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Abstract

Energy efficiency is becoming a prominent issue in ICT networks. Many

approaches have been proposed to reduce the power consumption of ICT

network devices. Among those green approaches, dynamic frequency scaling

(DFS) offers an elegant solution for improving the energy efficiency of processors.

To evaluate the impact of different DFS techniques on energy efficiency of real

network devices, this work designs a prototype of a novel energy-aware

Frequency Adaptive Router (FAR) that dynamically scales the operating

frequency of core logic FPGA processor among five different processing capacities

in response to traffic load, rather than leaving the network devices running on its

maximum processing capacity all the time.

Three dynamic frequency adaptation control policies are introduced into the

FAR to balance the trade-off between performance and power consumption.

Based on statistics monitoring and preset thresholds, the proposed dynamic

frequency adaptation control policies can manage the FAR to always operate at

the lowest processing capacity required to handle instantaneous traffic load

without affecting the quality of service (QoS). The implementation of these

frequency adaptation control policies involves assessing an associated traffic

throughput threshold beyond which the router will begin to lose packets for each

of the five operating frequencies, and then adaptively scaling the operating

frequency in response to the instantaneous traffic load to save energy without

compromising end-to-end QoS.

The energy efficiency and performance of the FAR is evaluated at the five

different operating frequencies with different number of active ports, traffic bit

rates and packet sizes. The evaluation results show that when in idle state, the
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FAR can significantly save power of up to 52%. Experiments with synthetic traces

indicate that 46% of power can be saved while maintaining required QoS. Similar

results can be expected when these general power-saving principles are applied

in future commercial routers.
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Chapter 1

Introduction

1.1 Research Motivation

Traditionally, network performance is measured using metrics including

bandwidth, throughput, latency, jitter and error rate. These parameters are the

primary concern for network designers and manufacturers, and optimized at

every step of the design and manufacture process to enhance user experience.

While energy consumption, energy cost, greenhouse gas emissions and other

metrics were previously brushed aside.

Recently, reducing energy consumption is universally recognized as equally

important as performance improvement [1]. This was motivated by economics to

reduce power cost mainly for operators but also for users facing increasing

energy price and network traffic, while still maintaining end-to-end quality of

service (QoS). This was also motivated by environment protection to decrease

resource wastage and greenhouse gas emissions by 20% by 2020 from European

Union (EU) ’20-20-20’ targets launched by European Commission (EC) [2].
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The 21st century is in an era of information explosion. As the sharp increase in

Internet traffic, broadband accesses, complex services and end users, energy

consumption in ICT industry is increasing exponentially at an alarming rate. A

detailed report [3] estimated that a huge increase in overall network power

consumption is predicted for European Internet Service Providers (ISPs) from

21.4 terawatt hours (TWh) in 2010 to 35.8 TWh in 2020 if no green technologies are

adopted. Such increase in power consumption could result in millions of energy

costs. Table 1.1 summarizes the annual energy consumption of major

telecommunications companies worldwide.

Table 1.1: Annual energy consumption of major telecommunications companies
worldwide

Company
Name

Energy Consumption (TWh)
2011 2012 2013 2014 2015

British Telecom [4] 2.75 2.67 2.61 2.52 2.41 1

Telecom Italia [5] [6] 1.93 1.91 2.40 2.51 2.63
Deutsche Telecom [7] [8] 8.30 8.40 8.60 9.10 8.90 2

Telefonica [9] - - - 6.35 6.43
France Telecom [10] 3.98 4.16 4.31 4.22 4.45

Verizon [11] 10.00 10.47 - - -
AT&T [12] 14.10 14.60 14.80 14.90 14.80
NTT [13] 5.66 5.22 4.88 4.83 4.91 3

China Mobile [14] [15] 12.93 14.30 15.06 17.18 20.09

In United Kingdom (UK), the energy consumption for British Telecom’s

network and estate in 2010 was 3.12 TWh in total [4], including 2,281 GWh energy

consumption for maintaining networks, data centers and offices in UK, 417 GWh

energy consumption by gas, heating oil and generator fuel in UK, and 425 GWh

1British Telecom has monitored and regulated energy consumption using its network of around
79,000 smart meters to optimise energy efficiency across 3,850 of its sites by responding to
operational needs, weather forecast information and the number of people in the building. The
annual energy consumption kept decreasing from 2011 to 2015.

2Due to the fact that Deutsche Telecom has made progress in energy efficiency including
network migration to IP technology, improved network utilization, and consolidation of data
centers, annual energy consumption slightly decreased by approximately 3% in 2015.

3With the adoption of energy saving measures, NTT reduced its annual energy consumption in
2012, 2013 and 2014.
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energy consumption in countries outside UK. To operate networks, data centers

and offices, British Telecom was one of UK’s largest energy consumers, with

around 0.7% of the entire UK’s energy consumption [16]. As indicated in [17],

approximately 10% of the UK’s entire energy consumption was related to ICT

equipments.

In Italy, the energy consumption of Telecom Italia was 2.64 TWh in 2015, which

was approximately 0.89% of Italy’s entire energy consumption [6]. Compared to

2.51 TWh in 2014 and 1.93 TWh in 2011, it increased by 4.56% and 26.89%

respectively [5]. In this energy consumption increase from 2011 to 2015, the

energy consumption of network infrastructures is the major source of the energy

consumption increase. The energy consumption of network infrastructures

contributed 70%. While, data centers contributed 10% and other sources (e.g.,

offices, shops, etc.) contributed the remaining 20%.

In Germany, the energy consumption of Deutsche Telecom also followed an

increasing trend from 2011 to 2014, except for a slight decrease in 2015. The

energy consumption of Deutsche Telecom was 8.90 TWh in 2015 [8]. Compared to

8.30 TWh in 2011 [7], it increased by 6.74%. The Deutsche Telecom attributed this

energy consumption increase to increasing transmission volumes and network

expansions. In Spain, the energy consumption of Telefonica was 6.43 TWh in

2015, which was about 2.70% of Spain’s entire energy consumption [9]. Compared

to 6.35 TWh in 2014, it increased by 1.33%. In France, the energy consumption of

France Telecom also increased from 3.98 TWh in 2011 to 4.45 TWh in 2015 [10].

Similar trends are observed in the rest of the world. In United States (US), an

early work [18] investigated and examined annual energy usage for office and

network equipments. This work also estimated that the total energy used by

office and network equipments was 74 TWh, which was 2% of entire US’s energy

3



usage in 1999. In 2011, the energy consumption of Verizon (an American

telecommunications company) was 10.00 TWh, which was about 0.24% of entire

US’s energy consumption [11]. The energy consumption of Verizon increased to

10.47 TWh in 2012. While, the energy consumption of AT&T (another American

telecommunications company) was 14.60 TWh in 2012 [12], which was of the

same magnitude as Verizon.

In Japan, the energy consumption for telecommunications was 42 TWh in 2004

[19], which was about 1% of the Japan’s entire energy consumption and was

about 4% of the Japan’s electricity generation [20]. The energy consumption of

NTT (a Japanese telecommunications company) was 4.91 TWh in 2015 [13], which

was about 0.53% of Japan’s entire energy consumption. In China, the energy

consumption of China Mobile (a Chinese telecommunications company) has been

consistent growth from 2011 to 2015. The energy consumption of China Mobile

was 20.09 TWh in 2015 [15]. Compared to 12.93 TWh in 2011 [14], it increased by

35.63%.

Apart from total energy consumption increases, average energy price is also

increasing in the meantime. Referred to the United States Energy Information

Administration (EIA) agency, average energy price has increased with a high pace

except for two slight decreases in 2012 and 2015. The average energy price

increased from 99.0 million per TWh (in US dollar) in 2011 to 104.1 million per

TWh in 2015. Table 1.2 summarizes average energy price from 2011 to 2015 [21].

The increasing of energy consumption and price are driving Internet Service

Providers (ISPs) and telecommunications companies worldwide towards energy

efficient networking.

Table 1.2: Average energy price (Million per TWh in US dollar)
Year 2011 2012 2013 2014 2015

Million per TWh in $ 99.0 98.4 101.0 104.4 104.1

4



On the other hand, carbon dioxide (CO2) emissions from the ICT industry

should never be ignored [22]. In 2002, the Global e-Sustainability Initiative (GeSI)

reported that global Telecommunications infrastructure and devices contributed

152 million tons CO2 emissions, including 66 million tons from mobile networks,

64 million tons from fixed narrowband networks, 18 million tons from

Telecommunications devices and 4 million tons from fixed broadband networks

[3]. From 2002, Telecommunications CO2 emissions have grown from 152 million

tons in 2002 to 300 million tons in 2007. The GeSI also estimated that the CO2

emissions of global Telecommunications infrastructure and devices will be

approximately 349 million tons in 2020, including 179 million tons from mobile

networks, 70 million tons from fixed narrowband networks, 51 million tons from

Telecommunications devices and 49 million tons from fixed broadband networks

[3].

In 2007, Gartner estimated that the ICT industry contributed about 2% of global

CO2 emissions [23]. This work also indicated that the approximately 2% of global

CO2 emissions that the ICT industry contributed is equivalent to the entire airline

industry. Such an unsustainable trend of the power consumption and the CO2

emissions in the ICT industry should be addressed seriously in order to reduce

power consumption and CO2 emissions from growing ICT industry.

1.2 Energy Efficient Networking

In the late 20th and early 21st centuries, Internet traffic is witnessing an

exponential growth in the face of technological and social change [24]. To keep

pace with the traffic growth, network devices are designed to translate

improvements in digital circuits and operating frequency into higher
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performance, such as maximizing the routing capacity of network devices at the

cost of the highest and constant power consumption.

Network traffic is very dynamic and the busy-hour traffic rate has always been

much higher than the average traffic rate. The gap between peak and average

traffic is growing further due to increased share of video streaming of the Internet

traffic. The routing capacity of network devices is designed to accommodate peak

rates rather than average rates. In backbone networks, the routing capacity is

usually twice larger than rush-hour traffic volume to achieve minimum network

delay and packet loss [25]. However, the peak rates only occur for a very small

fraction of the time, so significant amount of power are wasted to keep the

network always at full capacity. The work in [26] monitors Internet backbone

utilization levels and results indicate that the routing capacity in backbone

networks has actually grown faster than Internet traffic in 2008. The average and

peak link utilization on major backbone networks are approximately 29% and

43% respectively.

In ICT networks, traditional design of network devices tends to primarily

emphasize network performance. Power consumption, while given some

attention, failed to be recognized as an important part of a family of design

metrics, along with performance, reliability, security, etc. As the performance has

been always a predominant consideration, most network devices never vary their

capacity when they are running, even if very little or no traffic data is involved.

Such phenomenon without enough attention on power consumption has caused

huge energy waste in ICT network infrastructures. Power consumption

measurements in the work [27] show that a 1 Gb/s Ethernet link consumes

approximately 4 W more power than a 100 Mbp/s Ethernet link, and a 10 Gb/s

Ethernet link consumes even more power ranging from 10 W to 20 W. Power
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consumption of most Ethernet links is independent of their link utilization [27]. A

fully utilized Ethernet link consumes almost the same amount of power as an idle

Ethernet link [28]. Power consumption measurements in the work [29] show that

the average Ethernet link utilization is ranging from 1% to 5%.

Performance should never be the sole focus. As energy and power issue comes

to the forefront recently, future network devices should integrate more features

and deliver higher performance within the same or even less energy budget.

Otherwise, without green techniques adopted into ICT network infrastructures,

energy inefficiency in roughly three billion Ethernet connections worldwide [30]

could potentially lead to massive energy waste and millions of unnecessary

energy costs.

With the development of Next Generation Networks (NGN), it is widely

believed that energy efficiency should be taken into account as a prominent

design metric in ICT network infrastructures. To reduce the energy consumption

of ICT and the environmental impact of ICT, many approaches have been

proposed towards ICT energy efficient networking. All shared the same common

aim to achieve the lowest possible power consumption while not compromising

the performance.

Efforts in these approaches can be divided into two categories: device level and

network level. In networks, device level techniques aim to improve the energy

efficiency of individual network devices (e.g., switches, routers, etc.). This is

mostly achieved by adopting energy-saving modes when the network device is

underutilized or improving the energy efficiency of hardware components. On

the other hand, network level techniques aim to improving the energy efficiency
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of whole network systems. This is achieved by manipulating the energy profile of

network components and consolidating network traffic.

1.3 Scope and Objectives

The energy consumption of ICT network device has been growing at a fast pace

over the past two decades. The typical router capacity is increased from 100 Gb/s

in 2000 to 10 Tb/s in 2008 with energy consumption increasing from 1.7 KW to 50

KW [31]. ICT network devices consume significant energy even in the idle state.

Given that typical router utilization are ranging from 20% to 50% in Internet

Service Providers (ISPs) backbone, from 8% to 25% in enterprise networks and

less than 1% in Local Area Networks (LANs) [32], the energy wastage is

significant. Observation in the work [3] reported that, in the life time of the ICT

network device, operating the device contributed 80% of the lifetime energy

consumption, while manufacturing the device contributed the remaining 20%.

Therefore, reducing the operating energy consumption of the ICT network device

is worth the effort. Furthermore, it is also reported in the work [3] that processing

bits in network devices and data centers contributed 63% of energy consumption

in ICT, while transporting bits in telecommunications contributed the remaining

37%. Therefore, reducing processing per bit energy consumption in ICT network

device is even more crucial.

To reduce processing per bit energy consumption, the scope of this work is to

design and develop an energy efficient network hardware router named the

Frequency Adaptive Router (FAR), achieving energy proportionality between the

router’s energy consumption and the router’s utilization. This work is validated

on the NetFPGA 1G board [33] because it supports a community of open source

hardware and software, and makes use of modular structure in the reference
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pipeline. Therefore, it is capable of providing a fast way to develop and

experiment custom green mechanisms with low cost reconfigurable feature. This

work develops and implements a fine-grained energy proportional technique on

the NetFPGA, and examines the impact of various factors, including the

operating frequency, the number of active Ethernet ports, the traffic bit rate and

the packet size, on both the power consumption and the performance. The main

objectives of this work are to address the following three challenges.

Many approaches have been proposed to improve the energy efficiency of ICT

networks at various components levels. However, most of these approaches have

contributed to the energy-saving solutions in simulated environments [34] [35].

Due to the fact that different energy states adaptation is not supported by most

of current hardware coupled with compatibility issues, practical application of the

proposed energy saving approaches in existing networks is still challenging.

Energy aware network device may suffer from long response time and more

energy consumption during transitions of different energy states. Transitions of

different energy states may lead to performance degradation (e.g., increasing

packet loss, increasing network delay, etc.). Therefore, minimizing the overall

energy consumption of network device and minimizing the overhead of

transitions of different energy states are crucial in a parallel manner. Building

hardware components to efficiently deal with the overhead of energy states

transitions is another challenge.

The last challenge is achieving proportionality between energy consumption

and device utilization. Achieving energy proportionality not only can reduce the

energy consumption of network devices, but also can eliminate the demand for

other complicated energy saving approaches [36].
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1.4 Contribution

The main contribution of this research is the design of a Frequency Adaptive

Router, the exploration of frequency adaptation control policies, and the energy

efficiency and performance evaluation of the Frequency Adaptive Router. This

work mainly contributes in four aspects:

Energy savings benchmarking. Currently, switches and routers do not include

comprehensive power consumption values. Most device specification sheets only

report the maximum rated power [37] [38]. This information is insufficient to well

understand the actual power consumption of a network device. As shown in the

rest of this thesis, the actual power consumed by wired routers depends on

various factors, such as: 1) operating frequency, 2) number of active Ethernet

ports, 3) traffic bit rate and 4) packet size. Therefore, counting only the maximum

rated power of the network device could grossly overestimate the actual energy

consumption of the network device. This work introduces an accurate and

fine-grained power consumption measurement method to measure the power

consumption of peripheral component interconnect (PCI) based NetFPGA 1G

router, which can be used to better quantify energy savings from the energy

proportional technique on real network devices. Compared to the maximum

rated power reported in the work [37] [38], this work measures real time power

consumption of the NetFPGA router under different operating frequencies,

number of active Ethernet ports, traffic bit rates and packet sizes.

Frequency Adaptive Router. Starting from the NetFPGA 1G Reference Router

(RR), this work builds a dynamic frequency adaptive router (FAR) to develop and

implement power scaling techniques on real network devices. When toggling the

operating frequency of the NetFPGA core logic processor between 125MHz and
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62.5MHz on the original RR, the frequency switching causes a board reset and all

buffered packets are lost. Three additional operating frequency options, 31.3MHz,

15.6MHz and 7.8MHz, are added in the FAR for more finely tuned frequency

switching without significant packet processing delay. The board reset problem is

also eliminated. The FAR dynamically scales and tunes the operating frequency

of the router in response to the traffic load it is currently handling, so that when

the traffic load is low, the router can adaptively switch to an appropriate low

routing capacity state to save power consumption. In ICT networks, peak traffic

rate is much higher than average traffic rate. The Frequency Adaptive Router can

operate at lower frequencies at off peak times to save power consumption. As

shown in the rest of this thesis, compared to the RR in the work [33], the FAR

consumes less quiescent power consumption by up to 52% and less total power

consumption by up to 46%.

