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Abstract: Raymond Moran: investigating the 

linear and non-linear mechanisms of protein 

coding innovation across the animal kingdom 
 

In this thesis, evolutionary models and frameworks for studying protein coding 

sequence evolution in the Metazoa are explored. The Metazoa refers to all 

multicellular animals. The models and frameworks applied are phylogeny and 

network based – we propose that both approaches are necessary to understand the 

various mechanisms of protein evolution that can be involved in protein family 

evolution. Firstly, we apply a phylogenetic approach to assess whether the additional 

parameterisation and computational requirements associated with heterogeneous 

modelling can be justified in terms of model fit and adequacy. The question addressed 

in Chapter 2 is whether we can accurately and adequately model the position of the 

placental mammal root. We show that model misspecification has resulted in the 

conflicting positions for the root of the placental mammal phylogeny in the recent 

literature. Therefore, inadequate models can result in wrong inferences about the 

evolutionary history of the sequences. Indeed, phylogenetic models may not be 

appropriate for the evolutionary process at work, for example in the case of 

recombinatorial processes. Therefore, Chapters 3 and 4 focus on the application of 

network theory, and specifically sequence similarity networks, to model the evolution 

of protein coding sequences by gene fission/fusion and domain shuffling – referred to 

throughout as gene remodelling events. Little is known about the contribution of these 

remodelling events in protein evolution and in the evolution of the Metazoa in 

particular. These are innovations in the protein coding sequences that are brought 

about by shuffling of regions of DNA from different proteins (this is not direct 

descent with modification and therefore not strictly phylogenetic in nature as it 

requires multiple roots on the phylogenetic tree). In this thesis, we describe the 

application of phylogenetic and network based models of protein coding evolution to 

sequence data from all major groups across the Metazoa and we define the basic 

characteristics and rules for gene remodelling in the Metazoa. 
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Thesis Aims 
 

(1) To assess the impact of model misspecification and heterogeneous modelling 

in phylogeny reconstruction – Chapter 2 

We wished to establish a data driven method for phylogeny reconstruction using 

currently available homogenous and heterogeneous model based software. Using the 

case of the root of the placental mammal tree, we sought to determine if model 

misspecification has been a primary cause of the conflict in resolving the root of the 

placental phylogeny. Secondly, we wished to determine if heterogeneous modelling 

can resolve the problem. These aims have been completed and the results have been 

published in Moran et al. (2015) and (Tarver et al. 2016).  

 

(2) To investigate protein-coding innovation by gene remodelling (gene fusion 

and gene fission) in the animal kingdom – Chapter 3 

We wished to investigate the role of gene remodelling in creating novel protein 

coding genes in the animal kingdom. We wished to quantitatively survey the family 

expansions and contractions at each node across the Metazoa. We also wanted to 

establish the rate at which these expansions and contractions occur and we wished to 

time these events in relation to the fossil record for animals. Finally, we wanted to 

assess how specific expansions and contractions correlate with function and major 

phenotypic innovations. The results of Chapter 3 are in preparation for publication 

(Moran Raymond J. et al. 2017). 

 

(3) To investigate the role of domain shuffling in protein coding genes across the 

animal kingdom – Chapter 4 

Using network theory, we wanted to investigate how functional domains form protein 

coding modular proteins. Using these networks, we wished to compare the network of 

remodelled genes to the network of non-remodelled genes from Chapter 3. We 

wanted to understand if some domains are more promiscuous than others and what are 

the rules around combinations of domains permitted/retained in animal proteins. 
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Chapter 1 – Introduction 
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1.1 Molecular innovation 
It is intuitive that gene gain can drive molecular innovation. For example, the 

emergence of new genes by gene duplication (Zhang 2003), point mutation (Imwong 

et al. 2003), and horizontal gene transfer (Blomme et al. 2006), amongst other 

mechanisms (Long 2001)have resulted in novel phenotypes. However, loss is also a 

powerful effector of phenotype and protein coding and regulatory element loss have 

been shown to play a substantial role in the evolution of novel phenotypes (Smith et 

al. 2015), e.g. a point mutation causing the loss of an enhancer from the human 

Androgen Receptor has resulted in the emergence of a novel phenotype - a lack of 

penile spines in human (McLean et al. 2011).  

 

In this thesis, we focus entirely on the study of protein coding element evolution and 

modelling the origin and evolutionary history of protein coding gene families. 

Specifically, we examine the emergence of novel protein coding gene families, 

patterns of gene duplication and loss, and gene remodelling (by domain shuffling and 

fusion/fission). Novel protein coding gene families can arise from existing genes by 

gene duplication, and also by recombinatorial processes, such as remodelling existing 

protein coding genes (McClintock 1950, Kaessmann et al. 2002, Bashton and Chothia 

2007, Hoen and Bureau 2015). Novel gene families can also arise from various types 

of non-coding DNA by de novo gene genesis (Tautz and Domazet-Lošo 2011, 

Schlötterer 2015) but these are not examined here. Therefore, modelling of the 

emergence of new genes in sequence space can follow tree-like processes (e.g. 

duplication and loss of genes) or non-tree-like processes (e.g. introgression and gene 

remodelling). It is widely accepted that non-tree-like mechanisms of evolution like 

Horizontal Gene Transfer (HGT) are dominant in prokaryotes (Frost et al. 2005) and 

to a lesser extent in eukaryotes (Keeling and Palmer 2008).  

 

1.2 Tree-like mechanisms of protein coding gene evolution 
Tree-like mechanisms of protein coding gene evolution include insertion, deletion, 

point mutation, and gene duplication and loss. They are tree-like because their 

evolutionary history is the result of descent with modification, parent genes either 

duplicating or mutating to form new genes. In Chapter 3 of this thesis the tree-like 
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mechanism on which we focus on is gene duplication and loss. Gene duplication is a 

major mechanism of molecular innovation (Tautz and Domazet-Lošo 2011), and is 

abundant in eukaryotic genomes (Kaessmann 2010). Both DNA-mediated and RNA-

mediated duplication occur frequently and have been reported in the Metazoa and 

both are considered in this thesis, although it is known that the probability of a gene 

becoming functional is higher in the case of DNA-mediated duplication (Jun et al. 

2009). Duplication can occur on a small scale (whole genes or gene fragments) 

(Hughes 1994) or a large scale (whole genome duplication) (Kaessmann 2010) and 

can create functional redundancy (Ohno 1970) and/or can be detrimental as described 

in gene dosage models of evolution (Klein 1981). The fate of duplicated genes has 

been described mathematically and empirically. Ohno's neofunctionalization model 

(Ohno 2013), the duplication–degeneration–complementation model (Force et al. 

1999) and the specialization or escape from adaptive conflict (Hughes 1994) model 

all proposing potential evolutionary trajectories of duplication genes. In brief, a 

duplicate gene can undergo subfunctionalization, neofunctionalization or 

pseudogenization (Zhang 2003). In Sections (1.2.1 to 1.2.7) below the concepts, 

theories and models associated with tree-like mechanisms of protein evolution 

relevant to this thesis are described. Central to these approaches is phylogenetics. 

Chapter 2 is focused on phylogeny, and the application of heterogeneous models to 

place of the root of placental mammals. 

 

1.2.1 Phylogenetic Reconstruction using Molecular data 

Molecular phylogenetics is the study of evolutionary relationships using molecular 

data such as DNA, RNA and molecular markers. Traditionally phylogenetics has been 

used to describe the patterns of divergence between species. In the last decade 

phylogenetics/phylogenomics has been applied to epidemiological dynamics of 

pathogens (Yang and Rannala 2012, Lyubetsky et al. 2015) and infectious diseases 

(Grenfell et al. 2004, Sheen et al. 2013, Leventhal et al. 2014), to classify 

metagenomic sequences and identifying genes, to identify regulatory elements and 

non-coding RNA in sequenced genomes (Kellis et al. 2003, Pedersen et al. 2006), and 

to reconstruct ancestral genomes (Yu et al. 2015).  
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A phylogenetic tree is a graph composed of nodes and branches (Figure 1.1). Nodes 

can represent species, populations, individuals or genes. A branch connecting two 

adjacent nodes defines the evolutionary relationship between those nodes. For 

example, A and B are closely related and share a most recent common ancestor at 

node F (Figure 1.1). Nodes A-D and O are termed operational taxonomic units 

(OTUs). On the rooted tree O represents the outgroup, the most distantly related 

OTU. R represents the root, the most recent common ancestor to all the nodes. In a 

rooted tree, a unique path of ancestry can be drawn from the root to any of OTUs 

(Morris et al. 2013).  

 

In general, phylogenetic reconstruction has been performed on nucleotide or amino 

acid sequence data. Amino acid alignments can be recoded into Dayhoff categories 

(Dayhoff and Schwartz 1978), based on their physiochemical properties, thus 

reducing the 20 character states of AA (amino acid) data down to six states (as in 

(Morgan et al. 2013)). This effectively removes a layer of composition heterogeneity 

in the amino acid data, which can be useful when models are not adequate for the 

data. However, there is a subsequent a loss of information here. Using Dayhoff 

categories reduces the number of character states allowing for parameters such as the 

rate matrix to be estimated directly from the AA data (Liò and Goldman 1998, 

Morgan et al. 2013). For nucleotide substitution models, it is possible to estimate all 

parameters from the data, as there are only four character states (A, G, T, C) and RY-

coding can further reduce the character states to just two (Purines (R) and Pyrimidines 

(Y)) (Phillips and Penny 2003). RY-coding can remove a layer of composition 

heterogeneity within the nucleotide data, but it has also been shown to remove 

informative transition substitutions (Ishikawa et al. 2012). For nucleotides, the 

exchange rate matrix and composition vectors are calculated from the alignment. 

However, protein empirical models are not based directly on the data, rather they use 

fixed composition and rate parameters – the q-matrix. It is then possible to estimate 

the compositions of the amino acids and combine it with an empirical rate matrix, 

giving a p-matrix (Swofford et al. 1996). In summary, there are models available for 

both nucleotides and amino acids.  
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Figure 1.1: Depiction of a rooted and an unrooted phylogeny.  

 

Figure 1.1: (A) A rooted phylogenetic tree where A-D and O are external nodes, F-H 

are internal nodes, R represents the root of the tree and O represents an outgroup. (B) 

An unrooted phylogenetic tree where A-D and O are all equivalent nodes with no 

directionality of the evolutionary process.  
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As mitochondrial sequence data have low recombination rates but more rapid point 

mutational rates than nuclear DNA sequences, they have been used extensively in 

phylogenetic reconstruction (Reyes et al. 2004, Gibson et al. 2005, Kjer and 

Honeycutt 2007). The application of whole mitochondrial genomes to mammal 

phylogeny failed to retrieve many of the well-known and uncontroversial groupings 

within the mammal tree such as the 4 superorders within the placental mammals 

(Morgan et al. 2014) and it was proposed that mitochondrial data are better suited to 

shallower depths (Arnason and Janke 2002, Springer et al. 2004). More recently, 

models for mtDNA sequence evolution have been developed such as a three-state 

general time reversible DNA substitution model that accommodates homoplasy 

(Tavaré 1986a), and an approach that uses the secondary structure to guide the 

alignment of RNA sequences, both of which have improved the resolution of mtDNA 

based phylogeny reconstruction (Gibson et al. 2005, Grajales et al. 2007).In addition, 

accounting for rate heterogeneity across the data with the application of appropriate 

models and data partitioning has succeeded in producing mammal phylogenies from 

mitochondrial data that are similar to those derived from nuclear genes (Reyes et al. 

2004, Kjer and Honeycutt 2007). However, the power and suitability of mitochondrial 

genes (individually or concatenated into a super-matrix) to resolve this phylogeny 

continue to be debated (Morgan et al. 2014). In summary, these studies of mtDNA 

illustrate the importance of data choice, the impact of model specification on 

phylogeny reconstruction and the need to adapt and develop models that are suitable 

for specific data types.  

 

Using protein-coding nucleotides can be desirable for phylogeny reconstruction 

because the parameters for the model can be estimated directly from the data (unlike 

empirical amino acid models). However, in practice it is often too computationally 

intensive to gain parameter estimates directly from the data and empirical models of 

substitution are often used for amino acid data (Henikoff and Henikoff 1992, Adachi 

et al. 2000, Müller and Vingron 2000, Dimmic et al. 2002, Abascal et al. 2005, 

Abascal et al. 2007, Nickle et al. 2007, Le and Gascuel 2008). While deep 

divergences always have increased risk of erased signal due to multiple substitutions 

at the same site (amongst other issues such as the identification of homologs), 

nucleotide sequences have been successfully applied to resolving topologies for 

divergence times of over 500 million years (Misof et al. 2014).  
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The issue of saturation is often cited as justification for applying amino acids rather 

than nucleotides, however amino acids can also saturate rapidly and can mutate 

rapidly between functionally similar groups causing functional convergence that is 

not seen at the nucleotide level. Therefore, while there is a common view that amino 

acids are useful for deeper evolutionary distances and nucleotides for shallower 

timescales (Brown 2002) – simply selecting amino acids over nucleotides ignores 

these subtleties/idiosyncrasies of real data. Software packages such as P4 (Foster 

2004) and PhyloBayes (Lartillot and Philippe 2004, Lartillot et al. 2009) have now 

become available that allow for more complex modelling of amino acid substitution 

processes thereby greatly improving the accuracy of amino acid sequence modelling. 

1.2.3 Methods of Phylogeny Reconstruction 

Phylogeny reconstruction methods are based on a set of parameters that describe the 

process of evolution in molecular sequence data. These parameters can be explicitly 

defined as for Maximum Likelihood (ML) and Bayesian approaches or implicit as is 

the case for Maximum Parsimony (Posada 2003). An evolutionary model consists of 

two parts: a scheme (sometimes referred to as the model) and a tree. The scheme is 

the way we describe how the sequences have evolved and it is composed of two parts: 

(i) the composition vector, and (ii) the exchange rate matrix. The composition vector 

describes the base frequencies in the data – this is a particularly important factor in 

mammal phylogeny for example given the observation of biased gene conversion 

(Galtier et al. 2001, Galtier and Duret 2007). The exchange rate matrix describes the 

probabilities of a character state changing.  

 

The first statistical model described was the Jukes and Cantor (JC) model (Jukes and 

Cantor 1969). The JC substitution model assumes all composition frequencies are 

equal and the exchange rate between the character states is equal. Models that 

expanded on JC include the F81, that allowed base frequencies to vary (Felsenstein 

1981). This ultimately led to the development of the General time reversible (GTR) 

model (Tavaré 1986b, Felsenstein and Churchill 1996). The GTR model allows for 

each type of substitution to have a probability in a reversible manner. For example, 

A≥T is the same as T≥A, and it can estimate composition from the data. Evidently, 

many of the less complex models are nested within the more complex models (Figure 
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1.2) (Swofford et al. 1996). A set of empirical models for protein sequences have 

been developed based on specific data types. For example, the Jones-Taylor-Thornton 

(JTT) model is based on transmembrane proteins (Jones et al. 1994) and the 

Whelan And Goldman (WAG) model is based on globular proteins (Whelan and 

Goldman 2001) and many other protein models exists (Henikoff and Henikoff 1992, 

Cao et al. 1994, Adachi et al. 2000, Müller and Vingron 2000, Dimmic et al. 2002, 

Abascal et al. 2007, Nickle et al. 2007, Le and Gascuel 2008).  

 

Models of evolution have become increasingly more sophisticated and complex. 

However, the increased number of free parameters required for the additional 

complexity equates to higher sampling variance. This diminishes the power to 

differentiate between competing hypotheses. Over-fitting a model to the data could 

lead to a decrease in support values, but under-fitting a model would lead to strong 

support for an erroneous topology. It is the case that the application of larger/genome 

scale data greatly reduces the risk of over-fitting a model but the risk of under-fitting 

is still significant, therefore a model should be chosen based on the fit to the data.  

 

The goal is to identify and use the least complex model that most adequately 

describes the data (Posada 2003). To generate a heterogeneous model the first step is 

to select a substitution model (alternatively known as the exchange rate matrix) – this 

provides the homogeneous exchange rate matrix that best fits the data. A data driven 

process is recommended to determine the model of best fit (Foster 2004) – the initial 

homogeneous exchange rate matrix (substitute model) will vary from dataset to 

dataset. By testing and comparing different models on the data we can find the best 

model (that has the least number of free parameters) from the available pool of 

models (Swofford et al. 1996, Foster 2004). There are well known methods designed 

for this purpose for example ProtTest (Abascal et al. 2005) (protein sequences), 

ModelTest (Posada and Crandall 1998) (nucleotide sequences), MrModelTest2 

(Nylander 2004) (nucleotide sequences) and ModelGenerator (Keane et al. 2004) 

(protein and nucleotide sequences).   
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Figure 1.2: Example of nested models of molecular evolution. 

 
Figure 1.2: A typical example of nested models of evolution. The Kimura Two 

Parameter(K2P) model was created based on the Jukes Cantor (JC) model. The 

Felsenstein(F84) model was created with a strong basis on K2P and JC models. The 

General Time Reversible (GTR) model was established with a strong basis on F84, 

K2P and JC models. From the inner part of the figure (JC) to the outmost part (GTR) 

the complexity of the model and number of parameters increases. 
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The two main approaches to phylogenetic modelling the evolutionary history of 

sequences are homogeneous modelling and heterogeneous modelling. These differ in 

their construction/assumptions and in their interpretation of biology. We define 

homogeneous models as those that do not account for compositional variation and 

exchange rate variation across the phylogeny (between species in the alignment) 

(Morgan et al. 2013). The most advanced homogeneous models can model rate 

heterogeneity but are unable to model compositional heterogeneity. Homogeneous 

models use a single rate matrix and composition vector and can incorporate a gamma 

distribution for among site rate variation (ASRV) (Yang 1996). An advantage of 

using homogeneous models over heterogeneous models is their speed (Stamatakis 

2006a, Stamatakis 2006b). For example, RAxML (a homogenous modelling 

algorithm) models rate heterogeneity across sites using a CAT model but is not 

capable of modelling compositional heterogeneity(Stamatakis 2006a). [Note: RAxML 

CAT allows for site-specific rates of evolution and should not be confused with the 

CAT model implemented in PhyloBayes (Lartillot and Philippe 2004, Lartillot et al. 

2009)]. RAxML CAT allows for rapid modelling of large datasets as it acts as an 

approximation of the gamma parameter (Γ) and speeds up the tree search. In addition 

to this, RAxML also implements CAT + rΓ. This rΓ algorithm uses Γ to refine the 

estimations of the CAT model (Stamatakis 2006b, Lartillot et al. 2009). The 

PhyloBayes CAT model (Lartillot and Philippe 2004, Lartillot et al. 2009) takes into 

account that characters at different sites in an alignment can have different 

probabilities of evolving into another character. For example, an Arginine at one site 

in an alignment might have a high probability of evolving into a Histidine while an 

Arginine at another site in an alignment can have a higher probability of evolving into 

a Lysine. Therefore, the CAT model in RAxML (Stamatakis 2006b) and PhyloBayes 

(Lartillot et al. 2009) are different because the PhyloBayes CAT model allows for 

among site compositional heterogeneity and the CAT model in RAxML does not. 

 

The major issue is that homogeneous models are often too simplistic to account for 

the complexity of biological data. Therefore, phylogenetic reconstruction based on 

such models can lead to erroneous topologies, particularly if for example there is 

compositional heterogeneity evident in the data as is the case with mammal sequence 

data (Foster 2004, Morgan et al. 2013). Heterogeneous models can simultaneously 
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model exchange rate variation and compositional variation between species or across 

the sites in the dataset (Foster 2004, Lartillot and Philippe 2004, Morgan et al. 2013) 

and are therefore a marked improvement in modelling complex sequence data. 

 

The two major frameworks used in modern molecular phylogenetic analyses are 

maximum likelihood (ML) estimation and Bayesian inference. Some approaches rely 

exclusively on one of the frameworks (Stamatakis 2006a, Lartillot et al. 2009) while 

others can use a mixture of both (Foster 2004). It has been shown that both methods 

will not necessarily conclude the same answer (Douady et al. 2003), thus emphasizing 

the importance of judiciously choosing a method for the task at hand.  

 

ML uses the likelihood function which is the probability of generating the observed 

data given a particular hypothesis. In our case, the likelihood function is the 

probability of the data given the topology and other parameters such as branch lengths 

and nucleotide frequencies (Felsenstein 1981, Huelsenbeck and Crandall 1997), but 

an absolute probability is not returned. To calculate the probability of an event (t) we 

need to know all possible outcomes (O) and the number of times t is observed in the 

test, therefore probability = t/O. 

 

Likelihood becomes particularly useful when we do not know all the possible 

outcomes. A single tree with the highest likelihood (often the lowest negative log-

transformed likelihood) is the most likely tree. A statistical technique called 

bootstrapping (Felsenstein 1978) is often coupled with ML to assign node support 

values to the tree, and this allows us to assess how strongly the data supports each 

split on the ML tree (Felsenstein 1981, Brown 1994). Bayesian inference is closely 

related to ML - it estimates the posterior probability of a tree by combining the 

likelihood of the tree and prior probability of the tree given the model. Bayes theorem 

(equation below) gives the posterior probability of an event occurring (an hypothesis) 

conditioned upon the prior probability of the event, which is the probability of the 

event before new evidence is considered (Shafer 1976). The equation below gives the 

posterior probability of event A occurring given that event B occurs(P(A|B)). P(B) 

and P(A) represent the probability of events B and A occurring without regard for 

each other respectively. P(B|A) is the probability of observing event B given that 

event A occurs (Shafer 1976). 
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The Bayesian approach is dependent on priors, which is both an advantage and 

disadvantage of this approach (Huelsenbeck et al. 2001). Advantages of Bayesian 

methods are that they are efficient means of complementing complex models and 

strong data can overcome poor priors. Unlike the aforementioned ML, Bayesian 

phylogenetic inference will produce a set of credible trees that are sampled according 

to their likelihood. A major difference between the two frameworks is that Bayesian 

inference generates a posterior distribution for the parameters rather than a fixed 

value. Bayesian phylogenetic inference only became viable when combined with 

Markov-chain Monte Carlo (MCMC) approaches (Metropolis et al. 1953, Hastings 

1970) which allowed for sampling over parameter space. Advances on the MCMC, 

such as Metropolis-coupled MCMC (MCMCMC), have proven effective in tackling 

the problem of local maxima (Altekar et al. 2004).  

 

In summary, there are a number of approaches for modelling phylogenetic 

reconstruction. The features of the 3 main approaches are summarised in Table 1.1. 

 

1.2.4 Generating a multiple sequence alignment for phylogenetic reconstruction 

Alignment is the initial stage in most comparative genomic analyses. In this thesis 

alignments are used to generate species trees, to assess gene gain and loss and to 

determine the extent of gene remodelling. There are a number of powerful MSA 

(multiple sequence alignment) tools available. For example, Clustal Omega is a 

progressive alignment algorithm that can create large MSAs in a relatively fast 

manner (Sievers and Higgins 2014). Clustal Omega also allows the user to inform the 

alignment process using hidden Markov model (HMM) profiles based on similar data 

from a database such as Pfam (Bateman et al. 2004, Sievers and Higgins 2014). 

MUSCLE is an MSA algorithm that involves multiple sequence comparison by log 

expectation (Edgar 2004). This is an iterative alignment tool, where an initial 

progressive MSA. 
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Table 1.1 A summary of some of the advantages and disadvantages of different approaches to phylogeny reconstruction. 

Method Advantages Disadvantages 

RAxML (Stamatakis 2006a)  
(Maximum likelihood) 

Very Fast  
Easy to use  

Recommended for homogeneous modelling 

No heterogeneous modelling  
Often too simplistic 

P4 (Foster 2004) (Bayesian) 
Models heterogeneity across lineages  

Extensible  
Strong statistical framework 

Python knowledge needed  
Time/computationally consuming  
Convergence diagnosis difficult 

PhyloBayes (Lartillot et al. 
2009) (Bayesian) 

Employs CAT model of heterogeneity  
Very easy to use  

MPI (Message Passing Interface) version available  
Convergence is easily assessed and can be done automatically 

Computationally intensive and time consuming, 
even with MPI. (However, newer computer 
clusters are more readily prepared for this.) 
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is created and then informs subsequent distance calculations for another MSA. A new 

MSA is created by realigning the first and second MSAs. If the new MSA is an 

improvement it is kept, and the previous MSAs are deleted and if there is no 

improvement the newly created MSA is deleted and the original alignment is used 

(Edgar 2004). A different approach to MSA is implemented in HMMER which is 

based on probabilistic models called hidden Markov models (HMM) (Eddy and Rost 

2008). These HMMs can assign likelihoods to all possible combinations of alignment 

in order to find the most likely MSA. They can produce global and local alignments 

and are particularly useful when searches for sequence profiles and short sequences 

such as the domain style searches we will be carrying out in Aim 3 (Chapter 4). In 

summary, there are numerous ways to create an MSA. The examples mentioned here 

are just small samples of the variety of algorithms available. Regardless of which 

approach is taken to generate MSAs it is crucial that an optimal MSA is used for 

subsequent analyses. A number of statistical algorithms have been designed to assess 

the quality of the alignment, e.g. AQUA (Muller et al. 2010) and MetAL (Blackburne 

and Whelan 2012). The way in which they work is they perform alignment using a 

variety of approaches including those outlined above and then for each individual 

gene family they assess which alignment algorithm produces the alignment of best fit 

for the data using purpose built statistical scores such as the Z score and the NorMD 

score (Muller et al. 2010, Blackburne and Whelan 2012). 

