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Abstract

Robust and Optimal Adaptive Meshes for Non-Linear Differential
Equations with Finite-Time Singularities: Motivated by Finance

Brian Colgan

This thesis studies the related problems of modelling highly non-linear Ordinary and
Stochastic equations whose solutions remain positive but either converge to an equi-
librium point or blow-up. Neither a metric nor rigorous results in continuous time
to characterise these solutions asymptotic behaviour exist. Direct discretisations of
the equation using fixed-step numerical schemes fail to reproduce important qualita-
tive properties such as positivity. The thesis develops a suitable metric, a generalised
Liapunov exponent, to describe the asymptotic convergence and reliable adaptive nu-
merical schemes that are optimal for both ODEs and SDEs. The schemes are optimal
in the sense of minimising computational effort by taking the largest step-size possible
whilst preserving the qualitative properties and correct asymptotic behaviour of the
continuous-time solution.

The schemes recover the qualitative properties and asymptotic rates of convergence
under assumptions of monotonicity and regular variation. The critical rate of decay
for the step-size is identified. The work shows the resulting error in the convergence
rate is insensitive to the assumption of regular variation.

Transforming the co-ordinate system is essential to preserving positivity in the case
of SDEs. We determine the class of suitable transforms to use and identify that a
logarithmic pre-transformation is optimal for ODEs. The class of suitable transfor-
mation shows that the problems of hitting an equilibrium and explosion in solutions
for ODEs are not equivalent problems in terms of numeric schemes. We develop a
quasi-adaptive scheme that can revert to a fixed-step when less computational effort
is needed for SDEs. This quasi-adaptive scheme is universal: the scheme works on the
highly non-linear problems covered by the thesis and on more standard problems with
non-positive solutions, exponential or sub-exponential convergence.

The Implicit, Explicit and Transformed schemes can be ranked as measured by the

error in convergence rates. No scheme is superior in all circumstances but a ranking
can always be achieved.
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Chapter 1

Introduction

1.1 Synopsis of Research

This research focuses on highly non-linear Ordinary Differential Equations ,“ODEs”
and Stochastic Differential Equations, “SDEs”, whose solutions either reach an equilib-
rium at zero in finite-time or do not hit zero but approach it quicker than any negative
exponential function. We determine rigorous results which characterise the solutions’
asymptotic behaviour near the equilibrium and prove that adaptive numerical methods
reproduce its qualitative behaviour. Most of the research is devoted to determining
which mesh size to use in numerical schemes and in making this optimal. The mesh
size is optimal in the sense that it is the largest one possible while still recovering the
qualitative and asymptotic behaviour of the underlying ODE. This optimal mesh min-
imises the computational effort, number of iterations of the Euler scheme and run-time
required to reproduce this behaviour in computer simulations. For both continuous
and discrete problems, the precise asymptotic behaviour (either decay rate to zero or

asymptotics at the finite hitting time) of solutions is captured.

1.2 Continuous Non-Linear ODEs

We examine the asymptotic and qualitative behaviour of Euler discretisations of the

scalar non-linear ODE:
() =—f(z(t), t>0, z(0)=¢&>0, (1.1)

which has a unique globally stable equilibrium at zero. Solutions are very strongly
attracted to zero as they approach the equilibrium, as measured by f'(x) — oo as

x — 0%, It is possible to characterise whether:

e 7 hits zero in finite-time at time T¢; or

e 1 remains positive for all time and approaches zero quicker than any negative

exponential function as t — oo.



Continuous Non-Linear ODEs

The nature of this finite-time “hitting” of the equilibrium is better termed “kissing”
because the solution smoothly approaches the equilibrium which we term a “soft land-

ing”. The soft landing is captured by the asymptotic relation:

lim /() = 0.

t—>T5

In the case that the solution converges quicker than any negative exponential function
we say that the convergence is “super-exponential” and that the zero solution is “super-
exponentially stable”. We use the term “stable” informally throughout, understanding
that it is shorthand for asymptotically stable. With f obeying f’(0%) = oo the solution
of (1.1) has an infinite negative Liapunov exponent, expressed as:

lim log (t) = —00,

t—o0 t

in the case of super-exponential stability: indeed it is this convergence to zero more
quickly than any exponential function (which always have a finite negative Liapunov
exponent) that gives rise to the terminology super-exponential convergence or stability.
The infinite negative Liapunov exponent characterises super-exponential convergence
but does not give particularly refined asymptotic information about the speed of con-
vergence. In order to capture exact asymptotic behaviour comprehensively, we develop
analogues of Liapunov exponents for non-linear ODEs.

We investigate Euler schemes in which the mesh size varies according to the state of
the system and tends to zero as the discrete solution gets closer to the equilibrium. We
examine whether the Fuler schemes preserve the asymptotic and qualitative behaviour

of interest, namely:
e The positivity, monotonicity and asymptotic convergence of solutions in all cases;

e Reproducing the finite hitting time and gentle approach to the equilibrium when
T is finite; and

e Super-exponential convergence to zero when 7 is infinite.

We will assume throughout that f : [0,00) — R is a continuous function with the

following properties:

f(z) > 0 for all z > 0; (1.2)

f(0) =05 (1.3)

f is locally Lipschitz continuous on [e, 00) for every e > 0; (1.4)
f € C([0,00);R); and (1.5)

lim J(x) = 00. (1.6)

z—0t X



Continuous Non-Linear ODEs

As we mentioned, super-exponential convergence is characterised by having an infinite
derivative of f at the equilibrium, see (1.6). When the derivative of f at the equilibrium
is finite and non-zero then the decay is exponential and when the derivative is zero then
the decay is sub-exponential. In these cases, conventional fixed step numerical methods
will reproduce satisfactory performance. So for deterministic problems at least, we will
generally impose (1.6) and not study numerically ODEs for which f/(07) is finite.
Under condition (1.4) on f the Initial Value Problem (1.1) has a unique continuous
solution on a maximal interval of existence [0,7¢). On this interval of existence, x is

positive and decreasing. In the case that

—du<oo (1.7)

()+

it follows that Ty < co. A formula for T¢ is given by

|

and lim, 1y x(t) = 0. In the case that
— du 00, (1.9)
0+

it follows that Ty = oo and that lim, ,. x(t) = 0. These results are easily established

by integration.

We introduce some auxiliary functions to determine the asymptotic behaviour of z. In
the case that f obeys (1.7), the function F' given by

—d 0 1.10
Ty ™ x>0, (1.10)

is well-defined. In the case that f obeys (1.9), the function F' given by

/ — du x>0, (1.11)

is well-defined. By construction and (1.2), both (1.10) and (1.11) are positive. More-
over, (1.10) is increasing while (1.11) is decreasing, so both functions have an inverse,
denoted F~1(t) and F~L(t) respectively. Integration of (1.1) over the appropriate time
interval leads to the following well-known results which we present as a theorem. Our
motivation for presenting them is to help compare the qualitative properties of the

solution of (1.1) against the qualitative success of the numerical schemes we consider.
Theorem 1. Suppose that f obeys (1.2) and that & > 0. Then there exists a unique

3



Outline of Continuous Non-Linear SDEs

continuous solution of (1.1) x on the interval I¢ = [0,T¢). Moreover x is positive and

decreasing on I¢ with
lim z(t) = 0. (1.12)

taTg

i) If f obeys (1.9), then Ty = 0o and x obeys
3

/
im 20 o (1.13)
t—o0 x(t)
. F(x)
F(z(t))=t+ F(&), t>0 and moreover thm = L. (1.14)
—00
(11) If f obeys (1.7), then T¢ is finite and given by (1.8). Moreover
lim 2'(t) = 0, (1.15)
T
_ F(a(t
F(z(t)) =T —t, 0<t<T and moreover lim Flalt)) =1. (1.16)
to1 Te—1

1.3 Outline of Continuous Non-Linear SDEs

The second part of the thesis extends the same analysis of the ODE’s asymptotic
and qualitative behaviour to a scalar time-homogeneous diffusion process X (¢) whose
sample paths obey the SDE:

dX (1) = F(X(1)dt + g(X(t)) dB(t), (1.17)

and has positive solution on a maximal interval of existence and a unique equilibrium

at zero. We assume also that
X (0) = ¢ and ¢ > 0 is deterministic. (1.18)

Requesting a unique equilibrium forces the hypothesis and continuity requirements on
f and g
f,9 € C([0,00);R),  with f(0) = g(0) = 0. (1.19)

We assume the so-called “non-degeneracy condition”
g*(z) >0, forallz >0, (1.20)

4



Outline of Continuous Non-Linear SDEs

holds for convenience, so that there are no equilibria other than the zero equilibrium
on [0,00). The non-degeneracy condition corresponds to the noise never “switching
off”. The continuity restriction on f and g, and the positivity of g ensures that the

local integrability restriction

/”6 1+ /()]

)2 dy < oo, for all x > 0 and some € > 0,
—e gy

holds. These assumptions yield X (0) = 0 implies X (¢) = 0 for all ¢ > 0. Assuming

local Lipschitz continuity away from zero and infinity according to
f and g are locally Lipschitz continuous on [1/k, k|, for every k € N, (1.21)

ensures that there is a unique continuous adapted process which obeys (1.17) on [0,7)

where

T=inf{t >0 : X(t) & (0,00)}. (1.22)

T can be thought of as the “explosion time” or “time of hitting zero”. We define
T=occif inf{t >0 : X(t) € (0,00)} = 0. More precisely, we have for the sequence of
stopping times 7, = inf{t > 0: X(¢) = k or X(¢) = 1/k} that X obeys

min(t,7y) min(¢,7y)
X (min(¢, 73,)) = (—{—/ f(X(9)) d8+/ g(X(s))dB(s), 0<t<oo, as.,
0 0
(1.23)
where 7, — T as k — 0o. We wish to consider situations in which X is a.s. attracted

to zero, in the sense that

X(t)>0forallt € [0,7) and lim X(¢) =0, as.

t—T—

When the drift of (1.17) dominates, in a certain sense, the dynamics of (1.17) are
governed by an auxiliary ODE which is in fact the noiseless unperturbed ODE

2(t) = f(a (b)), (1.24)

while in the case when the diffusion dominates, the dynamics are governed by another
auxiliary ODE

for some positive constant c. If the limit

lim /(@)

=0t g%(r)

=: L, (1.25)

exists, then L describes these two regimes of asymptotic behaviour. This general claim

5



Outline of Continuous Non-Linear SDEs

holds irrespective of whether solutions remain positive or tend to zero in finite-time.
When L = —oo, we recover the same asymptotics as the ODE (1.24) because the
contribution of the noise term to the asymptotic behaviour is small relative to the
drift. In particular, under certain monotonicity conditions on f at zero, we will have
that

!
/0Jr m du < o0, (126)

implies T' < oo a.s.. In the case that

!
/0+ 70 du = oo, (1.27)

we have T' = oo a.s.. We introduce some auxiliary functions to determine the asymp-
totic behaviour of X. In the case that f obeys (1.26), the function F' given by

_ z 1
F(x) :/0 o] du, x>0, (1.28)

is well-defined. In the case that f obeys (1.27), the function F' given by

b
F(x):/x mdu, x>0, (1.29)

is well-defined. When —oco < L < 1/2, the noise contribution dominates and the

asymptotic behaviour is the same as that of solutions of the deterministic equation

't)=—-(2-L t > 0. 1.30
In particular it follows that
1
U
—— du < 00, 1.31
/o+ 9*(u) ( )

implies T' < oo a.s.. In the case that

1
/ Y = 00, (1.32)
0

+ g%(u)

we have T' = oo a.s.. We use analogous auxiliary functions to determine the asymptotic

behaviour of X. In the case that g obeys (1.31), the function G given by

G(x) :/o mdu, x>0, (1.33)

is well-defined. In the case that g obeys (1.32), the function G given by

1
G(x) —/ . du, x>0, (1.34)



Regularly Varying Functions

is well-defined.

1.4 Regularly Varying Functions

Regularly varying functions are an important class to examine because f for many
ODEs, both linear and non-linear, is specified in terms of them. They are a natural
enlargement of the class of power functions which arises in many applications. A
measurable function f : (0,00) — (0,00) with f(z) > 0 for x > 0 is said to be
regularly varying at 0 with index § € R if

lim f(Ax)
x—0t f(.l’)

=)\, forall A >0. (1.35)

We use the notation f € RVo(S). If 5 =0, f is said to be slowly varying at zero and
we denote this by f € RVy(0) or f € SV((0). Regular variation at infinity arises when
the limit in (1.35) is taken as x — oo, and we write f € RV (f) in this instance.

To motivate the use of regularly varying functions in our application, we see when
g > 0, if f obeying (1.35) is also continuous, that f(0) = 0. Moreover it is the case
that for 6 > 0, f is asymptotic to an increasing function, and for § < 1, we have
f(z)/x = oo as © — 0T, but for § > 1 we have f(x)/x — 0 as x — 07. From these
simple observations, it can be seen that it is quite natural to take f in (1.1) to be a
function in RVy(3) for 8 € (0, 1), although the cases = 0 and 3 = 1 are also possible.

The convergence in (1.35) is uniform in A; this result is called the uniform con-
vergence theorem for regularly varying functions. Regular variation is an important
quantitative property because we can quantify the change in value of the function when
the argument is scaled by a factor of A\. Important results about regular variation that
we use in this work can be found in the monograph of Bingham, Goldie and Teugels [12].
The literature is written in terms of functions regularly varying at infinity. However,
regular variation can also be defined at any point o € R by requiring that f(zg—2z71)
is regularly varying at infinity.

The sign and size of § give information about the qualitative behaviour of f. The
larger the value of 8 then the quicker the rate-of-increase as x — oo, but the slower

the rate-of-increase as we increase away from 0. The functions
2, a’log(1/x), (xlog(1/x))”,

are regularly varying at zero with index 3. Typical examples of slowly varying functions
are positive constants, functions converging to a positive constant, logarithms and

iterated logarithms.



Summary of Main Results

We restrict our analysis to functions with an index between 0 and 1. The integral

defined by
1
1
— du,
/x f(u)

is guaranteed to converge as x — 07 when S < 1. When 8 = 1 the integral will converge
for some f’s and diverge for others. Super-exponential convergence is impossible in the

solution z of (1.1) when § > 1 because = converges sub-exponentially.

1.5 Summary of Main Results

Most non-linear ODEs cannot be solved analytically and do not have explicit solu-
tions. Even when it is possible to find a closed-form solution, we may still be faced
with equations of enormous complexity and size making the closed-form solution use-
less for most practical purposes. Solutions must be approximated numerically as a
result. Many numerical methods exist for solving ODEs but differ in terms of accu-
racy, performance and applicability. The one-step Explicit and Implicit Euler methods
with constant step-size are among the simplest methods.

Let h > 0. The Explicit Euler scheme for equation (1.1) with constant step-size h
is given by
Tpr1 =Ty — hf(z,), n>0, xz9=E&>0, (1.36)

and the Implicit Euler scheme with constant step-size h is given by
Tpi1 = Tp — hf(Tp1), n>0, x9=E&>0. (1.37)

The increment h is called the “mesh” or “step-size”. The step-size is a parameter
of the method and determines the accuracy of the approximation. The smaller the
step-size then the more accurate the approximation. A constant step-size produces
unsatisfactory results when used with both the Explicit and Implicit Euler schemes
to discretise the non-linear ODE (1.1) when f obeys (1.2)-(1.6). An Explicit scheme
becomes negative after a finite number of time steps so the positivity of a solution is

not preserved, except for a small set of initial conditions. This is made precise below.

Proposition 1. Suppose that f obeys (1.2), (1.3), (1.5) and (1.6). Suppose f in C*
with f'(x) < 0 for all x > 0. Let (x,) be the solution of (1.36). Then for each h > 0
there is a set A(h) such that A(h) = (0,00) \ C}y where C}, is an at most countable
subset of (0,00), such that if & € A(h), then there exists an N = N(h) € N such that
Tnm) < 0.

Without the C? assumption on f, we can say that for all initial conditions, the solution
will become non-positive after a finite number of steps. This is easily seen. Suppose

x, > 0 for some initial value zqg = £ > 0. Then (x,,) is decreasing and bounded below,

8



Summary of Main Results

so has a limit L € [0,00). If L > 0, by continuity of f we get the contradiction
L=L—-hf(L). Hence L = 0. But now, if we write

@_1_hf(xn>

Tn Tn

)

and take limits as n — oo, we get lim,, oo Zpy1/2, = —00, which violates the hypothesis
that (z,) remains positive.

Implicit methods do not suffer from this problem. In fact, solutions of (1.37) remain
positive and tend monotonically to zero. However, an Implicit scheme predicts [0, c0)
as the interval of positivity of the solution and that therefore T; = oo, regardless of
whether the underlying ODE has a finite interval of existence or not. This means
it would, incorrectly, not recover a finite-time hitting of zero if the solution of the

underlying ODE has that property.

Proposition 2. Suppose that f obeys (1.2), (1.3), (1.5). Then there exists at least one
sequence (x,,) which obeys (1.37). Moreover, all non-negative solutions of (1.37) are

decreasing, positive and obey lim,, . x, = 0.

These unsatisfactory results motivate using a mesh which changes size in line with the
state of the system, “an adaptive mesh”. The qualitative properties of h(z) are that
is should be positive and continuous so it correctly models the time index. We will
mostly suppose that h(x) is asymptotic to z/f(x), but ask what happens if h(x) tends

to zero more quickly or slowly than z/f(z) as + — 07 also. These are made precise

below:
h(xz) > 0 for all x > 0; (1.38)
h € C(]0,00);R); and (1.39)
IREENN Lo

Ideally, h(z) should tend to zero as the solution approaches an equilibrium point to
improve the accuracy of the approximation. We approximate x(t,) by x,, where z(t,)

is the solution z of (1.1) at time ¢,. The associated Explicit Euler scheme is

Tp+1 = Tp — h<xn)f(xn>7 n Z 07 Ty = 5 > 07 (141)
where .
tne1 = h(z;), n>0, to=0. (1.42)
=0

The associated Implicit Euler scheme is

Tps1 = Tp — WMTpi1) f(Tni1), n>0, x20=E&>0, (1.43)

9



Summary of Main Results

where

tn—i—l = Z h(xj+1), n Z O, to = 0. (144)
7=0

Recalling Theorem 1, if we write

F(z) :/:ﬁdu,

then the solution of (1.1) obeys

tim 200

t—o0 t

, (1.45)

when F(z) — oo as ¢ — 01 and

r0)
T, Te—1

=1, (1.46)

where T is the finite number fog 1/f(u) du when F(x) tends to a finite limit as x — 0.
We prove in Chapter 4 that when f is regularly varying and

Az
f(@)’

then the numerical method obeys the same asymptotic behaviour as the continuous

h(zx) ~ as z — 07,

solution, namely
F(z,)

n

lim =c(A) =1, asA—0", (1.47)
n—oo

where t,, = E}:& h(x;) for n > 1 and F(z) — oo as x — 0T, If F(x) tends to a finite
limit as ¢ — 07 _
lim —— =c(A) —» 1, asA— 0%, (1.48)

where Tj, := 3°°°  h(z,) < co. The rate is optimal when
hz) = o(z/f(x)), asz— 07,

for in this case the ¢;(A)’s would be exactly 1, with A = 0. On the other hand, for the
Explicit Scheme when
h(x)f(x)

lim ————=~ = o0,
z—0+ X

the discretised solution will oscillate in sign, violating the positivity and monotonicity
of the solution. The exact features of the asymptotic behaviour are recovered if the
step-size tends to zero more rapidly than x/f(z). However, the numerical method
gives a solution which violates important properties of the continuous equation if the

step-size tends to zero more slowly than x/f(x). These identify the relative rates of

10



Summary of Main Results

growth of h(x) and =/ f(z) as being critical.

These results are developments of work in Chapter 3, which merely assume certain
types of monotonicity on f. The corresponding asymptotic results are typically weaker,
with limits inferior and superior being found in place of limits. However, these limits
are within O(A) of true limits as A — 0T, as are estimates on the first hitting time
of zero, T¢, when it is finite. In this sense, the advantage of working with regular
variation is that it demonstrates that working with one-step methods, one cannot take
asymptotically larger step-sizes without destroying some qualitative or quantitative
aspect of the solution.

The situation is more delicate in the case when the index of regular variation is
zero or unity, and it may be possible to take asymptotically larger step-sizes in these
cases. We investigate this in more depth for slowly varying f in the case of the Implicit
method in Chapter 4, as well as the possibility that multi-step methods may give
enhanced performance. This investigation is taken up in Chapter 7 for finite-time
stability problems and for explosion problems in Chapter 8. There is evidence that
the midpoint method may out-perform the one-step methods, in that the exponent in
(1.48) is accurate to O(A?) for explosion problems.

The Explicit method has the advantage of computational speed, but there are re-
strictions on the parameter. The Implicit method has no restrictions on the parameter
but a non-linear equation must be solved at each time step. A method which has the
advantages of both methods is an explicit method in which the state space of the orig-
inal ODE is transformed, so that after simulation (with a step-size of the same order)
and recovery of the value in the old co-ordinate system, the solution is still guaranteed
to be positive. In Chapter 5 we show that a smart choice of transformation from the
solution = = x(t) of the original ODE to the new ODE z = z(t) is 2(t) = T'(«(t)) where
T(x) = —logx. This choice is prudent both on practical and theoretical grounds: it is
practical because it is easy to apply and to invert, and also because this choice tends
to minimise errors in the exponent in (1.47) and (1.48). In fact, we preserve mono-
tonicity, positivity, the presence of absence of a finite stability time for all values of
A > 0, as well as estimating exponents to within O(A). This unconditional positivity
and stability is a signal advantage of the Transformed method, as such qualitatively
satisfactory behaviour without condition on the convergence parameter is most usually
associated with implicit methods. Furthermore, in the case that (1.47) holds, we can
show for any A > 0 we have a unit exponent. This means that it may be possible to
take asymptotically larger step-sizes while still maintaining finite exponents and, under
some extra restrictions on f, an optimal condition on the larger step-sizes is identified.

Chapter 6 compares errors in the exponents for the three methods employed, when
f is regularly varying with index . Very roughly, it is shown that the Explicit Trans-
formed and Implicit method are superior to the direct Explicit method, and that for
small A and § > 1/2, the Transformed scheme is superior, while for § < 1/2, the

11
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Implicit scheme is superior. Nevertheless, for all schemes, the errors in the exponents
are all O(A) as A — 07 so the performance differences between the schemes are small.
Therefore, on grounds of computational convenience, unconditional recovery of impor-
tant properties (e.g. positivity) we are lead to prefer the Transformed scheme when we

turn our attention to simulating solutions of SDEs.

Chapter 8 explores explosions and super-exponential growth in the ODE 2/(t) =
f(z(t)). We are able to show, under Explicit and Pre-Transformed schemes, that there
is a sufficiently small step-size which recovers explosions and exponents to within O(A)

as A = 07, Tt is
A

") = T AP @)

Once again, optimality is established by considering non-linearities f in special function

classes. The class of regularly varying functions is an obvious choice. but it is perfectly
reasonable for the growth of f to be faster in the explosive case (e.g. we could have
f(z) = e for example). A class of very rapidly growing functions which are important

in this case are the class I'" for which

i z)dz dy
}LIEO e ]L[g ()

Such functions are abundant and f(x) = €” is but one example. Strengthening slightly

our assumptions on f so that

i 00 _

z—oo  f!(x) ’

we find that the optimal step-size for logarithmic pre-transformation is

A
h(z) ~ ——, asz — oo,

f(x)’
and this is also optimal if f’ is regularly varying.

We have not, in this introduction, been greatly exercised as to whether the limits
recorded in (1.45) and (1.46) are a good way to express the asymptotic behaviour of
solutions of (1.1), rather than a merely convenient one which enables us to compare
discrete and continuous asymptotics via (1.47) or (1.48). In Chapter 2, we carefully
examine this question. In rough terms, the measure (1.45) is hard to improve upon in
the super-exponential case, and the evidence of Chapter 2 suggests it is likely to be a
robust measure for SDEs also. A reasonable competing measure, which is also inspired

by the Liapunov exponent, is

, —log x(t)
1 =1
S (—logo FY)()

12
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but it can be shown that (1.47) holds more generally.
As for the measure (1.48) the situation is more nuanced; in some situations, if a
function x (not necessarily the solution of an ODE) obeys (1.48) it will also obey the

Liapunov-like estimate

, —log x(t)
lim —
t-7- (—logo F~1)(T —t)

=1, (1.49)

while in other circumstances this last limit implies (1.48). These circumstances are
explored carefully in Chapter 2. However, the measure (1.48) implies (1.49) in the case
that f € RVy(5) for g € [0,1), suggesting it is preferable for the bulk of finite-time
stability problems. Despite this, in the case of SDEs, we are often happy to determine
asymptotic behaviour in the form (1.49) for finite-time stability problems; in certain
cases, we show how this can be strengthened to get a result of the form (1.48).

In very rough terms, we show in Chapter 9 that for many functions f and ¢, that
the long run behaviour of solutions (and in particular their ultimate positivity and
convergence to zero) can be captured by a few simple parameters and the finiteness
(or not) of certain integrals. This specialises a general result on the classification of
solutions of (1.17), often called Feller’s test (see e.g. [34]), but our reformulation and
specialisation identifies, under modest monotonicity restrictions, that when the drift
of (1.17) dominates, in a certain sense, the dynamics of (1.17) are governed by those
of the ODE (1.24) viz.,

ODE

for some positive constant c¢. More specifically, if we wish to consider situations in

which X is a.s. attracted to zero, in the sense that

X(t)>0forallte[0,T7) and lim X(t)=0, as.,

t—=T

it suffices to assume that

zf(x) 1

sup —— < —. 1.50
$>Ig g% (z) 2 ( )

Furthermore, we can recover in the super-exponential case that when f obeys (1.27)

and L = —oo then
i FE@)

t—00 t ’
where F' is defined by (1.29). On the other hand when g obeys (1.32) and L €
(—00,1/2) then

a.s.,

lim w = l — L, as.,
t—o0 t 2
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where G is defined by (1.34). In the case that the integrals are finite, we still obtain

the asymptotic behaviour as ¢t — T~ < oo: in this case, we obtain results like

. G(X(1) 1
tgr%l_ T——t = § — L, a.s., (151)

o , —log X (1) B
I T ge G ) (2= DT 1) (1.52)

according to the deterministic asymptotic properties of g, where G is defined by (1.33).

In Chapter 10, we show that the insight into the optimal step-size for the auxiliary
ODEs (1.24) (for L = —o0) or (1.30) (for L € (—o00,1/2) is optimal for the SDE
(1.17). We assume that (1.50) still holds. Following the logarithmic pre-transformation
employed in Chapter 5, our method is to consider the SDE obeyed by Z(t) = — log X (¢).

By It6’s Lemma, we can find in closed form f and § such that
dZ(t) = f(Z(t)) dt + G(Z(t)) dB(2).

We now seek to discretise Z. In the case when L = —oo, the auxiliary ODE (1.24)

suggests a step-size
Az

haet () ~ ———, asx — 0T,
t |/ ()]
and when L € (—o00,1/2) the auxiliary ODE (1.30) suggests a step-size
Az?
haet () ~ , —0t.
et () 7200 as T

Furthermore, there is no need to take very short step-sizes when |f| and g are linearly
bounded. In that case, we may take a constant step-size, A, so overall we consider a

step-size of the form
h(z) A'(l - 1’2) (1.53)
r)=Amin (1, ——, —— ), :
[F ()] g*(x)
when the simulated value of X (t) = x. Hence, if the simulated value at time t = t,
of Z(t) is Z,, we have X,, = e~?» and take a step-size of h(e=?") = h(X,,). Therefore

tar1 = t, + h(X,) and
Tt = T+ (X)) F(Zn) + V/1(X0)§(Xn)n i1,

where (&,),>1 is a sequence of independent and identically distributed Standard Normal

random variables.

In Chapter 10, we show that X,, > 0 for all n > 0 a.s. and that X,, — 0 as n — oo

a.s. under (1.50). Moreover, we can show under the monotonicity conditions that hold
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for f and g in Chapter 9, that

lim ¢, =: Th <o as & T<oo as.,

n—oo

and that this holds regardless of the value of A > 0. In other words, we recover
unconditionally on the discretisation parameter A the asymptotic stability, positivity,

and presence or absence of finite-time stability.

We can also recover the rates of convergence, whether these are super-exponential
or the discrete solution reaches zero in finite-time. For instance, in the case when

L € (—00,1/2), we can prove in the case that T}, = co that

X 1
lim G(Xn) =——1L,
and in the case when Th < oo that either
(X 1
lim g( ) =—-—1,

n—r00 Th —t, 2
in the case that the solution of (1.17) obeys (1.51), and

lim —0e X
n—00 (— logoé)((l/Q — L)<Th —tn))

=1,

in the case that the solution of (1.17) obeys (1.52).

These results suggest that the scheme works very well, but the fact that unit limits
are preserved in (1.51) and (1.52) leave open the question that the scheme may be
working harder than necessary in order to recover the desired asymptotic behaviour.
Furthermore, we would be interested in understanding whether it is possible, in the
presence of noise, for the solution of (1.17) to obey the deterministic-like asymptotic

behaviour PX(s
- R(X(0)

—= =1, as, 1.54
t»T- T — 1t ( )
under appropriate conditions.

In Chapter 11, we show that when the drift f(x) is always negative, then (1.54)

holds under the “small noise” condition:

2
: . 9°(z)

there exists 0 > 0 such that limsup ————— < oo. 1.55

w0t L f(2)] (1:59)

Furthermore, this result is preserved to O(A) as A — 0% under monotonicity conditions

on f, in the sense that

lim inf F(Xn) =14 0(A) and limsup F(Xn) =1+0(A), asA—0T,

n—oo

h—ln n—oo T}, — 1,
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and in the case that | f| € RVo(8) we even get

lim M = ¢4(A),

nee Ty, — 1y,
where c¢4(A) is deterministic and non-unit for § # 1 and ¢4(A) = 1 for § = 1. This
shows that if the step-size is set asymptotically smaller, then we recover the asymptotic
behaviour exactly but with the cost of increased computational effort. On the other
hand, we have for 8 # 1 that c4(A) — 0 as A — oo, showing that the method loses
good quantitative features if the step-size is taken larger than the rate z/|f(z)| as

x — 0%. These results hold both for power and logarithmic pre-transformations.

In Chapter 12, we show that our method with step-size h chosen according to
(1.53) also works if the equilibrium of (1.17) gives rise to subexponential solutions.
This necessitates new results on the asymptotic behaviour of the SDE (1.17) in the
case that f(z)/z — 0 and ¢?(x)/2? — 0 as x — 0". Once again, if we assume for the
sake of simplicity that (1.50) holds and L in (1.25) exists, then we have that 7' = oo
a.s., X(t) > 0 for all t > 0 a.s. and X(t) — 0 as t — oo a.s.. Moreover, if L = —o0

and the appropriate monotonicity conditions hold for f, then

—log X (t) ]
im = a.s.
t—oo (—logo F=1)(t) ’ ’
while L € (—o0,1/2) implies
—log X (¢
lim og X (1) =1, as.

i (—logo GN)((1/2— L)1)

These results are recovered by the logarithmically pre-transformed scheme: for all
A > 0 we have that ¢, — oo, X,, > 0 and lim,,_,,, X,, = 0 and we have

—log X,
L=— = i =1
> nhoo (—logo F-1)(t,)

Lel(=olf2) = I e a2 = D)

=1.

