improvement of 7%, 31 % in comparison to using regional (50.1%) and

local feature (26.2%) alone.

Next, we analysis the results using the meta-data provided with the J-HMDB

dataset as shown in Table 6.2. We attempt to quantify the impact of the

environmental settings, i.e., camera motion, actor/action visibility, on the action

localisation performance. Based on Table 6.2, the following settings have been

analysed using the statistical correlation technique against the system

performance: camera view-point variation, camera motion presence, visible body

variation and video quality. Table 6.3 shows the correlation result for the different

combination of features used. Interestingly, the video quality has the highest

correlation (positive) with the performance compared to the other settings.

Although the regional (RCNN) feature is highly discriminative, it is influenced by

view variation (-0.25) and body part variation (-0.31) in comparison with the local

features (-0.14, 0.06). In particular, the body part variation has no influence on

the local feature. It can be explained by that fact that local features are extracted

on the specific point than the whole region. The fusing method is shown to be

effective for suppressing the effect.

For comparison with the-state-of-art methods, recently two methods have

evaluated their system MAP performance averaged over all three splits with IOU

parameter σ = 0.5. As shown at column 1 of Table 6.5, our method achieves

competitive MAP performance of 56.30 %.
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fusion parameter α
0.8 0.75 0.7 0.6 0.5 0.3 0.1

J-HMDB (Split 1) 51.13% 54.16% 56.42% 58.07% 57.84% 56.80% 55.15%
J-HMDB (Split 2) 46.93% 51.48% 54.15% 56.01% 55.96% 54.85% 53.52%
J-HMDB (Split 3) 47.49% 50.72% 52.35% 53.69% 54.20% 51.97% 51.12%

Average 48.52% 52.12% 54.31% 55.92% 56.00% 54.54% 53.26%

Table 6.4: The effect of feature fusing

J-HMDB ( σ = 0.5) UCF-Sports ( σ = 0.5)

Action Tube [40] 53.3 % Action Tube [40] 75.8 %
STMH [111] 60.7 % STMH [111] 90.5 %

Our method 56.3 % Our method 88.7 %

Table 6.5: Comparison of the method with the state-of-the-art methods

6.7 Conclusion

We propose a novel video graph-based framework for human action localisation

from video sequences. The proposed approach can effectively accommodate

different types of feature using the late fusion method. Also, the additional cues

such as colour, motion and the geometrical information are captured within the

graph representation. We perform the action localisation by maximising the score

associated with the node and the edge in the video graph. In summary, this

chapter demonstrates that the video graph representation is a flexible framework

for both action recognition but also action localization and achieves very

competitive performance to works that tackle both of these tasks independently.
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Chapter 7

Conclusion

7.1 Overview

This chapter summarises the work presented and the conclusions drawn. In this

thesis, we propose and investigate the effectiveness of the video graph

representation for both action recognition and localisation. The video graph has

been experimentally shown to be a discriminative representation to encode the

underlying spatial and temporal structures in video and improve the recognition

performance. In addition, the recognition framework for processing the video

graph is designed and validated with a number benchmarking action datasets. The

following section summarises the chapter-wise contributions. In section 7.3, the

research questions formulated in the opening chapter are re-visited and addressed

from a post-experimental perspective. The final section discusses future research

directions and the possible extension of this work.

7.2 Thesis Summary

Chapter 3 provides a comprehensive investigation of a baseline recognition

framework based on a Bag-of-Features representation. Many researchers have

evaluated Bag-of-Features based action recognition. However, their main focus is

on the evaluation of individual components in the framework or the framework

within a limited experimental setting. In this chapter, this problem has been

addressed with a comprehensive evaluation including several key elements in the
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pipeline, i.e codebook dictionary construction, analysing the effect of kernel

functions and the choice of local descriptors. In addition, the performance of the

local descriptors under different degrees of static occlusion was analysed. In a real

world, uncontrolled scenario, there are many chances that a human can be

occluded by an object. However, it is unclear how the performance of the local

descriptors are affected by the associated loss of information. In summary, the

following conclusions have been drawn:

(i) Each component in the recognition pipeline plays a significant role. The

performance of the recognition system can be increased, i.e., up to 30% with

suitable components in the pipeline.

(ii) The choice of local descriptors highly influences the overall accuracy. The

motion-based descriptors such as HOF and MBH are proven to be more

discriminative in comparison to other descriptors in many datasets.

Combining different descriptors is shown to be a straightforward and efficient

technique to boost the performance.