1.2.5 Super-tree and Super-matrix approaches for species trees 

Given a set of genes from a group of organisms of interest, there are two main 

approaches to phylogenetic reconstruction. The first is to build gene trees individually 

and to apply a coalescent model or a super-tree approach to generate a phylogeny that 

captures the variation across gene trees (Gatesy and Springer 2014). An advantage of 

this is that the final tree is a step removed from the actual sequence/morphological 

data. Thus it is possible to summarize results obtained from different characters 

(Delsuc et al. 2005). The second approach is to concatenate the alignments into a 

super-matrix and from this single alignment generate a phylogeny. The increased 

MSA size of the super-matrix approach can give more appropriate model estimations 

for sophisticated heterogeneous models like the PhyloBayes CAT-GTR model and P4 

models (Foster 2004, Lartillot and Philippe 2004). However, super-matrix methods 

can be more susceptible to incomplete lineage sorting (ILS). ILS occurs when alleles 
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are not perfectly segregated into all lineages and subsequently fail to coalesce or 

converge on a most recent common ancestor (Hudson), see Figure 1.3 (detailed in 

Section 1.2.7.1). This is problematic super-matrix methods in particular because a 

single alignment of multiple gene histories creates a single phylogeny (Philippe et al. 

2004). This means, if ILS was sufficiently present, super-matrix methods could 

potentially give positively misleading or statistically inconsistent results. However, 

the risk of this can be assessed by analysing the presence of ILS in a dataset (Tarver et 

al. 2016). As is often the case for complex phylogenetic questions, we have large 

datasets that we are interested in analysing and this is not tractable using co-

estimation type coalescence. An alternative would be to use shortcut coalescence, but 

it has already been shown that the super-matrix approach is superior at deep 

timescales (Gatesy and Springer 2014). A hybrid of the concatenation and 

coalescence approaches has previously been applied to the mammal phylogeny 

conundrum (Song et al. 2012). 

1.2.6 Problems with phylogeny 

1.2.6.1 Discordance between Gene Tree and Species Tree 

It is well understood that the branching pattern of a gene tree can differ significantly 

from a complimentary species tree topology (Degnan and Rosenberg 2006, Degnan 

and Rosenberg 2009, Leaché 2009). Incomplete lineage sorting (ILS) is thought to 

substantially contribute to this discordance (Figure 1.3). Recombination can give rise 

to neighbouring segments of a gene having different histories and this can contribute 

to gene tree discordance (Posada and Crandall 2002). Another major contributor to 

gene tree discordance is horizontal gene transfer or HGT (horizontal gene transfer), 

where a gene is acquired from a different species. HGT is prominent in prokaryotes 

and can also occur in eukaryotes, however this is less studied (Philippe and Douady 

2003). Examples of HGT in animals are believed to be extremely rare, with a few 

examples in Drosophila ananassae (Hotopp et al. 2007) and the Bdelloid rotifers 

(Boschetti et al. 2011, Flot et al. 2013). However, there is recent evidence suggesting 

that HGT is not as rare as previously thought (Crisp et al. 2015). At shallow time 

depths, ILS is particularly problematic because a lineage can have insufficient time to 

bring loci to fixation before its divergence (Pamilo and Nei 1988). 
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1.2.6.2 Base or Amino acid Composition Biases 

Composition biases at the level of nucleotide or protein, can lead to species clustered 

together on a tree due to similar composition patterns rather than shared ancestry. 

Many early studies in the field of molecular phylogenetics used rRNA genes for 

phylogenetic analysis and reported erroneous topologies (Loomis and Smith 1990, 

Lockhart et al. 1992, Hasegawa et al. 1993) because rRNA genes had extreme AT or 

GC biases in different species (Foster and Hickey 1999). There is evidence of 

compositional heterogeneity across the animal kingdom (Nesnidal et al. 2010) and it 

is particularly apparent in mammals (Romiguier et al. 2010). It is suggested that this 

is a major source of error in mammal phylogeny (Romiguier et al. 2010, Romiguier et 

al. 2013). There is evidence to suggest that amino acids (as opposed to nucleotides) 

will not be directly affected by compositional bias (Hasegawa et al. 1993). However, 

Foster and Hickey (1999) have shown that this is not necessarily true and that 

compositional bias at a nucleotide level can be detected at an amino acid level (Foster 

and Hickey 1999). In summary, composition biases can be a major source of error in 

phylogenetic reconstruction and therefore when reconstructing phylogenetic histories 

we should use models that can accommodate these variations in composition. This 

was achieved in Chapter 2 where composition vectors are incorporated into the 

models (Foster and Hickey 1999, Lartillot and Philippe 2004). 

1.2.6.3 Long Branch attraction (LBA) – the problem of shared rapid rates of 

evolution 

LBA occurs when taxa/genes are incorrectly clustered together because they share 

high mutation rates (Felsenstein 1985). Similarly, the same logic applies to short 

branch attraction (Philippe et al. 2005). LBA has impacted on estimates of the 

metazoan phylogeny, leading to conflict and ongoing debate (Philippe et al. 2011b, 

Nosenko et al. 2013). Iconic examples of this include the branching order between 

non-bilaterian metazoans (Porifera, Cnidaria, Ctenophore and Placazoa) (Pick et al. 

2010) and the Coelomata/Ecdysozoa groupings (Rogozin et al. 2007). Careful 

sampling of taxa has proven a valuable method of reducing LBA (Magallón 2010).  
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Figure 1.3: Graphical representation of incomplete lineage sorting (ILS) 

 

 
 

Figure 1.3: The outline of a phylogenetic tree depicting the species level relationship 

between species A, B, C, and D is shown on the left. The red and yellow lines 

correspond to the evolutionary history of gene A and B respectively. The inset on the 

right shows the gene trees for gene A and gene B. 
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For example, Pick et al. (2010) used broad sampling of non-bilaterian taxa to reduce 

LBA and reveal Porifera as the sister group to all other Metazoans (Pick et al. 2010). 

In this thesis we have applied similar careful sampling strategies in Chapter 2 and also 

in the preparation of datasets for Chapters 3 and 4. 

1.2.6.4 Homoplasy 

Homoplasy is when sequences/species have similarity due to independent events and 

not due to common ancestry. There are three types of homoplastic events: 1) 

Convergence, 2) Parallelism, and 3) Reversal. Convergent evolution is a process by 

which unrelated or distantly related taxa independently evolve similar traits (Morris et 

al. 2013). An example of this is flight in bats and birds, where it is believed that 

powered flight arose independently in the two different lineages (Speakman 2001). 

Parallel evolution or parallelism is when closely related lineages evolve similar traits 

but independently from ancestors that shared that similarity (Bell 2015). Classic 

examples of this are demonstrated within mammals. For example, placental mammals 

and marsupials evolved similar species on separate continents. Placental shrews are 

smaller to marsupial tree shrews and both pursue insects and other small prey, and 

placental gliders are very similar to marsupial gliders (Bell 2015). Reversals are when 

an inherited trait reverses to an ancestral form. An example of this is the loss of 

gyrencephaly (folded neocortex) to become secondarily lissencephalic (smooth 

neocortex) in some mammal lineages (Kelava et al. 2013). Homoplasy represents a 

significant problem to molecular phylogenetics as it can result in erroneous topologies 

if it not minimized or mitigated in the phylogenetic modelling. It has been shown that 

explicit statistical models of evolution (Bayesian and Maximum Likelihood) are more 

robust that other methods such as maximum parsimony with respect to homoplasy 

(Brandley et al. 2009). 

1.2.6.5 Heterotachy  

Heterotachy refers to shifts in site-specific substitution rates within a sequence over 

time. It is understood that substitution rates for a site in a sequence do not always 

follow a Γ law, rates are not always uniform. This phenomenon occurs because at 

any given time only a fraction of positions within a sequence are free to vary over 

time and as functional constraints on the protein change over time, the sites that are 

free to vary also change. Therefore, the rate at each position can vary over time 
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(Philippe and Lopez 2001). Heterotachy is commonly found in sequence alignments 

and has been the source of error for many phylogenetic studies (Lockhart et al. 1996, 

Philippe and Germot 2000, Kolaczkowski and Thornton 2004). Heterotachy can have 

a negative affect on phylogenetic reconstruction, but these effects can be minimized 

by using appropriate models that account for the heterotachy (Mayrose et al. 2005, 

Philippe et al. 2005).  

1.2.6.7 Contentious nodes on the animal tree. 

Due to a combination of the above issues around phylogeny reconstruction and 

compounded by the dependence on overly simplistic evolutionary models, there are a 

number of nodes on the metazoan phylogeny that are debated. The phylogenetic 

position of turtles (Testudines) with respect to the rest of the major tetrapod clades is 

contentious (Crawford et al. 2015). Other contentious nodes are depicted in Figure 

1.4. Note: this list is not extensive, rather it serves as an illustration of the wide 

ranging and large number of unresolved nodes on the animal tree of life. It is possible 

to minimize or mitigate the aforementioned problems that can lead to erroneous 

topologies using appropriate taxon sampling and parameterized models appropriate 

for the input data/sequences.  

 

There are limitations to the tree-like approaches we have described in Section 1.2 and 

indeed there are problems associated with phylogenetics these can sometimes be 

minimized or mitigated by using appropriate models of evolution and high-quality 

data. However, some problems such as non-tree-like processes of protein coding gene 

evolution cannot be solved using traditional tree-like analyses. The following Section 

details the types of non-tree-like processes of evolution that we are particularly 

interested in, and how these processes may be modeled using Network theory. 

1.2.7 Molecules and Morphology  

Predominantly, the transitions in animal evolution have been studied using traditional 

morphological approaches (including fossils where available). Both molecular and 

morphological studies suffer from problems of limited data, methods and technology 

(Abouheif et al. 1998, Irestedt et al. 2004, Lavrov 2007, Dunn et al. 2008, Hejnol et 

al. 2009, Dávalos et al. 2012, DeBiasse and Hellberg 2015, Dornburg et al. 2015). 
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Figure 1.4: Contentious nodes on the metazoan tree of life 

 
Figure 1.4.: The panels (a-d) represent contentious nodes at different phylogenetic 

depths on the metazoan phylogeny. (a) The placement of Ctenophora as the sister to 

all other animals on the left and Porifera as the sister to all other animals on the right. 

(b) The placement of Xenacoelomorpha as the sister group to Bilateria on the left and 

Xenacoelmorpha is placed within Deuterostomia on the right. (c) A Cycloneuralia 

relationship (Nematoida and Scalidophora) within Ecdysoza on the left and a 
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Nematoida-Panarthropoda grouping as a sister group to Scalidophora. (d) The 

various different branching orders within Spiralia: support for Kryptrochozoa 

(Nemertea and Brachiozoa (includes Brachiopoda and Phoronida) topology on the 

left and support for a Lophophorata (Lophotrocozoa, Bryozoa, Brachiopoda and 

Phoronida) and Trochozoa (Annelida, Mollusca and Nemertea) topology. Taken with 

permission from (Dunn et al 2014). 
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However, the increase in availability of molecular data (and the ease in generating 

large volumes of it – even from extinct species) and the associated rise of molecular 

phylogenetics, have meant that the study of evolution and of major transitions has 

moved from being a morphological to a molecular science.  

 

The rise of molecular phylogenetics has been accelerated due to significant advances 

in sequencing technologies and statistical biological programs and computational 

capabilities (Dávalos et al. 2012, Pyron 2015). However, having lots of data is not 

good enough – good model of evolution and computational resources are also 

essential (outlined in Section 1.2.7). It is important to note that regardless of whether 

the data is morphological or molecular there are problems and limitations associated 

with systematics. There is conflict throughout the metazoan tree of life (as outlined in 

Section 1.2.7.7), with molecules and morphology supporting alternative relationships 

with strong statistical support and this is not unusual (Dávalos et al. 2012, DeBiasse 

and Hellberg 2015, Dornburg et al. 2015). For example, morphological data supports 

cephalochordates as the closest living relatives to vertebrates. Conversely to this, 

molecular data supports tunicates as the closest relatives to vertebrates. The resolution 

of this node in the metazoan tree of life is critical to understanding the origin of 

vertebrates (Delsuc et al. 2006). Another example related to Chapter 2 of this thesis is 

the use of morphological data to resolve the Xenarthran root for the placental 

mammal phylogeny (O'Leary et al. 2013). However, the latest molecular studies have 

found support for Atlantogenata root for the placental mammals ((Moran et al. 2015), 

Chapter 2). Together with our collaborators we have taken a total evidence approach 

to resolving the position of the placental mammal root where consilience across 

different data types is required for inferences to be made and this work has been 

published (Tarver et al. 2016). A consilience approach is a likely future solution for 

the contentious nodes in the metazoan phylogeny - provided data is available 

(Dávalos et al. 2012, Ronquist et al. 2012, Pyron 2015). 

1.3 Gene remodelling in protein coding evolution 
Traditionally the term introgression has been used to refer to the movement and 

integration of genetic material from one species to another species that is replicated 

within the host genomes (Rhymer and Simberloff 1996). Recently the definition of 

introgression has been broadened out to also encompass the reorganization, of genetic 
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material within the same genome (Bapteste et al. 2013b). To avoid confusion we will 

use the term gene remodelling to refer to the reorganization, of genetic material 

within the same genome.  

1.3.1 Interspecies introgressive descent – the movement of genetic material 

between species 

A well known example of interspecies introgression is horizontal gene transfer 

(HGT), a significant driver of evolution in prokaryotes and major contributor to the 

evolution of the first eukaryote (Keeling and Palmer 2008). There are some individual 

cases of introgression in animals: for example the endogenous retrovirus (ERV) gene 

family in mammals is essential in mammal placenta development and is retroviral in 

origin (Nakagawa et al. 2013). Another example of introgression is hybridization, 

resulting in fertile offspring, making it possible for hybrids to introduce genetic 

innovation into populations and species. A now iconic example of adaptive 

introgression by hybridization is from the Heliconius butterfly - a diverse and brightly 

colored genus that are well known for mimicry (Heliconius Genome 2012). These 

butterflies frequently hybridize across species boundaries, with different species 

within the genus evolving nearly identical wing patterns to mimic poisonous relatives 

(Heliconius Genome 2012). Evidently, interspecies introgressive descent plays a 

prominent role in evolution.  

1.3.2 Gene Remodelling (Intraspecies introgression) – the rearrangement of 

genetic material within a single genome 

There are two major mechanisms of intra-species introgression. Firstly, the transport 

and integration of genetic material from place to place in the genome by mobile 

elements or transposable elements (TE) (McClintock 1950). TEs are believed to be a 

major source of genetic innovation in animals (Hoen and Bureau 2015) and they are 

present in all eukaryotic and prokaryotic organisms (McClintock 1950, Muñoz-López 

and García-Pérez 2010). TEs replicate via transposition and this means they can 

reside within a genome without conferring a selective advantage. However, TEs have 

been known to evolve in a similar way to regular coding DNA sequence, providing 

there is a selective advantage – a process called molecular domestication or TE 

exaptation (Hoen and Bureau 2015). We are not focused on TEs in this thesis, rather 

we are focused on the second major mechanism of introgression within a species 

genome - referred to throughout this thesis as gene remodelling.  
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Gene remodelling is an umbrella term for gene fusions, gene fissions, exon shuffling 

and domain shuffling (Jachiet et al. 2014b) and it is caused by recombination and 

transcription-mediated read-thorough (Kaessmann 2010, Wu et al. 2013). Gene fusion 

can be DNA-mediated or transcriptionally mediated and it occurs when two 

genes/gene fragments become fused into a single segment/gene (a single 

transcriptional unit) (Zhou and Wang 2008, Kaessmann et al. 2009, Agaram et al. 

2015). Gene fusions that have occurred and have been fixed more recently retain 

molecular signatures of their origin and thus it is possible to find the parent or 

component genes that were involved in the fusion (Long et al. 2003). Whilst fused 

genes are often associated with cancers (Demichelis et al. 2007, Agaram et al. 2015), 

they can drive adaptive evolution and produce phenotypes (Long and Langley 1993). 

An iconic example of this is the jingwei gene in Drosophila melanogaster (Long and 

Langley 1993). Jingwei is derived from a transposon copy of the Adh locus and a 5’ 

end derived from another gene called yande. The novel phenotype is a new specificity 

towards long-chain primary alcohols (Long and Langley 1993) . Gene fission is the 

opposite of fusion genes in that a single gene breaks into several smaller coding 

genes. Gene fission and fusion are mechanistically linked in that gene fission 

followed by juxtaposition of gene fission fragments often precedes a gene fusion 

event (Kaessmann 2010). Exon shuffling is when two or more exons from different 

genes are ectopically recombined or when an exon is duplicated, creating a new exon-

intron structure(Long et al. 2003). Similar to this is domain shuffling except the 

biological element in this case is a functional protein domain. Structural domains are 

protein modules of discrete structural folding that often represent the functional 

building blocks of protein (Kaessmann et al. 2002). It is clear that gene remodelling 

plays a significant role in the evolution of sequences (Jachiet et al. 2014b), and it is 

also abundantly clear that traditional tree-like thinking cannot capture gene 

remodelling (Bapteste et al. 2012, Jachiet et al. 2014b). Therefore, we have exploited 

graph theory (Section 1.3.3) to study gene remodelling in the Metazoa. 

1.3.3 Network based approaches to studying gene remodelling 

1.3.3.1 Introduction to networks 

Graph theory is an area of mathematics that tries to evaluate and represent 

relationships/connections (called edges) between objects (referred to as nodes) 
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(Figure 1.5). In biology, networks have been used to study: the transmission of 

infectious agents (Craft 2015); ecological food webs (Krause et al. 2003) ; protein 

interaction networks (Rual et al. 2005); gene regulatory networks (Huang et al. 2005), 

and more recently sequence similarity networks (SSNs) – networks where 

connections are based on sequence homology/similarity (Song et al. 2008). Through 

the application of networks to biological data the surprising discovery was made that 

biological networks share the same fundamental characteristics of technological 

graphs (e.g. Facebook and twitter). In other words in a biological network (much like 

on Facebook) the connections are not random. Usually biological networks have 

many nodes with few connections and few nodes with many connections, this 

property is referred to as scale-free (Albert 2005). In random networks, each node has 

a similar number of connections ( the standard deviation is very low) (Albert 2005). 

Scale-free networks exhibit a power-law distribution with regards to the number of 

connections held by each node (this quantitative characteristic is called the degree of 

the node). This means that a scale-free network has many nodes with a low degree 

and few nodes with a very high degree - these are called hub nodes. Hub nodes have a 

very strong influence on the rest of the network due to their high connectivity (Albert 

2005). There are two justifications for the presence of these hub nodes: 1) growth, and 

2) preferential attachment. Growth simply refers to the growth or evolution of the 

graph over time. Preferential attachment refers to the fact that the higher the degree of 

a node the greater the probability that it will make a new connection (as the network 

grows/evolves) (Albert 2005). Sequence similarity networks (SSNs) are central to this 

thesis as they provide a quantitative framework for the identification of remodelled 

genes through time. By identifying cliques of gene families that are only connected by 

through a single gene family on a network we can identify remodelled gene families 

(Figure 1.8)  
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Figure 1.5: Sequence Similarity Network terminology and topology 

 
Figure 1.5: (A) Sequence similarity networks are composed of nodes (representing 

gene sequences in this example) and edges/connections (representing sequence 

homology in this example). The #X numbers indicate the degree of each node. This is 

the total number of edges it has to other nodes. Gene B is a hub node as it has a high 

degree with respect to other nodes in the network. (B) The shortest path between two 

nodes is the minimum number of edges required to connect two nodes. In this 

example there are two possible paths from Gene_A to Gene_E (outlined with black 

and blue numbers). The shortest path in this example is 3 as is achieved by bypassing 

Gene_C.  
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1.3.3.2 Characterization of the sequence similarity networks 

A. Centrality 

A centrality measurement quantifies the importance of a node over others in a 

network. This is an important measure in our analysis of SSNs because it allows us to 

identify domains that have a significantly strong influence in gene remodelling from a 

several aspects of strong influence. There are three main centrality measurements 

used - degree, closeness and betweenness, and they are briefly described in Figure 

1.6. 

 

Degree centrality of a node is the number of edges directly attached to that node. 

Nodes with a higher degree are considered the most important or influential. For 

example, hub nodes in an infection network pose the greatest initial risk for 

significant spread of infection - having so many edges it is connected to many nodes 

and potentially to many parts of the network. From a protein interaction network 

(PIN) perspective high degree nodes tend to be lethal upon removal (Jeong et al. 

2001). However, this measure does not consider the global structure of the network. 

For example, a high degree node may not be closely connected to all other nodes in 

the network. This is why we also use the measure of closeness centrality.  

 
Closeness centrality measures have been used in infection networks where nodes with 

high closeness centrality are closer to the infection and thus more likely to get the 

infection early (Borgatti 2005). Closeness centrality is a measure of how quick a node 

can interact with all other nodes in a network (Opsahl et al. 2010). In a connected 

network, the shortest path between two nodes is the smallest number of edges that 

will connect both nodes. The closeness of a given node is the cumulative length of the 

shortest path to each other nodes in the network. Closeness centrality takes into 

account both direct and indirect interactions in a network. The limitation of this 

measure is that it cannot be applied to networks with disconnected components. This 

is why we also use betweenness centrality. Betweenness centrality has been used to 

find biologically important genes in gene co-expression networks (Azuaje 2014). 

Betweenness centrality indicates how often a node is found on the shortest path of all 

other nodes. It indicates how important a node is, with regards to the flow of 

information between nodes. Therefore, betweenness centrality favours nodes that join  
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Figure 1.6: Graphical depiction of the three measures of centrality in a network: 

Degree, Closeness and Betweenness.  
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Figure 1.6.: A network of 7 nodes (genes) is used as an example to illustrate the 

different measure of network centrality. (A) Degree centrality is calculated by 

dividing the Degree (number of nodes it shares edges with) by N-1 (the number of 

nodes - 1). In this example Gene_C and Gene_E are most central nodes with regards 

to degree as they have the highest degree. (B) Closeness centrality is calculated by 

taking the inverse of the reciprocal of the average shortest path to each node in the 

network divided by N-1. In this example, Gene_D is the most central node with 

regards to closeness. (C) Betweenness centrality is essentially calculated by counting 

how many times a node is found on the shortest path between all node pairs in a 

network. To normalize this to account for the size of the network, this score is divided 

by ((N-1)(N-2)/2). In this example, Gene_C is most central to the network with 

regards to betweenness. 

  



  42 

communities or cliques rather than nodes within a community or clique (Jeong et al. 

2001, Borgatti 2005, Opsahl et al. 2010). 

 

B. Assortativity 

Assortativity is a quantitative correlation between degree and node connectivity. A 

network can be described as assortative, neutral or disassortative. An assortative 

network is when nodes generally connect with nodes of a similar degree (number of 

connections/edges). Assortative mixing is often seen in scale free networks, where 

high degree nodes connect with other high degree nodes. A disassortative network is 

when nodes generally connect with dissimilar nodes, where similar often refers to 

degree. Biological networks are predominately disassortative. Furthermore, it is rare 

that networks are neutral, neither assortative or disassortative (Newman 2002a, 

Newman 2003). Assessing the mixing pattern of a network is best achieved by 

combining a number of tests. Firstly, we can apply a linear regression on a plot of the 

average degree of nearest neighbours for a node against the degree of that node. A 

negative slope for the regression indicates disassortative mixing, a positive slope 

indicates assortative mixing and a slope of 0 indicates neutral (random) mixing 

(Barrat et al. 2004). In addition to this, calculation of the assortativity coefficient for a 

network can indicate of the type of mixing in the network. This can be done using 

Pearson correlation to determine the correlation between degree connectivity. The 

assortativity lies between -1 and 1, a score of 0 indicates neutral mixing, a negative 

score indicates disassortative mixing and a positive score indicates assortative mixing 

(Newman 2002b). Foster et al. (2010) demonstrated that the significance of the 

assortativity coefficient could be tested by comparing the actual assortativity 

coefficient with the assortativity of randomized graphs with the same degree 

distribution (Foster et al. 2010). The mixing pattern of a network is an important 

measure for this thesis because it enables us to characterize if gene remodelling events 

are assortative, disassortative or neutral. For example a very interesting question we 

wish to answer is: are fusion genes created from similar parent nodes? 

 

C. Community structures 

A community forms in a network when a group of nodes are relatively densely 

connected to each other, but sparsely connected to other nodes. The presence of 

communities in social networks is intuitively obvious, and they are also dominant in 
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biological networks. In network theory motifs are building blocks of complex 

networks that represent functional biological modules (Porter et al. 2009). Using 

network theory small community structures can be identified that cluster together 

significantly more than expected – these are what is termed a community (Milo et al. 

2002, Porter et al. 2009). A clique is a particular region of the network (a subnetwork) 

where each node is connected to every other node in the clique. Maximal cliques are 

cliques that cannot expand any further within the network (a clique that is not a nested 

clique within a bigger clique). Maximum cliques are the largest cliques in the 

network. Community structures are often used to define modules within protein-

protein interaction networks. Biological network modules aim to identify sets of 

molecular interactions that work together towards a common function. This theory 

has been used to explore modules within large intermolecular interaction networks 

that govern cell structure and function. In evolutionary biology, conserved module 

structures can be compared across species. Identifying bridge nodes between cliques 

is the way we will identify possible gene remodelling events (Figure 1.7).  

 

D. Clustering 

A clustering coefficient (CC) is used to measure the degree to which nodes cluster 

together in a network. It is possible to evaluate clustering at a local level or a global 

level. The average clustering coefficient of a node as defined by Watts and Strogatz 

(1998) reflects the average of local CC for every node (Watts and Strogatz 1998). The 

local CC for a node is the ratio of its neighbours (nodes that share an edge with given 

node) that share a connection with each other. The CC ranges from 0 to 1, where 0 

indicates no shared connections between node neighbours and 1 indicates the node 

neighbours all share an edge. A global CC is based on triplets of nodes, where three 

nodes are connected by two edges (called an open triplet) or three edges (called a 

closed triplet). The ratio of closed triplets to the total of all triplets (both closed and 

open) represents the global CC (also called transitivity). Transitivity gives an 

indication to the clustering within the whole network. Transitivity ranges from 0 to 1, 

where 0 indicates all triplets are open and 1 indicates all triplets are closed. This was 

first defined by Luce and Perry (1949) (Luce and Perry 1949) and refined by Opsahl 

and Panzarasa (2009) to use on weighted networks (Opsahl and Panzarasa 2009). 
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Figure 1.7: A clique community structure within a network 

 
Figure 1.7: An example network where nodes represent genes and edges represent 

sequence homology. The area of the network coloured in red represent a clique 

structure (each node pair within this area is connected by an edge). 
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1.3.3.3 The application of network theory to gene remodeling  

Recently SSNs have been proven particularly useful for studying non-tree-like 

processes of evolution (Song et al. 2008, Alvarez-Ponce et al. 2013b). In these 

networks, nodes represent sequences and the connections represent statements of 

homology. Homology is usually identified across sequences using programs like 

BLAST (Altschul et al. 1990b) or HMMER (Finn et al. 2011). In these networks a 

sequence can have multiple connections/edges, and thus can model non-tree like 

evolution. For example, a sequence of vertical descent will usually appear as a clique. 