In Chapter 13, we consider the case when solutions of (1.17) are subexponentially
stable and the small noise condition (1.55) holds along with f(x) < 0 for all z > 0. In
this case, very roughly speaking, the solution of the SDE obeys

FX(t))

lim ———* = 1, a.s.,
t—o00

in the case that solutions tend to zero faster than any negative power of ¢, which is
generated by a new monotonicity condition on f of the form that x — |f(x)|/z'"0 is

decreasing close to zero for all § > 0 sufficiently small. If some extra smoothness on f
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is granted, we can prove the stronger statement

i ()
oo F1(1)

=1, a.s.

This can also be established when z + | f(x)|/z'*? is increasing close to zero for some

6 > 0. In broad terms, we show that these refined asymptotic estimates hold for the

discretised equations, under both power and logarithmic pre-transformations, although

we sometimes need additional regularity on f to achieve this.

Chapter 14, which concludes the thesis, enumerates some extensions of the results

presented, chiefly considering developments of results from Chapters 9 to 13. In par-

ticular, we conjecture that results for growth, explosion, recurrence and non-positive

solutions can be proven.

1.6 Comparison with Works in the Literature

1.6.1 Overall Goals and Philosophy

The analysis in this work seeks to develop the existing literature in three directions:

(1)

We seek new results in the analysis of the asymptotic behaviour of discretisations
of ODEs. This is a classical subject and much of what we say that is new concerns
the asymptotic behaviour or the computational optimality of our efforts, as results
which talk about preserving explosions, finite-time stability or approximating the
explosion time (or finite stability time) abound. Another concern we have is to
demonstrate that rapidly growing solutions of ODEs are not incorrectly classified

as being explosive.

We seek new asymptotic results on the solutions of SDEs, covering the cases when
solutions converge to the equilibrium subexponentially, super-exponentially, or in
finite time. Our new results in this direction chiefly concern the determination of
exact asymptotic rates of decay and of establishing critical levels of the noise at
which there are “bifurcations” in the decay rate. For each type of convergence,
we seek refined results when the noise is “small”. We do not believe these results
to be completely canonical, but to the best of our knowledge, they seem among
the best available in the literature to date. Furthermore, they also prove to be of
great value in establishing that the numerical methods we employ are in many
cases computationally optimal, in the sense that diminishing the computational

effort leads to unacceptable qualitative errors in the long-time discrete dynamics.

We wish to prove new results on the long time dynamics of SDEs which are good

models for solutions of SDEs. Since this is the part of our mathematical analysis
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which is the least classical and which has undergone rapid development in the

last few years, it is understandable that we have more sub-goals to target here:

(i)

(iii)

We wish to use explicit methods in order to reduce the computational effort
for these highly non-linear equations. Our work on implicit deterministic
numerical methods for equations with super-exponentially stable or finite-
time attracting equilibria suggest that there is only a marginal increase in
the step-size needed for explicit schemes to recover all important asymptotic
behaviour. Since non-linear solving is unnecessary explicit methods would
seem to be very attractive and the highly competitive performance of the
Explicit Pre-Transformed scheme compared to the Implicit scheme in the
deterministic case promotes it as the scheme of choice for SDEs, especially

as it automatically preserves positive solutions.

We wish the schemes to possess, unconditionally, good qualitative properties
for all values of the convergence parameter. Such properties include asymp-
totic stability, the presence or absence of a finite-time explosion or finite-time
stability, as well as positivity. In fact, we suggest in the final chapter that
other properties such as recurrence or non-positivity of solutions may also

be unconditionally recovered by our new method.

We do not want the scheme to generate spurious yet interesting “false posi-
tives” such as producing a numerical explosion when no explosion is present

in the solution of the original SDE.

We want the quantitative characteristics of our schemes to improve as the
convergence parameter tends to zero and, if possible, show that the per-
formance becomes quantitatively bad as the parameter tends to infinity.
Furthermore, with a view to the computational efficiency of the methods, it
would be desirable if the performance slightly departs from the behaviour of
the SDE when the parameter is non-zero, as this shows that the amount of
computational effort is well-judged and excessive effort is not used to achieve

a given performance.

All these considerations place restrictions on the classes of problems we wish to study.
We seek to work with scalar autonomous equations so that we can benchmark the
performance of the numerical schemes against known theoretical long time behaviour.
However, even for scalar SDEs, many aspects of the asymptotic behaviour (especially
in the direction of precise rates of growth and decay) are not known, and this has
necessitated the proof of new results.

In order to get good results for SDEs, we have typically imposed two different
types of regularity on the drift and diffusion coefficient. One type of constraint in-

volves imposing monotonicity (so that certain functions are asymptotically increasing
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or decreasing close to zero). In the context of the problems studied this seems quite
reasonable and excludes certain rather pathological behaviour which might present dif-
ficulty in the simulations. The other involves asking that certain functions are regularly

varying. This can be justified in several ways:

(i) it allows us to generalise from the case that certain functions have Taylor series

approximations close to the equilibrium or have power law asymptotic behaviour;

(i) the theory of regular variation extends to so-called “slow” or “rapid variation”,
allowing us to deal with non-linearities, such as logarithms or exponential func-
tions or iterates thereof, which do not have behaviour which is of power-law type;

and

(iii) powerful convergence and representation theorems for regularly varying (and cer-
tain subclasses of rapidly varying) functions enable us to produce extremely sharp

results concerning our numerical approximations.

This demonstrates that our methods possess a certain computational efficiency, while
at the same time we are not sacrificing greatly the generality of our results, as the class
of regularly varying functions covers most important non-linearities used in real-world
applications.

Intuitively, these monotonicity and regular variation assumptions work well with
our numerical results because they tell us that behaviour of a function at a point will
be representative of its behaviour over a certain interval. Such a property is highly
likely to be helpful in numerical analysis of differential equations, which seeks at its
simplest, to makes inferences concerning the behaviour of a function over an interval

based on an approximation at a point.

1.6.2 Review of Relevant Literature

Works which study the qualitative behaviour of numerical simulations of solutions of
differential equations and which seek conditions under which this behaviour is preserved
by discretisation, have become more commonplace in recent years, but the monographs
of Stuart and Humphries [57] and Mickens [44] are among the first comprehensive treat-
ments. It has long been known that differential equations with finite-time singularities
present special problems for numerical analysis. A classic text which examines stiff
systems of this type is Hairer and Wanner [26]. Among the first papers that con-
sider state-dependent time-steps in ODEs, in order to capture explosive behaviour, is
Hocking et al. [28] but one of the first comprehensive treatments is that of Stuart and
Floater [56] for both ordinary and partial differential equations. [56] identifies time-
steps of the order z/f(x) as being sufficient to recover the presence of an explosion in
the ODE 2/(t) = f(x(t)) when f is of polynomial order and of order 1/f(z) if f is of
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exponential type, although typically explosion asymptotics are not established. These
types of time-step are shown to be optimal in this work in the polynomial case, but we
also show that smaller step-sizes can be taken in the rapid growth case. In the PDE
literature, many papers consider blow-up asymptotics but typically the step-size taken
is proportional to 1/ f(z): see for instance [1, 15, 16]. Care has also been taken to avoid
spurious explosions in the simulation, as in Bonder and Rossi [13]. The literature on
the recovery of finite-time stability is less extensive, but many results can be recovered
from the blow-up case. There is nevertheless a significant literature on determinis-
tic finite-time stability: representative papers include Bhat et al [11], Hong [29] and
Moulay and Perruquetti [46], with often an emphasis on controlling the solution to
reach the equilibrium in finite time.

Our contribution here would therefore appear to be five-fold:

(1) we establish that the step-size recovers the asymptotic behaviour faithfully and

non-spuriously;

(2) we have identified the optimal size of mesh for explicit methods, in the sense that
asymptotically smaller meshes (with A = 0) correctly identify asymptotics but

that larger mesh sizes (with A = 0o) misspecify them;

(3) that transforming the state space can enable explicit methods to be used without

restriction on the step-size;

(4) for certain non-linearities, larger step-sizes can be used without loss of asymptotic

performance; and
(5) midpoint methods allow the asymptotic behaviour to be captured to higher order.

Superexponential stability in autonomous SDEs was comprehensively studied in Ap-
pleby et al [5] with rates of convergence determined contingent on the dominant non-
linearities being regularly varying with unit index. The literature on stochastic finite-
time stability is in its infancy. In the stochastic automatic control literature, a body
of results starts to emerge (see e.g. [18, 60, 61]). However, the asymptotic behaviour
of solutions close to the stability time, the connection with ODEs and the interplay
between the noise and drift that we detail here does not seem to be generally known.
Feller’s test, which gives conditions on the scale and v function under which finite-time
explosion or stability result are given in e.g. Karatzas and Shreve [34]: our connection
between these classic results and Osgood-like conditions for stability or blow up in
related ODEs appears however to be new. Stochastic explosions have been extensively
studied, especially when the diffusion term ¢ is o(f), particularly in the context of
fracture dynamics (see e.g. Sobczyk [52]). The numerical analysis of these explosions

(using step-sizes of the order 1/f(x) when g = o(f)), as well as continuity of the ex-
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plosion time in the initial data have been studied by Davila, Groissman, Rossi et al in
a series of papers which include [14, 19, 25].

Precise asymptotic results on the non-exponential growth or decay in solutions of
autonomous SDEs were pioneered by Gikhman and Skorohod [24], with follow-up work
by Zhang and Tsoi [64, 65]. The paper of Appleby, Rodkina and Schurz [9] relaxed
significantly the requirements on the size of the diffusion term so that exact rates
of decay could be recovered, but with additional regular variation hypotheses being
needed on the non-linearities. The contribution of this work has been to replace these
quantitative, regular variation hypotheses with monotonicity hypotheses, and to prove
new results in the case of super-exponential convergence and subexponential stability.
In addition, the results for the asymptotic behaviour in the neighbourhood of the finite-
time stability time under condition (1.25) appear also to be new and again do not need
regular variation to proceed. Furthermore, the precise asymptotic results recorded
for subexponential stability in Chapter 13 and for finite-time stability in Chapter 11
allow for larger noise contributions than in the existing literature. Nevertheless, we
are still short of determining necessary and sufficient conditions for the preservation of
deterministic rates of convergence in the presence of “small noise”, as has been achieved
for SDEs with state-independent noise in Appleby and Patterson [6] in the case that
|f| € RVy(B) for p € (0,1). There are many works in the deterministic literature
which exploit regular variation in order to establish sharp asymptotic results, and a
nice monograph summarising some of this work is by Maric [43].

Concerning the numerical methods for SDEs, our works are more in the spirit of
dynamic consistency of Appleby, Berkoliako and Rodkina [2], which determines rates
of (subexponential) convergence to zero of difference schemes modelling the solution of
(1.17). However, that work does not prevent solutions of the difference equation from
changing sign, and does not recover the asymptotic behaviour unconditionally in the
convergence parameter A. Moreover, it is unclear whether the scheme in that paper
would recognise if the solution of the SDE tended to infinity, and the rate at which
that would arise, as can be done in the work here. Finally, we are able to study general
decay rates, rather than the power decay rates which are studied most extensively
in [2].

Positivity preservation for explicit schemes with fixed step-sizes (see e.g. [3, 4]) can
generally only be achieved with positive probability, and implicit schemes have been
developed which overcome this problem, such as that in Szpruch, Mao, Higham and
Pan [54] especially in the context of simulating solutions of financial problems, such as
the Cox-Ingersoll-Ross, constant elasticity of variance or Ait-Sahalia models. In these
cases, the authors are interested both in preserving positivity with probability one and
with the simulation being a strong approximations on a compact interval. Our deci-
sion to make logarithmic transformations makes the recovery of strong approximations

difficult, but we seem to gain by being able to recover other qualitative features of the
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dynamics on infinite time domains with neither a restriction on our step-size parameter
nor on the strength of the non-linearity.

The paper of Szpruch and Neuenkirch [53] is especially germane, as they apply the
philosophy presented here by pre-transforming the SDE using a Lamperti transforma-
tion, simulating the solution with a constant step-size in the new co-ordinate system,
and then recovering the solution by undoing the co-ordinate transformation. However,

this method works only when the function

71
i) = [
and its inverse are known in closed form. By contrast, our method does not rely on a
particular transformation which is dependent on the structure of the SDE, nor on the
existence of certain integrals or their inverses in closed form. A similar approach to
keeping the solution in a given domain is presented in [20]. Pre-transformation with
a view to preserving asymptotic behaviour, as well as strong convergence, is nicely
treated in Szpruch and Zhang [55], though the methods there would not be able to
deal with faster than exponential convergence nor with finite-time stability.

Regarding explicit schemes, another approach which deals attractively with the
problem of loss of positivity is advanced by Mao and Liu [39] by stopping the simulation
as soon as a negative value of the solution is obtained and they are able to show strong
convergence of the solutions up to this crossing time.

The use of variable step-size methods for highly non-linear SDEs has been appre-
ciated in recent years. It seems work of Higham, Mao and Stuart [27], and then of
Hutzenthaler, Jentzen, Kloeden and Neuenkirch in a series of papers [32, 33| identified
this problem for fixed-step methods in explicit problems, showing that strong con-
vergence could not be obtained. One approach to obviate this is to employ fixed-step
implicit or semi-implicit methods (see works of Mao and Szpruch[41], Milstein et al.[45]
and Schurz [50, 51], but in the higher dimensional cases this is computationally expen-
sive. A method of controlling the drift and diffusion coefficients by suitable mollifiers,
while still using an explicit scheme, and recovering strong convergence is the so-called
“Tamed Euler method” first proposed and studied in the papers and monograph of
Hutzenthaler, Jentzen and Kloeden [30, 31], and further developed by Sabanis [48, 49].
Nevertheless, it appears that some long-time dynamical features of the tamed scheme
may not be acceptable (see e.g. [58]) and, for this reason, adaptive time-stepping can
sometimes be an attractive option.

The first generation of works with adaptive time-stepping in SDEs include Gaines
and Lyons [23], Burrage et al [17] and Lamba et al. [38]. However, the works that are
closer in spirit to our own are those of Fang and Giles [21, 22], Kelly and Lord [35],
Kelly et al. [37] and Liu and Mao [40], as well as Davila et al. [19]. In each of these

works, the goal is to recover the long-time behaviour of the solution of an SDE and

22



Comparison with Works in the Literature

perhaps strong convergence on compacts, such as in [21, 35, 40]. The works [40] and
[37] pay more care to the discretisation of the It6 integral than we do here. This enables
strong convergence to be obtained in certain cases.

The work [37] in particular shows that the condition L > 1/2 in (1.25) does not give
stability, while (1.50) gives convergence of the solutions with probability one, provided
the convergence parameter is sufficiently small. Also, the simulated solutions remain
positive for a certain number of time steps with probability arbitrarily close to unity
provided the convergence parameter is small enough. All this is achieved with a step-
size which would be asymptotic to ours in (1.53). However, in the case of our work
stability and positivity are achieved independently of the convergence parameter and
the results in [37]. Furthermore, in [37] questions as to the convergence or divergence of
the sequence (t,,), which are of great concern to us, are of less worry in [37] and are not
studied. This is potentially of importance, as in [37] positivity with high probability is
ensured for a fixed number of steps, but if the ¢,, tends to a finite limit, positivity may
not be ensured as the finite stability time is approached.

We should mention of course that there are numerous other works concerning the
preservation of asymptotic features in discretisation of SDEs. Apart from simple Euler
methods and preservation of stability or equilibria, researchers have examined more
complicated numerical methods (e.g. Milstein methods [36] or #-methods [10]) as well
as more complicated features such as stationary distributions (see e.g. the series of
papers of Mao, Yuan and Yin [42, 63, 62]).
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Chapter 2

Ranking of Asymptotic

Convergence Measures

2.1 Introduction

In this chapter we discuss the connections between various ways in which we can
obtain limiting behaviour for the solutions of the ODE (1.1) or the SDE (1.17), both
in the case of super-exponential stability and finite-time stability.

There are several plausible measures for the asymptotic behaviour and in this in-
troduction we focus on the super-exponentially stable cases since the necessary consid-
erations are similar for the case of finite-time stability. In particular we identify three
plausible measures and to see how these measures arise, we momentarily consider an
ODE which will have exponential-type decay. Let a'(t) = f(x(t)) where f(x) ~ —ax
as x — 07 and a > 0. Define F(x) := fxl 1/f(u) du. Then we notice that

lim log z(?) = —a = —a lim Fx(t)

t—o00 t t—o0 t ’
so that Fla(t | .
i @) _ o —loga(t)
t—o0 t t—o0 (— logo F_l)(t)

Therefore in the case of asymptotically linear f, the measures lim;_,o, F'(z(t))/t and
limy o, —log(z(t))/(—logo F~1)(t) capture the negative Liapunov exponent of z. If
o = &, we also have that z(t) = F~1(F(§) + t) and it is natural to ask whether
z(t) ~ cF71(t) as t — oo for some ¢ > 0. This certainly holds when f(z) = —az and
can also hold when f(x)+ ax tends to zero sufficiently rapidly as = tends to zero. This

suggests for general non-linear ODEs that we consider also the measure

lim z(t)
S EIO)

In this chapter, we examine the reliability of these measures for fixed f and different
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Super-Exponential Stability

initial conditions on one hand and for different classes of functions f on the other.

2.2 Super-Exponential Stability

The function F', defined by (1.11), plays a key role in determining the rate of con-

vergence because solutions of (1.1) are given by
F(x(t,§)) = F(§) +t, t>0,

or x(t,&) = F~Y(F(&) +t). Moreover, solutions always obey

i F09)

, (2.1)

which gives an implicit and £-independent estimate of the rate of convergence. This is
a natural analogue to the Liapunov exponent because it considers the convergence of
a function of the solution rather than the solution itself, relative to linear growth in
time.

Comparing the convergence of the solution itself for different initial conditions gives
poor asymptotics because of super-exponential convergence. If z(t) is the solution of
(1.1) with £ = 1 then the solution is z(t) = F~!(t) where lim;_,,, F~'(¢) = 0. By (1.13)
—f(z(t))

!
lim r(t) = lim ——* = —00.
t—oo Jj(t) t—oo aj‘(t)

Therefore for ¢ > 0 then

—1
limF (t—l—c)_l. z(t +c)

= = 0.
D FUt) o a()

Letting & < & then

FU+F&) _ o F AT+ F(&) ~ F(&)

t—o0 ,’L’(t, 52) - t—o00 Fﬁl(t + F(éQ)) T—o00 Fﬁl(T) =0

There is another natural analogue of the Liapunov exponent, where we retain the
logarithm dependence on x in the numerator. Using logz(¢) in the numerator of the
metric calculates rates of convergence that depend on the initial condition when f is
O(xlog(1/z)) as * — 0. However, when f is o(xlog(1/z)) as x — 0% the calculated
rates are independent. As a result, logz(t) is only suitable for a limited class of rate

functions f. This is made precise in the lemma below.

Lemma 1. Suppose F' is the function defined by (1.11). Let

lim & =
e—0t xlog(1l/x)
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Super-Exponential Stability

(i) If ¢ =0, then

_logm(ta 61)
=1 2.2
P (—logo F—1)(t) ’ (2:2)
thus |
lim M -1

t—o0 —log z(t, &)

(ii) If ¢ # 0, then
. —logx(t, &) _ &),
t—00 (— logoF*l)(t)

thus
i 1082t &1) _ cpen-Fie)

to0 —log z(t, &)

Proof. If z(t) is the solution of (1.1) with x(0) = 1 then x(¢) = F~!(¢) with F~'(¢) = 0
as t — oo. Define a(t) := (—logo F~1)(t). Then —logx(t,&;) = (—logo F~1)(F (&) +
t) = a(t + F(&)). Note that

dt)_ fEW)
alt) ~ F(0) log(L/F (1))

Thus

: S(FH(1) o flx)
tliglo F=1(t)log(1/F~1(t)) }BILI(I) zlog(1/z) “
Hhus log «(t, £1) (t+ F(&)
—logx(t,&) .. a 1)) _ cF@)
S (Clogo () e at) O
If ¢ = 0 then
. —log x(t,&) _q
twoo (—logo F1) ()
thus

. —logx(t, &) T —log x(t, 1) (—logoF_l)(t) _
?ﬁq%W@f?$Q4wﬁwm'—mmmg)‘L
If ¢ # 0 then

—logz(t, &) F(&r)
= P £,
B Cloga P ¢ 7

thus
lim M — cFE)=F(&) £ 1,
% =Tog a(t, &)

as claimed. O

Remark 1. The analysis above shows that

1

t—00 lOg x<t7 62)

in the case of sub-exponential convergence since f(x)/z — 0 as z — 07. [
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Super-Exponential Stability

In the case when

lim F(a(t)) =1 and lim —logz(t)
t—o0 t t—00 (— logoF_l)(t)

=1,

it is interesting to ask whether we might prefer to use the second metric. However, the

following result suggests that the first metric is more fundamental.

Lemma 2. Suppose x is a function with

i 2E0)

t—o00 t ’
and a(t) = (—logo F~1)(t) is reqularly varying at infinity. Then

lim log z(t)
t—oo (—logo F—1)(t)

=1 (2.3)

Proof. An e—T(¢) argument gives for any ¢t > T'(e), F~1((1—€)t) > x(t) > F~1((1+¢€)t).
Therefore

a((1 —e€)t) — log x(t) a((1+e)t)
@ ClogoFND a0 2T
Letting t — oo and € — 07 yields (2.3). O
With a(t) = (—logo F~1)(t) and x = F~1(t), we get
W) ) Faiw

a(t) — F(t)log(1/F~1(t))  wlog(l/x)

Therefore a sufficient condition for a to be regularly varying is

im 20 _ im /() g u) =:c<oo
iy = (e L o) = o< 2

We see that we need f(x) = o(xlog(1/z)) as © — 07 since F(z) — oo as & — 0%,

We now investigate when (2.4) holds and identify a critical non-linearity at which this

hypothesis ceases to hold.

Proposition 3. Suppose M € C'((0,00); (0,00)) and

wli}r& M (z)loglog (1) = oo, (2.5)
lim (M(z)— M'(z)zlog (1)loglog (1)) =: M* € [0, 00]. (2.6)

z—0t

Then

_ log (f(x)/(xlog(1/x)))
M(z):= loglog(1/x) ’
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Super-Exponential Stability

obeys
1

@
g (1/7) / F) =
and hence a € RV, (1/M*) if M* € (0, c0].

(2.7)

Proof. Writing y := loglog(1/x) we get
f(z) /5 1 du = e—M@)loglog(1/z) /5 eM(u) loglog(1/u) i
vlog(1/2) J, TG . uloa(L/w)
— e*M(eXp(fey))y /y 6M(exp(—ev))v dv.
log log(1/4)

Thus

5
1 i y
lim f(x) / du = lim e—M(y)y/ M@ 1, ’
e—0t xlog(l/z) J, f(u) y—00 5

where M (z) := M(exp(—e®)). Since M(z)loglog(1/x) — oo as x — 0% then M(y)y =
M (exp(—e¥))y = M(x)loglog(l/x) — oo as y — oo where y = loglog(1l/z). By
L’Hopital’s Rule

%GM(U)U de eM(y)y 1
lim 2 ——— = lim — . = lim — —
vvoo MWy s MWU(M (y)y) oo M(y) +yM'(y)
where
M(y) +yM'(y) = M (exp(—e”)) +y - M (exp(—e)) - exp(—e") - —¢’
= M(z) +loglog (%) - M'(z) -z - —log (1)
= M(z) — M'(z)xlog (%) loglog ().
By (2.6), M(y) 4+ yM'(y) — M* as y — oo and so (2.7) holds. O

The condition (2.6) is cumbersome and opaque. In the presence of monotonicity mat-

ters simplify as the following corollary demonstrates.

Corollary 1. Let M obey (2.5). Then
(1) If M is in C1(0,00), then M(z) — M* € (0,00) asx — 0" thena € RV, (1/M*).
(11) If M is decreasing and M(x) — 0o as x — 01, then a € RV, (0).

(1i1) If M is increasing and M(x) — 0 as x — 0%, then a is not reqularly varying at
nfintiy.

Proof. Note that

yeY

lim zlog (;) loglog () = lim exp (=¢”) - e’y = lim exp (e¥)
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Finite-Time Stability

Thus if M € C*(0,00) then

lim / du— lim ! = lim ! L
20+ xlog l/x f(u Cyooo M(y) +yM'(y) =0t M(z)  M*

as claimed. The proofs of the other parts are similar to Lemma 5 and hence are
omitted. O

We have three competing metrics, mainly

lim lim M =1, —log z(1)

_ — 1.
i F1(z(h)) 0 b ¢ 2% (—logo F-1)(t)

We have shown that measure one seldom prevails when x is the solution of an ODE,
that measure two always prevails and measure three prevails for relatively weak f’s
that generate super-exponential convergence but not prevail for very strong f’s.

We will later show for super-exponentially stable solutions that measure two always
applies for SDEs but that measure three applies for relatively weak non-linearities.
However, it seems that measure three might not apply for SDEs with stronger non-
linearities.

Based on our experience for ODEs, which places the second metric as being ex-
tremely reliable but the first and third metric being at least less univeral, we will
prefer for SDEs to use metric two. Metric two has further advantages for numerical
methods. Since we will wish any good numerical method to recover a discrete analogue
of metric two. Supposing that z,, is the simulated value of the solution at the n** mesh
point, which we suppose to be at t,, we will want to show that F(x,)/t, does not

deport appreciably from unity for large n. Of course

Pl “*Z T

a good approximation of F'(x,,) will result from good control over the summand f;’;l 1/ f(u) du.
We will show under mild monotonicity restrictions on f that these summands can be
well controlled for appropriate numerical methods. Thus it becomes a practical propo-
sition to demonstrate that the discrete version of metric two behaves appropriately for
suitable numerical schemes. Similar control with natural control on f seems harder to

achieve for discrete analogues of the other metrics.

2.3 Finite-Time Stability

In the case of finite-time stability, solutions of (1.1) are given by

F(l’(t,f)) - T§ -t te [Ova)»
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Finite-Time Stability

or z(t,£) = F~Y(T; — t) where T; = f[f 1/f(u)du is an explicit function of ¢&. Thus
—logz(t,&) = (—logo F~1)(Ty — t) = a(T; — t) where a(z) := (—logo F~1)(x). Since
7 F-1

F(x) - 0asx — 07, F~'(z) — 0 as x — 07. Therefore a(z) - o0 as z — 07. As a

result

F(x(Te —t,€) =t, 0<t<T
—loga(Ty — t,&) = (=logo F71)(t), 0<t<T,

and
.Z'(T& — t, 51) = iL'(T& — t,fz), 0<t< max(Tgl, T@).

Therefore, there is no distinction between the measures

F(z(T — 1))

lim ——~— 2 — 2.
Jm = = (28)
—1 T —
im ng(_ ) =1, (2.9)
t—0t+ (—logo F=1)(t)
and T
i 200 (2.10)

t—0+ To(Ty — ) ’
where x, x1 and x5 are solutions of (1.1) with finite-time stability times 7', T} and T,
respectively. All are invariant with respect to initial conditions and path. This is in
clear contrast from the super-exponential case where a ranking exists.

Suppose now we have asymptotic information regarding a positive function x(t)
(which may not be the solution to an ODE) for which lim, ,7- 2(¢) = 0. The question
is whether a ranking now exists with respect to the measures (2.8) and (2.9). We now
show that in some cases (2.9) implies (2.8) and in others (2.8) implies (2.9). This is of
particular interest later when x is the solution of an SDE, and also when a discretisation
of the solution is considered. The main conclusion to be drawn from the analysis in the
SDE case is that we can always arrive at a measure which is invariant with respect to
initial conditions and sample paths and moreover the same measure will preserve this
invariance or robustness under suitable discretisation. These observations are made
precise by the following lemma whose result can be inferred from Lemmas 37 and 38

in Chapter 9; accordingly we postpone the proofs until that point.

Lemma 3. Let x be a positive function on [0,T) with x(T~) = 0.

(1) If

lim —logz(T —t)

t—0+ (—logo F-1)(t) (2.11)

and _
, . (=logo F71)(\x)

lim lim —
A=1t 20+t (—logo F~1)(x)

=1,
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then _
F(a(T -1))

=1. 2.12
t—0t T—1t ( )

(i) If (2.12) holds and

_ -1
lim lim ( logoFL Jr)
A1+ 20+ (—logo F—1)(z)

:O(:),

then (2.11) holds.

The analogues of the limits (2.1) and (2.2) in the super-exponential case are

- Fa(t,9)
tEr% o b (2.13)
and
lim ——0srb8) (2.14)

t—1; (—logo F-)(Tg — 1)

Equation (2.13) always prevails. However, in contrast to (2.1), the denominator in
(2.13) is &-dependent. Nevertheless, (2.13) can still be viewed as a robust metric for the
asymptotic behaviour of (1.1) close to the finite stability time T;. Note that T; —t is
the time remaining before the solution reaches the equilibrium and if this is used as our
measure of time, the asymptotic behaviour of F(z(t,¢)) is é&-independent, as measured
by (2.13). Furthermore, this measure need not be viewed as a technical contrivance
but is, we claim, a meaningful and natural quantity to study in applications. This is
because in finite-time stability (or that matter explosion) problems, it is natural to
consider asymptotic behaviour as the time to the singularity, T: — ¢, approaches zero.
Indeed, the measure of time in this denominator in (2.13) is linear, just as in (2.1),
albeit that in the former case we measure time remaining and in the latter time elapsed.

In the case of SDEs, we would prefer if our measures were invariant with respect
to the path, and since finite stability times are likely to be path-dependent, measures
such as (2.13) and (2.14), which depend on the time remaining to the finite stability
times but are otherwise independent of the initial data or path, are of value.

The question addressed previously was whether (2.1) implies (2.2). We now ask
whether (2.13) implies (2.14). This is addressed in the following lemma.

Lemma 4. Suppose ~
F(x(t
L Fa()

=1
T, Te—1

and let a(x) = (—logo F~1)(z) be regularly varying at 0. Then

, —log x(t)
lim —
S Clogo F)(T =)

=1. (2.15)
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Proof. For all € € (0,1) and any t sufficiently close to T¢ we have (1 —¢) - (T — t) <
F(z(t)) < (1+¢€) - (Tg —t). An € — T¢(e) argument gives for any ¢t > Ty — J¢

a((1—€)(Tg — t)) > —logx(t) > (—logo F7N)((1 + €) (Tt — t)) = a((1 + €)(T¢ — t)).

Therefore
o((1-OT—1) _  lga(t) _ a((1+ (T 1)
a((Te — 1)) (—logo F=1)(Te — t) a((Te —t))
Now let ¢ — T, and then € — 07 to get (2.15). O

In the case that

o B { C C)) Iy A OV )
et a(z) a0t FY(z)log(1/F~1(z)) w—ot ulog(l/u)

= lim — /() i v = —cC
—u1—>0+ ulog(l/u)/o f(v)d o

a will be regularly varying as required by Lemma 4. Therefore

lim du = 2.16
:vi>0+.’1710g 1/&: / f(u) e (2.16)

gives the right behaviour and we now investigate when (2.16) holds.

Lemma 5. Define a(z) := (—logo F~Y)(z). Suppose

. log (f(x)/(xlog(1/x)))
M(z):= log log(1/x) '

(i) If M(x) = 0o as x — 0% and M is decreasing, then a € RVy(0).

(i) If M(x) — M* as x — 0% and xM'(z)loglog(1/x)log(1/x) — 0 as x — 0T,
then a € RVy(1/M*).

(iii) If M(x) — 0 as x — 07, then zd'(x)/a(x) - —oc0 as x — 0T and a is not

reqularly varying.

