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Abstract

The Thermodynamics of Multifluid Magnetohydrody-
namic Turbulence in Star Forming Regions

Aaron Kinsella

It is believed that turbulence is an important process in the evolution and
dynamics of molecular clouds and can significantly impact the processes of
star formation inside these clouds.
The aim of this project is to investigate the properties of multifluid mag-
netohydrodynamic turbulence in weakly ionised astrophysical plasmas such
as molecular clouds. To do this the formation of structures through which
energy can be dissipated, identified primarily by the structures of high cur-
rent density, will be studied. Ambipolar diffusion dominated systems will be
studied with a view to discovering the impact this effect has on the formation
of structures and magnetic field topology. The resulting statistics on dissipa-
tive structure formation will be compared with ideal MHD simulations. The
formation of sheet-like structures is thought to be intrinsic to systems such
as those outlined above, so a better understanding of the physical processes
involved is a stepping stone in the development of better models for the early
phases of star formation.



Chapter 1

Introduction

We present a study of multifluid magnetohydrodynamic turbulence in star

forming regions. The regions in which stars form are relatively dense areas of

the interstellar medium (ISM) known as molecular clouds. Molecular clouds

are made up of weakly ionised plasma and dust, as the material in molecular

clouds is weakly ionised it cannot be modelled using the ideal MHD ap-

proach. The presence of multiple charged and neutral particle species means

that multifluid MHD must be used to describe the fluid.

The following sections of Chapter 1 of this thesis provide an overview of

the current literature dealing with molecular clouds, it also discusses the the-

ory of ideal MHD before going on to extend the theory to include multifluid

effects.

In Chapter 2 the theory of turbulence in molecular clouds, with particular

focus on the mechanisms through which energy is dissipated from turbulent

clouds, will be discussed.

A discussion of the numerical method used in this project, including the de-

tails of the multifluid MHD code used to run simulations, will be presented

in Chapter 3.

The results obtained from a series of simulations will be presented and dis-

cussed in Chapter 4.

Finally, Chapter 5 will conclude this thesis, summarising the findings of this
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study and suggesting some areas of potential further study.

1.1 Molecular Clouds

The range of sizes of molecular clouds is substantial, they can vary from

small clouds of about 1pc across, known as Bok gobules, to giant molecular

clouds which can be up to hundreds of parsecs in diameter. Giant molecular

clouds contain a large amount of gas and dust, the mass of which can be as

much as 106M�(Sanders et al., 1985).

1.1.1 Properties of Molecular Clouds

General Molecular Cloud Properties

It has been observed both locally, in The Milky Way, and in neighbouring

spiral galaxies that most of the molecular gas is concentrated in clumps in

the spiral arms of these galaxies. These clouds are believed to be relatively

short lived, transient structures with lifetimes believed to be in the order of

30 Myr. Based on observations of the Large Magellanic Cloud by Blitz et al.

(2007) the lifespan of a typical molecular cloud can be divided into three

main phases.

1. No high mass star formation: this stage of a cloud’s life is estimated to

last only about 6-7 Myr.

2. HII Regions: Due to the observation of two times as many clouds

with active HII regions than inactive clouds it was estimated that the

molecular cloud spends around 14-15 Myr in this stage of its life.

3. Cluster Formation: It is estimated that from the formation of a star

cluster to total destruction of the molecular it cloud it takes approxi-

mately 6-7 Myr. Stellar winds and outflows from young stellar objects

cause material in the molecular cloud to be swept away thereby de-

stroying the cloud in which the cluster is formed.
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Molecular clouds are very inhomogeneous regions of the ISM and as such

it is difficult to get an accurate idea of the typical densities of giant molec-

ular clouds, for example according to Mac Low and Klessen (2004) clumps

in giant molecular clouds can be as dense as nH = 105cm−3 where as Car-

penter and Sanders (1998) have observed a cloud (W51) with nH = 40cm−3,

showing the huge variation in the density of gas in molecular clouds.

As the density of gas varies considerably from cloud to cloud, so too

does the ionisation fraction vary greatly from cloud to cloud. The ionisation

fraction (χ) is the ratio of charged particles to neutral particles in a system,

in the case of molecular clouds it is generally the ratio of the number density

of electrons to the number density of neutral hydrogen atoms. As stated

previously, molecular clouds are primarily composed of hydrogen which has

a single electron. If we know the number density of ionised hydrogen atoms

then it follows that we know the number density of electrons in the molecular

cloud. Then dividing the number density of electrons by the number density

of neutral hydrogen, we can find the fraction of atoms in the cloud which

are ionised. The ionisation fraction is defined as χ ≡ ne

nH
In the previous

expression, the number density of neutral hydrogen atoms is given by nH =

n(H)+2n(H2). This is obtained quite trivially as n(H) is the number density

of neutral hydrogen atoms in the cloud and n(H2) is the number density of

hydrogen molecules in the cloud. As molecular hydrogen is comprised of two

hydrogen atoms the total number density of hydrogen atoms in the cloud

can be obtained by adding the number density of hydrogen atoms to two

times the number density of hydrogen molecules. For optically thin clouds,

i.e. clouds with a relatively low density of particles, ambient ultraviolet light

from nearby stars or shocks in molecular cloud itself acts to dissociate the

electrons from the hydrogen atoms, thus causing the ionisation fraction to

increase, typical values for the ionisation fraction in optically thin clouds is

χ = 10−4 (Draine et al., 1983, Guelin et al., 1977, Elmegreen, 1979). The

ionisation fraction can be measured using indirect determinations of electron

abundance. This is done by observing molecular ions and applying various

chemical models. The comparison of DCO+ and HCO+ is commonly used to
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determine the electron abundance in a cloud. For the case of optically thick

clouds, i.e. clouds with relatively large densities nH ≈ 104cm−3 or greater,

hydrogen atoms deep within the cloud are shielded from the ionising effects of

UV radiation and as such these clouds have much lower ionisation fractions.

The ionisation fraction for dense clouds is in the order of χ = 10−7(Draine

et al., 1983, Guelin et al., 1977).

Magnetic Field Observations

As stated previously, it is believed that magnetic fields have an important

role to play in the evolution of molecular clouds into protostars. According

to Crutcher (1999) the effects of magnetic fields in interstellar clouds cannot

be ignored for a number of reasons, such as, the thermal kinetic energy and

the magnetic energy in the observed clouds are approximately equal which

suggests that MHD waves and static magnetic fields are of equal impor-

tance to the energetics of molecular clouds. Also, the ratio of the thermal

pressure to the magnetic pressure is less than unity with βp = 0.4, where

βp = 2(mA/Ms)
2. In the previous expression mA is the Alfvénic Mach num-

ber and Ms is the sonic Mach number. Having a βp < 1 indicates that the

magnetic pressure dominates the thermal pressure and so magnetic fields are

important in molecular cloud evolution (Crutcher, 1999).

It is possible to determine the strength of a magnetic field using the Zee-

man effect. However the often complex morphology of the magnetic field

in molecular clouds leads to the variation of field strength within the cloud.

According to observations by Crutcher (1999), the median field strength of

clouds in his sample was B̄med = 20µG and the average value of the mag-

netic field strength was B̄ = 7.6µG. Observations by Troland (2005) have

determined that the strength of the median magnetic field of the diffuse in-

terstellar medium to be B̄med = 6µG.

An important parameter when discussing the effects of magnetic fields on

molecular clouds is the ratio of mass to magnetic flux, M/φB. The mass-to-
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flux ratio is useful in determining the ability of a magnetic field to support

a cloud from collapsing under self-gravity. Clouds with a mass-to-flux ratio

below a critical value are said to be subcritical and is magnetostatically sta-

ble. Clouds with a mass-to-flux ratio above a critical value are said to be

supercritical and susceptible to gravitational collapse (Mac Low and Klessen,

2004). The critical mass of a cloud in the presence of a magnetic field can

be derived as follows from Mac Low and Klessen (2004).

If it is assumed that all surface terms except pressure P0 are negligible

and the magnetic field is uniform through a spherical cloud of radius R and

density ρ then the virial equation is given by;

4πR3P0 = 3
MkBT

µ
− 1

R

(
3

5
GM2 − 1

3
R4B2

)
(1.1)

Where kB is Boltzmann’s constant, T is the temperature of the cloud,

and µ is the mean mass per particle. M is the mass of the region and is

given by;

M =
4

3
πR3ρ (1.2)

The magnetic flux Φ is given by;

Φ = πR2B (1.3)

If the radius is rewritten in terms of the mass and density then it is pos-
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sible to find the critical mass at which gravitational collapse will over come

the magnetic support;

Mcr =
53/2

48π2

B3

G3/2ρ2
(1.4)

The critical mass can then be written in terms of the critical value for the

mass-to-flux ratio as noted by Mouschovias and Spitzer (1976), Mouschovias

(1976) and is given as;

(
M

Φ

)
cr

=
ζ

3π

(
5

G

)1/2

(1.5)

Where M is the mass of the cloud, φ is the magnetic flux and ζ = 0.5 for

a uniform sphere gives a critical mass-to-flux as (M/φ)cr = 490 gG−1cm−2.

Observations have found that the majority of clouds are supercritical and as

such, susceptible to gravitational collapse. For clouds with extremely large

magnetic field strengths parts of the cloud may be subcritical. As neutral

particles are not directly affected by the magnetic field and can slip past the

field lines and charged particles the cores of such clouds can quickly become

supercritical and collapse under self-gravity.

Turbulent Support and Driving

It is believed that molecular clouds are turbulent systems. This turbulence

can have a significant impact on the on the dynamics of the cloud and there-

fore may be important in understanding the evolution of the molecular clouds

and on the formation of stars in these clouds. It is thought that turbulence

may slow down the rate of star formation in molecular clouds. Turbulent

motions in the cloud can act to stir up the material present in the cloud so

regions of high density in the cloud where gravitational collapse could occur

may be destroyed by this turbulence and so star formation will not be global

and will be quite inefficient. If the turbulence is supersonic star formation
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can be halted completely as the dense regions are not given enough time to

become supercritical (Mac Low and Klessen, 2004). In order for turbulence

to be present in molecular clouds a driving mechanism must inject energy

into the system to drive the turbulent motion. The injection of this energy

into the system is not homogeneous or uniform but spans a wide variety

of scales. Mac Low and Klessen (2004) argues that the dominant driving

mechanisms for supersonic turbulence are supernovae explosions, although

the scale at which the shock waves from these explosions contribute to the

turbulence is unclear. Another driving mechanism for turbulent motions is

the stellar wind from stars in the neighbourhood of the molecular cloud or

young stellar objects embedded in the cloud itself. In three dimensions tur-

bulence acts to dissipate the energy which is injected into the system. The

turbulence transfers energy from the large scales at which it is injected into

the cloud by the driving mechanism to scales at which is can be dissipated

through viscous forces. There are a number of mechanisms through which

energy can be dissipated in a turbulent cloud including, shocks, vortices and

current sheets. A much more in-depth discussion of turbulence and the dis-

sipation processes involved in turbulent clouds can be found in Chapter 2 of

this thesis.

1.1.2 Structure of Molecular Clouds

The vast majority of Galactic star formation takes place in giant molecular

clouds. The Milky way contains thousands of giant molecular clouds, an

example of one such molecular cloud is The Orion molecular cloud located

≈ 450pc from Earth. Giant molecular clouds are not homogeneous struc-

tures, but have been observed to contain internal small structures, such as

clumps and filaments. These clumps are generally a few parsecs across and

contain as much as 104M�. It is inside these clumps, in areas known as cloud

cores, where star formation is believed to take place. The density of material

in the cloud core is even more dense than that of the clump.

Observations of dark clouds in The Galaxy have identified a number of
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dense cores, half of which have associated protostars. The other half are

thought to be in the pre-stellar phase due to the very narrow line widths

observed in these cores. The line widths are similar to those one would ex-

pect from thermal broadening suggesting that they are in the early stages of

collapse. Comparing the line widths of cloud cores which have an associated

protostellar object and starless cores, it is observed that starless cores have

narrower line widths suggesting that feedback from prestellar objects cre-

ates a turbulent component which broadens the line widths of the cores with

which they are associated (Mac Low and Klessen, 2004). The temperature of

the core plays a role in the mass of the star that is formed. Cold cores have

temperatures of about 10K and have masses of approximately 1 - 10 M�, the

stars formed from these clouds have masses of 1 M� or lower. Warm cores

generally have temperatures of around 20 - 100K and contain 10 to 1000 M�

of material, the stars formed from warm clouds are generally more massive

than those formed from cold cores (Larson, 2002).

The process of star formation begins when a cloud core starts to undergo

gravitational collapse, that is when the force exerted by gravity is greater

than all of the other forces, such as gas pressure, that oppose it. Only

clouds which meet a certain set of criteria are susceptible to undergo this

gravitational collapse. The criteria was first set out by Sir James Jeans, in

1902 (Jeans, 1902), in his work Jeans found that whether or not a cloud

would collapse depended on a number of cloud properties, such as the size,

temperature and mass of the cloud.

One of the pieces of information which determines if a cloud core is likely

to collapse is the Jeans length, this is the length at which the gas cloud is in

hydrostatic equilibrium, i.e. not expanding or collapsing. This length scale

may be derived quite easily with use of the virial theorem and by ignoring a

number of forces such as; rotational forces, magnetic pressure, surface forces,

and all external forces. It must also be assumed that the cloud is spherical

and the particles have a uniform distribution of mass.

The virial theorem states then that a spherical cloud will be in a state of

equilibrium when the time-averaged potential energy (< U >) is twice the
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time-averaged kinetic energy (< K >) contained in the cloud.

< K >= − < U > /2 (1.6)

In order to derive the expression in equation (1.6) using the approach

taken by Binney and Tremaine (2008), we must start with the momentum

equation;

∂(ρ〈υj〉)
∂t

+
∂(ρ〈υiυi〉)

∂xi
+ ρ

∂Φ

∂xj
= 0 (1.7)

Then, multiplying all of the terms in equation (1.7) by xk and integrating

over the volume yields;

∂

∂t

∫
ρxk〈υj〉d3x = −

∫
xk
∂(ρ〈υiυj〉)

∂xi
d3x−

∫
ρxk

∂Φ

∂xi
d3x (1.8)

Integrating the first term on the right-hand-side of equation (1.8) by parts

gives;

∫
xk
∂(ρ〈υiυj〉)

∂xi
d3x =

∫
∂(ρxk〈υiυj〉)

∂xi
d3x−

∫
ρ〈υiυj〉

∂xk
∂xi

d3bfx (1.9)

= −
∫
∂kiρ〈υiυj〉d3x (1.10)

9



= −
∫
〈υkυj〉d3x (1.11)

= −2Kkj (1.12)

where,

Kkj =
1

2

∫
ρ〈υiυj〉d3x (1.13)

is the kinetic-energy tensor. The kinetic-energy tensor can be split into

contributions from random and ordered motions as follows;

Kij = Tij +
1

2
Πij (1.14)

where;

Tij =
1

2

∫
ρ〈υi〉〈υj〉d3x (1.15)

and,

Πij =

∫
ρσ2

ijd
3x (1.16)
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The second term on the right-hand-side of equation (1.8) is the potential-

energy tensor (Uij).