Frequency Adaptation Control Policy. To achieve energy efficiency and avoid

compromising performance, a frequency adaptation control policy aims to offer

the required performance with the lowest possible power consumption. Based on

statistics monitoring and preset thresholds, three different dynamic frequency

adaptation control policies are designed to determine when to initiate a frequency

transition. The three dynamic frequency adaptation control policies are: Single

Threshold Policy (STP), Double Threshold Policy (DTP) and Packet Loss Aware

Policy (PLAP). Previous works [34] [35] have contributed to the energy-saving

solutions in simulated environments. Compared to the simulation of the control

policy in the work [34], this work implements the proposed frequency adaptation

control policies directly in the FAR, providing more accurate and valid power

consumption and performance evaluation results.
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Hardware Acceleration. The dynamic frequency control policies of the FAR are

directly implemented in hardware because software is slow compared to

dedicated hardware. The dedicated hardware makes an enormous difference in

the speed of time-sensitive operations, providing a significant statistics

monitoring advantage over software. For example, frequency transition time on

software implementation of a control policy consists of the delay in software

reading buffer usage, operating frequency selection according to the control

policy and setting the appropriate frequency control register, which involves

communications between hardware and software through reading and writing

registers. While, frequency transition time on hardware implementation of a

control policy eliminates the delay in communications between hardware and

software. Compared to the software implementation in the work [34] [39], this

work reduces the frequency transition time by up to 85%.

1.5 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 reviews the existing

techniques related to energy efficient networking. Chapter 3 describes the design

architecture of the NetFPGA Reference Router and the Frequency Adaptive

Router. Chapter 4 explains the frequency adaptation control policies for the

Frequency Adaptive Router, and the system models for the Reference Router and

the Frequency Adaptive Router. Chapter 5 addresses the implementation details,

describing the lab setup, the tools for power consumption measurements and

performance measurements. The energy efficiency and the performance of the

Frequency Adaptive Router are evaluated and analyzed in comparison with the

Reference Router. Chapter 6 concludes the thesis.
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Chapter 2

Related Work

Internet traffic has been witnessing a sky-rocketing growth over the past

decade. To keep pace with such growth, it is even more compelling to reduce

power consumption while managing massive increases in Internet traffic and

networking hardware [40]. Economic reasons and environmental concerns on

sustainable growth have created a demand for green communication networks.

Many approaches have been proposed to manage energy and power issues to

improve the energy efficiency of the ICT infrastructures in a variety of areas (e.g.

wired networks, wireless networks, optical networks, smart grids, etc) [41] [42].

To improve the energy efficiency of network devices, Guapta et al. [43]

proposed the sleep mode in green networking to place network interfaces and

components of network devices to sleep when they are idle. This work also

discussed main implementation challenges and expected benefits from the sleep

mode. Since this work [43], many green approaches have been proposed and

several literature surveys in various areas and domains of energy efficiency have

been published [44] [45].
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These green approaches can be mainly divided into green approaches in device

level and green approaches in network level. The green approaches in device

level make efforts to design low power consumption network equipment and

improve the energy efficiency of the hardware using sleep mode functionality or

power scaling capabilities. Device level techniques reduce power consumption of

individual network devices (e.g., switches, routers, etc.) by adapting the power

saving mode of various components of the devices (e.g., processors, memories,

network interfaces, etc.). This is achieved in a localized manner by locally

collected information.

On the other hand, the green approaches in network level focus on routing

policies to reduce the network energy consumption, such as maximizing the

number of network interfaces and components that can be put into sleep while

maintaining the required quality of service. Network level techniques minimize

power consumption of a network using global information, including the

topology, the status of links, the traffic demands, the performance requirements

and the power saving modes of all the devices within the network. This is

achieved either in a centralized manner by collecting all the information at a

single governor or in a distributed manner through network nodes cooperation.

2.1 Device Level

Many approaches have been proposed to improve the energy efficiency of the

network by re-engineering conventional network equipments and network

protocols. Based on locally collected information, device level techniques for

reducing the energy consumption can be divided into two categories: sleep mode

and power scaling [46].
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Sleep mode refers to a low power mode for electronic devices [47]. This mode

can significantly reduce power consumption compared to leaving a device fully

on all the time when the network presence of this device is not required [48]. In

sleep mode, power is cut for unneeded subsystems and the RAMs are placed into

a minimum power state, just sufficient to retain their data. Sleep mode is a

promising technique in ICT green computing to save energy. In ICT green

networking, only when there is no traffic to handle for an extended period of time

can a router go to sleep.

Another energy saving technique is power scaling. It provides the ICT network

devices the capability to dynamically scale into different processing states in

response to instantaneous operational needs and traffic load. In power scaling

category, Dynamic Voltage and Frequency Scaling (DVFS) has always been the

king solution [49]. This fine-grained energy proportional technique allows the

voltage supply and/or the clock speed of a processor to meet the instantaneous

operational need of the operation being performed, while minimizing power

draw and heat dissipation.

Once the power scaling capabilities are provided in a router, appropriate power

scaling control policy must be introduced to balance the trade-off between

performance and power consumption. An effective power scaling control policy

should manage the router to always operate at the lowest appropriate routing

capacity to handle the instantaneous traffic without affecting the performance as

perceived by the user. The control policy must be effective and simple to be

directly implemented inside a network router. Significant increases to packet loss

and delay should be avoided when implementing a power scaling control policy,

as this could degrade user experience.
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2.1.1 Sleep Mode

Energy Star standard [50] [51] was launched in 1992 and was designed to

improve energy efficiency in computers, servers, appliance, heating and cooling

systems, etc. This promoted the widespread adoption of sleep mode in electronic

devices [52]. Sleep mode refers to a low power mode for the electronic devices

and this mode can save significant power consumption compared to leaving a

device fully on [53]. When placed in sleep mode, power was cut for unneeded

subsystems entering into a very low power state.

In green computing, power management first appeared in laptop computers to

extend battery life for mobile users [54]. Figure 2.1 demonstrates the power

management control flow. The firmware periodically sends request signals to the

operating system to start power management. If the power management is

enabled on the operating system and no activity is detected from the application,

the operating system sends a responding signal back to the firmware to start a

power management inactivity timer. After a specified time with no activity

detected, the firmware initiates power management by sending signals to the

hardware (e.g., the processor, the video card, the hard disk, etc). The

corresponding hardware is then placed into a low power operating mode. An

activity interrupt or a wake-up interrupt could lead the firmware to send signals

to corresponding hardware to get back to an active and powered mode of

operation. There are two modes of operation for the power management of the

hardware, a slow clock mode and a stopped clock mode. The slow clock mode

reduces speed of operation for the hardware with reduced power consumption.

While, the stopped clock mode turns the hardware almost completely off and

only an interrupt can cause a restart of the hardware.
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Figure 2.1: Power management control flow [54]

In green networking, sleep mode is based on similar power management

primitives in green computing, which allows network devices or part of them

turning themselves almost completely off, while all their functionalities are

frozen. Compared to idle state, sleep mode refers to a deeper idle state

characterized by more power savings but longer wake-up time. There are

challenges to applying sleep mode in network devices because it takes more time

and power to transition between the on and off state. Predicting the off period and

adapting to the appropriate state is still difficult. For instance, when a network

device or a part of it is placed into sleep mode, its applications and services stop

working and its network connectivity is lost. As a result, the network device loses

its network presence so that it can not maintain network connectivity and

respond to its applications or services. In addition, when the network device

wakes up, it takes longer time to re-initialize its applications and services by

sending its signalling traffic.
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To introduce sleep mode into green networking with less overheads,

Christensen et al. [54] proposed to use a sleep proxy for a network host and to

integrate power management functions into TCP/IP and network applications.

TCP/IP connections follow a client-server (CS) architecture. For peer-to-peer

(P2P) connections, one peer acts as the client, the other peer acts as the server. A

server can listen to requests from multiple connected clients. When a client

request is detected at the server, a three-way handshake is initiated to establish a

connection. When the connection is established, data can be transferred from a

client to a server or a server to a client. The sleep proxy is designed to handle

TCP/IP connections on behalf of the sleeping hosts allowing a safe sleep of the

network hosts maintaining network presence through the proxy while at sleep.

In their follow-on work, Christensen et al. [28] investigated network traffic on

several heavy-loaded computers in a university campus and results show that

even the heavy-loaded computers still have many hours of idle time per day

during which they can be placed into sleep mode. This work developed a

proxying Ethernet adapter which can handle routine protocol messages without

waking-up a desktop computer. The proxying Ethernet adapter can also wake-up

the sleeping computer if needed.

An energy-efficient network device should be energy proportional to its actual

needs. An idle or lightly utilized PC, Ethernet link or switch should not consume

the same power as heavily utilized ones. Gunaratne et al. [27] developed several

methods to reduce energy consumption of PCs, Ethernet links, and switches.

These methods are achieved by supporting centralized proxying and control for

discovery protocols, and disabling unused network devices in the routing path.
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Most Ethernet connected network devices are fully powered on all the time to

maintaining their network connectivity. Nordman et al. [55] developed a power

management proxy to enable PC power management in network host PCs. The

power management proxy is a low-powered entity that maintains full network

presence for a sleeping high-powered network device. Their proposed proxy is

able to bring powered down network host PCs back into a fully powered on state

with reliable wake-up operations.

Gupta et al. [56] proposed dynamic Ethernet link shutdown to reduce power

consumption on Ethernet links. This work uses buffer occupancy, the behavior of

previous packet arrival times and a configurable maximum bounded delay to

make decisions for dynamic Ethernet link shutdown. Simulation results using a

synthetic traffic generator show that power savings can be achieved with little

noticeable impact on network delay and packet loss.

2.1.2 Power Scaling

In addition to sleep mode, power scaling [57] [58] can also be used to improve

the energy efficiency of network hardware. Power scaling capabilities allow

dynamically reducing the working speed of processing engines or link interfaces.

The power scaling is usually accomplished by adopting two basic techniques:

Low Power Idle (LPI) and adaptive performance scaling. The former forces links

or processing engines to enter low-power states when not sending or processing

packets and quickly switch to a high-power state when sending one or more

packets. The latter allows dynamically modulating the capacity of a link or a

processing engine in order to meet traffic load and service requirements. These

techniques are not exclusive and can be jointly adopted in order to adapt system

performance to current workload requirements. Scaling the working speed of
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processing engines or link interfaces as a function of user demand can save less

power compared to sleep mode, but it has less wake-up time and less

performance impact to a user.

Nedevschi [59] firstly proposed to support such energy-aware capabilities with

a special reference to the Low Power Idle (LPI) with I/O traffic handling

mechanisms, able to shape traffic profiles in order to optimally exploit LPI and

adaptive performance scaling. For example, an I/O traffic handling mechanism

based on a simple polling policy well suits an optimal use of LPI. An optimization

policy is generally needed to configure and control the usage of energy-aware

capabilities and states with respect to the estimated workload and service

requirements. Regarding the optimization policy, several methods have been

proposed in order to estimate the current workload and to optimally control the

trade-off between performance and energy consumption in the computing system

field [60] [61]. These methods range among predictive techniques [62] and

dynamic schemes [63] [64], which were studied for disk drives [65], processors

[66] [67], and other components [68].

Christensen et al. [27] has specifically addressed how to reduce the direct

energy use of Ethernet links, and has contributed to the development of the IEEE

802.3az energy-efficient Ethernet (EEE) standard. The work [27] first explored the

adaptive link rate (ALR) for Ethernet so that an Ethernet link can be operated at a

lower data rate during periods of low utilization and at high data rate only for

high utilization periods. Most Ethernet links are highly over-provisioned, with

ALR most Ethernet links could operate at a lower bit rate and thus reduce energy

consumption compared to operation at a higher bit rate all the time [69].
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The auto-negotiation scheme in the 802.3 standard [70] takes about 100 ms to

change data rates at a 1 Gb/s link data rate. Gunaratne et al. [69] proposed the

ALR that allows the speed of network links to be changed by adaptively

switching to different processing states in response to the amount of data that is

being transmitted. The transition time of changing data rates in the ALR can be

significantly reduced to 1 ms through a newly-defined handshake mechanism.

Later on, by combining the schemes of LPI and ALR, the IEEE 802.3az EEE

standard [30] is proposed. The LPI specified in the IEEE 802.3az EEE standard

currently allows a 10 Gb/s link to wake up in less than 3 us.

The IEEE 802.3az EEE standard [30] can be also used in smart grid. As described

in the IEEE 802.3az EEE standard, the EEE uses Low Power Idle to reduce the

power consumption of a link when the link is idle. During the low-power mode,

refresh signals are sent periodically to maintain alignment between the transmitter

and the receiver [71]. For a low link utilization of 25%, results in the work [42]

indicated that the EEE can reduce power consumption by 25% .

Bolla et al. [72] analyzed and empirically modeled the energy modulation

capabilities of processing engines in Linux-based software routers equipped with

general-purpose and multi-core processors that already include LPI and ALR

primitives. The results obtained by evaluating several hardware architectures

indicated that both technologies permit the trade-off between power

consumption and network performance to scale almost linearly.

Bolla et al. [73] extended their approach by introducing a control framework for

optimally tuning LPI mechanisms and adaptive performance scaling to statistically

meet current traffic loads and service requirements. The results obtained on real

traffic traces show that up to 60% power savings can be achieved. Previous work
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[59] especially focused on LPI primitives and performed a comprehensive study

of the impact of transition times on LPI as a function of load. The results indicated

that as the transition times shrink from the value of 10 ms to 1 ms and then further

to 100 us, the time spent sleeping at 30 percent load goes from 0 at transition time

of 10 ms to 40 percent when transition time is 1 ms, and to 70 percent when the

transition happens in 100 us.

In the power scaling category, dynamic voltage scaling and dynamic frequency

scaling are often used together as DVFS to conserve power [74] [75]. Dynamic

voltage scaling [76] [77] is a power management technique in green ICT, where

the voltage used in a unit is increased or decreased depending upon

circumstances [78]. Decreasing voltage is to conserve power, particularly in

laptops and other mobile devices, where energy comes from a limited battery. On

the contrary, increasing voltage is to increase performance, or in rare cases, to

increase reliability.

Dynamic frequency scaling [79] [80] is another power conservation technique

that works on the same principles as dynamic voltage scaling. Dynamic

frequency scaling technologies allow the clock speed of the processor to be

dynamically changed to different processing states depending upon the traffic

load. This allows the processor to meet the instantaneous performance needs of

the operation being performed, while minimizing power draw and heat

dissipation.

Meng et al. [34] proposed a multi-frequency scaling (MFS) scheme that

examines buffer usage inside a network device so that the components of the

device could dynamically scale its capacity according to its buffer occupancy. In
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the MFS scheme, a clock adapter is the hardware module for frequency scaling,

and a multi-dual-threshold policy is adopted as the MFS control policy.

Pham et al. [39] [81] proposed a power scaling mechanism on the NetFPGA

OpenFlow switch that can adapt the operating clock frequencies of the FPGA

processor and the link rates of the four Ethernet ports based on the actual traffic

load. The power can be saved by changing the clock frequency from 125 MHz to

3.9 MHz in combination with four possible operation modes on each Ethernet

port (idle, 10 Mb/s, 100 Mb/s and 1 Gb/s).

2.2 Network Level

In previous section, device level techniques are reviewed. However, device

level techniques can not guarantee the minimization of Internet power

consumption. The device level techniques are used based on locally collected

information without any node coordination. Currently, real networks are

over-provisioned to accommodate the maximum expected traffic demands and

over-redundant to deal with link and node failures. As a result, many network

links are under-utilized and many network devices are constantly in operation

with maximum capacity. Therefore, consolidating network traffic to place specific

network nodes and links to a power saving mode is promising to improve the

energy efficiency of networks. Network level techniques requires cooperations

between network nodes to collect information on global network state, including

the topology, the status of links, the traffic demands, the performance

requirements and the power saving modes of all the devices within the networks.

The network level techniques can be implemented both at the design stage

(network design) and the operating stage (network routing). In this section,
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network level techniques in these two different categories network design and

network routing are reviewed.

2.2.1 Network Design

Network design traditionally focuses on the minimization of network capital

expenditure, including the device and installation costs of the network

infrastructure [82]. However, as Internet traffic and energy costs are exponentially

increasing, energy consumption is becoming a major issue for network operators

for three main reasons, including significant increase in operational expenditure

due to increasing traffic levels and energy costs, significant increase in CO2

emissions and escalated heat dissipation problems [83]. As a result, improving

the energy efficiency in network design has been paid much greater attention

than before.

In digital communication networks, a core network is the backbone

infrastructure of a network that usually interconnects metropolitan areas and may

extend across different continents or nations. On the contrary, an access network

is the last mile infrastructure of a network that connects the end users to their

immediate core network. Internet can be divided into a core network and several

access networks connected to the core network. Network devices in different

network categories have different power consumption and performance.

Understanding power consumption of different networking devices is the first

step to identify where the most power savings can be achieved in ICT industry.

The majority of the energy used by the Internet today is consumed in the access

networks, and this will continue to increase [84]. As access networks expand to

deliver increasing amount of data traffic to increasing number of customers, efforts
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have been made to improve the energy efficiency of access networks. The access

networks can be classified according to the type of the transmission medium (e.g.,

copper cables, optical fiber or wireless). Optical networks use optical signals over

optical fibers for data transmission. Since the optical transmission provides high

bandwidth, low signal attenuation, immunity to electromagnetic interference, low

energy consumption, etc, it has been widely spread over decades.

In optical access networks, central offices (COs) and remote nodes (RNs) provide

connectivity between the end users and the core networks. The Point-to-Point

(P2P) architecture can be used in optical access networks [85]. Each end user is

connected to a CO through a dedicated optical fiber. However, the P2P requires

massive optical fibers and corresponding transceivers deployed at the COs and

the end users. Figure 2.2 demonstrates a simple example of P2P architecture in

optical access networks. The P2P in Figure 2.2 requires three optical fibers and

six transceivers including three transceivers at the CO and three transceivers at the

end users.