A chimeric sequence formed by gene remodelling can be seen as a sparsely connected 

node/s that connect otherwise unrelated cliques/nodes (almost like a bridge 

connecting two or more different families of sequence) (Alvarez-Ponce et al. 2013b) . 

There are relatively few computer programs available to analyse non-tree like 

evolution. However, this research is becoming more prominent in molecular 

evolution. Recently, an algorithm CompositeSearch (Pathmanathan JS et al, 2017) 

was developed by our collaborators to identify gene remodelling events using BLAST 

and sequence similarity network mathematics (Pathmanathan JS et al, 2017). 

CompositeSearch is a novel network based algorithm that creates a sequence 

similarity network and identifies network structures that are indicative of gene 

remodelling (see Figure 1.8).We will apply these theories, metrics and algorithms 

from network theory to sequence data to address Aim 3 of this thesis where we wish 

to uncover the role of gene remodelling processes in the evolution of the Metazoa 

(Figure 1.8). 

1.4 Major phenotypic transitions in the Metazoa  

1.4.1 introduction 

The experience of phylogenetic models of evolution gained in Chapter 2 are 

combined with network based models for Aims 2 and 3 of this thesis where we assess 

the process of gene remodelling in the Metazoa. 

 

There have been a number of major phenotypic transitions in the animal kingdom, 

and while the molecular underpinnings of these transitions are largely unknown it is 

agreed that coding and non-coding changes are likely to be implicated (Carroll 2005). 
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Figure 1.8: Basic characterization of gene remodelling using a sequence 
similarity network (example depicts a Composite or Fused gene). 
 

 
Figure 1.8: Networks have the capacity to illustrate both tree-like processes (e.g. 

monophyletic orthologs) and non-tree-like processes (e.g. fusion gene genesis). In this 

example, there are two monophyletic gene ortholog families (Gene_A in yellow and 

Gene_B in red) between human, elephant, gorilla and chimp. Each family forms a 

clique structure within the network, as is typical or orthologs. The network also shows 

the Hu_C gene, a fusion gene originating from the Human_A gene and the Human_B. 

Finding a single node that acts as a bridge, connecting two unrelated clique structures 

identified this.  
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We define major transitions as events that have allowed a lineage to radically change 

their environment, a biological function and/or phenotype. From studies such as 

McLean et al. (2011) (on the lack of penile spines in Humans) and D'Apice et al. 

(2004) (on the cause of Progeria) we know that small changes at the genetic level can 

cause radical changes at the phenotypic level (D'Apice et al. 2004, McLean et al. 

2011). A major question in theoretical evolutionary biology that remains unanswered 

is: Are these seemingly major transitions in phenotype caused by saltational change at 

the genetic level or are they a result of incremental and gradual change over time? 

The theory of punctuated equilibrium proposes that most species will remain in an 

extended state of stasis (with little evolutionary change) for most of their geological 

history and that changes or transitions only occur due to rare and rapid speciation 

events (Gould 1972). On the other hand, since the time of Darwin it has been 

proposed that evolution is gradual, constant and slow, as proposed by the theory of 

phyletic gradualism (Gould 1972). There has been much heated debate over these 

opposing theories with a well known gradualist referring to punctuated equilibrium as 

evolution by jerks (Turner 1984). However, with the increase in data availability and 

quality and with improvements in models of evolution there a possibility to test both 

theories. There are some proponents of a half-way house between both theories, 

where evolution occurs mostly by gradual change but with periods of slower and 

much more rapid evolution (Simpson 1944). For Aim 2 and 3 of this thesis we use 

sequence similarity networks (SSNs) and -omics data from variety of species (63 in 

total) that span the animal kingdom. 

 

Using the SSN approach in Chapter 3 we test the hypothesis that the major transitions 

in animal phenotypes were facilitated by significant bursts of novel gene family birth 

by gene remodelling and duplication. A summary of the major transitions in the 

Metazoa (as we define them) is outlined in the following Sections.  

 

1.4.2 Development of germ layers 

Germ layers are cell layers that arise in early animal development that give rise to all 

tissues and organs in adults. All animals, with the exception of sponges, have either 

two germ layers - diploblastic (e.g. Cnidaria and Ctenophora) or three germ layers - 

triploblastic (e.g. Human). The three possible germ layers are the endoderm, 
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mesoderm and ectoderm. In general terms, an increase in germ layers is associated 

with increased biological complexity (Technau and Scholz 2003).  

1.4.3 Origin of symmetry  

There are 3 main body plans described for the Metazoa: 1) asymmetrical, 2) radially 

symmetrical, and 3) bilaterally symmetrical. Many sponges, and the placazoan 

Trichoplax adhaerens, are asymmetrical - they have no point, axis or plane of 

symmetry. Radial symmetry is the repetition of a set of anatomical features around a 

single axis, they have no real left and right side and no defined head or tail. Porifera, 

Ctenophora, most Cnidaria and adult Echinoderma are radially symmetrical. 

Bilaterally symmetrical animals have up to three axes of symmetry – a dorsoventral 

axis, anterior-posterior axis and left-right axis. Most bilateria have a bilateral body 

plan throughout their lives with the exception of echinoderms which are bilaterally 

symmetrical as larvae but almost penta-radially symmetrical as adults. The emergence 

of bilateral symmetry approximately 550 MYA (million years ago) created the 

opportunity for regional differentiation of the body allowing for increased complexity 

(Martindale 2005, Manuel 2009, Bell 2015).  

1.4.4 Origin of Chordates 

The chordate clade emerged approximately 530 MYA and is composed of 

urochrodates (Tunicates), vertebrates (e.g. reptiles, birds, mammals) and 

cephalochordates (e.g. lancelets) (Lamb et al. 2007). The combination of Chordata, 

Hemichordata (e.g. acorn worms) and Echinodermata (e.g. sea urchins and starfish) 

compose the superphylum Deuterostomia (Lowe et al. 2015) (Figure 1.9). Molecular 

evidence has suggested that Cephalochordates diverged before the split between 

Tunicates and Vertebrates and that the Hemichordates and Echinoderms clade (called 

Ambulacraria) form a sister grouping to the Chordates (Lowe et al. 2015). Some 

believe that Xenoturbella should be classified as a Deuterostome (Philippe et al. 

2011a), while others do not support this hypothesis (Hejnol et al. 2009). It is clear that 

the origin of the chordates is an area of active research and debate, with several 

alternative hypotheses under consideration (Lowe et al. 2015). In terms of marking a 

major transition, the evolution of chordates marks the evolution of efficient 

movement. A chordate possesses all of the following distinguishable features at some 

stage in their lifecycle: a notochord (a stiff rod of cartilage that can develop into the 

spine and helps aquatic animals flex for  
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Figure 1.9: The phylogeny of the major phyla within Deuterostomia 

 
Figure 1.9: A well-supported topology for the Superphylum Deuterostomia. The 

phylogeny depicts the relationships amongst each of the major groups of 

Deuterostomes and chordates. A single representative of each major group is depicted 

in a photo beside that group to highlight the diversity of phenotypes: Hemichordates 

represented here by the acorn worm, Echinoderms by the starfish, Cephalochordates 

by the lancelet, Craniates by the elephant and Tunicates by the bluebell tunicate. 
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swimming), a dorsal neural tube (this develops into the spinal chord in fish and other 

vertebrates), pharyngeal slits (these are a modified form of gills that can also act as a 

filter feeding system in some aquatic chordates), a post-anal tail (a muscular tail that 

extends backwards behind the anus) and an endostyle (a gland that produces mucus to 

assist with the transportation of food from filter feeding).  

1.4.5 Inversion of dorsoventral axis 

A major difference between chordates and Protostomes is that their heart and nerve 

cord are inversely orientated, the dorsoventral (DV) axis is inverted (De Robertis and 

Sasai 2000). An alternative to the axis being inverted is that the common ancestor of 

Protostomes and Deuterostomes had only diffused nerve clustering with no distinct 

DV localization and the apparent inversion is actually the result of a concentration of 

the nervous system in opposite poles in separate lineages that developed 

independently in the Deuterostomes and Protostomes (Gerhart 2000). 

1.4.6 Origin of a distinct head – the Craniata 

Craniates possess a bony cartilaginous or fibrous structure surrounding the brain call 

the cranium, a jaw and facial bones (Bell 2015). Petromyzontida (lampreys), Myxini 

(hagfishes) and Gnathostomata (jawed vertebrates) form the Craniata. It is believed 

that the earliest branching vertebrates (diverging ~440 MYA) are the jawless 

Agnathans hagfish and lamprey. While the Agnathan group lack a jaw, they do 

possess a cartilaginous cranium. Lamprey and hagfish differ significantly in that 

Lamprey possess cartilaginous vertebrae while hagfish don’t have any vertebrae 

(Morris et al. 2013, Bell 2015). It is postulated that this trait was lost in the hagfish 

ancestral lineage (Ota et al. 2011). The position of the major groups within the 

Craniata is also debated with some placing lamprey more closely to Gnathostomata 

and hagfish as sister to all other Craniates. However, more recent molecular studies 

have placed Agnathans as sister to all other vertebrates (Gnathostomata) (Kuraku et 

al. 1999, Delarbre et al. 2002, Furlong and Holland 2002, Heimberg et al. 2010, 

Janvier 2015). 

1.4.7 Evolution of hinged jaw – the Gnathostomata 

An articulated jaw is a unique characteristic of Gnathostomes and is seen as a major 

innovation that provided the jawed vertebrate with a distinct advantage over many 

jawless fish predators (Gans and Northcutt 1983, Cerny et al. 2010, Brazeau and 
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Friedman 2015). Ancestral vertebrates had a simple skeleton that was composed 

hinged jaw evolved from the unhinged gill bar in the jawless ancestor (Cerny et al. 

2010) and studies continue to address this key question (Brazeau and Friedman 2015).  

1.4.8 From Water to Land – breathing air 

Evidence suggests that tetrapods (four-limbed vertebrates) evolved the ability to 

breathe air as ancestral fish in water. Polypterids (Actinopterygian lineage that are a 

part of the Craniata phylum) have the ability to breath in water and on land/aerially. 

They breathe using lungs similar to lungfish and tetrapods. However, a key 

component of their breathing apparatus are spiracles. Spiracles are large canals 

located on the head and they appear in the fossil record in the earliest known 

tetrapods. Spiracles aided early stem tetrapods to respire near the shoreline and it is 

believed that spiracles were crucial in the transition from water to land (Graham et al. 

2014). 

1.4.9 From Water to Land - Development of walking legs 

The ability to walk on dry land, the development of walking limbs (~365 MYA), is 

seen as one of the most important innovations in vertebrate evolution. Ichthyostega 

and Acanthostega are early tetrapods having diverged ~365 MYA (Clack 2005, 

Coyne 2009). For the most part, Acanthostega and Ichthyostega are not well adapted 

for terrestrial life. Their limbs were short, stubby and had 8 digits but these limbs 

were unable to support their weight on land. It is proposed that the tetrapod limb 

initially evolved in aquatic species where it’s function was in movement. Given these 

features extracted from fossil remains it is widely held that Acanthostega and 

Ichthyostega were entirely aquatic and that the origin of land living tetrapods 

therefore involved preadaptation. Preadaptation is when a biological structure adapted 

for one particular function in a given environment can be used for a different function 

in a different environment. For example, lungs and limbs existed prior to land-living 

tetrapods. The function of lungs and limbs in an aquatic species has been proposed as 

follows: ancestors of tetrapods were adapted to life in water, but also in shallow water 

adjacent to the banks and lungs and limbs allowed these animals to temporarily cross 

mud or shallow water barriers when required (Kemp 2005).  
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1.4.10 Development of a mineralized skeleton 

Another major innovation within the vertebrate clade is the development of a 

mineralized skeleton. The earliest diverging extant vertebrates with mineralized 

skeleton tissues are sharks and bony fish (~440 MYA), whereas Lamprey and Hagfish 

(~510MYA) do not have any mineralized skeletal tissue (Sansom and Downs , Sidow 

1992). The distinct advantage with a mineralized skeleton is protection of internal 

organs and improved locomotion. Vertebrates have two types of skeletal tissue: an 

exoskeleton (e.g. teeth, scales and fins) and endoskeleton (e.g. neurocranium and 

vertebrae). It is believed that a mineralized endoskeleton evolved from an exoskeleton 

progenitor. An endoskeleton has better weight bearing properties than an exoskeleton 

(it can support greater weight without becoming too heavy for an organism). In 

addition to this, an exoskeleton limits the size as it can become impractically heavy 

for an organism at a certain point. Tetrapod evolution favoured a mineralized 

endoskeleton, thus explaining a minimal exoskeleton and full endoskeleton (Shimada 

et al. 2013). 

1.4.11 Development of amniotic egg 

Being able to reproduce on land and independent of water for fertilization and 

development was a major innovation that greatly facilitated the colonization of land in 

both plants and animals. In the metazoan tree, it was the reptiles that were the first to 

fully adapt to life out of water, with the evolution of the amniotic egg, which freed 

them from a dependency on water for reproduction. Amniotes include reptiles, birds 

and mammals. The amniotic egg contains a food source (egg yolk), an enclosing 

membrane (the chorion), an internal membrane that retains water but exchanges gases 

and removes waster (the allantois), and a fluid filled sac (the amnion) that protects the 

embryo. The advantage of the amniotic egg is that the relatively water-impermeable 

shell protects the embryo from drying out, while also providing sufficient nutrition 

and gas exchange for complete development (Ashley-Ross et al. 2013). Species of 

bony fish, amphibia and reptiles have been reported to use both viviparity (live birth 

strategy i.e. no egg) and oviparity (egg-laying strategy). All birds and some mammals 

(monotremes) are oviparous and all therian mammals (marsupial and placental) are 

viviparous. The next evolutionary advancement in reproduction that we will briefly 

discuss is placentation and live birth in mammals (Tian et al. 2010). 
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1.4.12 Placentation 

The placental mammals are the most phenotypically diverse group of vertebrates 

spanning volant, aquatic and terrestrial niches (Wilson and Reeder 2005). The first 

placental mammal is thought to have lived ~125MYA (Kemp 2005). The origin of 

placental mammals has sparked much debate, with some regarding it an almost 

impossible task to solve (Teeling and Hedges 2013). In Chapter 2 we address this 

question and pose a solution to the radiation of mammals. While there are variations 

on placental types based on shape and invasiveness, in general the embryo is 

surrounded by amniotic fluid (amnion), the umbilical cord functions similarly to the 

allantois and yolk of the amniotic egg, providing food and removing waste and the 

accumulation of these placental membranes allow for food, air and waste to be 

transferred (Mess and Carter 2007). The distinct advantage of the placenta is it allows 

the offspring to be larger and more quickly independent when born (Morris et al. 

2013). 

 

These are only a sample of some well-characterised examples of major phenotypic 

change observed in the evolution of the Metazoa. In Chapter 3 we apply a network 

based approach to determine if gene remodelling correlates with these major 

phenotypic transitions and if so what functions have evolved in protein families at 

these time points.   
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Chapter 2: On Model misspecification and 

phylogeny reconstruction - resolving the root of 

the placental mammal tree  
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2.1 Introduction  
There are numerous phylogenetic reconstruction methods and models available—but 

which should you use and why? Important considerations in phylogenetic analyses 

include data quality, structure, signal, alignment length and sampling. If poorly 

modelled, variation in rates of change across proteins and across lineages can lead to 

incorrect phylogeny reconstruction that can then lead to downstream misinterpretation 

of the underlying data. The risk of choosing and applying an inappropriate model can 

be reduced with some critical yet straightforward steps outlined in this chapter. We 

use the question of the position of the root of placental mammals as our working 

example to illustrate the topological impact of model misspecification. Using this case 

study, we focus on using models in a Bayesian framework and we outline the steps 

involved in identifying and assessing better fitting models for specific datasets.  

 

Placental mammals are made up of three main clades: Afrotheria (Afroinsectiphilia 

and Paenungulata), Xenarthra (Cingulata and Pilosa), and Boreoeutheria 

(Laurasiatheria and Euarchontoglires). Placing the root of the placental mammal tree 

has been a controversial topic (Teeling and Hedges 2013) and some have argued that 

this is an impossible task (Teeling and Hedges 2013). Many studies have concluded 

conflicting positions, sometimes even from the same pool of data (Springer et al. 

2004, Murphy et al. 2007, Prasad et al. 2008, Morgan et al. 2013, Romiguier et al. 

2013). In 2013, two molecular studies narrowed down the root of the placental 

mammal phylogeny to one of two possibilities: (i) an Afrotherian root which places 

mammals such as elephants as the earliest diverging placental mammal group 

(Romiguier et al. 2013); and (ii) an Atlantogenata root, placing the common ancestor 

of the Xenarthra and Afrotheria as the earliest diverging placental mammal group 

(Morgan et al. 2013) (Figure 2.1).  

 

In addition, it has been shown that previous studies of the position of the root of 

placental mammals lacked definitive resolution because of suboptimal models and 

datasets of low power (Morgan et al. 2013). Romiguier et al. (2013) proposed that 

GC-rich genes lead to erroneous topologies (as GC is a proxy for recombination), and 

therefore that data partitioning should play a major role in the resolution of the  
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Figure 2.1: Conflicting positions for the root of the placental mammal tree 

 

 
Figure 2.1: Conflicting positions for the root of the placental mammal tree. (A) 

Afrotheria position retrieved from alignment and model (GTR) used in the Romiguier 

et. al study (2013) (result = Afrotheria position for the root) and (B) Atlantogenata 

position retrieved using the 39 taxa mammal dataset from Morgan et al. (Morgan et 

al. 2013) with the CAT-GTR model in PhyloBayes (Figure taken with permission 

from Morgan et al. 2013).   
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mammal phylogeny. Evidently, the data and subsequent model used can greatly 

impact the result of the  phylogenetic reconstruction. We propose that the conflicting 

positions for the root are due to model misspecification. We set out to assess whether 

the models applied in the Romiguier et al. study were adequate for the data used 

(Romiguier et al. 2013). In this study a set of mammal single gene orthologues were 

assembled from 39 mammal species and each of the 13,111 single gene families were 

categorized as GC-rich (>40% GC3 content) or AT-rich. The phylogenetic analysis of 

these datasets showed that GC-rich genes are most likely to support erroneous 

topologies and that AT-rich genes have a rate of error five times lower than that of 

GC-rich genes. The AT-rich genes supported an Afrotheria rooting, while the GC-rich 

genes supported an Atlantogenata rooting. The authors argued that the use of GC-rich 

genes contributes to conflict in the placement of the root of the placental mammal 

tree. 

2.2 Materials and methods 

2.2.1 Dataset assembly 

All datasets were created from the single gene orthologs (SGO) used in (Romiguier et 

al. 2013). We downloaded these SGOs from OrthoMaM v7 (Ranwez et al. 2007). The 

two datasets we use are summarized in Table 2.1 and briefly are composed of the 

following: 

(i) RomiguierTopAT: This is a concatenated alignment using 100 of the most AT-

rich genes. We wished to assess the impact of heterogeneous modelling on these data 

and on the support for the proposed Afrotheria hypothesis.  

(ii) Subsets 1–8: Each of the eight subsets are a concatenated alignment generated 

from 25 GC-rich genes (i.e. GC content >40%) chosen at random. We wished to 

assess whether the P4 heterogeneous models can adequately model the GC variation. 

2.2.2 Assessment of phylogenetic signal using Likelihood mapping 

Using TreePuzzle v5.2 (Schmidt et al. 2002) we wanted to ensure that the 

RomiguierTopAT contained adequate phylogenetic signal. Likelihood mapping is a 

method to visualize the phylogenetic content of an alignment (Figure 2.2). In brief, 

the input alignment is split up into quartets (4 sequences). Each quartet is assed in a 

maximum 
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Table 2.1: The nucleotide composition of datasets RomiguierTopAT and Subsets 

1-8  

 GC3 % Length A(%) C(%) G(%) T(%) 

(A) Subsets 1–8 properties 

Subsets 1 44.55653224 30587 22.5 32 27.6 17.9 

Subsets 2 43.54061239 28182 25 28.5 25.8 20.7 

Subsets 3 42.11977501 27203 25.7 27.4 25.4 21.5 

Subsets 4 45.42805129 28904 22.9 30.6 26 20.5 

Subsets 5 41.09068538 28384 24.6 28.7 25.5 21.2 

Subsets 6 40.77550101 34474 25.9 26.3 23.5 24.3 

Subsets 7 41.32848377 30201 26.4 27.1 23.9 22.6 

Subsets 8 40.77129042 23531 26.6 26.4 25.4 21.7 

(B) RomiguierTopAT 

RomiguierTopAT 14.66387233 81924 34.8 18.5 20.7 26 

Table 2.1: Section (A) represents the nucleotide composition for Subsets 1-8, and 
Section (B) represents the nucleotide composition for the RomiguierTopAT dataset. 
GC3% - is the percentage of the specified dataset that is composed of guanine and 
cytosine and is calculated using the third codon position of the sequences. The length 
of each dataset is given in base pairs. The percentage of adenosine, cytosine, guanine 
and tyrosine as a percentage over the total number of bases are denoted as A(%); 
C(%); G(%), and T(%) respectively.  
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likelihood framework combined with Bayesian weights. Each quartet can have 3 

possible topologies. However, there are 7 possible states: 3 can be fully resolved, 3 

can be partially resolved and 1 can be an unresolved. Accordingly, there are seven 

areas of the likelihood mapping triangle (Figure 2.2) that a quartet state can occupy. 

This can theory can be used to test the strength of the phylogenetic signal within data. 

When the majority of the quartets can be fully resolved, the phylogenetic signal is 

strong. A weak phylogenetic signal is observed when >10% of the quartets cannot be 

fully resolved (partially resolved or unresolved) (Figure 2.2) (Strimmer and Von 

Haeseler 1997). 

 

2.2.3 Phylogenetic reconstruction 

2.2.3.1 Phylogenetic analysis using PhyloBayes  

We ran the RomiguierTopAT alignment on PhyloBayes-MPI (Lartillot et al. 2013a). 

We ran this with nucleotide and amino acid data. In a PhyloBayes (Lartillot et al. 

2009) analysis the number of biochemical categories is optimized during the tree 

search, therefore if the GTR model (which is nested within the CAT-GTR model) is a 

better fit to the data than the CAT-GTR model, then the CAT-GTR model will reduce 

to the simpler GTR model, thus relinquishing the need to independently test the GTR 

model on the data (Lartillot 2014). Hence, by running analyses under CAT-GTR+G 

we can avoid running independent model testing analyses to determine whether CAT-

GTR or GTR fits the data best. This is a key point because Bayesian model selection 

analyses as implemented in PhyloBayes (Lartillot et al. 2009) to test alternative 

models (including the CAT-based ones) would be prohibitively computationally 

intensive given the size of dataset. For all PhyloBayes analyses two chains were run. 

Burn-in varied and all chains were run until convergence was achieved. Convergence 

was assessed using the BPCOMP software – part of the PhyloBayes package 

(Lartillot et al. 2009, Lartillot et al. 2013a). Following the recommendations in the 

PhyloBayes manual, all the chains of the MCMC run were considered to have 

converged on the same solution when the Maxdiff (maximal difference between 

observed bipartitions) dropped below 0.2 (Lartillot et al. 2013a).   
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Figure 2.2: Summary of the Likelihood mapping approach. 

 
Figure 2.2: Starting in the top left panel and following the arrows through the various 

stages of the likelihood mapping process are outlined. The top left panel depicts 

where the input tree is broken into quartets (4 sequences). Each quartet is then 

assessed in a maximum likelihood framework, coupled with Bayesian weights. The 

top center panel depicts the assessment of the likelihood of each possible quartet state 

(resolved, unresolved or partially resolved). The top right panel depicts plotting 

results onto a simplex (triangle) within the seven quartet states. These stages are 

repeated for each quartet and the results are summarized graphically as per the bottom 

panel. 
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2.2.3.2 Phylogenetic analysis using p4 

We analysed the RomiguierTopAT and the Subsets1-8 in p4 (Foster 2004). Each 

alignment was treated as outlined in Figure 2.3. Each model was run with 5 

independent runs until convergence was reached and topological agreement between 

independent runs was sought. We examined how the MCMC run progressed via the 

checkpoints of the MCMC run by comparing the ASDOSS values (average standard 

deviation of split supports) at the checkpoints where ASDOSS <0.01 is indicative of 

convergence. We plotted the likelihood values from the samples taken during the 

MCMC run to ensure that the likelihood values had reached plateau before 

completion. We used the parameter acceptance rates to get a rough indication of 

mixing and convergence, e.g. ideally all parameters would be accepted between 10%-

70% of the time. However, in p4 this is difficult to achieve because the composition 

and rate parameters can only be adjusted globally. For example, one composition 

vector may be accepted 40% of the time, while 2 out of 3 of the composition vectors 

are only accepted 5% of the time. There is no way around this issue it is due to the 

nature of the algorithm (Foster 2004). 

 

2.2.4 Test of Compositional homogeneity  

We employ tree- and model-based composition fit tests as described by Foster (2004). 