Wij ≡ −
∫
ρxi

∂Φ

∂xj
d3x (1.17)

So, we can write;

∂

∂t

∫
ρxk〈υj〉d3x = 2Kkj + Ukj (1.18)

which then allows us to write;

1

2

d

dt

∫
ρ[xk〈υj〉+ 〈υk〉] = 2Kjk +Wjk (1.19)

where symmetry is assumed, which allows for the changing of indices.

Next, we define the moment of inertia tensor (Iij) as;

Iij =

∫
ρxixjd

3x (1.20)

differentiating w.r.t time and utilising the continuity equation results in;
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dIjk
dt

=

∫
∂ρ

∂t
xjxkd

3x (1.21)

= −
∫
∂ρ〈υi〉
∂xi

xjxkd
3x (1.22)

= −
∫
∂(ρ〈υi〉xjxk)

∂xi
d3x +

∫
ρ〈υ〉∂(xjxk)

∂xi
d3x (1.23)

=

∫
ρ〈υi〉[xjδik + xkδij]d

3x (1.24)

=

∫
ρ[xj〈υk〉+ xk〈υj〉]d3x (1.25)

so;

1

2

d

dt

∫
ρ[xk〈υj〉+ xj〈υk〉] =

1

2

d2Ijk
dt2

(1.26)

We can now write the tensor virial theorem as;

1

2

d2Ijk
dt2

= 2Tij + Πij +Wij (1.27)

This equation,(1.27), relates the gross kinematic and morphological prop-

erties of self-gravitating systems.

Next the scalar virial theorem will be derived. Assuming that the system

is in a steady state then the moment of inertial tensor will be stationary

allowing us to simplify equation (1.27) to;
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2Kij +Wij = 0 (1.28)

Taking the trace of the potential-energy tensor results in the total poten-

tial energy of the system, given by;

tr(W ) = U =
1

2

∫
ρ(x)Φ(x)d3x (1.29)

Similarly, the trace of the kinetic-energy tensor results in the total kinetic

energy of the system, given by;

tr(K) =
3∑
i=1

Kii =
1

2

∫
ρ(x)[〈υ21〉(x) + 〈υ22〉(x) + 〈υ23〉(x)]d3x (1.30)

=
1

2

∫
ρ(x)〈υ2〉(x)d3x (1.31)

=
1

2
M〈υ2〉 = K (1.32)

Thus, we obtain the scalar virial theorem;

2K + U = 0 (1.33)

or

13



K = −U
2

(1.34)

Expressions for the time-averaged total potential energy and the time-

averaged total thermal kinetic energy must be derived in order to derive the

Jeans length. Using the assumption of a spherical cloud of radius (R) with

a uniform mass distribution and the above energy balance, this can be done.

The average kinetic energy of a particle in a monatomic gas is 3
2
KBT . Thus,

time averages of the kinetic and potential energy can be replaced by the total

energies.

< K >= K and < U >= U (1.35)

The total potential energy is then given by;

U =
3GM2

5R
(1.36)

Where G is the gravitational constant and m is the total mass of the

cloud. Similarly the total kinetic energy is given by;

K =
3

2
NkT =

3MkT

m
(1.37)

Where N is the number of molecules, k is the Boltzmann constant, T is

the temperature and m is the molecular mass.
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Substituting equations 1.36 and 1.37 into equation 1.35 and rearranging

gives;

GM

5R
=
kT

m
(1.38)

But since we know the mass of a sphere with uniform mass distribution;

M =
4

3
πR3ρ (1.39)

Where ρ is the mass density of the cloud, using this with equation 1.37

and solving for R gives the Jeans length as;

R =

√
15kT

4πρGm
= λj (1.40)

Where λj is the Jeans length, this gives a lower limit for the radius of a

cloud, if the clouds radius is above the Jeans length it becomes susceptible

to gravitational collapse.

Using the Jeans length it is possible to find the mass at which a cloud or

Jeans length in radius is susceptible to collapse, this is known as the Jeans

mass and is given by;

Mj =
4

3
πρλj (1.41)
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The Jeans mass gives an upper limit to the mass contained in a cloud

which has a radius equal to the Jeans length, if the mass of the cloud is

above this critical value it will become gravitationally unstable and collapse.

Although the above mechanism for collapse is well understood it does not

account for the star formation rates which we observe in the Galaxy. If all

clouds above the Jeans mass went into free-fall collapse, the rate of star for-

mation we should observe would be dramatically higher (Mouschovias, 1976).

Therefore, other forces must be acting within the cloud slowing down the col-

lapse process, magnetic fields are believed to provide magnetic support which

may help retard the collapse of molecular clouds.

Magnetic fields affect the motion of both charged and neutral particles

within a molecular cloud. The motion of the charged particles in the molec-

ular cloud is influenced by the Lorentz force;

F = qv ×B (1.42)

Equation 1.42 for the Lorentz force states that the force experienced by a

charged particle is proportional to its velocity and that it acts in a direction

that is perpendicular to both the velocity vector and the direction of the

magnetic field lines. Charged particles in the presence of magnetic field lines

are tied to the lines and only move along those lines but not cross them.

The motion of a charged particle along a magnetic field line is dependent on

the magnitude and sign of the charge of the particle also. The magnitude

of the charge on the particle determines how strong the force exerted on the

particle and therefore how ”tightly” it travels around the field line (Young

and Freedman, 2012), this is the called the gyroradius (rg) which is defined as;
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rg =
mν

|q|B
(1.43)

Where m is the mass of the particle, ν is the velocity, |q| is the magnitude

of the charge on the particle and B is the magnetic field. If a particle has a

large charge the gyroradius will be small, and if a particle has a small charge

the gyroradius will be large, this can be seen in figure 1.1a. The sign of the

charge on the particle determines the handedness of the particle’s circular

path around the field lines (Young and Freedman, 2012), this can be seen in

figure 1.1b.

(a) The size of the gyroradius de-
pends on the charge on the parti-
cle. The particle denoted by the red
arrow has a charge with a magni-
tude that is greater than that denoted
by the blue arrow.(Image obtained at:
i.stack.imgur.com/kigHl.png)

(b) The handedness of the path of the
charges particle depends on the sign
of the charge on the particle. It can
be seen that the positive particle (red)
travels in the opposite direction to the
negative particle (blue) in the same
magnetic field.(Image obtained at: up-
load.wikimedia.org)

Figure 1.1: The path of particle in a magnetic field and its gyroradius

Unlike the charged particles the neutral particles are free to travel across
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field lines although they do not do so completely unimpeded. Although they

are not affected by the magnetic field, the neutral particles may interact with

the charged particles which are tied to the field lines by colliding with them.

These collisions slow down the collapse but the neutral particles will even-

tually slip past the charged particles and fall toward the centre of gravity of

the cloud. The outward diffusion of the charged particles and the magnetic

field relative to the neutral particles is known as ambipolar diffusion. The

process of ambipolar diffusion is thought to slow down the collapse of molec-

ular clouds as the collisions between the charged and neutral particles results

in it taking a greater time for neutral particles to collapse than if they were

in free-fall. The collisions also produce heat which cause the thermal energy

of the cloud to increase, which will also act to slow down the collapse of the

cloud. As the neutral particles move across the field lines they may interact

with the charged particles through collisions. The result of the neutral par-

ticles colliding with the charged particles is that the thermal energy of the

cloud will increase, as heat is produced by these collisions, this process is a

result of ambipolar diffusion in the system which will be discussed in more

detail in Section 1.2.2. The ambipolar timescale can be derived following the

approach taken by Hartmann et al. (2001) as follows;

If it is assumed the gas is weakly ionised, that is, ni << nn then the rate

of collisions of ions with the neutrals can be given as;

Rcol = ni < σf(v)v > (1.44)

Where, v = vn − vi is the difference in velocity between the neutrals and

the ions. f(v) is the Maxwellian distribution, σ is the collisional cross section.

Next, it is assumed that the ions are frozen to the field, the neutrals are

drifting toward the centre of gravity with a velocity υD and the collisons

between neutrals and ions results in the change in momentum of µmhυD,
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stopping the drift.

The momentum change is given by;

dP

dt
= ρni < σf(vv) > υD (1.45)

.

The geometry of the system is taken to be cylindrical aligning with the

magentic field. So the force due to gravity is given by;

−F = 2πRGρ (1.46)

Where, R is the radius of the cylinder. If this gravitational force is then

equated to the drag force, then;

ρni < σf(vv) > υD = 2πRGρ2 (1.47)

Rearranging this to obtain an expression for the drift velocity, gives;

υD =
2πRGρ

ni < σf(v)v
> (1.48)

We can now give the ambipolar diffusion timescale as tAD = R/υD, which

gives;

tAD =
< σf(v)v >

2πGµmn

ni
nn

(1.49)
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Although magnetic fields are thought to slow down the process of gravi-

tational collapse they do not stop it altogether and so eventually the density

of the cloud core will become so great that gravitational collapse will over-

come the magnetic support of the cloud. This process can take up to 10

Myr. When the gravitational forces overcome the magnetic support, the col-

lapse will accelerate and eventually lead to the birth of a young stellar object

(YSO) this can take only 100 kyr (Crutcher, 1999, 2012).

From Cloud Cores to Stars

Protostellar cloud cores are believed to be the direct precursors to stars (Mac

Low and Klessen, 2004). The transition of these cores into stars can be di-

vided into four observable phases (Mac Low and Klessen, 2004, Shu et al.,

1987).

1. The Prestellar Phase : This phase describes the isothermal contrac-

tion of the core before a protostar is formed. The gas and dust in the

centre of the molecular cloud core undergo gravitational collapse which

causes the density of the core to increase. When the density of the

core reaches ≈ 1010cm−3 it becomes optically thick and can no longer

radiate energy away freely. As the energy released during the gravi-

tational collapse of the cloud core cannot be efficiently radiated away

the temperature of the core rises sharply. This increase in temperature

gives rise to a thermal pressure which then acts to prevent the core

from collapsing further, although the material outside the core is still

undergoing gravitational collapse. When the temperature of the core

reaches ≈ 2000K molecular hydrogen begins to dissociate, which will

absorb energy thereby slowing the increase in temperature. The de-

creased rate of heating of the core reduces the thermal pressure, thus

allowing the core to again become unstable and so the core begins to
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collapse again in much the same way as before. The core continues

to collapse this time until all of the hydrogen molecules are dissociated

which again causes the temperature to rise, and so the thermal pressure

increases too, stopping the collapse. The cloud core is now in a state

of hydrostatic equilibrium and is now called a protostar (Lada, 1987).

2. The Class 0 Phase: In this phase the mass of the protostar increases

as material continues to be accreted onto the protostar from the sur-

rounding molecular cloud core. The density of the protostar increases

due to the infall of material, this makes it more difficult for energy to

be radiated away effectively which causes the protostar to enter the

class I phase of its evolution. During the Class O phase the mass of

the protostellar object is far less than the mass of the surrounding en-

velope of gas and dust. Any rotation of the original cloud core is also

enhanced due to the conservation of angular momentum as the cloud

core material falls toward the protostar. Protostars in the class 0 phase

have an approximate lifespan of 104yrs. The bolometric temperatures

of these protostars are between 80K and 650K (Lada, 1987, Myers and

Ladd, 1993).

3. The Class I Phase: In the Class I phase powerful bipolar outflows

and an accretion disk develop. Due to the angular momentum of the

cloud core the envelope of gas and dust surrounding the protostar will

flatten into a disk which rotates around the axis of net rotation of the

original cloud. The material of the disk is accreted onto the poles of

the protostar along magnetic field lines. Some of the material is ejected

from the surface of the protostar and travels in narrow beams from

the poles, forming bipolar outflows, these outflows clear away material

along the rotational axis of the cloud core, as such the protostar will

be visible at optical wave lengths when observed along the outflow

direction. Protostars in the class I phase of star formation are identical

to classical T-Tauri stars. The lifetime of protostars in this phase is

≈ 105yrs, with bolometric temperatures of 650K to 1000k (Myers and

Ladd, 1993, Lada, 1987).
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4. The Class II Phase: In this phase most, if not all, of the material

from the accretion disk has fallen onto the protostellar object, and so,

accretion comes to a stop. In this phase the protostar stops collapsing

under its own gravity and settles into equilibrium. The next stages of

the protostar’s evolution depends on the temperature and density of

the core. If the temperature and density are high enough, hydrogen

fusion will take place and the protostar will become a main sequence

star. If the density and temperature are too low for hydrogen fusion to

begin, the protostellar object will become a brown dwarf or other such

sub-stellar object. Any material from the accretion disk which was not

accreted onto the protostar may at this stage go on to form planetary

sysems, comets, asteroids etc. The lifetimes of protostars in the class

II phase is ≈ 106yrs, with bolometric temperatures over 1000K (Myers

and Ladd, 1993, Lada, 1987).

1.2 Magnetohydrodynamics

The study of the interaction between magnetic fields and fluids, such as

plasmas, is known as Magnetohydrodynamics (MHD). The field of Magne-

tohydrodynamics is relatively new, with much of its developement being

undertaken in the second half of the 20th century, although MHD has been

theorized as far back as the early 1800’s, with rudimentary experiments being

carried out by Michael Faraday. The development of the theory of MHD is

due to the advances in computational resources available to run simulations

of MHD systems, such as molecular cloud turbulence.

1.2.1 The Magnetohydrodynamic Equations

In order to derive the equations used to model MHD systems one must start

with the equations of electodynamics, i.e. Maxwell’s Equations, given below

(Priest, 2000);
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∇ ·B = 0 (1.50)

∇×B = j +
∂E

∂t
(1.51)

∇ · E = 4ρc (1.52)

∇× E = −∂B

∂t
(1.53)

Where E and B are the electric and magnetic fields respectively, ρ is the

charge density and j represents the current density. Factors of 4π and the

speed of light c have been incorporated into the magnetic and electric field

terms.