Proof. Putting y := loglog(1/x) we get

@ —M(u)loglog(1/u
eM(2) loglog(l/x)/ e~ M(u)loglog(1/u) "
0 UIOg(l/u)

_ M)y / 7 o M(exp(—e) gy
Y

log(1/2) / ) ™
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Then with M(y) = M (exp(—e?)),

F e
lim sup M = lim sup (eM(y)y/ e~ M@ dv) .
o+ xlog(1l/x) y—00 y

If M is decreasing then y — M(y) is increasing. For v > y, then M(v) > M (y), so
vM(v) > vM(y) and hence exp (—UM(U)) < exp (—vM(y)). Thus

o0 N (e} 5 —yM
/ e—vM(v) dv < / e—vM(y) dv — e ~y () ‘
Y y M(y)

Therefore

F 1
OglimsupMSIimsup = =0
w0t rlog(l/x) y—oo  M(y)

)

as needed in part (i). For part (ii), by L’'Hopital’s Rule

[ e~ MW gy —e M)y 1 1
lim 4——— = lim = lim — — =
y—00 e—M(©)y Y=o o—M(y)y (—M’(y)y _ M@)) v—oo yM'(y) + M (y) M*’
where

M(y)+yM'(y) = M (exp(—e”)) +y- M’ (exp(—e)) - exp(—e) - —¢"
= M(z)+loglog (%) -M'(z)-x-—log (%)
M

(z) — M'(x)xlog (+) loglog () .

If M(z) — M* as x — 0" and M’'(z)zlog (1) loglog (1) — 0 as z — 07 then

o0 e—M(v)v dv 1 1
lim - = lim — — = ,
Y—00 e—M(y)y Yy—00 yM(y) + M(y) M*

hence

!/ x
lim 2% (z) = /() / L du = L,
=0t a(x) zlog(1/x) J, f(u) M+
and thus a € RVy(1/M*). For part (iii), if M is increasing, M is decreasing, then for
v >y, vM(v) < vM(y) so exp(—vM(v)) > exp(—vM(y)). Thus

. S 3 0o M —M
6M(y)y/‘ efM(v)v dv > BM(y)y/ G*M(y)v dv — e (y)y~_ e Wy _ ~1
y Yy M(y) M(y)
Thus P )
lim inf M > liminf — = 00.

e=0t xlog(l/z) — v M(y)
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Hence

L I@RE)
-0+ xlog(1l/x)

Then za'(z)/a(z) — —oc0 as z — 0F. Now a(r) = (—logo F1)(x) — oo. Thus for
any N > 1 there is an *(N) > 0 such that Vz < z*(N), zd'(x)/a(z) < —N and so for
fixed A > 1 and Az < *(V)

Az ’ Az
log a(Ar) :/ ua'(u) .ldu< _N/ 1du< —Nlog \.
a(x) . alu) u z U

Hence

A
lim sup log (%) < —Nlog .
a(x

z—0t

lim sup log (a()\x)) = —0o0,

z—0t CL(:L')

Thus

and hence )
lim a(\7)
-0+ a(z)

=0, VA>1,

so a is not regularly varying, as we claimed. O
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Chapter 3

Asymptotic Behaviour with
Monotonicity Assumptions on the

Non-Linearity

3.1 Introduction

As stated in the introduction, the central theme of this thesis is developing nu-
merical methods which preserve important qualitative properties, such as positivity,
monotonicity and convergence to an equilibrium, and quantitative measures of this
phenomena, such as estimates for exit times i.e. explosion and finite stability time and
precise estimates of asymptotic behaviour of the numerical simulations in the temporal
vicinity of these exit times.

In this chapter, we start this analysis by considering the simplest class of ODEs
which will generate these diverse phenomena. In fact we specialise to consider scalar
autonomous ODEs with positive initial values which possess a unique and globally
attracting equilibrium at zero. More particularly we consider the differential equation
(1.1) viz.,

a'(t) = —f(x(t), t>0, x(0)=¢>0,

for which f(x) > 0 for all x > 0, f(0) = 0 and f is continuous.

In the case when f is well-behaved, in the sense it obeys a global Lipschitz condition,
standard fixed-step numerical methods will recover the important asymptotic behaviour
of the solution both on compact and infinite intervals. However, in the absence of such
global Lipschitz conditions and especially in the case when f has infinite one-sided
derivative at zero, both Implicit and Explicit fixed-step methods will fail to recover
important features, such as global positivity in the case of Explicit methods and finite-
time stability in the case of Implicit methods.

In this chapter, we will consider one-step Implicit and Explicit methods for sim-

ulating the solution to (1.1) in which the time-step will depend solely on the state
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of the system. We impose monotonicity conditions on f which are irrestrictive and
likely to be true in the case where solutions approach the equilibrium more rapidly
than an exponential function or reach the equilibrium in a finite-time interval. Under
these monotonicity assumptions, we show in broad terms that taking step-sizes which
preserve positivity and which behave asymptotically according to

o M@ _ o

z—0t xT

will recover all important qualitative and quantitative properties for sufficiently small
A in the case of Explicit methods and without restriction on A for Implicit methods.
Furthermore, important quantitative measures, such as estimates for the time at which
solutions of (1.1) hits zero as well as generalisations of the Liapunov exponent which

are tailored to these non-linear problems, are estimated to within O(A) as A — 0.

The results hold rather generally but these are certain exceptions which suggest that
it may be possible in some cases to choose a larger step-size without appreciable loss
of performance. Furthermore, the O(A) error estimates that we develop tend often
to come in the form of inequalities leaving open the possibility that the theoretical
analysis we present may be too conservative. These features of our general results
prompt in later chapters further analysis on equations which deal with a rich but more
limited class of non-linearities. In this class of so called “regularly varying functions”
we will later show that the general analysis presented in this chapter is in fact sharp
and that the choice of step-size of h(x) ~ Az/f(x) as x — 07 for A > 0 and small
is in many cases optimal. In fact we will see in the second half of the thesis when
autonomous SDEs are considered that time-steps of this order of magnitude are also
optimal for preserving the important quantitative and qualitative features we have
discussed above. We feel these facts justify the careful analysis we present for these
simple equations as that analysis helps build intuition for work on more complicated

problems.

3.2 Preliminary Analysis for Explicit Schemes

Our goal is to simulate the solution of the Initial Value Problem (1.1) viz.,
(t) = —fa(t), £>0, 2(0) =€ >0

We want a continuous solution of (1.1) to exist, for the solution = to be monotone

decreasing on its maximal interval of existence [0, 7¢) and that

lim z(t) =0,

t—)Tg
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the question as to whether T is finite or infinite being temporarily put to one side.
In order to satisfy these qualitative requirements it is natural to impose the following

hypothesis on f:
f € C([0,00);]0,00)), f(x) >0 for all z > 0, f(0) = 0. (3.1)

We now consider a discrete approximation to x. We compute this approximation at
an increasing sequence of times (,),>0 with ¢ = 0 and let x,, be the approximation to
x(t,) for n > 0. At every state y, we decide a priori how big a time-step we shall take
which depends solely on the state y. Therefore, if the time-step is to be h(y) at y, we
should define (¢,) by

tpe1 :=t, + h(xz,), n>0, t,=0.
This suggests we make the assumption
h € C(]0,00);[0,00)), h(z) > 0 for all z > 0. (3.2)
The assumption of continuity and existence of the one-sided limit

lim h(x) = h(0T) < oo,

z—0t

are technical but essential in generating qualitatively satisfactory solutions. The one-

step Explicit Euler scheme based on these precepts is
Tn11(8) = 2 () — h(zn(©))f (2 (8)), n=0,... ., Ne—1, 2(§) =£>0, (3.3)
where (z,(§)) is the sequence for a given initial value £ and
Qe={n>0:2,§) <0} and N¢:=infQ; (3.4)

are the set of all n’s for which the solution is non-positive and first time the solution

becomes non-positive. Define
ze = {x, :n € Qf}. (3.5)
Note if Q¢ = () then z,(§) > 0¥n > 0 and we set N = 0o. Define also

P :={(Yn)n>0: Yo > 0Vn >0}. (3.6)
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where P is the set of all positive sequences. For & > 0, z¢ € P is equivalent to
zp(€) > 0Vn > 0. We will show that the condition

<1, Vz>0, (3.7)
is necessary and sufficient to ensure the positivity of the computed solution.

Theorem 2. Suppose that f obeys (3.1) and h obeys (3.2). Let x¢ be the real sequence
defined by (3.5) where N¢ and Q¢ are given by (3.3) and (3.4). Then the following are

equivalent
(a) h and f obey (3.7);
(b) VE >0, z¢ € P.
Proof. Suppose (a) holds. Let £ > 0 be arbitrary. Then z((§) = £ > 0. Clearly
21(§) = & = h(§) f(€) > 0.
Suppose now we make the hypothesis
2j(€) >0,  j=0,1,....n. (H,)

Then (Hy) and (H;) hold. Suppose (H,,) holds. Then

Tni1(§) = 2, (&) — h(zn (&) f(2n(§)) = xn(§) <1 _ h(xn(g))f(xn(g))) -0

()

Therefore (H,+1) holds and thus (H,,) holds for all n > 0 i.e. ,(§) > 0Vn > 0. This
implies that Q¢ = ), N¢ = oo and therefore z¢ € P. Hence (a) implies (b). To show (b)
implies (a), by hypothesis z¢ € P. This means that z,,(§) > 0Vn > 0. In particular
z1(§) > 0. But as x¢(§) = £ we have

0 < 11(€) = 70lE) — hlrolE)) flao(€)) = € (1 _MOIE)

SO

e (E)
§

But since £ > 0 was chosen arbitrarily, (3.8) holds for all £ > 0 which is precisely (3.7).

<1 (3.8)

Hence (b) implies (a) and (a) and (b) are equivalent. O

The condition (3.7) is not only necessary and sufficient to ensure positivity; it also
guarantees, in conjunction with (3.1) and (3.2), the monotonicity and convergence of

(Zn)n>0 tO zero as n — oo.
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Theorem 3. Suppose that f obeys (3.1) and h obeys (3.2) and that (3.7) holds. Let
xe be the real sequence defined by (3.5) where N¢ and Q¢ are given by (3.3) and (3.4).
Then for any & > 0:

(i) xn(g) >0Vn > 0.

(it) Tn41(§) < n(§), n > 0.

(111) lim, o0 z,(§) = 0.

Proof. Part (i) is the forward implication in the previous theorem. Since z,,(£) > 0 for
each n > 0 and £ > 0 we have that f(z,(£)) > 0 and h(z,(£)) > 0. Hence

Tnt1(§) = 2u(§) — M(@n(§)) f(2n(§)) < (),

which is part (ii). Since (z,,(£))n>0 is a positive sequence which is bounded below, it
must have a limit as n — co. Let L¢ = lim, o0 2,(§). Then L¢ € [0,00). Also as f
and h are continuous on [0, 00), we have

Le = lim ,01(6) = lim {24(€) — hlwa () (2a(€)} = Le — h(Le) f(Le).

n—oo

and this is valid even when L = 0 (in which case part (iii) is true). Clearly L, €
[0, 00) must be such that h(L¢)f(L¢) = 0. Suppose Lg > 0. Then h(L¢)f(Le) > 0 a

contradiction so it must follow that L¢ = 0, as required. O

Since we are going to impose (3.7) in what follows for the solutions of the Explicit
Euler method in order to make the presentation more digestible, we will suppress the
careful notation and constructions of this section and talk freely about the solution

(n)n>0 of the difference equation
Tpi1 = Ty — h(xy) f(z,), n>0, x0=E&>0,

where
n

tn+1 = Zh([tj>, n Z 0, to = 0.

J=0

Under (3.7), these sequences are well-defined without further qualification.
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3.3 Monotonicity Estimates and Standing Assump-

tions

We will make the following standing assumptions throughout this chapter when

seeking to simulate the solution of (1.1)

feC(0,00) :]0,00)), f(x) >0 for all x > 0, f(0) =
h e C([0,00) : [0,00)), h(z) > 0 for all z > 0;
f is asymptotic to an increasing function; and (3.9)

x+— x/f(z) is asymptotic to an increasing function. (3.10)

Other assumptions such as (3.7) may be needed for different numerical schemes.

We make the following observations which will be of use in several of our proofs.
Suppose (z,) is a decreasing positive sequence such that z,, — 0 as n — oco. Suppose
f01+ 1/f(u) du = co. If F is defined by (1.11) then F(x) — oo asz — 0", so F(x,) — oo
as n — o0o. Then forn > 1

1

F(z,) = f /—du+/ —du— (o —I—Z —du
Tn o In

Jj3-4—1

If F(x,) — oo as n — oo then

Z - f( du = 0o (3.11)

since F'(zo) is finite. Suppose f01+ 1/f(u)du < co. Then F(z) — L € [0,00) asz — 07,
so F(z,) — L as n — oo. Hence

Z/%H o) du < 0. (3.12)

If T is defined by (1.8) then for n > 0

du.
/f JwﬁlfU“

Equations (3.11) and (3.12) show that T is finite or infinite according to whether F(z)
is finite or infinite. If F is defined by (1.10) then F(z) — 0 as z — 0% so F(x,) — 0
as n — 0o. Then forn >0

F@n):/oxn f(l Z/%—du
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The closed-form expressions for F(x,), F'(x,) and T identify the summand in the last
identity as the key sequence in our analysis. We derive an asymptotic inequality for
this sequence by imposing monotonicity assumptions on f and x/f(x). By (3.9) and
(3.10) for every € € (0, 1), there is x1(€) > 0 such that

where ¢ and 1 are increasing functions. Next as x,, — 0 as n — oo, then x,, < x;(e)
for all n > Ny(€). Let n > Ny(e) and 2,41 < u < x,. Then

(1—€)-t(u) < T < (1+€) - ¢(u),
and since 1 is increasing
—€)- Y (@nt1) 1 6. Y(xn)
(1—e)— Sf(u)§(1+) —

Therefore for all n > Ny(e)

(1—6)-1/1(xn+1)10g( Zn ) < /+ﬁdu§ (14 ) - () log( Lo ) (3.15)

Tn+1 Tn+1

The form of (3.15) changes according to whether we discretise (1.1) using an Explicit

or Implicit Euler scheme. We determine the applicable form in the relevant section.

3.3.1 Preserving Soft Landings and Super-Exponential Stabil-
ity

The Explicit Euler scheme, defined by equation (1.41), reproduces the finite hitting

time of the equilibrium at zero when T is finite. When 7¢ is infinite, the Euler scheme

reproduces the super-exponential convergence to zero. Since (h(zx,)) is a positive se-

quence the limit

lim ¢, = T) = » _h(z;), (3.16)
j=0

exists but can be finite or infinite.

We first determine the form of (3.15) when an Explicit Euler scheme is used to dis-
cretise (1.1). The resulting equations will be used in out later proofs of preserving soft
landings, super-exponential stability and determining asymptotic convergence rates.

The following quantitative estimate on the step-size as we approach the equilibrium is
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central to the analysis in this thesis:

i 20 _ 17

Lemma 6. Suppose (x,,) is a positive decreasing sequence and the solution of (1.41).
If f obeys (3.1), (3.7) and (3.10) while h obeys (3.2) and (3.17) with A € [0,1) then

(3.15) holds wviz.,
Ty,
) / —du< 1+6)-w(1’n)log( )
In+1 xn+1

(1= €)  ¥lnsr) log (

Furthermore,

(i) if A =0 and f obeys (3.9), then for all € € (0,1) and all n sufficiently large

(1—e)* | (1+¢)?
Crep M= | F®s T

(). (3.18)

(11) if A € (0,1), then for all e € (0,1) and all n sufficiently large

1-e? 1 1 1
R— < — <
it707 ae\iza MTns) o Flu du

f(u)
(i J—r 32 ' %bg (ﬁ) h(z,). (3.19)

Proof. We prove part (i) first. Let A = 0. By virtue of (3.9), (3.14) and the construc-

tions thereafter are valid and we have

T o oy~ Vmn) and (o) <@

Substituting these expressions into (3.15) yields for n > N (e)

l—€¢  Tn (xn> o] 14+e a, (mn)
. Jog | — ) < —du < —— . ———1lo . (3.20
e Ty B\ ) S L T ™ S T T e ) B2

Define

I

o () =t (1 - M) )
Tni1 Tn Ln
as n — 00, since (3.17) holds with A = 0 and —log(1 — z) ~ x as  — 0". Thus there
is an Ny(e) € N such that for n > Ny(e)
h(n) f ()

(1—6)-$—<an<(1+e)-w.
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Let N3(e) := max(Ny(e), No(€)). Then for n > Nj(e)

1= o hedf@) _ (™ 1 (4w, he)f)
1+e  f(zp) Ty, S/anrl f(u)d = 1—¢  f(z,) Ty '

Thus for n > Nj(e)

1—¢)? o1 1 2
l+e Tn  f(@n41) ) l—e
Equation (3.13) implies
1—(—:<f(xn)<1+e and 1—e<f(x"+1)<1+6.

QS(JZ,—J ¢(xn+l)
Thus (1 —¢€) - ¢p(x,) < f(z,) and f(2pi1) < (14 €) - p(xps1). So

f(zn) 1—€  oz) 1—e
f(anrl) ~ 1+€ ¢(xn+1) ~ 1+67

(3.22)

since ¢ is increasing and (x,,) is decreasing. Substituting this into (3.21) yields

1—¢)? o 1+ ¢)?
(1= hwn) < — du< A+e° h(z),
(1 + 6)2 T Tn+t1 (u) I—e¢
for n > N3(€). Since
n—00  Tp n—o00 Ty
there is n > Ny(¢€) such that
1—-e< o+l <l+e
Tn
Let Ns(€) := max(N3(€), Ny(¢)). Then for n > Njx(e)
(1—e) o1 (14 ¢)?
h(z) < L du< S ),
Grep M=) RS T e

which is equation (3.18) and proves part (i). To prove part (ii), we have A € (0,1):
the estimates x, < x1(¢€) for all n > Nj(€) and (3.20) still pertain:

l—€ Zpn (xn) o] l+e¢ =z, <xn)
. dog | — | < ——du < . -log .
L+e f(zng) Tpt1 Trg1 f(u) IL—e f(x,) Tp+1
Define h
a, = log < Tn > = —log (1 — —(xn)f(xn)> .
Tn41 Tn
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Since (3.17) holds and A € (0, 1) then

lim a, = — lim log (1 - M) = —log(1 — A) = log (%) .

n—00 n—0o00 Tn

Thus there is n > Ny(e) € N such that

(1—e)-10g<ﬁ) <an<(1+6)-log<ﬁ).

Let N3(e) := max(Ny(¢€), No(€)). Then for n > N3(e)

(1—¢€)? 1 1 AZyiq o1 (1+¢e)? 1 1 Ax,
—1 : < < =1 : .
1te A BP\T-A) flan) = xnﬂf(u)du_ 1—c AB\1-A) Flan)

Since h(x,) ~ Ax,/f(x,), so there is Ny(e) € N such that for n > Ny(e) we have

Az,
fxn)

Az,

Flan)

Let N5(e) := max(Ny(€), N3(€)) and n > Ns(€). Then

(1—e)? 1 1 =™ (1462 1 1
T log (ﬂ) h(2pg) < W du < —— SERY log <—A) (),

(I—e)- < h(z,) <(1+e)-

which is equation (3.19) and proves part (ii). O

In our next result, we show that 7}, is finite or infinite according to whether T¢
defined by (1.8) is finite or infinite.

Theorem 4. Suppose f obeys (3.1), (3.7), (3.9) and (3.10) while h obeys (3.2) and
(3.17) with A € [0,1). Let (t,) and T}, be defined (1.42) and (3.16).

(i) If f obeys (1.7), then Tj, < cc.
(ii) If f obeys (1.9), then T) = cc.

Proof. By (1.7), f01+ 1/f(u) du < oo then Ty < oo from (3.12) since

Ty

- 1 ¢
——du = ——du = .
2 ), | Fgte=Te<oo

When A = 0, the Comparison Test applied to (3.18) shows the summability of the
summand, (fgcn”+1 1/f(u) du), implies that of (h(x,)). When A € (0,1), the Compari-

xT

son Test applied to (3.19) shows the summability of ( f;n"ﬂ 1/f(u) du) implies that of

(log (25 ) h(z,)/A) and hence (h(z,)) since log (:25) /A is finite when A € (0, 1).

Hence in both cases (h(x,)) is summable and we have that ¢, = Z;:é h(zx;) forn >1
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obeys t, — T, := > oo h(wj) < o0 asn — oo.

By (1.9), f01+ 1/f(u) du = oo then Ty = oo from (3.11) since

Z %f /f du="Te=

The Comparison Test applied to (3.18) and (3.19) shows that (h(z,)) is not summable
and obeys t,, = Z?:_Ol h(x;) — oo as n — oo. Therefore ¢, — 0o as n — . O

The next result shows that, once h obeys (3.17), the Euler scheme (1.41) recovers
the exact rate of asymptotic convergence when A = 0 but not when A € (0, 1) despite
preserving finite-time and super-exponential stability. We tackle the case of super-

exponential convergence first.

Theorem 5. Suppose f obeys (1.9), (3.1), (3.7) and (3.10) while h obeys (3.2) and
(3.17) with A € [0,1). Let F' and (t,) be defined by (1.11) and (1.42).

(i) If A =0 and f obeys (3.9), then x, > 0 for alln >0, (x,) is decreasing, x, — 0

as n — 00, t, — 00 as n — oo and

F
lim (zn)

n—00 tn

=1.

(1)) If A € (0,1), then x,, > 0 for alln >0, (x,) is decreasing, x, — 0 as n — oo,
t, — 00 as n — oo and

1i

Flan) _ llog (ﬁ) =: Ap(A).

Proof. The positivity, monotonicity and convergence of (x,) have been addressed in
Theorem 3. Since f obeys (1.9) then f01+ 1/f(u)du = oo and t, — 0o as n — oo by
Theorem 4. We prove part (i) first. Letting n > Ns(e) + 1 in (3.18) yields

-1 n—1
1 —e)? (1+4¢)?
z wx &[0 < U S g
ZNs( j=Na(e) T+ =N (e)
Thus for n > Nj(e) + 1
(1—e)t (14 ¢)?
: (tn - tN5(e)) S F(xn) - F(xN5(e)) S : (tn - tN5(€))‘

(1+€)? 1—e¢

Therefore, as t,, — 0o as n — 00, by dividing by %, and letting n — oo we get

1 — 4 F n F n 1 ’
(1-¢) < liminfM < lim sup () < 1+9 :
(1 -+ 6) n—00 tn n—00 n l1—e
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Letting € — 0% yields

tn

lim =1
n—oo

Y

the desired limit in part (i), as claimed. We now prove part (ii). Letting n > Nj(¢) + 1
in (3.19) yields

(1-— 6)2 ol (1+ 6)2 n—1
(1 + 6)2 /\E(A) Z xﬁ_l B Z Tj+1 f( ) vs (1 - 6)2 )\E(A) j—z h(l‘])

J=Ns(e) J=Ns( =Ns(e)
Therefore
1—¢)? - 1+¢€)?
T Ae(d) Y A < Flan) = Flow) < ok () (6t
j=Ns(e)+1
or
1 —¢)? 1+e¢)?
—El n 6;2 AB(A) - (trr —tns911) < F(@n) — F(2ng(0) < ﬁ AB(A) - (tn — g ().

(3.23)
Since h(z,) ~ Ax,/f(z,) then h(xz,) — 0 as n — oo by (1.6). By (1.42), t,41 =
tn + h(zy) so t,i1/t, — 1 as n — oo. Therefore as t,, — 0o as n — oo dividing (3.23)
by t, and letting n — oo yields

(1-¢?

Ag(A) < liminf Fle,) < lim sup d

. < “Ap(A
(1+¢)? T n—oo th T oo tn (1 —¢)2 E(A)
Letting € — 07 yields
F(a,
im 20 3 (a),
n—oo  t,
the desired limit in part (ii), as claimed. O

Remark 2. Theorem 5 part (ii) shows that A > 1 gives spurious asymptotic behaviour
since Ag(A) is undefined. O

The next results shows the Euler scheme correctly predicts the precise asymptotic

behaviour by imposing a monotonicity condition on h(x)f(x)/z instead of f.

Corollary 2. Suppose f obeys (1.9), (3.1), (3.7) and (3.10) while h obeys (3.2) and
(3.17) with A = 0. Let F' and (t,) be defined by (1.11) and (1.42). If
h(z)f(z)

x = ————= s asymptotically increasing, (3.24)
T

holds instead of (3.9) then
lim ——=

n—oo  t,

=1.
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Proof. The positivity, monotonicity and convergence of (x,,) still prevail. Since f obeys
(1.9) then f01+ 1/f(u) du = oo and t,, — oo as n — oo by Theorem 4. By the second
inequality of (3.21), for n > Nj(e) + 1

(1+€)?
F(z,) = F(2ny() Z f( ) u < - Z h(x;).
j=N3(e) © i+l j=Ns(e)

Thus
(1+¢)?

1—e¢
Therefore, dividing by t,, letting n — oo and then € — 07 yields

F
lim sup (zn)

n—o0 tn

F(z,) < F(st(E)) +

: (tn - tN3(e))-

<1 (3.25)

Since A = 0, Z,41/7, — 1 as n — oo and so there is Ny(¢) € N such that for all

n > Ny(e) we have
Tni1
Tn

The first inequality of (3.21) implies for n > Nj(¢€) := max(N3(¢€), Ny(e))

l—€e< <1+e.

l1+e f(anrl

Calling 6 the increasing function asymptotic to h(z)f(z)/x we have for every € € (0,1)
there is z2(€) > 0 such that for z < z5(e)

h(x) f(x)

T

(1—¢€)-0(x) < < (1+¢€)-0(x).

Let Ng(e) be so large that n > Ng(¢) implies x, < z3(€¢). Then, as (x,) is decreasing,
for n > Ng(e)

W >(1—€)-0(x,) > (1—¢) 0(xpyr) > 1;2 . h(anr;)f(an).

Therefore for n > Ng(€)

h(z,) f(x,) - l—¢
f(@n41) L+e zppq

“h(Zpi1).

Let N7(e) := max(N5(e), Ng(€)). Then for n > Nz(e) then (3.26) implies

1—¢)® 1—e)? =z,
( iy h(2pi1) < E Iy (1) / — du.
xn+1
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Hence for n > N;(e) + 1

—65 n—1
Fla)— Flaon) = 3 IR DR

J=Na(0 1+9% %
(1-¢° <
— h(z;)
2 J
(1+¢) j=Nr(e)+1
Thus for n > Ny(e) + 1
(1—¢)’
F(xn) = Flan, ) + te7 (tnt1 — tNe(e)+1)- (3.27)

Since h(z) = o(z/ f(z)) and x/ f(x) is asymptotic to an increasing function then h(z) —
0 as ¢ — 0". Thus t,,1/t, — 1 as n — oo. Hence

i ing £ S
n—o00 tn
Combining with (3.25) yields
F
lim T
n—oo  t,
as claimed. O

Remark 3. By assuming (1.6) in Theorem 5 part (ii) and Corollary 2 the solution of
(1.1) convergences super-exponentially. However, we are able to recover the correct
asymptotic behaviour when there is exponential convergence if (1.6) is replaced by
f(z)/x tending to a positive finite limit. The proofs are the same up to (3.23) and
(3.27). However, in the case of exponential convergence h(z,) ~ Az, /f(x,) ~ Ap(z,)
tends to a finite limit as n — oo since (z,,) is decreasing and ) is increasing. Therefore,
as t, — 0o as n — oo, then t,1/t, — 1 as n — oo. Hence, dividing (3.23) by t,, and
letting n — oo yields the desired results. O]

We now tackle the case when there is finite-time stability or a soft landing.

Theorem 6. Suppose f obeys (1.7), (3.1), (3.7) and (3.10) while h obeys (3.2) and
(3.17) with A € [0,1). Let F, (t,) and Ty, be defined by (1.10), (1.42) and (3.16).

(i) If A =0 and f obeys (3.9), then x,, > 0 for alln >0, (x,) is decreasing, x, — 0
as n — 0o, tn—>Th<oo asn — oo and

lim — =1.
n— 00 Th — tn

(i) If A € (0,1), then xz,, > 0 for alln >0, (x,) is decreasing, T, — 0 as n — oo,
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t, — Tp < o0 asn — oo and

F F 1
Ae(A) < lim infﬂ and limsup — () < —log (—) =: Ap(A).
n=ee Th — (28] n—oo T, — 1, A

If in addition, f obeys (3.9) and 0 < A <1 —1/e then

As(A)(1 — ANg(A)) < lim inf Fan) gy o £n) As(A).

n—oo Ty — ¢, n—oo 1j —t,

Proof. The positivity, monotonicity and convergence of (z,) have been addressed in
Theorem 3. Since f obeys (1.7) then f01+ 1/f(u)du < oo and t, — Tj, := > oo Mxy) <
0o by Theorem 4. Hence Ty, —t, = = h(x;) — 0 as n — oo. We prove part (i) first.
Letting n > Nj(e) in (3.18) yields

(1+
22 (x;) <Z fo < 1_66) thj

=n j=n
Thus for n > Nj(¢)

1—e* - _ (1+¢€)? .

(1+6 (Th—tn)SF(ZL’n)S 1—< '(Th—tn).

Therefore, as T, — t, — 0, dividing by T}, — ¢, and letting n — oo yields

1—e)? F F 1 2
(1—¢ < liminf — () < limsup — (zn) < (1+¢)

(1+€) n—oo Ty — ¢, n—00 Th_tn_ l—e

Letting € — 07 yields

Y

as claimed in part (i). We now prove part (ii). Letting n > Ns(€) in (3.19) yields

SIE : Zh Tjt1) < Z f du < SJ—FE; ')\E(A)Zh(%’)-

=n

Thus for n > Nj(e)

(1—¢)?

(14 ¢)?

(1+4¢)?
(1—e)?

Ap(A) - (Th — tayr) < Flay,) < Ap(A) - (T — t,).

Therefore

Ae(A) < limianF(—%l) and limsup F(iﬂn) < Ap(A),

n—oo Ty — trt1 n—oo I} —t, -
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which proves the first estimate in part (ii) as claimed. For the second estimate in (ii),
define §(x) := h(x)f(z)/x where §(x) — A as x — 07. Thus

lim infM = liminf (F_(gjnﬂ) . F(xn) )
o0 Ty — 4 n—o0 F(zn)  Tj =ty

F(xn—i—l)

Suppose © < z1(€). Then for u < x < z1(€), by (3.14), u/f(u) < (1 +€) - P(u) <
(1+4¢€)-¢(x). Hence
1w * 1

0< P~ Fa-a@) = [ Logsi < qrguw [ L

= (1+¢)-(x)-log (1 —16(1')) '

Therefore for z < x1(e)

F(x(1 - d(x))) 1 ()
0<1-— Fo) §(1+6)-10g<1_5(x)>-p($).

For u < x < z1(€), by (3.13), f(u) < (1+¢€)-p(u) < (1 +¢€)-¢(x). Thus

F(z) v 1 1 x
() 1/1 / fu (x) /0 (1+6)gz5(:v)du - 1+61/1(x)q§(x)

Thus P .
lim inf () >
e=0t P(x) T 1+e€

and letting e — 07 yields -
F
liming 28 > 1

z—07F (.1')
Hence there is z5(€) > 0 such that
F(z) 1
w(l‘) > 1——|—6’ Vi< I‘Q(E).