These tests are done in a maximum likelihood framework. Foster (2004) illustrates 

that the traditional χ2 test used for assessing compositional homogeneity presents a 

problem. More specifically, this test can have a large probability of type II error 

(failure to reject a false null hypothesis i.e. a false positive). This is because the 

traditional test uses a χ2 curve as a null distribution; this is not appropriate to assess 

the significance of the χ2 value. Essentially, the test described by Foster (2004) is 

superior to the traditional χ2 test because a null distribution is gained through 

calculating χ2 values from simulated data (simulations based on the appropriate 

model and tree). This test essentially asks the following question: does my possibly 

heterogeneous data fit the possibly heterogeneous model? (Foster 2004).   



 62 

Figure 2.3: Flowchart describing the steps involved in phylogenetic 

reconstruction using heterogeneous models. 

 

 
 

Figure 2.3: This image is taken from (Moran et al. 2015). All the major steps we have 

described in performing a phylogenetic reconstruction using heterogeneous models 

are summarized here. (A) Starting with a multiple sequence alignment the test for 

compositional homogeneity is carried out, failing this test means the data must be 

modelled using a heterogeneous model. There are two phases to generating the 

heterogeneous model of best fit in P4 these are depicted in (B) and (C); (B) The first 
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phase to estimate the number of composition vectors needed for the dataset; (C) The 

second phase is to estimate the number of exchange rate matrices; (D) Depicts the 

assessment of the model adequacy using posterior predictive simulations and the 

generation of the trees from which a consensus tree is generated.  
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2.2.5 How Do I Select the Optimum Model for My Data? – Bayes Factor Analysis 

Bayes Factor (BF) analysis is a Bayesian approach to select between nested models 

(Figure 2.4) and this is particularly useful in P4 (Foster 2004). In P4 the user can vary 

the number of parameters of the core model, for example, the user can test a GTR 

model with two composition vectors and one rate matrix and compare this to a GTR 

model with three composition vectors and one rate matrix. There are many 

permutations of different numbers of composition vectors and rate matrices that the 

user can generate. BF analysis allows the user to find which one of the models fits the 

data best, always selecting for the model with the lowest number of parameters. Using 

Newton Raftery Equation (16) (Newton and Raftery 1994) within the P4 

environment, the user can calculate the logarithm of the marginal likelihood and then 

compare the P4 models using the following test: 2[lnL(model B) − lnL(model A)] for 

each possible pairwise comparison of models. We compare the resulting value to the 

Kass and Raftery table (Kass and Raftery 1995). If the value is greater than 6, then 

there is a strong indication that model B is a better fit to the data than model A. We 

then compare model C to model B in the same way and so on until we get a BF below 

6. In which case, the model being tested is not a better fit to the data. There is no need 

to carry on at this point with the comparisons to the remaining models because we 

observe an increase parameterization that does not improve the fit (Figure 2.4) (Kass 

and Raftery 1995, Foster 2004, Lopes and West 2004). It is important that Bayes 

factor analysis and posterior predictive simulations described in step (vi) below are 

both used when one considers does my model fit my data significantly? 

 

2.2.6 Does My Model Fit My Data? – Posterior predictive simulations 

Posterior predictive simulation (PPS) is a Bayesian model fit test that can be applied 

to both heterogeneous models and homogeneous models to give statistical support for 

how well a model describes a specific dataset (Gelman et al. 2014) Data is simulated 

under this model, and if the model describes the real data well, then our simulated 

data should be similar to the real data. Data is simulated based on the model used for 

the real data analysis and all the parameter estimations retrieved during the MCMC 

run. The simulated data can be compared to the real data through a single parameter—

commonly the composition parameter is used for comparison. It is suggested that  
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Figure 2.4 Overview of a sample Bayes factor analysis.  

 
Figure 2.4: Taken from (Moran et al. 2015). Models are denoted as A, B, C and D and 

parameters increase from A to D (i.e., Model A is the least parameterized model). 

They are compared in a pairwise manner as denoted by the lower triangular matrix. 

Each pairwise comparison results in a score (or Bayes Factor) by calculating 

2[lnL(Model B) − lnL(Model A)]. Significance is based on the Kass and Raftery 

equation (Kass and Raftery 1995). Cases where the Bayes Factor comparison yields a 

significant result are shown in green and models that do not significantly improve the 

fit to the data are given in red. Model C is selected as the best-fit model as an increase 

in parameters in Model D does not significantly improve the model fit. Therefore, we 

do not continue to search more parameter rich models and we choose Model C 

(highlighted in yellow).  
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multinomial likelihood is used to test overall model fit and that the composition 

parameter is used to test how well this parameter is modelling the composition of the 

data (Huelsenbeck et al. 2001).Considering the resultant graphs from a PPS analysis, 

a model that fits well will plot the real test statistic close to the central mass of the 

histogram that is composed of the simulated test statistics. From a statistical 

perspective, a tail area probability of 0.5 is optimal and indicates the model describes 

the data well (Foster 2004). In PhyloBayes the output of the PPS is given as a Z-

score, where a Z-score >2 is an indication that the model does not fit the data 

(Lartillot et al. 2009). 

2.3 Results 

2.3.1 Likelihood mapping reveals phylogenetic signal is present in 

RomiguierTopAT 

The likelihood mapping (LM) results are displayed in Figure 2.5. Topologies at the 

vertices of the simplex form 94.9% of the quartets tested. 4.4% of the quartets were 

partially resolved and 0.7% of the quartets were unresolved. Therefore, the 

RomiguierTopAT alignment contains a significant phylogenetic signal. 

2.3.2 RomiguierTopAT is compositionally heterogeneous 

Following model selection analysis using ModelGenerator (Keane et al. 2004), the 

GTR model was selected. The results of the compositional homogeneity test showed 

that for the RomiguierTopAT of the 39 taxa, there were 12 that did not fit the 

homogeneous model. Therefore, whilst the RomiguierTopAT dataset is 

compositionally heterogeneous but it was analysed using a compositionally 

homogeneous model in the original study. 

2.3.3 Optimum model for RomiguierTopAT is a heterogeneous model  

BF analysis revealed that our optimum model for this dataset is annotated as 2GTR + 

4C + 4G (2 GTR rate matrices, four composition vectors and four discrete gamma 

categories). The biggest improvement in BF score was 1281 and was for the 

comparison of the homogeneous model (1GTR + 1C + 4G) to the first heterogeneous 

model (1GTR + 2C + 4G). In addition to this, the number of composition vectors 

appears more important to model the data than the number of rate vectors (Figure 

2.6).  
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Figure 2.5: Results of Likelihood mapping for the RomiguierTopAT alignment  

 
Figure 2.5: The 3 triangles show the distribution of quartets (each dot in the top 

triangle represents a quartet) within Likelihood mapping space ( a complete triangle). 

The vertices denote the proportion of quartets for a particular topology (each 

alternative topology, partially resolved and unresolved). The bottom left triangle 

represents support for each of the three quartets. The bottom right triangle has seven 

state spaces: each vertex is a fully resolved quartet, the sides between the vertices 

represent quartets that cannot be fully resolved and the central area of the triangle 

represents quartets that cannot be resolved. The numbers represent the proportion of 

all quartets that fall within that space.  
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2.3.4 P4 cannot model the RomiguierTopAT Alignment 

A consensus tree was made from the MCMC run for the RomiguierTopAT dataset 

under the 2GTR + 4C + 4G model. The topology supported the Afrotheria position of 

the root. However, posterior predictive simulations (PPS) reveal a poor tail area 

probability of 0.00, showing that this model does not adequately describe the data and 

that the resultant topology is not to be trusted. We went on to assess whether any of 

the 24 P4 models tested had a significant tail area probability for RomiguierTopAT. 

Surprisingly, none of the models had a significant tail area probability; in fact, all 

models we tested had a tail area probability of 0.00, suggesting that P4 cannot model 

this data adequately with the models available. However, the simulated dataset 

produced using the heterogeneous P4 models are a better fit to the real data than the 

homogeneous model (Figure 2.7) although as would be expected in this scenario the 

topology is not well supported. This is unusual as P4 is generally capable of showing 

some model fit. The RomiguierTopAT dataset seems to be very difficult to model 

adequately, perhaps this is due to a high level of heterogeneity across sites and 

between lineages in combination. But it is clear from these analyses that 

homogeneous modelling is too simplistic and not realistic for this dataset and that 

additional improvements need to be made to heterogeneous models to capture the 

complexity of the data. 

 

The analysis of Subsets 1–8 in P4 showed some model fit for all these subsets and in 

all cases of Subsets1–8 the heterogeneous model was a better fitting model than a 

homogeneous. In most cases (6/8 of the subsets) the heterogeneous model 

significantly fits the data (Figure 2.8). These results for Subsets 1–8 illustrate that 

heterogeneous models are capable of adequately modelling complex data and are 

more appropriate than homogeneous models for heterogeneous data. 

 

2.3.5 PhyloBayes can model the RomiguierTopAT alignment and finds strong 

support for Atlantogenata rooting 

For the RomiguierTopAT, dataset the CAT–GTR model was found to fit the data 

better than the site-homogeneous models used in the original studies (LG) (Table 2.2). 

For RomiguierTopAT the  
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Figure 2.6: Bayes factor analysis for RomiguierTopAT with heterogeneous 

models. 

 
Figure 2.6: Taken from (Moran et al. 2015). The results depicted in (A) and (B) are 

for RomiguierTopAT, in both cases the BF result indicating the model of best fit is 

depicted in yellow. The overall model of best fit (for composition vectors and rate 

matrices) is 2GTR + 4C + 4G. (A) The lower triangular matrix of Bayes Factors used 

to find the optimum number of composition vectors for the model; (B) The lower 

triangular matrix of Bayes factors used to find the optimum number of rate matrices. 

Combined they produce the best-fit model for the specific dataset. In both (A) and (B) 

significant improvements in model fit as judged by Kass and Raftery criteria (Kass 

and Raftery 1995) are shown in green and non-significant in red.  
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Figure 2.7: Assessment of fit of the homogeneous and heterogeneous models for 

the RomiguierTopAT dataset. 

 
Figure 2.7: Posterior predictive simulations calculated for the RomiguierTopAT 

dataset are shown. The leftmost histogram in grey shows the results of the posterior 

predictive simulation for RomiguierTopAT using the homogeneous model. The 

rightmost histogram in blue shows the improved posterior predictive simulation on 

modelling RomiguierTopAT with the heterogeneous model of best fit (i.e., 2GTR + 

4C + 4G for RomiguierTopAT). In both simulations, the X-axis represents the 

parameter of comparison taken from the simulations, and the Y-axis represents the 

frequency. The large black arrow indicates the value of test statistic (χ2) retrieved 

from the real data.  
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Figure 2.8: Assessment of fit of Homogeneous and Heterogeneous models for 

Subsets 1–8. 

 
Figure 2.8: (A) Posterior predictive simulations for the Subsets 1–8 are shown. The 
leftmost Section of the table shows the results for the homogeneous model. The 
rightmost Section of the table shows the improved tail area probability on modeling 
the data with heterogeneous models. Values closer to zero represent a poorer fit of the 
model to the data; (B) The results of the posterior predictive simulations for one 
subset (Subset 1) are shown in detail. Again, the simulation for the homogeneous 
GTR model is shown in grey and the heterogeneous P4 model of best fit is shown in 
blue (i.e., 2GTR + 4C + 4G). In both simulations, the X-axis represents the parameter 
of comparison taken from the simulations, and the Y-axis represents the frequency. 
The large black arrow indicates the value of test statistic (χ2) retrieved from the real 
data.  
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Table 2.2: Comparing posterior predictive simulations (PPS) for the LG and 

CAT-GTR models for the RomiguierTopAT dataset  

Model LG  CAT-GTR 

Composition parameter of original data 2.19977 2.19977 

Composition parameter of simulated 

data 

2.33305 2.20858 

Tail area probability 0 0.436695 

 
Table 2.2: The composition is estimated from the original RomiguierTopAT dataset 

during the MCMC process in PhyloBayes. During the MCMC process data is 

simulated for each model and the composition is estimated from the simulated data. 

The original and the simulated compositions are then compared. Tail area probability 

of 0.5 is reflective of compositions that are not significantly different.  
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model did not boil down to a GTR+G model during the tree search, confirming that 

the original analyses were not performed under the best fitting model in the original 

study. The PhyloBayes CAT–GTR model supports an Atlantogenata root and not an 

Afrotheria root as found in the original study that used homogenous models.  

 

2.4 Discussion 
Combining the sophisticated modelling approach in P4 (Foster 2004) as described in 

Morgan et al. (2013) (Morgan et al. 2013) and the data partitioning method of 

Romiguier, Ranwez et al. (2013) (Romiguier et al. 2013), we show that homogeneous 

models do not describe the RomiguierTopAT data adequately and therefore any 

topology resulting from that model is not significant and certainly not reliable. While 

software packages such as RAxML (Stamatakis 2006b) can be incredibly powerful 

and fast, they are not always appropriate and this depends on the dataset. The results 

for the datasets Subsets 1–8 indicate that modelling heterogeneity across the 

phylogeny will not always work, again this is dataset dependent. In this case, we 

searched for the optimum heterogeneous GTR model and still failed to adequately 

model the data. This serves to highlight the importance of checking the adequacy of 

the model for each specific dataset. One cannot assume that any heterogeneous model 

is adequate. One can only trust the phylogeny produced with a model that adequately 

and statistically significantly models that data. However, the question the user needs 

to ask is does this model adequately describe my data and if the answer is no then the 

resultant topology is not reliable. The key is to resist making assumptions of the data 

and instead let the data dictate the approach and the model. As genome-scale 

phylogenies become commonplace and as consilience across datatypes rapidly takes 

hold as best practice, the importance of developing methods that can efficiently and 

adequately model data is paramount.  

 

The heterogeneous modelling approach applied using P4 models of heterogeneity 

were not capable of modelling the data adequately. However, the PhyloBayes model 

of heterogeneity (CAT-GTR) was capable of modelling the data. Using the CAT-

GTR model on the RomiguierTopAT data we were able to show that this model could 

adequately describe the data using posterior predictive simulations.  Furthermore, 

posterior predictive simulations show that the original model used in the Romiguier 
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et. al. study (2013) was inadequate for the data (Romiguier et al. 2013). We show that 

the model that adequately describes the data provides support for the Atlantogenata 

hypothesis. It has been stated that solving the root of the placental mammals was 

impossible to solve largely due to factors such as incomplete lineage sorting (ILS) 

(Teeling and Hedges 2013), reflected in large scale gene tree heterogeneity and a 

result of the apparent rapidity of successive vicariance-driven divergence events 

associated with the fragmentation of the Pangaean and Gondwanan supercontinents 

(Nishihara et al. 2009).  However, it has been found that the levels of ILS present 

during placental diversification do not obscure the true relationships within the 

superorders of placental mammals (Tarver et al. 2016).  

 

In exploring models of sequence change in this chapter it is clear that phylogenetic 

models can be designed that can accurately capture the evolutionary history of some 

sequences. However, there are mechanisms of protein coding gene evolution that do 

not follow a tree-like pattern of evolution, i.e. gene remodelling. Little is currently 

known about the general rules around non-tree like processes and modelling of these 

processes is in its infancy. These non-tree like processes include gene fusion/fission 

(Chapter 3) domain and exon shuffling (Chapter 4). 

  

2.5 Conclusion 
In summary, we have got consilience for the root of the placental mammal tree across 

different data types using a data driven method that incorporates both homogenous 

and heterogeneous models. Reanalysis of previous studies revealed that inadequate 

modelling was the primary cause of support for alternative topologies for the root of 

the placental mammals. When a model that fits the data is used, only one hypothesis 

was supported: an Atlantogenata rooting.   
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Chapter 3 - Major protein-coding innovation by 

gene remodeling in the animal kingdom.  
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3.1 Introduction 
Understanding the origin of genetic and functional novelty across the Metazoa (i.e. all 

multicullar animals) is a fundamental problem in modern biology. Although there has 

been a lot of research carried out investigating the role of tree-like mechanisms (such 

as gene duplication and loss) in creating novel genes, little is understood about the 

role of non-tree-like mechanisms (such as gene remodelling) in creating novel genes. 

By performing analyses of sequence similarity networks (SSNs) and phylogenomics 

across 63 Metazoan genomes, we assess the contribution of two interrelated 

mechanisms of protein coding evolution to the diversity of animal protein coding 

gene families. Firstly, we use a novel phylogenetic approach to plot gene duplication, 

loss and point mutation in the evolution of gene families on the animal tree of life. 

Secondly, we use a network approach to study novel gene family evolution by gene 

remodeling. In this chapter, we focus on gene fusion/fission as the mechanism of gene 

remodeling. We show that gene remodeling is present right across animal life, and is a 

major source of novel protein-coding gene family genesis. In general, we see that the 

rate and specific mechanism involved in the generation of novel protein-coding gene 

varies significantly depending on the lineage. For example, the Deuterostomia as 

compared to the Protostomia have a much higher incidence of gene remodeling 

(specifically fusion). Bilaterian animals are either deuterostomes (in development first 

opening becomes the anus) or protostomes (first opening becomes the mouth). On a 

broader scale, this work provides insight into how novel protein-coding gene families 

have evolved through time and contributed to the diversity we see across the Metazoa. 

 

Genome sequencing is revealing the existence of an enormous repertoire of protein 

coding genes in animal genomes (Consortium 1998, Adams et al. 2000, Holt et al. 

2002, Consortium 2004). Recombinogenic processes and transcription-mediated read-

thorough create remodeled genes that likely contribute novel protein coding genes to 

genomes (Zhou and Wang 2008, Kaessmann et al. 2009, Wu et al. 2013, Agaram et 

al. 2015). Indeed, given the diversity of protein domain combinations, it is reasonable 

to assume that protein remodeling has made a contribution to the whole-organism 

diversity observed in Metazoa. Well-understood and well-characterized examples of 

gene remodeling include Jingwei, a remodeled Drosophila gene derived 2 MYA from 

a fusion of a retrotransposed copy of an Adh locus and the 5’ end of the yande gene. 
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The novel phenotype conferred by the resultant remodeled protein is a new specificity 

towards long-chain primary alcohols (Wang et al. 2000, Long et al. 2003). The Kua-

UEV fusion gene in human is remodeled from two adjacent genes (Kua and 

UBE2V1)(Thomson et al. 2000) . The functional impact of this remodeling event is 

that the ubiquitin conjugating enzyme UBE2V1, which normally has activity localized 

solely to the nucleus, now has novel activity localized to the cytoplasm (Thomson et 

al. 2000). While we understand that mutational molecular clocks tend to tick with 

complex but increasingly well-understood rates (Lynch 2010), we have not yet been 

able to understand how, when, at what rate, and to what extent remodeling has 

impacted on animal proteomes. Until recently, we have not had available a 

comprehensive dataset of proteins to determine the details and genome wide impact 

of gene remodeling processes. 

 

Animals exhibit significant diversity in development, morphology and indeed body 

plan (Section 1.4). We define major transitions as events that have allowed a lineage 

to radically change their environment, a biological function, and/or phenotype. From 

studies such as McLean et al. (2011) (on the lack of penile spines in Humans) and 

D'Apice et al. (2004) (on the cause of Progeria) we know that even small changes at 

the genetic level can cause major phenotypic effect (D'Apice et al. 2004, McLean et 

al. 2011). While phenotypic transitions in the Metazoa such as the emergence of the 

mesoderm, mineralized skeleton and chordate have been well documented (Bell 

2015), the underlying genetic changes contributing to these major phenotypic 

transitions are generally quite poorly understood. Major questions in theoretical 

evolutionary biology that are addressed in this Chapter include: are these major 

phenotypic transitions fuelled by the emergence of novel protein coding gene 

families, and, has gene remodeling contributed to these novel families at a steady rate 

over time or in a punctuated manner across the fossil record.  

 

3.2 Methods 

3.2.1 Data acquisition 

We retrieved our data from the OMA database (Altenhoff et al. 2014). The full details 

and references for the data used in this study are available in Appendix 3.1. We only 

used coding DNA sequences (CDS). All data was passed through our initial quality 



 78 

filter (Section 3.2.2). From the data that passed this filter, we took representatives 

across the Metazoa for each major phylum of the tree (Figure 3.1). Finally, form all 

the genomes that passed the quality filter, we selected 63 of these Metazoan species as 

representatives of all major groupings within the Metazoa (Figure 3.2). Some pre-

computed Smith-Waterman alignments were available for download for ~50% of the 

species comparisons (Altenhoff et al. 2014) and we used these pre-computed 

alignments in our analysis.  

3.2.2 Quality check filter 

Data quality is of paramount importance in any analysis. We carefully researched all 

aspects of data quality. For example, commonly used statistics such as contig/scaffold 

N50 and fold coverage are not good measures of data quality as they are not always 

easily accessible and do not directly correlate with data quality (Bradnam et al. 2013). 

Therefore, we used the raw sequence data and from it extrapolated our own 

statistics/metrics and subsequently assigned data quality measures. This was 

challenging due to the sheer amount of storage needed for the data (data for a single 

species was in the region of many Gigabytes) but we had some working solutions in 

place. However, even more challenging was the acquisition of raw genome data. 

Although there are hundreds of animal genomes sequenced, the raw data is not always 

available. In addition to these challenges we discovered that our assumption that high 

sequencing quality would correlate to high protein coding data quality was simply not 

supported by the data – i.e. high-quality sequences can be poorly annotated. 

Therefore, we explored an alternative procedure for assessing data quality.  

 

We developed the following procedure to provide us with the necessary metrics on 

data quality. The procedure involves two data filters - both of which are based on sets 

of protein coding genes that are present across: (1) all of life, and (2) all of Metazoa. 

The number of conserved protein coding genes present in a genome acts a proxy for 

the quality of that genome and its annotation. A genome with all (or at least 70% of -) 

the orthologs is deemed high quality and genomes with large portions of missing 

orthologs are lower quality (i.e. <70% of orthologs). The first filter uses a gene set of 

412 orthologs that are found across all Metazoa (Powell et al. 2012). Using a 

reciprocal BLASTp (Altschul et al. 1990b), we identify the distribution of the 412 

ortholog families in each genome.   
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Figure 3.1: Relationships and divergence times of the 63 Metazoan species 

sampled. 

 



 80 

 
Figure 3.1: The phylogenetic relationship and dates of all 63 Metazoa represented in 
our dataset are shown as generated using TimeTree (Kumar et al. 2017). Branches in 
the phylogeny are scaled according to divergence times. The geological periods from 
the Tonian period (~952 MYA) to present day are color-coded and are scaled in 
Millions of Years.  
  



 81 

Figure 3.2 The distribution of our 63 genomes  into their major taxonomic groupings across the Metazoa 

  

Figure 3.2: The distribution of the 63 Metazoa used in this study into their major taxonomic groupings. The numbers provided are post-filtering 
and are ordered by major taxonomic category. Each row represents a level of taxonomic grouping on the tree.  Each subsequent row (from top to 
bottom) describes the more minor taxonmic groupings within the major taxonmoic groupings. For example, Bliateria is a major taxonomic 
grouping that can be further divded into either Deuterostomia or Protostomia. 
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The second filter is the stricter of the two filters. The second filter uses the 40 highly 

conserved orthologous families that are found in all of life as the query in the 

homology search (Ciccarelli et al. 2006). As there are 412 genes in the first filtering 

step, it is expected that there will be a reasonable level of variation in distribution (in 

terms of the number matches in each genome), this is useful in that we can then rank 

the genomes by quantity of genes present. However, this is not a strict filter and by 

random chance some genes be missed even in higher quality genomes. The 40 highly 

conserved genes are present in all of life and are highly conserved in their sequences 

as well as in their distribution. Therefore, we can query one of the 40 genes against a 

particular species to determine if it is present, and we can assess the level of 

conservation of the orthologous sequence. This combination of filters, carried out in 

this order, allowing the highest quality data possible to be retained while also 

accounting for variation in sequence and annotation quality. 

3.2.3 Metazoan topology and dating 

The second aspect of our data assembly that is crucial to the questions posed in 

Chapters 3 and 4 of this thesis is sampling across the Metazoa. Sampling is guided by 

phylogeny - this is particularly challenging as there is no agreed species phylogeny 

for the Metazoa (Section 1.2.7.7). The large number of alternative topologies, and 

therefore the large number of contentious yet critical nodes, increases the number of 

permutations necessary to represent the evolution of the animal kingdom. In addition, 

some lineages of metazoan life are understudied and poorly sampled (e.g. Porifera) 

whilst others (e.g. the mammals as detailed in Chapter 2) are well studied and densely 

sampled. To this end, a dataset capable of addressing the major transitions in animal 

evolution was constructed with multiple representatives from before and after each 

transition. 

 

We used the topology and node dates from TimeTree (Kumar et al. 2017) (latest 

access on 23/09/2016 ). In total 51/63 of the species in our sampling were represented 

in TimeTree. For the remaining 12 species that were not present in the TimeTree 

database, we searched for their closest neighbours (sister taxa) in TimeTree. In most 

cases the time estimate was available for a member of the same genus. The details of 

the nearest neighbour estimations can be found in Appendix 3.7. 
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3.2.4 Gene gain and loss analysis – OMA 

The major frameworks for inferring orthology are either graph-based or tree-based. 

Graph-based methods use graph theory to create a network where genes/sequences are 

represented as nodes on the network connected by edges representing evolutionary 

relationships between nodes. Usually there are two parts to graph-based orthology 

inference. Initially an orthology network is created where nodes (genes) are connected 

by edges based on a statement of orthology. The OMA algorithm (Roth et al. 2008) 

we employ here to define gene birth and death, bases the edges/connections on Smith-

Waterman alignments. Following on from this the orthologs are clustered into groups 

or gene families. In OMA the orthologous groups are Hierarchical Orthologous 

groups or HOGs (Altenhoff et al. 2014). HOGs are defined as groups of genes that 

have descended from a common ancestor in a given taxonomic range. Traditionally, 

gene/tree reconciliation is used to identify HOGs. However, OMA employs a graph-

based method to identify HOGs based directly on the orthology graph it generates. 