Before progressing further with the derivation a number of assumptions

must be made:

• Local charge neutrality: At large scale the plasma is electrically neu-

tral. That is;

n∑
i=2

αiρi (1.54)

where ρi is the mass density and αi is the charge to mass ratio.

• The plasma fluids can be treated as a single fluid: The neutral and

ionised fluids are locked together and treated as a single fluid, repre-

senting the bulk fluid.
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• The plasma is non-relativistic: The flow speed, the Alfvén speed and

the sound speed are all much less than the speed of light.

• The Lorentz force is significant relative to other electrostatic forces:

The plasma is well coupled to the magnetic field lines.

• The electric current can be described using Ohm’s law: Ohm’s law for

an ideal plasma is given by;

J = σE (1.55)

Using the assumption that the plasma is non-relativistic we can ignore

the displacement current in Ampere’s law (Equation 1.51) resulting in;

∇×B = j (1.56)

The evolution of the magnetic field can be determined by looking at the

Faraday’s law (Equation 1.53) and substituting Ohm’s law in the rest frame

of the plasma;

j ' j′ ' σE′ ' σ[E + (v ×B)] (1.57)

which results in;

∂B

∂t
= −∇×

[
j

σ
− (v × b)

]
(1.58)
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Then using the fact that j = ∇×B and the identity ∇2B = ∇(∇ ·B)−
∇× (v ×B) one is left with;

∂B

∂t
= ∇× (v ×B)−∇×

(
1

σ
∇×B

)
= ∇× (v ×B) +

1

σ
∇2B (1.59)

.

Next the hydrodynamic fluid equations will be modified to take into ac-

count the magnetic field, this will give us the remainder of the ideal MHD

equations.

The equation for the conservation of momentum is given by;

ρ

(
∂v

∂t
+ v · ∇

)
= −∇P (1.60)

As the Lorentz force is known to effect the motions of particles in a plasma,

these effects must be taken into account, The Lorentz force is given by;

F = q(E + v ×B) (1.61)

But this can be simplified as the assumption of a quasi-neutral plasma

which means the magnetic force is much greater than the electric force, thus

the electric field component of the above equation can be ignored giving;
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F = qv ×B = J×B (1.62)

The momentum equation for ideal MHD can then be found by substitut-

ing Equation 1.51 into Equation 1.62 and using the result as a source term

for Equation 1.60;

F = (∇×B)×B (1.63)

ρ

(
∂v

∂t
+ v · ∇

)
= −∇P + (∇×B)×B (1.64)

The mass conservation equation for a neutral fluid is given by;

∂ρ

∂t
+∇ · (ρv) = 0 (1.65)

As the mass of a plasma is not affected by magnetic fields, the ideal MHD

mass conservation equation is also given by Equation 1.65

Finally, the energy of the system must also be conserved. The energy

conservation equation for an ideal fluid is given by;

∂ρε

∂t
+∇ · (ρεv) + (γρε∇ · v) = −S (1.66)
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Where S represents the the energy sources and sinks in the system, ε is

the internal enegy and γ is the adiabatic index.

1.2.2 A Shift to Multifluid MHD

In the previous section the equations for ideal MHD were derived. In many

astrophysical phenomena these equations are insufficient to describe the sys-

tem accurately, this is due to the fact that many astrophysical systems which

can be described using MHD consist of weakly ionised plasmas. Due to the

fact that these systems can consist of a neutral fluid and, possibly, a number

of charged fluids the assumptions that lead us to the equations of ideal MHD

must be relaxed in order to derive a system of equations which detail the

physics of all of the fluids in the system in the presence a magnetic field. For

example, when modelling a plasma using ideal MHD the plasma is treated

as a single fluid. Relaxing the single fluid approximation, that is, treating all

of the particle species present in the plasma as seperate fluids opens up the

underlying physics of the system being modelled. Each of the fluid species

has its own momentum, continuity and energy equations allowing collisions

and interactions between the fluids to be modelled. In the multifluid MHD

regime Ohm’s law must also be generalised, this generalisation takes into

account all of the forces acting on the plasma from the different fluid species

and accounts for the various effects arising from the interaction of a number

of differently charged fluids, such as ambipolar diffusion and the Hall effect.

The generalised Ohm’s law will be derived in Section 1.2.3.

The presence of multiple fluids in a magnetic field gives rise to a number

of interesting physical phenomena, the three most important phenomena for

this study are Ohmic Diffusion, Ambipolar Diffusion and The Hall Effect,

these phenomena will now be discussed in greater detail.

Ohmic Resistivity: Ohmic Resistivity arises due to collisions between
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charged particles which are coupled to the magnetic field lines and other par-

ticles, which are travelling at different velocities. These collisions give rise

to what can be seen as an electrical resistance, as the charged particles are

slowed by their collisions with other particles. In the presence of a magnetic

field, the current has two components; one component parallel to the mag-

netic field and the second component which is perpendicular to the magnetic

field. In this work, only the component in the direction parallel to the mag-

netic field is referred to as ohmic resistivity, the perpendicular component is

known as ambipolar resistivity and will be discussed later in this section.

The Hall Effect: As stated previously, the presence of a magnetic field

subjects moving, charged particles to the Lorentz force. The Lorentz force

causes a deviation of the particle from its original path. In weakly ionised

plasmas, for example, the particles which make up the plasma will have

differing charges. Dust and ionised particles can be either positively or nega-

tively charged and electrons have a negative charge. As these particles have

opposite charges the force acting on them will be in opposite directions, this

causes a difference in the velocities of the charged particles which in turn

generates an electric field.

Ambipolar Diffusion: The phenomenon of ambipolar diffusion is caused

by the collisions between neutral and charged particles. The charged fluid of

the plasma is subject to the Lorentz force due to the magnetic field, where as

the neutral fluid does not experience the Lorentz force, this creates a differ-

ence in velocities between the charged and neutral species. The direction of

this velocity difference is perpendicular to the magnetic field. Although the

neutral fluid is not subject to the Lorentz force it is coupled to the charged

fluid through collisions. These collisions give rise to frictional forces which

act to diffuse the magnetic field through the neutral fluid. The magnetic field

is diffused in the direction perpendicular to the direction of the magnetic field.
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1.2.3 Generalised Ohm’s Law

In order to account for the introduction of phenomena such as ambipolar

diffusion and the Hall effect a generalised version of Ohm’s Law must be

employed. In the case of ideal MHD Ohm’s law relates the current density

of the plasma to the electric field and is given by J = σE, where σ is the

conductivity of the fluid.

If a number of assumptions are made about the system being studied a

generalised form of Ohm’s Law for weakly ionised plasmas can be derived.

The first assumption that is made is that the plasma is weakly ionised, as

is generally the case in molecular clouds. This assumption will give rise

to a number of other assumptions which will make the derivation of the

generalised Ohm’s Law more manageable. In a weakly ionised plasma the

majority of the particles are neutral so it can be assumed that the velocity

of the plasma as a whole can be approximated equal to the velocity of the

neutral fluid. So, v = v1 where the subscript 1 denotes the neutral species.

The assumption is made that the majority of the collisions in the plasma will

be with the neutral species and as such collisions between all other species

are negligible. It is also assumed that pressure gradients, inertia and the

resulting forces of the charged particles are also negligible. This assumption

can be made as the mean free path of the neutral species is much greater

than the mean free path or gyroradius of the charged species.

The derivation of the weakly ionised generalised Ohm’s Law following

the approach taken by O’Sullivan and Downes (2006) and Falle (2003) be-

gins with the momentum equation taking into account all of the forces which

act on the plasma such as the Lorentz force, pressure gradient and drag forces

due to collisions and inertia. It is given by;

αiρi(E + vi ×B) = ∇pi + ρi
Divi

Dt
−

N∑
j 6=i

fij (1.67)
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where αi is the charge to mass ratio of fluid i, ρi is the mass density, vi is

the velocity, pi is the partial pressure and fij is the collisional term between

fluids i and j. The importance of the terms in the equation depends entirely

on the assumptions being made about the physical system.

The Lagrangian derivative is;

Di

Dt
≡ ∂

∂t
+ (vi · ∇) (1.68)

With the assumptions made above the momentum equations for the

charged particle species reduce to;

αiρi(E + vi ×B) + fi1 = 0 (1.69)

for charged fluids i = 2, ..., N . The terms ∇pi and ρi
Divi

Dt
vanish due to the

assumption that pressure gradients and accelerating forces of the charged

species are negligible.

The collisional term, fi1 can also be written in terms of transfer of mo-

mentum between the charged fluids so the momentum equation can then be

written as;

αiρi(E + vi ×B) + ρiρ1Ki1(v1 − vi) = 0 (1.70)

where Ki1, the collisional coefficient relates the collisonal frequency between

the neutral fluid and the charge fluid i.
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Next, the current density is written as;

J =
n∑
i=2

αiρivi (1.71)

The momentum equation can be written in the frame of the bulk fluid,

by giving the velocities relative to the bulk fluid velocities, v′i = vi − v, as;

αiρi(E
′ + v′i ×B) + ρiρ1Ki1(−v′i) = 0 (1.72)

Note that the electric field is also re-written as that of the equivalent

electric field in the reference frame of the bulk mass, E′ ≡ E + v ×B.

The Hall parameter, which describes how closely a charged particle is tied

to a magnetic field line, is now introduced. The Hall parameter is the ratio of

the collisional length- scale and the gyroradius of the species i and is given by;

βi =
αiB

ρ1Ki1

(1.73)

The momentum equation can now be written in terms of the Hall param-

eter and the magnetic flux;

αiρi(E
′ + v′i ×B)− B

βi
(αiρiv

′
i) = 0 (1.74)
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Where (′) denotes the reference frame of the bulk fluid.

It is possible to obtain the momentum of the charged species in the x,y

and z directions by assuming that the magnetic field is oriented along the

z-direction and that the electric field in the x-direction is zero. The momen-

tum for the charged particles in x,y and z directions respectively is given by

following set of equations;

αiρi(υ
′
i,yB)− B

βi
αiρiυ

′
i,x = 0 (1.75)

αiρi(E
′
y − υ′i,xBz)−

B

βi
αiρiυ

′
i,y = 0 (1.76)

αiρiE
′
z −

B

βi
αiρiυ

′
i,z = 0 (1.77)

where E ′z and E ′y represent the electric fields in the direction parallel and

perpendicular to the magnetic field respectively. E ′ × b defines the electric

field in the y-direction where b is the unit vector in the direction of the mag-

netic field.

The set of equations above can be rearranged so that the derivation of

components of the current density is more straightforward. The simplified

momentum equations are as follows;

αiρiυ
′
i,x =

1

B

αiρiβ
2
i

(1 + β2
i )
E ′y (1.78)
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αiρiυ
′
i,y =

1

B

αiρiβi
(1 + β2

i )
E ′y (1.79)

αiρiυ
′
i,z =

1

B
αiρiβiE

′
z (1.80)

In order to obtain the x,y and z components for the current density

the simplified momentum equations are summed over the charged particles,

which gives;

Jx =
n∑
i=2

αiρiυ
′
i,x =

1

B

n∑
i=2

αiρiβ
2
i

1 + β2
i

E ′y = σHE
′
y (1.81)

Jy =
n∑
i=2

αiρiυ
′
i,y =

1

B

n∑
i=2

αiρiβ
2
i

1 + β2
i

E ′y = σ⊥E
′
y (1.82)

Jz =
n∑
i=2

αiρiυ
′
i,z =

1

B

n∑
i=2

αiρiβiE
′
z = σ‖E

′
z (1.83)

where σH is the Hall conductivity, σ⊥ is the Pedersen conductivity and

σ‖ is the parallel conductivity which are defined as;
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σH =
1

B

n∑
i=2

αiρiβ
2
i

1 + β2
i

(1.84)

σ⊥ =
1

B

n∑
i=2

αiρiβi
1 + β2

i

(1.85)

σ‖ =
1

B

n∑
i=2

αiρiβi (1.86)

The current density in the frame of the bulk fluid as;

J = σ‖E
′
z + σ⊥E′y + σH(E′y × b) (1.87)

which is in the form J = σ · E′.

The next step in the derivation of the generalised Ohm’s Law is to define

the conductivity tensor;

σ =

 σ⊥ σH 0

−σH σ⊥ 0

0 0 σ‖

 (1.88)

The inverse of which is given by;
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σ−1 =


σ⊥

σ2
⊥+σ2

H

−σH
σ2
⊥+σ2

H
0

σH
σ2
⊥+σ2

H

σ⊥
σ2
⊥+σ2

H
0

0 0 1
σ‖

 =

 r⊥ −rH 0

rH r⊥ 0

0 0 r‖

 (1.89)

where r⊥ is the ambipolar resistivity, r‖ is the Ohmic resistivity and rH is

the Hall resistivity.

It is now possible to write the electric field in terms of the current density,

i.e. in the form E′ = σ−1 · J. The electric field is given by;

E′ = rHj⊥ × b + r‖J‖ − r⊥J⊥ (1.90)

where J⊥ is the current density perpendicular to the magnetic field and J‖

is the current density parallel to the magnetic field, this can also be written

as;

E′ = rH
(J×B)

B
+ r‖

(J ·B)B

B2
− r⊥

(J×B)×B

B2
(1.91)

Thus, in the rest frame the generalised Ohm’s law for a weakly ionised

plasma can be written as (Ciolek and Roberge, 2002, Falle, 2003);

E = −v ×B + rH
(J×B)

B
+ r‖

(j ·B)B

B2
− r⊥

(J×B)×B

B2
(1.92)
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thereby ending our derivation of the generalised Ohm’s Law for a weakly

ionised plasma.
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Chapter 2

Turbulence in Molecular

Clouds

As stated in Section 1.1.2, molecular clouds are thought to be turbulent

systems. It is believed that the presence of these turbulent motions have

a substantial impact on the evolution of molecular clouds (Downes, 2012,

Momferratos et al., 2014, Zhdankin et al., 2014, Servidio et al., 2010). In

order to discuss the process of turbulence in multifluid MHD systems, like

those found in molecular clouds we outline what turbulence is in the regime

of hydrodynamics before extending our discussion to include these systems.

2.1 Hydrodynamic Turbulence

Turbulence is an extremely common physical phenomenon, occurring in daily

life whenever almost all fluids are in motion. Examples of common turbulent

flows are those around a car or the smoke rising from a lit cigarette, although

the first few centimetres of smoke is laminar the flow becomes turbulent as

the flow velocity and Reynolds number increase. Although turbulence is so

common there exists no physical definition of it, there is instead a set of char-

acteristics which can be used to determine if a flow is turbulent (Davidson,

2011), these features are as follows;

37



• Irregularity : The motion of a turbulent fluid is chaotic and extremely

irregular, but is deterministic and is described using the Navier-Stokes

equation. The length-scale of turbulent motions (eddies) varies consid-

erably, ranging from system size, to small eddies which dissipate energy

through viscous forces.