CO

user 3

user 1

user 2
central 

office

End User

Figure 2.2: Point-to-Point architecture in optical access networks

The optical fiber is precious. To reduce the number of optical fibers, the Point-

to-Multipoint (P2M) architecture, including the active optical network (AON) and
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the passive optical network (PON), is proposed [86]. In the AON architecture, a

RN is inserted between the CO and the end users [85]. The signals from the CO to

the end users are distributed through the RN using an electronic powered router or

switch. The AON requires only one optical fiber between the CO and the RN, while

each end user is connected to the RN with a dedicated metallic cable. A power

supply must be provided at the RN to feed the router or switch, especially for

the optical-to-electrical-to-optical (O/E/O) conversions. The AON significantly

reduces required amount of optical fibers, but introduces considerable amount of

transceivers. Figure 2.3 demonstrates a simple example of active optical network

architecture in optical access networks. The AON in Figure 2.3 requires only one

optical fiber between the CO and the RN, and eight transceivers including one

transceiver at the CO, four transceivers at the RN, three transceivers at the end

users.
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office

RN

user 3

user 1

user 2

router or 

switch 

aggregator

End User optical fiber

metallic cable

Figure 2.3: Active optical network architecture in optical access networks

Passive optical network (PON) is proposed to improve the energy efficiency of

the AON by replacing the powered router or switch at the RN with an

unpowered passive optical splitter [85] [87]. In the PON architecture, optical

signals are directly processed in the optical domain [88]. The passive optical

splitter at the RN is able to distribute the optical signals from the CO to the end

users without electronic processing. Thus, the PON eliminates the power supply
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for the router or switch at the RN and the power consumption for the

optical-to-electrical-to-optical (O/E/O) conversions [89]. Figure 2.4 demonstrates

a simple example of passive optical network architecture in optical access

networks. The PON in Figure 2.4 requires only one optical fiber between the CO

and the RN, and four transceivers including one transceiver at the CO and three

transceivers at the end users.
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user 1
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Figure 2.4: Passive optical network architecture in optical access networks

In optical core networks, the wavelength-division multiplexing (WDM)

technology multiplexes different optical carrier signals over a single optical fiber

using different wavelengths of optical signals [85]. Each wavelength carries an

individual signal that does not interfere with the other wavelengths.

The WDM provides high system capacity and low energy consumption per bit

[90]. The WDM creates virtual optical fibers, which multiply the system capacity.

For example, the WDM systems can handle up to 160 signals and thus expand a

basic 100 Gb/s system to a multiplied 16 Tb/s system over a single optical fiber.

The WDM also minimizes the number of optical-to-electrical-to-optical (O/E/O)

conversions per each provisioned connection and thus the overall power

consumption is reduced. Figure 2.5 compares the difference between the
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Peer-to-Peer (P2P) and the WDM. The P2P uses three optical fibers, while the

WDM uses only one optical fiber with the same system capacity.
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Figure 2.5: Difference between P2P and WDM

Based on the WDM-PON architecture, the energy efficiency of the optical

networks can be further improved by putting unused optical devices into sleep

mode in optical access and core networks. In optical access networks, the optical

devices at the COs and the end users can be placed into sleep mode when there is

no traffic to be processed. In addition to sleep mode, the power consumption in

optical core networks can be further reduced by routing policies, such as

maximizing low powered optical devices or minimizing used optical devices to

place unused ones to sleep. The European Commission (EC) funded the Towards

Real Energy-efficient Network Design (TREND) project to investigate the energy

efficiency of the electrical and optical layers of Internet Protocol over
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wavelength-division multiplexing (IP-over-WDM) networks [91]. The project also

proposed energy-aware adaptive routing solutions (EA-ARSs) for the network

operators.

Implementing the sleep mode in the optical networks requires careful design

and operations to make sure that other metrics, including network delay [92],

packet loss rate [93], blocking ratio, system reliability, device lifetime [94] [95], etc,

are maintained at required level [96] [97]. Otherwise, the disadvantages of

performance degradation may far outweigh the advantages of power savings

from the sleep mode. Wiatr et al. [98] investigated the relationship between

power savings and network performance in WDM networks.

Based on the wavelength-division multiplexing passive optical network (WDM-

PON) architecture [85] [87], the energy efficiency of the optical networks can be

improved by putting unused optical devices into sleep mode in optical access and

core networks [88]. In optical access networks, the optical devices can be placed

into sleep mode when there is no traffic to be processed [99] [100]. In addition

to sleep mode, the power consumption in optical core networks can be further

reduced by routing policies, such as maximizing the use of low powered optical

devices or minimizing used optical devices and put unused ones to sleep [101].

2.2.2 Green Routing Algorithms

The green approaches in network level, such as the green routing algorithms,

are also important to reduce the power consumption of network devices, since it

manages switching network links, entire network devices, or parts of them to a

sleep mode in a smart and effective way. Emerging green approaches to network

control, routing, and traffic engineering [47] allows dynamically setting network
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components to sleep during low utilization periods, to minimize the power

consumption of the overall network while meeting the current traffic load and

operational constraints.

Traffic engineering provides network traffic flows control to optimize resource

utilization and network performance to meet specific performance requirements.

Traditionally, traffic engineering focuses on load balancing among network links

to avoid congestion from traffic bursts. On the contrary, the green traffic

engineering aims to reduce the energy consumption of the network by

consolidating traffic to fewer links and placing idle network components into

power saving modes. Due to the over-provisioning and high-redundancy of the

network, significant power savings can be achieved through green traffic

engineering. However, exploiting the period of low traffic activity to periodically

implementing green traffic engineering is still a challenging problem.

A green OSPF protocol in the work [102] aggregates network traffic at a

neighbourhood of routers to place idle links into sleep. In the green OSPF, routers

are divided into two categories, including exporter routers to compute their

shortest path tree as usual and importer routers to run a modified version of

shortest path tree rather than computing on their own. In this way, several routers

can share the same shortest path tree so that several idle links can be placed into

sleep.

Similarly, a general distributed routing protocol for power saving (GDRP-PS)

switches network nodes off during off-peak hours [103]. In this protocol, the

decision of a node sleeping is governed by a central node based on the aggregate

link utilization of the node. Once in sleep, the sleep node periodically wakes up,

re-connects to the network and examines the aggregate link utilization to decide
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whether go back into sleep again. Evaluation results indicate that 20% power

savings can be achieved through GDRP-PS.

The works in [56] [104] addressed the energy efficiency issue in ICT networks

and developed several algorithms that used traffic prediction to set network links

to low power idle modes. These algorithms use the upstream interface on the

network link to maintain a window of inter packet arrival times. The window

of inter packet arrival times is then used to determine the length of time that the

network link can be put into sleep. In addition, these algorithms also reduce the

probability of the buffer overflow for the network link. The constraint is the non-

zero time it takes for the downstream interface to wake up. The results with real

traces show that when the traffic load is up to 30% of link capacity, considerable

power savings can be achieved.

The work [105] compared the power consumption of network devices under

different network categories and results indicated that hubs and switches in local

area networks (LAN) account for about 80% of the total power consumption of

the entire networks in 2002. In 2005, the work [106] estimated power

consumption of the Network Interface Cards (NICs) and other network devices,

and results indicated that the power consumption of NICs take up to almost half

of the total power consumption of entire networks. Power consumption in core

networks is increasing exponentially. In 2009, the work [107] estimated that

power consumption of the core networks will be equivalent to the access

networks by 2017.

To reduce the power consumption of the core networks, Chiaraviglio et al. [108]

proposed an approach to reduce the power consumption of backbone networks

by turning off network nodes and links while guaranteeing full connectivity and

link utilization constraints. It adopts an integer linear programming (ILP) method

to formulate the problem and the energy efficiency of the backbone networks is
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improved by minimizing used routers and links while meeting connectivity and

quality of service constraints.

Bolla et al. introduced sleep mode into backbone networks [25]. This is achieved

by periodically reconfiguring the network nodes and links in response to incoming

traffic volumes and operational constraints. Results show that this approach can

dynamically put hardware components of network nodes to sleep to reduce the

power consumption of backbone networks while maintaining required quality of

service.

2.3 Summary
This chapter introduces the existing techniques related to energy efficient

networking. In Section 2.1, device level techniques including sleep mode and

power scaling are discussed in detail. Since the energy consumption of an idle

network device in normal operation mode is almost identical to a fully loaded

one, sleep mode reduces power consumption of idle network devices by putting

them into low power consumption sleep mode during idle periods of the network

devices. Power scaling considers a set of approaches which are designed to

dynamically adapt the processing capacity of network devices in response to the

current service demand. While, in Section 2.2, energy efficient techniques in

network design and green routing algorithms are reviewed. Energy efficient

techniques in network design aim to find the design parameters that optimize an

objective function to minimize energy consumption, while fulfilling provisioned

traffic demand and design specifications (e.g., minimum end-to-end delay,

maximum link utilization and reliability). Green routing algorithms are devoted

to reducing energy consumption of network by consolidating traffic to a few

active links so that some links can go to lower power consumption mode with

lower transmission capacity to save power or even go to sleep mode for

maximum power saving.
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Chapter 3

Architecture of Reference Router and

Frequency Adaptive Router

In this chapter, a Frequency Adaptive Router is designed and validated on the

NetFPGA 1G board [33]. The NetFPGA 1G board supports a community of open

source hardware and software, and makes use of modular structure in the pipeline

design. Therefore, it is capable of providing a fast way to develop and experiment

custom green mechanisms with low cost reconfigurable features. In the rest of this

thesis, the NetFPGA refers to the NetFPGA 1G board for short.

The Frequency Adaptive Router is built based on the NetFPGA Reference

Router [109]. The design and architecture of the Reference Router are introduced

in Section 3.1 and Section 3.2. Understanding the design and architecture of the

NetFPGA Reference Router is the first step to design and develop the Frequency

Adaptive Router. Section 3.3 describes the design and architecture of the

Frequency Adaptive Router. Section 3.4 summarizes the Chapter.
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3.1 The NetFPGA platform

The NetFPGA is an open source and low-cost reconfigurable hardware

platform optimized as a high-speed networking router. Before diving into this

specific NetFPGA platform, it is crucial to understand what is inside a router. As

shown in Figure 3.1, the generic router architecture consists of multiple input

ports, multiple output ports, a switching fabric and a routing processor. In

practice, multiple ports are often gathered together on a single line card within a

router.

●

●
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Input port 0

Input port 1

Input port 2

●

●

●

Input port n

Output port 0

Output port 1

Output port 2

●

●

●

Output port n

Packets in Packets outSwitching Fabric

Routing Processor

Figure 3.1: Generic router architecture

In the generic router architecture, the input port terminates an incoming

physical link to a router and interoperates the data link layer with the other side

of the incoming link. While, compared to the input port, the output port performs

reverse physical link and data link layer on the outgoing link. The switching

fabric connects input ports to corresponding output ports. The routing processor

executes routing protocols, maintains routing tables and performs network

managements. With lookup and forwarding in the input port, a data packet is

pushed into the switching fabric and forwarded to the appropriate output port.

While, a control packet is forwarded from the input port to the routing processor.

The output port stores the data packet that has been forwarded to it through the

switching fabric, and then transmits the data packet on the outgoing link.
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The NetFPGA is a Peripheral Component Interconnect (PCI) based board that

consists of a Broadcom quad-port Gigabit PHY interfaced with four Gigabit

Ethernet Media Access Controllers (EMAC) for sending and receiving packets,

two Cypress SRAMs for storing and buffering packets, a small Xilinx Spartan II

FPGA for the control logic from the PCI interface to the NetFPGA host, and a

larger Xilinx Virtex-II Pro FPGA for the user defined logic programming. The

major hardware components of the NetFPGA 1G board are shown in Figure 3.2.

The PHY operates at a fixed frequency of 125 MHz and the Spartan II works at a

fixed frequency of 62.5 MHz. While, the Virtex II Pro clock which is the core logic

clock can be toggled between 125 MHz and 62.5 MHz [110]. The two SRAMs run

synchronously with the core logic clock at either 125 MHz or 62.5 MHz.

4 Ethernet ports User-defined logic FPGA

Two SRAMs

Control logic FPGAPHY chip

Figure 3.2: Major hardware components of the NetFPGA 1G board [110]

As shown in Figure 3.3, the NetFPGA adopts a modular and re-usable pipeline

with a data bus (black solid line) and a register bus (red dotted line). Hardware

modules implemented in Verilog can communicate with software running on a

host Central Processing Unit (CPU) using Direct Memory Access (DMA) packet

transfer and register access over the PCI bus. Both the DMA packet transfer and

the register access involve interaction between the NetFPGA hardware and the

host software. Figure 3.3 demonstrates the interaction. The registers in the register
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system are used to indicate the status information and set the control signals for

each separate hardware module. In the NetFPGA Reference Router, there is an

inbuilt register in the register system which allows the switching of the operating

frequency of the core logic FPGA between 125MHz and 62.5MHz [110]. There are

also four other inbuilt registers which control the turning on and off of each of the

four Ethernet ports. The control of the core logic FPGA frequency switching and

the Ethernet ports turning on and off are implemented by writing to the relevant

memory mapped I/O registers through the register bus on the NetFPGA.
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Figure 3.3: NetFPGA hardware and host software interaction in the Reference
Router

3.2 The NetFPGA Reference Router

The NetFPGA Reference Router is designed in a modular style [111]. In the

reference design, each stage is a separate module, which enables developers to

make use of these modules to design and implement their own project without

starting from scratch. New functions like energy efficient mechanisms can be

integrated by adding custom modules or by modifications to the existing

modules.
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As shown in Figure 3.4, the NetFPGA Reference Router consists of multiple

modules including eight receive queues, eight transmit queues and the user data

path [111]. Both receive queues and transmit queues are divided into two groups:

four MAC interfaces and four CPU via DMA interfaces. The receive queues

receive packets from I/O ports such as the Ethernet ports and the PCI via DMA,

while the transmit queues send packets out of the I/O ports instead of receiving.
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Figure 3.4: The architecture of the Reference Router

3.2.1 Receive Queues

Figure 3.5 presents a block diagram of the data bus and the register bus in the

Reference Router. In the first stage, eight receive queues, including four MAC

receive queues and four CPU via DMA receive queues, receive data packets from
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each I/O port. Then, the Receive Queues module appends a module header for

each packet, indicating the length and the ingress port of each packet. After the

module header is appended to a packet, the packet is pushed into the Input Arbiter

module in the user data path.
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Figure 3.5: Block diagram of data bus and register bus in the Reference Router

3.2.2 User Data Path

The pipeline in the user data path is 64-bit wide and all the internal module

interfaces use a standard request-grant First-In-First-Out (FIFO) protocol [111]. In

the user data path, the Input Arbiter module decides which receive queue to

service next, and pulls a packet from that receive queue and hands it to the

Output Port Lookup module. The Output Port Lookup module decides which

port the packet goes out of. After that decision is made, the packet is then handed

to the Output Queues module which stores the packet in the corresponding

output queue and sends the packet out of the output queue when the

corresponding transmit queue is ready to accept the packet for transmission.

Details about each of the three modules are given below.
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Input Arbiter

Figure 3.6 presents a block diagram of the Input Arbiter module. In the user

data path, the Input Arbiter module decides which receive queue to service next,

and pulls a packet from that receive queue and hands it to the Output Port Lookup

module. The decision is made through a packet-by-packet round-robin scheduler.

mac_rx_queue_0

cpu_rx_queue_0

Receive Queues

cpu_rx_queue_3

Input_Arbiter

input_arbiter_reg

Data Bus

Register Bus

.

.

.

sm_rr_input

Input Arbiter

output_port_lookup_reg

Output

Port

Lookup

Output Port Lookup

in_ar_fifo_0

in_ar_fifo_1

in_ar_fifo_7

.

.

.

Figure 3.6: Block diagram of the Input Arbiter module

When congestion occurs in a network router, queuing mechanisms can be used

to buffer data that the router can not handle at the moment, and send the data

out until the bandwidth is available. In best effort communication, first-in first-

out (FIFO) queuing is a basic queuing method. Packets are pushed into one single

queue and pulled out of the queue on a first-come first-served (FCFS) basis. If

multiple FIFO queues are involved, round robin scheduling can be adopted as an

alternative to FCFS queuing. In round robin scheduling, priority is not considered

and all the queues are equally served in a packet-by-packet round robin fashion.

Figure 3.7 demonstrates an example of the round robin scheduler. For simplicity,

assuming there are two packets A1 and A2 in queue 1, and two packets B1 and B2

in queue 2 for transmission. One packet is taken from each of the FIFO queues
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in turn in circular order for processing. Thus, the output from the round robin

scheduler is A1, B1, A2 and B2.

Queue 1

A2

Queue 2

B2 B1

A2B2 A1B1

Round Robin OutputA1

Round Robin Scheduler

Round Robin Pointer

Figure 3.7: The round robin scheduler

Output Port Lookup

Figure 3.8 presents a block diagram of the Output Port Lookup module. Data

packets received from the Input Arbiter module are pushed into a FIFO queue

and preprocessed in a preprocess control block. Five operations are performed in

the preprocess control block simultaneously. The submodule ip lpm and the

submodule ip arp decide the next hop MAC address and the corresponding

output port. The submodule eth parser checks the destination MAC address and

the packet type. The submodule ip cheksum ttl validates the IP checksum and

creates the new checksum. The submodule op lut hdr parser checks whether the

packet is from the CPU via DMA. The submodule dest ip filter checks the

destination IP address and decides whether the packet goes to the CPU via DMA.