Let x3(e) := min(zq(€), x2(€)). Then for z < x3(e)

F(x(1 = 6(x))) 2 1
0<1-— Fo) <(1+e) -log(l_é(x)).
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Rearranging yields

Pl =0) o (1
oy oL 14Te 1g<1—6<x>)'

Hence _
. F(a(l = 6(x))) 2 1

Letting € — 0% yields

F(z(1 = 6(x)))

1
lim inf — >1-1 — . .2
Pt L T B (1 = A) (3:29)

This bound is useful if 1—log (1/(1 — A)) > 0or 1/e < 1—A. This implies A < 1—1/e.
Combining (3.28) and (3.29) for A € (0,1 — 1/e) yields

liggf% > As(d) (1—A-§1og (ﬁ)):AE@)(l—AAE(A)),

as claimed. O

Remark 4. In Theorems 5 and 6 the Explicit scheme does not recover the exact asymp-

totic convergence rate when A € (0,1). However, the error between the rate predicted

by the scheme and the true rate of unity can be approximated to within O(A) as
A — 07. To see this define

F(x, F(xn,

AT(A) := liminf — (i) and  AJ(A) := limsup — (n)

n—r00 Th —t, n—00 Th —tn .

Then
Ae(A)(1 = AAp(A)) < A(A) < A5(A) < Ap(A).

From this inequality we can infer that the error in these upper and lower exponents

from the true exponent of unity is given by
A(A) = 1] < max (Ap(A) — 1,1 = Ag(A)(1 — AAg(A)), i=1,2

From the Taylor Series of log(1l 4+ x) about zero, the error in the exponent can be
bounded by
2

Mp(A) =1 = Ag(A) -1 = 1+§+%+O(A3)—1:O(A).

The error in the upper bound can be bounded by
A 2A? 3
Ae(A) (1= AXg(A)) =1 =1=-Ag(A) (1 — AXg(A)) = 1_1+§+T+O(A ) =0(A).
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]

Remark 5. In the case when A = 0, we can replace the hypothesis (3.9) on f by (3.24)

and can conclude that

by emulating Corollary 2.
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3.4 Implicit Euler Scheme with Adaptive Step Size

We approximate x(t,,) by z,, where x(t,) is the solution = of (1.1) at time ¢,. The
sequences (z,), (t,) and (h(x,)) are defined by (1.43), (1.44) and (3.17):

Lp41 = Tp — h<$n+1)f(xn+1)> n > 07 Lo = § > 07

where n
tn+1 = Zh<xj+1)7 n Z 07 tO = 07
=0
and 4
lim hix) fz) =A € [0, 00].
z—0t T

3.4.1 Preserving Positivity, Monotonicity and Convergence

The following results guarantee the existence, positivity and convergence of the solu-
tions of (1.43).

Lemma 7. Suppose f obeys (3.1) and h obeys (3.2). If x > 0, the equation

y+h(y)fly) ==, (3.30)

has at least one solution in (0,x) and no solutions in [x,00). If y(z) is a solution of
(8.80), then y(x) — 0 as x — 0. With x =0, (3.30) has a unique solution y = 0.

Proof. Define for each x > 0 and all y > 0

K(y) =y +hy)fly) — =

Then K(0) = —z < 0 and K(z) = h(x)f(xz) > 0. Since K : [0,00) = R is continuous,
K(y) = 0 has at least one solution in (0, ). For y > x

Ky)=y+hy)fly) —z>y—x>0,

and K(x) > 0. Thus K(y) > 0 for all y > z, and (3.30) has no solutions in [z, o).
Since any solution y(z) of (3.30) obeys 0 < y(x) < =z, it follows that y(z) — 0 as
x — 0% by The Squeeze Theorem. If z = 0, K(y) > 0 for all y > 0, and K(0) =0. O

Proposition 4. Suppose f obeys (3.1) and h obeys (3.2). There exists at least one
positive sequence (x,) which obeys (1.43) and any such sequence is decreasing and obeys

T, — 0 asn — oo.

Proof. The existence and positivity of the sequence is implied by the root of (3.30)
in Lemma 7. Since the solution y(z) € (0,z) then x, > 0 for all n > 0 implies
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0 < Zpy1 < x,. Since (x,) is decreasing, we have x,, — L € [0,00). Therefore if L > 0
then
L= lim z,.; = lim {x, — h(xyi1)f(xns1)} = L — h(L)f(L),

n—oo n—0o0

by (3.1) and (3.2) and h(L)f(L) = 0 which is impossible by (3.1) and (3.2). Hence
T, — 0 as n — oo. ]

Remark 6. The ODE (1.1) has a unique solution for a given initial value. It would
be desirable that the sequence used to model the continuous solution is also unique to
reflect this important property. However, Proposition 4 does not imply the sequence

is unique. A sufficient condition to ensure this is that h(z)f(x) is increasing. O

A necessary condition to maintain positivity is that h(z)f(z) — 0 as z — 0%,
Otherwise, the Implicit Euler scheme becomes negative after a finite number of steps,
as the Explicit Euler scheme does. We make this standing assumption throughout our

analysis. The following result shows the necessity of a condition on h and f of this

type.

Theorem 7. Suppose f obeys (3.1) and h obeys (3.2). Suppose also that

lim h(x)f(x) = A €0, 0. (3.31)

z—0t

(i) If A = 0, there is a monotone positive solution of (1.43) such that z, — 0 as

n — oo.
(i) If A € (0,00], there is N > 0 such that zn < 0.
(iii) Analogously, if (3.31) holds and x, >0 ¥n > 0, then A = 0.

Proof. We prove part (i) first where A = 0. Define for each x > 0

K(y) =y +hy)fly) — =

Then K is continuous on [0, z]. Also by (3.31)

lim K(y) = -2 <0 and K(z)=h(x)f(z) > 0.
y—0t
Thus, by the Intermediate Value Theorem, there is a solution in (0,z). However, if
y >,
K(y) = (y— =)+ h(y)f(y) >0,

so K(y) = 0,z > 0 implies y € (0,z). Hence z,, > 0 implies 0 < z,41 < x,. Since x,
is decreasing, we have z, — L € [0,00) as n — oo. Therefore if L > 0 by (3.1) and
(3.2) L =L—h(L)g(L) so h(L)f(L) = 0 which is impossible by (3.1) and (3.2). Hence
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z, — 0 as n — oo as claimed. We now prove part (ii). We suppose z,, > 0 Vn > 0.
Then

0<Zpi1 =xp — h(zp1)f(Tne1) < Ty,

Hence z,, — L € [0,00) as n — oo. Once again, this implies L = 0. Then by (3.31),
0= lim x,41 = lim {z,, — h(zps1)f(xni1)} = —A <O,

a contradiction. Hence there must exist N > 0 so that xnx < 0 as claimed.

For part (iii), if z,, > 0, we may argue as in part (ii), to get A = 0 as claimed. O
Hence, we take as a standing assumption

lim h(z)f(x) =0. (3.32)

z—0t

3.4.2 Preserving Soft Landings and Super-Exponential Stabil-
ity

The Implicit Euler scheme, defined by equation (1.43), correctly recovers the pres-

ence, or absence, of a finite hitting time according to whether the solution of the

underlying ODE has that property or not. Since (h(z,+1)) is a positive sequence, the
limit defined by

lim ¢, = T), = E h(xji1), (3.33)
n—oo
=0

exists but can be finite or infinite.
We first determine the form of (3.15) when an Implicit Euler scheme is used to dis-
cretise (1.1). This equation will be used in our later proofs of preserving soft landings,

super-exponential stability and asymptotic convergence rates.

Lemma 8. Suppose (x,) is a positive decreasing sequence and the solution of (1.43).
If f obeys (3.1), (3.10) and (3.32) while h obeys (3.2) and (3.17) with A € [0, 00) then
(3.15) holds viz.,

Ty 1

(1= €) - Ylns) log <—) < | Ly < (14 ) p(an) log ( n ) |

Tn+1 f(U) Tni1

Furthermore,
(i) if A =0 and f obeys (3.9), then for all € € (0,1) and all n sufficiently large

(-9 S 5
o) < J S G M) (339
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(i) if A € (0,00), then for all € € (0,1) and all n sufficiently large

(1—¢€)? log(l1+A) S| (1+¢€)? log(l1+A)
(e~ A h(x“*”g/wmd“gu—e)f x M)

Proof. For part (i), since x, — 0 as n — oo and (z,,) is decreasing for every € € (0,1)
there is z1(e) > 0 and n > Ni(e) € N such that z,, < z1(¢) for all n > Ni(e€), so the
estimate (3.20) still pertains:

l—€ Tpy (xn) o] 1+e¢ =, (a:n)
. - log < du < . - log )
L+e f(ong) Tn41 Tl f(u) L—e f(zn) Tn+1
Define
a, = log ( Tn ) — log <$n+1 + h($n+1)f($n+1)> — log (1 n h($n+1)f($n+1)) .
xn+1

Tn+1 Tn+1

Since (3.17) holds and A = 0 then

, asmn — 0o, (3.36)

h($n+1)f($n+1)) _ han) f(@nga)

a, = log (1 +
Tnt1

xn—i—l

since log(1 + z) ~ 2 as x — 0. Thus for every € € (0,1) there is an n > Ny(e) such

that
) h(@nt1) f(Tnt1) <apn<(l+e)- h(xn-i-l)f(l‘n—kl)'

1—¢€)-
( ) LTn+1 Tpt1

Let N3(€) := max(Ni(€), No(¢€)). Then for n > N3(e)

(1—6)2. Tny1 .h($n+1)f($n+1) < ol du < (1+€)2_ Tn _h(l’nﬂ)f(xnﬂ)

L+e  f(zns1) Tnyt T oy J) T 1= f(x,) Tnt1

Thus for n > N3(e)

(1—¢)? o] (1+6¢? z, f(ran)
1+e : h(anrl) < /;n+1 m du < 1_¢ . Tt : f(:cn) . h(anrl). (337)

Arguing as in (3.22), (3.13) implies

f(xn) I—e¢ r f(xn+1> l1+e
f(xn+1>>1+6 ? f(xn) <1_6’

for all n > Nj(€). Substituting this into (3.37) yields n > max(Nj(e), N3(¢))

1—¢)? S 1+e)?
1-9 “h(Tng1) < du < (1+ 6)2 L
I+e e J@) T (T= €2 T

. h([[‘n+1).
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Since

hmmnzmnG+M%Mﬂ%m):L

for every € € (0,1) there is Ny(¢) such that for n > Ny(e)

Tn

l—€e< <1l+e.

Tni1
Let N5(e) := max(Nj(e), N3(€), Ny(€)). Then for n > N;(e)

1—e)? ™1 1+ ¢)*
(1—¢) h(Tpar) < ——du< ﬂ.h(g;nﬂ),

popn J(W) T (T =€)?

which is the inequality (3.34). We now prove part (ii). Let A € (0,00). The estimate
x, < x1(€) for all n > Nj(e) and (3.20) still pertains:

l—€  Tph (zn) o] l4+e (mn)
. og | — | < —du< — - ——-log | — | .
Tre S o \ow) = Jon 7@ T T Fwn) 8 \ T
Define
0, = log ( Tn ) ~ log <$n+1 + h@nﬂ)f(%ﬂ)) — log (1 I h($n+1)f($n+1)) '

Tn+1 Tp+1 Tp+1

Since (3.17) holds and A € (0, 00) then

h(anrl)f(anrl)

Tn+41

lim a, = lim log (1 +

n—oo n—o0

) =log(1+A).
Thus there is an N(e) € N such that for all n > Na(e)
(1—€)-log(1+A)<a,<(l+¢€ - -log(1+A).

Let n > N3(e) := max(Ny(€), No(€)). Then for n > N3(e)

(1—¢)? log(1+A)  Azyy < o] du < (14 ¢)? log (1+A) Az,
e A ) S F@ T T A

Since h(z,) ~ Ax,/f(x,) as n — oo, for every € € (0,1) there is an Ny(e) € N such
that n > Ny(e) implies

Ax, Az,
(1—e¢)- ) < h(z,) < (1+e)- o)
Let Ns(€) := max(Ny(€), N3(¢)) and n > N5(e). Then
(1;32 log(lA-i- A) h(@nia) < /:il mdu < (1—1—2)2 log(lA—i- A) W),
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which is the inequality (3.35). O

In our next result, we show that 7}, is finite or infinite according to whether T¢
defined by (1.8) is finite or infinite.

Theorem 8. Suppose f obeys (3.1), (3.9), (3.10) and (3.32) while h obeys (3.2) and
(3.17) with A € [0,00). Let (t,) and T}, be defined (1.44) and (3.33).

(i) If f obeys (1.7), then T}, < co.
(ii) If f obeys (1.9), then T} = oo

Proof. By (1.7), f01+ 1/f(u) du < oo then T < oo from (3.12) since

du—/ du—T < 0.
Z Wf f(u) ¢

7=0

When A = 0, the Comparison Test applied to equation (3.34) shows the summa-
bility of (ffn"+1 1/f(u) du) implies that of (h(z,)). When A € (0,00), the Compari-
son Test applied to (3.35) shows the summability of ( f;:ﬂ 1/f(u) du) implies that of
(log (1 4+ A) h(x,)/A) and hence the summability of (h(z,)) when A € (0,00). Hence
in both cases (h(z,)) is summable and we have that ¢, = Z;:& h(x;) for n > 1 obeys
tn = T =32 hlz;) < 00 asn — oo

y (1.9), f01+ 1/f(u) du = oo then Ty = oo from (3.11) since

mef /f u=te=oo

=0

The Comparison Test applied to (3.34) and (3.35) shows that (h(z,)) is not summable
and obeys t,, = Z;:é h(xz;) = oo as n — oco. Therefore t,, — 0o as n — oo. O

The next result shows that, once h obeys (3.17), the Implicit Euler scheme (1.43)
recovers the exact rate of asymptotic convergence when A = 0 but not when A € (0, c0)
despite preserving finite-time and super-exponential stability. We tackle the case of

super-exponential convergence first.

Theorem 9. Suppose f obeys (1.9), (3.1), (3.10) and (3.32) while h obeys (3.2) and
(3.17) with A € [0,00). Let F' and (t,) be defined by (1.11) and (1.44).

(i) If A =0 and f obeys (3.9), then x,, > 0 for alln >0, (x,) is decreasing, x, — 0

asn — oo, t, — 00 as n — oo and

F(x,
limM

n—oo  t,

=1.
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(i) If A € (0,00), then x, > 0 for all n > 0, (x,) is decreasing, x, — 0 as n — oo,

t, — 00 as n — oo and

F(x,) log(1+A)
tn A

nh_)Holo =: A1(A).

Proof. The positivity, monotonicity and convergence of (x,) have been addressed in
Lemma 7 and Proposition 4. Since f obeys (1.9) then f01+ 1/f(u)du = oo and t,, — o0
as n — oo by Theorem 8. We prove part (i) first. Letting n > Ns(e) + 1 in (3.34)
yields

n—1

(1—¢)? T (1+e)?
Z M) < [ au LY S ),
Le J=Ns( Intl f(u) (1=¢) Jj=Ns(e)
Thus for n > N5(e) + 1
(1—¢)? 1+e)?
e (= ths) < Flan) = Flang) < =P (tn = tny(o)

1—¢)? F(x, n 1+4¢e)?
( J gliminfﬂglimsup <x)§( te )
1+e n—oo i, n—oo  tn 1—¢€)?
Letting € — 0% yields
F(z,
lim Fn) _
n—o0

the desired limit in part (i) as claimed. We now prove part (ii). Letting n > Nj(e) + 1
in (3.35) yields

(1—¢)? (1 + €)?
. (A .
it ;( h(wj41) < ; oy, f (1 —6)2 Ar(A) | ;( )h(%)
j=Ns(e) J e~ J=N5s(e
Therefore
1—¢)? 1+¢)? —
( )2 Ar(A) Z h(z;) Z / —du ( )2 A(A) D hlxy),
i+o R o F) S (=0 -
j=Ns(e)+1 J=Ns(e) Jj=Ns(e)
or

(1+¢)?
(1 —€)?

L N (A) (tutrugo) < Pla)~Flano) <

(1+¢)? Ar(A)-(tn—1 =ty (o). (3.38)

Since h(x,) ~ Ax,/f(z,) as n — oo then h(x,) — 0 as n — oo by (1.6). By (1.44),
tn = tn_1+ h(x,) so t,_1/t, — 1. Therefore, as t,, — 0o as n — oo dividing (3.38) by
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t, and letting n — oo yields

=9 3 (a) < timint ) < gup 20 L AF° )

(1 + 6)2 n—00 zfn n—o00 tn 1-— € 2

Letting € — 07 yields

lim

the desired limit in part (ii), as claimed. O

The next result shows the Implicit Euler scheme correctly predicts the precise

asymptotic behaviour by imposing a monotonicity condition on h(z)f(x)/x instead

of f.

Corollary 3. Suppose f obeys (1.9), (3.1), (3.10) and (3.32) while h obeys (3.2) and
(3.17) with A = 0. Let F' and (t,) be defined by (1.11) and (1.44). If
hx) f(x

xr = ————= s asymptotically increasing, (3.39)
T

holds instead of (3.9) then

n

lim

n—oo

=1.

Proof. The positivity, monotonicity and convergence of (z,,) still prevail. Since f obeys
(1.9) then f01+ 1/f(u)du = oo and t, — oo as n — oo by Theorem 8. By the first
inequality of (3.37), for n > Nj(e) + 1

Tj41 j=N.

J=N3(e)

Thus
(1+¢)?

1—e€
Therefore dividing by t,, letting n — oo and then ¢ — 07 yields

F(z,) > F(a:Ns(E)) +

: (tn - tN5(e))

G (3.40)

n—00 tn

Since A = 0, Z,41/r, — 1 as n — oo and so there is Ny(¢) € N such that for all
n > Ny(e) we have

l1—-e< <l+e
Tn+1
The second inequality of (3.37) reads for n > Ns(€) := max(N3(e), Ny(¢))
(1 + 6)2 In f(xn-i-l)
— du . . “h(Tpa1). 3.41
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Calling 6 the increasing function asymptotic to h(z)f(z)/x we have for every € € (0,1)
there is xo(€) > 0 such that for z < x4(e)

(1—6)'6($)<M<(1+6)-6<5L’).

T

Let Ng(€) be so large that n > Ng(e) implies z, < z2(€). Then, as (x,) is decreasing,
for n > Ng(e)

W"*j“‘””*”<<1+e)-e(xn+1) < (1+e)-9(xn)<ii-h@";f(x").

Therefore for n > Ng(e)

h(Zns1) f(@ns1) < I+e Tl
f(zy) l—¢ a,

- h(zy,).

Let N7(€) := max(Ns(€), Ng(€)). Then for n > Nr(e) then (3.41) implies

Zn L y (1+e)3'xn+1. . e
/xn+1 f(w) du < (1—€)2 =x, h(n) < (1—¢)p h(zy).

Hence for n > N;(e) + 1

n—1

A | 1+¢€)3
Fla) = Floig) = > [ sdes G595 a)
J=Nz(e) Jj=Nz(e)
Thus for n > N7(e) + 1
1+¢€)3
F($n) < F($N7(€)> + ( 6) ’ (tn—l - tN7(e)—1)' (342)

(1—¢)?

Since h(x) = o(z/f(x)) as ¢ — 0" and z/f(x) is asymptotic to an increasing function

then h(x) — 0 as x — 0. Thus t,,_1/t, — 1 as n — co. Hence

F(x,
lim sup (zn) <1
n—00 tn
Combining with (3.40) yields
. F(x,)
lim ——= =1

n—oo  t, ’

as claimed. O

Remark 7. By assuming (1.6), in Theorem 9 part (ii) and Corollary 3 the solution of
(1.1) convergences super-exponentially. However, we are able to recover the correct
asymptotic behaviour when there is exponential convergence if (1.6) is replaced by

f(z)/z tending to a positive finite limit. The proofs are the same up to (3.38) and
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(3.42). However, in the case of exponential convergence h(z,) ~ Az, /f(x,) ~ Ap(z,)
tends to a finite limit as n — oo since (z,,) is decreasing and ) is increasing. Therefore,
as t, — 0o as n — oo, then ¢, 1/t, — 1 as n — oo. Hence, dividing (3.38) by t,, and
letting n — oo yields the desired results. O]

We now tackle the case of finite-time stability.

Theorem 10. Suppose f obeys (1.7), (3.1), (3.10) and (3.32) while h obeys (3.2) and
(3.17) with A € [0,00). Let F, (t,) and T, be defined by (1.10), (1.44) and (3.33).

(i) If A =0 and f obeys (3.9), then x,, > 0 for alln >0, (x,) is decreasing, x, — 0
as n — 00, tn—>Th<oo asn — oo and

lim — =1.
n—oo Th — tn

(ii) If A = (0,00), then x,, > 0 for alln >0, (x,) is decreasing, x, — 0 as n — oo,
tn—>Th<oo asn — oo and

F F log (1+ A
Ar(A) < liminf — () and limsup — () < cgll+d)
n—oo Ty — ¢, n—oo Tj —t,_1 A

= )\](A)

If in addition, f obeys (3.9) and A < e — 1, then

F(x,) F(x,) Ar(A)
Ar(A) < liminf — < limsup — < )
I( ) n—oo Th — t n—)oop Th — T,n —1- A/\I(A)

Proof. The positivity, monotonicity and convergence of (z,) have been addressed in
Lemma 7 and Proposition 4. Since f obeys (1.7) then f01+ 1/f(u)du < oo and t, —
Ty, = > =g Mxj11) < 0o by Theorem 8. Hence Th—t, = >y (wj41) = Oasn — oo.
We prove part (i) first. Letting n > Nj(¢) in (3.34) yields

(14 )t &
du< h(x;
—~ xj+1f ( _€>2 p (J-I—l)
Thus for n > Nj(e)
1 —¢€)? N _ 14+ ¢€)? A

Therefore, as Th —t, — 0 as n — oo dividing by Th — t, and letting n — oo implies
F(z,) ) _ (1+0)

1— 2
( J < lim inf — < lim sup —

I+e n—oo Th_tn n—0o0 Th_tn_ 1_6>2
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Letting € — 07 yields B
F
T G
n—00 Th —tn

as claimed in part (i). We now prove part (ii). Letting n > Ns(€) in (3.35) yields

El Zh $]+1 < Z f duS giz; .)\I(A)Zh(xj).

Thus for n > N5(e)

(1—e¢)

m'AI(A)'(Th—tn) < F(2p) < 7—5

Therefore

Ar(A) < liminf AF@n) and limsup M < A(A),

n—00 hn—tn n—00 Th — Tp—1 o

which proves the first estimate in part (ii), as claimed. For the second estimate in (ii),
define 0(z) := h(z)f(x)/x where 6(x) — A as x — 0". Next

o) i)
F(xn)  Tp =ty

< A7(A) - limsup Fﬁ(,fn )1)
n—00 Tn

= M(A)- li;ris;}p F(x"g(_;j)(xn)))

< A(A) - lim %Erlp F(x(}—(i—x(;(x))) (3.43)

F(z,_
lim sup Acv—nl) = limsup <

n—00 Th —tn_1 n—00

Suppose z(1 + 0(z)) < z1(e). Then for u < z(1 + §(x)) < x1(€), by (3.14), u/f(u) <
(I14+¢€) - -9Y(u) < (1+e€) - -(x(l+d(x))). Hence

0< F(z(1+ () — F(z) < /I(Ha(x)) L du

2(145(x)) |

< (146 vl —|—5(93)))/ du

x u

= (1+¢) - -¢Y(x(l+0(x))) - log(l+d(x)).
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For z(1+6(x)) < z1(€), by (3.13), f(u) < (14€)-o(u) < (1+€)-Pp(x(1+(x))). Thus

B B z(1+4(x)) 1 z(140(x)) 1 1 (1 + 5( ))
Fatrse = [ gz [T gt 2 T i)
- 1—€ x(1+40(x))
T+e f(z(l+6(x)))
09 a1+ a(a)
Hence for z(1 4 0(z)) < z1(e)
0< F(z(1+8())) — F(x) < 8 i_ 32 log(1 +6(z)) - F(z(1 4+ d(x))).
Rearranging yields
0 < F(z(1+6(z))) {1 - % -log(1 + 5(w))} < F(x),
provided
(1+¢€)?
1- 1= cp -log(1 4+ 0(z)) > 0.
e Fla(1+ 6(a)) 1
F(x) 5 (1+0(z)) (3.44)

Suppose now that € > 0 is so small that
(1+¢)?
(1—¢)?

This is true provided 1 —log(1+ A) > 0, or A < e — 1. Then, as §(z) = A as z — 07,
it follows for all € sufficiently small that there is xz9(€) > 0 such that for all € € (0, 1)

such that for all z < z5(€) we have

1- log(1+ A) > 0.

(1+¢)?

(1-e?

log(1 + d(x)) > 0.

Therefore

lim sup 7 < limsup =

r0+ (x) o0t 1= G595 log(1 4 d(x ) (1+A)

Letting € — 07 yields

z(1
lim su = < )
WP T @) S 1-log(l+A)
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Hence for A <e—1,

lim sup F(l’n) < N _ Ai(A) A1(A)

movo Tp—t, — 1—log(1+A)  1—Alog(1+A)/A  1—AN(A)

as required. 0

Remark 8. In Theorems 9 and 10 the Implicit scheme does not recover the exact
asymptotic convergence rate when A € (0,00). However, the error between the rate

predicted by the scheme and the true rate of unity can be approximated to within
O(A). To see this define

F F
AT(A) :=lim ian(—mn) and  A5(A) := limsup = (zn) :
n—00 h— tn n—00 Th - tn
Then M(A)
* * 1
< < < —m—

From this inequality we can infer that the error in these upper and lower exponents

from the true exponent of unity is given by

|IA7(A) — 1| < max (1 —A(A), % - 1) , 1=1,2.

From the Taylor Series of log(1l 4+ x) about zero, the error in the exponent can be
bounded by

N(A) =1 =1—\(A) = 1—1+%—%2+0(A3) — 0(A).

The error in the upper bound can be bounded by

2
=1+ 248 o —1=0A),

‘ Ar(A) _1' __M(4)
NWIN > T3

1— AN (D)

Remark 9. We have already shown that

_ A A2 A 2A2 A 2A2
Eg(A) := max <§ gt O(A?), st O(A3)> =5+t + O(AY),

_ A A2 A A2 A A2
Ei(A) = - — — A3, — + = A% ) ==+ = A?).
1(A) max(2 3+O( ),2+3+O( )) 2+3+O( )
Thus Eg(A) > Er(A) and therefore there is evidence that the Implicit scheme outper-
forms the Explicit to O(A?) to A — 07. In Chapter 3 when f is a regularly varying
function we are able to estimate these errors exactly and we can show that the Implicit

scheme always outperforms the Explicit scheme within the class of regularly varying
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functions, as we will see in Chapter 5. m

Remark 10. In the case when A = 0, we can replace the hypothesis (3.9) on f by (3.39)

and can conclude that P
i @) _
n—oo Th _ tn

by emulating Corollary 3. [

3.5 Approximation of Finite Stability Time

Under the condition (1.4) on f the Initial Value Problem (1.1) viz.,
a'(t) = —f(z(t), t>0, 2(0)=¢>0,

has a unique and continuous solution on a maximal interval of existence Iz = [0, T),
cf. Theorem 1. Furthermore, the solution is positive and decreasing on this interval.

In the case of finite-time stability, T¢ is finite. The formula for T is given by (1.8)

€1
ng/o mdu,

when f obeys (1.7). We cannot compute T'(A), defined by (3.16), exactly as it involves

computing an infinite sum, namely

lim t, = T(A) = E h(z;) < oo.
n—oo
J=0

However, the finite sum

n—

1
T.(A) =) h(z;), n>1,

j=0

can be computed. We obtain estimates for the error in approximating the finite stability

time, T — T'(A), the truncated error, T — T;,(A), and show that we can approximate
T¢ to within O(A) as A — 07. Suppose the following conditions on f and h hold:

f is increasing, (3.45)
Ax

there is A > 0 such that for all x > 0, h(z) = )
T

(3.46)

We approximate z(t,) by x,, where z(t,) is the solution x of (1.1) at time ¢,. The
sequences (z,), (t,) and (h(x,)) are defined by (1.41), (1.42) and (3.46):

Tpr1 = Tp — () f(xn), n>0, x9=E&>0,
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where

tn+1 = Z h(Ij), n Z 0, to =0.
7=0

Theorem 11. Suppose (x,,) is the solution of (1.41). Suppose also f obeys (1.7),
(3.1), (3.7) and (3.45) while h obeys (3.2) and (3.46) with A € [0,1). Let T), be defined
by (3.16). Then

0<Te —T(A) < A (T£ — %) , (3.47)
g(1-a) ) c(1—)n-1
/0 ﬁdu<Tg—Tn(A)<A<Tg—%>+(1—A)/O ﬁdu.
(3.48)

Proof. Since (x,,) is positive and decreasing and f obeys (3.45) then for z;.; < u < z;

we have
1 1 1
< <

flzg) — flu)  flr)
Integrating over [x;41, ;] and (1.41) yields

Zj

R 1 R 1
haj) = 2T o 7D gy < BT

f(l']) Tt f(u) f($j+1> N

since (x; — j4+1) = (Tj41 — Tj42)/(1 — A) because x, = {(1 —A)™ by (3.46). Hence for
j=0

' h(xj+1)>

T(A) = ZO h(z;) < ZO M ﬁ du < ﬁ ZO h(zj41). (3.49)

Since > 770 h(wj41) = D52, h(xy) = 3272 hlzy) — h(wo), (3.49) yields

T(A)<T§<1_1A<T(A)—%).

A

The first inequality establishes 0 < T¢ —T'(A), while the second establishes (1—A)T; <
T(A) — A&/ f(€). Rearranging the second inequality yields

Tg—T(A)<A(TE—%>.

Combining both inequalities yields

O<T£—T(A)<A(Tg—%>,
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which establishes (3.47). To prove (3.48), letting n > 1 in (3.49) yields

n—1 n—1
To(A) = h(x;) <Z f 1_1A2h(xj+1).
§=0 =0 Y Tj+1 §=0

Therefore

. ¢ 1 R
(A d h(z;).
Tl )</§(1—A)" f(u) ‘e 1—Ajzl (7)

Since > 7 h(x;) = D7 h(x;) — h(xo) we have for n > 1 that

R £(1-A)" R A
To(A) < Tp - /0 ﬁ du < ﬁ <Tn+1(A) _ —5> |

Rearranging the first inequality yields

§a-8)" 4q p m

Rearranging the second inequality yields

£(1-4) )
(1-A)T—(1— A)/O _f(lu) du < Thi1(A) — %,
and so A : ca-ar
Tg—Tn+1<A)<A(T§—m) ‘l‘(l—A)/O mdu

Combining both ineqaulities yields
[ 5 L) <A (1 i) e e
—du<T:—1T, < Te — —— | + (1 — / — du,
o [ ‘ G 0 f()

which is (3.48). O

Remark 11. Equation (3.47) shows the Explicit scheme under-estimates the finite hit-
ting time of the equilibrium at zero because this scheme under-estimates the solu-
tion. [

Remark 12. The extra terms in (3.48) compared to (3.47) represent upper and lower
bounds on the difference between T'(A) — T,,(A) or alternatively > ey h(x;). By the

definition of ¢, and Th, we have
n—1 o]
Ty —tn = Zh () = > hlxy) =Y h(x).
7=0 j=n

Moreover as T}, < oo, we have that >, h(x;) = 0as n — oco. The extra terms in

(3.48) tend to zero as n — oo since x, — 0 as n — 0. O
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The estimate (3.47) suggests that Tz — T'(A) is O(A) as A — 0*. We show that this
estimate is sharp in the case of a power non-linearity.