• Diffusivity : Turbulent motions act to increase diffusivity in a system.

Momentum exchange and heat transfer increase due to turbulent flow.

• Dissipation: Energy is dissipated by turbulent motions. Energy is in-

jected into a system at large scales, a cascade process then acts to trans-

fer energy from larger eddies to smaller eddies, which in turn transfer

energy to even smaller eddies and so on until a dissipation length-scale

is reached and the energy is dissipated in the form of heat.

• 3-Dimensional : The values of the properties which describe a turbu-

lent flow fluctuate rapidly in 3-Dimensions. Although we can treat the

flow as 2-dimensional, i.e. the system geometry is 2-D such as flows in

a soap film, if the governing equations are time-averaged.

• Reynolds Number : In order for turbulence to occur the Reynolds num-

ber of flow is generally rather high. Reynolds number is defined by

R =
UL

ν
(2.1)

Where, U is the characteristic velocity of the flow, L is the characteristic

length-scale and ν is the kinematic viscosity which is defined as; ν ≡ µ
ρ
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• Continuous : Due to the fact that the length-scales of turbulent mo-

tions are very much greater than molecular length-scales the flow can

be treated as a continuum.

2.1.1 Turbulent Scales

As mentioned in the previous section, the length-scales associated with tur-

bulent flows span the continuum. Energy is injected into the system at rather

large scales, for example it is believed that a driving mechanism for molec-

ular cloud turbulence is shock waves from supernovae. The energy injected

into the system by these shock waves is dissipated at small length-scales by

viscous forces. The process by which energy is transferred from the length-

scales at which is it injected into the system to the small scales at which it

is dissipated is known as the turbulent energy cascade. During the turbu-

lent energy cascade the large scale turbulent motions interact with smaller

scale motions and kinetic energy is transferred from large scales to smaller

scales, this interaction is then repeated for smaller and smaller scales until

the length-scales are small enough for viscous forces to be to non-negligible

and the energy is dissipated as heat. If the turbulence is in a statistical

steady state the rate at which energy is transferred is independent of the size

of the eddy, that is; the energy transferred from a large eddy to a slightly

smaller eddy is the same for each size. A diagram of the turbulent energy

cascade is given in figure 2.1. The vast majority, ≈ 90%, of energy in a

system is dissipated at the smallest scales, known as the Kolmogorov Scales

(Davidson, 2011).

2.1.2 The Kolmogorov Energy Spectrum

The process of turbulent cascade outlined in the previous section, by which

energy is transferred from large scale eddies to smaller and smaller eddies

until dissipation was used by Kolmogorov (1941) laying the foundations of

the current theory of turbulent scaling. Kolmogorov assumed that the tur-
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Figure 2.1: Diagram of the turbulent energy cascade showing that energy is
transferred from large scales to smaller scales

bulence itself is the origin of viscosity in the flow and as such the energy

spectrum should be independent of viscosity.

In order to obtain the Kolmogorov Spectrum for an incompressible fluid

the energy dissipation rate, or energy transfer rate is defined as (Padmanab-

han, 2000);

Ė '
(1

2
u2
)(u
l

)
' u3

l
(2.2)

where Ė is the energy transfer rate, u is the velocity of the eddy and l is

the length-scale of a generic eddy. The first term in the above equation gives

the amount of energy contained in an eddy of length l, the second term gives

the inverse of the time it takes for energy to be transferred at this length-scale.

The viscosity for the turbulent flow is then given by;

ν ≈ ul ≈ Ė1/3l4/3 (2.3)
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In steady state, energy cannot accumulate in eddies of a certain length-

scale in the inertial range and so this energy much be transferred to smaller

and smaller scales at a constant rate until it is dissipated. The energy dis-

tribution of the cascade at the injection length-scale ,L , is only determined

by the driving mechanism. At the bottom of the cascade, at the dissipation

length-scale, the energy distribution is determined only by viscous forces

(Mac Low and Klessen, 2004). Between the dissipative scale and the driving

scale is a region known as the inertial range. In the inertial range kinetic

energy can transfer from large eddies to smaller eddies without the influence

of driving or viscous forces. Figure 2.2 shows the schematic energy spectra

for the turbulent energy cascade. The three distinct regions of the energy

spectrum discussed previously are shown.

Figure 2.2: Schematic energy spectrum for turbulent cascade. It can be seen
that in the dissipative range the energy distribution drops of steeply, where as
more energy is found at the driving length-scale. (image from:Berselli (2005))

The smallest length-scale, or the Kolmogorov length-scale, is given by;
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lK =

(
ν3

Ė

)1/4

(2.4)

The characteristic time-scale of the energy dissipation is then;

tK =

(
ν

Ė

)1/2

(2.5)

Using equations 2.5 and 2.4 the characteristic velocity of eddies at the

Kolmogorov scale is;

υK = (νĖ)1/4 (2.6)

Next, we employ the Navier-Stokes equation;

dui
dt

= ν
∂2ui
∂xi∂xj

(2.7)

So that the energy transfer rate per unit volume can be obtained by tak-

ing the scalar product with ui and integrating over the volume as follows;

Ė =

∫
dV

1

2

du2

dt
= ν

∫
dV ui∇2ui = ν

∫
dSnjui

∂ui
∂xj
−ν
∫
dV

(
∂ui
∂xj

)
(2.8)
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On the right-hand-side of equation 2.8, the surface integral vanishes and

the integral over the volume is always positive, therefore the fluctuations in

the fluid are always dissipative due to viscous coupling (Shore, 2003). By

defining E(k) to be a spectrum which is a function of the wavenumber k,

then the energy transfer rate can be written as;

Ė = −ν
∫
E(k)k2dk (2.9)

If equation 2.3 is substituted for ν in equation 2.9 and both sides of the

resulting equation are integrated then;

Ė2/3k4/3 =

∫
E(k)k2dk (2.10)

so,

E(k) =
1

k2
Ė2/3dk

4/3

dk
≈ Ė2/3k−5/3 (2.11)

This is known as the Kolmogorov power spectrum for velocity fluctua-

tions. If it is assumed that the system is in steady state then the velocity

fluctuations are just the inverse of the density fluctuations so the spectrum

will remain the same for density fluctuations. This fact leads to the assump-

tion that the process of the energy cascade does not depend on the viscosity

of the fluid. The physical meaning of the Kolmogorov spectrum is that there

is some small length-scale at which energy dissipation will dominate the spec-

trum, but at length-scales larger than this a steady state has been reached

in which eddies which transfer their energy to smaller scales are replaced
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by eddies of the same vorticity and size by the breaking up of larger eddies

(Shore, 2003). This allows for the rate of energy transfer to the smallest

scales to remain constant.

2.1.3 MHD Turbulence

MHD turbulence is believed to be an important process for astrophysical

processes such as star formation, cosmic ray propagation and stellar winds

(Brandenburg and Lazarian, 2013).

The theory of MHD Turbulence is quite similar to that of the hydrodynamic

turbulence discussed in the previous section. In MHD turbulence, the en-

ergy which is injected into the system at large scales undergoes a cascade to

smaller and smaller scales until it is dissipated, as is the case with hydro-

dynamic turbulence. However, MHD turbulence differs from hydrodynamic

turbulence because instead of fluctuations only in the fluid properties, i.e.

its velocity, there exists also fluctuations in the magnetic field. A further

difference between the two is that unlike hydrodynamic turbulence, which at

small scales becomes isotropic, the MHD turbulent cascade becomes more

anisotropic at small scales. The MHD cascade becoming more anisotropic

results from the fact that there exists no scale at which the fluid is not af-

fected by the magnetic field (Tobias et al., 2011).

In order to extend this to the MHD case a plasma threaded by a uniform

magnetic field (B0) must be considered. The magnetic field is subject to

small wave-like perturbations along the magnetic field. This turbulence is

anisotropic and known as Alfvénic turbulence (Tobias et al., 2011).

Weak Turbulence

A model of weak MHD turbulence was developed by Iroshnikov (1963) and in-

dependently by Kraichnan and Nagarajan (1967). The Iroshnikov-Kraichnan

(IK) model proposes that Alfvén waves propagating along a strong magnetic

44



field have weak interactions.

Two wave packets of size l⊥ perpendicular to the field line are considered.

These wave packets travel in opposite directions along the field line at a ve-

locity of, υA, the Alfvén velocity. In the IK model it is assumed that the wave

packets are isotropic so their size parallel to the field line is equal to their size

perpendicular to the field, l‖ = l⊥ = λ. It is also assumed that interactions

mainly occur between eddies of comparable size, it is then possible to find

the distortion of each wave packet during a collision, i.e. one crossing time

λ/υA. In order to find these distortions we first write the MHD equations in

terms of the Elsasser variables, z = v ± b, as follows (Tobias et al., 2011);

(
∂

∂t
∓vA ·∇

)
z±+ (z∓ ·∇)z± = −∇P +

1

2
(ν+η)∇2z±+

1

2
(ν−η)∇2z∓+ f±

(2.12)

Where, v is the fluctuating velocity of the plasma, b is the magnetic

field fluctuations which is normalised by;
√

4πρ0. In equation 2.12 P is the

pressure, which includes the plasma pressure and magnetic pressure, P =

(p/ρ0 + b2/2) and fpm are forces such as driving forces,etc. vA = B0/
√

4πρ0,

is the uniform field contribution.

For an incompressible fluid the pressure term in equation 2.12 is not an in-

dependent function, it ensures the incompressibility of the Elsasser fields, z+

and z−.

If driving forces and dissipation are neglected, an exact nonlinear solution

of the MHD equations exists, representing an Alfvénic wave packet propagat-

ing along a field line in the direction of, ∓vA, that is, z±(x, t) = F±(x±vAt),

where F± is some arbitrary function. So, a wave packet (z±) will only be

distorted when it reaches a region where z∓ is non-zero otherwise the wave
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packet will propagate along the field line undistorted. Therefore, the nonlin-

ear interactions are only due to wave packets propagating in opposite direc-

tions.

The Elsasser energies, given by;

E+ =

∫
(z+)2d3x (2.13)

and

E− =

∫
(z−)2d3x (2.14)

are conserved and undergo a cascade to small scale due to the wave packet

interactions described previously.

The picture of MHD turbulence at this point of the derivation is of Alfvén

wave packets which interact nonlinearly. This interaction causes the wave

packets to distort and break into smaller and smaller wave packets until

their energy is dissipated, much like the energy cascade in hydrodynamic

turbulence.

By comparing the linear terms, (vA · ∇)z±, describing the advection of

wave packets along the field line and the nonlinear terms, (z∓ · ∇)z±, de-

scribing the distortion of the interacting wave packets and the redistribution

of energy to smaller length-scales it is possible to find the strength of the

interaction between wave packets. If bλ is the RMS of the fluctuations of the

magnetic field in the direction perpendicular to the directions of the magnetic

field at length-scale λ ∝ 1/k⊥ and the wavenumber of these fluctuations in

the direction parallel to the magnetic field is assumed to be k‖. The magnetic

and velocity fluctuations for Alfvén waves are of the same order. Therefore,
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(vA · ∇)z± ∼ υAk‖bλ and (z∓ · ∇)z± ∼ k⊥b
2
λ. If the linear term dominates,

such that;

k‖υA � k⊥bλ (2.15)

then the turbulence is said to be weak. The distortion of each wave packet

is given by;

δυλ ≈

(
υ2λ
λ

)(
λ

υA

)
(2.16)

After N collisions with uncorrelated, counter-propagating waves the distor-

tions add up to become significant. The number of collisions, N , is given by;

N ≈

(
υλ
δυλ

)2

≈

(
υA
υλ

)2

(2.17)

Due to the fact that the wave packet interactions are weak, a wave packet

must undergo many collisions before its energy is transferred. The time it

takes for a wave to transfer its energy to smaller scales is given by;

τIK(λ) ≈ N

(
λ

υA

)
≈ λ

(
υA
υ2λ

)
=

λ

υλ

(
υA
υλ

)
(2.18)

As with hydrodynamic turbulence the energy flux is required to be con-
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stant, that is;

Ė =
υ2λ

τIK(λ)
= const (2.19)

So, then the fluctuating fields scale as υA ∝ bλ ∝ λ1/4, resulting in the

energy spectrum;

EIK(k) ≈ |υk|24πk2 ∝ k−3/2 (2.20)

This comes from the fact that the spectrum of the velocity field scales

as k−7/2. The spectrum of the velocity field is the Fourier transform of the

second order structure function of the velocity field, which scales as λ1/2 (To-

bias et al., 2011).

Up until this point the turbulence has been assumed to be isotropic, by

dropping this assumption the theory can be extended to be anisotropic which,

as mentioned previously, is the reality for MHD turbulence.

It is possible to assume that weak turbulence consists of weakly interact-

ing pseudo-Alfvénic and shear-Alfvénic waves. letting k1 and k2 be the wave

vectors of two Alfvén waves then according to Shebalin et al. (1983) these

waves can interact with another wave only if the resonance conditions;

k1 + k2 = k (2.21)

and
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ω+(k1) + ω−(k2) = ω(k) (2.22)

are satisfied, where, ω(k) is the frequency of the Alfvén waves. The com-

ponent of the wave vectors parallel to the magnetic field, k1‖ and k2‖ will

have opposite signs because, as mentioned previously, only waves travelling

in opposite directions along the field will interact. In the case of either k1‖

or k2‖ then the solution to the resonance equations only exists if ω(k2) = 0

or ω(k1) = 0 so that k1‖ or k2‖ is zero. So the k‖ component of the resulting

wave vector remains unchanged but the k⊥ component can be larger than

the other two waves. So, energy can cascade in the direction perpendicular

to the field but parallel cascade is prevented (Shebalin et al., 1983).

From equation 2.12, and if the polarization of pseudo-Alfvén waves is es-

sentially parallel to the field when k⊥ � k‖ then;

(z±p · ∇)z∓s ∼ z±p k‖z
∓
s (2.23)

This equation describes the influence the pseudo-Alfvénic modes (zp) have

on the shear-Alfvénic modes and;

(z±s · ∇)z∓s ∼ z±s k⊥z
∓
s (2.24)

describes the interaction of shear-Alfvén modes (zs) with each other. It

then follows that the shear-Alfvénic modes are not coupled to the pseudo-

Alfvénic modes(Goldreich and Sridhar, 1995), because of the fact that the
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energy cascade is prevented in the direction parallel to the field, k‖ = 0.