(iii) In the presence of occlusion, the choice of local descriptors is critical for good

performance. Results show that the MBH and its combination with TRAJ

achieve the best performance in the presence of both heavy and partial

occlusion.

Chapter 4 proposes a spatio-temporal graph-based human action recognition

framework. In this chapter, we propose an action recognition framework based on

the video graph that explicitly exploits spatio-temporal cues for action recognition.

The chapter presents two contributions. First, we propose to extend the popular

dbscan clustering algorithm to construct a video graph representation. This

method has been shown to be not only effective but also produces an intuitive and

sparse video graph. Second, the chapter explores the application of the Graph-Cut

optimisation method from 2D image segmentation to 3D spatio-temporal volume
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analysis to investigate its effectiveness for action recognition in video.

Experimental works demonstrate that the proposed framework is not only an

intuitive representation but also provides sizeable improvement when applied to

the KTH and UCF-Sports datasets.

Chapter 5 introduces different techniques involved in the video graph

construction process. Recently, many researchers in the action recognition domain

have exploited the graph representation to capture spatio-temporal relationship.

However, to the best of our knowledge, we do not find any studies about the

impact of various graph construction methods. In this chapter, we answer an

important question - to what extent the performance of the recognition system

depends on the structural variations of the video graph representation. We

evaluate the following graph construction techniques: AR, FG and SV. The

experimental work shows that the graph construction techniques are highly

influential for action recognition and there is an improvement in the performance

by a margin of 3 % for the KTH dataset and 5 % - 10 % for UCF-Sports and

J-HMDB.

Chapter 6 proposes an action localisation framework. In this approach, the

action localisation task is formulated using maximum-path finding optimisation in

the directed video-graph. This method has several important characteristics

including the ability to accommodate a variety of feature types. To demonstrate

this, we have used two different feature sets: one operates at a frame-level and the

other at a temporal-level. In addition, the graph-based representation is generic

and can use any graphical inference method for further improvement of the

system. The chapter explores the application of the maximum-path finding

algorithm to identify the localised action. The proposed method is proven to be

effective and achieved results on a with the state-of-art methods such as Action

Track [111] and Action Tube [40].
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7.3 Research questions addressed

In this section, the research questions are revisited from a post-experimental

perspective:

RQ1. Does incorporating spatio-temporal cues in the video representation

stage increase action recognition performance?

This question is explored in Chapter 3 and Chapter 4. First, we establish the

baseline system with the Bag-of-Features (BoF) model that captures no

spatial and temporal cues in the video action recognition process. In Chapter

4, the video graph based action recognition is proposed. The recognition

problem is formulated as an energy function with two components: E1 and

E2. The likelihood energy, E1, is discriminative score calculated using the

standard Bag-of-Features (BoF) model which ignores the spatio-temporal

cue. In contrast, the prior energy E2 models the spatial as well as a temporal

relationship between local features concerning the neighbourhood agreement.

To evaluate the effectiveness of the spatial-temporal cues, we adopt the

identical learned SVM model for both baseline and the proposed approach.

The evaluation is performed with several datasets of varying levels of

complexity. The experimental works have shown promising results across the

various datasets. Also, a statistical analysis is performed to investigate the

robustness under different environmental factors. It is found that the

approach effectively deals with the various environmental changes i.e.

camera motion, the visible body variation as long as there are smooth

changes in the scene. However, in a scenario where there is a discontinuity in

the spatio-temporal relationship (shot boundaries, view-point variation

changes, etc.), the video graph model fails to capture the scene accurately

and consequently it causes a drop in the performance. In conclusion,

spatio-temporal cues are a discriminative part for the improvement of the

action recognition system.
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RQ2. Can a graph-based video representation provide an effective method

for incorporating spatio-temporal cues?

The investigation of this research question is reflected in contributions from

several chapters of the thesis. In chapter 3, the effectiveness of the graph

representation for encoding spatio-temporal cues is highlighted. In

particular, the edge of the video graph captures the relationship between

local features and graph-cut optimisation is used to exploit this structural

information in the recognition process. The resulting structure showed

promising performance with several datasets. In particular, the method

achieves the state-of-the-art performance in KTH and UCF-Sports datasets.