Example 12. Let f(z) = 2”, 8 € (0,1). Then

B EL B 13 s _51—5
Tg—/oﬂu)du—/ou du_l—ﬁ'

Since h(z) = Az/f(z) and z; = £(1 — A)?, we have

> S SRS £’ (1-p)A
T(A) =D h(zj) =D Az’ = 5 T A

J=0 Jj=0

Thus

oy Ag (1-pa .1
n-1e) =155 (1- S a) &

A Taylor expansion of g(A) :==1— (1 —A)F at A =0 gives

1-(1-A)'P —(1-p)A= —5(12_5)A2+0(A3),
and
Al —(1—=A)'P) = (1-p)A2+0(A%).
Thus
R el Gl AP -(1-B)A i P = B)/2)A%+0(A%) B
aAsor Al — (1 —A)-P) A0t (1 —B)A2 + O(A3) 2’

which gives R
I,-1T) &7 8
A0+ A S 1-5 2

Similarly we can compute

. 1-8 n—1 L
T — Tu(A) = f_ﬂ YA -ay)’
§=0
) ~ ((1—A)=5)"
= Te—T(A)+E7PA. Ay
) A
= Te—T(A) +¢77 — a-aype (- AR,

where Tz — T(A) is O(A) as A — 0t. Notice that the computable error, T,,(A),
converges geometrically in the number of time-steps considered to the error that could
be theoretically achieved, T(A), if all the terms in the sum were considered. This

completes the example. O
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Consider the Implicit Euler scheme. We approximate z(¢,,) by x,, where x(t,) is
the solution z of (1.1) at time ¢,,. The sequences (z,,), (t,) and (h(x,)) are defined by
(1.43), (1.44) and (3.46):

Tpt+l = Tnp — h(xn—i-l)f(xn-‘rl)v n 2 07 Ty = f > Oa

where

n+1 Z h ilfjJrl n Z O, to =0.

Thus T(A) := > oo h(wj41) and To(A) = Z;:Ol h(xj41) are the analogues of the

approximations of the finite stability time and its truncation in the Implicit case.

Theorem 13. Suppose (x,,) is the solution of (1.43). Suppose also f obeys (1.7), (3.1),
(3.32) and (3.45) while h obeys (3.2) and (3.46) with A € [0,00). Let T}, be defined by
(3.33). Then

0<T(A) =T <A (Tf — %) : (3.50)

E(14+a)n . E(1+A)~ (v
—/O ﬁdu<Tn(A)—T§<A(T§—%>—(1—|—A)/0 ﬁdu.
(3.51)

Proof. Since (x,) is positive and decreasing and f obeys (3.45) then for z; 1 < u < z;

we have
1 1 1
< <

flzy) ~ flw)  flaga)
Integrating over [x;41, ;] and (1.43) yields

. — . Tj
1 Tj_1 — X

14+ A - h(z;) = du < Z—22 = h(z)44),

1
F@) " Sy 7@ S )
since (r; — xj11) = (rjo1 —xj)/(1 + A) because z,, = {(1 + A)~" by (3.46). Hence for
j=0

o0

LAZ (z;) < Z/ du < Zh (zj41) = T(A). (3.52)

j=0 x]+1

Since Y% h(w;) = h(zo) + 32720 h(wj41), (3.52) yields

1 A& .
H—A (m + T(A)) <T: < T(A)

The second inequality establishes 0 < T((A) — Ty, while the first establishes A&/ f(€) +
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T(A) < (1 + A)T;. Rearranging the first inequality yields

T“(A)—T5<A(Tg—%>.

Combining both inequalities yields

O<T(A)—T§<A(T§—%>,

which establishes (3.50). To prove (3.51), letting n > 1 in (3.52) yields

-1

1
TTA Z () Z z]Hf du<th]+1 (A).

7=0

Therefore
LSy < [0 et
— h(x;) < / —du<T, )
14 A =0 I £(1+A)—n f(u)

Since Z?:_Ol h(z;) = h(zo) + Z;:g h(z;+1) we have for n > 1

1 Af E(1+A)™™ 1 .
N (m+Tn 1(A)) <T§—/0 mdu<Tn(A).

Rearranging the second inequality yields

§(1+A)_" 1 . (A
— ——du < T, — T
/o 7w )~ Te

Rearranging the first inequality yields and hence

AL R €a+8)"" 4
m+Tn—1(A)<(1+A) <T§—/O mdu) ,

and thus

) f1a)
Tn_l(A)—T§<A<TE—%) —(1+A)/0 ﬁdu.

Combining the estimates gives

T L ) -T<a (- ey [T L
S TR AR (ﬁ‘%)* e [ ) ™

which is (3.51). O

Remark 13. Equation (3.50) shows the Implicit scheme over-estimates the finite hitting

time of the equilibrium at zero because this scheme over-estimates the solution. O
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Remark 14. The extra terms in (3.51) compared to (3.50) represent upper and lower
bounds on the difference between T(A) —T),(A) or alternatively > iy h(@jy1). By the

definition of t,, and Th, we have

00 n—1 00
T —tn =Y hwjpn) = Y hlwjin) = Y b)),
=0 =0 j=n

Moreover as T}, < 0o, we have that > ey P(zj41) — 0 as n — oo. The extra terms in

(3.51) tend to zero as n — oo since x, — 0 as n — 0. O

3.6 Implicit Euler Scheme with Step-Size O(1/f'(x))

We have chosen up to now to take step-sizes O(x/f(z)) as x — 07. We show in
what follows, for the Implicit Scheme that taking step-sizes O(1/f'(z)) as * — 0T can
also be effective. This is of interest for some non-linearity for which 1/f’(x) tends to
zero more slowly than z/f(z) as x — 07, meaning that larger step-sizes can be taken

without an appreciable loss of performance. Suppose

/' is continuous, f’ is decreasing on (0,z%), f(z) > 0Vz > 0 and f is increasing

(3.53)

A is continuous, A(z) > 0, A(z) — A € [0,00) as z — 07 (3.54)
A(z)

h(x) := for all x > 0. 3.55

(@)= 5 (3.59

We approximate z(t,) by x,, where z(t,) is the solution x of (1.1) at time ¢,. The
sequences (z,), (t,) and (h(x,)) are defined by (1.43), (1.44) and (3.55)

Tpy1 = Tpn — h(xn+1)f(xn+1)7 n=>0, xy= 5 > 0,
where t,11 =37 Mzj11), n>0, t=0.

Theorem 14. Suppose f, A and h obey (3.53), (3.54) and (3.55). Let F, I, (t,) and
Ty, be defined by (1.10), (1.11), (1.44) and (3.33).

(i) If f obeys (1.7), then x,, > 0 for alln > 0, (x,) is decreasing, x, — 0 asn — oo,
tn—>Th<oo as n — 0o and

F(x, F(x,
< lim inf — (7n) < lim sup — (zn) < 1.
1+A n—00 Th_tn n—00 Th_tn

(i1) If f obeys (1.9), then z,, > 0 for alln >0, (z,,) is decreasing, x, — 0 asn — oo,
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t, — 00 asn — oo and

a
< lim inf (zn) < lim sup

Proof. Suppose for the moment that h(x)f(z) — 0 as © — 0". Since f is increasing
for u € [z, z + h(z)f(x)], then we have that f(z) < f(u) < f(z+ h(z)f(x)). Therefore
for x >0

et h@)f@) - h<x>/z Fw ™=t

By the Mean Value Theorem, there is 6, € (0,1) such that

fl@+h(z)f(z) = f(z) + ['(x + 0:h(x) f(2)) - h(x)f ().

Hence

f(@ + h(z)f(x))
f(x)
Since © < x + 0,h(x)f(z) <  + h(z)f(x) then by (3.53) for all z sufficiently small
0< fl(x+0h(x)f(x)) < f'(x). Thus

=1+ f'(z+0.h(x)f(x)) - h(x).

f(@ + h(z)f(x))
()

Hence for all x sufficiently small

1 1 z+h(x) f(x) 1

<1+ hz)f'(z) =1+ Ax).

Before proceeding further we now verify that h(x)f(z) — 0 as x — 0F

| AW A f@) 0
Jm hx)f (@) = B === Hm Al) - lim 528 =& 5 =0

since lim, o+ f'(z) = f'(07) € (0,00]. Next as (z,) decreases to zero as n — oo for
n > Ni(e), x, will be sufficiently small such that estimate (3.56) holds for z = z,,41.
Thus for n > Ny(e)

1 1 /:cn+1+h(xn+1)f(u’0n+1)
< ——du < 1.
L+ A(@n)  Manr) Jon, f(w)

Now z, 11 + h(xpi1) f(pe1) = 2y, so for n > Ny(e)

1 < ! /x" —1 du < 1 (351)
U . .
1 + A(l‘nJrl) h(anrl) Tn41 J (U)

T

Since 2, = 0asn — oo and A(x) = A € [0,00) as z — 07, we get that (fxn’;l 1/ f(u) du)
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is summable if and only if (h(xn+1)) is summable. If f obeys (1.7) then f01+ 1/f(u)du <
oo and D27 ™ 1/f(u fo 1/f(u)du < oo and so (h(x,4+1)) is summable.

A~ Tnt1
Hence Tj, := > 7, h(xjﬂ) < oo. Thus Tj — t, = > oo M) — Z;.:Ol h(xjy) =
> h(@jg1). Thus with F(z) = [ 1/f(u) du, we have by (3.57) for n > N (e)

J=n

o0

h(zj1) /
T < F(x,) du < h(x — .
]Z_; 1+ A(CBJ‘-H Z fEJ+1 Z #+1) h

Hence _
lim sup — <1.

n—oo 1}, —t,

By Toeplitz’s Lemma and A(z;) — A as j — oo,

F * h(xz; 14+ Ax; 1
lim inf — (7n) > lim inf ZJ_" ( J;1>/< (#5+1)) = )
n—00 Th —t, n—00 Zj:n h(fl?j+1) 1+ A

In the case f01+ 1/f(u) du = oo, we have that Y oo [*" 1/f(u)du = fo 1/f(u)du =

Tn+1
oo. Thus (h(z,41)) is not summable. Hence t, — oo as n — oo, where ¢, =

>0 h(xj41). Let n > Ni(e), by (3.57)

n—1
F(x,) = F(zn0) Z / f—du< Flano)+ Y. hzj).
j=Ni(e) * ¥+ j=N1(¢)
Hence )
F(z, F(xw, (e (e M@
lim sup (7n) < lim sup (le( )) + Z] anl ) ( ]H) =1.
n—00 n n—00 tn Zj:O h(xj+1)

On the other hand for n > Ny(¢), by (3.57)

n—1

F(zn) 2 F(zn @) + Z
J=N1(¢)

h(zj+1)
1+ A(zj1)

Thus by Toeplitz’s Lemma and that A(z;11) = A as j — 0o, we get

F
lim inf () > lim inf

n—oo n n—oo

F(ry, o) Z;‘L:_]{fl(e) hzjm)/ L+ Alzjn)) | 1
_.I_ —
b Z;:& h(zj41) L+A

]

Remark 15. We know that if f € RVy(5), 5 € [0,1] and f’ is monotone, then
zf'(z)/f(x) — [ as x — 0F. Also if h(z) ~ Az/f(xz) as x — 07 for A € (0,00)

we will show in the next chapter that

1+A
lim — / P .
n—oo Th _ t A




Implicit Euler Scheme with Step-Size O(1/ f'(z))

For =0 and A € (0,00) the limit on the right-hand side is unity, while for g > 0 the
quantity on the right-hand side is with O(A) of unity as  — 07. Theorem 14 specifies
h(z) ~ A/ f'(z) as  — 07, so

flx)h(z) A 00, if =0,

lim 2 = = o

w0t B 10,00, ifB>0.

If 3 > 0, we have the choice of h in Theorem 14 being of the same order as chosen
up to now. If 8 = 0 then h(z) = o(1/f'(x)) as x — 07 and we get the perfect rate
as predicted. Our new method is taking asymptotically larger step-sizes and yet still
predicting exponents to within O(A) as © — 0. Furthermore, Theorem 14 anticipates
our later results because if we take h(z) ~ Ax/f(z) as x — 0T then h(z) = o(1/f'(x))
as x — 07 and so Theorem 14 part (i) implies

F(z,
i F(@n)

= =1.
n—o0 Th — tn

7



Implicit Euler Scheme with Step-Size O(1/ f'(z))
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Chapter 4

Asymptotic Behaviour of
Discretisation with Regularly

Varying Non-Linearity

4.1 Introducton

In this chapter, we seek to refine the results from Chapter 3 by assuming that f is
regularly varying at zero. In Chapter 3 we are typically unable, for positive values of
the convergence parameter A, to obtain in the case of finite-time stability a limit of
the form _

lim F(%) = c(A).

neo I — Uy
In this chapter we show for f € RVy(f) that such limits obtain and generally ¢(A) # 1
for A > 0. We also show that ¢(A) — 1 as A — 0 for both Explicit and Tmplicit
schemes, that ¢(A) — 0 as A — oo for the Implicit scheme only and that A +— ¢(A)

is increasing and ¢(A) > 1 for A € (0, 1).

These results show that taking a step-size of O(z/f(x)) as x — 0" is indeed op-
timal for ODEs with regularly varying non-linearities because taking asymptotically
larger step-sizes will lead to spurious asymptotic convergence rates for (z,). Likewise
taking step-sizes which obey h(z) = o(x/f(z)) as + — 07, will recover asymptotic
behaviour exactly, but will do so at a greatly increased computational cost owing to
the asymptotically smaller step-size required.

There are two situations which require further analysis, namely the case when g = 0

for both schemes. In this case

F(z,
i £ @)

= =1
n—o0 Th — tn

: (4.1)

for the Implicit scheme we show that it is possible to take an asymptotically larger

step-size and still recover a finite limit in (4.1). We also give conditions which help us
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Comparing Behaviour of Numerical Scheme and ODE

determine for a given f what classes of asymptotic step-sizes larger than O(x/f(x)) as

x — 07 will deliver a finite or unit limit in (4.1).

4.2 Comparing Behaviour of Numerical Scheme and
ODE

4.2.1 Explicit Euler Scheme with Adaptive Step Size

We approximate z(t,) by x,, where x(t,) is the solution x of (1.1) at time ¢,. As
before, (x,), (t,) and (h(z,)) are defined by (1.41), (1.42) and (3.17):

Tpp1 = Ty — W(zn) f(zn), n>0, x9=¢&>0,

where .
tn+1 = Z h($j), n > 0, ty = 0,
=0
and h
tim 2@\ o 1y,
z—0t X

We make the following observations which will be of use in several of our proofs.
These observations are of a similar character to those in the previous chapter. Suppose
f01+ 1/f(u)du = oco. If F is defined by (1.11) then F(z) — oo asx — 07, so F'(z,,) — o0
asn — o0o. Then forn > 1

1 1 n—1 T 1
F(z,) = ——du = F(xg) + / — du.
(o) = . 7 () ; o5 —h(a;)f(ay) T (1)

If F(x,) — oo as n — oo then

n—1 .
Tj

Z/x L du = o0, (4.2)

=0 Jxi—h(z;)f(x)) f(u)

since F'(zy) is finite. Suppose f01+ 1/f(u)du < oo then F(z) — L € (0,00) as x — 07
so F(z,) — L as n — oo. Hence

n—1 .
X 1
—— du < 0. (4.3)
jzo /xj—h(xj)f(xj) f(u)

If T is defined by (1.8) then for n > 0

€1 X1 — [ 1
T:/ ——du = / ——du = / ——du.
¢ 0 f(u) ]ZO Tl f(u) ]ZO xj—h(z;)f(z;) f(u)
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Preserving Soft Landings and Super-Exponential Stability

Equations (4.2) and (4.3) show that 7% is finite or infinite according to whether F(z)
is finite or infinite. If F is defined by (1.10) then F(z) — 0 as z — 0% so F(x,) — 0
asn — 00. Then for n >0

Flan) / flu) du—Z/ h(z;)f(z;) fi)

The closed-form expressions for F(z,), F(z,) and T; identify the summand in the last

identity as the key sequence in our analysis.

4.3 Preserving Soft Landings and Super-Exponential
Stability

In this section, we assume that f € RVy(5) for some § € [0,1]. The Explicit scheme
defined by equation (1.41) preserves the properties of the soft landing (1.15) under
the condition (1.7) while the property of super-exponentially stable solutions (1.13) is

preserved under the condition (1.9). Since (h(x,)) is a positive sequence the limit
lim ¢, = Th—th]

exists, but can be finite or infinite. In our next result, we show that 7}, is finite or

infinite according to whether T defined by (1.8) is finite or infinite.

Theorem 15. Suppose [ obeys (3.1), (3.7) and that f € RVy(B) for some B € (0,1]
while h obeys (3.2) and (3.17) with A € [0,1]. Let (t,) and T}, be defined (1.42) and
(3.16).

(i) If f obeys (1.7), then T), < co.
(ii) If f obeys (1.9), then T), = oo

Proof. Since f € RVy(B), for some 5 € (0, 1], it follows that there is ¢(z) ~ f(z) as
r — 07 where ¢ € RVy(5) and ¢ is increasing as x — 07. Since (x,,) is positive and

decreasing then for z;1; < u < z; and with ¢ increasing

1 1 1
< <

¢(95j) P(u) ¢(Ij+1) .

Integrating over [z;.1,z;] and (1.41) implies

Ty Tigl — T o1 Tip — x5 o) 5o
o) =2y St S o) ey ) (44
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Preserving Soft Landings and Super-Exponential Stability

By (1.7), f01+ 1/f(u)du < oo then T¢ < oo from (4.3). Since ¢(z) ~ f(x) as v — 0

then
——du = —_— du < 0.
Z/% T [

The Comparison Test applied to (4.4) shows the summability of ( x’; 1/¢(u) du) im-
plies that of (h(x;)). Hence (h(z,)) is summable and so is (h(x,)) since f(x) ~ ¢(z)
as x — 0. Thus t, = Z?;é h(z;) for n > 1 obeys t, — T, := > oisohlzj) < oo as

n — oQ.

By (1.9) f01+ 1/f(u) du = oo then Ty = oo from (4.2). Since f(z) ~ ¢(x) as = — 0T

then
_— du =
Z Tj+1 ¢ /

The Comparison Test applied to (4.4) shows that (¢(z;)/¢(z;11) - h(z;)) is not a

summable sequence. Define

Since (3.17) holds then

lim \; = lim (1—M):1—A.

j—o00 Jj—o0
Since ¢ € RVy(B) then

lim 2 _ gy O Ay

i=oo d(Tjp1)  d—oo G(AjT;)

Thus (h(x;41)) is not summable since

ﬁ(%‘)

lim 7 =(1-2)",
7o §(25) /9w 41) - ()

and thus (h(z,)) obeys t, = Z;:& h(xz;) — oo as n — oo. Therefore t,, — oo as

n — 00. OJ

Remark 16. In the case when g = 0, we must additionally assume that f is asymptot-
ically monotone. The function ¢ to which f is asymptotically monotone is therefore in
RV;y(0) and therefore the proof above for 5 > 0 holds in all regards. O
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Preserving Asymptotic Convergence Rates

4.4 Preserving Asymptotic Convergence Rates

Our next result shows that when f is regularly varying not only is the absence of
a finite hitting time correctly predicted but the precise asymptotic behaviour is also
recovered once h obeys (3.17) with A € [0, 1].

Lemma 9. Suppose f obeys (3.1), (3.7) and that f € RVy(B) where 5 € [0, 1] while h
obeys (3.2) and (3.17) with A € [0, 1].

(i) If A =0, then

1 /x 1
lim —— ——du=1.
z—0t h(x) —h(z)f(z) f(u)

(ii) If A € (0,1), then
li L / L 1/1 AP ax
1m —-— — adu = — .
w=0+ () Joon@) ) () A Jia

(i1i) If A =1, then

(a) B €[0,1) implies

1 r 1 1
lim —— / L |
w=0t W) Joop) p) f(0) 1-8

(b) B =1 implies

li L /I 1 d
11m —- — dUu = OQ.
z—0+ h(z) o—h(@) fz) (W)

Proof. Tt is useful in the proof to express the integral in terms of regularly varying

functions as follows:

L PR S ()P
h(z) /x_h@w ™ =A@ /x_h@)ﬂz) F(a)

B x ! f(z)
B h(x)f(z) /1—h(x)f(x)/x f(Az) A

_ L (Az)
~ Ax) /I—A(a:) f(z) »

where A(z) := h(z)f(z)/z and f(z) := 1/f(x). It follows that f € RVy(—/3). We start
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Preserving Asymptotic Convergence Rates

with the proof of part (iii). Put y = 1/ and let 2 — 0 or equivalently y — oo: then

S . P Y 10 Y A 1)
h(z) /x—h(x)f(oc) f(u)d A(z) /1—A(1‘) f(x) “ /1—A(x ~(~ z) ?
_ / B (G2 V) PN
-aay  f(1/y)

B Sy
B /1—A*(y) f*(y) dA?

as y — 0o. In making these estimates we have taken f*(z) := f(1/x) so f* € RV (),
A*(y) = A(1/y) so A*(y) — 1 as y — oo. It remains to obtain the limit of the last
displayed quantity as y — oo according to

DA I fpy) —1
/1A*<y> f*() - /(1A*(y))—1 RO

Ak —1 *
B / A=27WD70 f (uy)

1
Py 2

< fpy) 1
= /1 [y w? -

By the Representation Theorem for Regularly Varying functions (see Theorem 1.3.1 in

[12]) we have that
() = vPely) exp ( [ du) ,

u

where ¢(y) — ¢ > 0 and ¢(y) — 0 as y — 0o. Let © > 1. Now there exists yy > 0 such
that

< 2, forall y > yo,

and a y(e€) such that for all y > y(e)

([0 <.

Thus for every € > 0, there is y(e¢) > 0 such that for all y > max(y(e),yo) and all x > 1,

we have
[ (ay) _ (wy)elay)exp (" e(w)/udu) o clay) [ [TVe(w)
f*(y)  yPe(y) exp (J7 e(u) /udu) N c(x) p (/y u d )
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Preserving Asymptotic Convergence Rates

Let X > 1. Then for y > max(y(¢), yo) we have

ey 1o f ) 1 Ty 1
/1 fy)  p? n / I i+ x [y dn
f* uy 1

<

Ed,ﬁ / 2P dp.
X

Thus by the uniform convergence theorem for regularly varying functions (see Theorem
1.5.2 in [12])

yooo 1 fHY) m = \Jy ) 2 X
X
< / Wdur [ 2
1 X
Letting X — oo yields
! (A\x) 1
limsup/ ——d\ < ——. (4.5)
20 s Jw) T8

We now seek to find a corresponding lower bound. Let y = 1/x and let X > 1.
Since (1 — A*(y))™! — oo as y — oo it follows that there is a y(X) > 0 such that
(1—A*(y))™' > X for all y > y(X). Thus for y > y(X)

1 7 (1—A% ()1 px
f(Ax) fuy) 1
/ AN = -~ dp
1-A(z)

() [y n
1 (1-A*(y)) * 1
:/f —Qdu+/ f*(uy)_Qdu
p X )
1
> / f( uy L
i
Thus by the uniform convergence theorem for regularly varying functions
1 3 1 X
lim inf JO d>\ > lim inf f —dp = / 1’2 dp.
20 J1a@ f(x) y—00 p? 1

Letting X — oo yields that

.
lim inf / FAz) o\ > 1
1-A(z)

z—0t

Combining this with (4.5) yields

lim A = ——
=0t Jima@) f(x) L=p
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Preserving Asymptotic Convergence Rates

and hence the proof of part (iii)(a) is complete. In the case when § = 1 it suffices to

consider the lower bound and arguing as before we obtain

1 r A X
lim inf / JOT) > / 1P2 dy.
1 1

20" J1a@ flz)

Therefore

.
lim inf / JOT) 3 S g X,
1-A(z)

z—0t

Letting X — oo yields that

lim 1 f(Ax)

= d\ = 00,
20" Ji_a@) f(x)

and hence the proof of part (iii)(b) is complete. We now prove part (ii). Since A(x) —
A as x — 07 for all x sufficiently small

L ) B AT I S 1Y) BN
/1_A<x> 7(@) s [ Fa) [ ( f) >+

_ ' f(/\m)_ ] ' -B
= /1_A_e<f(:c) A )d)\+/1_A_€)\ dA.

Hence by the Uniform Convergence Theorem for Regularly Varying functions we get

1 1
lim sup / ) oy < / A8 d\.
z—=0t  J1-A(z) f(x) 1-A—e

Letting € — 0 yields

1 7 1
lim sup/ Md)\ g/ AP dN.
=0+ Ji—a@) f(x) 1-A

Similarly for all z sufficiently small the corresponding lower bound is
1 F 1 F 1 3
/ fO2) 4y > / fO2) gy / JO2) 35} f a5 an
1-A@) f(x) 1—Ate f(x) 1-A+e \ f(x)

_ ! JE(/\x) -8B ! -8
/1—A+e < f(x) A ) d\ + /1_A+€)\ d.

1 1
lim inf / de > / AP dN.
1 1

=0t J1_A@) f(x) —Ate

Hence
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Letting € — 0 yields

1 I 1
lim inf / FAT) oy S / AP d.
1-A(z) 1-A

z—0t

Combining the upper and lower bounds yields

hmi/x Ldu—lf A8 d\
2=0+ W(Z) Joon)s(a) f (W) A Jiia ’

as claimed. To prove part (i), we start by writing

S L A H L (01
h(l’) /x—h(ac)f(;r) f(u> d A(.T) /I—A(:c) f(l’) “

For all x < z(e€), we have A(z) < € so

e fOx) 4 Lo [
A(x) /1—A(x) < f(x) A ) »o= A(z) /1—A(x) f(z) e
! - Az su f(Ax) — 77
— Ax) Al >1—A(x)2)\§1 f(x) A
su f~()\x) —\F
N 176§£\)§1 f(x) '

Hence by the Uniform Convergence Theorem for Regularly Varying functions

1 F(A
—/ JOT) 35 an
Ax) Ji—a@ \ f(z)
The second term on the right hand side has zero limit since L’Hopital’s Rule shows
that

lim sup = 0.

z—0t

1
lim — A Pdx =0,

+
y=0" Y J1—y

and because A(z) — 0 as © — 07 we have that

1 1
lim / A Pd)=0.
z—07t A(ZE) 1-A(z)
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Preserving Asymptotic Convergence Rates

Hence

as claimed. O

If f € RVy(f) it can only happen that = does not hit zero in finite-time when g = 1.

We now consider the asymptotic behaviour in that case.

Theorem 16. Suppose f obeys (1.9), (3.1), (3.7) and that f € RVy(1) while h obeys
(3.2) and (3.17) with A € [0,1]. Let F' and (t,) be defined by (1.11) and (1.42).

(i) If A =0, then x, > 0 for all n > 0, (x,) is decreasing, x, — 0 as n — o0,

t, — 00 as n — oo and

n

lim =1.
n—oo

(i) If 0 < A <1, then x,, > 0 for alln > 0, (x,) is decreasing, , — 0 as n — oo,

t, — 00 asn — oo and

. F(z,) 1 [ 1
lim ———~ = — .
it A /1_A AT

(iii) If A =1, then x, > 0 for alln > 0, (x,) is decreasing, x, — 0 as n — oo and
either: t,, —>Th <00 asn — o0o; ort, — 00 asn — oo and

lim = 00
n—oo n

Proof. The positivity, monotonicity and convergence of (z,) have been addressed in
Theorem 3. Since f obeys (1.9) then folJr 1/f(u)du = oo and t, — co as n — oo by
Theorem 15. If ¢, = Z?:_Ol h(x;) — oo as n — oo, which is true if A € (0,1), dividing
by ¢, and letting n — oo yields

il o 0 25 f e iy M (W) du

lim ——- =

= lim
n—00 ijé h(:cj)
oo sy Y () du
= lim
j=00 h(z;)

lim L /I L du
= 1 —_— [ )
50t W(Z) Jooneyp(a) f(0)

by Toeplitz’s Lemma. Therefore, the proof of parts (i) and (ii) comes from combining

the above limit and the relevant part of Lemma 9. For part (iii) if ¢,, — oo as n — oo, we
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Preserving Asymptotic Convergence Rates

may argue as above. Otherwise, t,, tends to a finite limit covering the other possibility

in the statement of part (iii). O

The next result shows that when the ODE (1.1) hits zero in finite-time, the numerical

method will detect the correct asymptotic behaviour, provided h obeys (3.2) and (3.17).

Theorem 17. Suppose f obeys (1.7), (3.1), (3.7) and that f € RVy(B) for some
B € [0,1] while h obeys (3.2) and (3.17) with A € [0,1]. Let F and T}, be defined by
(1.10) and (3.16).

(i) If A =0, then x, > 0 for all n > 0, (x,) is decreasing, x, — 0 as n — o0,
tn—>Th<oo asn — oo and
F(z,)

lim — =1.
n—00 Th _ tn

(i) If 0 < A < 1, then x,, > 0 for alln >0, (x,) is decreasing, x, — 0 as n — 0o,
tn—>Th<oo asn — 0o and

n 1
i 22 v
n—oo Th _ tn A 1—-A

(i) If A =1, then x,, > 0 for all n > 0, (x,) is decreasing, x, — 0 as n — o0,
tn—>Th<oo as n — 0o and

(a) if B €[0,1) then

(b) if =1 then

Proof. The positivity, monotonicity and convergence of (x,) have been addressed in
Theorem 3. Since f obeys (1.7) then f01+ 1/f(u)du < oo and t,, — Tj, := > o Mxy) <
0o by Theorem 15. Hence T}, — t,, = > enh(zj) = 0asn — oo As F(x,) — 0 as

00
Jj=n

n — oo dividing by T, — t, = > 2 h(z;) and letting n — oo yields

i @), e S}y sy 1/ () du
e Th = tn e D i M)
e ey U (W) du
= lim
j—o0 h([E])

ER
= lim — — du,
z—0* h(‘r) z—h(z)f(x) f(U)

by Toeplitz’s Lemma. The proof for each part comes from combining the above limit

and the relevant part of Lemma 9. O
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4.4.1 Implicit Euler Scheme with Adaptive Step Size

We approximate x(t,) by z,, where x(t,) is the solution = of (1.1) at time ¢,. The
sequences (z,), (t,) and (h(x,)) are defined by (1.43), (1.44) and (3.17):

Tpg1 = Tp — WM Tpg1) f(Tni1), n >0, x9g=&>0,

where .
tur1 =Y _h(zj41), n>0, th=0,
j=0
and h
lim (z)/(z) = A € [0, 00].
z—0t xT

We make the following observations which will be of use in several of our proofs.
Suppose f01+ 1/f(u)du = oco. If F is defined by (1.11) then F(z) — oo as © — 0%, so
F(x,) — oo as n — oo. Then for n > 1

noopEgth(z)f(e) q
F(x,) / —du— .21:0)4—2/ ——du
Tn j=1 Zj f(u)

If F(x,) — oo as n — oo then

i /xﬁh(xj)f(wj) 1 ( )
—— du = 0. 4.6
. f(u)

j=1 7%

since F'(zo) is finite. Suppose f01+ 1/f(u)du < co. Then F(z) — L € [0,00) asz — 07,
so F(z,) — L as n — oo. Hence

i zjt+h(z;)f(z5) ( )
—— du < 0. 4.7
L f(u)

=1 Y%
If T is defined by (1.8) then for n > 0

€ 9 A | npaith(zi) e q
T, :/ ——du = —du = / — du.
o fW) Z@ ) Z f ()

1 J

Equations (4.6) and (4.7) show that T¢ is finite or infinite according to whether F(z)
is finite or infinite. If F is defined by (1.10) then F(z) — 0 as z — 0% so F(x,) — 0
as n — 0o. Then forn >0

/ °° zjt+h(z;) f(z5) 1
xn —_— du = / —— du.
. 2; f(w)



Preserving Finite-Time Stability

The closed-form expressions for F(x,), F'(x,) and T identify the summand in the last

identity as the key sequence in our analysis.