Therefore, pseudo-Alfvén modes are advected by shear-Alfvén modes pas-

sively. Thus, the two modes will have the same spectra, because the spectrum

of a passively advected scalar is the same as the spectrum of the velocity field

which advects it (Tobias et al., 2011). This spectrum can be obtained in a

similar fashion to the IK spectrum, discussed previously in this section.

The length-scale of an interacting wave packet in the direction perpendic-

ular to the field is, λ, its length-scale in the parallel direction is then given as,

l. Unlike the IK case detailed previously, the length-scale of the wave packet

in the direction parallel to the field is unchanged. The crossing time is then

given by (l/υA). The distortion of a wave packet during a single interaction

is then given by;

δυλ ∼

(
υ2λ
λ

)(
l

υA

)
(2.25)

The number of interactions a wave packet must undergo before its energy

is transferred to smaller scales is;

N ≈

(
υλ
δυλ

)2

≈ λ2υ2A
l2υ2λ

(2.26)

The time it takes for the energy to be transferred is;

τω ≈ N

(
l

υA

)
(2.27)
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As the energy flux, again, has to be constant Ė ≈ υ2λ/τ = const, the

energy spectrum can then be found to be;

E(k⊥) ∝ k−2⊥ (2.28)

But, as k⊥ becomes large then the turbulence should become strong and

equation 2.15 is no longer satisfied. The case of strong turbulence is outlined

in the following section.

Goldreich-Sridhar Turbulence

In the case of strong turbulence the magnetic field lines are bent considerably

by fluctuations in the velocity field and as such a single wave packet interac-

tion can impart a significant distortion. The strong deviation of the magnetic

field means that small wave packets would not be guided by the mean field

but by a local field which is stirred up by larger wave packets(Tobias et al.,

2011).

As stated in the previous section when k⊥ is large the turbulence becomes

strong so the condition 2.15 is broken. A conjecture put forward by Goldre-

ich and Sridhar (1995) proposes that the linear and nonlinear terms should

be balanced;

k‖υA ≈ k⊥bλ (2.29)

This new condition is called ”critical balance”. Due to critical balance the

time-scale for the distortion of a wave packet is;
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τN =
λ

υλ
(2.30)

So, as the Alfvén velocity of the wave packet is finite the distortion cannot

travel along the field line more than a distance of;

l ≈ υAτN (2.31)

Another consequence of critical balance is that the displacement of a mag-

netic field line in the direction perpendicular to the field by a wave packet of

length l is;

ξ ≈ bλl

υA
(2.32)

In the regime of strong turbulence this is equal to λ, which is the wave

packet size in the direction perpendicular to the field (Tobias et al., 2011).

Using 2.30 and the constant energy flux condition, the energy spectrum

for strong turbulence is;

EGS(k⊥) ∝ k
−5/3
⊥ (2.33)

which as seen in section 2.1.2 is the form of the Kolmogorov spectrum.

Strong turbulence becomes more and more anisotropic at small scales. As
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wave packets get smaller they become more elongated along the field due to

the critical balance condition and the scaling l ∝ λ2/3 (Tobias et al., 2011).

2.2 Energy Dissipation in MHD Turbulence

As mentioned previously, energy in a turbulent system is transferred from

large scales to smaller and smaller scales until it is dissipated, in hydrody-

namic turbulence this happens due to viscous forces at small length-scales.

In MHD turbulence the magnetic field can be a mechanism through which

energy is dissipated, such dissipation of energy gives rise to magnetic heat-

ing(Priest, 2000).

2.2.1 Magnetic Heating

As discussed in section 2.1, the turbulent motions of a plasma act to stir up

magnetic field lines. The motion of these field lines can produce a number of

different types of wave, including magnetoacoustic waves and Alfvén waves.

A wave propagating in the direction perpendicular to the direction of the

magnetic field, caused by the compression of the plasma and driven by mag-

netic and plasma pressures is called a magnetoacoustic wave (Soler et al.,

2013). Magnetoacoustic waves propagate until they steepen sufficiently and

form a shock structure. The process by which shocks form and dissipate

energy will be discussed later in this section. Alfvén waves in comparison

require nonlinear interactions to dissipate their energy through magnetoa-

coustic waves. The dissipation of energy through Alfvén wave propagation

takes place when the linear treatment of wave propagation through uniform

media no longer is applicable as is the case in the following situations (Priest,

2000);

• When the perturbation is large enough that nonlinear effects become

important.
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• The velocity of the perturbation is small enough that the wavelength

of the perturbation is greater than the scale height of the system.

• The magnetic field lines move more slowly than the Alfvén waves, such

that;

τ > τA =
L

νA
(2.34)

where, τ is the time it takes for the magnetic field lines to travel the

length-scale of the system (L), τA is the Alfvén travel time, and νA is

the Alfvén velocity.

This case is applicable to models where the ends of the magnetic field

lines are anchored at each end to a surface and these ends are free to

travel across the surface. The solar corona is an example of such a

system.

The condition can be written more generally as;

λ > L (2.35)

That is, the wavelength of the Alfvén wave exceeds the length-scale of

the system.

It is the final condition above which allows for the dissipation of energy

through current sheets.
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2.2.2 Current Sheets

The production of current sheets may occur in a number of ways. The tur-

bulent motion of the molecular cloud may act to cause changes in the mor-

phology of the magnetic field which permeates the cloud. The morphological

changes to the magnetic field result in the separation of the magnetic field

lines in some regions and the pushing together of field lines in others. It is at

the interface between the magnetic field lines which are being brought into

close proximity that current sheets form due to the increase in the energy

density of the magnetic field. Plasma flows slowly from the surrounding areas

onto the sides of the current sheet. The plasma particles are then accelerated

in the current sheet (Siversky and Zharkova, 2009) along the directions par-

allel to the field lines due to the fact that the field lines are converging. The

increased velocity of the plasma in the confined region of the current sheet

increases the rate of collisions between particles, these collisions produce heat

which is then dissipated, an illustration of this process can be seen in figure

2.3.

Energy is also dissipated from current sheets in the form of shocks which

emanate from the ends of the current sheet(Priest, 2000). These shocks form

as a result of particles, which were accelerated in the current sheet, interact-

ing with the relatively slow moving plasma outside of the current sheet. The

sharp increase in density at the shock front leads to the increase in thermal

energy, this energy is then dissipated as heat. The vast majority of dissipa-

tion in current sheets is as a result of these shocks, although Ohmic heating

is also present.

The breakdown down of magnetostatic equilibrium can also lead to the for-

mation of current sheets according to Vekstein and Priest (1993).

The energy may also be dissipated from the magnetic field through the

process of magnetic reconnection. Magnetic reconnection occurs when two

oppositely oriented field lines are pushed too close together, this causes the

original field lines to break and then reconnect with the oppositely oriented

field line, an illustration of this can be seen in figure 2.4.
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Figure 2.3: Illustration of the formation of a current sheet. Magnetic field lines
are pushed close together, plasma flows into the current sheet perpendicular to the
magnetic field lines at velocity Vin, undergoes a velocity increase and flows out of
the current sheet in the direction parallel and anti-parallel to field lines at velocity
Vout. (Image obtained from: Treumann and Baumjohann (2013))

Figure 2.4: Basic principle of magnetic reconnection.
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Tucker (1973) and Levine (1974) demonstrated that dissipation through

current sheets was sufficient for heating in the solar corona, although this

question is still very much open.

The heating mechanisms of the solar corona are the subject of a paper

by Zhdankin et al. (2014) in which the intermittency of MHD turbulence is

investigated. It is suggested that energy is dissipated in current sheets which

span a large range of length-scales, from what Zhdankin et al. (2014) refer

to as ”coherent structures” to ”nano-flares”. The definition of each of these

terms is given as follows;

• Coherent structures: A coherent structure is a dissipative structure

with length-scales which span the inertial range.

• Nano-flares: A nano-flare is a dissipative structure with length-scales

comparable with the dissipative range.

By determining the length-scales of the dissipative current sheets, Zh-

dankin et al. (2014) found that the probability distribution of energy dissi-

pation rates is a power-law with an index of −2.0. Observations of the solar

corona have found that during periods when the solar activity is quite low,

i.e. no active flaring is occurring, the probability distribution is a power-law

of which the index is also −2.0. An index of −2.0 suggests that there is

no preferred length-scale at which energy is dissipated from the system. It

then follows that the energy is dissipated in a combination of both coherent

structures and nano-flares. The lengths and widths of the coherent structures

can span the system size as they are dissipative structures, their thickness

is well within the dissipative range(Zhdankin et al., 2014). This work was

expanded upon by Zhdankin et al. (2015) in which the evolution of the co-

herent structures over time is investigated. The work in both Zhdankin et al.

(2014) and Zhdankin et al. (2015) uses the model of Reduced MHD (RMHD)
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turbulence and as such the effects of ambipolar diffusion and the hall effect

are not present in the simulations.

The effects of ambipolar diffusion on energy dissipation in MHD tur-

bulence was investigated by Momferratos et al. (2014). This work found,

similarly to that of Zhdankin et al. (2014), that dissipation occurs mostly in

thin, sheet like structures which have lengths and widths in the inertial range

but thicknesses in the dissipative range. The effect of ambipolar diffusion on

the system is to steepen the magnetic gradient which allows for thinner dissi-

pative structures while keeping their lengths and widths in the inertial range.

This is in line with the work of Brandenburg and Zweibel (1994), where it

is proposed that ambipolar diffusion acts to create sharp structures around

magnetic null points. Momferratos et al. (2014) found that areas of different

types of dissipation, namely; viscous, ambipolar and Ohmic dissipation are

well separated in space at low dissipation rates. At high dissipation rates

viscous dissipation becomes negligible but Ohmic and ambipolar dissipation

are not clearly separated. The geometry of the dissipation regions is such

that they occupy only ≈ 3% of the volume but account for > 30% of the

dissipation in the system.
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Chapter 3

Numerical Methods

In order to solve the governing equations of magnetohydrodynamics numer-

ical simulations must be employed. This is due to the fact that the systems

of equations become far too nonlinear to solve analytically and so numer-

ical methods must be devised to discretize and solve the equations. Once

methods of solving the equations of MHD have been found one can then use

these to create computational simulations of the physical phenomena one

wishes to study. These computational simulations are of great importance

to the study of astrophysics as they allow for the modelling and study of

various astrophysical objects. Simulations also allow for the detailed study

of the evolution of the objects of interest. However, the amount of detail one

may obtain from simulations is dependent on the computational resources

available to the researcher. In more recent times simulations of MHD have

become a lot more detailed due to the huge increases in computer power and

the development of codes which implement parallel processing.

This chapter will detail and explain the numerical methods and codes

used in this work, as well as outline a number of shock-tube test cases which

demonstrate the validity of the code.
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3.1 HYDRA Code

The numerical code used in this work to conduct computational simulations

of molecular cloud turbulence is the HYDRA code (O’Sullivan and Downes,

2006, 2007). HYDRA uses an explicit scheme to integrate the multifluid

MHD equations for weakly ionised plasmas. Due to the fact it uses an ex-

plicit scheme HYDRA can run using parallel computing by decomposing the

computational domain thereby making it possible to carry out large-scale,

high-resolution simulations.

3.1.1 Multifluid MHD Equations

The equations which are solved by HYDRA are as follows;

∂ρi
∂t

+∇ · (ρivi) = 0 (3.1)

∂ρ1v1

∂t
+∇ · (ρ1v1v1 + p1I) = J×B (3.2)

∂B

∂t
+∇ · (v1B−Bv1) = −∇× E′ (3.3)

αiρi(E + v ×B) + ρiρ1Ki1(v1 − vi) = 0 (3.4)

∇ ·B = 0 (3.5)
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J = ∇×B (3.6)

N∑
i=2

αiρi = 0 (3.7)

N∑
i=2

αiρivi = j (3.8)

where the subscripts used in the above equations denote the species, the

subscript one denotes the neutral species. The variables are defined as fol-

lows; ρi is the mass density, vi is the velocity, and pi is the pressure of the

fluid species i. The collisional coefficient with the neutral fluid is Ki1, αi is

the charge to mass ratio. J,B and I denote the current density, the mag-

netic flux density and the identity matrix. The electric field E′ is related to

the full electric field by the expression E′ = E+v1×B. The equation of state;

c2s =
p1
ρ1

(3.9)

is used to close the above system of equations under the isothermal approx-

imation. In the above equation of state cs is the isothermal speed of sound.

The above set of equations can then be solved using HYDRA. The way

in which HYDRA solves the multifluid MHD equations will be detailed in

the next section.
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3.1.2 Solving The Multifluid MHD Equations

The HYDRA code uses an explicit scheme to integrate the multifluid MHD

equations outlined in the previous section. The scheme uses finite-volume

shock capturing methods which are 2nd order accurate in both time and

space.

Numerical Algorithm

In order to solve the above equations it is assumed that the solution of the

equations is piecewise constant at time tn on a uniform mesh. The spacing

of the mesh is h in the x,y and z directions and one is seeking the solution

at the time tn+1 = tn + τ . If the position of a cell in 3-D space is given by

(i, j, k) then the state in any given cell represents the volume average over

(i− 1
2
)h ≤ x ≤ (i+ 1

2
)h, (j− 1

2
)h ≤ y ≤ (j+ 1

2
)h and (k− 1

2
)h ≤ z ≤ (k+ 1

2
)h.

In order to obtain a full solution at tn+1 finite volume methods are em-

ployed for equations 3.1 - 3.3. The time integration of the equations is split

into a number of operations which are carried out to 2nd order accuracy in

both space and time. 2nd order accuracy is maintained by permuting the

order of operations over successive time steps. The operations necessary for

the integration are as follows;

1. The neutral fluid of the plasma is advanced. The continuity equation,

equation 3.1, is used to advance the mass density. Equation 3.2 is

used to advance the momentum of the fluid. Finally the advective

term of equation 3.3, the induction equation, is advanced. This is done

by integrating the equations using a finite volume method which is

second order accurate in space and time. In order to achieve second

order spatial and temporal accuracy the fluxes of a piecewise constant

solution at time=tn are calculated for ρ1,v1 and P1 using a Riemann

solver. These fluxes are then used to find a set of fluxes of second order

spatial and temporal accuracy by using a time centred solution which
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can be reconstructed, using non-linear averaging of the gradients, into

a second order piecewise linear solution.