Chapter 5 shows the versatility of the video graph representation. In

practice, there are numerous ways to construct a video graph, and

appropriate selection has the potential to improve recognition accuracy. For

instance, the segmentation-based technique (SV) improved performance by a

margin of 2% - 10 % with various benchmarking action datasets. Finally, in

Chapter 6, the video graph representation is proposed for action localisation

problem. Also, the resulting spatio-temporal representation can

accommodate a different type of features. In summary, the spatio-temporal

graph representation is intuitive structure to capture spatio-temporal cue

that is typically ignored by many popular methods. It is a generic

representation, and any graphical inference methods can be used. Also, the

spatio-temporal representation can be extended to not only address the

recognition task but also localisation.

RQ3. What is the most effective technique for constructing the video

graph ?

In literature, there are three types of graph construction methods:

clustering, segmentation and grid-based. Chapter 5 evaluates the graph

construction techniques belonging to each of these categories regarding
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accuracy, parameter sensitivity and computational complexity. Regarding

accuracy, the segmentation-based approach (SV) is best followed by

clustering (AR) and grid-based (FG). However, the accuracy of this method

is highly sensitive, and this method suffers due to computational inefficiency.

Considering all the factors, the clustering method (AR) proves to be the best

choice. From the experiments, the general observation is that the

performance of a technique is influenced by the condition in which the video

data is collected such as camera-motion, view-point changes and shot

boundary. For instance, the grid-based approach (FG) is suitable for the

stationary camera view-point whereas the segmentation-based method (SV)

is good for handling scenarios where there are sudden changes. In summary,

based on the three datasets, the clustering- and segmentation-based graph

construction methods are most effective.

RQ4. Can the video graph be further improved to address the challenging

problem of action localisation?

We address this research question in Chapter 6. In this chapter, we

introduce a novel directed video graph suited for the localisation task. In

this graph, the node accommodates the different types of feature (local and

the region-based) and furthermore its edge encodes the additional cues such

as region colour, motion and region geometry in comparison to the graph

representation presented in Chapter 4. The action localisation is performed

as a maximum path finding problem on this directed video graph. The

effectiveness of the approach is evaluated with several benchmarking

datasets. In particular, we perform the comprehensive analysis using the

meta-data provided with the J-HMDB dataset. The key finding is that the

node discriminative score calculation based on the complementary set of

features prove to be an effective method and it improved the performance by

7-31 % regarding MAP (mean average precision). For comparison with the
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state-of-the-art methods, the experimental results show that a graph

representation is sufficiently discriminative to achieve performance

comparable with the state-of-the-art techniques. In summary, the graph

representation is highly versatile and it can be adapted to solve a particular

domain problem efficiently.

7.4 Future Work

In this section, several different directions for potential future work that can be

extended from this thesis are presented:

• Exploring alternative graphical inference methods: In this thesis,

most of the focus has been given to efficient video graph construction methods.

In particular, three different representation techniques have been evaluated.

However, the important process of the proposed framework is the decision-

making the stage and it was limited to the Graph-Cut based optimisation

method. Future research can be carried out to explore other decision-making

methods operating on the graph structure, which have the potential to boost

the performance.

• Feature Fusing: In this thesis, we investigate human action recognition

using local features based on the appearance and motion cues. The

experimental results shown in Chapter 4 demonstrated that the efficient and

simple method to improve the performance is the fusing method. Using the

advantage of based-graph representation of the video, graph node weight can

be modified to capture a richer representation of the video, e.g.

incorporating audio.

• Investigating Temporal Domain: The research thesis objective was

limited to the problem of classification and spatial-localisation. The

framework is built on top of the flexible video graph containing spatial as
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well as temporal information. Hence, the proposed framework has the

potential to be applied to the action detection task, which involves not only

classifying the action but localising it in time. Therefore, another future

work direction can be an extension to address this problem.
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[109] D. Weinland, M. Özuysal, and P. Fua. Making action recognition robust to

occlusions and viewpoint changes. Computer Vision–ECCV 2010, pages 635–

648, 2010.

[110] D. Weinland, R. Ronfard, and E. Boyer. Free viewpoint action recognition

using motion history volumes. Computer Vision and Image Understanding,

104(2):249–257, 2006.

[111] P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Learning to track for spatio-

temporal action localization. In Proceedings of the IEEE International

Conference on Computer Vision, pages 3164–3172, 2015.

[112] A. D. Wilson and A. F. Bobick. Parametric hidden markov models for gesture

recognition. IEEE transactions on pattern analysis and machine intelligence,

21(9):884–900, 1999.