4.5 Preserving Finite-Time Stability

The main advantage of the Implicit scheme is that if i obeys (3.17), there is no
restriction on the size of finite A. We make this precise below. In our next result, we
show that 7T}, is finite or infinite according as to whether T¢ defined by (1.8) is finite or

infinite.

Theorem 18. Suppose f obeys (3.1), (3.32) and that f € RVy(B) for some p € [0, 1]
while h obeys (3.2) and (3.17) with A € [0,00]. Let (t,) and Ty, be defined (1.44) and
(3.33).

(i) If f obeys (1.7), then Tj, < co.
(ii) If f obeys (1.9), then T) = oc.

Proof. Since f € RVy(B), for some S € (0, 1], it follows that there is ¢(z) ~ f(z) as
x — 0% where ¢ € RVy(f3) and ¢ is increasing. We tackle the case of 5 = 0 later. Since
(x,,) is positive and decreasing then for z;;; < v < z; and with ¢ increasing

1 1 1
< <

¢(l’g) P(u) ¢<5’7j+1)'

Hence

Tj 1 Ti:— T ~
< du < =2 It

gb(xj) Zj+1 ¢(u) ¢($]’+1) (xj—H)‘

¢(2j41) () = i — T+l

o)) (4.8)

By (1.7), f01+ 1/f(u) du < oo then T¢ < oo from (4.7). Since ¢(z) ~ f(x) as v — 0

then - ¢
o1 1

j=0 Y ¥j+1

The Comparison Test applied to (4.8) and the summability of ( f;:ﬂ 1/¢(u) du) implies

that of (¢(z;:1)/6(z;) - hl@nsn)
Define

Moy Tt ( T )_1 _ (l‘j+1 + h(%‘ﬂ)f(l’jﬂ))_l _ (1 . h(xj—s-l)f(l’j—i-l))_l.

Zj Tj+1 Lj+1 Tj+1

Since (3.17) holds then

-1
hm )\j-i,-l — llm <1 + h('I]"rl)f(mJ-f-l)) — (1 +A)_1.
j—o0

Jj—00 ZL’j+1

91



Preserving Asymptotic Convergence Rates

Since ¢ € RVy(B) then

(i) L (M)
I ) e oz

= (1+2)) =1+4a)"

Thus (h(x;4,)) is summable since

ﬁ(mj-ﬁ-l)

im - = AY 8
B o) fo(ay) ) T

Hence (h(,41)) is summable and so is (h(z,41)) since f(z) ~ ¢(z) as z — 0*. Thus
tn = Z;L:_Ol h(z;41) for n > 1 obeys t, — Tj, := > oo h(xj41) < 00 asn — oo. In the
case when 8 = 0 we have that z — f(x)/z € RVy(—1) and therefore is asymptoti-
cally decreasing. This can be used as in the monotonicity section to demonstrate the
summability of (h(z;)).

By (1.9), f01+ 1/f(u) du = oo then T = oo from (4.6). Since f(z) ~ ¢(x) as v — 0

then
Z %m / sy =

The Comparison Test applied to (4.8) shows that (h(z,1)) is not summable and thus
(h(xy41)) obeys t, = Z;:& h(xj11) = oo as n — oo. Therefore t, - coasn — oco. [

A consequence of this result is that the scheme defined by (1.43) preserves finite-time
stability under the condition (1.7) while positivity is preserved under the condition
(1.9).

4.6 Preserving Asymptotic Convergence Rates

We show that the Euler scheme (1.43) reproduces the exact asymptotic behaviour of
the solution to (1.1) when there is a soft landing and when there is super-exponential
convergence. The scheme does not recover the exact rate of convergence because the
Implicit scheme over-estimates the solution despite preserving finite-time stability and
super-exponential convergence. We also see that if A = oo in (1.40), then exact
convergence rates may not be recovered. We tackle the case of super-exponential

convergence first.

Lemma 10. Suppose f obeys (3.1), (3.32) and that f € RVy(B) where § € (0,1] while
h obeys (3.2) and (3.17) with A € [0, c0].

(i) If A =0, then

1 x+h(z) f(x) 1
lim —— ——du=1.
om0+ 1(z) / Fla) ™
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(11) If A € (0,00), then

1 z+h(z) f(x) 1 1 1+A
lim —/ ——du= —/ A B aN.
e—0+ h(z) J, AJy

(11i) If A = oo, then

| feth@f@)
lim —— ——du = 0.
o0+ 1(z) / Fla) ™

Proof. 1t is useful in the following proof to express the integral in terms of regularly

varying functions as follows

L z+h($)f(m)i L 1 $+h(x)f($)M y
h(x)/x O h(x)f(x)/z F(a)
R 1+h(:v)f(x)/va
- h(w)f(x)/l o) ™
B 1 1+A(z) f()\ﬂ?)
N A(m)/l F(z) ax,

where A(x) := h(z)f(z)/z and f(x) := 1/f(x). It follows that f € RVy(—3). We
prove part (iii). Since f € RVy(—f) there is a decreasing ¢ € RVy(—f) such that
¢(x) ~ f(x) as  — 0T. Now we write

h(z)

1 /x—i-h(x)f(gc) 1 B () 1 /1+A(m) {F()@) ‘ d(\x) 0
- 1 p(Ar)  ¢(x)

— u = —_——

f(u) (z) Alz)
If A <14 A(x), then Az < z + h(z)f(x) — 0 as  — 07. Now, there exists d; > 0
such that

—

()
()

< < 2, forall z <y,

N —
%\z‘

and a 5 such that
x+ h(z)f(z) <, forall z < ds.

Let 03 := min(dy, d3). For z < 3 then Az < x + h(x)f(z) < §; and thus

< 2, forall z < d3.

Thus for x < 3

1 z+h(z)f(z) 1 4 HA®) §(\x)
—d = d.
h(z) /x flu) ™ = A(z) /1 o(z)

Since A(z) — oo as z — 0, for every € € (0, 1), there is x1(€) > 0 such that A(z) > 1/€?,
for all z < x1(e). Hence eA(z) > €2A(z) > 1 for x < zy(e). For 1 < A, then
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o(z) > p(\x) and
1 1+A(z) é()\l‘)
dA
J

Az) o(x)
1 <A@ j(Ax) Al
‘Am([ a@d”%ﬂ é é )
1 eA(x) 1+A(z) ()\ )
<t ([T [ MH/M e dA)
(Al -1  (0+A@)-A) 1 o(Az)
G +M>Z;wa@dA
L A0
et A(x) /eA(z) gg(m) A
For eA(z) < A < A(z), then exA(z) < Az < xA(x), so as ¢ is decreasing then
dlexA(x)) > dp(Ax) > p(zA(x)). Thus
1 A0300) (- 9AE) derd@) _ Herd)
55 a3 P B S

For & < x1(e), then eA(z) > 1/e, thus exA(z) > x/e so as ¢ is decreasing then
dlexA(z)) < (z/€). Thus for = < xy(e)

L2050 ) i)

Az) Jeaw) o(x) o(x)

Hence since ¢ € RVy(=5)

: 1 A g(Ax) Pl _-1\-B _ B
P A ) /em o STy T =

Therefore

at+h(z)f(x) 1 5
lim su ——du<4(e+¢€).
mew s [ Fay S et )

Letting € — 07 yields the desired result. We now prove part (ii). Using the opening

considerations and partitioning the integrals we obtain

L x+h(x)f(x_ P 1+A s 1 1+A(x) f()\x)_ s
i o) Ve <>/ (ﬂ@ A>dA

1+A 1 1+A
/ A PdN— — / AP
A Jy

Taken together the second and third terms on the right-hand side have zero limit since
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A(zr) - Aasxz — 0. For x <0, then A/2 < A(xz) < 3A/2. Thus for z < §

L 1+A(z) f()\x)_ s 1 1+A(z)
5 ( o )C” 5

fO2) s
f(z)

IN

dA

IA

Hence by the Uniform Convergence Theorem we have

1 14+A(x) f()\I) s B
a0t Az )/1 <f(x) A ) =0

1 z+h(m)f(a:) 1 1 1+A ﬁ
lim —— —du = — AP d)
o0t (@ >/x Flu) ™ Afl ’

as claimed. We now prove part (i). We start with the identity

1 :E+h($)f($) 1 1 1+A(
L / Lo = /
hz) J, f(u) Alz) Ju

f
I HA -7 AP 1) b dA
N A(a: f +( B ) ’
which gives

I I S B Sl (L B
h(x)/x Ok 1_A(93)/1 (f(x) ' >dA

and hence

)

For all x < z;, A(x) < 1. Hence for all z < 24

1 14+A(z (Az) s 1 1+A@) f(/\x) _ \-8
A(x)/l <f<> - )dA : A("””)/l N
L fOx)
= A(x) Al )1<>\<1EA @ | f(z) !
U ]EEA'CE) o )\—,3
= 1oe2 | () '
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Hence

. 1 LHa(e) ,f(A$)__ 8 _
zli>I(I)l+ A(x) /1 ( f(x) A A =0,

by The Uniform Convergence Theorem. The second term on the right-hand side has

zero limit since L’Hopital’s Rule shows that

1 1+y
lim — (AP —1)dr=0.

y—>0+ y 1

Since A(z) — 0 as © — 07 then

1 1+A(x)
lim —)/ (AP =1)dr=0.
1

z—0t A(l’
Hence
1 /x—&-h(fc)f(ﬂf) 1 J
— ——du =1,
h(z) J, f(u)
as claimed. O

We now tackle the case of super-exponential stability. We only consider 5 = 1 since

the integral defined by (1.11) is guaranteed to converge when 8 < 1.

Theorem 19. Suppose f obeys (1.9), (3.1), (3.32) and that f € RVy(1) while h obeys
(3.2) and (3.17) with A € [0,00]. Let F' and (t,,) be defined by (1.11) and (1.44).

(i) If A =0, then x,, > 0 for all n > 0, (x,) is decreasing, x, — 0 as n — o0,

t, — 00 as n — oo and

n

lim =1.
n—oo

(ii) If A € (0,00), then x,, > 0 for alln >0, (x,) is decreasing, x, — 0 as n — oo,

t, — 00 asn — oo and

F log(1+ A
L F(n) _loa(l+4)

(i1i) If A = oo, then x, > 0 for alln > 0, (x,) is decreasing, x, — 0 as n — oo,

t, — 00 asn — oo and
lim ——~=

n—oo  t,

=0.

Proof. The positivity, monotonicity and convergence of (z,) have been addressed in
Lemma 7 and Proposition 4. By Theorem 18 we are guaranteed that t, — oo as

n — oo in all cases. Therefore, as t,, = Z?:—g h(zj1) = D27 h(x;) — 00 as n — oo,
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dividing by t¢,, and letting n — oo yields

n zj+h(z;)f(z;
. F(mn) ] F(xo)—f—zj:l fw.JF (z5) f( )l/f(u) du
lim ——~ = 1] j

im -
n—oo 1, n—00 Zj:l h(:(:j)

) faij‘f‘h(xj)f(fj) 1/f(u) du
= 11m

jro0 h(z;)

1 xz+h(x) f(x) 1
— lm —— g
o0t () / Flw) ™

by Toeplitz’s Lemma. The proof for each part comes from combining the above limit

and the relevant part of Lemma 10. [

We now tackle the case of finite-time stability.

Theorem 20. Suppose [ obeys (1.7), (3.1), (3.32) and that f € RVy(5) where § €
(0,1] while h obeys (3.2) and (3.17) with A € [0,00]. Let F, (t,) and T}, be defined by
(1.10), (1.44) and (3.33).

(i) If A =0, then x,, > 0 for all n > 0, (x,) is decreasing, x, — 0 as n — o0,
tn—>Th<oo asn — oo and

(i1) If A € (0,00), then x,, > 0 for alln > 0, (x,) is decreasing, x, — 0 as n — oo,
tn—>Th<oo asn — oo and

1+A
lim {7(—%):1/ AP dN.
n—o0 Th _ tn A 1

(111) If A = oo, then x, > 0 for alln > 0, (x,) is decreasing, x, — 0 as n — oo,
tn—>Th<oo asn — 0o and

Proof. The positivity, monotonicity and convergence of (z,) have been addressed in

Lemma 7 and Proposition 4. By Theorem 18 we are guaranteed that t, — T, < 00 as

o0

n — oo in all cases. As Tj, — t, = Zj:n—l—l h(z;) — 0 as  — 0" dividing by Ty — tn
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Treatment of RV;(0)

and letting n — oo yields

o P SR 1
noo i —t, e 2 jmn 1 ;)
| fai]-—irh(xj)f(?fj) 1/ f(u) du
- jhﬁrgo | h(x;)
i L/m+h($)f($)idu’
=0t h(z) J, f(u)

by Toeplitz’s Lemma. The proof for each part comes from combining the above limit

and the relevant part of Lemma 10. [

4.7 Treatment of RV{(0)

By virtue of condition (3.17) on h, if f € RV(5), it would appear that h € RV, (1—7)
and decaying sufficiently rapidly to zero are necessary conditions to recover all of the
qualitative properties we want. However, we can allow h(x) — 0 as x — 0 as slowly
as an RV((0) function if we wish to preserve the property of hitting zero in finite-
time, provided an extra integral condition on A is satisfied. Naturally, we must check
independently whether other asymptotic properties still hold.

When h € RV((0), this represents as close as you can go to a constant step-size
while still preserving positivity of the solution, bearing in mind that constant functions
are in RV((0). Also, the step-size is larger when h € RV((0) than when h € RVy(a)
for a > 0.

The proof of the following two theorems is helped by the following lemma.

Lemma 11. Suppose h obeys (3.2) and is increasing.
(i) If [ h(exp(—e”))dz < oo, then > h(exp(—e*)) < oo for all A > 0.
(i) If [ h(exp(—e®)) dx = oo, then > h(exp(—e*™)) = oo for all A > 0.

Proof. Let An < x < A(n+ 1): since h is increasing
h(exp(—e*"t)) < h(exp(—e”)) < h(exp(—e™)).

Hence

A(n+1)
Ah(exp(—e™ D)) < /A h(exp(—e®)) dz < Mh(exp(—e™™)).

n

Suppose [, h(exp(—e®)) dz < co: then

o0 00

A hexp(—eXmH)) < / h(exp(—e®)) dz < oo,

A

n=1
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thus > 7, hexp(—e*")) < oo. Suppose [;~ h(exp(—e®))dx = co: then

o = / " hexp(—e) de <A hexp(—e™),

A n=1

thus >°°7 | h(exp(—e*)) = oco. O

Theorem 21. Suppose f € RVy(B) where 5 € (0,1) and h € RVy(0). Let (t,) and T,
be defined by (1.44) and (3.33).

(i) If [ h(exp(—e®)) dzx < oo, then t, — T}, < 0o as n — co.
(it) If [~ h(exp(—e®))dx = oo, then t, — 0o as n — oc.

Proof. Define
K(Tni1) = Tpi1 + WM@ng1) f(Tng1) = 2o
Since regularly varying functions are closed under multiplication and addition then K

is regularly varying with index min(1,0+ ) = 8 when € (0,1). Hence K € RVy(p),
so 1/K € RVy(—p) and so

log (1) _ 1 log (/K (nn)) _ - —log (/K (nn)) _
nooelog (1/ang)  mooce log(1/wnga)  movee logan
Thus log (1 )
lim M -~ > 1
8 Tog (Lan) — B
Define y,, := log (1/z,,). Thus
1 1 1 < :
lim ~8% _ jim { BI04 =Y log (i>} —log (1/8) > 0.
n—o0 n n—o0 n n = yj—l
Thus lolog (1
lim %(/x”) = log (1/8). (4.9)
n—oo

Hence for every € € (0,1) there is N(e) € N such that
loglog (1/z,
(1) tog (1/8) < BB (34 6y 10g 1/8).

Hence for n > N (e)
exp(—e M) < 2, < exp(—er "),

and
h(exp(—e’\+(ﬁ)”)) < h(zx,) < h(exp(—e)‘*(e)”)),

where Ay (e) := (1 £ €)log(1/3). Suppose [~ h(exp(—e”))dz < oo. Then for A > 0
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and for n > N(e)
> )< S hlesp(-et ) < [ htexp(-en)do < o,
=N =Ne *

so t, — 1), < 0o. Suppose I h(exp(—e®)) dz = co. Then Z;’il h(exp (—eM)) = oo
and for n > N(e)

Z h(x;) Z h(exp(—e (7)) >

j=N(e) j=N(e
so t, — 00 as n — 00. ]

Notice that if 5 € (0,1), then Ty < oo, so the condition on h in (ii) yields spurious
behaviour. Theorem 21 does not cover the case when [ = 0. The next result shows
that if f € RV((0) and h tends to zero more rapidly than an RV((0) function, then we
correctly predict finite-time stability.

Theorem 22. Suppose h € RVy(B) where 3 € (0,1) and f € RVy(0). Let (t,) and Tj,
be defined by (1.44) and (3.33). Then t, — Tj < co as n — co.

Proof. Since h € RVy(8), [, h(exp(—e®)) da < oo. Define

K(xn—i-l) = Tpy1 T+ h($n+1)f(xn+1) = Tn-

Since regularly varying functions are closed under multiplication and addition then K
is regularly varying with index min(1,0+ ) = 8 when § € (0,1). Hence K € RVy(5).
Therefore

i Jo8/z) o logzn . log K(an) _3

n=ocolog (1/2,41) noeologa,y nsoco  log T,

Hence

o dog(Um) 1

nooo log (1/z,) B
Now [ h(exp(—e”))dx < oo and arguing by Theorem 21 from (4.9) to the end and
using the finiteness of [~ h(exp(—e”)) dz we may use Theorem 21 part (i) to conclude

tn—>Th<ooasn—>oo. ]

The condition on p implies that

Since (z,,) is decreasing and h increasing, it is clear that p > 1. If g > 1, then the

step-size decays to zero at least geometrically fast, so there is sufficient computational
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effort to recover the presence of a finite hitting time of zero. On the other hand, if
(= 1, it may be that insufficient effort has been expended and the solution may remain

spuriously positive. This is decided by the finiteness of the integral J in part (iii).

Theorem 23. Suppose f obeys (3.32) and f € RVy(5), 5 € [0, 1] while x +— h(x)f(x)

is increasing and x — h(x) is increasing. Suppose also there exists p € [0, 00] such that

bt h@)f@)
po=

Then:
(i) u>1.
(ii) If p € (1,00], then t, — Tj, < 00 as n — oo.

(iii) If p =1, let h, f be in C*(0,8) for some § > 0, define

_ " h(E() :
J.—/O h( (ho K) (2)dz,

where K(z) :== z + h(z) f(2).

(a) If J = oo, then t, — oo as n — oo.

(b) If J < oo, then t, — Tj, < 00 as n — oc.

Proof. Note that K is increasing since hf is increasing and x,,.1 = z, — h(zpy1) f(Trni1)

so K(zp41) = x,,. Hence x,41 = K~ %(z,). Therefore s, := h(z,) obeys
Snt1 = h(@pi1) = (ho K1) (z,) = (ho K~ o h71) (s,),

because h is increasing. Note that (s,) is decreasing, as (x,) is decreasing and h is

increasing. Then
Spi1 = Sp — (sn — (h oK 1o hil) (Sn)) = S, — k(sy),

where k(x) := x—(ho K~ 'oh™')(x) with k(0) = 0. Note that K(z) > x,s0x > K ()
for all z > 0. Hence h(z) > h(K (z)), or x = h(h7'(x)) > (K *(h 7 (z))) so
x> (ho K~ oh™1)(z), so k(z) > 0. Furthermore

o k(z) { h(K‘l(h‘l(x)))} : h(2)
lim —= = lim <{1-— 1— lim ————
r—0t+ T z—0t T z—0t h(K(Z))
— 1— lim h(z)
=0t h(z + h(2)f(2))
_ -1
1
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Part (i) is true, because h is increasing, so h(z + h(x)f(x)) > h(z). For part (ii), if
p € (1, 00], then

k 1 1
lim 22— 1~ lim (Sn)—l_(l__)__7

n—o00 S, n—oo S, 1%

where 1/ € [0,1). Thus (s,) is dominated by a geometric sequence with common
ratio < 1. Hence (s,) is summable. Therefore lim, . t, = T, = Z;io h(zj) =
Z;io Sj+1 < oo. In part (iii), we have $,41/s, — 1 as n — oo. Since h and f are
in C1(0,4), then K € C'(0,6). Therefore as k(x)/x — 0 as z — 0T, k(0) = 0, and
k(x) =x — (ho K=t o h7Y)(z), we have that k € C*(0,§) with k'(z) = 0 as z — 0.

We now determine the asymptotic behaviour of (s,,). Define

L(z) = /: ﬁdu.

Since k(x)/x — 0, we have L(x) — 0o, as © — 0. By the Mean Value Theorem there
is 6, € (0,1) such that

L(snt1) = L(sp — k(sn)) = L(sp) + L' (s, — 0,k(s,)) - —k(sn),

or ks,
k(sn — 0,k(sn))

Again by the Mean Value Theorem there is 6, € (0,6,) such that

L(snt1) = L(sn) =

k(sn — 0nk(5,)) = k(sn) + K (50 — 0,k(80)) - =0,k (sn).

We have & 0.k
lim M= Onkn)) ) o K (s — Buk(s,) = 1,

n—o0 k(sn) n—o0

since k'(z) — 0 as x — 0". Hence
lim (L(sp11) — L(s,)) = 1.

n—oo

Thus

Hence, for every e € (0, 1), there is N(e) € N such that for n > N (e)
(1—¢€)-n<L(sy,) <(1+e€) n.

As L is decreasing since L'(x) = —1/k(z) < 0 then L' is decreasing and hence for
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n > N(e)

LY (1 —e)n) > s, > L (1 +e)n).

Now, suppose that f1 (r)dr < oo. Then, as L™}
Integral Test, we have Y >~ L7!((1 —€)n) < co. Hence

o0

ZS”<ZL (1 —¢€)n)

n=N(e)

and therefore t, — Th < ooasn — oo If floo L=t
decreasing, by the Improper Integral Test, we have Y>> | L~

i Sp > Z LY (1+en)=
n=Ne) n=~N(e)

and so t, — 00 as n — 00. Define

I:= /OoLl(x) dx

C

We note that lim, ,o+ L(z) = 0o, so L™(o0) = 0.

L=1(00) L=1(0) u
I= / ul'(u)du = / ——du
L=1(C) 0 k(u)

is decreasing by the Improper

< 00,

r)dr = oo, because L1
(14 €)n) = co. Then

oo,

du

L) "
B /0 u—(hoK-toh~

") (u)
) dv

/h‘l(L‘l(C)) h(v)H (v

h=1(0) h(v) = (ho K=1)(v)

(2)) (hoK) (2)dz=:J

I G G RNT
N /0 h(K (2)) -

Therefore, the finiteness of J and I are equivalent, and

Remark 17. In part (ii) of the theorem, we have a re

h(z)

part (iii) is proven. O

sult that the infiniteness of a

certain integral is equivalent to a (simulated) solution of an ODE remaining positive

for all time, while if that integral is finite the (simula

ted) solution tends to zero in

finite-time. Therefore the condition on J if highly reminiscent of an Osgood criterion.

It is interesting to ask whether a constant step-size is covered by the framework of

Theorem 23; clearly h(x) = AVx does not pass the monotonicity restriction, so the

theorem is not directly applicable, but if we perturb h slightly so that an asymptotically

constant (but increasing) step-size is assumed, we can show that J = oo, as would be
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anticipated. Supposing that f € C!, we have

J= 05 ”<—f§) (14 Af(@) + 2f (2) + f(x)) dr.

and if for instance f is increasing, we have

* f)
Jz/oAf(x)d:U—oo,

so J = oo. O

Finally, if A = oo and f € RV;(0), we may still be able to reproduce all acceptable
aspects of the asymptotic behaviour. Theorem 24, which is supported by Lemma 12,
makes this precise. If A in (4.10) is finite, we get acceptable behaviour but if A = oo,

we do not. This once again places sharp restrictions on the relative size of A and f.

Lemma 12. Suppose f obeys (3.1), f € RVy(0) and is increasing. Suppose also
h(z)f(z)/x — o0 as x — 0T, h(z)f(z) = 0 as x — 0" and

oo F((2)f (@)

e=0t  f(2)

=\ (4.10)

Then

lim —— ——du = —.
o0t () / Fw) ™ TN

Remark 18. X € [1,00] because h(x)f(xz) > x for all z sufficiently small and f is

increasing. 0

I?TOOf. Define A(x) := h(z)f(z)/z, A(x) == A(1/z), f(x) == 1/f(z) and f.(z) =
f(1/z) =1/f(1/z). Since A(x) = h(z)f(x)/x — 00 as © — 0, so A.(x) = A(1l/z) —
o0 as ¢ — 0o and xA(z) = h(z)f(z) = 0 as x — 07, Also fi(x) =1/f(1/x) — o0 as

x — oo and f, is increasing. We have already used the identity

L z+h(z) f(z) L 1 +A@) JE()\SC) _.
h(z) / = /1 f(x) )

We want I(x) = A as ¢ — 0" or I,(z) = I(1/x) — X as  — co. Thus we may write

I*(x) B 1 /11+A(1/z) ]E()\/ZL‘) o 1 /11+A*(:c) f(l/()\_l.r)) "

~A(l/2) fa/z) Adw) f(1/x)
L1 e
= 50l @

Since A.(z) — oo as © — oo, for every € € (0,1), there is z1(¢) > 0 such that
A.(x) > 1/€*, for all z > x1(€). Hence €A, (x) > e2A,(z) > 1 for z > x1(€). For 1 <\,
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A lz <z, s0 as f, is increasing, f.(A\"'z) < f.(z) and so for z > x;(€) we get

B 1 A () f*()\_lib) A (z) f*()\‘la:) 1+A () f*(A_lx)
L@ = X (/ 0O o P L e

IN

_ — A()
_ eA,(z) —1 N 14+ A(z) — Ay(x) N 1 fa( O\
Au(w) Aulw) Ac(@) Jeaw)  fel@)
A () -1
— e / JA2)
A*($) eAy () f*(ZL‘)
For & > x4 (€) the last integral above can be expressed as follows:
1 /Mﬂf) foA 1) I x/A / £ x/ MA
Since x/A.(x) = z/A(1/z), then
I Ty 1
im —— = lim —— =
e=o0 Au(z)  y=0t yA(Y)
Hence
lim/f 2/ (na (@ d = lim f =(l—¢€)-1=1—¢,
T—00 :L‘/A 2Z—00

by the Uniform Convergence Theorem applied to f. € RV, (0). Furthermore

f* (:c/A*(a:)) lim f* (1/y ’ 1/A*(1/y)) —  lim f(yA*(l/y))

lim

avoo fu(x)  yoor f(1/y) o0t f(y)
o LWAW)
=0t f(y)
_ oy W) L
=0t 1/f(y) A

Combining these results gives

1 /A R ACS) D (f*<x/A*(x))‘ '@/ (@) du)

x%ooA ( ) A (z) f*(ﬂi’) Z—00 f*< ) € f* (m/A ( ))
. :L‘/A fi (@/pAs(x))
- :EILI{OlO a:HOO/ .CI?/A
11—
= N
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Thus
1—e .. . ) 1—ce¢
< liminf I, (z) < limsup L, (z) < e+

A Z—00 T—00 A

Letting € — 0 yields
1
lim I,(z) = lim I(z) = %

T—00 z—0t

as claimed. O

Theorem 24. Suppose f obeys (1.7), (3.1), (3.32), (4.10), f € RVy(0) and is increas-
ing. Suppose also h obeys (3.17) with A € [0,00]. Let t, and T}, be defined by (1.44)
and (3.33).

(i) If X € [1,00), then t, — T) < 0o as n — co and

(ii) If X = oo, then either: (a) t, — 0o asn — co; or (b) t, — Tj < 00 as n — o0

and P
i ) _ g
n—o0 Th _ tn

Proof. Since f obeys (1.7) then

_ 0 pathe)f() %0
F(x,) = Z /x mdu =: Z a; < 00.
j=n+1 J j=n+1

Then by Lemma 12

aj 1 g;j-i-h(él?j)f(xj) 1 1
li =1 —du = —.

Since (a;) is summable, (h(z;)) is summable. Hence t, — Tj, := > oo h(wj) < oo as
n — oo. Thus Ty—t, = > 7 h($j+1)_2?;g M) = Y50, M) = 3250, h@y).
Thus by Toeplitz’s Lemma

F(z,) > i1 O a; 1

lim — = lim —= = lim —— = —,
n—oo Ty — t. N—00 Zj:nJrl h(:lij) Jj—roo h(xj) A

as claimed. For part (ii), suppose ¢, — T}, as n — oo. Then once again,

F(x, i1 @ ~ 1
limA(JE):lim#:}im % =—=0,

n=oe T, — ty oo Zj:n—i—l h(ﬂf]) J—ro0 h<xj) A
when \ = co. Otherwise, t,, — 0o as n — 00, as claimed. O

Clearly in the case when A\ = oo we do not recover the appropriate asymptotic be-
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haviour: either the finite-time stability is recovered but the rate is incorrect as in part
(b); or the finite-time stability is not recovered as in part (a). On the other hand we
see in part (i) that for finite A the finite-time stability is recovered and the exponent
is 1/ rather than unity.

Scrutinising Lemma 12 one might question whether it is possible to find a function
h which satisfies all the hypotheses for a given f. Lemma 15 shows that such an A
always exists and we show this by constructing a suitable h in the next result. It relies
on two known results from slow variation theory. There are mentioned next. The

following result is Theorem 2.3.1. in [12].

Lemma 13. Let | € RV (0). If there exists Ao > 1 so that

lim <Z(A°x) - 1) log(z) = 0, (4.11)

T—00 l(x)
and x — x'n(x) is increasing, then

i Mm@
S Tw "

uniformly in v € [0, c], where 0 < ¢ < 1/7.
The following result is Proposition 2.3.2. in [12].

Lemma 14. Suppose n > 1, 1 is increasing and | € C* with
U'(x)x ( 1 )

=0 :
[(x) logn(x)

Lemma 15. Suppose f obeys (3.1), f € RVy(0) and is increasing. Suppose also

Then (4.11) holds.

x> xf'(x)/f(z) is increasing. Then we can find h so that:

(i)
lim A(x)f(z) = 0.

(i1)
(iii)
(@) (@)
z—07t f(x)
Proof. Define f(z) := 1/f(x), f.(z) := f(1/x) = 1/f(1/2) = (f(1/2))"". Then

efie) PO
RO
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where we defined p(x) := xf'(x)/f(x). Then x — p(z) is increasing and so =
zfl(x)/f«(x) = p(1/x) is decreasing with

This implies that f. € RV, (p*) and since f € RV,(0) so we must have p* = 0. Define

p(x) == fu(x)/fl(z). Now x — fo(z)/(xfi(x)) =: g(x) is increasing, so x — u(x) is
increasing. Moreover,
o) e

e @ o)

1

Hence, p(x) — 0o as & — oo. Thus pu~! exists and pu~'(z) — oo as ¥ — oco. Define

n.(x) :==x/pu"(x). Since p~'(z) = 00 as x — oo

i A @)

BT
Thus z/pu ' (z) — 0o as x — oco. Therefore n,(r) — 0o as z — co. Also, n.(x)/z =
1/p=(z) — 0 as  — oco. Next define m(z) := pu~'(x), n(x) := n.(1/x) and h(z) :=
xzn(z)/ f(x) so h(z)f(x) = zn(x). Thus

lim h(z)f(z) = lim azn(z) = lim an, (1) = lim n(y) =0,

z—0+ z—0t z—0+ z y—oo Y
and
. h(z)f(z) : : :
lim —~—~—~2 = 1 =1 () =1 (y) = 00.
Mm = = )=l C) = Jmn)

Next, g is increasing and g(x) — oo as © — oo. Thus

o fl(x) 1):O< 1

fol@) ~ gla log g(x)

), as r — 00.