2. The densities and velocities of the charged species are advanced. The

continuity equation, equation 3.1, advances the densities of the charged

species. The velocities of the charged species are then found analyt-

ically. Firstly, the current density is determined using equation 3.6

which can then be used to determine the electric field by using the gen-

eralised Ohm’s law, 1.91. The momentum equation, equation 3.4, may

be re-written in the reference frame of the neutral fluid and is given by;

v′i ×B− ρ1Ki1v
′
i

αi
= E′ (3.10)

where,vi are the velocities of the charge fluids in the reference frame

of the neutral fluid. If it is assumed that the collisional coefficients are

constant the charged velocities are then given by;

v′i = −A−1i E′ (3.11)

where Ai is the matrix defined as;

 −Ki Bz −By

−Bz −Ki Bx

By −Bx −Ki

 (3.12)
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The velocities of the charged species can then be found using;

vi = v′i + v (3.13)

3. The final operation advances the magnetic field. The diffusive term of

the induction equation, equation 3.3, is solved. Although, when us-

ing standard discretization the time-step gets increasingly small as the

values of the Hall resistivity get large (O’Sullivan and Downes, 2006,

2007). The problem of this vanishing time-step is dealt with by a tech-

nique known as the Hall Diffusion Scheme developed by O’Sullivan and

Downes (2006, 2007) which will be discussed later in this section.

Stability Analysis

As mentioned in the previous section, integrating the diffusive term of the

induction equation leads to an increasingly small value for the time step for

large Hall resistivities. In order to examine the restrictions imposed on the

timestep by the Hall resistivity a stability analysis is carried out following

that of O’Sullivan and Downes (2007). First, the hyperbolic flux term of the

induction equation, equation 3.3, is dealt with separately leaving the induc-

tion equation as;

∂B

∂t
= −∇× E′ (3.14)

where E′ can be written as E′ = EO + EA + EH . The R.H.S. of the

induction equation can then be expanded as follows;
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∇× EX = F1
X + F2

X (3.15)

where the subscript X can be O,H or A, and F1 and F2 are linear and sec-

ond order terms. If it is assumed that Ohmic resistivity is negligible based

on the fact that the collisional drag on the charged species is dominated

by magnetic forces, the Ohmic terms can be ignored and one is left with

the linear and second order terms for the ambipolar and Hall cases. It can

also be assumed that only small perturbations about a mean field in B are

present, under this assumption the second order terms can be neglected leav-

ing only the first order term for both the ambipolar and Hall cases as follows;

F1
A = [aA · [∇× J)]aA − [(aA · ∇)J]× aA (3.16)

and,

F1
H = (aH · ∇)J (3.17)

where aH = rHb, aA =
√
rAb and b is the unit vector in the direction of

the magnetic field.

The induction equation can now be written as;

∂B

∂t
= −GB (3.18)

65



where G is a matrix operator given by, G = GA+GH . By using the unit

vector b and the operand (·), GA and GH can be given as;

GA = rA[b · (∇× (∇× ·))]b− rA[(b · ∇)(∇× ·)]× b (3.19)

GH = −rH(b · ∇)(∇× ·) (3.20)

In order to obtain the discretization of the matrix operator G at time

level l the second order derivatives of B must be used, these are given as

follows;

(
∂2B

∂x2

)
i

=
Bi+1 − 2Bi +Bi−1

h2
(3.21)

(
∂2B

∂x∂y

)
ij

=
Bi+1,j+1 −Bi+1,j−1 −Bi−1,j+1 +Bi−1,j−1

4h2
(3.22)

In order to carry out the stability analysis a numerical wave is introduced,

which is given by;

Bl
ijk = B0e

iω·i (3.23)
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where, i ≡
√
−1, ω = (ωx, ωy, ωz), B0 is the amplitude of the wave

and i = (i, j, k). Equations 3.21 and 3.22 can now be replaced by using

(O’Sullivan and Downes, 2007);

∂2

∂x2
→ λxx ≡ −2(1− cosωx) (3.24)

∂2

∂x∂y
→ λxy ≡ − sinωx sinωy (3.25)

A matrix Λ is introduced now whose (x, y) member is given by λxy. Using

the substitutions given by equations 3.24, 3.25, the following matrices can be

found;

AH =

 0 ζz −ζy
−ζz 0 ζx

ζy −ζx 0

 (3.26)

and,

AA = bζ + ζb− tr(Λ)bb− bT ζI (3.27)

where, bζ is the dyadic formed from b and ζ, and ζ = Λb

1. Standard Discretization: The standard discretization scheme can now
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be given as;

Bl+1 = (I + τGl
H − τGl

A)Bl (3.28)

If the numerical wave introduced previously is inserted, equation 3.28

can be written as;

Bl+1 = (I− αrHAH − αrAAA)Bl (3.29)

where, α = τ/h2.

2. Hall Dominated : If AA is negligible in equation 3.29 the eigenvalues of

the evolution operator (I)− αrHAH are;

µ1 = 1 (3.30)

and,

µ2,3 = 1± iαrHζ (3.31)
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It is clear from the above equation that for all τ > 0, the spectral radius

operator is greater than unity. It is also clear that;

τ̄STDH → 0 as η → 0 (3.32)

So, in cases of systems where Hall resistivity is dominant the standard

discretization is very restrictive as the time step becomes vanishingly

small for significant values of Hall resistivity. A method to overcome

this restriction, known as the Hall Diffusion Scheme, has been de-

veloped by O’Sullivan and Downes (2006, 2007). The Hall Diffusion

Scheme will be detailed later in this section.

3. Ambipolar Dominated : If AH is negligible in equation 3.29, as is the

case for an ambipolar dominated system, then the eigenvalues for the

evolution operator, (I− αrAAA), are;

µ1 = 1 + αrAbT ζ (3.33)

and,

µ2,3 = 1 +
1

2
αrA[tr(Λ)± |tr(Λ)b− 2ζ|] (3.34)

The spectral radius operator can be found to be at ω = π(1, 1, 1) for

an arbitrary magnetic field. Therefore the normalised stability limit is

then found to be;
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τ̄STDA ≤ 1

2

√
1 + η2

η
(3.35)

where η = rA/|rH | parameterizes the relative importance of ambipolar

and Hall resistivities. τ⊥ is the cell crossing time for diffusion in the

direction perpendicular to the magnetic field;

τ⊥ =
h2

2
√
r2H + r2A

(3.36)

The time interval is normalised such that τ̄ ≡ τ/τ⊥

Super Time-Stepping

A method known as ”super time-stepping” (STS) may be used when solving

parabolic problems in explicit schemes. The STS method may be used to

accelerate the timestepping for the ambipolar case outlined above.

The method works by first choosing a time-step dτj so as to relax the

normal stability restrictions. A series of NSTS sub-steps are then used to

build a composite time-step known as a super-step so that;

τSTS =

NSTS∑
j=1

dτj (3.37)

The stability limit for the STS method can be found for a time-step limit,

τ̄STDA , as;
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lim
ν→0

τ̄STSA → N2
STS τ̄

STS
A (3.38)

with the method becoming unstable when ν, a damping factor, is zero.

Richardson extrapolation is employed in order to make the STS method sec-

ond order in time (Richardon, 1911). A more detailed discussion of super

time-stepping can be found in Alexiades et al. (1996).

Hall Diffusion Scheme

As stated previously, for cases when rH is large, and the ambipolar term is ne-

glected, the time-step for standard discretization becomes vanishingly small

and is therefore unstable. The Hall Diffusion Scheme (HDS)(O’Sullivan and

Downes, 2006, 2007) can be used to overcome this instability. The Hall Dif-

fusion Scheme makes use of the skew-symmetric matrix Gl
H , so the reduced

induction equation for the Hall dominated case,∂B
∂t

= −GHB, can be written

as a system of equations which describing the magnetic field evolution, these

equations are strictly explicit;

Bx
l+1 = Bl

x − τ(Gl
x,yB

l
y +Gl

y,zB
l
z) (3.39)

By
l+1 = Bl

y − τ(Gl
y,zB

l
z +Gl

y,xB
l+1
x ) (3.40)

Bz
l+1 = Bl

z − τ(Gl
z,yB

l+1
x +Gl

z,yB
l+1
y ) (3.41)
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The stability properties of HDS come from the fact that the right hand

sides of equations, 2.39 and 2.40, contain implicit like terms at time tl+1.

The matrix form of HDS may now be written as;

Bn+1 = (I− αrH k̂k̂AH)(I− αrH ĵ̂jAH)(I− αrH î̂iAH)Bn (3.42)

where î̂i,̂ĵj and k̂k̂, are dyadics formed from unit vectors î,̂j and k̂ respec-

tively. The eigenvectors for the above evolution operator are found to be;

µ1 = 1 (3.43)

and,

µ2,3 = 1− 1

2
g ± 1

2

√
g(g − 4) (3.44)

Here, g = (αrH)2(ζ2 − αrHζxζyζz). It can be seen that in order for the

evolution operator to be stable;

0 ≤ g ≤ 4 (3.45)

By using the most restrictive conditions such that, b = ( 1√
3
)(1, 1, 1) and

ω = (2π
3

)(1, 1, 1) and related points of symmetry, and NHDS sub-steps per
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time-step, the stability criterion is found to be;

τ̄HDSH ≤ NHDS
4√
27

√
1− η2 (3.46)

In order to extend HDS to second order accuracy Richardson extrapola-

tion is used in a similar way to the super time-stepping method.

To integrate both Hall and ambipolar terms a combination of the above

schemes is used. In order to find the limit for the stable time-step the mini-

mum of the STS and HDS stable time-steps can be used as follows (O’Sullivan

and Downes, 2006, 2007);

τ̄STS/HDS =

τ̄HDSH if η ≤ η∗

τ̄STSA otherwise
(3.47)

where η∗ is the solution of τ̄HDSH = τ̄STSA

3.1.3 Treatment of Magnetic Divergence

In order to ensure the non-divergence of the magnetic field in the system and

avoid the creation of magnetic monopoles some control on the magnetic field

is required so that Gauss’ Law ∇ · B = 0, holds. In the HYDRA code the

method used to control the magnetic field is known as the Dedner method

(Dedner et al., 2002). The Dedner method controls the divergence of the

magnetic field by damping the errors and advecting them to the boundaries

of the domain. The method implements a two-fold approach to the problem,

first of all the code uses a parabolic correction term which acts to dissipate

and smooth the divergence error. Secondly, a hyperbolic term is implemented

which acts to advect the error to the domain boundary, the speed at which
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the error is advected is the maximum allowable before additional errors are

introduced to the solution. The minimisation of errors is also controlled by

ensuring that the ratio of the parabolic and hyperbolic correction terms is

constant. For a detailed discussion of the Dedner method and for numerical

tests of the method the reader is directed to Dedner et al. (2002).

3.1.4 Shock-Tube Tests

A number of shock-tube tests were carried out on the HYDRA code by

O’Sullivan and Downes (2007) in order to check the accuracy of the number-

ical code. These tests were run at an oblique angle to the coordinate axis

of the code, in the (1, 1, 1) direction. Although a grid of dimensions N3 was

allocated for each of the tests, the solution of the problem was calculated

within a very narrow beam with a radius of one cell. The length of the beam

was finite so that it was fully contained within the computational domain.

Cells which are outside of the beam are treated as boundary cells and are

referenced by their parallel displacement to the beam. For cells that have a

parallel displacement which was outside the range of the beam, these cells

were set to a fixed value. For cells within the beam, a reference cell was

chosen at each value of parallel displacement from which all external cells of

the same value were duplicated. This approach allowed for the use of only a

small fraction of the N3 grid to obtain the solution to the fully 3-Dimensional

problem.

The dynamic algorithms of the HYDRA code were tested by O’Sullivan

and Downes (2007) against the solutions of steady isothermal multifluid equa-

tions which were obtained using an independent code. The initial conditions

for each of the following test cases can be found in table 3.1

Case 1: Ambipolar Dominated

In this test the parameters were set as such; rO = 2×10−12,rH = 1.16×10−5

and rA = 0.068 giving η = 5.86× 103, so that ambipolar diffusion dominates
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Table 3.1: Parameters of the shock tube test cases.(O’Sullivan and Downes, 2007)

Case 1
Right State ρ1 = 1 q1 = (−1.751, 0, 0) B = (1, 0.6, 0) ρ2 = 5× 10−8 ρ3 = 1× 10−3

Left State ρ1 = 1.7942 q1 = (−0.9759,−0.6561, 0) B = (1, 1.74885, 0) ρ2 = 8.9712× 10−8 ρ3 = 1.7942× 10−3

α2 = −2× 1012 α3 = 1× 108 K21 = 4× 105 K31 = 2× 104 a = 0.1
ν = 0.05 NSTS = 5 NHDS = 0

Case 2
Right State ρ1 = 1 q1 = (−1.751, 0, 0) B = (1, 0.6, 0) ρ2 = 5× 10−8 ρ3 = 1× 10−3

Left State ρ1 = 1.7942 q1 = (−0.9759,−0.6561, 0) B = (1, 1.74885, 0) ρ2 = 8.9712× 10−8 ρ3 = 1.7942× 10−3

α2 = −2× 109 α3 = 1× 105 K21 = 4× 102 K31 = 2.5× 106 a = 0.1
ν = 0 NSTS = 1 NHDS = 8

Case 3
Right State ρ1 = 1 q1 = (−6.7202, 0, 0) B = (1, 0.6, 0) ρ2 = 5× 10−8 ρ3 = 1× 10−3

Left State ρ1 = 10.421 q1 = (−0.6449,−1.0934, 0) B = (1, 1.79481, 0) ρ2 = 5.2104× 10−7 ρ3 = 1.00421× 10−2

α2 = −2× 1012 α3 = 1× 108 K21 = 4× 105 K31 = 2× 104 a = 1
ν = 0.05 NSTS = 15 NHDS = 0

the solution.

Using the following equation;

τ̄STSA = τ̄STDA

N

2
√
ν

(1 +
√
ν)

2N − (1−
√
ν)

2N

(1 +
√
ν)

2N
+ (1−

√
ν)

2N
(3.48)

it can be estimated that there will be an overall speed up of about a factor

of 2 when compared with the standard explicit approach.

The x-component of the neutral velocity field and the y-component of the

magnetic field can be seen in figure 3.1 for both the dynamic and steady-state

solutions. It can clearly be seen that there was very good agreement between

the two solutions. Due to the fact that the HYDRA code is designed to be

second-order in space and time, a comparison between the convergence rate

of the dynamic solution and the steady-state solution was carried out. This

comparison was done using the L1 error norm, e1, between a section of the

two solutions. The section xL ≤ x ≤ xR was fixed about a point x∗ when

working from the downstream direction. x∗ denotes the point where the de-

viation from the downstream state exceeded 1% of the maximum value of the

solution for the first time. By using xL = x∗ − 0.2 and xR = x∗ + 0.8 it was
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found that e1 = 1.0 × 10−5 for h = 5 × 10−3 and e1 = 9.41−5 for h = 10−2.