After preprocessing, the packet is pulled out of the FIFO queue to the

op lut process sm block. The op lut process sm block modifies the packet with

updated information from the preprocess control block (such as modifying the IP

TTL, the next hop MAC address and source address), and sends the packet out to

the corresponding output queue.
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Figure 3.8: Block diagram of the Output Port Lookup module

Output Queues

Figure 3.9 presents a block diagram of the Output Queues module. The Output

Queues module stores packets received from the Output Port Lookup module into

the SRAMs and implements a round robin arbiter to service the output queues.

The round robin arbiter operates in the same packet-by-packet round robin fashion

as shown in Figure 3.7. The oq header parser block checks the destination port of a

packet, and the packet is then pushed into a FIFO queue waiting to be processed.

The store pkt block pulls packets from the FIFO queue and stores them into the

SRAMs. While, the remove pkt block implements a round robin arbiter over the

output queues, reads a packet from the SRAMs, and sends it to a corresponding

transmit queue.

3.2.3 Transmit Queues

The Transmit Queues module strips out the module headers appended in the

Receive Queues module and sends packets out through the corresponding output

port to either one of the four MAC transmit queues or one of the four CPU via

DMA queues.
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3.3 Frequency Adaptive Router

To improve the energy efficiency of the Reference Router without compromising

its packet processing performance, it is modified to adapt its operating frequency

(also known as its packet processing capacity) in response to the incoming traffic

load. A frequency division module and an Asynchronous FIFO (AFIFO) module

are integrated into the Reference Router, and the modified router is referred to a

Frequency Adaptive Router. Figure 3.10 presents the architecture of the Frequency

Adaptive Router. Details about the frequency division module and the AFIFO

module are described below.

3.3.1 The Frequency Division Module

Understanding the clock resources of the Virtex-II Pro FPGA is the first step to

add more frequency options into the Reference Router. The Virtex-II Pro FPGA

clock resources consist of global clock input pads (GCLK), global input clock

buffers (IBUFG), global clock buffers (BUFG), and digital clock managers (DCM)

[112]. As shown in Figure 3.11, the global clock input pad (GCLK) can be fed

directly into a low-skew global clock network through an IBUFG and a BUFG
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[113]. The IBUFG is an input clock buffer with one clock input and one clock

output. While, the BUFG is a global clock buffer with one clock input and one

clock output, driving a low skew clock distribution network. As shown in

Figure 3.12, a DCM can be inserted between the IBUFG and the BUFG to provide

advanced clocking capabilities [113].
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Figure 3.11: A GCLK fed into a low-skew global clock network through an IBUFG
and a BUFG [113]

43



BUFG

CLKIN

CLKFB

125 MHz

DCM

output Global Clock Network

IBUFG

GCLK

Figure 3.12: A GCLK fed into a low-skew global clock network through an IBUFG,
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Figure 3.13 demonstrates the global clock design of the Reference Router. The

clock for the control logic FPGA is fed by 62.5 MHz through an IBUFG and a BUFG.

The clock for the core logic FPGA, the transmit clock and the receive clock for the

four Ethernet ports are all fed by 125 MHz through an IBUFG, a DCM and a BUFG.

The DCM can generate new clock frequencies by dividing source clock

frequency with allowed divisors. Figure 3.14 presents an example of generating a

new frequency using the DCM. 125 MHz is fed into clock input CLKIN in the

DCM through a IBUFG. In the DCM, the clock output CLK0 is the same as the

input clock CLKIN at 125 MHz, while the clock output CLKDV is the input clock

CLKIN divided by a factor of 16, providing a much lower clock output at 7.8

MHz. A global clock buffer multiplexer (BUFGMUX) is used to select between the

two clock outputs from the DCM module. When the select input S is Low, the 125

MHz clock at input I0 of the BUFGMUX is selected for the output. When the

select input S is High, the 7.8 MHz clock at input I1 of the BUFGMUX is selected

for the output.

With CLKDV in the DCM, the Frequency Adaptive Router can offer 23 grades

of operating frequencies. This is accomplished by dividing source clock frequency

with 23 different divisors allowed on the Virtex II Pro FPGA. A wide range of 23
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Figure 3.13: Global clock design of the Reference Router

operating frequency options (125MHz, 83.3MHz, 62.5MHz, 50MHz, 41.7MHz,

35.7MHz, 31.3MHz, 27.8MHz, 25MHz, 22.7MHz, 20.8MHz, 19.2MHz, 17.9MHz,

16.7MHz, 15.6MHz, 13.9MHz, 12.5MHz, 11.4MHz, 10.4MHz, 9.6MHz, 8.9MHz,

8.3MHz and 7.8MHz) can be derived from the source clock 125MHz by

simultaneous frequency division with a set of divisors (1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5,

5.5, 6, 6.5, 7, 7.5, 8, 9, 10, 11, 12, 13, 14, 15 and 16). Table 3.1 presents the DCM
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output frequencies corresponding to the different frequency divisors. The

theoretical throughputs of the Reference Router corresponding to the different

DCM output frequencies are also listed. The theoretical throughput is linearly

proportional to the operating frequency. Figure 3.15 visually presents the linear

pattern and relationship between the operating frequency and the theoretical

throughput.
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Figure 3.15: The linear relationship between the operating frequency and the
theoretical throughput

The Virtex-II Pro FPGA provides 8 DCMs and the Reference Router uses 6 out

of 8 DCMs as shown in Figure 3.13. The limited clock resources in the Virtex II
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Table 3.1: DCM frequency divisors, corresponding DCM output frequencies and
theoretical throughputs of RR

DCM frequency divisors DCM output frequencies theoretical throughputs of RR
(Value) (MHz) (Gb/s)

1 125 8
1.5 83.3 5.33
2 62.5 4

2.5 50 3.20
3 41.7 2.67

3.5 35.7 2.29
4 31.3 2

4.5 27.8 1.78
5 25 1.60

5.5 22.7 1.45
6 20.8 1.33

6.5 19.2 1.23
7 17.9 1.14

7.5 16.7 1.07
8 15.6 1
9 13.9 0.89
10 12.5 0.80
11 11.4 0.73
12 10.4 0.67
13 9.6 0.62
14 8.9 0.57
15 8.3 0.53
16 7.8 0.50

Pro FPGA cannot allow to implement these 23 frequencies at the same time. In

the design of the Frequency Adaptive Router, three additional frequencies 31.3

MHz, 15.6 MHz and 7.8 MHz with frequency divisor 4, 8 and 16 are added into

the Reference Router to balance the trade-off between power consumption and

performance. Figure 3.16 demonstrates the design details for generating the three

new frequencies in the Frequency Adaptive Router. The 7.8 MHz is generated

by the CLKDV in the core clock DCM (CORE DCM CLK) with frequency divisor

16. The 15.6 MHz is generated by the CLKDV in the receive clock port 0 DCM

(RGMII 0 RX DCM) with frequency divisor 8. The 31.3 MHz is generated by the

CLKDV in the transmit clock DCM (RGMII TX DCM) with frequency divisor 4.
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There are also other options to generate these three new frequencies from other

DCMs. For example, other than generating the three new frequencies the way

shown in Figure 3.16, the 7.8 MHz can be generated by the CLKDV in the receive

clock port 0 DCM (RGMII 0 RX DCM) with frequency divisor 16. The 15.6 MHz

can be generated by the CLKDV in the receive clock port 1 DCM

(RGMII 1 RX DCM) with frequency divisor 8. The 31.3 MHz can be generated by

the CLKDV in the receive clock port 2 DCM (RGMII 2 RX DCM) with frequency

divisor 4. However, experiments demonstrate that, using the other options to

generate the three new frequencies, the router may not work at all even though

the Verilog code is synthesized successfully. No further design effort was spent on

the other options to generate the three additional frequencies, after the design in

Figure 3.16 is tested to guarantee the router can properly work and provide five

scalable frequencies to the core logic FPGA.
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Figure 3.16: Design details for generating three new frequencies in the Frequency
Adaptive Router
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The design in Figure 3.16 is customizable. Other frequencies in Table 3.1 can be

also used instead of 31.3 MHz, 15.6 MHz and 7.8 MHz. For example, an earlier

version of a Frequency Adaptive Router implemented 125 MHz, 83.3 MHz, 62.5

MHz, 50 MHz and 41.7 MHz. The 83.3 MHz, 50 Mhz and 41.7 MHz are generated

using frequency divisor 1.5, 2.5 and 3. The design in Figure 3.16 provides flexibility

for other users to customize the generated frequencies to meet their specific needs.

After the three additional frequency options are provided, four BUFGMUX

resources are then cascaded to create a 5-to-1 clock multiplexer as shown in

Figure 3.17. 125 MHz, 62.5 MHz, 31.3 MHz, 15.6 MHz and 7.8 MHz are the source

clock inputs for the cascaded BUFGMUXs, while S0, S1, S2 and S3 are the control

inputs. With four cascaded BUFGMUXs, the four control inputs decide which one

clock is selected from the five source clock inputs for output. For example, if S0 is

High, the selected clock for the core logic FPGA clock is 125 MHz. 7.8 MHz is the

selected clock if S0, S1, S2 and S3 are all Low. Table 3.2 presents the mapping

between the control inputs and the selected clock output. Value ’1’ for a control

input stands for the control input is High, value ’0’ represents Low, while ’-’

means doesn’t care.
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Figure 3.17: 5-to-1 cascaded clock multiplexer
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Table 3.2: Mapping between control inputs and selected clock output
S0 S1 S2 S3 clock output

(value) (value) (value) (value) (MHz)
1 - - - 125
0 1 - - 62.5
0 0 1 - 31.3
0 0 0 1 15.6
0 0 0 0 7.8

A custom frequency control register 0x200218 is further integrated into the

register system to allow software running on the NetFPGA host PC to

communicate with the NetFPGA hardware, and switch the core logic FPGA

frequency among these five different frequencies. The Table 3.3 indicates the

mapping between the custom register values and the operating frequencies of the

core logic FPGA.

Table 3.3: Frequency control register values and corresponding operating
frequencies of core logic FPGA

register operating frequency
(value) (MHz)

0 125
1 62.5
2 31.3
3 15.6
4 7.8

3.3.2 The AFIFO Module

In the Reference Router, the two SRAMs use the same clock as used by the core

logic FPGA processor for writing and reading data, to ensure the transmit queues

could transmit data with little or no delay between packets [109]. An inbuilt

register controls the core logic FPGA to operate at either 125 MHz or 62.5 MHz.

However, due to the clock synchronization between the SRAMs and the core logic

FPGA, the Reference Router cannot switch the operating frequency of the core
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logic FPGA on the fly. When toggling the operating frequency of the Reference

Router between 125 MHz and 62.5 MHz, the frequency switching causes a board

reset to restart the SRAMs and the core logic FPGA hardware with updated

synchronous frequency. The board reset involves remirroring and reloading MAC

addresses, IP addresses, routing table and ARP table into the core logic FPGA

hardware, which takes approximately 2 ms. All the buffered packets are lost

during the board reset.

Most applications are able to gracefully handle this board reset. When an user

application realizes that packets are lost, the lost packets will be re-transmitted if

the application is a file download, an email, or other none real-time applications.

The user probably won’t ever notice the board reset. However, if the application

is a real-time conversation, a video conference or other real-time applications that

has a low tolerance for packet loss, the effect of board reset could be very noticeable

to the user. The audio could be distorted and the video could show artifacts. The

user may even suffer from connection lost if the packet loss is severe.

To eliminate the board reset problem, a custom module of asynchronous FIFO

(AFIFO) is inserted between the SRAMs and the core logic FPGA. The AFIFO

allows safe data exchange between the SRAMs clock domain and the core FPGA

clock domain, where the two clock domains are asynchronous to each other. The

AFIFO involves a FIFO design where packets are written into the FIFO using a

clock from the SRAMs clock domain for buffering, and the packets are read from

the same FIFO using a clock from the core logic FPGA clock domain for

transmitting. The AFIFO module can isolate the SRAMs alone and keep them

running at 125MHz constantly, while the operating frequency of the core FPGA

can be tuned among allowed frequencies in response to actual traffic processing
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needs. Figure 3.18 demonstrates the NetFPGA hardware and host software

interaction in the Frequency Adaptive Router.
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Figure 3.18: NetFPGA hardware and host software interaction in the Frequency
Adaptive Router

3.4 Summary

This chapter presents the design of the Frequency Adaptive Router and

compares the design differences between the Reference Router and the Frequency

Adaptive Router. Since there are only two operating frequencies 125 MHz and

62.5 MHz provided in the Reference Router, it is insufficient to examine and

quantify the power savings from dynamic frequency scaling. To better quantify

the power savings from energy proportional techniques, the Frequency Adaptive

Router is developed to provide the core logic FPGA with five operating frequency

options (125 MHz, 62.5 MHz, 31.3 MHz, 15.6 MHz and 7.8 MHz).
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Chapter 4

Frequency Control Policies and

System Models

Once the frequency scaling capability is provided, appropriate frequency

control policy must be implemented to choose the most desirable operating

frequency to meet certain performance criteria. Previous work [35] for Adaptive

Link Rate (ALR), the control policy adopts output buffer thresholds and

utilization monitoring to switch link data rate. Similar work [34] for

Multi-Frequency Scaling (MFS) on the NetFPGA, the control policy adopts buffer

occupancy and multi-dual-threshold to adapt the operating frequency. However,

the power consumption and performance evaluation reported in these works are

based on simulated results. For example, multi-dual-threshold policy in the work

[34] is evaluated using a Markov model. To provide more accurate and valid

power consumption and performance evaluation results, the work develops and

implements the Frequency Adaptive Router and its frequency control policies

directly in NetFPGA hardware.

As explained in chapter 3, the Frequency Adaptive Router can operate at five

different frequencies with five different packet routing capacities. The frequency

53



control policy is crucial in the Frequency Adaptive Router because it manages the

operating frequency of the router, which in turn affects the power consumption

and the performance of the router. The frequency control policies must be as

simple as possible for direct implementation inside the router. An effective policy

should manage the router to operate at the lowest frequency with enough routing

capacity to handle the instantaneous traffic without affecting the performance as

perceived by the user. Significant increases to network delay and packet loss

could degrade user experience, which would be unacceptable.

To meet different demands under different application scenarios, six different

frequency control policies are designed to balance the trade-off between power

consumption and performance. Each control policy has an unique behavior,

purpose and suitability in response to the instantaneous traffic load. The six

implemented frequency control policies are: Single Threshold Policy (STP),

Double Threshold Policy (DTP), Packet Loss Aware Policy (PLAP), Performance

First Policy (PFP), Power Saving First Policy (PSFP) and User Defined Policy

(UDP).

These six frequency control policies can be divided into three self-adaptive

local frequency control policies and three policies for global frequency control.

The first three frequency control policies implemented in the NetFPGA hardware

can locally and dynamically adapt the operating frequency in response to the

instantaneous traffic load. While the three latter ones implemented in software

can work with network wide power management technique, such as green traffic

engineering (GTE), which can globally control the operating frequency of the

Frequency Adaptive Router through reading and writing the custom frequency

control register 0x200218 in Table 3.3.
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4.1 Local Frequency Control Policies

For dynamic frequency adaptation in the Frequency Adaptive Router, three

frequency control policies STP, DTP and PLAP are designed and implemented

based on statistics monitoring and preset thresholds as shown in Figure 4.1. The

statistics monitoring is designed to indicate the current core logic frequency, the

total current traffic rate from all receive queues (current traffic rate) and the total

number of bytes dropped from all output queues (byte counter dropped) in 10 ms

sampling period. The preset thresholds are adopted to divide the routing capacity

into five grades in response to the incoming traffic load in the previous 10 ms

sampling period. Different frequency control policy may have a different set of

rules for setting the thresholds.
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Figure 4.1: Implementation of dynamic frequency adaptation on FAR

With the statistics monitoring and the preset thresholds, the frequency

adaptation transition time in the local frequency control policies is the sum of two

components: the delay T1 between the need for a new frequency and the issue of
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the frequency transition command, and the delay T2 between the issue of the

frequency transition command and the completion of the frequency transition.

The delay T1 is determined by the sampling period and the delay T2 is

determined by the speed of digital electronic circuits hardware.

Figure 4.2 explains the frequency adaptation transition time in the local

frequency control policies. Figure 4.2 (a) presents a simple example of traffic burst

from 0 Mb/s (idle) to aggregate input traffic 6,400 Mb/s. Figure 4.2 (b) presents

the operating frequency corresponding to the traffic burst in Figure 4.2 (a). The

corresponding T1 and T2 are shown in Figure 4.2. At the sampling time points 1

and 2, traffic load increases gradually from the 0 Mb/s within the routing capacity

of the operating frequency at 7.8 MHz, so no frequency switching is necessary. At

the time point A, traffic load increases significantly to the aggregate input traffic

6,400 Mb/s, so a new operating frequency 125 MHz is needed to handle the

current 6,400 Mb/s traffic load. However, the control policy only checks the traffic

load at the next sampling time point 3, finds out there is a need for a new

operating frequency 125 MHz and issues the frequency transition command.
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The sampling period determines the maximum delay between the time point

3 and the time point A. If the traffic burst occurs immediately after the sampling

action at time point 2, then the maximum delay between the sampling point 3 and

the time point A is the sampling period. If the traffic burst occurs immediately

before the sampling action at time point 3, then the minimum delay between the

sampling point 3 and the the time point A is 0. Thus, the sampling period directly

determines the delay T1 between the need for a new frequency at the time point

A and the time that the control policy finds out the need for a new frequency at

the time point 3. While, the delay T2 between a request for a new frequency at

the time point 3 and the actual completion of transition to the new frequency at

the time point B, is not dependent on the sampling period. It is dependent on the

speed of digital electronic circuits that perform the frequency transition.