By Lemma 14, we have

Tim (ff((kxx)) - 1) log g(z) = 0.

Let 0 =1,v=1/2, A =3/2. Then z + z'/2g(z) = 27g(z) is increasing, because g is
increasing. Thus 0 < A =3/2<2=1/yand 6 =1 € [0,3/2] = [0, A]. Therefore by

Lemma 13 f( ())
. «(rg(x))
bm Gy T
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Now zg(x) = fi(x)/fi(x) = p(x). Thus

i 204D _
BT )
Since m(z) = p~*(z) and p(xr) — oo and p~'(x) — oo as x — oo, we have

flx) felz) o feln(p (@)

SR ) R @) T @)
Now n,(x) = x/u~Y(x) = x/m(z), so m(z) = z/n.(z). Thus
S Fafn@)
Hence to get the limit in (4.12) we write
R A1V M V11 N V)
w0t fo ((Uz)/ne (1)) amor fu (Uz-1/n(z))  en0t fi(1/(2n(z)))
i)
=0+ 1/ f(zn(zx))
Thus
i L@ (@) o flan()
x—07t (l’) x—07t f(l’) ’
as claimed. O

Remark 19. Lemma 15 demonstrates that we can have h(z)f(z)/x — oo as z — 0%
for a wide class of f € RV,(0) and still have t, — T) < oo as n — oo and
F(z,)

lim — =1
n—00 Th — tn

Y

because for the f in Lemma 15, we have A = 1. O

Remark 20. Limits other than A = 1 are possible. For instance, let f(z) = 1/log(1/z)
and for A > 1, let hy(z) = 2/*log(1/z). Then

(i)
= 0.

. . . logy
— 1/x —
xllI(I)1+ hy(x) xhr(%x log(1/x) yhm e

(ii)
lim hy(z)f(z) = lim z'/* =0.

z—0t z—0t
(i)
lim —h,\(x)f(x) = lim 2707 = .
z—07F T z—0t
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(iv)
Fn@ @) f@)  Ylog (L) log(l/z)  log(l/z)
f(x) f(x) 1/log(1/x)  log(1/'/*)  1/XA-log(1/x)
Thus
lir(r)l+ w =)A€ (1,00).

We now give an example when A = 1. Defining hy(z) := z (log (1/))* and f(x) as

before gives:

(i)
lim ha(x) = Tim = (log (1/2))* = lim S28Y)° _ ¢

r—0t z—0t Yy—00 Yy

lim hq(z)f(x) = lim zlog(l/x) = lim logy

z—07F z—0+ y—oo Y

=0.

lirgl+ hl(x;f(:c) = lir(r)1+ log(1/x) = 0.
(iv)
fh(@)f(z)) _ flrlog(l/z)) 1/log(1/(xlog(1/x)))
f(x) f(z) 1/log(1/x)
_ log(1/x)
log(1/z) — loglog(1/z)
Thus
i E@I@) _ og(l/z) L _
20+ f(x) a—0t log(1/z) —loglog(1/z)  wy—oo1—logy/y

Finally we give an example when A = co. Define

__loglog(1/x)
" o)

Then

loglog(1/z) lim log y

lim h =1 = = 0.
Jm h(e) = T =y T A,
(ii)
1
lim h(z)f(x) = —log log(1/x) = lim 08y _ 0.

20+ (log(1/x))?  v=c0 y?
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(i)

Clearly

Also

Thus

Hence

as needed.

Lemma 15 does not give a recipe for explicitly constructing a h in terms of f so
that the condition of Theorem 24 are fulfilled. Furthermore, Lemma 15 generates a h
for which the limit A is one and such a h may constitute an overly-conservative step-
size. In the following theorem we attempt to determine directly a class of functions
A (and therefore h) in terms of f which fulfill the conditions of Lemma 15 with non-

unit A. Such functions A will constitute optimally chosen step-sizes for preserving the

[ (=) 1/1og(1/x) _ log(1/n(x)) | log(1/f(x))

Fh@ @)~ g (/@) f@)  log(ija) | log(1/x)
log (1/h(z)) | loglog(1/x)

log (1/x) log (1/x)
im loglog (1/x) _
=0t log (1/x)
log (1/n(x)) _ . log(log(1/w)/loglog(1/x))
z—0+  log (1/x) a0+ log(1/x)
_ iy 08 (y/logy)
y—o0 y
~ im logy — loglogy _o.
y—o0 y
g @ log(1/h(z)) | loglog(l/z) _
e—0t f(h(z)f(z)) 20+ log(l/z) log (1/z) '
i SP@S @)
z—07F f(a:) ’

asymptotic behaviour of the finite-time stability.

Theorem 25. Suppose f obeys (3.1), f' € RVy(—1) and f is increasing. Let A obey

zf'(z)/f(x) - logA(z) = ¢ >0 asxz— 0", 2 — Ax)

is decreasing as v — 07 and A(z) — 0o as v — 07,
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and
rA(z) =0 asx — 07", (4.14)
Then
(i) f obeys
timint LERE@) S ey
z—0t f(ﬂf)
(ii) If in addition
x> log A(e™") is self-neglecting, (4.15)
e flaA(a)
_ TA(x .
(i11) If for some v € (0,1), x — xVA(x) is increasing, then
o fea@)
z—07F f(.fE)

Remark 21. Recall that a function g said to be self-neglecting if g(z) = o(x) as x — o
and g(x +tg(z)) ~ g(x), Vt € R as z — 0. O
Proof of Theorem 25. Define
zf'(x)
fx)
so fi(z) — 0 as © — 0t Define f(z) :=1/f(1/z) and A(z) := A(1/z). We have that
f(x) = 00 as z — 00, f € RVa(0) and with = = 1/y, f1(1/y)log A(y) — ¢ as y — co.
Also

fi(z) ==

(4.17)

o) e SO
f(@) f(1/z) !
Thus f’( )
Yy
P57 y)
By (4.13) since fi € RV,(0), z — log A(z) € RV,y(0) and therefore y — log A(y) €
RV, (0). Let A > 1 and estimate as z — oo as follows

fO@)\ _ PO (e L, e 1
m(ﬂ@>_x ﬂw“7ﬁ oy 1" Ll%waﬁ
c Az
- log A(z) /x t “
clog A

= = as T — 00.
log A(z)

log A(y) = ¢ > 0. (4.18)
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Therefore as f(Azx)/f(x) = 1 as z — oo

fow) o fO2) A\ e (fO0)) | elogr
) T ”(ﬂx) 1)) 1g( ) ogA@) ST

Hence

5 )
(M - 1) log A(z) = clog A, asz — 00, A > 1.

f()
Put y = A\z. With g := 1/ < 1 and since log A € RV,.(0)

as y — o0.

log ( f(?/) ) N ClO%(l/,u) N clog(}/M)
f(ny) log A(y/\) log A(y) ’

Define h(zx) := log f(e”), g(z) := log A(e*) and u := log A > 0. Then as & — oo

h(z) — h(z —u) = log f(e*) —log f(e*e™) = lo ~f(e"”)
ha) — Al — ) = 1og fle) ~log F(e"e™) 1g(f(exeu>>

Since zA(z) — 0 as 2 — 0%, 1/y- A(l/y) — 0 as y — oo, or A(y)/y — 0 as
y — 0o. Hence for all € > 0 there exists y;(¢) > 0 so that A(y) < ey for all y > y(e).
Hence g(z) = log A(e*) < log(ee”) = loge + = for © > logyi(€) =: x1(e). Thus
x — g(z) >log(1/€) Vo > x1(€). This implies z — g(z) — oo as x — oo. Next write

fyAW) _ 1/f(1/(yAWY)) f(1/y)

f(y) 1f1)y)  f(l)y-1/A®y)
Thus - _
lim ) = lim —= (z) = lim —= f(il:)
y=0t  f(y) w0 fa/A(1/z)) == f(z/Az))
Write

Therefore, in order for (4.16) to be true we wish to show that

lim (h(z) — h(z — g(z))) = c. (4.21)

T—00
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Now set 1, := |g(x)/ug]. Then we have

s
h(z) = (h(z = (k= Dug) — h(x — kug))+ (h(x — neuo) — h(x — g(x))) .
k=1

Note that n, < g(z)/uo, n. +1 > g(x)/up so we have from (4.19) that for all y > y(e)

(1—¢)-cug < (h(y) — h(y —uo)) g(y) < (1+¢) - cuo.

Take X(€) < z so large that x — nug > = — g(z) > y(e). Then z — kuy > y(e)
VEke{l,...,n.} and so

(1—€)-cup < (h(z — (k= Dug) — hz — kug)) gz — (k — L)ug) < (1 +€) - cuo.
AlsoVke{l,....,n.}, g(x — (e — Dug) < g(z — (k — 1)ug) < g(z). Thus

h(z) — h(z — §(z)) > %(1 — €)cug - (g(x) _ 1) (1—€)eup (1—e)e— (1 ;(;))cuo

Therefore liminf, o {h(z) — h(z — g(z))} > ¢ which by (4.20) gives part (i). To get
the upper estimate in (ii), we start by noting that

(14 €)cug

h(x —nep0) — Rz — g(2)) < h(z —nyuo) — h(z — (1, + ug) < g(x — neug)’

because g(x) < ug(n,+1) implies that z—g(z) > z—ug(n,+1) and hence h(x—g(z)) >
h(z — ug(n, + 1)). Therefore

hw) =M = g(@) = Z e Te—aﬁua * ;&i?fZZ)
< (14 €)cuy ' (14 €)cug
= gz — (e — Dug) " g — nyuo)
A+9euy  gl@) . (1+ceu
S J@—n-Duw) w 3 —3@)

+o(1), asz — oo.

Now n,ue < g(z) and nyug > g(x) — ug. Thus z — g(z) — 2ug > x — Nug + uy >
xr — g(x) 4+ ug and so

g(x — g(r) + 2up) > gz — (0. — Dug) > g(x — g(x) + up).

Hence
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Therefore as g is self-neglecting

<(l+e¢)-c

Thus
limsup (h(z) — h(z — g(z))) < c.

T—00

We have already shown that

liminf (h(z) — h(z — g(z))) > ¢,

T—00

so hence (ii) is true. We now prove part (iii). Bounding as above yields

) B . N 1
hie) = hle =g(e)) < ()} oy

+o(1), asz — oc.

Since y — y7A (y) is increasing for all 0 < 7 < 1 on (0,1/X;(7)] then the function
z+— (1/x)" A (1/z) is decreasing for all 0 < v < 1 on [X;(7), 00). Hence z — A(z) /2"
is decreasing for all 0 < v < 1 on [X;(7),00) and so x +— log <A(e””)/(ex)'y> =
log A(e®) —log(e7*) is decreasing for all 4. Therefore g,(z) := g(z) — v is decreasing
for all v € (0,1). Hence for all k, g,(z) < g,(z — (k — 1)up) which implies for all &,
9(2) 7 < gl — (k= 1)uto) —1(z — (k — 1)ug) and g(x) < gl — (k—L)uo) +7(k— .
Thus

g(z) — ynzuo + Yuo
> g(w) —vg(x) + yuo.

gz = (k = Duo) = g(x) = v(k = Nuo = g(x) = (1= — uo

- (1 + €)cugn,

h(z) — h(z — g(z)) < = o(1) < — +o0(1), asxz — oo.
=M= 9D = e =) Y = @) e TV
Thus
limsup (h(z) — h(z — g(z))) < c_
Hence A
llm Sup M S 66/(1—"/)‘
T—00 f(l')

Since v is arbitrary, we let ¥ — 0 and conclude that

. f(zA(z))

limsup —————= < €,

Z—500 f(x)

which combined with the liminf gives the desired limit. O]
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The condition zA(x) — 0 as  — 01, which is essential for the Implicit method to

make sense, places a restriction on the rate of growth of f when the optimal choice of

A is made in (4.13).

Proposition 5. If tA(z) — 0 as x — 07 and (4.13) holds with ¢ > 0 then

Lo (1/£(2)

> c.
=0t loglog (1/z) — ‘

Proof. Since zf'(x)log A(x)/f(x) = cas x — 07 and zA(z) — 0 as x — 0", we have

zf(x) log. (1) _ zf'(x) (log A(z) — log (2A(x)))

) 8z )
L@, (LN @),
= ) 1g(m<x>>+ Py 88

Therefore

O

Thus for every e € (0, ¢) there is x1(€) > 0 such that Vo < x1(€) < 1

xf'(z) 1
@) log <5) >c—e>0,
and so Vo < z1(e) < 1
f'(x) c—¢€

> .
f(x) ~ xlog(1/x)
Therefore for all z < ()

oe (L) = [ S8 = o0 [
1

log(1/z1(e))
= (c—e)/ e’ —-—e "dv
log(1/2)
(c— ) (toglog (1) = log1 !
= (c—e¢)|loglog | — ) —loglo :
g 108 - g log 1(e)
Letting x — 07 and then ¢ — 07 gives the result. O

Therefore f cannot grow too rapidly at zero. If it does then xA(x) — 0 as z — 0T
and (4.13) are incompatible. In that case, we must have ¢ = 0 in (4.13) and request that
x +— x7A(x) be increasing for some v € (0, 1) in order to guarantee that f(xA(x))/f(z)
has a unit limit. The other way forward is to try to find directly a A which yields
fzA(x)/f(x) = X € (1,00) and xA(z) — 0 as x — 07. However, this involves
considering the asymptotic behaviour of the inverse of f which may not be possible in

SoI1e cases.
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The stipulation that x — z7A(x) be increasing together with “rapid” growth in f
covers the condition in (4.13) with ¢ = 0. Therefore in practice we take A(z) = 277

for small 7 in the case f(z) grows more rapidly than 1/log(1/z).

Proposition 6. Suppose there is v € (0,1) such that x — zYA(z) is increasing and

that .
IO
Then
X NS/ (O N
a0+ loglog(1/z)
(i)

oz f'(z) _
xlirgi o) log A(z) = 0.

Proof. First, for every € > 0 there is z5(¢e) > 0 such that V. < z5(€)

zf'(z) (1)
log| — | <e.
f(x) x
This implies for all z < xo(€)

log (f(;(zg))) :/:z(e) ;:EZ; " < E/chz(e)mdu

ot (1) bt (1)),

giving part (i). For part (ii), note that x < z;(e) implies 27A(z) < K, for some
K > 0. Thus ylogz + logA(z) < logK. Since fi(z) = xf'(x)/f(x) > 0 then
vfi(z)logx + fi(x)log A(z) < fi(x)log K. Thus for z < x1(e),

0 < fi(z)log A(z) < fi(z)log K +~vfi(z)log (1) = 0, asz — 0T,

as claimed. O
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Chapter 5

Transformed Co-ordinate System

5.1 Introduction

This section shows that it is possible to exactly mimic the rate of decay of solutions
of the continuous equation by making a pre-transformation of the original ODE and
discretising the resulting ODE. This result applies even when the rate of decay to
the equilibrium is arbitrarily fast. This Transformed Explicit method outperforms
both Explicit and Implicit methods applied directly to the original equation for the
same computational effort in the case of super-exponential convergence. However, this
transformation does not give any extra benefits to the efficiency of the algorithm when
the equation hits zero in finite-time. The performance of the algorithm is the same as
that when the original ODE is discretised directly. This is contingent on the step-size
in the new co-ordinate system decaying in length to zero at the same rate as that shown

to be optimal in previous sections.

Our aim is to make a transformation of the co-ordinate system with a view to the
numerical simulation being more straightforward and efficient in the new co-ordinate
system whilst being sufficiently tractable to allow the values of the approximations
in the original co-ordinate system to be simultaneously and simply computed. A key
feature of the method is that it retains the unconditional stability of the Implicit
method, in the sense that the solution tends to zero for all positive values of the
control parameter A. It also has the advantage, which it shares with the Explicit
method, that it is unnecessary to perform non-linear solving at each step since it also

an Explicit method.
We consider once again the ODE (1.1) viz.,

2(t) = —f(z(t), t>0, x(0)=¢,
where f(z) > 0 for all x > 0, f(0) = 0. Define z(t) := T'(z(t)). We suppose that
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T :(0,00) — R is a continuous function with the following properties:

T:(0,00) = Ris in C;
T'is decreasing with lim,_,o+ T'(x) = o0;
x+— —T'(x) f(x)is decreasing; and
—T" € RVy(-1).

We will justify the selection of these properties as we proceed. Since T obeys (5.1)
then 2/(t) = T'(z(t))2'(t) = —=T"(x(t)) f(x(t)). Therefore since z(t) = T (2(t)) then

Z(t) = =T (T (=(1)) f (T (2(1))) = n(=(t))

where 7)(z) = =T"(T7" (2)) f (T7" (2)) = (=T"f)T7'(2)) = ((=T"f) o T7")(2). The

associated Explicit Euler scheme is

Zng1 = 2+ h(2)0(20), >0, z=T(E), (5.5)
where :
t1 =Y h(z), n>0, to=0, (5.6)
and ) B AT1()
h(z) = (T () = TT1(2) (5.7)

where for simplicity we take h(z) = Ax/f(z), with A > 0. Applying the definitions of

n, z, and B(zn), the sequences (z,) and (z,) may therefore be given by

Zng1 = 20 + AT H2) (=TT H2)), n>0, 2z =T(E), (5.8)
o1 =T H2pg), n>0, z9=E&. (5.9)

Notice that

tn+1 = Z h(fE])
7=0

so that (t,) still obeys (3.16). Therefore, from (5.5) it can be seen that z, approximates
2(t,,) and hence from (5.9) that x,, approximates x(t,).

5.2 Asymptotic Analysis of Pre-Transformed Scheme
with Standard Step-Size

Proposition 7. Suppose T obeys (5.1), (5.2) and (5.3). There exists a unique positive

sequence (z,) which obeys (5.5) and this sequence is increasing and obeys z, — 0o as
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n — 0o. Moreover, the sequence (x,,) defined by (5.9) is positive, decreasing and obeys

T, — 0 asn — oo.

Proof. The sequence exists and is unique by construction. By (5.2), T'is decreasing and
hence so is T71. By (5.3), 2 +— ((=T"f)oT71)(z) =: n(z) is increasing. Since z + 7(2)
is increasing and h(z) > 0 for all z € R then (z,) is an increasing sequence by (5.8).
Since T71(2) > 0 for all z € R, by (5.1), and T is decreasing then —7"(T*(z))) > 0
for all z € R. Thus —AT"(T~(2))T~*(z) > 0 for all z € R. Therefore, it must be that

zZp — 00 as n — oo because if it tends to a finite limit, L say, then from (5.8)
L= lim 2y, = lim {zn + ﬁ<zn)n<zn)} = L+ AT 1) (~T')(TY(2)),
n—oo n—oo

thus —AT'(T'(2))T~'(z) = 0, a contradiction. Since 77! : R — (0,00) by (5.1) it
follows that z,, > 0 for all n > 0. The sequence (z,) is decreasing since x + T 1(z)
is decreasing and z,, — 0 as n — oo because lim, o T, = lim, o T7*(2,) = 0 since

T7'(z) = 0 as z — o0, by (5.2). Therefore we have that
x, >0forallm >0, (x,)isdecreasing and x, — 0asn — oo, (5.10)

as claimed. O

It is clear that the conditions (5.1) and (5.2) are essentially necessary in order to
affect a transformation that gives rise to a sequence (x,,) satisfying (5.10). Clearly the
role of (5.3) is to imbue 7, the rate function in the transformed system, with additional
monotonicity. The condition (5.4) however has not yet been employed and practical
questions such as the existence of a T~! expressible in closed-form have not yet been
addressed. One advantageous and notable feature of the sequence (z,) in (5.10) is that
it retains its positivity, monotonicity and tends to zero for all values of A > 0. We
will now explore how our new scheme preserves finite-time stability, global positivity
and asymptotic behaviour of the ODE (1.1).

Lemma 16. Let (x,) be a positive decreasing sequence such that x,,q ~ e Bx, as
n — oo and suppose ¢ € RVy(0). Then

1- ¢(xn+1)

nSoo () =1

Proof. Define \, := x,,,1/2, — ™2

such that

as n — oo. For every € € (0, 1), there is Ni(e¢) € N

(1—€)-e®<h<(l+e-e ™.

Hence for n > Ny(e)

-

e ol s iy

o(xn) ‘ T Ae[(1—e)e A, (1+e)eA]

¢()\xn)

-1.
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By the Uniform Convergence Theorem for Slowly Varying Functions

P(Tnt1) P(Ann)

0 < limsup —1‘§limsup sup —1‘§
nosoo | O(Tn) N300 Ane[(1-)e=2 (1+0)e=4] | P(Tn)
A
lim sup sup P(\) — 1‘ =0,
2—0t Ae[(1—e)e-A (1+e)e-4] | P(T)
as required. O

Lemma 17. Let z, = T(x,) for n > 0 be a positive increasing sequence such that

Zp — 00 as n — 0o and the solution of (5.8). Suppose T' obeys (5.4). Then

lim “n g, (5.11)

n—00 Zp4l — Zn

Proof. From (5.8)
Zng1 = 2n — AT (T 2 )T H(2,) = 20 + k(2),
where k(z) := —AT'(T~'(2))T~*(z) > 0. Therefore (5.11) is equivalent to

lim h(zn-1)

=1.
n—00 k(zn)

Note k(T(z)) = —AT'(2)z. By (5.4), —=T" € RVy(—1). Then there is 7 such that

. 7(x) .
1 =1 d 1
20 —T"(z) e Lo 7(x)

7' (z) _ 4

Define x(T'(x)) := A7r(x)z. Then «'(T'(x))T'(x) = A (z7'(x) + 7(x)) so

lim #/(T()) = lim A <<(>) | TTf({% ! },(f;))) -0

Since k(T(z)) = Ar(z)x and k(T'(z)) = —AT'(z)x then k(z) ~ k(z) as z — oo and
K'(z) = 0 as z — oo. Set

z 1 z 1 T-1(2) T/(’U)
K(2)i= [ ——du= du = Yy
(2) ,A*Mm " ‘l*—ATTFJW»T4QA " ‘quﬂ—AT%@v%
1 [T

= —— ~d
A T—l(z*)v v

- E%mg(gjg%>@1m

By the Mean Value Theorem there is 6,, € (0,1) such that

K(zpi1) = K(zn + k(20)) = K(2,) + K' (20 + 02k(22)) - k(25).
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Hence

(5.13)

Next write

k(zn) _ k(zn) ' K(zn) . K(zn + 0,k(2,))
k(zn + 0,k(2,))  K(zn) K(zn + 0.k(2,))  k(zn + 0nk(2,))

Similarly, there is 6, € (0,6,) such that
K(2n + 0,k (20)) = K(22) + K (20 + Ok (22)) - Ok (20).

Since k(z,) ~ k(z,) as n — oo and «/(z) — 0 as z — oo, from this identity we get

K(zn + 0,k(2)) 14 K (2n + Onk(2,)) - Onk(2,)

K (zn) K(2n)

Y

so K(zn + O,k(2,)) ~ K(2,) as n — oco. Then from (5.12), (5.13) and (5.14)

1= lim (K (2001) — K(2)) = — Tim log (M) |

n—o00 A n—oo T_l(zn)

Therefore as x, = T~(z,), we have

-1 . T_l(szrl) —1 . Tn+1
= s (T ) = 3 o (722 <1

A

and thus z,41/z, — e = as n — co. Now

i1 = 2 = k(T (20)) = =AT (2n) 20 = ¢(2n)

where ¢(2) := —AT'(z)x € RV5(0). Now 241/, — e > asn — oo and as ¢ € RV,(0)
then

hm Zn+2 T Rn+1 _ 1 Qb(xn—f—l) _ 1’
n—oo  Zpi1 — Zp n—00 gzﬁ(xn)

by Lemma 16. Therefore, (5.11) holds with the obvious change in indices. O

The Transformed Explicit scheme defined by equation (5.8) preserves the proper-
ties of the soft landing (1.15) under the condition (1.7) while the property of super-
exponentially stable solutions (1.13) is preserved under the condition (1.9). Since

(h(x,)) is a positive sequence the limit
nll_>n010 tp =: T, = ZO h(x;),
‘7:

exists and equals (3.16). In our next result, we show that Ty, is finite or infinite according
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to whether T¢ defined by (1.8) is finite or infinite.

Theorem 26. Suppose f obeys (3.1), h obeys (5.7) and T obeys (5.1), (5.2) and (5.3).
Let (t,) and T, be defined (5.6) and (3.16).

(i) If f obeys (1.7), then T), < cc.
(ii) If f obeys (1.9), then T), = oo

Proof. Note that

zj+1i L Zj41 1 L (zj+1) T'(u) ’
/zj 77(Z)d _/zj —T’(T’l(z))f(T’l(Z))d - /T—l(zj) —T’(U)f(U)d
Zj+1 1
- [

_ + % du. (5.15)

For z; < z < zj41 with n increasing we have 7(z;) < n(z) < n(zj+1) and

1 1 1
< <

n(zj+1) ~ n(z) = nlz)

Hence by (5.5) and (5.15), integrating over [z;, z;41] gives

Zi+1 — &5 i 1 du < Zi+1 — &4

N(zje1) — Ja Flw) T n(z)
Now

Zi+1 — 25§ Zj+1 T Rj Zj42 T Zj41 i Zjt+1 — % =
- Jg - J . h Z — . < d < = h/ A
Zjt2 — Zjm1 Gin) zivo — 21 n(z+) T S, flw) T n(z) )
Therefore
2 P / T < Bl (5.16)
Zj+2 Z]+1 $J+1 U

y (1.7), f01+ 1/f(u) du < oo then Ty < oo from (3.12) since

Z/z f—u—/—du<oo

The Comparison Test applied to (5.16) shows the summability of ( f;:ﬂ 1/ f(u) du)

implies that of (241 — 2;)/(2j12 — 2j+1) - B(2j11)). Thus (A(2,41)) is summable since

lim (241 — 27)/ (Zj42 — 2j41) - Blzj41)

= =1
oo h(zj+1)

Y
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by (5.11). Thus t, = Z?:_g h(z) for n > 1 obeys t, — Tj, := > e h(z;) < oo as
n — 00.

By (1.9), f01+ 1/f(u) du = oo then Ty = oo from (3.11) since

Z/+f— u—/ —du—

The Comparison Test applied to (5.16) shows that (h(z,)) is not summable and thus
(h(z,)) obeys t,, = Z?;& h(z;) — 0o as n — oc. Therefore t, — 00 as n — co. O

Theorem 27. Suppose T obeys (5.1), (5.2), (5.3) and (5.4), f obeys (3.1) and h obeys
(5.7). Let F, F, (t,) and T, be defined by (1.10), (1.11), (5.6) and (3.16).

(i) If f obeys (1.9), then x,, > 0 for alln > 0, (x,) is decreasing, x, — 0 asn — oo,

t, — oo asn — oo and
lim ——=

n—oo  t,

=1.

(ii) If f obeys (1.7), then x,, > 0 for alln > 0, (x,) is decreasing, x, — 0 asn — oo,
tn—>Th<oo asn — 0o and

F F
1 <lim infﬂ and limsup — () <1 (5.17)
n—r00 Th — tn-i—l n—o00 Th —tn
If in addition, f is increasing and A > 0 then
1 Fa, Fa,
~ timinf ) < i up @) (5.18)
A n—oo Ty — ¢, n—oo I} —t,

Proof. The positivity, monotonicity and convergence of (z,) have been addressed in
Proposition 7. If f obeys (1.9) then f01+ 1/f(u)du = oo and t, — oo as n — oo by
Theorem 26. We now prove part (i). By the second inequality of (5.16), for n > 1

F(z,) — F(xo) Z f Zﬁzj =t,.

Therefore dividing by ¢,, and letting n — oo yields

F(an
lim sup (n)

n—o0 tTL

<1. (5.19)
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By the first inequality of (5.16), for n > 1

n—1

]_0 Zj+2 T Fj+l o i T E

Therefore, dividing by t¢,, and letting n — oo yields

F S B h(z)
lim inf (n) > lim inf =1 2 ’

n—o00 n n—00 tn

As >0 L (2) =ty —t — o0 as n — oo and h(z,) — 0 as n — oo then (t,,; —
t1)/t, — 1 and by Toeplitz’s Lemma and (5.11)

>oi ZE () el 173 S
. = 11—Z . . =1 zj411—2 n+1 1
T 6 R R Yoo B
n j=1 Zj n
L it e N NV
= lim 2*°% (=)

e h(z)
= lim I e G
J700 Zi41 — %
Hence r
liminf £ 5 (5.21)
n— 00 tn
Combining (5.19) and (5.21) yields

lim =1,
n—oo  t,

and hence part (i) is true. Now we prove part (ii). If f obeys (1.7) then f01+ 1/f(u) du <
 and t, — T) = Z;‘io iz(z]) < 0o as n — oo by Theorem 26. Hence Ty —t, =
> ien h(z;) — 0 as n — co. By the second inequality of (5.16)

Z f Siﬁ Z] Th—t
ZTj+1 j=n

=n

Therefore, dividing by Ty — t,, and letting n — oo yields

F(z,
lim sup — (zn) <1

n—o0 Th - tn

By the first inequality of (5.16)

o 2 — 2 ~
F(z,) Z/ f—du ZL -h(zj41).
Tj+1

mn CI2 T A
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By (5.11), (zj41 — 25)/(2j42 — 2j+1) — 1 as j — oo therefore

Zj+1 — ~
In > E S ZJ+1
S A2 T Z]+1

ol
=
é\’
+
»—A
=
i\’
E“
|
~
3
t

Therefore dividing by T, — t,11 and letting n — oo yields

F(z,
liminf 2
n—00 Th — tn—i—l
Therefore P 7
1 < liminf A(—QIn) and limsup A(—xn) <1,
n—oo Ty — tht1 n—oo I} —t,

which is (5.17). To prove (5.18), since f is increasing for z,;41 < x < x; then f(z;41) <
f(2) < f(a), so i
T~ T o [ w< B i (5.22)

1
f@) 7 Jay Wd — f(xi)
Recalling that h(z) = AT (2)/f(T~'(z)), then

vi—ap 10w Az 10w
S A (1 x; ) flz)) A (1 7, )h(zg), (5.23)

because x; = T71(z;). Thus

Ty

1 T — i 1 TN Ty e T
WWCZUZW—ZO 2 i) = i),

J

As zj/z; = e as j — oo, then a; = (1—e®) /A as j — oco. Thus as

"1 )du < oo, the summability of IJ 1/ f(u) du) implies the summability of
Jor 1/ f(u y of (. p y
(a;h(z;)) and hence of (h(z;)). Therefore as n — co

| > . (1- = - (L1—e) /4
mduzjznajh(zj) ‘. Zh ;) Ae )<Th—tn).

j=n Tj+1

Hence
F(z,) _1—e*
lim inf — > ,
n—00 Th — tn A
as needed. The other estimates are the same. O

The result in Theorem 27 part(i) is very striking because it recovers exactly the rate
of decay for solutions to the ODE (1.1) namely

i £E0)

t—00 t

This occurs for every value of A. Therefore the unconditional stability, global positivity
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and monotonicity we observed in Proposition 7 and the unconditional recovery of finite-
time stability we saw in Theorem 26 are recovered. Such qualitative properties have
been recovered unconditionally for the Implicit scheme but we have not and do not
expect to recover them for an Explicit scheme. However, the Transformed Explicit
scheme recovers these qualitative properties unconditionally, as well as the quantitative
decay rate property. Also, the asymptotic behaviour in the vicinity of the finite stability
time is recovered unconditionally on A and the exponent is accurate to O(A) as A —
0.