The removal of traditional gene/species tree reconciliation from the inference process 

significantly reduces the computational cost. As well as this, OMA also reports 

several other advantages over standard bidirectional best hit approaches: it uses 

evolutionary distances instead of scores, considers distance inference uncertainty, 

includes many-to-many orthologous relations, and accounts for differential gene 

losses. (Roth et al. 2008). Using OMA v 1.1.2 (Altenhoff et al. 2014) and the default 

parameters (as discussed with the authors of OMA) we carried out our gene family 

evolution analyses. All available pre-computed data for our database was downloaded 

from OMA (http://omabrowser.org (Altenhoff et al. 2014)). We used the 

familyanalyzer python module (Altenhoff et al. 2014), made available from the 

authors, to analyse gene events across our topology according to the HOGs produced 

by OMA [famAnalyser_retrieveEventIds.py – Appendix 2.2].  

3.2.5 Remodeled gene detection using CompositeSearch 

By definition a remodeled gene is formed through a recombinogenic process such as 

gene fusion, where segments of the remodeled gene are derived from different gene 

families. Sequence similarity networks (SSN) where each node represents a unique 

sequence and each edge represents the similarity between sequences, appear to be 

well suited to identify and study this genetic mosaicism (Alvarez-Ponce et al. 2013a, 

Bapteste et al. 2013a).  
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I constructed a SSN using the results of an all-against-all BLASTp (Altschul et al. 

1990a) of 1.2 million protein coding sequences (i.e. all genes within our database of 

63 genomes). In this undirected network, two proteins are connected based on their 

similarity scores (E-value <= 1e-5, %Identity >= 30%). The SSN was made 

symmetrical by keeping only the best match of each pairwise comparison. We 

detected the remodeled genes and their families in this SSN using the software 

package CompositeSearch (under review Pathmanathan JS et al, 2017). The structure 

of the SSN captures much of the history of the evolution of the gene, such as 

divergence by point mutations and also recombinogenic events like fusions/fission 

events (Adai et al. 2004, Jachiet et al. 2014a). Typically, gene families form sub-

graphs with high connectivity, in which connected sequences display significant 

BLAST E-values ≤ 1E-5, mutual covers ≥ 80%, %Identity ≥ 30%. 

 

The results of CompositeSearch were parsed to retain only remodeled gene families 

with more than one remodeled gene and having no overlapping contributing 

sequences or components. We removed any singleton remodeled gene families, i.e. 

those with only a single member, as these were more potentially false positives. This 

removed 44,453 of the 53,456 remodeled gene families (~83% of total remodeled 

gene families were removed in this step). We also removed any remodeled gene 

families where only 1 member was remodeled. This removed 1,065 (~10%) of the 

leaving a total of 7938 remodeled gene families. 

3.2.6 Remodeled Gene Family Classification using CompositeClassifier 

Remodeled gene families were classified based on their origin and that of their 

components. This classification allowed us to identify if a remodeled gene family was 

formed by the fusion of pre-existing or entirely new protein coding gene families. All 

gene families were then placed on the reference tree and their last common ancestor 

was inferred using parsimony (Farris 1977). The type of remodeled gene family can 

be inferred by comparing its position on the phylogeny to that of its components 

[Appendix 3.5]. For example, a remodeled gene family is classified as old if its 

component gene families evolved before its emergence on the same path. The 

categories are as follows: Old refers to instances when components of a remodeled 

family are found at ancestral nodes only. Mixed refers to instances when components 
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of a composite family are found ancestrally in the same lineage and also at the current 

node of comparison (a mix of old and new components). Complex refers to instances 

when components for a composite family are found in another path on the tree (not in 

a common ancestor). Contemporary refers to instances when a components of a 

composite gene family are found at the present node (all components arose at the 

same node on the tree as the composite). Subsequently remodeled refers to instances 

when components of a composite gene family are found at younger time points in the 

tree that the composite family (this is gene fission). Undefined are instances of 

families that cannot be categorized by these rules (Section 3.2.6). This approach aims 

to show the evolutionary combinatorial processes under which genes evolve (Figure 

3.5(B)) 

 

3.2.7 Functional Enrichment Analysis  

Using the stats.hypergeom function from the python SciPy package (Jones et al. 

2014a) as incorporated into enrichmentDector3.py [Appendix 3.2], the genes at each 

node on the tree were assessed for enrichment of Gene ontology (GO) functions using 

a Bonferroni multiple testing correction (Weisstein 2004). Domains from Pfam (Finn 

et al. 2016) and their associated GO terms were retrieved from the gene ontology 

website (Consortium 2015). We represented each family defined in the 

CompositeSearch (Pathmanathan JS et al, 2017) analysis by its common Pfam 

domains and GO terms. Our criteria were that the GO term must be in > 50% of all 

genes in the family and a Pfam domain had to be ubiquitous within the family. For 

example, Family_A has 100 member genes. Qualitatively, all members have 

Domain_W and Domain_X, 4 members also have Domain_Y and 62 have Domain_Z. 

The first filter states that each ontology must be present in the majority (>50%) of the 

members to be included as a representative. This filter would exclude Domain_Y as it 

is not a majority. It has 4 associated Pfam domains, 12 have term_A, 100 have terms 

B, and C, and 70 have term D. As the criteria requires 100% of the genes to have a 

term only terms B and C pass the filter. 
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Figure 3.3: Phylogenetic tree of our metazoan sampling with internal nodes 

labelled 

 
Figure 3.3: A phylogenetic tree (cladogram) of our sampling of the Metazoa with the 

internal nodes labeled for future reference when describing results. 
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The next filtering step works on the average of each Pfam domain per gene in the 

family. So, if all genes have 1 copy of Domain_W; 48 members have 2 copies of 

Domain_X, 40 members have 3 copies of Domain_X, and 12 have 1 copy of 

Domain_X; of the 62 members containing the passing Domain_Z 40 members contain 

2 copies of Domain_Z and 22 only have 1 copy. The most common filtered domain 

sums per gene would be: 

Domain_W: 1 copy 

Domain_X: Average = 2.28 copies or 2 copies 

Domain_Z: Average=1.65 copies or 2 copies 

In essence, this removes gene families that show a high probability of being 

homoplastic and give the representative domains present in a gene family. 

 

3.3 Results 

3.3.1 Novel protein coding gene families emerge throughout the Metazoa and 

primarily by gene remodeling. 

The orthology network created by OMA was based on Smith-Waterman alignments 

and subsequently identified orthologous families using a hierarchical clustering 

method (Altenhoff et al. 2014) (Section 3.2.4). The Hierarchical Orthologous groups 

(HOGs) produced by this method were defined as groups of genes that descended 

from a common ancestor in a given taxonomic range. These groups allowed us to 

identify where gene gain, loss or duplication arose in time. Novel gene families are 

those that had not been found prior to this point on the tree and what type of new gene 

family they are (e.g. remodeled or non-remodeled). The analysis of gene gain and loss 

identified 45,612 instances of novel genes at internal nodes on the animal tree. Of this 

cohort of novel genes 36,948 (81%) are remodeled (Figure 3.4). The majority of 

internal nodes (57/61) have more novel remodeled gene families than novel non-

remodeled gene families. The average number of novel genes per node in the 

phylogeny is 760 and the median is 390 (Standard deviation = 1003). Most nodes that 

have above average number of novel gene families are major transitional nodes, 

including the following (Clade (total number of novel genes, % of novel genes that 

are remodeled at each node)): Eumetazoa (2267, 68%); Bilateria (3005, 65%); 

Protostomia (2179, 92%); Euteleostomi (3674, 73%); Sarcopterygii (1584, 85%), and 
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Neopterygii (3026, 89%). In the Protostomia there are a total of 2,179 novel genes 

and in the Deuterostomia there are 957. However, on average both Protostomia and 

Deuterostomia have the same number of novel non-remodeled genes per node (118 in 

both cases). The Protostomia have more novel remodeled genes (797) per internal 

node than Deuterostomia (493) (Table 3.1).  

3.3.2 Gene remodeling is prevalent across the Metazoa, particularly at nodes of 

major phenotypic transition  

Using a sequence similarity network (SSN) approach employed in CompositeSearch 

(Pathmanathan JS et al, 2017) we identified a total of 71,460 gene families in animal 

evolution. The analysis spans 63 Metazoan species representing all major groups of 

animals and 20,801 million cumulative years of animal evolution (Figure 3.1). On the 

SSN, remodeled gene families are represented as nodes that hold otherwise 

unconnected gene families together on the graph and we identify a total of 48,985 

nodes with this feature (Figure 3.5). Using the canonical species phylogeny (Section 

3.2.3) each of the 71,460 gene families were mapped to their node of origin. Each 

internal node (61 in total) in the phylogeny contained remodeled gene families and 

49/61 of the internal nodes had more remodeled than non-remodeled gene families 

indicating that for the majority of internal nodes more novel gene families emerge by 

gene remodeling than other mechanisms. 

 
Next, we wished to determine if the genesis of novel gene families by remodeling is 

distributed equally across the phylogeny or are there particular nodes that have a 

higher instance of novel gene family genesis by gene remodeling when compared to 

the other nodes in the tree. In particular we identified the internal nodes that contained 

the largest number of gene families (Figure 3.4): Eumetazoa (3913 families– 84% 

remodeled); Bilateria (8075 families– 87% remodeled); Deuterostomia (1019 

families– 86% remodeled); Vertebrata (1500 families – 85% remodeled); 

Euteleostomi (7723 families- 84% remodeled); Sarcopterygii (1057 – 78% 

remodeled); and Amniota (2267– 75% remodeled). Each of these nodes represents a 

major transition in metazoan life history. In contrast, a large number of new gene 

families also emerge on two more recent nodes on the tree: (1) the ancestral node of 

Caenorhabditis briggsae and C. elegans has 4621 new gene families, 30% of which 
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Table 3.1: Gene counts for each node in the Metazoan tree from the OMA and 

CompositeSearch analyses. 

Name #genes #duplicated #lost #novel/singl
eton(leaf) 

#Comp 
Fams 

#Genes in 
Comp Fams 

SCHMA 11404 715 7428 7972 44 136 
STRPU 26882 2896 9697 17563 520 2213 
BRAFL 28464 3582 10079 18015 465 1688 
CIOSA 13936 387 2724 6557 52 115 
CIOIN 16500 459 1706 8077 55 130 

C14 9867 1578 11156 1789 351 897 
PETMA 10766 1188 14587 4340 53 130 
XENTR 19291 2365 12098 4461 36 122 
ORNAN 19730 1452 12789 5786 58 120 
MACEU 15262 374 6289 1174 7 14 
SARHA 19337 650 3741 2518 13 51 

C46 20143 1548 2093 10 8 16 
MONDO 16844 1284 7898 2458 26 231 

C40 21394 3345 7240 144 30 78 
CHOHO 12329 477 10551 1378 3 6 
DASNO 23533 1905 2960 3991 43 130 

C53 21218 2788 4656 12 14 28 
ECHTE 16499 650 7780 2089 12 25 
LOXAF 21050 1427 2677 2149 5 12 
PROCA 16002 275 5806 1034 6 12 

C58 20603 1282 1875 3 8 16 
C54 21761 1403 3408 28 87 180 
C47 24333 2936 4761 80 239 531 

OTOGA 19514 926 2852 1030 2 4 
HUMAN 30808 1314 1200 11464 72 192 
NOMLE 18717 341 2631 1453 6 21 

C61 19699 629 1613 160 86 232 
C59 20773 677 1389 27 31 82 

MOUSE 25679 1876 3332 5945 16 40 
C55 21743 1193 4869 46 89 202 

SORAR 13096 641 12154 1502 5 11 
PIGXX 21452 1849 4653 3222 14 28 

MYOLU 19862 1704 4771 1679 18 46 
C60 21813 1212 2137 15 13 27 
C56 23270 1251 3304 10 11 23 
C48 25853 3399 3507 140 175 515 
C41 27309 2633 2008 1181 1226 5246 
C35 26558 1721 1601 1516 1205 5809 
C31 25639 2128 3135 1019 495 2978 

PELSI 18318 1001 5757 2710 27 62 
CHICK 15504 246 1927 1394 11 59 
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MELGA 14627 105 2735 1408 13 26 
C57 15887 441 1604 46 47 110 

ANAPL 15753 177 3469 1899 13 39 
C49 17212 650 2255 84 47 109 

TAEGU 17104 849 2503 2440 33 72 
FICAL 15383 179 2463 1124 5 10 

C50 16608 739 3027 186 54 116 
C42 19036 679 2328 347 142 414 
C36 20650 937 2004 317 82 340 

ANOCA 18029 1172 7119 2524 29 174 
C32 21789 2717 7261 974 113 301 
C27 26527 1166 684 1306 1696 10214 
C24 25211 1091 1123 480 435 3482 

LATCH 20358 2376 10990 4608 58 176 
C21 25165 3008 3881 1584 825 7158 

DANRE 27499 2379 3795 6085 69 353 
ASTMX 23079 1162 4677 3488 23 48 

C28 23595 5085 6072 259 143 316 
ORENI 22257 1644 5579 2129 9 19 
ORYLA 20499 683 6986 3245 30 110 
XIPMA 20370 180 3469 928 2 4 
POEFO 25163 1541 1817 3284 29 65 

C51 22814 1068 1854 215 125 262 
C43 23807 827 1308 79 43 108 
C37 24559 1613 3091 145 101 337 

GASAC 21773 1167 4645 2710 6 12 
TETNG 20020 691 3155 2447 19 48 
TAKRU 22942 585 3219 5448 29 64 

C44 20345 801 3040 55 79 186 
C38 22888 1329 4484 14 19 44 
C33 26592 1711 861 392 299 1053 

GADMO 20479 1424 9187 2741 48 113 
C29 26050 2695 2655 819 404 1219 
C25 26402 2130 823 1293 668 3398 

LEPOC 18893 1326 9101 2383 14 29 
C22 24764 5720 7132 3026 496 3206 
C18 25622 3470 558 3674 6486 103008 
C15 20330 3381 1151 768 1280 33573 
C10 18274 1678 1457 534 802 13561 
C7 18008 2138 1306 728 728 14607 
C5 17107 5332 2340 959 874 11631 

TRISP 15661 575 4319 11333 287 919 
CAEBR 21610 1268 942 8020 132 376 
CAEEL 20800 1838 674 6508 109 455 

C19 13750 1311 991 5381 1350 5597 
ONCVO 12948 447 2662 6806 73 237 
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C16 8535 1073 1382 953 404 1461 
C11 8307 1645 8255 368 77 304 

STRMM 14888 1166 8600 7353 182 549 
DAPPU 30088 2143 7108 20308 843 2727 
ZOONE 14336 866 6895 5987 46 216 
RHOPR 15045 835 7535 7546 109 490 
NASVI 16986 1080 6647 8899 370 1021 
TRICA 14798 1037 5887 6555 93 242 
DANPL 16232 727 4847 7971 103 333 
DROME 14506 1349 3120 5430 59 157 
ANOGA 12499 692 2202 3016 27 63 
AEDAE 15129 1843 1600 4420 103 280 

C52 11248 1056 1528 772 404 949 
C45 11332 854 2196 388 315 976 
C39 12660 1043 1459 131 84 284 
C34 13408 872 1304 231 175 493 
C30 14000 919 1289 260 194 628 
C26 14513 694 839 276 184 570 
C23 14689 989 2087 738 476 2087 
C20 15457 1180 1132 451 162 759 
C17 15432 1344 913 631 218 1258 

TETUR 18019 1847 9326 11282 230 1255 
C12 14846 1427 1655 454 124 1450 
C8 15156 1816 4064 520 116 790 

HELRO 23263 1638 6737 13900 389 1618 
CAPTE 31325 2472 3070 17704 635 2473 

C13 15099 2133 2633 414 78 233 
LOTGI 23514 2332 5381 11331 290 1785 

C9 16028 3844 5370 1421 134 402 
C6 17525 5619 2769 2179 407 2455 
C4 14426 1612 67 3005 7001 123510 
C3 10402 638 205 308 612 15143 

NEMVE 26036 3299 3195 17192 197 625 
C2 9832 1920 34 2267 3301 92486 

AMPQE 28464 3053 987 21286 979 4148 
MNELE 16020 992 2650 11929 263 1020 

Table 3.1: For each node in the tree (Col1) we have shown the counts for each node 

describing the following: 1) the number of genes present in the genome, 2) the 

number of gene duplication events, 3) the number of gene loss events, 4) the number 

of novel/singleton(leaf nodes), 5) the number of  composite gene families emerging 

and 6) the number of composite genes emerging.  
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are the result of gene remodeling, and (2) the common ancestor of Ciona savignyi and 

C. intestinalis has 916 new gene families with 37% the result of gene remodeling. 

 

The protein-coding elements that contribute to a remodeling event are known as 

components and can be of different ages or can themselves be the result of gene 

remodeling (Figure 3.5). To extract more detail on each case of gene remodeling 

detected we used CompositeClassifier from CompositeSearch (Pathmanathan JS et al, 

2017) (Section 3.2.6). We categorised the components of every remodeled gene 

family based on their phylogenetic placement as: old, mixed, complex, undefined, 

contemporary and subsequently remodeled (Figure 3.5). In general, we see that most 

remodeling events on the tree are categorized as old. This means that most gene 

remodeling occur using only genetic material that is ancestral.  

 

In general, the emergence of remodeled gene families is more prevalent within 

Deuterostomes than Protostomes (501 as compared to 288 remodeled gene families 

per internal node on average) (Figure 3.5). However, in Section 3.3.1 above we show 

that Deuterostomes have less novel remodeled genes than Protostomes indicating that 

Protostomes rely on gene remodeling as a mechanism to create novel genes more than 

Deutrostomes. The most prevalent category of remodeling in Metazoa is to reuse 

ancestral genetic protein coding elements (old category) with 50% and 51% of 

remodeling events in Protostomes and Deuterostomes respectively the result of old 

remodeling events (Figure 3.5). Therefore protein-coding gene families that are 

already established, or segments thereof, are used most often to create new gene 

families.  

 

The large number of remodeled gene families predicted may be due to rapid turnover 

throughout the tree. We calculated the consistency index (CI) for remodeled and non-

remodeled gene families (Kluge and Farris 1969) (where the maximum CI of 1 

indicates that a family is gained/lost only once). Remodeled gene families have an 

average CI of 0.4 as compared to 0.7 for non-remodeled gene families suggesting that 

remodeled gene families are gained/lost more readily than non-remodeled gene 

families.  
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Figure 3.4: Proportion of remodeled and non-remodeled events in novel gene 

family genesis 

 

 
Figure 3.4: Each bar represents the proportion of novel genes that arose at each 

internal node on our tree (found in our OMA analysis) in each category: composite or 
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non-composite (determined from our CompositeSearch analysis) (each bar represents 

100%). The number in black on the right Y-axis represents the number of novel genes 

that originate at this node in the tree. The red bar represents the proportion of novel 

genes that are composite and the blue bar represents the proportion of novel genes 

that are non-composite. The left Y-axis represent the label we have given to internal 

nodes of the tree (Figure 3.3).We have outlined the major taxonomic groupings.   
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Figure 3.5: Gene remodeling across the Metazoa 
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Figure 3.5: (A) Each bar represents the proportion of each category of family from the 

CompositeSearch analysis (each bar represents 100%) for each internal node of our 

tree. All colored bars are subcategory of composite gene families, black represents the 

proportion of gene families that are not composite. We have outlined major 

taxonomic groups. The node labelling system is illustrated in Figure 3.3. (B) We 

categories the components of every remodeled gene family based on their 

phylogenetic placement as: old, mixed, complex, undefined, contemporary and 

subsequently remodeled. 
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3.3.3 The rate of novel gene genesis across the Metazoa is not strictly clocklike 

To determine the rate at which novel genes are emerging across the Metazoa we 

compared the rate of novel gene genesis for remodeled and non-remodeled genes. In 

general, we find that the rate at which novel gene families arise from gene remodeling 

is higher than the emergence of novel genes from other mechanisms (Figure 3.6). The 

average number of novel remodeled genes per node per million years (MY) is 13.0, 

and for novel non-remodeled genes it is 3.0. While there are some minor fluctuations 

(e.g. Bilateria) in the rate of generation of novel non-remodeled genes, the rates 

remain relatively similar across nodes (standard deviation = 5.7 from the mean). This 

is not the case for novel remodeled genes that have a comparatively high average 

standard deviation of 17.9 from the mean. Some major nodes in the animal phylogeny 

show a relatively high rate of emergence of novel gene genesis by gene remodeling,  

Bilateria (71.5 novel remodeled genes per MY); Sarcopterygii (60.2/MY); Theria 

(72.0/MY); Protostomia (46.2/MY), and Ecdysozoa (47.5/MY) are all examples of 

this. 

 

Overall, novel remodeled genes have emerged at a faster rate than novel non-

remodeled genes. But certain time points in metazoan evolution show higher than 

expected rates of emergence of novel gene families by both remodeling and non-

remodeling mechanisms. One such node is the Bilateria node, at ~797 MYA (Kumar 

et al. 2017), arguably one of the most significant transitions in the Metazoa 

representing the origin of the third germ layer (the mesoderm) and increased 

morphological complexity (Martindale et al. 2002). The Bilateria node has on average 

109 novel gene families emerge per MY. Another example of a high rate of novel 

gene family genesis is the origin of placental mammals (Crompton and Jenkins Jr 

1979) (82 novel genes per MY).  

 

3.3.4 Gene remodeling impacts the functional landscape at major phenotypic 

transitions in the Metazoa  

The potential functional roles of the remodeled genes (at the level of domains) was 

assessed using Pfam domain data(Finn et al. 2016). For each internal node on the tree 

we established a list of significant functions gained at that time point (Section 3.2.7). 

Functional analysis of remodeled gene families at the Euteleostomi   
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Figure 3.6: The rate of novel gene genesis is not strictly gradual 

 
Figure 3.6: The bar charts represent the number of novel genes that originate at 

internal nodes divided by the internode distance(time) between the node and its 

closest ancestor. This gives the number of genes per unit of time for each node. Nodes 

that have a short internode distance (<10 million years) were not included on this as 

the short period of time skews the data. The Red bars represents the rate of novel 

composite genes and the blue bars represent the rate of novel non-composite genes. 

We have outlined the major taxonomic groupings
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Table 3.2: Sample of Functional enrichment for novel remodelled genes found at 

some Metazoa transition nodes. 

 

Enriched Gene Corrected 

P-value 

Tree Node 

MHCII(Todd et al. 1988) 3.8e-05 Euteleostomi 

RAG-2 involved in the initiation of V(D)J recombination 

during B and T cell development (Shinkai et al. 1992) 

5e-06 Euteleostomi 

Fibrinogen (3.9e-07) Euteleostomi 

Ribosomal_protein_L44 4.2e-07 Eumetazoa 

Ribosomal_protein_L21e 2.9e-09 Eumetazoa 

Ribosomal_L27e_protein_family 2.0e-08 Eumetazoa 

Ribosomal_protein_S17 3.5e-06 Eumetazoa 

DHODH)(Fang et al. 2013), 3.2e-05 Eumetazoa 

DHFR(Schnell et al. 2004), 7.3e-08 Eumetazoa 

GPK(Wu et al. 2004) 3.2e-05 Eumetazoa 

NDPK(Almgren et al. 2004) 5.1e-21 Eumetazoa 

WNT 5.8e-05 Deuterostomia 

Lipoxygenase 2.0e-05 Deuterostomia 

Hydroxymethylglutaryl-coenzyme A reductase 3.8e-07 Deuterostomia 

GDP dissociation inhibitor 8.3e-07 Deuterostomia 

GrpE 1.5e-08 Deuterostomia 

Peptidase M41 4.2e-05 Deuterostomia 

MOSC 1.0e-05 Deuterostomia 

GPI transamidase subunit PIG-U 3.8e-06 Deuterostomia 

Cytochrome b 5.7e-06 Chordata 

Cytochrome C and  Quinol oxidase polypeptide I 5.7e-10 Chordata 

V-ATPase subunit 5.7e-06 Chordata 

ATP synthase protein 8 2.9e-07 Chordata 

Glycosyltransferase_family_6 6.1e-05 Chordata 

Tight Junction protein 4.4e-05 Chordata 

Nuclear receptor coactivator 3.3e-06 Chordata 
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Table 3.2: The table shows examples of novel remodeled genes (enriched gene) that 

were found to be significantly enriched (Corrected p-value) for a particular function at 

particular nodes in the tree (Tree node column).  All nodes shown in this example 

represent nodes on the animal tree where major phenotypic changes have occurred. 

For a full list of  enrichment see Appendix 3.6. 
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ancestral node, identifies that many immune system related functions are introduced 

at this point(Table 3.2) and this node of course represents a major transition in the 

emergence of the adaptive immunity (Flajnik 2014). At the origin of the Eumetazoa 

novel gene families gained by gene remodeling have significant enrichment for 

ribosomal protein related functions and for enzyme functions related to cell 

proliferation(Table 3.2). The origin of the Deuterostomia has significant enrichment 

in functions related to cell signaling, development and metabolism (Jones et al. 

2014b). The origin of Chordata shows significant gains in a number of key processes 

(Jones et al. 2014b) such as the remodeling of proteins involved metabolism and 

generating cellular energy and protein packaging and transport (Table 3.2). In 

summary, there are a plethora of significantly enriched functions at most internal 

nodes, with some nodes containing functions that correlate with a major phenotypic 

transition at that node (Appendix 3.6). 

3.4 Discussion 
This chapter gives an insight into the role of composite gene remodeling (gene 

fusions/gene fissions) in the evolution of novel protein coding genes across the 

Metazoa.  