Table 4.1 presents the packet loss rate of FAR under different sampling period

(1 ms, 10 ms, 100 ms and 1 s) with the same experimental scenario corresponding

to the traffic burst in Figure 4.2. In this experimental scenario, there are 40,000,000

packets sent in total. The packet loss only occurs during the time of frequency

switching from 7.8 MHz to 125 MHz, and the total number of packet loss is

recorded. Experimental results in Table 4.1 indicate that higher sampling period

could lead to higher packet loss rate during the frequency switching. The

sampling period is extremely sensitive regarding the performance of the FAR. The

results also indicate that 10 ms is a reasonable interval time for the sampling

period and is consistent with that used in implementing adaptive link rate (ALR)

[69].
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Table 4.1: Packet loss rate of FAR under different sampling period at traffic rate
6400 Mb/s

sampling period packets dropped packet loss rate
(ms) (number) (%)

1 2,488 0.006
10 21,675 0.054
100 61,689 0.154

1,000 498,930 1.247

4.1.1 Single Threshold Policy (STP)

Due to the finite queue size, the Single Threshold Policy is to assess an

associated traffic throughput threshold beyond which the router will begin to loss

packets for each operating frequency. Table 4.2 presents the mapping table of

operating frequencies, capacity states, measured capacities and preset thresholds

for STP. As shown in Figure 4.3, the capacity states S1, S2, S3, S4 and S5 represent

the routing capacities of the FAR working at core operating frequency of 7.8 MHz,

15.6 MHz, 31.3 MHz, 62.5 MHz, and 125 MHz respectively. Ci represents the peak

measured throughput for each capacity state Si. At 125 MHz, the peak measured

throughput C5 is below the theoretical full operation throughput 8 Gb/s which is

the maximum throughput for the NetFPGA Reference Router. For each capacity

state Si, the threshold Ti should not be preset too aggressively and too close to Ci.

Because the statistics monitoring is implemented by checking current traffic rate

at a fixed sampling period and the statistics may vary slightly from time to time.

The current traffic rate in Gb/s is calculated from the total number of bytes

received from all receive queues in 10 ms. Thus, Ti must be set lower than Ci and

experiments indicate a reasonable value for Ti is 95% of Ci. A level of 95% was

chosen for consistency with prior work on ALR [69], as was the 10 ms sampling

period. The choice of these parameters involves a trade-off between power saving

and packet loss.
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Table 4.2: Frequencies, capacities and thresholds mapping table for STP
Index Frequency State Capacity Threshold
(No.) fi (MHz) Si Ci (Gb/s) Ti (95% of Ci) (Gb/s)

1 7.8 S1 0.443 0.421
2 15.6 S2 0.878 0.834
3 31.3 S3 1.714 1.628
4 62.5 S4 3.457 3.284
5 125 S5 6.896 6.551
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7.8 MHz

S4
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Figure 4.3: Thresholds of single threshold policy

Suppose the FAR is working in state Si (i = 1 to N), once the total current traffic

rate from all receive queues (which is checked at 10 ms intervals) is below or equal

to a threshold Ti (1 6 i 6 N-1), the router can switch to the lower capacity state Si

consuming less power while maintaining QoS. On the contrary, if the total current

traffic rate from all receive queues is beyond the threshold Ti (1 6 i 6 N-1), the

router must switch to the higher capacity state Si+1 with more routing capacity to

avoid packet loss resulted from queue overflow. Otherwise, the router stays in the

current capacity state Si. Algorithm 1 presents the pseudo-code of the self-adaptive

local frequency control policy STP.
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Algorithm 1: Single Threshold Policy (STP)

Input: current tra f f ic rate
Output: op f req // operating frequency

1 N = 5 // number of working frequencies, default to 5

2 i = 1 // current working frequency index, initialize to 1

3 sampling period = 10 ms // sampling period, default to 10 ms

4 op f req = 125 // current working frequency, initialize to 125 MHz

5 fn = {7.8, 15.6, 31.3, 62.5, 125} // set of working frequencies in MHz

6 Tn = {0.421, 0.834, 1.628, 3.284, 6.551} // thresholds for each fi in Gb/s

7 while (STP&&i < N) do
8 if current tra f f ic rate ≤ Ti then
9 op f req← fi

10 else
11 i++
12 end if
13 end while
14 if (i == N) then
15 op f req← fN// set to maximum working frequency

16 end if
17 wait f orsampling period

// update current traffic rate every sampling period

4.1.2 Double Threshold Policy (DTP)

The STP is an elegant scheme if the incoming traffic does not change frequently

and abruptly so that the Frequency Adaptive Router could switch its capacity

state in response to real-time traffic load without impact on QoS. However, when

the incoming traffic fluctuates drastically, especially in the case when input traffic

fluctuates near a preset threshold, frequently switching the capacity state could

introduce extra power consumption and even extra packet loss. An effective

frequency adaptation control policy should manage the Frequency Adaptive

Router to operate at the lowest appropriate frequency for as long as possible.

Otherwise, switching energy overhead and potential QoS degradation during

transition time may outweigh the power savings from the DFS scheme.
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Table 4.3: Frequencies, capacities and thresholds mapping table for DTP
Index Frequency State Capacity Threshold
(No.) fi (MHz) Si Ci (Gb/s) Til (85% of Ci) (Gb/s) Tih (95% of Ci) (Gb/s)

1 7.8 S1 0.443 0.368 0.421
2 15.6 S2 0.878 0.746 0.834
3 31.3 S3 1.714 1.457 1.628
4 62.5 S4 3.457 2.938 3.284
5 125 S5 6.896 5.862 6.551
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Figure 4.4: Thresholds of double threshold policy

To eliminate the problem of possible oscillation of capacity changes around a

threshold associated with the STP, double thresholds are introduced as shown in

Figure 4.4. The Double Threshold Policy uses a high threshold Tih (1 6 i 6 5), and

a low threshold Til (1 6 i 6 5) for each capacity state Si (1 6 i 6 5). In the DTP, the

buffer between Til and Tih could effectively reduce the possibility of ping pong

effect so as to avoid energy waste and overheads on too frequent capacity

switching. In addition, the frequency scaling in the DTP is following a

level-by-level mechanism, which means that switching only appears between

adjacent frequency levels. Table 4.3 presents the mapping table of operating

frequencies, capacity states, measured capacities and preset thresholds for DTP.

For a certain capacity state Si, if the total current traffic rate from all receive

queues is beyond or equal to T(i−1)l and below or equal to Tih, the router will stay

in the current capacity state Si. The FAR will change to a lower routing capacity

only when the total current traffic rate from all receive queues is less than T(i−1)l

or, change to a higher routing capacity when the total current traffic rate from all
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receive queues is more than Tih. Algorithm 2 presents the pseudo-code of the

self-adaptive local frequency control policy DTP.

Algorithm 2: Double Threshold Policy (DTP)

Input: current tra f f ic rate, current f requency index
Output: op f req // operating frequency

1 N = 5 // number of working frequencies, default to 5

2 sampling period = 10 ms // sampling period, default to 10 ms

3 op f req = 125 // current working frequency, initialize to 125 MHz

4 fn = {7.8, 15.6, 31.3, 62.5, 125} // set of working frequencies in MHz

5 Tnl = {0.368, 0.746, 1.457, 2.938, 5.862}
// lower thresholds for each fi in Gb/s

6 Tnh = {0.421, 0.834, 1.628, 3.284, 6.551}
// higher thresholds for each fi in Gb/s

7 i← current f requency index

8 if (2 ≤ i ≤ N − 1) then
9 if T(i−1)l ≤ current tra f f ic rate ≤ Tih then

10 op f req← fi // maintain current frequency

11 else if current tra f f ic rate < T(i−1)l then
12 op f req← fi−1 // go to lower frequency

13 else if current tra f f ic rate > Tih then
14 op f req← fi+1 // go to higher frequency

15 end if
16 else if (i == 1) then
17 if current tra f f ic rate > Tih then
18 op f req← fi+1 // go to higher frequency

19 end if
20 else if (i == N) then
21 if current tra f f ic rate < T(i−1)l then
22 op f req← fi−1 // go to lower frequency

23 end if
24 end if
25 wait f orsampling period

// update current traffic rate every sampling period
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4.1.3 Packet Loss Aware Policy (PLAP)

For both the STP and the DTP, the trade-off between power consumption and

performance is mainly affected by the fixed preset thresholds and the period of

sampling the current traffic rate. The DTP can outperform the STP for the

extremely frequent and abrupt traffic fluctuation scenarios at the cost of

potentially less power savings, but it cannot properly cope with traffic burst

scenarios. When a traffic burst occurs, the level-by-level frequency switching in

the DTP may not be able to switch to the most appropriate frequency in time.

During the switching, the FAR may suffer severe network delay and packet loss.

To eliminate these deficiencies associated with thresholds based policies, the

Packet Loss Aware Policy (PLAP) is introduced. The PLAP is built on the DTP

and the operating frequency directly jumps to the highest operating frequency

125 MHz when packet loss is detected. Algorithm 3 presents the pseudo-code of

the self-adaptive local frequency control policy PLAP.

4.2 Global Frequency Control Policies

Apart from implementing frequency control policy in the NetFPGA hardware,

the frequency control policy can be also implemented in software. In the

Frequency Adaptive Router, a register 0x2000218 is added into the register system

to control the operating frequency of the core logic FPGA of the Frequency

Adaptive Router. This register provides a standard interface between hardware

and software, which allows network wide global green traffic engineering to

control the operating frequency of the Frequency Adaptive Router.
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Algorithm 3: Packet Loss Aware Policy (PLAP)

Input: current tra f f ic rate, current f requency index, byte counter dropped
Output: op f req // operating frequency

1 N = 5 // number of working frequencies, default to 5

2 sampling period = 10 ms // sampling period, default to 10 ms

3 op f req = 125 // current working frequency, initialize to 125 MHz

4 fn = {7.8, 15.6, 31.3, 62.5, 125} // set of working frequencies in MHz

5 Tnl = {0.368, 0.746, 1.457, 2.938, 5.862}
// lower thresholds for each fi in Gb/s

6 Tnh = {0.421, 0.834, 1.628, 3.284, 6.551}
// higher thresholds for each fi in Gb/s

7 i← current f requency index

8 if (byte counter dropped > 0) then
9 op f req← fN// if packet drop detected, go to maximum frequency

10 else
11 if (2 ≤ i ≤ N − 1) then
12 if T(i−1)l ≤ current tra f f ic rate ≤ Tih then
13 op f req← fi // maintain current frequency

14 else if current tra f f ic rate < T(i−1)l then
15 op f req← fi−1 // go to lower frequency

16 else if current tra f f ic rate > Tih then
17 op f req← fi+1 // go to higher frequency

18 end if
19 else if (i == 1) then
20 if current tra f f ic rate > Tih then
21 op f req← fi+1 // go to higher frequency

22 end if
23 else if (i == N) then
24 if current tra f f ic rate < T(i−1)l then
25 op f req← fi−1 // go to lower frequency

26 end if
27 end if
28 end if
29 wait f orsampling period

// update current traffic rate every sampling period
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4.2.1 Performance First Policy (PFP)

The Performance First Policy statically sets the operating frequency of the

Frequency Adaptive Router at the highest frequency 125 MHz all the time. This

policy is to achieve the maximum routing capacity out of the Frequency Adaptive

Router by setting the operating frequency to the maximum level and staying at

this level invariably. The PFP does not attempt to provide any power saving

features by default and it is suitable for constant heavy traffic load during rush

hours. This policy is also the default frequency control policy in the original

NetFPGA Reference Router. This static frequency control policy can be used in

conjunction with a network wide global green traffic engineering. It is not

self-adaptive and cannot switch to a lower operating frequency in response to the

traffic load by itself without receiving frequency switching instruction from a

control unit. Algorithm 4 presents the pseudo-code of the PFP.

Algorithm 4: Performance First Policy (PFP)

Input: PFP
Output: operating f requency

1 operating f requency← 125MHz
// setting the operating frequency at 125 MHz constantly

4.2.2 Power Saving First Policy (PSFP)

On the contrary, the Power Saving First Policy statically sets the operating

frequency of the Frequency Adaptive Router at the lowest frequency 7.8 MHz all

the time. This policy is to keep the Frequency Adaptive Router running at the

lowest operating frequency to obtain maximum power savings at the cost of the

minimum routing capacity. The PSFP should be used when the router constantly

works at expected low traffic load. Otherwise, any unexpected network traffic

burst can degrade the performance because this policy will never scale up the
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frequency in response to increased traffic load by itself without receiving

frequency switching instruction, which may lead to significant network delay and

packet loss. Thus, this policy should be used in conjunction with a network wide

global green traffic engineering. Algorithm 5 presents the pseudo-code of the

PSFP.

Algorithm 5: Power Saving First Policy (PSFP)

Input: PSFP
Output: operating f requency

1 operating f requency← 7.8MHz
// setting the operating frequency at 7.8 MHz constantly

4.2.3 User Defined Policy (UDP)

The User Defined Policy can adaptively control the operating frequency by

automatically reading and writing the new memory-mapped I/O register

introduced into the Frequency Adaptive Router, in response to the instantaneous

traffic load. It is the most customizable frequency adaptation control mechanism

and provides the flexibility for the users to design and experiment their own

policies. If a frequency control policy is well customized by an user, the frequency

control policy could be the best solution to balance the trade-off between power

consumption and performance under certain circumstances. For example, in a

SDN network, the routing capacity of the Frequency Adaptive Router can be

controlled by OpenFlow switch in conjunction with the network wide global

green traffic engineering and the mechanism of Ethernet port shutdown. It is

possible to achieve more power savings than the self-adaptive local frequency

control policies. Table 4.4 compares the six different frequency control policies

and summarizes the main advantages and disadvantages of each frequency

control policy.
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Table 4.4: Advantages and disadvantages for each frequency control policy
Policy Advantages Disadvantages
STP self-adaptive and dynamic poor QoS when traffic

hardware switching fluctuates around thresholds
DTP self-adaptive and dynamic poor QoS when

hardware switching traffic burst
PLAP self-adaptive and dynamic packet loss when

hardware switching jumping to 125 MHz
PFP maximum routing capacity slow software switching

PSFP maximum power saving slow software switching
UDP flexibility for global control slow software switching

4.3 System Models

4.3.1 System Model of Reference Router

The NetFPGA Reference Router can be modelled as an M/M/1/N queuing

system to analyze the system performance of the Reference Router. As shown in

Figure 4.5, the system model of the Reference Router consists of a finite FIFO

queue of buffer size N with packets arriving randomly, and a server that retrieves

packets from the FIFO queue at a specified service rate [114]. The packet arrival

process is a Poisson process with exponentially distributed random inter-arrival

times with an average arrival rate λ. The packet service time is an exponentially

distributed random variable with an average service rate µ. The packet arrival

process and the packet service process are independent of each other.

Packets arriving  

with an average 

arrival rate λ 

(packet/second)

Finite FIFO queue with 

buffer size N (packet)

Packets departing  

Single server with an average 

service rate μ (packet/second)

μ at 125 MHz

Figure 4.5: System model of the Reference Router
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In the M/M/1/N queuing model [115], the state of queuing system is

represented by the number of packets currently in the system as shown in

Figure 4.6. The packets arrive and depart only one packet at a time. Thus, the

system state can change only by one unit at a time. If currently there are n

customers in the system and a packet arrives to the system, the system state

increases from n to n+1 with an average arrival rate λ. If currently there are n

customers in the system and a packet departs out the system, the system state

decreases from n to n-1 with an average service rate µ. The average packet service

rate must exceeds the average packet arrival rate, otherwise the unprocessed

packets could continue to infinitely grow in the finite FIFO queue and the finite

queue will eventually overflow. The finite FIFO buffer with buffer size N can only

accommodate N-1 packets and the packet N will be dropped due to queue

overflow.

0 1 2 ... N-1 N

λ λ λλ λ

μμμ μμ

Figure 4.6: M/M/1/N queuing model

The system state moves from n-1 to n at the rate of λ×Pn−1 and the the system

state moves from n to n-1 at the rate of µ×Pn. The probability of having one packet

in the queuing system is shown in equation (4.1). ρ is the average utilisation factor

for the queueing system. Similarly, the probability of having N packets in the

queueing system is shown in equation (4.2).

P1 =

(
λ

µ

)
× P0 = ρ× P0 (4.1)

Pn = ρn × P0 (4.2)
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When the M/M/1/N queue is in equilibrium, the steady state equations are

shown in equation (4.3) [116]. Table 4.5 summarizes the notations used for the

M/M/1/N queuing model for analyzing the performance of the system model of

the Reference Router.


λ× P0 = µ× P1

λ× Pn−1 + µ× Pn+1 = λ× Pn + µ× Pn n = 1, 2, ...N − 1
(4.3)

Table 4.5: Notations used for M/M/1/N queuing model
notation description

n number of packets in the queuing system
λ average packet arrival rate
λe average effective packet arrival rate
µ average packet service rate
ρ average utilisation factor
P0 probability of having no packet in the queuing system
PN probability of queue overflow
Ls average number of packets in the queuing system
Lq average number of packets in the FIFO queue
Ws average waiting time in the queuing system
Wq average waiting time in the FIFO queue

As the sum of the probabilities of the system state is 1 as shown in equation

(4.4), the probability of having no packet in the queuing system is shown in

equation (4.6). If the number of packets in the queuing system equals N, a new

arriving packet will be dropped due to queue overflow. Thus, the probability of

queue overflow is shown in equation (4.7).