Thus, e1 ∝ h3.2, which is above the expected second order convergence. A

possible reason for this is the cross-term cancellation which arises from the

symmetry of the (1, 1, 1) choice for the variation direction for this problem.
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Figure 3.1: The y-component of the magnetic field is shown as well as the x-
component of the neutral fluid velocity for case 1 at h = 5×10−3 the solution from
the dynamic code is shown as points. The overplotted line shows the solution of
the steady state equations.(Images taken from O’Sullivan and Downes (2007))

Case 2: Hall Dominated

In this test the Hall term dominated so that the overall efficiency of the

scheme was determined by the Hall Diffusion Scheme. As such the parameters

for this test were set as follows; rO = 2×10−9, rA = 5.44×10−4, rH = 0.0116

and η = 0.046� 13. Using the equations;
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τ̄STD ≤ 8

9

η√
1 + η2

(3.49)

and

τ̄HDSH ≤ NHDS
4√
27

√
1 + η2 (3.50)

it was estimated that the scheme is ≈ 20 times faster than the standard

explicit case. The results of the calculations of this test are shown in fig-

ure 3.2, with h = 2 × 10−3. For standard explicit schemes the choice of

parameters would lead to restrictions on the timestep which would prove

prohibitive to the calculation. The use of the Hall Diffusion Scheme allowed

the timestep to remain close to the Courant limit which is imposed by the

hyperbolic terms throughout the calculations. The characteristics of second

order convergence were tested for in the dynamic solution in a similar way

to case 1. x8 denotes the point where the solution deviated 10% from the

downstream state. Using xL = x∗ − 0.05 and xR = x∗ + 1.0, it was found

that e1 = 5.11×10−3 for h = 2×10−3 and e1 = 1.83×10−2 for h = 4×10−3,

thus, e1 ∝ h1.8. In this case the deviation from the expected second order

convergence was attributed to post-shock noise in the high resolution run.

Case 3: Neutral Sub-Shock

The set-up of this test was similar to that of case 1, however in this case

there was a higher sound speed and upstream fast Mach number. This set

up resulted in a sub-shock developing in the neutral flow due to the interac-

tions between the neutral particles and the charged particles not being strong

enough to completely smooth out the initial discontinuity in the neutral flow.

This allowed for the testing of the algorithm’s ability to deal with disconti-

nuities. As with case 1, it was expected that there was an overall speed up
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Figure 3.2: The x-component of the neutral fluid velocity for case 2 at h =
2× 10−3 the solution from the dynamic code is shown as points. The overplotted
line shows the solution of the steady state equations.(Images taken from O’Sullivan
and Downes (2007))

of a factor of 2, when compared to the standard explicit approach.

The results for the calculations with h = 1 × 10−3 are shown in figure

3.3. It can be seen clearly by the the presence of a discontinuity in u1 that

a sub-shock has developed in the neutral flow, whereas there is no such dis-

continuity in By. A plot of the x-component of the velocity of the negatively

charged particles can be seen in figure 3.4, again, there is no discontinuity

present in the variable, however, there are some oscillations at the point

where the discontinuity occurs in the neutral flow.

Due to the fact that a discontinuity is present in this test and a MUSCL-

type scheme was used it was expected that the rate of convergence of the

dynamic solution would be first order. Using xl = x∗−0.02 and xR = x∗+0.1,

where in this case x∗ is the point at which the solution deviated from the

downstream state by 1%, it was found that e1 = 6.44×10−3 for h = 1×10−3

and e1 = 1.16×10−2 for h = 2×10−3 therefore, e1 ∝ h0.85 which as expected

was close to first order. It was suggested that the deviation from first order

was due to an error in the charged velocities caused by a discontinuity in the

electric field at the sub-shock. It was found that convergence is improved

by smoothing the solution with artificial viscosity (O’Sullivan and Downes,
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Figure 3.3: The y-component of the magnetic field is shown as well as the x-
component of the neutral fluid velocity for case 3 at h = 1×10−3 the solution from
the dynamic code is shown as points. The overplotted line shows the solution of
the steady state equations.(Images taken from O’Sullivan and Downes (2007))

2007).
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Figure 3.4: The x-component of the negatively charged fluid species is shown
at h = 1 × 10−3. The solution from the dynamic code is shown as points. The
overplotted line shows the solution of the steady state equations.(Image taken from
O’Sullivan and Downes (2007))
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Chapter 4

Results and Discussion

The result of a number of simulations of MHD turbulent simulations are pre-

sented in this chapter. The length-scales of dissipation structures present in

multi-fluid MHD simulations will be analysed. The evolution of the statis-

tics of these structures will also be examined over a significant fraction of

the average lifespan of the cloud. An analysis of dissipation structure will

also be carried out for an ideal MHD simulation so as to observe the effects

of multifluid processes on the formation of dissipation structures. For all of

the following simulations the variable being observed is the current density,

this is to identify current sheets which are known to dissipate large amounts

of energy. As current sheets result from topological changes to the magnetic

field, they act to dissipate the energy stored in the magnetic field as thermal

energy, through a number of processes which were discussed in section 2.2.2.

By choosing to examine the current density, the findings of this work can be

compared to those of Zhdankin et al. (2014) which also identify structures in

the current density.

4.1 Simulation Set-up

In order to run a simulation which enables the study of MHD turbulence in

molecular clouds a set-up file must be created detailing the initial conditions
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of the system. This study focuses on driven, isothermal, multifluid MHD

systems using the initial conditions given in Downes (2012), and is outlined

in the following section.

4.1.1 Initial Conditions

The simulations of multifluid MHD turbulence are run on a uniform Cartesian

grid made of Nx×Ny×Nz points so that Nx = Ny = Nz. The density of the

fluid is initially set to 104cm−3 across the domain. A uniform magnetic field

with a strength of 20µG is applied. The isothermal sound speed was set at a

value which corresponds to a temperature of 10K, a reasonable assumption

for a molecular cloud, which is 1.88 × 104cms−1. The initial velocity of the

fluid species is set to zero. The length of the sides of the computational

domain are set to be 0.2 pc, so the phenomena observed are indicative of

those occurring within the interior of a larger molecular cloud. The charged

species are set to have the following properties; The density of the metal

ions is 1.27 × 10−25gcm3 with an average mass of 24mp, where mp is the

proton mass. The metal ions are also assumed to be singly ionised. As one

of the assumptions made when creating the model was charge neutrality,

the electron density is set accordingly. The resulting ionisation fraction ξ =

ni/nn ≈ 3× 10−7. The turbulence in the simulations in this study is driven,

and so at each time-step velocity increments are added to the velocity of

the neutral fluid. This is done by defining the incremental velocity field δu.

The components of this incremental velocity field are generated from a set of

waves with wavenumbers, k = |k|, 3 ≤ k ≤ 4. These velocity waves have an

amplitude drawn from a Gaussian random distribution of which the mean is

1.0 and the standard deviation is 0.33 and phases between 0 and 2π which

are drawn from a uniform distribution. The choice of waves is such that

the driving is solenoidal. The addition of these velocity increments simulate

the stirring up of the molecular cloud by an external driving force such as

stellar winds, etc. The injection rate of energy into the system is given by;
Ė

ρ0L2a3
= 200 so that the RMS Mach number and the Alfvénic Mach number

are around 4.5 and 3.5 respectively.
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4.2 Ideal MHD Turbulence

In this section the simulations results being analysed were created using the

initial conditions provided in the previous section of this thesis. The plasma

is set to comprise only the neutral fluid and as such the following simulations

and results are of Ideal MHD. The number of grid points, or resolution, of

the simulation is 2563

4.2.1 Evolution of Ideal MHD Turbulence

In order to look at the evolution of ideal MHD Turbulence over the course of

the simulation four snapshots are taken of the current density. These snap-

shots are taken at various times during the evolution of the turbulence in

the molecular cloud. Figure 4.1 shows these four states, it can be seen that

as time progresses the dissipative structures resulting from the turbulence

evolve. Figure 4.1a shows the dissipative structures formed during the early

stages of the simulation, at t = 0.035tc, it can be seen that the simulation is

dominated by large-scale structures. These large structures are produced as

a result of the driving mechanism used by the HYDRA code. The turbulence

in the simulation is produced by the addition of random perturbations to the

velocity field of the neutral fluid as described previously in section 4.1. As

the neutral fluid is tied to the magnetic field lines due to the ”frozen-in” ap-

proximation these perturbations act to change the topology of the magnetic

field, causing it to compress in some areas and rarefy in others. The ampli-

tude of the initial driving is a fraction of the simulation domain ≈ 0.05pc.

Therefore, the structures formed at the beginning of the simulation show the

length-scale at which energy is injected into the system since the turbulent

cascade hasn’t had a chance to transfer energy to smaller structures. Fig-

ures 4.1b and 4.1c show the dissipative structures formed at t = 0.07tc and

t = 0.11tc respectively, it can be seen that as the turbulence evolves smaller

and smaller scale structures begin to emerge in the simulation. At t = 0.3tc

(when the turbulence was in a statistical steady state, that is, when the en-

ergy distribution rate does not vary significantly with respect to time. This
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can be seen in figure 4.2 where at later times in the simulation alpha fluctu-

ates very little.), the domain is no longer dominated by large scale structures

as can be seen in figure 4.1d. Instead the energy which had been stored in

those large structures has be transferred to structures of smaller and smaller

scales, until the energy is dissipated at the smallest scales by Ohmic heating,

through the current sheets observed and by viscous forces, such as friction

between fluid elements in the plasma which causes energy loss through heat.

The evolution of ideal MHD turbulence can also be examined quantita-

tively. In order to do this the probability distribution of the energy dissi-

pation for each simulation output is calculated. Each of these outputs is

assumed to be a power-law similar to that observed in Section 4.2.3. The

power-law indices (α) describes the lengths at which energy is dissipated from

the system by plotting α over time it is possible to examine the evolution of

structures formed as a result of the turbulence, this can be seen in figure 4.2

where α is plotted over the early stages of the simulation (figure 4.2a) and at

later times in the simulation (figure 4.2b). It can be seen in figure 4.2a that

at early times in the simulation α > 0 indicating that the turbulent system

is dominated by large scale structures. The peak at the beginning figure 4.2a

is due to the driving of the turbulence, since the simulation is in its early

stages the energy hasn’t has a chance to cascade to smaller length-scales and

as such, the structures formed as a result of the driving get larger in size. As

time progresses it can be seen in figure 4.2b that α → −2.0 this shows that

over time smaller and smaller scale structures are created as energy is trans-

ferred through the turbulent cascade. The process by which the power-law

indices are calculated will be detailed in the following section.

4.2.2 Dissipative Structure Identification

The identification of structures such as shocks, current sheet and other re-

gions associated with energy dissipation is an important tool in the study of

magnetohydrodynamic systems such as turbulent molecular clouds as is the
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(a) Dissipative structures at t =
0.035tc.

(b) Dissipative structures at t =
0.07tc.

(c) Dissipative structures at t = 0.11tc. (d) Dissipative structures at t = 0.3tc.

Figure 4.1: Evolution of Ideal MHD dissipative structures.

focus of this study. In order to identify and analyse the statistics of dissi-

pative structures a script was developed for this project called ”Euclidean

scales”. The code developed for this study first identifies regions of interest

within the simulation data, the length-scale of this region is then calculated,

finally the code calculates statistics based on the length-scales of the regions.

The details of the code will be discussed in the following sections.
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(a) Evolution of the power-law index over t = [0.025, 0.11] sound crossing times.

(b) Evolution of the power-law index over t = [0.15, 0.25] sound crossing times.

Figure 4.2: Evolution of the power-law index over time at the start of the sim-
ulation (a) and when the simulation had reached a statistical steady state (b) for
the case of ideal MHD turbulence. It can be seen that although the initial driv-
ing of the turbulence creates large scale structures, the turbulent energy cascade
dissipates energy into smaller scale structures.

Identification of Dissipative Regions

In order to identify structures associated with dissipative regions the follow-

ing steps are implemented;

1. Assuming that a data file has been read into IDL the first step in iden-

tifying dissipative structures is to find regions where the value of the

variable of interest is greater than a user defined threshold. A binary

image of these regions is then created.
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2. Using the binary image containing isolated regions, it is then possible

to label these regions using the ”LABEL REGION” function in IDL

so that they are treated as unique regions in later processes. An array

can then be created using the histogram function which contains the

number of pixels or volume contained in each region.

3. Once an array has been created containing the volume of each region,

it is then possible to count the number of regions with volumes above

a specified volume. This is done to ensure that structures containing

only a few pixels are ignored as they may introduce errors later in the

code.

Once the number of structures and their corresponding volumes have been

obtained the length-scales of the structures can be found and used to create

an array containing the number of structures and their length. The details

of the calculation of the lengths of the structures are given in the following

section.

Calculation of Structure Length-Scale

We define the length of a structure as the maximum distance between any

two points in that structure. The script finds the maximum distance between

any two points in the following way;

• First, a loop is implemented so that each structure is isolated from

other structures. This is done to ensure the following steps can be car-

ried out efficiently.

• If the maximum distance between two points in this structure was to

be calculated at this stage it would be computationally expensive and
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would take a considerable period of time to complete. To avoid unnec-

essary waiting times, the structure is reduced to just the outer shell

of pixels. To obtain the ”shell” of the structure, a 3 × 3 structural

element(mask) is created. The structure is eroded, the pixels of the

outside edge are removed, this eroded image is then subtracted from

the original structure so that only a shell of pixels remains. This leaves

us with considerably less points which need to have their distances cal-

culate. This drastically cuts down the computing time for the following

step.

• The distance from each point to every other point in the shell is calcu-

lated and the maximum of these distances is then taken as the length

of the structure.

The length of each structure is fed into an array so a histogram can be

created which is then used to create a log-log plot of the number of structures

against the length scales of the structures.

Finally, a separate script was written in order to automate the above

steps by allowing the user to select a database of data files and have the

code open, read and calculate the information discussed above from each file

automatically. A time averaged log-log plot is then created from the results

obtained.