 

It has been established that modular proteins have an important role in the evolution 

of the Metazoa. For example, Patthy (2003) shows that a large proportion of proteins 

involved in the extracellular matrix of multicellular animals are a result of chimeric or 

gene fusions (Patthy 2003). However, it is generally believed that events to create a 

gene fusion/fission are rare (Jachiet et al. 2013). Fusion genes have been well 

documented in animals (Buljan et al. 2010, Marsh and Teichmann 2010). In humans, 

fusion genes are often linked with cancer (Soller et al. 2006, Soda et al. 2007, Lawson 

et al. 2011). However, it has not been fully established as to how this composite gene 

(fusion/fission gene) mechanism drives the evolution of novel proteins and 

phenotypes right across the Metazoa. We have shown that composite genes are indeed 

present in all major groups across the Metazoa (Figure 3.5). We have shown that they 

quantitatively form a major part of metazoan protein coding families. Furthermore, 

we have found that the majority of composite gene events occur using ancestral 

protein coding elements within the Metazoa. Until now, there has been no research 

into this aspect of composite gene formation. 
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In addition to this, we wanted to understand not only the prevalence of composite 

genes, but also how they impact the creation of novel proteins across the Metazoa. It 

has been established that fusion genes can indeed create novel proteins (Long 2000, 

Thomson et al. 2000). However, the extent to which this process creates novel 

proteins has not been documented. Our findings suggest that composite gene 

formation is a major mechanism for creating novel genes in the Metazoa (Figure 3.4). 

We find that in the vast majority of our sample animal species, more than >50% of 

novel genes are created through gene remodeling events. This result gives an insight 

into the important role composite gene formation has in genetic innovation. However, 

there are examples of fusion genes making their parent genes redundant. If this 

occurred often, the number of non-composite novel genes that we find would be 

diminished as they would not be found in our search if they became functionally 

redundant.  

 

After establishing that composite genes are prevalent across all major groups in the 

Metazoa and do have a major role in creating novel proteins, we wanted to gain an 

insight to the rate of composite gene formation through time in the evolutionary 

history of animals. There has been much debate on the rate of evolution.  Two 

strongly supported hypothesis of evolutionary rate are phyletic gradualism and 

punctuated equilibrium (Gould 1972). Phyletic gradualism refers to slow, gradual 

changes that accumulate over time to create new species (within intermediate species 

present). Punctuated equilibrium argues that evolution occurs in bursts of evolution 

(bursts of high rate) that are tied to speciation events to create new species (Gould 

1972). Our results indicate that the rate of composite gene evolution is not strictly 

clocklike (Figure 3.6). We show that novel composite genes have emerged at a faster 

rate than novel non-remodeled genes. Interestingly, we see that certain time points in 

metazoan evolution show higher than expected rates of emergence of novel gene 

families by both remodeling and non-remodeling mechanisms. For example, we 

found a high rate of novel gene genesis at the Bilateria node which represents a major 

transition in the Metazoa where the third germ layer (the mesoderm) was introduced, 

allowing for increased morphological complexity (Martindale et al. 2002). 
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In order to gain an insight into the functional importance of the novel composite 

genes we found across the Metazoa, we carried out a functional enrichment analysis. 

The wide distribution and abundance of composite genes in the Metazoa suggests that 

these genes are not restricted to a single functional pathway. Literature shows 

examples of very different pathways and functions being carried out by composite 

genes (Long 2000, Soller et al. 2006, Demichelis et al. 2007, Soda et al. 2007, 

Lawson et al. 2011, Agaram et al. 2015). Our functional analysis supports this. We 

show many composite genes that are enriched for functions and pathways at each 

node of the Metazoa such as immune system genes at the Euteleostomi node – a point 

in animal history where adaptive immunity originates (Appendix 3.6). 

 

One possible reason for the higher level of apparent homoplasy that we found in the 

remodeled gene families (as compared to non-remodeled gene families) is the 

presence of epaktologs causing interpretation errors. Epaktalogs are multidomain 

gene families that share sequence similarity through the independent acquisition of 

the same domains rather than being homologous due to a common ancestry (Figure 

3.7). The classical types of homologs that algorithms detect are orthologs 

(homologous genes derived from the same gene in a common ancestor), paralogs 

(homologous genes derived from a duplicate copy of the same gene) and 

pseudoparalogs (homologous genes in a genome where at one of the genes was 

transferred from another species). It is difficult to distinguish between epaktologs and 

paralogs. This can lead to interpretation errors, where epaktologs are treated as 

paralogs. In other words, trying to cluster a group of epaktologs as a family with a 

single point of origin on the tree is incorrect because the epaktologous genes are not 

directly related through descent. They are only related due to homology shared by 

containing the same domain (Figure 3.7) (Nagy et al. 2011).  

 

Lastly, our approach relies on high quality data as annotation and sequencing errors 

can cause incorrect inferences. To diminish the impact of this we have used strict 

filtering parameters and high-quality genomes. This work can be built on as more 

high-quality genomes become available, particularly for non-vertebrates.  
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3.5 Conclusion 
In summary, we have utilized novel data driven methods to assess the contribution of 

tree-like and non-tree-like mechanisms in the creation of novel protein coding 

elements across the Metazoa using 63 high quality genomes. We have illustrated that 

gene remodeling is prevalent across the entire Metazoa and has a significant 

contribution to novel gene genesis from protein coding elements. We have shown that 

the rate of novel gene genesis for remodeled genes is not clocklike and is higher than 

novel gene genesis of non-remodeled genes. Finally, we have given an insight into 

how gene remodeling may have had a significant impact in driving adaptive evolution 

at nodes of major phenotypic transition. 	
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Figure 3.7: Epaktologs: genes with high sequence similarity(due to the independent acquisition of homologous domains) that are not 

related through common descent.  

 
Figure 3.7: The figure illustrates epaktologous genes. Three genes (A, B and C) are identified as a family within the same species. Traditionally, 

these are classified as paralogs. However, in this scenario Gene A , Gene B and Gene C gained the Domain_X independently and are not related 

to each other by common descent – they are only related by the presence of the tandem Domain_X domains. 
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Chapter 4 – Establishing the domain co-occurrence 

characteristics of domain rearrangements across 

metazoan protein coding genes. 
  



  107 

4.1 Introduction 
We will determine the extent of domain shuffling (a non-tree like process) on the evolution of 

proteins in Metazoa. The focus in this chapter is on the non-tree like evolutionary patterns 

and processes that can occur in the evolution of new protein coding genes and the focus is on 

functional domains in comparison to protein coding genes in Chapter 2 and 3. As we are 

interested in remodelling at the level of domains, BLAST (Altschul et al. 1990b) is not 

suitable to identify sequence similarity across such small units. In this case hidden markov 

models are necessary to find similarity across short sequences in a statistically robust way. 

We have selected the package called HMMER (Finn et al. 2011) to search the Pfam-A 

database of functional domains(Finn et al. 2016). Next the results of this analysis will be 

examined to identify the properties of domain shuffling within composite genes and non-

composite genes (as defined in Chapter 3). This approach involves the use of sequence 

similarity networks (Jachiet et al. 2013) to trace domain movements across all animal 

genomes. Specifically, we create a bipartite network, where the nodes will represent 

domains/genes and edges will represent sequence homology between the domains and the 

respective genes. From this Bipartite network, we create Unipartite projections or co-

occurrence networks. Essentially a network of domains that are found to co-occur on a 

modular protein/gene. From this we can identify the characteristics of domain sharing and 

shuffling across the animal kingdom.  

 

Specifically, we address the following: 

a) Do the network properties such as Degree distribution and Centrality of Pfam-A 

domains and protein coding metazoan genes follow traditional biological networks 

characteristics? 

b) How do the domain-gene and domain co-occurrence networks differ between datasets 

composed of composite genes and non-composite genes respectively?  

c) Are domains of composite genes more functionally permissive with respect to non-

composite gene proteins?  

d) Are there certain types of functional domains that have an affinity for each other and 

are often found together on a modular protein?  

e) Are there certain types of functional domains that we never see together on a modular 

protein?  
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A working definition of a domain is a protein module of discrete structural folding that often 

represents the functional building blocks of a modular protein (Kaessmann et al. 2002). Many 

proteins are modular in nature, comprising of 2 or more domains (Moore et al. 2008). 

Chapter 3 established composite gene formation as a prevalent mechanism of protein coding 

gene genesis in the Metazoa with a particular focus on gene fusion. In this chapter, we apply 

network theory again but in this case to study the mechanism of domain shuffling. We use the 

sequence dataset of 63 Metazoa from Chapter 3 and their associated composite/non-

composite gene status, along with Pfam-A domains (Finn et al. 2016) to address key features 

of domain shuffling in Metazoa. 

 

4.2 Materials and Methods 

4.2.1 Creation of Bipartite and Unipartite networks from Pfam-A domains  

The profile hidden markov models (HMMs) of 16,712 PFam-A domain families were 

retrieved from Pfam v31.0 (Finn et al. 2016). Using the HMMscan function of HMMER 

v3.1b1(Finn et al. 2011) and an e-value cut-off of e-20 we identified sequence homology 

between the Pfam-A domains and the genes in the 63 Metazoa set (assembly of the Metazoan 

dataset is described in 3.2.1). The following filtering steps were carried out using 

PfamFilter.py [Appendix 4.1]. As certain domains can form part of a larger domain in the 

Pfam database we removed these nested or smaller domain from the sequence homology 

results. If multiple nested domains exist within a larger domain, only the largest domain with 

the lowest e-value was retained. In addition, if 80% or more of a domain overlapped with 

another domain on the same protein only the domain with the lowest e-value was kept. If 

multiple domains overlapped to the same region of a protein with 80% or more overlap, the 

domain with the lowest e-value from all overlapping domains was kept. This final filter 

minimises false positives due to multiple Pfam domain families (those with similar sequence 

motifs) aligning to the same position on the gene. As certain genes that contribute to 

composite genes are themselves remodelled (see results Section 3.3), we retained composite 

genes with a noOverLap score (a statistic calculated for each composite that gives an 

indication of how confident we are that it is a composite (see Pathmanathan JS et al, 2017 for 

more details) >0.30 for analysis here - a total of 96,053 composite genes. This created a 

dataset of composite genes in which we had high confidence (Appendix 4.4 - Top-Composite 

_0.3_Overlap.compositesinfo.ids). 
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After filtering, a global bipartite network was generated connecting the Pfam domains on one 

side to the genes on the other. Each individual connected component was then generated from 

this global network as a separate bipartite network (Appendix 4.2). Unipartite or co-

occurrence networks were created from these bipartite networks by connecting Pfam domains 

that co-occur on the same gene (Appendix 4.2).  

 

The relationships of the protein coding genes and the domains they contained were analysed 

according to the following 4 partitions of the data:  

1) Entire Dataset: The network of Pfam-A domains and the entire set of protein 

coding genes from all 63 Metazoa 

2) Composite Dataset: A network of domains and the composite genes from all 63 

Metazoa genomes. 

3) Non-composite Dataset: A network of domains and the non-composite genes from 

all 63 Metazoa genomes. 

4) Highest Confidence Composite Dataset: (subset of Composite Dataset in (2) 

above) network of domains that hit a set of composite genes in which we have 

high confidence(described more above). 

4.2.2 Domain co-occurrence network centrality 

Three measures of centrality (as described in detail in Section 1.3.3.2). were calculated for 

each node in each domain co-occurrence network: 

1) degree centrality 

2) closeness centrality 

3) betweenness centrality 

The networks we generated were undirected so degree centrality was calculated as the 

number of edges a node had. Both closeness and betweenness centrality were normalised as 

follows using networkStats.py [Appendix 4.1]: closeness centrality was normalised by the 

remaining number of nodes in the network ( n-1), and betweenness centrality was normalised 

by the maximum number of pairs of nodes (excluding the node of interest) ((2/(n-1)(n-2))).  

4.2.3 Removal of highly-central nodes from domain co-occurrence network 

This analysis was only carried out for co-occurrence networks with a major connected 

component (a subgraph with > 100 nodes). The 50 most central nodes were defined 

independently using degree, closeness and betweenness centrality measures. To assess the 
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role these highly central nodes have in our networks, transitivity and average clustering were 

calculated before and after the removal of the 50 most highly central nodes. For comparison 

with the statistics from the removal of highly central nodes, a random sample and removal 

procedure was carried out 100 times on non-central nodes of the same network 

(NodeDeletion.py, Appendix 4.1). 

 

4.2.4 Test for Assortativity 

We used two measures of assortativity (Section 1.3.3.2) to determine if the co-occurrence 

networks generated are disassortative, neutral or assortative. Firstly, a linear regression was 

calculated for the average degree of nearest neighbours (<Knn>) for each node, and this was 

plotted against the degree (K) for each node. Secondly, the assortativity coefficient was 

calculated. Simulations were performed (using Assortativity.py [Appendix 4.1]) to generate 

random networks with the same degree distribution as the real data (simulated data networks 

are provided in Appendix 4.9). For any real data network with an assortativity coefficient was 

< 0.1, the assortativity coefficient of the simulated network and the real data are compared. If 

the simulated networks have a similar assortativity coefficient to the real data then the real 

data is deemed to have neutral or random assortativity. Note: This analysis was only 

performed on those co-occurrence networks with a major connected component i.e. > 100 

nodes Therefore, the Highest Confidence Composite Dataset was not analysed in this way]. 

 

4.2.5 Community detection in domain co-occurrence network 

Large connected components detected in the co-occurrence networks for Entire Dataset, 

Composite Dataset, Non-Composite Dataset and Highest Confidence Composite Dataset 

were analysed using the community detection algorithm NeMo (Rivera et al. 2010). NeMo is 

a plugin for Cytoscape v2.7 (Shannon et al. 2003) that employs a hierarchical protocol that 

detects communities of nodes within a network. Smaller co-occurrence networks were 

classified as being a community as they lacked connections to anywhere else on the global 

co-occurrence network. 

4.2.6 GO enrichment in domain co-occurrence communities  

Communities of domains that co-occur in the datasets were assessed for functional 

enrichment using Fisher’s exact test to determine if certain communities are statistically 

enriched for a particular domain function/process. Gene ontology (GO) terms for domains 

were retrieved from the gene ontology website (Consortium 2015). Using recall and precision 
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protocol (DomainEnrichment.py [Appendix 4.1]) we established which communities were 

linked to GO terms more often than expected. Recall evaluates the occurrence of a GO term 

with respect to the remainder of the network. Precision refers to the ratio between nodes in 

the network with a GO term and the number of nodes in the network not linked with the GO 

term.  

4.2.7 Comparison of network degree distribution to a typical Scale-Free network 

We compared and visualized the degree distribution of each real co-occurrence network, with 

a randomly generated network, and with a network generated with a typical scale-free 

property both of which had the same number of nodes as the real co-occurrence networks. 

The networkX functions gnp_random_network and scale_free_network were used to generate 

the simulated datasets (Degree_Graph_generator.py [Appendix 4.1]). 

4.3 Results 

4.3.1 Entire Dataset (all genes) 

4.3.1.1 Bipartite Networks 

The bipartite network of the Entire Dataset and Pfam domains had 3743 connected 

components. In this network, there was a single large connected component that accounted 

for 30% of all the Pfam domains and represented 65.4% of all homology connections. The 

next largest connected component in this network accounted for 0.004% of all the Pfam 

domains and represented 0.011% of all homology connections. In total 85.9% (3216) of the 

connected components only contained a single Pfam domain equating to exactly half (50.0%) 

of the Pfam domains in this network. These represent domains that are functionally exclusive 

i.e. they don’t contribute to the creation of modular protein coding genes.  

4.3.1.2 Unipartite Networks 

To establish the relationship between the function of a domain and its presence in modular 

proteins we constructed unipartite projections. In total, we generated 527 unipartite 

projections of Pfam domains and genes from the Entire Dataset. We identified a single giant 

connected component comprising of 58.9% of all co-occurrence connections and 77.4% of 

the co-occurring Pfam domains in this network. The co-occurrence of over three quarters of 

all Pfam domains suggests that certain functional domains are promiscuous and co-occur in 

many different combinations. Excluding the giant connected component, the remaining 526 

unipartite connected components have an average of 2.6 co-occurring Pfam domains 
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indicating that many domains can co-occur but they are limited in terms of their combination 

with other domains.  

 

4.3.1.3 The impact of central domains 

Our domain co-occurrence network displays a scale-free topology (Figure 4.1) that is 

expected for biological networks (Barabási 2009). This means that there are many nodes with 

a low degree centrality and few nodes with a high degree centrality. In other words, the 

majority of domains are functionally restricted in terms of the observed combinations formed 

in protein coding sequences. It also means that there are central or hub domains in our 

network that contribute to a number of modular proteins, often referred to as promiscuous 

domains(Basu et al. 2009).  

 

Measures such as degree, closeness and betweenness centrality can indicate domains that are 

central to the network and thus have the most influence in establishing modular proteins. This 

identified a number of domains that appear to be central to many modular proteins (Table 

4.1). For example, Pkinase and Pkinase_Tyr were found to be most central by all measures of 

centrality with a degree of 144 and 88 respectively in the co-occurrence network. To place 

this in context, the next most central domain was RVT_1 with a degree of 45. It has been 

found that kinase domains are important for many modular proteins in the human genome, 

461 proteins in human genome are currently known to contain kinase domains (Manning et 

al. 2002). Other highly central domains that we have found include RVT_1 mentioned above 

(a reverse transcriptase domain) (Gladyshev and Arkhipova 2011), Trypsin (a serine protease 

domain) (Rawlings and Barrett 1994) and MAM (an extracellular domain found in many 

receptor proteins) (Beckmann and Bork 1993). These have all been shown to have a 

biological role in many proteins. 

 

The impact of removing highly central domains from the co-occurrence network were 

demonstrated using average clustering and transitivity (Figure 4.2). It is clear that removing 

central domains causes a significant decrease in degree, closeness and betweenness centrality, 

particularly for degree and betweenness centrality. This result indicates that there are far 

fewer co-occurrences of domains on the same modular protein. Conversely, removal of 

highly central domains from the co-occurrence network results in a significant increase in 

transitivity. Transitivity ranges from 0 to 1.0 where 0 indicates all triplets (3 domains 
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connected by 2 or 3 edges) are open (3 domains with 2 edges) and 1 indicates all triplets are 

closed (3 domains with 3 edges - a clique). This indicates that as central domains are 

removed from the network there are more domains forming connected triplets.  

 

Based on average clustering and transitivity, it appears that removing central domains in the 

co-occurrence networks is creating more closed triplets/cliques by removing domains that 

would usually form open triplets with two other domains. These results suggest that highly 

central domains have an important role in many modular proteins and connect other domains 

that would never usually be present in the same protein. 

 

4.3.1.4 Assortativity 

The degree of assortativity for the Entire Dataset network was calculated to determine the 

specific nature of domain combinations in the domain co-occurrence network. The degree 

assortativity indicates if domains in the network have a preference for connecting to other 

domains with a similar degree or not. The Entire Dataset network exhibits a positive degree 

assortativity coefficient of 0.009. However, it is apparent from the neighbour connectivity 

plot generated for the co-occurrence network that the linear regression trend line does not fit, 

indicating a pattern of dissasortative mixing in the co-occurrence network (Figure 4.3). These 

metrics indicate that the domains in our co-occurrence network are disassortative in nature, 

meaning that nodes (domains) of high degree have a preference to connect with other 

domains with a low degree.   
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Figure 4.1: Comparison of Degree distribution for domain co-occurrence network of (1) 

Entire Dataset (blue), (2) a random network (green), and (3) a typical scale-free 

network (red). 

 
Figure 4.1: The degree distribution of Entire Dataset , a random network and a typical scale 

free network. On the X-axis is the degree, and the y-axis is the number of nodes. Blue 

represents the domain-occurrence network, Red is the simulated network with a scale-free 

property and in Green a randomly generated.  
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Figure 4.2: The impact of node deletion for highly central nodes measured by 

transitivity and average clustering 
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Figure 4.2: The impact of removing random nodes and the 50 most central nodes in the Entire 

Dataset network. The y-axis of the top panel (A) represents the average clustering after 

removing the corresponding number of nodes on the x-axis. The y-axis of the bottom panel 

(B) represents the transitivity after removing the corresponding number of nodes on the x-

axis. Both graphs are indications of how average clustering is affected when certain domains 

are removed from the network. The top panel (A) is showing how removing central domains 

from the network is affecting average clustering. The bottom panel (B) is showing how 

removing central domains from the network is affecting the transitivity of the network (a 

measure of clique structure among connected triplets of domains). Domains were removed 

from the network by random (red) or according to a centrality value (degree (violet), 

closeness (blue), or betweenness (green)). For random removal of domains, we repeated this 

100 times to give appropriate sampling.  
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Table 4.1: Domains removed from the co-occurrence network for the Entire Dataset to 

measure average clustering and transitivity. 

  Degree Centrality Closeness Centrality Betweenness Centrality 

Index Domain ID Degree Domain ID Closeness Domain ID Betweenness 

1 Pkinase 144 Pkinase 0.196 Pkinase 0.158 

2 Pkinase_Tyr 83 Pkinase_Tyr 0.181 Pkinase_Tyr 0.057 

3 RVT_1 45 RVT_1 0.174 RVT_1 0.042 

4 Trypsin 35 MAM 0.166 Trypsin 0.026 

5 VWA 32 C2 0.164 RhoGEF 0.021 

6 7tm_1 32 Kringle 0.164 ABC_tran 0.02 

7 RabGAP-TBC 31 F5_F8_type_C 0.163 RabGAP-TBC 0.019 

8 ABC_tran 30 RhoGEF 0.162 Helicase_C 0.018 

9 UCH 30 Kinesin 0.162 Myosin_head 0.018 

10 RhoGEF 30 Myosin_head 0.162 7tm_1 0.017 

11 F5_F8_type_C 29 SRCR 0.161 Kinesin 0.016 

12 SRCR 28 SH2 0.161 Y_phosphatase 0.016 

13 DEAD 28 RabGAP-TBC 0.159 p450 0.015 

14 Ras 27 Peptidase_C1 0.159 Peptidase_C1 0.014 

15 Ion_trans 26 7tm_1 0.157 UCH 0.014 

16 Helicase_C 26 Helicase_C 0.157 adh_short_C2 0.014 

17 MAM 25 Guanylate_cyc 0.157 Ras 0.014 

18 BTB 25 ANF_receptor 0.157 GTP_EFTU 0.013 

19 C2 25 Ank_2 0.156 VWA 0.013 

20 RhoGAP 25 UCH 0.156 C2 0.012 

21 Y_phosphatase 25 I-set 0.156 F5_F8_type_C 0.012 

22 GTP_EFTU 24 ABC_tran 0.156 SRCR 0.012 

23 SNF2_N 23 Histone 0.156 PK 0.012 

24 Kinesin 23 Roc 0.156 MFS_1 0.012 

25 VWD 22 ASC 0.155 Ion_trans 0.011 

26 CUB 22 Trypsin 0.155 MAM 0.011 

27 Pro_isomerase 21 SH3-RhoG_link 0.155 Homeobox 0.011 

28 Myosin_head 21 AAA_12 0.155 RhoGAP 0.01 



  118 

29 FERM_M 20 Sema 0.155 Bromodomain 0.009 

30 Fibrinogen_C 20 RBD 0.155 SH2 0.008 

31 MFS_1 20 Inhibitor_Mig-6 0.154 DEAD 0.008 

32 CH 19 AAA_11 0.154 AAA 0.008 

33 PI3_PI4_kinase 19 SAM_1 0.154 Guanylate_cyc 0.008 

34 7tm_2 19 RGS 0.154 Peptidase_S9 0.008 

35 AAA 19 Guanylate_kin 0.154 ThiF 0.008 

36 CPSase_L_D2 18 COR 0.154 Cnd1 0.007 

37 Guanylate_cyc 18 F_actin_bind 0.153 BTB 0.007 

38 Peptidase_C1 18 Dynamin_N 0.153 Pro_isomerase 0.007 

39 Kringle 18 Y_phosphatase 0.153 adh_short 0.007 

40 Bromodomain 17 PTEN_C2 0.153 Ald_Xan_dh_C2 0.007 

41 adh_short 17 cNMP_binding 0.153 CH 0.007 

42 p450 17 CNH 0.153 Kringle 0.007 

43 Adaptin_N 16 Macro 0.153 Fibrinogen_C 0.006 

44 AMP-binding 16 Death 0.153 Adaptin_N 0.006 

45 Methyltransf_FA 16 EphA2_TM 0.153 MIT 0.006 

46 adh_short_C2 16 Ephrin_lbd 0.153 Sugar_tr 0.006 

47 Zona_pellucida 15 Recep_L_domain 0.153 ANF_receptor 0.006 

48 SH2 15 Furin-like 0.153 Spc97_Spc98 0.006 

49 Aldedh 15 SAM_2 0.153 COesterase 0.006 

50 Gal_Lectin 15 OSR1_C 0.153 SNF2_N 0.006 

 

Table 4.1: The Pfam ID and respective measure of centrality for the top 50 nodes in the 

domain co-occurrence network that were removed according to Degree centrality (Merged 

Column 1), Closeness centrality (Merged Column 2) and Betweenness centrality (Merged 

Column 3).   
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4.3.1.5 Functional domain combinations and community detection 

We detected 199 communities of co-occurring domains within our largest co-occurrence 

network. To the exclusion of the giant connected component the remaining components were 

treated as a community as they were small in size and not connected elsewhere on the 

network. We wanted to determine if domains that function similarly are more likely to co-

occur. The enrichment analysis (see Section 4.2.6) of each community in the co-occurrence 

network revealed a number of significantly enriched communities of domains for a particular 

process/function. However, we need to account for instances where GO terms are only 

associated with a single domain and not anywhere else in the network. We only assigned 

significant enrichment if the P-value was <0.05 and precision measurement >=0.5 (the GO 

term must be found in a least half the network). This revealed 148 significantly enriched 

domains in the co-occurrence network [Appendix 4.5], the top 20 of which are shown in 

Table 4.2. Communities that have significant enrichment and a high recall (scale from 0 to 

1.0) are enriched for a function that is rarely found elsewhere in the network. In turn, this 

implies that the co-occurrence of the domains in that community are rarely found in an 

alternative combination. Communities that have significant enrichment and a high precision 

(scale from 0 to 1.0) have more domains enriched for a specific function, indicating that most 

of the specific functional domains within the co-occurrence community are needed for the 

enriched function. In general, communities that have significant enrichment, a high precision, 

and a high recall are significantly enriched for unique functions that require the majority of 

the domain co-occurrence connections. 