[113] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J. M. Rehg. A scalable

approach to activity recognition based on object use. In Computer Vision,

2007. ICCV 2007. IEEE 11th International Conference on, pages 1–8. IEEE,

2007.

135



[114] S. Wu. Action recognition in videos acquired by a moving camera using motion

decomposition of lagrangian particle trajectories. In ICCV 2011.

[115] L. Xia and J. Aggarwal. Spatio-temporal depth cuboid similarity feature

for activity recognition using depth camera. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2834–2841,

2013.

[116] G. Xu et al. Viewpoint insensitive action recognition using envelop shape. In

Computer Vision–ACCV 2007, pages 477–486. Springer, 2007.

[117] R. Xu. Compositional structure learning for action understanding. arXiv

preprint arXiv:1410.5861, 2014.

[118] J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-

sequential images using hidden markov model. In Computer Vision and

Pattern Recognition, 1992. Proceedings CVPR’92., 1992 IEEE Computer

Society Conference on, pages 379–385. IEEE, 1992.

[119] X. Yang, C. Yi, L. Cao, and Y. Tian. Mediaccny at trecvid 2012: Surveillance

event detection.

[120] A. Yilma and M. Shah. Recognizing human actions in videos acquired by

uncalibrated moving cameras. In IEEE ICCV, volume 1, pages 150–157, 2005.

[121] C.-P. Yu, D. Samaras, and G. J. Zelinsky. Modeling visual clutter perception

using proto-object segmentation. Journal of vision, 14(7):4–4, 2014.

[122] Y. Yu and J. T. Chang. Shadow graphs and surface reconstruction. In

European Conference on Computer Vision, pages 31–45. Springer, 2002.

[123] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833.

Springer, 2014.

136


	Introduction
	Overview
	Motivation
	Problem Statement and Research Questions
	Applications
	Video surveillance
	Home Monitoring and Elderly care
	Human computer interaction

	Thesis Structure

	Literature Review
	Overview
	Action Recognition Methods
	Approaches based on global features
	 Approaches based on local features
	Approaches based on mid-level representations

	Datasets
	Weizmann actions
	KTH actions
	UCF-Sports
	YouTube Actions
	Hollywood Actions
	HMDB51 and J-HMDB

	Summary

	Baseline System
	Overview
	Introduction
	Baseline Recognition Framework
	Feature Detection
	Feature Description
	Video Representation
	Bag-of-Features (BoF)

	Classification Technique
	Support Vector Machines
	Kernel Methods
	Normalization


	Experimental Evaluation
	Evaluation of Local Features and Codebook Generation
	Evaluation Framework
	Classification Technique
	KTH Dataset
	UCF-Sports
	HOHA
	Discussion

	Evaluation of different kernel functions
	Results

	Evaluation of local descriptors in the presence of occlusion
	Synthetic Occlusion
	Experimental Results
	Discussion


	Summary

	Action recognition based on a video graph
	Overview
	Introduction
	Framework Overview
	Video Graph Construction
	Local features
	Video Graph Construction

	Recognition problem formulation over the video graph 
	Energy Minimization Methods
	Graph Cuts Optimization

	Estimation of Likelihood (E1) and Prior (E2)

	Experimental Evaluation
	Comparative analysis result with the baseline 
	J-HMDB dataset
	KTH dataset

	Comparison to the state of the art
	HOHA dataset
	UCF-Sports dataset
	Localisation results on the J-HMDB dataset

	Discussion

	Summary

	Evaluation of different video graph construction techniques
	Overview
	Introduction
	Graph construction techniques
	Fixed-Grid (FG) approach
	Node Structure
	Linking Strategy

	Adaptive-Region (AR) approach
	Node Structure
	Linking Strategy

	Supervoxel-based (SV) approach
	Node Structure
	Linking Strategy


	Evaluation of graph construction techniques
	Evaluation framework and results
	KTH dataset
	UCF-Sports dataset
	J-HMDB dataset
	Computational complexity considerations
	Parameter sensitivity evaluation


	Summary

	Spatial-localization of human action in video
	Overview
	Introduction
	Related Work
	Proposed Framework
	Video Graph Construction
	Regional feature
	Local feature
	Classifier training and node discriminative score

	Edge weight

	Action localization in the video-graph
	Evaluation
	Datasets
	Experimental Protocol
	Results
	UCF Sports
	J-HMDB dataset


	Conclusion

	Conclusion
	Overview
	Thesis Summary
	Research questions addressed
	Future Work

	Bibliography