N

∑
n=0

Pn = P0 + P1 + P2 + ... + PN−1 + PN = 1 (4.4)

N

∑
n=0

Pn = P0 + P0× ρ + P0× ρ2 + ... + P0× ρn−1 + P0× ρn =
N

∑
n=0

P0× ρn = 1 (4.5)
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P0 =
1− ρ

1− ρN+1 (4.6)

PN =
(1− ρ)ρN

1− ρN+1 (4.7)

The average number of packets in the queuing system Ls can be determined

using equation (4.8) and (4.9) [115]. The average number of packets in the FIFO

queue Lq can be determined using equation (4.10) and (4.11) [115]. Figure 4.7

compares the difference between the average number of packets in the queuing

system and that in the FIFO queue. For example, in Figure 4.7, the number of

packets in the FIFO queue is 4, while the number of packets in the queuing

system is 5.

Ls =
N

∑
n=0

n× Pn (4.8)

Ls =
ρ− (N + 1)ρN+1 + NρN+2

(1− ρ)(1− ρN+1)
(4.9)

Lq =
N

∑
n=1

(n− 1)× Pn (4.10)

Lq =
ρ2 − NρN+1 + (N − 1)ρN+2

(1− ρ)(1− ρN+1)
(4.11)

Packets arriving  

with an average 

arrival rate λ 

(packet/second)

Finite FIFO queue with 

buffer size N (packet)

Packets departing  

Single server with an average 

service rate μ (packet/second)

Average number of packets in 

FIFO queue Lq

Average number of packets in 

queuing system Ls

Figure 4.7: Difference between the queuing system and the FIFO queue
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Since the probability of queue overflow PN is acquired in equation (4.7), the

λPN represents the average packets dropped due to queue overflow. Thus, the

effective packets arrival rate defined as λe can be calculated with equation (4.12).

The average waiting time in the queuing system Ws can be calculated with

equation (4.13) and the average waiting time in the FIFO queue Wq can be

calculated with equation (4.14). Table 4.6 summarizes the performance

characteristics in system model of Reference Router.

λe = λ− λPN (4.12)

Ws =
Ls

λe
(4.13)

Wq =
Lq

λe
(4.14)

Table 4.6: Performance characteristics in system model of Reference Router
characteristic expression

ρ λ
µ

P0
1−ρ

1−ρN+1

PN
(1−ρ)ρN

1−ρN+1

Ls
ρ−(N+1)ρN+1+NρN+2

(1−ρ)(1−ρN+1)

Lq
ρ2−NρN+1+(N−1)ρN+2

(1−ρ)(1−ρN+1)

Ws
Ls
λe

Wq
Lq
λe

4.3.2 System Model of Frequency Adaptive Router

The System Model of the Frequency Adaptive Router is built based on the

system model of the Reference Router. It is basically the same as the system
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model of the Reference Router except for the average packet service rate as shown

in Figure 4.8.

Packets arriving  

with an average 

arrival rate λ 

(packet/second)

Finite FIFO queue with 

buffer size N (packet)

μ at 

125MHz

μ/2 at 

62.5MHz

μ/4 at 

31.3MHz

μ/8 at 

15.6MHz

μ/16 at 

7.8MHz

Packets departing  

Single server with an average 

service rate μ, μ/2, μ/4, μ/8 or μ/16 

(packet/second)

Figure 4.8: System model of the Frequency Adaptive Router

Since there are five different operating frequencies provided in the Frequency

Adaptive Router, the average packet service rate under different operating

frequencies is different corresponding to the actual routing capacity of the FAR in

Table 4.2. The average packet service rate under five different operating

frequencies in the Frequency Adaptive Router is µ

2K (K = 0, 1, 2, 3 and 4

corresponding to 125 MHz, 62.5 MHz, 31.3 MHz, 15.6 MHz and 7.8 MHz

respectively). Table 4.7 summarizes the performance characteristics in the system

model of the Frequency Adaptive Router.

Table 4.7: Performance characteristics in system model of Frequency Adaptive
Router

characteristic expression
ρ 2Kλ

µ

P0
1−ρ

1−ρN+1

PN
(1−ρ)ρN

1−ρN+1

Ls
ρ−(N+1)ρN+1+NρN+2

(1−ρ)(1−ρN+1)

Lq
ρ2−NρN+1+(N−1)ρN+2

(1−ρ)(1−ρN+1)

Ws
Ls
λe

Wq
Lq
λe
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4.4 Summary

This chapter describes six different frequency control policies in detail. These

frequency control policies are designed to cover a variety of application scenarios

for the Frequency Adaptive Router. Experiments in Chapter 5 will evaluate these

frequency control policies. The two system models of the Reference Router and the

Frequency Adaptive Router are established using the M/M/1/N queuing system,

which can be used to analyze the system performance of the Reference Router and

the Frequency Adaptive Router.
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Chapter 5

Energy Efficiency and Performance

Evaluation of Frequency Adaptive

Router

Experiments are conducted to evaluate the energy efficiency and the

performance of the Frequency Adaptive Router in comparison with the Reference

Router. Each experiment has a unique behavior, purpose and suitability to

investigate and explore the latent relationship among operating frequency,

performance and power consumption. The interaction and interdependency

among these three individual factors then can be interpreted and explained.

To investigate the energy efficiency of the Frequency Adaptive Router,

quiescent power consumption and total power consumption of the Reference

Router and the Frequency Adaptive Router are measured for comparisons. To

examine the performance of the Frequency Adaptive Router, four network

performance measures are considered including peak measured throughput,

round trip time (RTT), packet loss rate and frequency adaptation transition time.

Performance comparisons between the Reference Router and the Frequency
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Adaptive Router are made to analyze the trade-off between the energy efficiency

and the performance.

Section 5.1 describes each evaluation metric in detail. Section 5.2 is

experimental setup for the energy efficiency and the performance evaluation.

While, Section 5.3, 5.4 and 5.5 evaluate the energy efficiency and the performance

of the Reference Router and the Frequency Adaptive Router under different

scenarios, including fixed traffic experiments in Section 5.3, experiments with

synthetic traces in Section 5.4 and integration with other green techniques in

Section 5.5. Section 5.6 summarizes the Chapter.

5.1 Evaluation Metrics

To evaluate the energy efficiency and the performance of the FAR in

comparison with the RR, six evaluation metrics are investigated and examined. In

the energy efficiency category, 1) quiescent power consumption and 2) total

power consumption are measured. While, in the performance category, the four

evaluated metrics are: 3) peak measured throughput, 4) round trip time (RTT),

5) packet loss rate and 6) frequency adaptation transition time. Details about

each evaluation metric are explained below.

5.1.1 Energy Efficiency Metrics

Energy efficiency metrics are measured in terms of power consumption. Power

consumption in a network device is the sum of two components: quiescent power

and dynamic power [117] as given in equation (5.1):

Pt = Pq + Pd (5.1)
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where Pt is the total power, Pq is the quiescent power, Pd is the dynamic power.

Quiescent power is the static power drawn by the device when it is powered up,

configured with user logic but without processing traffic load. Dynamic power is

the power consumed during processing traffic load in the core or I/O of the device

and it is, therefore, operating frequency dependent.

In CMOS technology, the quiescent power is caused by the leakage power in

transistors when the transistors are all placed in off state. The leakage power is

the power consumed by unintended leakage, constantly consuming power. The

state of a transistor (on or off ) is controlled by the gate voltage on the gate terminal.

If this gate voltage is above the threshold voltage (VT), the transistor is placed in

the on state allowing on-current to flow from the source (Vdd) to the drain (ground

(GND)). On the contrary, if this gate voltage is below the threshold voltage (VT),

the transistor is placed in the off state and theoretically no off-current should flow

from the source to the drain. But in reality, the transistors leak off-current between

the source and the drain even if the gate voltage is below the threshold voltage.

The quiescent power can be calculated with equation (5.2)[118]:

Pq = V × Ileak (5.2)

where Pq is the quiescent power, V is the operating voltage and Ileak is the leakage

current. The quiescent power can be also affected by the technology node, the

doping level and the gate oxide thickness in integrated circuits. The technology

node refers to the feature size of an integrated circuit [119, 120]. Static CMOS

gates are used to be very energy efficient and nearly dissipate no power

consumption when placed in off state. However, when the CMOS technology

entered deep-submicron territory in feature size (<180 nm), the leakage power

has increased significantly and accounts for approximately from 20% to 40% in
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total power consumption [121]. Increasing the doping level or decreasing the gate

oxide thickness allow higher on-current for faster transitions but cause higher

leakage off-current.

Compared to the the quiescent power, the dynamic power contributes to

integrated circuits functions and user applications. The dynamic power of a

network device can be modeled as a linear function of the traffic characteristics as

given in equation (5.3):

Pd = AC f V2 (5.3)

where A is the activity factor represents the fraction of the circuit that is switching,

C is the equivalent load capacitance, f is the core operating frequency, and V is the

operating voltage. For a given NetFPGA board, C and V are fixed values and A

is affected by the number of active ports, the instantaneous traffic bit rate and the

forwarding packet size.

The power consumption equation (5.1) is the basis for theoretical analysis. In

operation, the NetFPGA 1G board is a PCI based board and all the power

supplies are derived from the 3.3 V and the 5 V power rails on the PCI bus. The

embedded FPGA chips draw power from the 3.3 V rail of the PCI bus, and the

PHY components are supplied by the 5 V rail. The 3.3 V and 5 V pins of the PCI

bus extender are used to measure the overall current drawn by the 3.3 V and 5 V

powered components on the NetFPGA board mounted on the PCI bus extender.

Hence, the total power consumption can be calculated with equation (5.4):

Pt = I3.3 ∗ 3.3 + I5 ∗ 5 (5.4)
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where Pt is the total power, I3.3 (measured in amperes) is the total current of board

components drawn power from the 3.3 V rail of the PCI bus and I5 (measured in

amperes) is the total current of 5 V powered components.

5.1.2 Performance Metrics

The peak measured throughput is the peak measured rate of successful data

delivery over a real implemented system. In the performance evaluation, it is the

most important metric to be measured because it directly determines the preset

thresholds in the frequency adaptation control policies. Each operating frequency

has an associated traffic throughput threshold beyond which the router will begin

to lose a significant number of packets. The peak measured throughput must be

measured as accurate as possible. Otherwise, the difference between the input

traffic load and the inaccurately preset thresholds could degrade the performance

of the FAR.

The round trip time (RTT) is also an important network performance metric in

the performance evaluation. It is the propagation time for a packet to travel from

a specific source to a specific destination and return back to the source. Measuring

the RTT assists network operators and end users in understanding the network

performance and taking measures to improve the QoS if needed.

To ensure the required QoS, a router should speedily and accurately forward

data packets with no or little packet loss. Packet loss rate is another important

metric adopted in the performance evaluation in the experiments. In the NetFPGA

user data path pipeline, packet loss occurs in four MAC receive queues and four

MAC output queues, but not in any MAC transmit queues. This is because the

transmit queues simply take packets from the corresponding output queues and
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send the packets out through the Ethernet ports. Thus, the total packet loss can be

calculated with following equation:

Lt = Lr + Lo (5.5)

where Lt is the total packet loss, Lr is the total packet loss in the four receive queues,

and Lo is the total packet loss in the four output queues.

Frequency adaptation transition time is closely associated with packet loss. It is

the time required for the FAR to switch from one operating frequency to another.

Experimental results show that, under constant heavy traffic load, longer

transition time could result in greater packet loss, especially during switching

from a lower operating frequency to a higher one. Thus, frequency adaptation

transition time is another important metric in the performance evaluation.

5.2 Experimental Setup

The lab setup is shown in Figure 5.1. The implemented lab setup consists of:

1) two NetFPGA 1G boards, 2) three personal computers (PCs), 3) one Ultraview

PCI bus extender PCIEXT-64U [122], and 4) one National Instruments (NI) data

acquisition (DAQ) USB-6251 [123] for power consumption measurements.

In the experimental setup, one NetFPGA board is configured as a packet

generator (PG) [124], while the other one is configured as the RR or the FAR in

turn for power consumption and performance measurements. The two

experimental NetFPGA boards are both in version 2.1 revision 3. Each of the

NetFPGA board is hosted by a separate PC installed with CentOS version 5.5. The

host PC hardware is a Dell Optiplex 780 equipped with an Intel Core 2 Duo
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processor model E7500 running at 2.93 GHz and a Samsung 4GB DDR3 1333

MHz memory. Another host PC installed with Windows 7 is used for the

LabVIEW software, which collects the power consumption data from the NI USB

DAQ. In order to accurately collect power consumption data, there were no other

applications running on either of these two NetFPGA host PCs.

PG RR or FAR

Host PC for 

PG

Host PC for 

RR or FAR

Host PC for 

Labview

Data

Acquisition

Figure 5.1: Experimental setup

5.2.1 Power Consumption Measurements

Power consumption measurements of the PCI-based NetFPGA 1G board can be

divided into coarse-grained power consumption measurements and fine-grained

power consumption measurements. The coarse-grained power consumption

measurements take the power measurements of the global system, including the

entire host PC and the NetFPGA board, through the main power supply cable

depicted by point 1 in Figure 5.2 with a power consumption measurement device

such as the OWL+USB wireless electricity monitor [125]. And then the power

consumption of the NetFPGA board can be estimated by measurement

comparison of the system without the NetFPGA board running. On the other

hand, the fine-grained power consumption measurements are made through a

dedicated PCI bus extender [122], as shown by point 2 in Figure 5.2.
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Measurement Point 1
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Figure 5.2: Coarse-grained and fine-grained power consumption measurement
methods

Coarse-grained power consumption measurements

Some initial power consumption measurements were taken with this OWL

energy meter to estimate the power consumption of the NetFPGA. These

measurements show that the instantaneous power consumption of the global

system fluctuates among four fixed values (32 W, 48 W, 64 W and 128 W). These

big power consumption fluctuations are most likely due to different working

status of the power-hungry components in the host PC, such as digital versatile

disk (DVD) drives and fans. Since different hardware components in the host PC

can affect the instantaneous power consumption of the host PC, the accuracy of

the power consumption measurements of the NetFPGA board cannot be

guaranteed. Thus, the results of the coarse-grained power consumption

measurements of the NetFPGA board are not reported in the thesis.
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Fine-grained power consumption measurements

To isolate the power consumption of the NetFPGA board, fine-grained power

consumption measurement tools are used as shown in Figure 5.3. The

fine-grained power consumption measurement tools consist of an Ultraview PCI

bus extender PCIEXT-64U, a National Instruments (NI) data acquisition (DAQ)

device USB-6251, and a LabVIEW software. The high speed PCI bus extender

card is plugged into the motherboard slot of the host PC. This smart bus extender

has a 5 V and 3.3 V signalling environment which provides a way to precisely

measure the real-time power consumption of the PCI-based board while the

board is working [126]. The power consumption of the NetFPGA board can be

measured by connecting the voltage supply pins 5 V and 3.3 V on the bus

extender to the corresponding pins on the NI USB DAQ device.

The NI USB DAQ is a USB based high-speed data acquisition device optimized

for superior accuracy at fast sampling rates, which is compatible with LabVIEW

2011 (version 11.0, 32-bit) for measuring and capturing power consumption data.

It provides a link between the input/output signals of the DAQ and the LabVIEW

software running on a host PC. Power consumption data outputs are collected

by the DAQ coupled with its software script on the host desktop computer. The

outputs of the 3.3 V and 5 V voltage supply pins have a one-to-one voltage-to-

current correspondence [122]. Thus, the power consumption of the NetFPGA can

be calculated. This is an accurate and fine-grained measurement method used in

the thesis for power consumption measurements. It provides much more accurate

power consumption measurement data of the NetFPGA board than the coarse-

grained power consumption measurements with OWL meter.
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Figure 5.3: Fine-grained power consumption measurement tools

5.2.2 Performance Measurements

The NetFPGA board provides four external network interfaces to the host

machine operating system: nf2c0, nf2c1, nf2c2 and nf2c3. The NetFPGA

configured as the packet generator is directly connected to the host machine

motherboard through a PCI slot. While, the NetFPGA configured as the Reference

Router or the Frequency Adaptive Router are connected to the PCI slot of the PCI

bus extender, which is mounted on the PCI slot of the host machine motherboard.

To set up the packet routing environment, a user-level software called SCONE is

used to perform IPv4 forwarding, handle ARPs and various ICMP messages

[127]. SCONE has telnet (port 23) and HTTP (port 8080) services to handle router

control and implements a subset of Pee Wee OSPF (PW OSPF). It can also

configure the NetFPGA with the MAC and IP addresses of the four interfaces,

and the routing and ARP tables onto the NetFPGA, which hardware accelerates

the forwarding path.
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The software SCONE can communicate with the NetFPGA hardware using its

corresponding kernel driver. Performance evaluation metrics such as packet loss

can be obtained from SCONE by communicating with the register system that is

built in the NetFPGA hardware. From these memory-mapped I/O registers in the

register system, status information such as the total number of packets received,

dropped and transmitted for each queue can be acquired.

Peak measured throughput and packet loss rate evaluation

To measure the peak measured throughput and the packet loss rate, the

experimental setup is shown in Figure 5.4. All four ports on the packet generator

are connected to the corresponding ports on the Reference Router or the

Frequency Adaptive Router under evaluation. The packet generator is able to

send user specified traffic at any required bit rate up to 4 Gb/s. Network traffic

with different bit rates and packet sizes are generated by the packet generator and

sent from its four Ethernet ports to the corresponding ports on the Reference

Router or the Frequency Adaptive Router. Then, the traffic is routed through the

four Ethernet ports on the Reference Router or the Frequency Adaptive Router

with different operating frequencies, and sent back to the corresponding ports on

the packet generator.

