

Atalanta:

The autonomous analytical algal toxin platform

I. Maguire¹, J. Fitzgerald¹, B. Heery¹, C. Murphy², C. Nwankire³, R. O'Kennedy², J. Ducrée⁴ and F. Regan¹

¹School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland ²School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland ³Marine Environmental Sensing Technology Hub, Dublin City University, Glasnevin, Dublin 9, Ireland

1.Introduction: general Toxicology

- What is a Toxin?
 - According to Merriam-Webster:

"A <u>poisonous substance</u> that is a specific <u>product of the metabolic activities of a living organism</u>. It is <u>usually very unstable and toxic</u> when introduced into the tissues. It also typically capable of inducing antibody formation".

Physicist

BAD*

*Should probably develop some sensors then?

Of course you should!....

1.Introduction: Microcystin

MICROCYSTIN:

Produced from: *Microcystis Aeruginosa,*

freshwater cyanobacteria

Classification: Potent hepatotoxin

(hepato = Liver)

Predominant Congener:

Microcystin-LR (also most toxic variant)

COOH HN MeO NH_2 Microcystin-LR Chemical structure

Regulator limit in drinking water: $1 mg mL^{-1}$

It results from harmful algal blooms which can cause ecological and economical disasters

1.Introduction: Microcystis Aeruginosa Blooms

Lake Erie in October 2011: the lakes worst cyanobacteria blooms in decades. Caused by eutrophication

Lake Erie in July 2015:

1.Introduction: Detecting Microcystin

Methods of detection

Surface plasma resonance (SPR)

 $LOD = 1.7 \text{ng mL}^{-1}$

Protein phosphatase Inhibition (PPI)

 $LOD = 1.5 \text{ng mL}^{-1}$

Enzyme-linked immunosorbent assay (ELISA)

 $LOD = 1ng mL^{-1}$

High-performance liquid chromatography (HPLC)

 $LOD = 1ng mL^{-1}$

Atalanta: Microfluidic toxin-sensing system

 $LOD^* = 8 \text{ ng mL}^{-1}$

^{*} This is the current Limit of detection (LOD) projection according to the latest sample recordings

2-Atalanta system concept

2-Atalanta system concept: Lab-On-A-Chip Vs. Lab-On-A-Disc platforms

Lab-On-A-Chip

- Requires accurate pumping mechanisms, often at very high cost
- Chip is stationary for studies
- Easier to simulate and control fluid flow

Lab-On-A-Disc

- Requires a motor, often relatively inexpensive
- Disc is in motion for studies
- More difficult to simulate and control fluid flow

Cost was a major factor in this project: Lab-On-A-Disc platform was selected

2-Atalanta system concept: Lab-On-A-Disc platform

Disc Hydrodynamic forces for particle sedimentation

Forces on acting on a rotating disc

Particle sedimentation through a fluid on anti-clockwise rotating disc

2-Atalanta system concept: Introduction to Atalanta system

• The Atalanta System consists of two components.

The Atalanta Microfluidic Disc

The Atalanta Sensing system

2-Atalanta system concept: detection format

2-Atalanta system concept: Microfluidic Disc

The Atalanta Microfluidic Disc:

- On-board microfluidics (Lab-On-A-Disc platform)
- Manufactured from poly(methyl methacrylate) (PMMA)
 (Radionics™) and pressure sensitive adhesive
 (Adhesives Research Inc. ™)
- Easily modifiable
- Microcystin-LR detection: 5-step assay.
- High sensitivity
- Low sample size
- Cheap to manufacture

2-Atalanta system concept: Microfluidic Disc

2-Atalanta system concept: Sensing System

The Atalanta Sensing system:

- 3D-Printed fluorescent detection system
- Casing manufactured from acrylonitrile butadiene styrene (ABS)
- Detection system developed in-house.
- Easily modifiable
- Microcystin-LR detection: Alexa fluor 647
- Powered by mains
- Communications either via USB to PC or with Wireless dongle (in-house model)

2-Atalanta system concept: Sensing System

3-Atalanta system experiments

3-Atalanta system experiments: Off-Site Fluidic studies

The fluidic movement can be studied to confirm fluid is obeying the assay procedure correctly

Spin stand with computer observation

3-Atalanta system experiments: Off-Site Fluidic studies

The Atalanta Microfluidic disc in action. The disc is loaded into the previous shown Spin stand with computer observation

3-Atalanta system experiments: Automation of microfluidic actuation

3-Atalanta system experiments: Automation of microfluidic actuation

Video of automation by dissolvable film (DF) valve opening by pulsing motor speed

3-Atalanta system experiments: Initial* microcystin detection results

^{*}Requires significant more testing and optimisation, but demonstrates detection function.

3-Atalanta system experiments: Fluorescent Microscopy images of test reservoirs

4-conclusions: Summary of the Atalanta system

- The Atalanta detection system is:
 - A highly sensitive and portable toxin detection system.
 - A flexible and easily modifiable system
 - An easy-to-use and cost effective solution to *in-situ* toxin detection
 - The first step in developing a fully autonomous and in-situ toxin detection system

Acknowledgements

Dr. Jenny Fitzgerald Brendan Heery Dr. Caroline Murphy Dr. Charles Nwankire Prof. Jens Ducrée

Prof. Richard O' Kennedy Prof. Fiona Regan MESTECH