  

4.3.2 Comparison of network properties of composite and non-composite gene 

remodelling by domain shuffling 

To determine if the properties of domain shuffling differ between composite and non-

composite genes, we have compared our findings for the Entire Dataset to three more 

datasets: Composite Dataset, Non-composite Dataset and Highest Confidence Composite 

Dataset (Section 4.2.1).  
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Figure 4.3: Assortativity test for Entire Dataset domain co-occurrence network  

 

Figure 4.3: The neighbour connectivity plot showing no strong mixing for the Entire Dataset co-

occurrence network. K (X-axis) refers to the degree of the given node. <Knn> (Y-axis) refers to the 

average degree of the nearest neighbours for that given node.  
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Table 4.2: Domain community enrichment of GO terms – top 20 significant scores 

GroupID TotalMembers GO_Terms Recall Precision 

Fisher’s 

Exact p-

value 

742 3 mannose metabolism 1.00 1.00 1.70E-10 

742 3 
alpha-mannosidase 

activity 
1.00 1.00 1.70E-10 

964 3 

positive regulation of 

transcription, DNA-

templated 

1.00 1.00 1.70E-10 

1403 3 
protein-arginine 

deiminase activity 
1.00 1.00 1.70E-10 

1788 3 
arginyl-tRNA 

aminoacylation 
1.00 1.00 1.70E-10 

1788 3 
arginine-tRNA ligase 

activity 
1.00 1.00 1.70E-10 

2028 3 

S-

adenosylmethionine 

biosynthetic process 

1.00 1.00 1.70E-10 

2028 3 

methionine 

adenosyltransferase 

activity 

1.00 1.00 1.70E-10 

40 2 
inflammatory 

response 
1.00 1.00 1.86E-07 

105 2 
translational 

termination 
1.00 1.00 1.86E-07 

155 2 
glycerone kinase 

activity 
1.00 1.00 1.86E-07 

155 2 glycerol metabolism 1.00 1.00 1.86E-07 

267 2 
cytoskeleton 

organization 
1.00 1.00 1.86E-07 

659 2 peptide cross-linking 1.00 1.00 1.86E-07 
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804 2 

phosphoenolpyruvate 

carboxykinase 

activity 

1.00 1.00 1.86E-07 

1178 2 
superoxide dismutase 

activity 
1.00 1.00 1.86E-07 

1231 2 
MHC class II protein 

binding 
1.00 1.00 1.86E-07 

1314 2 RNA polyadenylation 1.00 1.00 1.86E-07 

1490 2 chorion 1.00 1.00 1.86E-07 

1490 2 
chorion-containing 

eggshell formation 
1.00 1.00 1.86E-07 

 

Table 4.2: The 20 most highly significant hits from the analysis of GO term functional 

enrichments within communities of co-occurring domains. Ranked according to the highest 

precision (column 5) and recall (column 4), followed by lowest p-value (column 6). Group 

ID (column 1) is an id given to a connected component in the network. Total Members 

(column 2) refers to the total number of domains in the connected component. 
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4.3.2.1 Bipartite Networks 

The Bipartite networks for the Composite Dataset, Non-composite Dataset and Highest 

Confidence Composite Dataset are described in Table 4.3. Both the Composite Dataset and 

Non-composite Dataset had a giant connected component; this was not a feature of the 

Highest Confidence Composite Dataset. For context, the next largest connected component in 

the Composite Dataset and Non-composite Dataset accounted for 0.1% and 0.3% of all our 

Pfam domains respectively and 0.03% and 1.8% of all homology connections respectively. In 

all three networks the majority of connected components had only a single domain. The 

domains are functionally exclusive or specialized domains. In other words, they do not 

contribute to the creation of modular proteins with other Pfam domains.  

4.3.2.2 Unipartite Networks 

To establish the relationship between co-occurring domains on the same modular protein for 

Composite Dataset, Non-composite Dataset, and Highest Confidence Composite Dataset, we 

made Unipartite projections of the Bipartite networks for Pfam domains (see Section 4.2.1). 

In these subgraphs, we look for Pfam domains that are connected and see how they may co-

occur on the same gene. We determine what domains seem to work together in modular 

proteins/genes - for summary of results see Table 4.4.  

 

The co-occurrence of over a 40% of all Pfam domains in a single component of the 

Composite Dataset and Non-composite Dataset suggests that certain functional domains in 

these networks are able to co-occur in many different combinations. They act like a glue that 

holds the connected components together. The low average number of Pfam domains co-

occurring in the majority of connected components for all 3 datasets indicates that these 

domains can co-occur but are limited in their combinations.  

4.3.2.3 The impact of central domains  

Our Composite Dataset, Non-composite Dataset and Highest Confidence Composite Dataset 

domain co-occurrence networks all exhibit a scale free topology that is expected for 

biological networks (Barabási 2009) (Figure 4.4). This means that there are many nodes with 

a low degree centrality and relatively few nodes with a high degree centrality. Biologically, 

this means that majority of domains are functionally restricted in the combinations they make 

to other functional domains. It also means that there are central or hub domains in our 

network that contribute to a number of modular proteins (Barabasi and Oltvai 2004). There
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Table 4.3: Summary of Bipartite network characteristics for Composite Dataset, Non-composite Dataset and Highest Confidence 

Composite Dataset 

 

 

 

 

 

 

 

 

 

 

Table 4.3: The following characteristics are detailed for the Bipartite network for Datasets: the dataset is given in the leftmost column. Column 2 

shows the number of connected components in their respective dataset’s Bipartite network. Column 3 shows the percentage of all Pfam (Finn et 

al. 2016) domains that are found within the largest connect component in the network. Column 4 shows the percentage of all network 

connections that are found within the largest connected component. Column 5 shows the percentage of connected components that have only a 

single domain. Column 6 shows the % of all Pfam domains that do not co-occur with other domains in the Pfam database.  

 

Dataset 
# Connected 

components 

% of all Pfam 

domains found within 

the largest connected 

component  

% of all homology 

connections found 

within the largest 

connected component  

% of connected 

components 

with 1 Pfam 

domain 

% of Pfam domains 

that don’t co-occur 

with other domains  

Composite Dataset 2438 15.4 44.2 80.5 49.3 

Non-composite 

Dataset 
3969 24.6 45.9 86.2 53.5 

Highest Confidence 

Composite Dataset 
2313 0.22 0.012 88.1 75.6 
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Table 4.4: Comparison of Unipartite (co-occurring domains) network characteristics for Composite Dataset, Non-composite Dataset and 

Highest Confidence Composite Dataset 

Table 4.4: The table describes the characteristics of the Unipartite network for the Composite Dataset, Non-composite Dataset and Highest 

Confidence Composite Dataset. The dataset is given in the leftmost column. Column 2 shows the number of connected components in their 

respective dataset’s Unipartite network. Column 3 shows the percentage of all Pfam (Finn et al. 2016) domains that are found within the largest 

connect component in that network. Column 4 shows the percentage of all network connections that are found within the largest connected 

component. Column 5 shows the average number of domains found in all other components from the Unipartite network (all those connected 

components except the largest connected component).

Dataset 
# Connected 

components 

% of all co-occurring Pfam 

domains found within the 

largest connected component  

% of all co-occurrence 

connections found within 

the largest connected 

component  

Average # of domains in all 

other co-occurrence connected 

components 

Composite Dataset 473 45.4 30.4 3 

Non-composite Dataset 546 71.4 53 3 

Highest Confidence 

Composite Dataset 
275 0.009 0.03 2 
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Figure 4.4: Degree distribution comparison for domain co-occurrence network for Composite Dataset, Non-composite Dataset, Highest 

Confidence Composite Dataset, a random network (green), and (3) a typical scale-free network (red). 

 

Figure 4.4: The degree distribution of Composite Dataset, Non-composite Dataset, Highest Confidence Composite Dataset, a random network 

and a typical scale free network. On the X-axis is the degree, and the y-axis is the number of nodes. Blue represents the domain-occurrence 

network, Red is the simulated network with a scale-free property and in Green a randomly generated. 
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are a number of measures that can indicate domains that are central to the network and thus 

have the most influence in establishing modular protein. Measures such as degree, closeness 

and betweenness centrality we calculated for each node in each domain co-occurrence 

network. This identified a number of domains that appear to be central to many modular 

proteins (Appendix 4.7). For example, in the Composite Dataset and Non-composite Dataset 

domains Pkinase and Pkinase_Tyr were found to be most central in both co-occurrence 

networks by degree and closeness measures of centrality, with Pkinase_Tyr being ranked 3rd 

highest in betweenness centrality. The degrees of these domains are 67 and 54 respectively in 

the Composite Dataset and 113 and 53 respectively in the Non-composite Dataset. For 

context, the next most central domain by degree centrality in the Composite Dataset was 

RhoGEF (degree of 22) and RVT_1 (degree of 44). It has been found that kinase domains are 

important for many modular proteins (461) in the human genome (Manning et al. 2002).  

 

Other highly central domains identified have been shown to have an important biological role 

in many proteins such as: 

From the Composite Dataset:  

1. RhoGEF (a guanine nucleotide exchange factor) (Soisson et al. 1998),  

2. C2 (involved in targeting proteins to cell membranes) (Haynie and Xue 2015), and  

3. MAM (an extracellular domain found in many receptor proteins) (Beckmann and Bork 

1993).  

From the Non-composite Dataset: 

1. RVT_1 (a reverse transcriptase domain) (Gladyshev and Arkhipova 2011),  

2. Trypsin (a serine protease domain) (Rawlings and Barrett 1994), and  

3. VWA (von Willebrand factor- a glycoprotein) (Colombatti et al. 1993). 

 

We have indicated the impact of the removing highly central domains from the co-occurrence 

network using average clustering and transitivity for the Composite Dataset and Non-

composite Dataset (Figure 4.5). The Highest Confidence Composite Dataset has no single 

giant connected component. Therefore, we have not tested the impact of node deletion on the 

network as components are too small for this. It is clear that removing central domains from 

the Composite Dataset and Non-composite Dataset causes a significant decrease in degree, 

closeness and betweenness centrality, particularly for degree and betweenness centrality. This 

result indicates that much fewer domains in the network are connected to other domains in
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Table 4.5: Domains removed from the co-occurrence network for the Composite 

Dataset to measure average clustering and transitivity 

		 Degree	Centrality	 Closeness	Centrality	 Betweenness	Centrality	

Index	 Domain	ID	 Degree	 Domain	ID	 Closeness	 Domain	ID	 Betweenness	

1	 Pkinase	 67	 Pkinase	 0.089	 Pkinase	 0.047	

2	 Pkinase_Tyr	 54	 Pkinase_Tyr	 0.083	 Bromodomain	 0.024	

3	 RhoGEF	 22	 Myosin_head	 0.077	 Pkinase_Tyr	 0.021	

4	 C2	 20	 MIT	 0.075	 AAA	 0.02	

5	 Ion_trans	 18	 RhoGEF	 0.075	 MIT	 0.019	

6	 SNF2_N	 17	 MAM	 0.075	 BAH	 0.018	

7	 Bromodomain	 17	 F5_F8_type_C	 0.074	 Myosin_head	 0.015	

8	 RhoGAP	 17	 C2	 0.074	 F5_F8_type_C	 0.012	

9	 Helicase_C	 16	 Roc	 0.073	 DEAD	 0.011	

10	 FERM_M	 15	 Kringle	 0.072	 C2	 0.011	

11	 PI3_PI4_kinase	 15	 SH2	 0.072	 RhoGEF	 0.01	

12	 Myosin_head	 15	 I-set	 0.071	 DMAP_binding	 0.01	

13	 CH	 14	 PX	 0.071	 AMP-binding	 0.01	

14	 Y_phosphatase	 14	 SH3-RhoG_link	 0.071	 RabGAP-TBC	 0.008	

15	 7tm_1	 14	 RabGAP-TBC	 0.071	 SPRY	 0.007	

16	 CUB	 14	 Guanylate_cyc	 0.071	 MAM	 0.007	

17	 Adaptin_N	 13	 F_actin_bind	 0.07	 SET	 0.007	

18	 AMP-binding	 13	 Guanylate_kin	 0.07	 Ras	 0.007	

19	 F5_F8_type_C	 13	 ANF_receptor	 0.07	 Helicase_C	 0.007	

20	 VWA	 13	 COR	 0.07	 SH2	 0.006	

21	 Laminin_G_2	 13	 Macro	 0.07	 Roc	 0.006	

22	 MAM	 12	 MIB_HERC2	 0.07	 CUB	 0.005	

23	 Cadherin	 12	 Inhibitor_Mig-6	 0.07	 HECT	 0.005	

24	 CPSase_L_D2	 12	 CNH	 0.07	 adh_short_C2	 0.004	

25	 HECT	 12	 RBD	 0.07	 SNF2_N	 0.004	

26	 VWD	 12	 RGS	 0.069	 VWD	 0.004	
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27	 Trypsin	 12	 Death	 0.069	 RhoGAP	 0.004	

28	 7tm_2	 12	 Dynamin_N	 0.069	 7tm_1	 0.004	

29	 Laminin_G_1	 12	 cNMP_binding	 0.069	 CH	 0.004	

30	 AAA	 12	 Ank_2	 0.069	 PRY	 0.004	

31	 ADH_zinc_N	 11	 EphA2_TM	 0.069	 Y_phosphatase	 0.004	

32	 PX	 11	 Ephrin_lbd	 0.069	 Macro	 0.004	

33	 ANF_receptor	 11	 Recep_L_domain	 0.069	 Kringle	 0.004	

34	 UCH	 11	 Furin-like	 0.069	 ANF_receptor	 0.003	

35	 MutS_V	 11	 SAM_1	 0.069	 DUF3694	 0.003	

36	 SPRY	 11	 SAM_2	 0.069	 PWWP	 0.003	

37	 zf-C4	 11	 OSR1_C	 0.069	 PX	 0.003	

38	 FERM_C	 10	 GF_recep_IV	 0.069	 PARP	 0.003	

39	 Ketoacyl-synt_C	 10	 PTEN_C2	 0.069	 FERM_M	 0.003	

40	 ketoacyl-synt	 10	 Sema	 0.069	 Trypsin	 0.003	

41	 Thioesterase	 10	 GTPase_binding	 0.069	 I-set	 0.003	

42	 HMG_box	 10	 ecTbetaR2	 0.069	 NACHT	 0.003	

43	 Ras	 10	 DCX	 0.069	 Laminin_G_2	 0.003	

44	 SH2	 10	 DUF4071	 0.069	 MIB_HERC2	 0.003	

45	 RabGAP-TBC	 10	 Death_2	 0.069	 PI3_PI4_kinase	 0.003	

46	 KR	 10	 PBD	 0.069	 eIF2_C	 0.003	

47	 Hormone_recep	 10	 DUF1908	 0.069	 PABP	 0.003	

48	 Acyl_transf_1	 10	 Focal_AT	 0.069	 VWA	 0.003	

49	 I-set	 10	 CaMKII_AD	 0.069	 Guanylate_cyc	 0.002	

50	 ABC_tran	 9	 Ig_Tie2_1	 0.069	 Laminin_G_1	 0.002	

Table 4.5: The Pfam ID and respective measure of centrality for the top 50 nodes in the 

domain co-occurrence network that were removed according to Degree centrality (Merged 

Column 1), Closeness centrality (Merged Column 2) and Betweenness centrality (Merged 

Column 3). 
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Table 4.6: Domains removed from the co-occurrence network for the Non-composite 

Dataset to measure average clustering and transitivity 

		 Degree	Centrality	 Closeness	Centrality	 Betweenness	Centrality	

Index	 Domain	ID	 Degree	 Domain	ID	 Closeness	 Domain	ID	 Betweenness	

1	 Pkinase	 113	 Pkinase	 0.167	 Pkinase	 0.134	

2	 Pkinase_Tyr	 53	 Pkinase_Tyr	 0.155	 RVT_1	 0.044	

3	 RVT_1	 44	 RVT_1	 0.153	 Pkinase_Tyr	 0.04	

4	 Trypsin	 34	 Kringle	 0.146	 Trypsin	 0.027	

5	 VWA	 29	 Kinesin	 0.144	 ABC_tran	 0.024	

6	 ABC_tran	 27	 Peptidase_C1	 0.14	 Kinesin	 0.017	

7	 RabGAP-TBC	 27	 SH2	 0.139	 Y_phosphatase	 0.017	

8	 SRCR	 26	 SRCR	 0.139	 RabGAP-TBC	 0.016	

9	 UCH	 23	 ANF_receptor	 0.138	 p450	 0.016	

10	 Y_phosphatase	 22	 Guanylate_cyc	 0.138	 Peptidase_C1	 0.015	

11	 RhoGEF	 22	 ABC_tran	 0.137	 RhoGEF	 0.014	

12	 DEAD	 22	 I-set	 0.137	 adh_short_C2	 0.014	

13	 MAM	 21	 Sema	 0.137	 MFS_1	 0.014	

14	 GTP_EFTU	 21	 Trypsin	 0.137	 SRCR	 0.013	

15	 F5_F8_type_C	 21	 Myosin_head	 0.137	 VWA	 0.013	

16	 Kinesin	 21	 ASC	 0.137	 Ion_trans	 0.013	

17	 VWD	 21	 AAA_12	 0.137	 7tm_1	 0.013	

18	 RhoGAP	 21	 RhoGEF	 0.137	 Kringle	 0.013	

19	 7tm_1	 21	 C2	 0.137	 GTP_EFTU	 0.012	

20	 BTB	 19	 AAA_11	 0.136	 Helicase_C	 0.012	

21	 MFS_1	 19	 Y_phosphatase	 0.135	 UCH	 0.012	

22	 Ion_trans	 19	 UCH	 0.135	 RhoGAP	 0.012	

23	 Pro_isomerase	 19	 Roc	 0.135	 Myosin_head	 0.01	

24	 Helicase_C	 19	 COR	 0.135	 Guanylate_cyc	 0.01	

25	 SNF2_N	 18	 F_actin_bind	 0.135	 CPSase_L_D2	 0.009	

26	 Ras	 18	 MFS_1	 0.134	 Peptidase_S9	 0.008	
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27	 CUB	 18	 Recep_L_domain	 0.134	 Ras	 0.008	

28	 Fibrinogen_C	 17	 EphA2_TM	 0.134	 ThiF	 0.008	

29	 CPSase_L_D2	 17	 OSR1_C	 0.134	 SH2	 0.007	

30	 Guanylate_cyc	 17	 WIF	 0.134	 adh_short	 0.007	

31	 7tm_2	 17	 DUF3543	 0.134	 Ald_Xan_dh_C2	 0.007	

32	 Methyltransf_FA	 16	 RabGAP-TBC	 0.134	 AMP-binding	 0.007	

33	 Kringle	 16	 7tm_1	 0.134	 BTB	 0.006	

34	 FERM_M	 15	 Helicase_C	 0.134	 Bromodomain	 0.006	

35	 Zona_pellucida	 15	 ABC_membrane	 0.133	 ABC_membrane	 0.006	

36	 Gal_Lectin	 15	 MAM	 0.132	 Arf	 0.006	

37	 PI3_PI4_kinase	 15	 Aldedh	 0.131	 Pro_isomerase	 0.006	

38	 Myosin_head	 15	 FH2	 0.131	 COesterase	 0.006	

39	 p450	 15	 DUF4200	 0.131	 DEAD	 0.006	

40	 C2	 14	 RhoGAP	 0.131	 MAM	 0.006	

41	 CH	 14	 Pro_isomerase	 0.131	 Aldolase_II	 0.006	

42	 FH2	 14	 Galactosyl_T	 0.131	 AAA	 0.005	

43	 Peptidase_C1	 14	 E1-E2_ATPase	 0.131	 Sugar_tr	 0.005	

44	 adh_short	 14	 Histone	 0.13	 ANF_receptor	 0.005	

45	 adh_short_C2	 14	 Cation_ATPase_C	 0.13	 SNF2_N	 0.005	

46	 Aldedh	 14	 SIR2	 0.13	 MBT	 0.005	

47	 AAA	 14	 CUB	 0.13	 Hist_deacetyl	 0.005	

48	 IgGFc_binding	 14	 Peptidase_S9	 0.13	 C2	 0.005	

49	 AAA_12	 14	 Sec23_trunk	 0.13	 CH	 0.005	

50	 Adaptin_N	 13	 Hist_deacetyl	 0.13	 Fibrinogen_C	 0.005	

Table 4.6: The Pfam ID and respective measure of centrality for the top 50 nodes in the 

domain co-occurrence network that were removed according to Degree centrality (Merged 

Column 1), Closeness centrality (Merged Column 2) and Betweenness centrality (Merged 

Column 3). 
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Figure 4.5: The impact of node deletion for highly central nodes measured by transitivity and average clustering 
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Fig 4.5: The impact of removing random nodes and the 50 most central nodes in the Composite Dataset ((A) and (C)) and Non-composite 

Dataset ((B) and (D)) networks. The y-axis of the top panel in both datasets ((A) and (B)) represents the average clustering after removing the 

corresponding number of nodes on the x-axis. The y-axis of the bottom panel in both datasets ((C) and (D)) represents the transitivity after 

removing the corresponding number of nodes on the x-axis. Both graphs are indications of how average clustering is affected when certain 

domains are removed from the network. The top panel in both datasets ((A) and (B)) is showing how removing central domains from the 

network is affecting average clustering. The bottom panel in both datasets ((C) and (D)) is showing how removing central domains from the 

network is affecting the transitivity of the network (a measure of clique structure among connected triplets of domains). Domains were removed 

from the network by random (red) or according to a centrality value (degree (violet), closeness (blue), or betweenness (green)). For random 

removal of domains, we repeated this 100 times to give appropriate sampling. 
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the network and thus forming fewer connected components. Conversely to this, removal of 

highly central domains (again according to all measures of centrality) from the co-occurrence 

network results in a significant increase of transitivity. Transitivity ranges from 0 to 1.0 

where 0 indicates all triplets (3 domains connected by 2 or 3 edges) are open (3 domains with 

2 edges) and 1 indicates all triplets are closed (3 domains with 3 edge a clique). Biologically, 

this indicates that there are more domains forming connected triplets as central domains are 

removed. Based on average clustering and transitivity, it appears that removing central 

domains in the co-occurrence networks fro the Composite Dataset and Non-composite 

Dataset is creating more closed triplets/cliques by removing domains that would usually form 

open triplets with two other domains. These results suggest that highly central domains have 

an important role in many modular proteins and connect other domains that would never 

usually connect in the absence of the central domains.  

 

4.3.2.4 Assortativity 

In order to investigate the nature of specific domain combinations in our networks of domain 

co-occurrence we calculated the degree assortativity of each co-occurrence network (Figure 

4.6). The degree assortativity indicates if domains in our network have a preference of 

connecting to other domains with a similar degree or not. All datasets exhibit a positive 

degree assortativity coefficient for the network. However, the neighbour connectivity plot 

generated for the Composite Dataset and Non-composite Dataset co-occurrence networks 

show that the linear regression trend line does not fit the data,  there is no strong evidence for 

assortative mixing. The Highest Confidence Composite Dataset shows a better linear 

regression and indicates an assortative mixing pattern (Figure 4.6). Therefore, this indicates 

that the mixing pattern found for the Composite Dataset and Non-composite Dataset are 

disassortative and the Highest Confidence Composites Dataset is assortative. These metrics 

indicate that the domains in the Highest Confidence Composite Dataset co-occurrence 

networks are assortative in nature, meaning that high degree domains have a preference to 

connect with other domains with a high degree for remodelled genes. The opposite 

(disassortative) is true for non-remodelled genes. 
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Figure 4.6: Assortativity test for Composite Dataset, Non-composite Dataset and Highest Confidence Composite Dataset domain co-

occurrence networks 

 
Fig 4.6: The neighbour connectivity plot shows no strong mixing pattern for the Composite and Non-composite Dataset co-occurrence networks, 

while showing a positive assortative mixing pattern for the Highest Confidence Composite Dataset. K (x-axis) refers to the degree of the given 

node. <Knn> (y-axis) refers to the average degree of the nearest neighbours for that given node.
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4.3.2.5 Functional domain combinations and community detection 

Using NeMo (Rivera et al. 2010) to detect communities within the largest co-occurrence 

network for the Composite Dataset and Non-Composite Dataset we established 72 and 149 

communities of co-occurring domains respectively. As the Highest Confidence Composite 

Dataset network only contains small connected components and no giant connected 

component there was no need to make communities from the large component. Instead each 

connected component within the domain co-occurrence network was treated as a community 

as they were small in size and not connected to anywhere else on the network. Similarly, each 

of the remaining co-occurrence networks (excluding the giant connected component) for the 

Composite Dataset and Non-Composite Dataset were treated as a community as they were 

small in size and not connected anywhere else on the network. The enrichment analysis of 

each community revealed a number of significantly enriched communities of domains for a 

particular process/function. Summary of the results for Composite, Non-Composite and 

Highest Confidence Composite Datasets are given in Table 4.7, 4.8 and 4.9 respectively 

(Appendix 4.5 and 4.6 contains complete set of results).  

4.4 Discussion 
This chapter establishes some of the features of domain usage observed across metazoan 

protein coding sequences and provides us with a more detailed understanding of the 

difference between composite and non-composite genes in terms of their domain remodelling 

properties.  