To measure the peak measured throughput, the traffic bit rate on the packet

generator is configured to increase linearly using typical sized packets (64 bytes,

576 bytes and 1500 bytes). When packet loss is detected in the SCONE, the peak

measured throughput is recorded. While, packet loss is measured through the

packet generator output. The output can indicate the total number of packets

transmitted (no packets transmitted) and received (no packets received) on the
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packet generator. The packet loss is calculated as the difference between

no packets transmitted and no packets received.

Host PC for PG

PG

Host PC for RR or FAR 

RR or FAR

Figure 5.4: Experimental setup for peak measured throughput and packet loss rate
evaluation

Round trip time evaluation

To evaluate the round trip time (RTT), the experimental setup is slightly

different from the setup in Figure 5.4. As shown in Figure 5.5, all four ports on

the packet generator are used to measure the round trip time: two ports of the

packet generator are connected directly to one another and the RTT is measured

to provide a baseline RTT reference as RTT0, the other two ports of the packet

generator are connected to the Reference Router or the Frequency Adaptive

Router under test and the RTT is measured as RTT1. The RTT is calculated as the

difference between RTT1 and RTT0.

Frequency adaptation transition time evaluation

The NetFPGA board draws power from both the 3.3 V and the 5 V power rails

of the PCI bus on the host PC through the PCI bus extender. Since the core logic

FPGA draws power from the 3.3 V rail, scaling the operating frequency of the core
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logic FPGA can affect the 3.3 V current. Thus, the frequency adaptation transition

time can be calculated from captured current waveform of the 3.3 V pin of the PCI

bus extender.

Host PC for PG

PG

Host PC for RR or FAR 

RR or FARRTT1

RTT0

Figure 5.5: Experimental setup for round trip time evaluation

5.3 Fixed traffic experiments

The total power consumption of a router is a function of the operating frequency,

the number of active ports, the traffic bit rate and the packet size. To evaluate the

impact of each of these factors on the performance and the power consumption

of the Reference Router and the Frequency Adaptive Router, a series of carefully

designed experiments are conducted.

5.3.1 Quiescent power consumption

The experiments start with measuring the quiescent power consumption of the

Reference Router (RR) and the Frequency Adaptive Router (FAR). The quiescent

power consumption is the power consumption of the RR and the FAR in idle state

when the NetFPGA is configured as the RR or the FAR but without routing any

traffic. To evaluate the impact of the operating frequency and the number of active

ports on the power consumption of the NetFPGA, the RR bitfile and the FAR bitfile
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are downloaded into the core logic FPGA to configure the NetFPGA as a RR and a

FAR in turn for comparison. The four Ethernet ports are activated one by one, and

the power consumption of the RR and the FAR are measured at their supported

operating frequencies. The measurement results in Table 5.1 and 5.2 show that the

power consumption of the RR and the FAR is proportional to the number of active

ports, with approximately 1 W additional power consumption for each activated

port.

Table 5.1: Impact of operating frequency and number of active ports on power
consumption of RR

Active ports
No.

RR Power Consumption (W)
125MHz 62.5MHz

0 6.994 5.333
1 7.841 6.325
2 8.767 7.302
3 9.760 8.373
4 10.725 9.441

Table 5.2: Impact of operating frequency and number of active ports on power
consumption of FAR

Active ports
No.

FAR Power Consumption (W)
125MHz 62.5MHz 31.3MHz 15.6MHz 7.8MHz

0 7.394 6.245 5.592 5.253 5.118
1 8.313 7.092 6.531 6.246 6.109
2 9.149 8.055 7.508 7.250 7.124
3 10.145 9.067 8.564 8.330 8.188
4 11.121 10.117 9.638 9.373 9.237

Figure 5.6 compares the quiescent power consumption of the RR and the FAR

under different operating frequencies (125 MHz and 62.5 MHz) and different

number of active ports. Experimental results indicate that under the same

operating frequency of 125 MHz or 62.5 MHz, the FAR consumes more quiescent

power than the RR. This is due to the fact that an additional frequency division

module module and an additional AFIFO module are integrated into the FAR.

Each additional module incurs additional power consumption. Moreover, for the
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RR, the two SRAMs work synchronously with the core logic FPGA for reading

and writing data at 125 MHz or 62.5 MHz. For the FAR, the core logic FPGA can

be scaled among five different frequencies 125 MHz, 62.5 MHz, 31.3 MHz, 15.6

MHz and 7.8 MHz, but the two SRAMs are working asynchronously with the

core logic FPGA and constantly running at 125 MHz. This means the power

consumption difference between the RR and the FAR at 62.5 MHz is more than

that at 125 MHz, because at 62.5MHz, the two SRAMs run at 62.5 MHz in the RR

and run at 125 MHz in the FAR, although the core logic FPGA processor is

running at the same 62.5 MHz. For example, with 4 active ports at 125 MHz, the

quiescent power consumption of the RR is 10.725 W, while the quiescent power

consumption of the FAR is 11.121 W, and the FAR consumes approximately 3.5%

more quiescent power than the RR. However, with 4 active ports at 62.5 MHz, the

quiescent power consumption of the RR is 9.441 W, while the quiescent power

consumption of the FAR is 10.117 W, and the FAR consumes approximately 6.7%

more quiescent power than the RR.

Figure 5.6: Quiescent power consumption comparison between RR and FAR under
different operating frequencies (125 MHz and 62.5 MHz) and different number of
active ports (from 0 to 4)
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5.3.2 Power consumption under fixed traffic

The traffic characteristics (traffic bit rate and packet size) could also affect the

power consumption of the Reference Router and the Frequency Adaptive router.

As indicated in [128], packets of 64 bytes, 576 bytes and 1500 bytes are typical in

real network links and the packet size profile peaks at 64 bytes and 1500 bytes.

The minimum size of a standard Ethernet packet is 64 bytes. 1500 bytes is the

maximum transmission unit (MTU) for Ethernet. MTU is an important factor for

network throughput and should be as large as possible, because larger MTU

introduces less overhead for payload transmission. In multi-network

environments, if a maximum sized packet travels from a network with a larger

MTU to a smaller MTU network, the packet will have to be fragmented to smaller

sized packets. 576 bytes is the default IP maximum datagram size. It is also the

default conservative packet size that all IP routers should support.

To evaluate the impact of traffic characteristics on router power consumption,

a series of experiments were performed using different operating frequencies (125

MHz, 62.5 MHz, 31.3 MHz, 15.6 MHz and 7.8 MHz), different traffic bit rates (from

100 Mb/s to 1 Gb/s for each link) and different packet sizes (64 bytes, 576 bytes and

1500 bytes). Packet streams are sent from the four ports on the packet generator,

routed through the four ports on the Reference Router or the Frequency Adaptive

router, and back to the corresponding ports on the packet generator. Figure 5.7,

5.8 and 5.9 present the total power consumption of the RR and the FAR under the

same 64, 576 and 1500 bytes packet stream with different operating frequencies

and different aggregated input traffic bit rates. Figure 5.10 presents the power

consumption of FAR under different packet sizes and different traffic bit rates at

125 MHz. Results indicate that power consumption is proportional to the traffic bit

rate and the operating frequency for both the RR and the FAR. Refer to equation
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(5.3), higher traffic bit rate means higher activity factor A which represents the

average number of switching events of the transistors in the chip. Increasing the

operating frequency of a router also increases its power consumption.

Figure 5.7: Power consumption of RR and FAR under different frequencies and
traffic bit rates with 64-byte packet stream

Figure 5.8: Power consumption of RR and FAR under different frequencies and
traffic bit rates with 576-byte packet stream

One key point to be noted is that the power differences between the RR running

at 125 MHz and 62.5 MHz come from the power consumption difference in both

the core logic FPGA processor and the two SRAMs, whereas the power

consumption differences in the FAR only come from the core logic FPGA
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Figure 5.9: Power consumption of RR and FAR under different frequencies and
traffic bit rates with 1500-byte packet stream

Figure 5.10: Power consumption of FAR under different packet sizes and different
traffic bit rates at 125 MHz

processor because the two SRAMs are always running at 125 MHz. Figure 5.7, 5.8

and 5.9 also show that at the same working frequency of 125 MHz or 62.5 MHz,

the FAR consumes more power than the RR, due to the additional AFIFO module

and frequency division modules. Although at the same operating frequency, the

FAR consumes around 6% more power than the RR, experiments with synthetic

traces imitating real traces in the next subsection indicate that the FAR can work

at lower frequencies when the traffic is low, so that it can result in overall power

91



savings of up to 46% in certain typical traffic pattern. For light traffic load, the

FAR can save significant amount of power rather than leaving the routers always

on the maximum operating frequency all the time.

5.3.3 Peak measured throughput

To evaluate the impact of the traffic characteristics and the operating

frequencies on the performance of the Reference Router and the Frequency

Adaptive Router, the link capacity is one of the most important metrics to be

firstly measured. Link capacity is also known as the peak measured throughput.

Figure 5.11 presents the link capacity of the RR and the FAR under different

operating frequencies and different typical packet sizes. Experimental results

show that higher operating frequency and larger packet size could lead to higher

link capacity. A higher frequency produces more cycles per second to fit more

data in per second and it thus provides higher routing capacity. Due to less

overhead incurred by packet head processing, larger packet size typically means

higher routing capacity for routers, or lower power consumption, or both. So it is

advisable to use larger packet sizes whenever possible.

Figure 5.11: Link capacity of RR and FAR under different frequencies and packet
sizes
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5.3.4 Round trip time

The traffic characteristics and the operating frequencies could also affect the

round trip time (RTT). The RTT is measured using the NetFPGA packet generator

[124] to achieve more accurate RTT results due to the fact that timestamping in

packet generator is performed in hardware. Compared with using hardware, the

software RTT measurements, such as PING, involve the process of notifying the

kernel when a packet arrives. Transferring the packet into the kernel introduces a

variable length delay thus limiting the accuracy of the results. In addition, the

RTT measurements are performed by passively measuring the RTT using widely

deployed TCP timestamp options carried in TCP headers. Thus, the hardware

RTT measurements do not need to launch out-of-band Internet Control Message

Protocol (ICMP) echo requests (PINGs), nor to embed timing information in

application traffic.

Figure 5.12: Round trip time of RR and FAR under different frequencies and packet
sizes

Experimental results indicate that the FAR doesn’t affect the RTT. At either 125

MHz or 62.5 MHz, the FAR has the same RTT as the RR. For example, as shown in

Figure 5.12, a packet 64 bytes long has a 2 µs RTT at the same operating frequency
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of 125 MHz for both the RR and the FAR. Experimental results also show that

higher operating frequency and smaller packet size could give rise to a shorter

round trip time. Compared with smaller packet, larger packet has longer RTT

because it takes longer time to buffer and process the packet payload. For example,

as shown in Figure 5.12, a packet 64 bytes long has a 2 µs RTT, while a packet 1500

bytes long has a 16 µs RTT at the same operating frequency of 125 MHz for the RR.

5.3.5 Packet loss rate

The traffic characteristics and the operating frequencies also affect the packet

loss rate. Figure 5.13, 5.14 and 5.15 presents the packet loss rate of the RR and the

FAR under the 64 bytes, 576 bytes and 1500 bytes packet streams with different

operating frequencies and different aggregated input traffic bit rates.

Experimental results indicate that, for both the RR and the FAR, the packet loss

rate is proportional to the traffic bit rate. Besides, higher operating frequency

could reduce packet loss rate.

Figure 5.13: Packet loss rate of RR and FAR under different frequencies and
different traffic bit rates with 64-byte packet stream
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Figure 5.14: Packet loss rate of RR and FAR under different frequencies and
different traffic bit rates with 576-byte packet stream

Figure 5.15: Packet loss rate of RR and FAR under different frequencies and
different traffic bit rates with 1500-byte packet stream

5.3.6 Frequency adaptation transition time

When toggling the operating frequency of the NetFPGA between 125 MHz and

62.5 MHz on the Reference Router, the frequency switching causes a board reset

(which takes about 2 ms) [34, 129] and all the buffered packets are lost. In the
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Frequency Adaptive Router, three additional frequencies, 31.3 MHz, 15.6 MHz and

7.8 MHz are introduced for more finely tuned frequency scaling. The board reset

problem is also eliminated without significant extra packet processing delay and

loss. Since the RR does not provide dynamic frequency scaling capability and

all the buffered packets are lost during the board reset, the Frequency Adaptive

Router outperforms the Reference Router from the frequency adaptation transition

time point of view.

As mentioned in the experimental setup, the NetFPGA board draws power from

both the 3.3 V and 5 V power rails of the PCI bus on the host PC through a PCI

bus extender. The real time 3.3 V current and 5 V current can be measured from

the PCI bus extender. To calculate the frequency adaptation transition time, the

samples of the 3.3 V current are the focus. This is because scaling the operating

frequency mainly affects the 3.3 V current, since the core logic FPGA draws power

from the 3.3 V rail. The PHY components draw power from the 5 V rail which is

not affected by the frequency scaling of the core logic FPGA.

Figure 5.16 is an example of adapting the operating frequency of the Frequency

Adaptive Router from 7.8 MHz to 15.6 MHz. As shown in the Figure 5.16, when the

Frequency Adaptive Router is operating at 7.8 MHz with a very low aggregated

traffic load of 108 Mb/s, the 3.3 V current reading is around 0.78 A. Once the traffic

load is increased from 108 Mb/s to 228 Mb/s at time 5.62 ms, the 3.3 V current is

increased to around 0.82 A immediately corresponding to the current drawn at 15.6

MHz. The maximum throughput that the FAR can handle when operating at 7.8

MHz is 156 Mb/s and the maximum throughput that the FAR can handle when

operating at 15.6 MHz is 296 Mb/s. Thus, the FAR switches to 15.6 MHz when

the traffic load is increased from 108 Mb/s to 228 Mb/s. The frequency transition
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time, calculated from the captured current waveform of the 3.3 V pin on the PCI

bus extender, is from around 0.3 ms to around 0.5 ms.
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Figure 5.16: An example of frequency adaptation transition time calculation

Time stamp is recorded for each sample of the 3.3 V current data collected.

After scaling up and down between two different operating frequencies, the

collected 3.3 V current data are exported to a file. Frequency switching will result

in significant current change. By locating the starting and ending time stamps of

significant current change, the duration of frequency switching can be

determined. The transition time of frequency switching can be calculated with

following equation:

Ts =
Tc2 − Tc1

764000
(5.6)

where Ts is the transition time, Tc1 is the starting time stamp for significant increase

or significant decrease of current, while Tc2 is the ending time stamp of significant
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current change, and 764000 denotes the sampling rate. In this equation, Tc1 and

Tc2 can be tracked and obtained from the captured 3.3 V current data. Thus, Ts

can be calculated and the results are shown in Table 5.3. The frequencies in the

column of the table represent the operating frequencies the FAR switches from.

The frequencies in the row represent the frequencies the FAR switches to. The

frequency adaptation transition times in the two directions are different due to

the readings from the 3.3 V current samples may vary slightly resulted from the

effect of noise. However, all the frequency adaptation transition times are in the

same magnitude, ranging from around 0.3 ms to around 0.5 ms as expected. With

frequency adaptation control policies implemented in hardware, the FAR reduces

the frequency adaptation transition time by up to 85% compared to the frequency

adaptation transition time of the RR (2 ms).

Table 5.3: Frequency adaptation transition time of FAR (from column to row)

Frequency
Transition time (ms)

125MHz 62.5MHz 31.3MHz 15.6MHz 7.8MHz
125MHz 0 0.348 0.329 0.297 0.352
62.5MHz 0.306 0 0.273 0.316 0.405
31.3MHz 0.302 0.344 0 0.332 0.362
15.6MHz 0.358 0.263 0.323 0 0.299
7.8MHz 0.291 0.337 0.488 0.293 0

Implementation of frequency adaptation control policy in software is slow

compared to dedicated hardware implementation. The dedicated hardware

makes an enormous difference in the speed of time-sensitive operations,

providing a significant utilisation monitoring advantage over software.

Frequency transition time on software implementation of a frequency adaptation

control policy consists of the delay in software reading the buffer usage,

frequency selection according to a frequency adaptation control policy and setting

the appropriate frequency control register, which involves communications
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between hardware and software through reading and writing registers. For

example, as reported in [69], in theory, the transition time of the adaptive link rate

(ALR) is significantly reduced to 1 ms through a newly defined handshake

mechanism. However, the rate adaptation control policy of the ALR is

implemented using software based utilisation monitoring and buffer thresholds.

The actual transition time ranges from 10 ms to 100 ms due to software

constraints. The transition time in the work [34] built on the NetFPGA Reference

Router, is slightly longer (3.4 ms) than that in the Reference Router (2 ms) [34]

[129]. In the work [39], the transition time of adapting the link rates of Ethernet

ports is reported to be approximately 2 s, however, the transition time of

frequency scaling is not measured.

The power savings from green approaches are mostly achieved at the cost of

transition time overhead. The transition time is the time difference between the

time when the request for a new state is issued and the time when the request is

entered. Transition from one state to another can lead to potential performance

degradation, especially in the case of transition from a lower capacity state to

higher ones. Longer transition time can result in higher network delay and even

severe packet loss during the transition. The transition time in a hardware

implementation eliminates the delay in communications between hardware and

software. The frequency adaptation control policies of the FAR are directly

implemented in hardware. This involves building hardware modules and adding

corresponding software instructions to incorporate with the hardware modules.