4.2.3 Dissipation Structures

Figure 4.3 shows a visualisation of the current density near the end of the sim-

ulation, when the turbulence has entered a statistical steady state, t = 0.3tc

where tc is the sound crossing time. The current density can be seen to take

the form of sheet-like structures through which energy can be dissipated

from the system. The statistical steady state is when the index of the prob-

ability distribution of energy dissipation rates stops evolving and converges
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although the fluid variables and magnetic field fluctuate randomly due to the

turbulent motions. It can be seen that the structures present in the domain

seem to be an even distribution of small scale structures and larger scale

ones. It can clearly be seen that the structures vary in length and width

from small length-scales, to scales which are a considerable fraction of the

computational domain. Whereas, the thicknesses of the structures present

are much smaller than their length and width this can be seen in figure 4.4,

which shows a cross section of the current density at t = 0.3tc. The presence

of these structures suggests that energy is being primarily dissipated in thin

current sheets similar to the results obtained by Zhdankin et al. (2014).

Using the script outlined in Section 4.2.2, the probability distribution for

the rate of energy dissipation in the cloud was obtained and this can be seen

in figure 4.5. The probability distribution can be represented by a power-law

of the form;

N ∝ Lα (4.1)

where, N is the number of dissipative structures and L is the length-scales

of those structures.
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Figure 4.3: Visualisation of the current density at t = 0.3tc for ideal MHD
turbulence. It can be seen that dissipative structures of various length-scales are
present.
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Figure 4.4: Visualisation of the cross-section of the current density in simulation
domain for ideal MHD turbulence at y = 0.5. A cross-section of the dissipative
structures can be seen.

Figure 4.5: Plot of the probability distribution of energy dissipation rates for
ideal MHD turbulence which is shown by the solid line (P). The index of this
power-law is found to be −2.0. The dot-dashed line (Index) is the straight line fit
to the power-law tail of the probability distribution, the slope of which is equal to
the power law index
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Looking at figure 4.5, it can be seen that the probability distribution

exhibits a power-law, with the index of this power-law being −2.0. The in-

dex of −2.0 is a critical value indicating that structures of all length-scales

contribute equally to the energy dissipation. An index steeper than −2.0

indicates that structures with short length-scales are the dominant source of

dissipation, whereas, an index shallower than −2.0 indicates that large scale

structures contribute the most to the energy dissipation. The dot-dashed line

labelled ”Index” in figure 4.5 is the linear fit of the power-law of the proba-

bility distribution, the slope of this line is equal to the power-law index of the

probability distribution (−2.0). The fact that structures of all length-scales

contribute to the dissipation of energy from the system can be explained by

the ”frozen-in” approximation of ideal MHD. As the magnetic field is tied

to the fluid the topology of the field is fixed by the motions of the fluid, as

such even when the magnetic field lines get tangled they can remain in that

state as they can not undergo magnetic reconnection, this can lead to the

formation of very small scale structures with length-scales in the dissipative

scale, as well as large scale structures on the driving scale of the system.

4.3 Multifluid MHD Turbulence

Multifluid MHD turbulence will be examined in this section. The initial con-

dition outlined in Chapter 3 are again used to set up the simulation, in a

similar fashion to the ideal case above. However, unlike the ideal case, the

plasma in the following simulations is comprised of 4 fluids (1 neutral fluid

and 3 charged fluids). Thus, multifluid effects will be present and may be

important in the formation of dissipation structures.

4.3.1 Dissipation Structures

Figure 4.6 shows a snapshot of the turbulence the structures present at

t = 0.215tc. Much like the ideal case these structures appear to span a
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range of length-scales, from small structures to larger scale structures. How-

ever, unlike in the ideal case it can be seen that there are significantly fewer

very small scale structures present. The fact that there are fewer small scale

structures present in the multifluid simulation isn’t surprising, because if

multifluid effects are introduced then diffusive terms are added to the induc-

tion equation, equation 3.3. The presence of diffusion, such as ambipolar

diffusion, will act to smear out small scale structures. This smearing of

small structures by diffusive processes leads to the length-scales associated

with these structures increasing, this can be seen if figures 4.3 and 4.6 are

compared. The lack of small scale structures in the multifluid simulation

indicates that multifluid effects have an impact on the dynamics of MHD

turbulence on all scales up to the system scale. This is in contradiction to

the observations of Li and Houde (2008), where it was inferred that the mul-

tifluid effects were impacting the molecular clouds dynamics at length-scales

much less than the driving scale. It can also be seen in figure 4.7 that the

thickness of the structures are much less than the length and width of the

structures. The fact that the dissipative structures in the presence of am-

bipolar diffusion are of thickness similar to those observed in the ideal case is

in agreement with the work of Brandenburg and Zweibel (1994) and Mom-

ferratos et al. (2014) where it is suggested that although ambipolar diffusion

on one hand acts to smear out small scale structures, it can also steepen the

magnetic field gradients leading to the formation of sharp structures.

The probability distribution of the energy dissipation in the molecular

cloud was calculated for the case of multifluid MHD turbulence, which can

be seen in figure 4.8.

From figure 4.8 it is shown that the slope of the power-law is shallower

than that of the ideal case, α = −1.02. This result shows multifluid effects

are having an impact on the formation of dissipative structures.

Figure 4.9 shows the evolution of the turbulence in the late stages of the

simulation by plotting α against time for t = [0.1, 0.215]tc. It is clear from
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Figure 4.6: Plot of dissipation structures in multifluid MHD turbulence. It can
be seen that structures of large length-scales are dominant.

this that the results were obtained when the simulation was in a statistical

steady state, with α fluctuating around a value of ∼ −1.0. The length-

scale of the structures being a result of the initial driving of the plasma can

be ruled out because if the turbulence was influenced by the initial driving

mechanisms it would be expected that the index of the power-law would not

fluctuate around a constant value but, instead, would vary as time progresses.

The influence of the initial conditions and driving can be seen in figure 4.10

which shows α plotted over time for the entire duration of the simulation,

t = [0.005, 0.215]. It is clear that near the beginning of the simulation α > 0

indicating that the driving mechanism is creating large scale structures, much

like the ideal case, the energy of these structures then cascades to smaller

and smaller scales again similar to the ideal case. However, as previously
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Figure 4.7: Cross-section of the simulation domain for multifluid MHD turbu-
lence at y = 0.5. A cross-section of the dissipative structures can be seen.

Figure 4.8: Plot of the probability distribution of energy dissipation rates for
multifluid MHD turbulence which is shown by the solid line (P) The index of this
power-law is found to be −1.02. The dot-dashed line (Index) is the linear fit to the
power-law of the probability distribution the slope of which is equal to the power
law index (−1.02)
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Figure 4.9: Evolution of the power-law index over t = [0.1, 0.215] sound crossing
times for multifluid MHD turbulence.

mentioned, unlike the ideal case where α → −2.0, alpha in this case tends

to −1.02, that is fewer small scale structures are present.

Figure 4.10: Evolution of the power-law index over t = [0.055, 0.215] sound
crossing times for multifluid MHD turbulence.

The lack of small scale structures in the multifluid system when compared

to the ideal system is in agreement with results presented by Downes (2012).

In that work it was found that the presence of multifluid effects acted to

smear out most of the small scale structures. Ambipolar diffusion was found

to have an impact on the formation of structures in the magnetic field right

up to the driving length-scale.

It was seen in the ideal case that due to the ”frozen-in” approximation

for ideal MHD, the turbulent motions of the plasma resulted in the mag-
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netic field being being wound up, that coupled with the fact that under ideal

MHD the magnetic field cannot undergo magnetic reconnection allowed for

numerous very small scale structures to be formed. However, it can clearly

be seen that in the multifluid regime the evolution of the magnetic field, and

the dissipation structures which are a result of magnetic field morphology are

quite different to that of ideal MHD. The ”frozen-in” approximation of ideal

MHD breaks down as a result of the inclusion of ambipolar diffusion into

the simulation. This allows the magnetic field to decouple from the various

plasma fluids and as such it can diffuse through the bulk fluid and allows

the magnetic field to evolve differently to the bulk fluid. It then follows that

the dissipative structures formed in the multifluid regime will tend to be of

larger scale than those in the ideal case as ambipolar diffusion prevents the

magnetic field from winding up to the same degree, and as such, fewer small

scale structures will be formed.

It should be noted that although the Hall effect is present in these simu-

lations it is not observed to have an impact on the formation of dissipative

structures. It would naively be expected that the Hall effect would act to

significantly re-orient the magnetic field and as such would result in the pres-

ence of a large number of small scale dissipative structures. However work

carried out by Jones and Downes (2012) suggests that when ambipolar dif-

fusion is present it inhibits the Hall effect. It is suggested that in a weakly

ionised plasma consisting of charged dust grains, an ion fluid, and electron

fluid and a neutral fluid, similar to the plasma simulated in this work, the

dust grains are coupled to the neutral fluid while the ion and electron fluids

are well coupled to the magnetic field lines. The Hall effect is dependent on

the current in the system, which in turn depends on the charge densities of

the charged species. The charge density of the dust grains is significantly

lower than the charge densities of the electron and ion fluids, so the current

in the system is then the result of the velocity difference between the ion and

the electron fluids which will be relatively small. Therefore the current in the

system will mostly be parallel to the magnetic field, resulting in a weak Hall

effect. It can be seen in figures 4.7 and 4.6 that the numerous small scale
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dissipative structures one would expect due to the Hall effect’s twisting of

the magnetic field are not present despite the inclusion of the Hall effect in

the multifluid simulation, thus the impact of the Hall effect on the formation

of dissipative structures is suppressed by ambipolar diffusion.
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Chapter 5

Conclusions

This thesis presents a study of ideal and multifluid magnetohydrodynamic

turbulence in weakly ionised plasmas such as those found in molecular clouds.

Particular attention is paid to the impact of multifluid effects such as am-

bipolar diffusion and the Hall effect on the formation of dissipative structures

in the form of current sheets. The simulations presented in this thesis were

carried out using HYDRA, a numerical code which integrates the multifluid

MHD equations. Due to the fact HYDRA uses an explicit integration scheme

when solving the MHD equations the code is easily parallelized which allows

high resolution simulations of multifluid and ideal MHD turbulence to be

carried out. The maximum resolution of these simulations depends only on

the computational resources available. To the best of the author’s knowledge

this work presents the first investigation of dissipative structures in the case

of a driven, isothermal, fully multifluid MHD turbulent system.

The impact of multifluid effects on the dynamics and evolution of MHD

turbulence in molecular clouds is studied by performing both ideal MHD

simulations and multifluid MHD simulations comparing the resulting data.

This allows us to determine what effect ambipolar diffusion and the Hall ef-

fect will have on the formation of dissipative structures in the cloud. It is

found that the inclusion of multifluid effects has a significant impact on the

evolution of the magnetic field and resulting dissipative system.
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The evolution of turbulence and the formation of dissipative current

sheets in the ideal MHD case is studied in section 4.2. It is found that

the time averaged probability distribution of energy dissipation rates is a

power-law with an index of α = −2.0 which indicates that in the absence of

multifluid effects dissipative structures with lengths and widths which span

from the dissipative range right up to scales comparable to the driving scale

contribute equally to the dissipation on energy from the system. It is also

found that while the length and width of these structures vary considerably,

their thickness is quite thin and within the dissipative range. The contri-

bution of thin dissipative structures with lengths and widths spanning the

continuum is in agreement with the findings of Zhdankin et al. (2014)

Examining the evolution of the formation of dissipative structures over

time it is found that at early times in the simulation of ideal MHD turbulence

the length scale of the structures is large, which is expected as the turbu-

lence at this time hasn't developed and as such the energy injected into the

system by the driving mechanism cannot be transferred to smaller scales by

the turbulent cascade. As time progresses in this simulation the energy is

transferred to smaller and smaller scales due to the turbulent energy cascade.

The evolution of the ideal MHD turbulence is observed both qualitatively,

by visualisation of the turbulence at various times through the simulation,

and quantitatively, by plotting the evolution of the power-law index α over

time. It is seen that α→ −2.0 as time progresses.

In section 4.3 the main aim of this thesis is discussed, that is, the impact

of the addition of multifluid effects on the evolution and formation of dissipa-

tive structures. It is found that much like the case of ideal MHD turbulence,

multifluid MHD turbulence evolves from a state dominated by large-scale

dissipative structures resulting from the driving mechanism at early times,

to a state where dissipative structures of a variety of length scales are present.

However, unlike in the ideal case, when the power-law index α is plotted over

time it fluctuates around a value of α ≈ −1.0 instead of converging to the

100



value of −2.0 observed in the ideal case. This shallower power law indicates

that the presence of multifluid effects in the simulation impacts the formation

of dissipative structures such that fewer small scale structures are formed.

The calculation of the time-averaged probability distribution of energy

dissipation rates finds that the power-law index for the case of multifluid

MHD turbulence is α = −1.02, This result indicates that the dissipation of

energy from the system is dominated by large scale structures. The visual-

isation of the dissipative structures formed by multifluid MHD turbulence

confirms that far fewer small scale structures are present in the multifluid

simulation than are present in the ideal simulation, which is in agreement

with the findings of Downes (2012). It is found that the dissipative struc-

tures have thicknesses which are similar to the structures formed in the ideal

MHD simulation. It is then concluded that the addition of multifluid effects,

greatly impacts the formation of dissipative structures in MHD turbulence.

Although the thickness of the structures is similar in both the ideal and

multifluid cases the presence of ambipolar diffusion smears out small scale

dissipative structures, thereby increasing the length scales of these structures.

In conclusion, it was found that the presence of multifluid effects in sim-

ulations of MHD turbulence has quite a significant impact on the formation

of dissipation structures. The presence of Ambipolar diffusion in particu-

lar is the dominant effect governing the evolution of the multifluid simula-

tion acting to diffuse the magnetic field through the bulk fluid, breaking the

”frozen-in” approximation of Ideal MHD, thus small structures are smeared

out, leaving only larger scale structures. The Hall effect which is included

in the multifluid simulation has a negligible impact on the evolution of the

turbulence, as ambipolar acts to suppress it through the decoupling of the

various fluid species. There is potential for a considerable amount of further

work to be carried out. An interesting study which could be performed is to

run a series of simulations using the same initial conditions as used in this

thesis but varying the importance of the various multifluid effects in each

simulation. This would result in ideally a simulation where the Hall effect
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dominates, another simulation where Ohmic diffusion dominates and a final

simulation where ambipolar diffusion dominates. Having these simulations

would allow us to study the impact of the individual multifluid effects on the

formation of dissipative structures. This would lead to a greater understand-

ing of the relative importance of the processes on the evolution of turbulence

in molecular clouds and therefore on the formation of stars which form in

these clouds.
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