 

In summary, all of the domain co-occurrence networks displayed a scale-free property with 

many low degree nodes and few high degree nodes, meaning that domains co-occur in genes 

according to a power law degree - a typical characteristic of biological networks (Barabási 

2009). The Highest Confidence Composite Dataset network had a degree distribution that 

ranged from 2 domains (73.5%) to 6 domains (0.7%). Most networks have the minimum of 

two domains that co-occur, however the range between the highest and lowest degree node is 

quite small. This indicates that there a small number of central domains that co-occur with 

many other domains to form modular proteins, but in general most domains are limited in 

terms of the domains with which they can co-occur in a modular protein.  
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Table 4.7: Domain community enrichment of GO terms – top 20 significant scores for 

Composite Dataset 

GroupID TotalMembers GO_Terms Recall Precision 
FisherExact 

p-value 

196 3 

positive regulation of 

transcription, DNA-

templated 

1.00 1.00 7.31E-10 

472 3 
mannose metabolic 

process 
1.00 1.00 7.31E-10 

472 3 
alpha-mannosidase 

activity 
1.00 1.00 7.31E-10 

571 3 
thiamine pyrophosphate 

binding 
1.00 1.00 7.31E-10 

1204 3 
arginyl-tRNA 

aminoacylation 
1.00 1.00 7.31E-10 

1204 3 
arginine-tRNA ligase 

activity 
1.00 1.00 7.31E-10 

1538 3 
protein-arginine 

deiminase activity 
1.00 1.00 7.31E-10 

2036 3 
S-adenosylmethionine 

biosynthetic process 
1.00 1.00 7.31E-10 

2036 3 

methionine 

adenosyltransferase 

activity 

1.00 1.00 7.31E-10 

319 2 RNA polyadenylation 1.00 1.00 4.91E-07 

533 2 cytoskeleton organization 1.00 1.00 4.91E-07 

770 2 nuclease activity 1.00 1.00 4.91E-07 

918 2 
MHC class II protein 

binding 
1.00 1.00 4.91E-07 

1569 2 translational termination 1.00 1.00 4.91E-07 
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1793 2 

oxidoreductase activity, 

acting on the aldehyde or 

oxo group of donors, 

NAD or NADP as 

acceptor 

1.00 1.00 4.91E-07 

1810 2 anion transport 1.00 1.00 4.91E-07 

2004 2 

oxidoreductase activity, 

acting on CH-OH group 

of donors 

1.00 1.00 4.91E-07 

2325 2 
regulation of DNA 

replication 
1.00 1.00 4.91E-07 

2408 2 RNA metabolic process 1.00 1.00 4.91E-07 

1364 4 amine metabolic process 1.00 0.75 2.92E-09 

 

Table 4.7: The 20 most highly significant hits from the analysis of GO term functional 

enrichments within communities of co-occurring domains for the Composite Dataset. Ranked 

according to the highest precision (column 5) and recall (column 4), followed by lowest p-

value (column 6). Group ID (column 1) is an id given to a connected component in the 

network. Total Members (column 2) refers to the total number of domains in the connected 

component. 
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Table 4.8: Domain community enrichment of GO terms – top 20 significant scores for 

Non-composite Dataset 

GroupID TotalMembers GO_Terms Recall Precision 
FisherExact 

p-value 

707 3 
S-adenosylmethionine 

biosynthetic process 
1 1 2.29E-10 

707 3 

methionine 

adenosyltransferase 

activity 

1 1 2.29E-10 

804 3 
mannose metabolic 

process 
1 1 2.29E-10 

804 3 
alpha-mannosidase 

activity 
1 1 2.29E-10 

1407 3 

positive regulation of 

transcription, DNA-

templated 

1 1 2.29E-10 

1458 3 
amine metabolic 

process 
1 1 2.29E-10 

1458 3 
primary amine oxidase 

activity 
1 1 2.29E-10 

1584 3 
protein-arginine 

deiminase activity 
1 1 2.29E-10 

2748 3 
DNA ligase (ATP) 

activity 
1 1 2.29E-10 

152 2 
translational 

termination 
1 1 2.26E-07 

207 2 
glycerone kinase 

activity 
1 1 2.26E-07 

207 2 
glycerol metabolic 

process 
1 1 2.26E-07 

272 2 RNA polyadenylation 1 1 2.26E-07 

371 2 cytoskeleton 1 1 2.26E-07 
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organization 

444 2 
proteasome activator 

complex 
1 1 2.26E-07 

445 2 
phosphoenolpyruvate 

carboxykinase activity 
1 1 2.26E-07 

458 2 

glycylpeptide N-

tetradecanoyltransferase 

activity 

1 1 2.26E-07 

829 2 
MHC class II protein 

binding 
1 1 2.26E-07 

835 2 peptide cross-linking 1 1 2.26E-07 

884 2 
glutamate-ammonia 

ligase activity 
1 1 2.26E-07 

 

Table 4.8: The 20 most highly significant hits from the analysis of GO term functional 

enrichments within communities of co-occurring domains for the Non-composite Dataset. 

Ranked according to the highest precision (column 5) and recall (column 4), followed by 

lowest p-value (column 6). Group ID (column 1) is an id given to a connected component in 

the network. Total Members (column 2) refers to the total number of domains in the 

connected component.  
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Table 4.9: Domain community enrichment of GO terms – top 20 significant scores for 

the Highest Confidence Composite Dataset 

GroupID TotalMembers GO_Terms Recall Precision 
FisherExact 

p-value 

457 4 mismatch repair 1 1 1.33E-10 

457 4 
mismatched DNA 

binding 
1 1 1.33E-10 

595 4 
DNA-directed 5'-3' RNA 

polymerase activity 
1 1 1.33E-10 

595 4 
transcription, DNA-

templated 
1 1 1.33E-10 

943 3 calcium ion binding 1 1 2.16E-08 

943 3 
protein-arginine 

deiminase activity 
1 1 2.16E-08 

981 3 
mannose metabolic 

process 
1 1 2.16E-08 

981 3 
alpha-mannosidase 

activity 
1 1 2.16E-08 

1519 3 lipid transporter activity 1 1 2.16E-08 

1519 3 lipid transport 1 1 2.16E-08 

1795 3 
arginyl-tRNA 

aminoacylation 
1 1 2.16E-08 

1795 3 
arginine-tRNA ligase 

activity 
1 1 2.16E-08 

45 2 transmembrane transport 1 1 4.70E-06 

278 2 
tRNA aminoacylation 

for protein translation 
1 1 4.70E-06 

713 2 

intramolecular 

transferase activity, 

phosphotransferases 

1 1 4.70E-06 

1009 2 nuclease activity 1 1 4.70E-06 

1152 2 fatty acid metabolic 1 1 4.70E-06 
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process 

1152 2 
3-hydroxyacyl-CoA 

dehydrogenase activity 
1 1 4.70E-06 

1346 2 phosphorylation 1 1 4.70E-06 

1363 2 
MHC class II protein 

binding 
1 1 4.70E-06 

 

Table 4.9: The 20 most highly significant hits from the analysis of GO term functional 

enrichments within communities of co-occurring domains for the Highest Confidence 

Composite Dataset. Ranked according to the highest precision (column 5) and recall (column 

4), followed by lowest p-value (column 6). Group ID (column 1) is an id given to a connected 

component in the network. Total Members (column 2) refers to the total number of domains 

in the connected component. 
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In terms of assortativity, the Entire Dataset, Composite Dataset and Non-composite Datasets 

are weakly disassortative (assortativity coefficients of 0.009, 0.038 and 0.028 respectively, 

but poor linear regressions). The Highest Confidence Composite Dataset was found to have a  

significant assortative mixing pattern (assortativity coefficient of 0.81). Together, these 

results indicate that the domains in our Highest Confidence Composite Dataset typically co-

occur with domains with a similar degree, suggesting that functionally restricted domains do 

not favour co-occurring with domains that are functionally permissive. This is in direct 

contrast to Newman et. al (2002), where they showed that most biological networks high 

degree nodes have a preference to connect with nodes of a low degree and therefore are 

disassortative in nature (Newman 2002b) – a pattern displayed by our non-composite genes. 

 

Functional enrichment of communities demonstrated many communities of co-occurring 

domains are favoured to co-occur with each other. For example, a community in the Entire 

Dataset, Composite Dataset and Non-composite Dataset were enriched for positive regulation 

of DNA-templated transcription (Table 4.2, Table 4.7 and Table 4.8) and in all cases, 3 

domains ((HNF-)B_C, HNF-1_N, and HNF-1A_C) formed the functionally enriched 

community. These domains are part of the Hepatocyte nuclear factor-1 family and mutations 

to these domains can cause type 3 form of maturity-onset diabetes of the young (Urhammer 

et al. 1997). Evidently, this is an essential biological function that requires specialized 

domains rather than promiscuous domains of high degree. Similarly, for the Highest 

Confidence Composite Dataset the top four significant functional enrichments have only four 

domains (See Table 4.7). Two of the communities contained MutS family of domains and 

were functionally enriched for mismatch repair, mismatched DNA binding. Another two 

communities were composed of RNA_pol_Rpb family of domains and were functionally 

enriched for DNA-directed 5’-3’ RNA polymerase activity and DNA templated transcription. 

These functions are essential biological functions that require specialised domains (the 

domains responsible for these functions are highly specialized and not functionally 

permissive). In all examples, the communities are small and restrictive in terms of the 

functional domains with which they co-occur.  

 

We have shown that all these networks display similar characteristics, all are scale-free. 

However, we do find some key differences between the Highest Confidence Composite 

Dataset and the other two datasets. For example, the Highest Confidence Composite Dataset 

has assortative mixing compared to a weakly disassortative mixing in the Entire Dataset, 
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Composite Dataset and Non-Composite Dataset. The Highest Confidence Composite Dataset 

differs in the functions for which we see functional enrichment and it does not contain a giant 

connected component. The Highest Confidence Composite Dataset is notably smaller than 

the other datasets. However, on a random network of similar size for the subsetted from the 

Entire Graph, the trend remains similar – close to neutral/0, with a network assortativity 

coefficient of -0.096. In essence, in the case of the Highest Confidence Composite Dataset - 

the domains that co-occur on remodelled genes are functionally restricted in almost all cases 

and lack functionally promiscuous domains that are present in many other remodelled genes. 

This is not a feature of the complete Composite Dataset most likely because this dataset 

contains all putative composite genes, genes that have multiple sources of domains. However, 

some of these putative domains could be a result of domain rearrangements rather than gene 

fusion/fission events (Bornberg-Bauer et al. 2010). Therefore, not all genes within the 

Composite Dataset are strictly gene fusions/fissions in nature, unlike the Highest Confidence 

Composite Dataset.  

 

In summary, we have applied SSNs to investigate how domains co-occur within composite 

genes and non-composite genes within the Metazoa. With the exception of assortativity all 

networks analysed display typical properties of a biological network such as a scale-free 

degree distribution. The largest difference between the networks composed of Non-composite 

genes and Composite genes was found in community structure of the co-occurrence domains. 

The composite network had no giant connected component as is the case for non-composite 

genes. This indicates that domains within the composite network are generally not likely to 

be functionally compatible with many other domains. In the Non-composite gene SSN, most 

domains form communities with other specialised domains to contribute to a specific 

function without the use of promiscuous domains- domains that are involved in a number of 

different proteins. However, there are a small number of these promiscuous domains that 

connect with a large number of other domains (Figure 4.1 and Figure 4.4). We have shown 

here that composite genes mostly rely on the co-occurrence of a low number of specialised 

domains, while non-composite genes use a mixture of promiscuous domains that function in 

many proteins and specialised domains to create novel proteins.  
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Chapter 5: Discussion  
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Since the completion of the Drosophila melanogaster(Adams et al. 2000) and Human 

(Venter et al. 2001) genomes in 2000 and 2001 respectively a large number of animal 

genomes have been published and ambitious global collaborative efforts such as the 

Genome 10k Project (Koepfli et al. 2015) and the 1KITE (http://www.1kite.org) are 

generating large volumes of sequence data. In tandem with this, databases that make 

data available to the community have been developed and improved, including the 

OMA database (Roth et al. 2008), Ensembl (Hubbard et al. 2002) and NCBI’s RefSeq 

(Hubbard et al. 2002) to name just a few. Large amounts of molecular data have also 

resulted in novel algorithms in fields such as phylogenetics/phylogenomics. Statistical 

algorithms such as RAxML (Stamatakis 2006b), and MrBayes (Ronquist and 

Huelsenbeck 2003) provide homogeneous modeling solutions and PhyloBayes 

(Lartillot et al. 2009, Lartillot et al. 2013b), P4 (Foster 2004) and RevBayes (Höhna et 

al. 2016) have heterogeneous modeling capabilities. However, the reality is that these 

phylogenetic algorithms are often misused.  

 

In Chapter 2, we establish a data driven approach that incorporates both homogeneous 

and heterogeneous models of phylogeny reconstruction. To test the robustness of this 

approach we examined the position of the placental mammal root as a good example 

of a case where the same datasets and taxa sampling have produced conflicting 

positions (with strong support) for the root depending on what method is used (Tarver 

et al. 2016). For example, the Romiguier et al. study (Romiguier et al. 2013) used 

homogeneous models to create a phylogeny for placental mammals that placed the 

root at the Afrotherian position, whereas in the same issue of MBE and using the 

same data, Morgan et al. (2013) reported the conflicting position of Atlantogenata 

using a heterogeneous modeling approach (Morgan et al. 2013, Teeling and Hedges 

2013, Tarver et al. 2016). We demonstrated that homogeneous models do not reflect 

the biological complexity of the dataset used by Romiguier et al (Romiguier et al. 

2013) and while software packages such as RAxML (Stamatakis 2006b) can be 

incredibly powerful and fast, they are not always appropriate. First, we tested the data 

for sufficient signal using likelihood mapping (Strimmer and Von Haeseler 1997). 

This revealed that the data used in the study contained significant phylogenetic signal. 

Next, we performed the compositional homogeneity test employed in P4 (Foster 

2004) and determined that the data was not homogeneous. Using heterogeneous 

modelling approaches implemented in P4 (Foster 2004) and PhyloBayes (Lartillot et 
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al. 2009) we modeled the Romiguier et al datasets (Romiguier et al. 2013) and using 

posterior predictive simulations we determined if the model adequately describes real 

data.  

 

The results from Chapter 2 nicely demonstrated that even after searching for the best 

model in the pool of models, the optimum available heterogeneous model that we can 

construct may not appropriate for the data, it is simply the best model out of an 

inappropriate bunch of models. This serves to highlight the importance of checking 

the adequacy of the model for each specific dataset. One cannot assume that any 

heterogeneous model is adequate nor can one assume that a heterogeneous model is 

appropriate at all – perhaps a homogeneous model is sufficient. The point here is that 

the process of model selection should be data driven. One can only trust the 

phylogeny produced with a model that adequately and statistically significantly 

models that data. The key is to resist making assumptions of the data and instead let 

the data dictate the approach and the model.  

 

Finally, reanalysis of the Romiguier et al dataset (Romiguier et al. 2013) using the 

heterogeneous CAT+GTR model implemented in PhyloBayes (Lartillot et al. 2009, 

Lartillot et al. 2013a) shows that this model is capable of modelling the data (posterior 

predictive simulations) and lends support to the Atlantogenata position for the root 

rather than the reported Afrotherian position – model misspecification had resulted in 

the incorrect topology. This work was published in (Moran et al. 2015). In 

collaboration with Prof Davide Pisani’s group in Bristol University we reanalyzed 

data from studies that had supported alternative hypothesis for the position of the root 

of placental mammals, and incorporating novel data from microRNAs we have gained 

consilience across different datasets and data-types for the Atlantogenata root of the 

placental mammals. We published this work in (Tarver et al. 2016).  

 

Although advances in phylogenetics have greatly improved our understanding of 

molecular processes of evolution such as gene gain and loss (Chapter 3), 

phylogenetics is not capable of modeling non-tree-like mechanisms of evolution such 

as gene remodeling (Chapter 3, Chapter 4) (Bapteste et al. 2013b). There are many 

studies on gene gain/loss in vertebrates (Blomme et al. 2006, Demuth et al. 2006, 

Hahn et al. 2007) and indeed inclusion of gene repertoire analyses are commonplace 



  148 

in publications describing new completed genomes (Decatur et al. 2013, Moroz et al. 

2014). However, a lack of high quality non-model organism animal genomes 

(Ellegren 2014) has meant that until recently we have not have sufficient sampling 

and data to investigate gene gain/loss across the entire Metazoa. In the past five years 

a significant number of non-model organism genomes have become available. 

(Decatur et al. 2013, Simakov et al. 2013, Moroz et al. 2014), providing us with 

sufficient sampling to examine gene repertoires across the entire Metazoa. Using 

OMA (Altenhoff et al. 2014) we established all gene gain and loss events across the 

animal tree for each gene in the database of 1.2 Million sequences we had assembled. 

We then established the rate and abundance of novel gene families that evolved at 

each internal node. 

 

Previous studies have shown that gene remodeling is a prevalent and important 

mechanism in animal evolution (Buljan et al. 2010) (Marsh and Teichmann 2010). 

However, until recently very few algorithms were available to assess and quantify 

gene remodeling events (Jachiet et al. 2013). Therefore, with the available data and 

sampling across the Metazoa and with the development of novel algorithms (under 

review Pathmanathan JS et al, 2017) we had a unique opportunity to establish how 

gene remodeling has played a role in the evolution of protein coding gene families. 

 

In Chapter 3 we analyzed 63 high quality datasets that span the entire Metazoa and 

identified all gene fusion/fission events. Using a novel network theory based 

algorithm designed by our collaborators we identified composite genes (gene 

fusions/fissions) and clustered them into remodeled gene families and mapped them 

to their node of origin on the phylogenetic tree. The CompositeSearch algorithm was 

designed by our collaborators with our contribution, it is under review - Pathmanathan 

JS et al, 2017.  

 

It is well established that gene remodeling is a significant mechanism in creating 

novel genes(Long 2001, Agaram et al. 2015). It has also known that gene remodeling 

(fusion/fission genes) has a significant role in functional evolution(Kaessmann 2010) 

and in driving phenotypic innovation (Ciccarelli et al. 2005, Kaessmann 2010, Chen 

et al. 2013). However, there is little research into the prevalence of gene 

fusions/fission across animal life. We identified 71,460 gene families in the database, 
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68.5% of these were classified as remodeled. We show that most internal nodes in the 

tree (80.3%) have more remodeled gene families than non-remodeled gene families. 

These statistics clearly show that gene remodeling is a prevalent mechanism in the 

evolution of animals. We also show that remodeled gene families originate more often 

at specific time points on the tree, many of which are nodes of major phenotypic 

transition. The most notable is the Bilateria where 8,075 novel gene families originate 

– 87% of which are remodeled. This node represents one of the biggest transitions in 

animal life where the third germ layer is introduced, giving rise to triploblastic 

animals and allowing for more complex body plans (Section 1.4.2) (Martindale et al. 

2002)..  Clearly, gene remodeling was a major evolutionary force in the evolution of 

early Bilaterian species. 

 

Categorizing the remodeled gene families based on their point of origin on the 

phylogeny and that of their components revealed that the most prominent mechanism 

of remodeling involves the use of protein coding genes that themselves originated 

much deeper in the phylogeny or prior to the divergence of the major animal groups. 

The longer a gene is present in a genome the higher the probability that it will become 

involved in gene remodeling events.  

 

We have shown that there is distinct difference in how the Deuterostomia and 

Protostomia use gene remodeling. Protostomia have a higher number of novel gene 

families created through gene remodeling than the Deuterostomia. Overall, we find 

that the majority of novel gene families that emerged at internal nodes in the tree were 

formed by gene remodeling. This high prevalence of novel composite genes makes it 

likely that gene remodeling has a significant impact on phenotypic innovation. There 

are a number of well documented examples from literature that show examples of 

gene remodeling creating novel phenotypes (Kaessmann 2010, Chen et al. 2013). For 

example, the jingwei gene in Drosophila melanogaster introduced a novel specificity 

to metabolising long chain primary alcohols (Long and Langley 1993). This suggests 

that gene remodeling is a strong force in creating novel gene families and thus 

potentially novel phenotypes. The enrichment analysis revealed that certain functions 

are specifically enriched in remodeled gene families. For example, Euteleostomi 

represents a major transition for the adaptive immunity in animals and is also enriched 
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for remodeled genes emerging at that point on the tree that have immune system 

functions. 

 

Studies on fossil data suggests that the rate of evolution (for the most part) is gradual 

(Estes and Arnold 2007, Hunt et al. 2015), while studies on ecological data suggests 

bursts of punctuated evolution are potentially common (Herrel et al. 2008, Brown and 

Brown 2013). In animals, the rate of novel gene genesis by gene remodeling (gene 

fusion/fission) was unknown. We show that novel remodeled genes have emerged at a 

faster rate than novel non-remodeled genes and these rates can fluctuate through time. 

 

A significant amount of research has been carried out on the impact of domains in 

creating novel functions (Buljan et al. 2010, Marsh and Teichmann 2010). It has been 

shown that there are domains that form part of many of modular proteins, these are 

referred to as promiscuous domains (Basu et al. 2008). For example, kinase and 

fibronectin III domains are found in many modular proteins (Little et al. 1994, 

Manning et al. 2002).Furthermore, it is suggested that domain shuffling played a 

significant role in the transition from animal unicellularity to multicellularity(Patthy 

2003, Ekman et al. 2007). However, it is not fully understood how the rules of domain 

shuffling may differ between remodeled and non-remodeled genes. We compared the 

domain shuffling characteristics such as assortativity, network structure and 

transitivity from a composite gene perspective and non-composite gene perspective. 

All of the domain co-occurrence networks displayed a scale-free property with many 

low degree nodes and few high degree nodes – a typical characteristic of biological 

networks (Barabási 2009). For the Highest Confidence Composite Dataset there was 

no single giant connected component. 73.5% of all co-occurrence networks in this 

dataset had the minimum number of two domains. This indicates that there a small 

number of central domains that co-occur with many other domains to form a modular 

protein, but in general most domains are limited in the domains they can co-occur 

with on a gene/modular protein, when composite genes are concerned. In the case of 

the Entire Dataset, Composite Dataset and Non-composite Dataset we show that there 

are a number of highly promiscousous domains. The presence of a relatively low 

number of promiscousous domains is in agreement with current literature (Basu et al. 

2008, Barabási 2009) .  
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The co-occurrence networks: Full Dataset, Composite Dataset, Non-composite 

Dataset exhibited a weak disassortative mixing pattern. and Highest Confidence 

Composite Dataset exhibited an assortative mixing pattern. Overall this suggests that 

Pfam-A domains in general co-occur with other domains of a similar degree for 

composite genes and for non-composite genes domains co-occur with other domains 

that often have a different degree. It has been found that biological networks often 

have dissasortative mixing pattern (Newman 2002a, Newman 2003, Proulx et al. 

2005).  

 

It is understood that domains have an importnant role in creating novel funcitons in 

eukaryotes(Jin et al. 2009). Functional enrichment of communities of co-occruing 

domains from the Entire Dataset, Composite Dataset, Non-composite Dataset and 

Highest Confidence Composite Dataset demonstrated many communities of co-

occurring domains are favoured to co-occur with each other in order to carry out a 

specific function.  

 

Although the different Dataset networks display similar characteristics such as a 

scale-free property and assortative mixing, we do find some key differences between 

the Highest Confidence Composite Dataset and the other datasets (Entire Dataset, 

Composite Dataset and Non-composite Dataset). For example, the Highest 

Confidence Composite Dataset network has a very strong assortative mixing 

compared to a weakly assortative mixing in the other networks. The Highest 

Confidence Composite Dataset network differs in the functions it is enriched for and 

contains no giant connected component. In essence, the Highest Confidence 

Composite Dataset network indicates that domains that co-occur on composite genes 

are functionally restricted for almost all cases with a lack of functionally permissive 

domains that are present in many other composite genes.  

 

We have offered a global view of the impact of gene remodeling in the Metazoa. 

However, to gain a further understanding of how this mechanism differs between 

specific groups or clades of animals - denser sampling and a robust phylogenetic tree 

is required. Therefore, as technology advances and more genomes become available 

there is an opportunity to improve upon analyses. Whilst we have resolved one 

contentious node in the animal tree (the root of the placental mammal tree) (Moran et 
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al. 2015, Tarver et al. 2016), a number of other contentious nodes remain (Dunn et al. 

2008). The data driven heterogeneous modelling approach we applied in Chapter 2 

offer a good potential approach to take with larger and better quality genomes and 

perhaps with improved modeling and data these nodes will resolve. The use of a more 

fully resolved phylogenetic tree for the Metazoa would allow the algorithms we used 

such as OMA (Roth et al. 2008) and CompositeSearch (Pathmanathan JS et al, 2017) 

to have improved accuracy. We have offered an insight into the role of composite 

genes in animal species.  However there is still much work to be done to build on the 

work of this thesis such as selective pressure analyses and more in-depth functional 

analyses that will help us understand in greater detail the functional impact and 

importance of composite genes in the Metazoa.  

 

Conclusion: 
In this thesis we explored protein-coding gene evolution using tree-like and non-tree-

like frameworks. For the first time, we successfully got consilience across several 

data types on a large-scale study for a heavily debated node on the animal tree – the 

root of the placental mammals. We applied graph theory to quantitatively survey the 

extent of gene remodeling across the Metazoa. We determined that gene remodeling 

is a prevalent process across all clades in the Metazoa and that the emergence of novel 

gene families is significantly facilitated by gene remodeling processes. We show that 

the rate of novel gene genesis is not strictly clocklike for remodeled gene families. 

We have gained some initial insights into how gene remodeling may contribute to 

novel phenotypes at nodes of major phenotypic transition. Finally, we have quantified 

the extent of domain shuffling and have elaborated on the patterns of domain 

shuffling observed in the Metazoa.   
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Appendix: 
 

Attached here is a USB flash drive containing a tar.gz file.  Within this tar.gz file is 

the Appendix. For each results chapter of this thesis there is a folder called 

Chapter_num (where num is the chapter number).  Within each Chapter folder is all 

the scripts, data, results and supplementary information needed for this thesis. 