Experimental results indicate that the transition times of the FAR range from 0.3

ms to 0.5 ms.
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5.4 Experiments with synthetic traces

To better evaluate the energy efficiency and performance of the proposed

Frequency Adaptive Router, synthetic traces with application mix of TCP and

UDP traffic (including the Internet’s most popular applications HTTP, FTP, Email,

DNS, SNMP, streaming media, etc.) were constructed. The synthetic traces imitate

the real traffic trace patterns from a border router in the Princeton University

campus network [130]. Figure 5.17 shows a clear link traffic volume diurnal

pattern. In this diurnal pattern, the maximum traffic bit rate is approaching 649

Mb/s between 15:00 and 17:00, and the average traffic bit rate is about 280 Mb/s.

Figure 5.17: Link traffic bit rate diurnal pattern

To quantify the benefits brought from the dynamic frequency scaling technique,

a synthetic traffic replicating the traffic pattern in Figure 5.17 is routed through

the Reference Router and the Frequency Adaptive Router in turn for power

consumption and performance comparison. With the same traffic pattern,

Figure 5.18 presents the corresponding operating frequencies of the RR and the

FAR (Single Threshold Policy) for the day. As shown in Figure 5.18, the upper red
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line at 125 MHz represents the RR is constantly working at 125 MHz. The lower

blue curve demonstrates frequency adaptation from time to time in the FAR,

indicating that the FAR is capable of adapting to appropriate frequencies in

response to the instantaneous traffic load.

Figure 5.18: Operating frequency of RR and FAR corresponding to traffic trace in
Figure 5.17

Figure 5.19 depicts the corresponding power consumption of the RR and the

FAR for the day. Since the RR is running at the fixed frequency of 125 MHz, the

power consumption of the RR (the upper red curve) fluctuates only in response to

the traffic characteristics. However, the power consumption of the FAR (the lower

blue curve) fluctuates in response to both traffic characteristics and operating

frequencies. The difference between these two curves reveals the power savings

from the DFS technique, which indicates that the FAR dynamically adapts the

operating frequency of the core FPGA processor among five different frequencies

in response to the instantaneous traffic load, rather than leaving the routers

running at the highest frequency all the time.
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Figure 5.19: Power consumption of RR and FAR corresponding to traffic trace in
Figure 5.17

If a fixed operating frequency is used throughout the day, a high frequency will

ensure negligible packet loss, even during the peak period from 15:00 to 17:00

hours in Figure 5.17, at the expense of high energy consumption. Adapting the

operating frequency in accordance with one of the control policies described in

Chapter 4 results in considerable energy savings. The resulting graph of

operating frequency versus time is shown in Figure 5.18 for the STP frequency

adaptation control policy. Broadly similar results were obtained for the other two

dynamic frequency adaptation control policies. The aggregate duration in each

frequency mode for different dynamic frequency adaptation control policies are

shown in Table 5.4. The second highest available operating frequency (62.5 MHz)

was selected for an aggregate of 9 hours and 58 minutes during the day, and the

highest frequency (125 MHz) for about 4 hours and 29 minutes. Lower

frequencies were needed for the remaining approximately nine and a half hours

of the day. This results in a significant power saving. The resulting power savings

of the Frequency Adaptive Router with different frequency adaptation control

policies are shown in Table 5.5.
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Table 5.4: Aggregate duration in each frequency mode

Frequency
STP DTP PLAP

Time Ratio Time Ratio Time Ratio
125MHz 4h29m 18.7% 4h43m 19.7% 4h49m 20.1%
62.5MHz 9h58m 41.5% 9h56m 41.4% 9h47m 40.8%
31.3MHz 5h46m 24.0% 5h47m 24.1% 5h50m 24.3%
15.6MHz 3h17m 13.7% 3h09m 13.1% 3h12m 13.3%
7.8MHz 0h30m 2.1% 0h25m 1.7% 0h22m 1.5%

5.5 Network wide global green techniques

Dynamic frequency scaling provides active performance scaling feature to

achieve energy proportional routing, which is an appropriate energy saving

approach for network routers given that their connections have to be always on to

deal with routing protocols and unpredictable traffic. However, the energy

efficiency improvement from dynamic frequency scaling is usually less than that

can be achieved from the Ethernet port shutdown. There are challenges to

applying Ethernet port shutdown in core routers because, compared to active

performance scaling, it takes more time and power to switch between the on and

off state of an Ethernet port. Predicting the idle period of a link in a core router

and adapting to the appropriate state is still difficult. The end routers such as

home routers, on the other hand, usually follow human behavior and Ethernet

ports can be shutdown when people are at sleep to achieve more power savings.

Through green traffic engineering [131] [132], more power consumption can be

saved by rerouting traffic to other ports when traffic on a port is low, and turning

off the port. Disabling each port can save around 1 W and turning off the ports at

both ends of the connection can save around 2 W. For the NetFPGA router, turning

off all four Ethernet ports can save around 4 W, while scaling down the frequency

from 125 MHz to 7.8 MHz while keeping all four Ethernet ports active can only

save a maximum of around 2.2 W. Thus, traffic rerouting through network wide
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energy-aware traffic engineering coupled with disabling Ethernet ports is a more

effective way to reduce power consumption.

An Ethernet port shutdown module is integrated into the Frequency Adaptive

Router to disable an Ethernet port when there is no traffic going through the port

for a period of time. With this module, the router can save significant power

compared to leaving Ethernet ports fully on all the time. In the Ethernet port

shutdown module, several byte counters are introduced to count the number of

bytes passing through each Ethernet FIFO queue. The Ethernet ports can be

controlled by a network level power management technique. Energy aware traffic

engineering is a promising network level technique to manage the routing path

and disable the Ethernet ports as many as possible without significant packets

delay and loss. If a network level technique is involved, network wide

coordination such as the green abstract layer (GAL) [133] is compulsory. The GAL

can provide advanced power management capabilities to decouple distributed

high level algorithms from heterogeneous hardware.

For Ethernet port shutdown, the control policy combines a network level

power management technique with a local level approach. Ethernet port

shutdown should be controlled at a higher level by a network wide global power

management policy with energy aware traffic engineering capability, so that

traffic destined for a port can be diverted to other active ports to enable the safe

shut down of a port. Otherwise, a sudden surge of traffic to a disabled port can

result in significant packet loss, as the disabled port will be unable to be turned on

quick enough when new packets arrive. With energy aware traffic engineering,

the disabled port is able to be woken up in advance allowing traffic to traverse the

port again. The energy aware traffic engineering is performed at a scheduler to

decide when to safely enable or disable every Ethernet port. Figure 5.20 presents
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a simple example of energy aware traffic engineering. Suppose router A needs to

send 300 Mb/s aggregate traffic to router E. To prevent network congestion from

traffic burst, traditional routing with load balancing may split the 300 Mb/s traffic

into 100 Mp/s for each of the three links as shown in Figure 5.20 (a). Whereas,

energy aware traffic engineering reroutes and aggregates the 300 Mb/s traffic

from three separate links (each link 100 Mb/s) to one single link (300 Mb/s), so

that the Ethernet ports on the two links without traffic can be disabled for a

period of time to achieve more power savings as shown in Figure 5.20 (b).

(a) Traditional Load Balancing Routing

300Mbps

(b) Energy Aware Traffic Engineering

300Mbps

100Mbps 100Mbps

100Mbps

100Mbps 100Mbps

100Mbps 300Mbps 300Mbps

300Mbps 300Mbps

B

A A

B

CC

DD

E E

Figure 5.20: Difference between traditional load balancing routing and energy
aware traffic engineering

If the Frequency Adaptive Router is in idle state and no traffic is being

processed, all four Ethernet ports on the FAR can be disabled and its operating

frequency is switched to the lowest frequency 7.8 MHz. In this state, the power

consumption of the FAR is 5.118 W. If this 5.118 W power consumption state of

the FAR is compared to the 10.725 W power consumption state of the RR running

at 125 MHz with all four Ethernet ports on, there is a power saving of up to 52%.

Table 5.5 summarizes the average total power consumption for the experiments

with 24 hours synthetic traffic traces in Figure 5.17. The RR has the highest power

consumption of 11.750 W. The FAR with PLAP consumes the least power

consumption of 10.565 W and saves 10.09% power consumption compared with
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that of the RR. The differences of power consumption among the three different

dynamic frequency adaptation control policies in the FAR are small, because the

differences only come from different number of transitions. However, if dynamic

frequency scaling (DFS), traffic rerouting through network wide green traffic

engineering (GTE) and Ethernet port shutdown (EPS) are all implemented, up to

46% power consumption can be saved in this specific experiment. Table 5.6

summarizes the control policy for the specific DFS, GTE and EPS implementation

on the FAR in detail.

Table 5.5: Average total power consumption for the day
Type Average total power (W) Power Saving (%)
RR 11.750 0%

FAR with STP 10.565 10.09%
FAR with DTP 10.568 10.05%

FAR with PLAP 10.569 10.04%
FAR with DFS,GTE&EPS 6.321 46.04%

Table 5.6: Control policy for DFS, GTE and EPS implementation on FAR
aggregated traffic control policy for aggregating 4 ports traffic

(Mbp/s) (number of active ports and operating frequency)
0 to 232 from 4 ports to 1 port at 7.8 MHz

233 to 468 from 4 ports to 1 port at 15.6 MHz
469 to 952 from 4 ports to 1 port at 31.3 MHz
953 to 1876 from 4 ports to 2 ports at 62.5 MHz
1877 to 2000 from 4 ports to 2 ports at 125 MHz
2001 to 3000 from 4 ports to 3 ports at 125 MHz
3001 to 4000 DFS, GTE and EPS are not implemented

5.6 Summary

This chapter describes the experimental setup and the metrics used for the

energy efficiency and performance evaluation of the RR and the FAR. The power

consumption of the RR and the FAR are measured with fine-grained power

consumption measurements through a dedicated PCI bus extender. The
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performance of the RR and the FAR under different traffic bit rates, different

packet sizes and different operating frequencies are measured and compared in

detail. Frequency adaptation control policies governing the dynamic frequency

adaptation of the FAR are also evaluated and discussed.

It is concluded that, for quiescent power consumption and total power

consumption, the FAR consumes less power than the RR by up to 52% and 46%

respectively. Compared to the RR, the power savings from the FAR are achieved

at the expense of less peak measured throughput about 4% and more packet loss

rate about 4%. However, the FAR shares the same round trip time as the RR. With

frequency adaptation control policy implemented in hardware, the FAR reduces

frequency adaptation transition time by up to 85% compared to the RR. Table 5.7

summarizes the results.

Table 5.7: Summary of power consumption and performance comparisons
between the Reference Router and Frequency Adaptive Router

Metric Name Comparison Result
Quiescent Power Consumption FAR less than RR by up to 52%

Total Power Consumption FAR less than RR by up to 46%
Peak Measured Throughput FAR less than RR about 4%

Round Trip Time FAR the same as RR
Packet Loss Rate FAR more than RR about 4%
Transition Time FAR less than RR by up to 85%

As indicated in Table 5.5, through dynamic frequency scaling, up to 10% power

consumption can be saved for a typical daily traffic pattern. However, if local

dynamic frequency adaptation and network wide global green techniques, such as

energy aware traffic engineering and Ethernet port shutdown, are used together,

up to 46% power consumption can be saved for the typical daily traffic pattern.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

The NetFPGA 1G board is a research platform with open source hardware and

software. Developers can start with the provided NetFPGA packages and modify

them to design and implement their own mechanisms or algorithms with new

custom modules. A green Frequency Adaptive Router with energy proportional

routing capability is prototyped on the NetFPGA Reference Router. This is

accomplished by integrating a custom frequency division module and an AFIFO

module into the Reference Router. The custom frequency division module in the

DCM provides advanced clocking capability which can generate new clock

frequencies by dividing source clock frequency with different allowed divisors.

Three additional operating frequencies (31.3 MHz, 15.6 MHz and 7.8 MHz) in the

Frequency Adaptive Router are derived from the source clock 125 MHz with

three frequency divisors (4, 8 and 16). The AFIFO module is added to eliminate

the board reset problem, allowing the core logic FPGA in the Frequency Adaptive

Router to adapt its operating frequencies in response to the instantaneous traffic

load on the fly.
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Based on the proposed prototype, this work further investigates and examines

the fine-grained energy proportional DFS technique at the five different operating

frequencies with different number of active ports, traffic bit rates and packet sizes,

which can be used to better quantify the energy savings from DFS scheme. The

research carried out in this work was part of the European FP7 ECONET project,

which has resulted in an European Telecommunications Standards Institute (ETSI)

standard 203-237.

Experimental results indicate that dynamic frequency scaling can effectively

reduce the power consumption of hardware components inside a network router

by up to 10%. Control policies governing frequency adaptation are based on

current traffic levels while avoiding performance degradation such as increased

network delay and packet loss. When traffic load is low, power consumption of

the router can be reduced by switching to a lower operating frequency with lower

routing capacity without performance degradation. In the case of no traffic to be

handled, the router can be switched to an idle state and shut down the Ethernet

ports, which can result up to 52% of power savings. Experiments with synthetic

traces that reflect traffic pattern in real network traffic traces indicate that up to

46% of power savings can be achieved by integrating dynamic frequency scaling

with Ethernet ports shutdown and energy aware traffic engineering. The

frequency adaptation control policies of the FAR are implemented in the

NetFPGA hardware, which reduces the frequency adaptation transition time by

up to 85% compared to software implementation. Although these numbers relate

to a specific NetFPGA implementation, the design principles are of general

application and can be deployed in commercial hardware to significantly lower

its power consumption.
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6.2 Future Works

The same frequency adaptation mechanism implemented on the Frequency

Adaptive Router can be also implemented on the NetFPGA OpenFlow switch. In

the ECONET project, a green abstract layer (GAL) is designed to provide a

standard interface between data and control planes for exchanging information

regarding the power status of a device. GAL can centrally control the Frequency

Adaptive Router. In the follow-on H2020 project INPUT, the Frequency Adaptive

OpenFlow switch will be combined with a distributed software router (DROP)

and the Green Abstract Layer (GAL) to build an advanced green OpenFlow

switch system in future works.

A level of 95% threshold in the STP frequency adaptation control policy was

chosen for consistency with prior work on ALR, as was the 10 ms sampling period.

These choice of parameters involves tradeoff between energy saving and packet

loss rate. A sensitivity analysis of the selection of threshold values, related packet

loss rate and the amount of hysteresis required will be undertaken in future works.

There are also other ways to reduce the power consumption of the Reference

Router, such as clock gating. A BUFGCE is a submodule in the BUFGMUX

available in virtex II Pro FPGA. The BUFGCE is a global clock buffer

incorporating a smart enable function that avoids output glitches or runt pulses.

If the BUFGCE input is inactive (Low) prior to the incoming rising clock edge, the

clock pulse does not pass through the clock buffer. With BUFGCE, clock gating

will be investigated and examined in future works.
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Appendix A

List of Publications

Publications included in the thesis in chronological order:

Journal

� Feng Guo, Olga Ormond, Leonardo Fialho, Martin Collier and Xiaojun

Wang. ”Power consumption analysis of a NetFPGA based router.” The

Journal of China Universities of Posts and Telecommunications, Elsevier.

2012, 19: 94-99.

� Feng Guo, Xiaojun Wang, Mei Song, Yifei Wei, Olga Ormond and Martin

Collier. ”Greening the NetFPGA reference router.” Energies,

Multidisciplinary Digital Publishing Institute Publishing. 2016, 9(7), 500.

Conference

� Feng Guo, Olga Ormond, Martin Collier and Xiaojun Wang. ”Power

measurement of NetFPGA based router.” 2012 IEEE Online Conference on

Green Communications (GreenCom). IEEE, 2012: 116-119.
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� Jie Jin, Lingling Sun, Feng Guo and Xiaojun Wang. ”Low power design for

on-chip networking processing system.” 2015 28th IEEE International

System-on-Chip Conference (SOCC). IEEE, 2015: 154-159.

� Feng Guo, Mei Song, Yifei Wei, Luigi Sambolino, Pengcheng Liu, Xiaojun

Wang and Martin Collier. ”Green Precision Time Protocol Router Using

Dynamic Frequency Scaling.” International Conference on Human Centered

Computing, Springer International Publishing. 2016: 104-115.

Publications not included in the thesis in chronological order:

Journal

� Yousheng Zhou, Junfeng Zhou, Feng Wang and Feng Guo. ”An Efficient

Chaotic Map-Based Authentication Scheme with Mutual Anonymity.”

Applied Computational Intelligence and Soft Computing, Hindawi. 2016.

Conference

� Ming Zhao, Tao Luo, Guangxin Yue, Xiaojun Wang and Feng Guo.

”Multiuser power control with competitive market equilibrium.” Wireless

Communications & Signal Processing (WCSP), 2012 International

Conference on. IEEE, 2012: 1-5.

� Tom Molloy, Xing Zheng, Olga Ormond, Feng Guo and Xiaojun Wang.

”Power consumption in a zfilter publish/subscribe based forwarding

node.” Information and Communications Technologies (IETICT 2013), IET

International Conference on. IET, 2013: 14-20 (Best paper award).
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� Yifei Wei, Xiaojun Wang, Feng Guo, Gabriel Hogan and Martin Collier.

”Energy saving local control policy for green reconfigurable routers.” 2015

IEEE International Conference on Communications (ICC). IEEE, 2015:

221-225.
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