It is now reasonable to ask if the hypothesis —7" € RVy(—1) is responsible for the
successful unconditional asymptotic behaviour recorded in Proposition 7 and Theorem
27. We will show by requesting that — 7" € RV with an index other than —1, that the
choice of exponent —1 is optimal in a sense. To do this we specialise to the case when

f is regularly varying.

Theorem 28. Suppose T obeys (5.1), (5.2) and (5.3) while f € RVy(S) where 5 €
0,1]. Let F, F, (t,) and T}, be defined by (1.10), (1.11), (5.6) and (3.16).

(a) Let =T" € RVy(—pu—1), p> 0.

(1) If f obeys (1.9), then x, > 0 for alln > 0, (x,) is decreasing, T, — 0 as

n — oo, t, — 00 asn — oo and

1
n—oo t, A (2 )1/u A

I4+pA

(ii) If f obeys (1.7), then x, > 0 for alln > 0, (z,) is decreasing, x, — 0 as

n— oo, t, =1, < oo asn — oo and

n 1
lim F@") = l/ AP dN £ 1.
n—oo T) — t,. A ( 1 )1/u

T+uA
(b) Let —=T' € RVy(~1).

(1) If f obeys (1.9), then x, > 0 for alln > 0, (x,) is decreasing, x, — 0 as

n — oo, t, — 00 asn — oo and

F
lim ()

n—00 tn

=1.

(i1) If f obeys (1.7), then x, > 0 for alln > 0, (z,) is decreasing, x, — 0 as

n — oo, t, = 1T, < 0o asn — oo and

F(z, 1/t ; if p=1,
lim — (n) = —/ AP dN = 1—e—A01-5) I
oo Ty —t, A Jea =20 7)  fo<p <t

A(1-p)
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Proof. First write

1% o1 1 ol flxy) [ ;
= du = ——du = d\
h(ZJ) Tjt1 f(u) ! Ax;/f(x;) /ocj+1 f(w) ! Az, /%Jrl/% f(Az;)

I f(/\l’j)
= — dA,
A /96.7'+1/$j f(xj)

since h(z;) = “Nz))/f(T7Yz)) = Az;/f(z;) and 2; = T~Y(z;) and where f :=
1/f e RVO(—B). Alternatlvely

1 7 1 [t F(\T 1 /!
_ du = — (fﬁﬁﬂl-x—ﬂ> A\ + — AP dA
h(2j) Jajin f(u) A zi/a; \ f(5) Tj1/T;

The first term has zero limit by The Uniform Convergence Theorem for Regularly

Varying functions. Thus

fim —— [ g =t / AP,
Jreo h(Zj) Zj+1 f
contingent upon
lim 2L = \(A) € (0, 1). (5.24)

We know from Lemma 17 that if —T" € RVy(—1), that A(A) = e=®. When f obeys
(1.9) then f01+ 1/f(u)du = oo and (f;il 1/f(u)du) is a divergent series and so is
(h(z;)). Hence by Toeplitz’s Lemma

ia F(zo) + 3275 J, 1 [ 1
lim () = lim — IIJH = lim = du
noo b, oo >0 h(z)) 2% h(2j) Jay J(W)
1 1
= = AP dN,
A Sy

and in the case that f obeys (1.7) then f01+ 1/f(u)du < oo and (fxil 1/f(u)du) is a

Tj

convergent series and so is (h(z;)). Hence by Toeplitz’s Lemma

lim F(xn) — lim Zj nfa:gﬂ — lim ; I Ldu
N R e zf;;nh(zj) =50 h(z5) Juyey f(11)
1 1
= — AP dA,
A Jxa)

which completes the proof of part(b)(i) and (ii).
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If =T" € RVy(—p — 1), then there is 7 such that

/
lim 7(z) =1 and lim (@)
=0t =T"(x) =0t T(T)

= —p—1

Define k(z) := —AT(T~'(2))T~(2). Then k(T(x)) = —AT'(z)x. Also define k(T'(x)) :=
Ar(z)x. Then k(T(z)) ~ k(T(x)) as © — 01, or k(z) ~ k(z) as z — oo since

T(z) — oo as z — 01, Next

Zntl _ L+ k(zp) 14 k(zn) . K(zn)
Zn Zn k(zn)  Zn
Now
_K(2) - AT(T7H2))T7(2) _ - 7(z)x
= M TGy Al Ty

Since T' € RVy(—u) and x +— o7(z) € RVy(—p) the last limit, if it exists, is indetermi-

nate. However, by L’Hopital’s rule and definition of 7

fim T@e o r@etr(@) L r@r/r@) 4l pm 14l
20t T(z)  emor T'(2) a0t T'(2)/7(2) —1

p.
Hence k(z)/z — Ap as z — oo and hence

ey : k(.
lim (2511) = lim Gl _ 1+ lim ﬁ

=14 pA.

Since T~ € RV, (—1/u) then as j — oo

tyn = T (T () ~ T (L4 A T(w))) ~ (L+ Ap) T (T(ay)

B 1 1/p
= Tj 1—|-A/L .

i 2 (L)L A(A) € (0,1)
o0 z;  \1+Ap o T

Hence

1/
proving (5.24) with AM(A) = (1+1Au> ", This gives part (a) of the theorem. If —7" €

RVy(—1), then A(A) = e~ from Lemma 17 so we have part (b). O
Remark 22. If § = 1, then the limit in Theorem 28 part (b)(ii) agrees with limsup
bound in Theorem 27 part (ii). If § = 0, then the limit in Theorem 28 part (b)(ii)
agrees with lim inf bound in Theorem 27 part (ii). This demonstrates that our analysis

for general f is quite sharp. O]

Remark 23. The exponent in Theorem 28 part (b) is always closer to the true exponent
of unity than in part (a). This demonstrates that when —T" € RVy(—1) that the
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method outperforms the transformation when —7" € RVy(—u—1) for any other choice
of 1. O

Remark 24. T € RV;(0) gives better asymptotic performance than when T' € RVy(—p)

but worse performance than the true exponent of 1.

1/u
Proof. Since € > 1+ x for all x > 0 then e#® > 1+ uA and e 2 < ( L ) . Hence

1+pA
mm:gll

14+pA

1 1
A PdN < — AP d\ =: \5(0).
» <5/, +0)

For 0 < 8 < 1 then

]__efA(l B)
A Bd\ = 1
wo =5 [ ns i <

Thus Flalt

lim M =1> )\5(0) > )\g(/L).

T, Te—1
Thus T" € RVy(0) gives better asymptotic performance than 7' € RVy(u). Also
lim,, o+ Ag(p) = A3(0) and p — Ag(p) is decreasing. O

The theoretical asymptotic performance of transformed methods suggests, at least
in the class of regularly varying transforms, that the best transformations should be
those for which —7" € RVy(—1). This forces T € RV,(0) and lim, o+ T'(z) = oo.
However, to date a vital practical consideration has been omitted; in order to recover
the values of z(t) at t = t,, it is necessary to calculate z,, = T~!(z,). In other words,
in order that the algorithm be practicable it is necessary that z — T!(z) should be
computable in closed-form for all z and that (=7"f) is a decreasing function. A simple
choice of T" which places an irrestrictive condition on f is T'(z) := —log z for which
T '(z) = e # and z — f(x)/z is decreasing. Henceforth, we shall use this choice of
T and refer to our transformation scheme as being “logarithmically pre-transformed”.
For this transformation we now show that the numerical method recovers the value of
the finite hitting time to within O(A) as A — 07.

To emphasise the dependence on the initial data, we are writing Tg in place of T,

in the theorem and its proof.

Theorem 29. Suppose f obeys (1.7) while h(z) = Az/f(x), A > 0. Let Te and T be
defined by (1.8) and (3.16) while T'(z) := —log x.

(i) If f is increasing, then

A& A . A
o+ mm) r<tes () ™
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(i) If x— x/f(x) is increasing, then

. A
0<T§—T§<—€.

f(€)
In both cases lima_g+ Te = Ty and |Ty — Tg| = O(A) as A — 07,

Proof. Since T(x) := —logx then T"(z) = ¢, and —T"(x) = 1/x. Thus
a1 = 2 + AT (z) (=T) (T () = 2z + A

Therefore z, = zy + nA and hence z, = e™™*. Thus Tp/Tpa1 = e® and t, =
Z?;& h(z;) obeys Ty := lim, o0 t, < 0O since f01+ 1/f(u)du < oo because f obeys
(1.7). Thus

~ Tj — Tj41
fom 3 b = A S
: f(z5)
7=0
If f is increasing for x;1; < u < z; then we have
1 1 1
< < . (5.25)

flag) — flu)  fzim)
while if x — 2/ f(z) is increasing x4 < v < z; then

Tj+1

f(@jt1)

1 f[)j

Fw) = )

1 1
- - 2
o< - (5.26)

Integrating (5.25) over [z;41, ;] yields
Tj— Tjt1 i

B k201
f(z;) = yan S (1) du < F@jm) (5.27)

while integrating (5.26) over [x;11, ;] yields
AIJ’_H Tjtr1 ( > / i ( X ) Al’j
= — du < log = . (.28
f(@j1) f(xjﬂ) Tjt1 zﬁl (%) Tjr1 f(x) ( )

If z — x/f(x) is increasing by (5.28)

€ 1 OO .
o= [ e = LH__W 2 fw) E
and
~ Ag > AZE]‘ Ag AI]+1 Af
Ty = > = =5 —d
5 @+;h@>f@+z%@ﬂ *ZQM "
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The first inequality establishes 0 < 7 ¢ —T¢ while the second establishes T{ <AL/ f(6)+

T¢. Combining both inequalities yields

Ag

0<T§—T€<m,

which completes the proof of part (ii). Clearly in this case Ty — Tr is O(A) as A — 0F.

If f is increasing by (5.27)

xj — a:JH A
—F | T
5 1_6—AZ f(x 1_6—AZ f (1_€—A) &
Tj41

and also by (5.27) we have

L — $J+1

- A Tog — T Ooxj—acj+1 . Af A ]_—GAOO
E‘Lwﬂ{f@»+z:fm>}“f@+1—f T

7=0

A§ A 1
~ f _]‘Z Tj41 f(U

ﬁ§+(&flyﬁ

A& A . A
% () e ()

which is part (ii). Finally to see that |7y — T¢| is O(A) as A — 07 consider

AE A . A
f(€)+(eA_1—1>T§<T§—T§< (1_€—A_1>T5'

A A—(eh—1 . A—(1—e2
f<§)+( GA( 1 >>T§<T5—T§<( 1(_€—A ))T£

Hence

Therefore

Taylor expansions of e® and e™® as A — 01 imply that
2

A A? 3 -A A 3
—1:A+7+O(A) and 1—e :A—7+O(A).

Hence as A — 0T

A—(e2=1) -=-A A-(1-e2) A
1—eA 2

Thus

f ‘Tj-‘rl
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as needed. O

One may object to the supposition (5.3) namely that z — (=7~ f)(z) is decreasing
because this creates an interaction between the transformation and the non-linearity
f and we might prefer to make transformations which are to an extent f-independent.
In the next theorem we merely assume that f is increasing and show that it is possible
to obtain good quality results which are qualitatively independent of A > 0 but which

improve quantitatively as A — 0F.

Theorem 30. Suppose T' obeys (5.4) while f obeys (3.1) and is increasing but with
(5.3) suppressed. Let F, F, (t,) and T, be defined by (1.10), (1.11), (5.6) and (3.16).

(i) If f obeys (1.9), then

1—e 2 F(xy, n A1
i st <tmanp Tl < 7
(i) If f obeys (1.7), then
1—e® F F(x, A1
¢ < liminf — (2n) < limsup = (zn) < ¢ .
n—o0 Th —tn n—00 Th — 1ty A
Proof. 1f f is increasing only
s ) T f(xy) Az;  f(z;) A Z; ’
Similarly
o1 T;— X 1 [ z;
_du<ﬂ—ﬂ+1:_( J —1)hx- _
/$]-+1 f(u) ~ flzis) A \wjp (@5+1)
Thus

1 T 1 T;
— (12t / — 1 1)
A ( ) oyen ] du A \zjn M)

Since —T" € RVy(—1) then x;1/x; — e as j — 00 so zj/zj41 — €2 as j — oo.
We are now in a position to prove part (ii). If f obeys (1.7) then (f;JH 1/ f(u)du) is
summable so ((1 — x;11/z;) h(x;)/A) is summable and as z;,;/x; — e, then (h(z;))

is summable. Thus in the case that f01+ 1/f(u) du < 0o, we have as n — oo

F(z) Z/Imf—du AZ(l—x”l)(-)N$<TAh—tn>.

Thus _
.. F(x,) _1—e*
lim inf — >
n—o00 Th _ tn A

134



Asymptotic Analysis of Pre-Transformed Scheme with Standard Step-Size

Similarly as n — oo

Flans) < F(z,) < %i < Y 1> h(zj41) ~ @ (Th - th) .

imn \ T+l
Thus
1 F(xn+1) e~ — 1
imsup — ,
n—>00 h — tn+1 A

and therefore

lim sup —
n%oop h—tn A
Combining the results yields
1—e 2 F F(z, A
€ < liminf — (z ) <hmsup - (zn) < ‘ ,
A n—o0 Th — n—00 Th — tn A

proving part (ii). To prove part (i), if f obeys (1.9) then f01+ 1/f(u)du = oo and
([ o 1/f(u)du) is not summable so ((x;/z;+1 — 1) h(z;4+1)/A) is not summable and

hence t,, —+ 00 as n — oo. Thus as n — oo

n—1 z; 1

F(x,) — Z " f(u u< . g( S 1) h(wj41)

Tjt1
—1 —1 A1
N %Zhw N %t N (TM
j=1

Thus
’ F(x,) < A —1
im su )

A similar argument for the lower estimate yields as n — oo

F@@—J%mﬁz%;i(y—%“>m%yvglf;l¢m

Thus

n
which combined with the upper estimate gives.
l—e® . F(x,)

< lim inf < limsu
A T n—oo tn B n—)oop n o A ’

which is part (i). O
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5.3 Logarithmic Transformation with Larger Step-

Size

In the previous section we showed in the case when x — f(x)/x is decreasing and

folJr 1/f(u) = oo that
tim £)

n—oo  t, ’

under logarithmic pre-transformation with step-size h(z) = Ax/f(x). Since this re-
covers exactly the asymptotic rate of decay of the solution of the ODE, one naturally
asks whether it might be possible to take a larger vanishing step-size and still recover

a satisfactory recovery of the rate of decay such as

lim =\ € (0,00),
n—oco  t,
or even A = 1. We reconsider the ODE (1.1). Define z(t) := —logz(t) with n(z) =

f(e™*)/e~*, the transformed ODE is
Z(t) =n(z(t)), t>0, 2(0)=—log& > 0.
The associated Explicit Euler scheme is

Znal = Zn + ﬁ(zn)n(zn), n>0, zy=—logk,

Tpi1 =€ " n>0, xg=£&>0,

where

tir =Y _h(z), n>0, to=0, (5.29)
§=0

and 71(2) := h(e™*) where z € R and h obeys (3.2). Thus t,.; = Z?:o h(z) =
> o hle™) =37 o h(z;). Define

A(x) = f@)hlz) x>0, (5.30)

and A(z) := A(e™*). We suppose

lim J@)h(z) = 00; (5.31)
z—0t X
x +— z/f(x) is increasing. (5.32)

Thus by (5.30)

n

tnst = ZO h(z;) =) % n> 0. (5.33)

J=0
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Then z,,1 = 2, + iz(zn)n(zn) implies

— IOg Tptl = Zpt1 = Zn + h(e*Z”) . f(ee_znn) = — log Ty + A(gjn)
Therefore
Tyl = Tpe 2@ >0, 1z = &> 0. (5.34)

Proposition 8. Suppose f obeys (3.1) and h obeys (3.2). There exists a unique positive
sequence (x,) which obeys (5.34) and any such sequence is decreasing and obeys x, — 0

as n — Q.

Proof. The sequence exists by construction. Since A(x) > 0 for all z > 0, we have that
(x,) is a positive decreasing sequence. Since (z,,) is decreasing, we have as n — oo
that z,, - L € [0,00). If L > 0 since A is continuous, (5.34) yields

L= lim z,,; = lim z e A = Le A1)
n—oo n—oo
thus A(L) = 0 which is impossible by (3.1) and (3.2). Hence z,, - 0 asn — oco. [

Theorem 31. Suppose f obeys (1.9) and (5.31) holds. Let (x,), (t,), F' and A be
defined by (5.34), (5.33), (1.11) and (5.30). If

) 1 v 1
EILI(I# m /x‘eA(m) m du = (535)

then (z,,) for alln >0, z, — 0 as n — oo, t, — 00 asn — oo and

F
lim _(xn)

n—00 tn

=1.

Proof. Since f obeys (1.9) then f01+ 1/f(u)du = oo. If F is defined by (1.11) then
F(x) - o0 asxz — 07, so F(z,) — oo as n — oo. Then, as z,, = 07 as n — oo, we
have from (5.34) and (5.35)

du=1.

(5.36)
Therefore, it follows that » 37", VA(z;)z/ f(x;) = 0o as n — oo. Moreover, this implies

o, Ve [T se V) de 1 / 1
n—00 A(20) 00/ f(2) 100 Azn)zn/f(20) w0t W(T) Jype-ne f(u)

t, — o0 as n — oo, and by Toeplitz’s Lemma, (5.33) and (5.36)

Flan) _ (F(a:o) o o 1 flu ) :1

lim
n—oo n n—oo

_I_ n—
tn Z o Aaj)z;/ f(x))
as claimed. O
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Our goal now is to determine explicit asymptotic conditions on A in terms of f
for which the limit (5.35) holds. Clearly, as presently stated (5.35) gives only implicit
information as to how A might be so chosen. In the following lemma we start to rectify

this problem.

Lemma 18. Suppose f obeys (3.1) and x — z/f(x) =: §(x) is asymptotically increas-
ing. If
§(ze=2@)
lim ——~ =1 .
o0t 0() ’ (5:37)

then (5.35) holds.

Proof. Note that

S A N
/xeA<z> f(u) du = F(ze ) — F(x).

Define F(z) := F(e™*) and §(z) := §(e*). Notice that § is asymptotically decreasing,
so that 8(z) ~ d1(z) and &; is decreasing as z — oo. Since f is continuous, then
F'(z) = —1/f(x) and F'(z) = 6(z). Let & = e *. Then by the Mean Value Theorem
for every z € R there is ¢, € (0,1) so that

Flze @) — F(z) = F(z+ A(2)) = F(2) = F'(z+c.A(2)) - A(2)

= (24 c.A(2) - A(2).

Hence
L L, Pe Rl ered) A
W) Jysco TC0) A@)2/7(@) EEEG
_ d(z —|—~CZA(Z))‘ (5.38)
0(2)
Since A(z) > 0 and ¢, > 0 then z 4+ ¢,A(z) = oo as z — oo. We write
5(z +~CZA(Z)) _ §(z + CZA~<Z)) iz + c:A(2)) 5}(2).
i(2) 0 (z+ c.A(2)) 91(2) i(z2)
Since &, is decreasing we have
limsupw < lim (?(2 + cz%(z)) . S}(z)> = 1.
200 d(z) o0 \ 01 (2 + . A(z))  6(2)
Thus from (5.38)
) 1 v 1
hﬂ?jp ) /maw o) du < 1. (5.39)

On the other hand, as 4; is decreasing, and ¢, € (0,1) then §;(z 4+ c.A(2)) > §y(2 +
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A(z)). Thus
ming SCTEAC) S (fg(zwzé(@) 01z it A(Z))) =1, (5.40)
200 d(z) e=oo \ 01 (2 + ¢, A(z)) 61(2) 01(2)

provided 6, (z+A(2))/d1(z) = 1 as z — oo. This limit is implied by §(z+A(2))/d(z) —
1 as z — 0o. We show momentarily that this limit follows from (5.37). From (5.38),
the liminf in (5.40) implies

1 r 1
liminf—/ ——du>1,
w00 h(T) Jype-aw f(u)

which combined with (5.38), gives (5.35). Lastly, with 2 = e™* we see that

—z,—A(e”?) —A(x)
1= hmwz hmuz lim M’
2—00 6(2) 2—00 (5(67Z) z—0t 5(1’)
by (5.37). This completes the proof. O

Theorem 32. Suppose [ obeys (1.9) and z — x/f(x) =: 6(x) is asymptotically in-
creasing. Let (x,,), (t,), F' and A be defined by (5.34), (5.33), (1.11) and (5.30). If A
obeys

—A(z)
lim —5($6 )

=1
o0t 0(z) ’

then, x, > 0 for alln >0, (z,) is decreasing, x, — 0 as n — 00, t,, — 00 as n — 0O

and P
tim 2
n—oo  t,
Proof. The proof comes from combining Theorem 31 and Lemma 18. O

Remark 25. We are allowed to have A(z) — oo as x — 07, once (5.30) and (5.32)
hold. [

The condition (5.37) gives an implicit description of how rapidly A can be allowed
to grow without changing asymptotic behaviour. Under stronger conditions on f, we
can give an estimate on the allowable growth of A which is explicit. We will show

presently that the estimate on A supplied by this result is sharp.

Proposition 9. Suppose f € RVy(1) and f € C'(0,0). Define fi(z) := f(z)/x — oo,
and suppose that fi <0 and

A is decreasing on (0,0'), A(z) — oo as x — 07; (5.41)
lim Alz)
w0+ —fi(x)/ (2 fi(x))

Then (5.37) holds and hence (5.35) holds.

~0. (5.42)
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The next result removes the smoothness restriction on f in Proposition 9 and
demonstrates that A can be chosen tending to infinity in (5.41) and (5.42).

Proposition 10. Suppose f € RVy(1),z — f(x)/x is asymptotically decreasing. Then
there exists f1 € C1(0,0) such that fi(x) ~ f(z)/x and fi(z) <0 for x € (0,5) and

fi()

1 L S

e—0+t —x f](2)
Moreover, if A obeys (5.41) and (5.42), then (5.37) holds and hence (5.35) holds.

Proof. Suppose f € RVy(1), x — f(x)/x is asymptotically decreasing. Suppose ¥(x) ~
f(x)/z as © — 07, is such that ¢ is decreasing. Now we mimic the proof of Theorem
1.3.3. in [12]. Define ly(z) := ¢(1/z). Then [y is increasing. Set

exp(—z ' —(1—2)™), 0<z<1,
q(z) =
0, otherwise .

Set
q(x)

- f01+ q(t) dt’
Let ho(x) := logly(e”) and e(x) = [h(n+ 1) — h(n)|p(z —n) for n <z < n+1 for

n € N large enough for [n,c0) to lie in the domain of definition of [y, n > B say. Then

p(z) e [0,1].

e is C* in each interval and also at the end points. Moreover e (z) — 0 as 2 — oo
for all k =1,2.... Define

hi(x) := h(B) + /m e(t) dt.

B

Then hgk)(x) —0asxz —ooforall k =1,2.... Also h(z)—hi(x) — 0asaz — oo. Then
lo(z) ~ li(z) := exp(hi(logx)), and A} (x) — 0 as = — co. Now as [y is increasing, h is
also. Thus e(x) > 0 for all . Therefore h}(x) > 0 for all x > B. Hence

_ exp’(hy(logx)) - b (log x)
x

e1(z)

> 0,

for all = sufficiently large. Since hq(z) = log(l;(e*)) and b} (z) — 0 as x — oo. Thus

/
lim hw)

=0.

Moreover i (z) > 0 for x sufficiently large. Now, define f;(z) := {;(1/z). Then because
Ry (z) >0, fi(z) = =1}(1/z)/2* < 0 and

(G B P e V2 Vs

x—07F fl(ilf) N xi%l‘* l1(1/$> =0
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Also f; € RV;(0) and

fle)  h(l/z) _ h(l/z)
f@)fz ™ @ b(ijo)

—1, asxz—0".

Therefore if f € RVy(1) and x — f(z)/x is asymptotically decreasing, then there exists
a number &' > 0, f; € C*(0,§’) such that

(i) f1 € RV(0), fi(z) ~ f(z)/x as x — 0T,
(i) fi(z) <0 for all z € (0,¢"), —xfi(x)/fi(x) = 0 as z — 0T,
Note that because —z fi(x)/fi(z) > 0, Vo < 1/B and

N HE)

e—0+ 2 f1(x)

=0,

then

lim h(x)

w0t —xfl(x)
We next suppose that A is decreasing and that A(z) — oo as @ — 07 and A(z) =

o(fi(x)/(—xfi{(x))) as © — 0. Clearly, this second hypothesis does not prevent
A(z) — oo as x — 07. Also, as x — 0

h(x) = Af(é)f =0 (—fj(’()) | ff:c)) -’ (ﬁ) |

Next, write [(z) = f1(1/x). Since f; € C', we have [ € C'. Moreover [(z) — 0o as

V)  —fi(l/z)/x

(x)  hQ/z)
Define 7(x) := A(1/x), n(x) := exp (n(x)). Since A is decreasing on (0,0), 7 is
increasing on (1/0’,00) and hence so is 7. Also n(z) > 1, and n(z) — oo as © — o
because A(z) — oo as ¢ — 07. Thus by (5.42)

o A(/y)
% Sy =)

r — oo and

=0,

h i) RO RO
v=o0 1/logm(z) — wves 1/A(1/z) :
Thus ') 1
l(l’) :O(IOgn(a:)) , as T — OQ.

Hence all properties of Lemma 14 hold, so statement (4.11) in Lemma 13 holds with
[(x) = fi(1/z). Since n is increasing from Lemma 13, I(zn(z))/l(x) — 1 as x — o0

for any ¢ > 0 (as we may take v arbitrarily small in Lemma 13). Take ¢ = 1, so that
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l(zn(x))/l(x) — 1 as x — oo. Also we have

(1/z) 1

() = fi(1fx) ~

Uz o(ljz) BT
Hence with z = 1/y, as x — 07 (or y — 00), we have
o) o)y LUy UyetM) llyn(y)
O(ze=2@) (e fy)  1/I(yed/W) I(y) I(y) ’
since 1(y) = e20/Y) | as required. ]

By Proposition 10 if

Alz) =o (;;%) , asx — 0"

where 0(x) := x/f(x) we have, under some extra conditions, that

F(xy,
limM

n—oo  t,

=1.

It is natural to ask whether this size restriction on A(z) is sharp. In the next theorem
we show under strengthened conditions on A(z) if there exists K € (0,00) such that
A(x) ~ K§(z)/(xd (x)) then

1
lim Fn) :/ e K du.
0

n—oo  t, +

This result can be easily read-off from Theorem 33 and the proof of Theorem 31.

Theorem 33 part (iv) requires the following lemma which we present now.
Lemma 19. [f
x+— Ax) —vlog (1/z) is increasing for some v > 0, (5.43)
and §(x) := A(e®), A(z) := A(1/x), then
gy(z) = g(x) — ya is decreasing for some vy > 0.
Proof. By construction

gy(z) = A(e™) —yx = A(e™) + ylog(e™) = A(y) + vlog(y) =G, (e7"),

y=e~"

where G, (z) := A(z) + ylogz = A(z) — ylog(1/z). Now G, is increasing if and only

if g, is decreasing, as claimed. m
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Theorem 33. Suppose that &' € RVy(—1) where

r— x/f(x) =0d(x) is increasing;
x — A(z) is decreasing, A(z) — 0o, as x — 07; and

. xd'(z)
S

Alz) = K € [0, 0] (5.44)

(i) If K =0, then
—A(z)) _
i F(ze ) — F(x)

T A@e @) ¢

(1) If K >0, then

! F —Az)) _ F F —A(z)y _ F
/ e %V dy < lim inf (ze ) (2) < lim sup (ze ) (x) <1
0

+ w0t Ar)/f(x) w0t Al)z/fz) T~
(5.45)
(11i) If K >0, and
(a) g is self-neglecting; or
(b) x— A(x) —~vylog(1l/z) is increasing for all v > 0
then P _A(x)) Flo) .
_ ze - F(z) K
xli)r(r)l+ A fE) /0+ e Y dv. (5.46)

() If K >0 and x — A(z) — vlog(1/x) is increasing for some v > 0 then
F(ze @) — F(2)
e K dv < liminf < lim sup
* T oemot A)z/f(x) T e Al)r/f(2)
1
/ e—Kv/(H-v'y) dv S 1.
0

+

/1 F(ze @) — F(2)

Proof. Define F(z) := F(e %), 6(z) := d(e*) and A(z) := A(e*). Let & = e~*; then
x — 0if 2 — co. Write

F (ZEG_A(x)) —F(x)=F (e_ze_A(ez)) —F(e?) = F <6_(ZA(Z))) — F (e77)

Thus

Al)x/f(z)  Ale=®)e~®/fle™®) A2)d(2)
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Hence

Our goal is to show that

PR -G RO de 4 oA
Az) = ( _ > _JT o) dw :/ 0=+vAE) 4 (5.47)
A(2)0(2) A(z2)0(2) o+ i(2)
tends to a limit. We attempt to prove that
lim M =e *  uniformly for v € [0, 1]. (5.48)

This implies (5.46). We find it useful to record the identity

5(z + vA(z2)) 5(6—(z+vA(z))) 5(6—z6—vA(e—z)) 5(1,6—UA(9:))

5o e den o)

Next define 6;(x) := x0'(2)/d(x), §(x) := 1/5(1/x) and A(x) := A(1/x). Then (5.44)
implies A € RVy(0) if K > 0; A(x) and 6(z) both increase to infinity as z — 0%.
Hence x0'(x)/6(z) = 6, (1/z). Thus by (5.44)

tim 2 AC) = tim 6, () A (L) = Tim 6 () Ax) = K.

Z2—00 5(2) Z—00 x—0t

Then for A > 1 as z = oo we get

log (M> _ :ZMdu _ /:Z ub'(u) 1

o(z) (u) N N
AR el A

since A € RV(0). Therefore log (§(Az)/6(2)) ~ KlogA/A(z) as z — oco. Define
h(z) :=logé(e?), g(z) := A(e?*) and ug := log A\. Then as z — oo

Bz + o) — h(z) = log §(e*+) — log (") = log (52()>> K log \

Next we have the identity

log (%) = log 5(ez> — log S(ezevﬁ(eZ)) = log S(GZ) — log S(ezevg(z))

— R(2) — bz +v3(2).
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Also - ~ B )
d(z +vA(2)) _ §(we vA@) _ 5(1/x7) _ 6(ei)
5(2) 5(z) 5(1/z - evAW/a)) — §(ezevA()’
Hence . )
log (—5<Z E;ﬁ@)) — h(2) — (= + v3(2)). (5.50)

Let n, := |g(2z)v/uo], n. < g(z)v/ug, n. +1 > g(2)v/ug. Thus

Nz

Iz +vg(x)) — h(z) Y (A2 + kug) — h(z + (k — 1)ug)) +

(h(z +vg(2)) = h(z + n:u0)) -

Thus by (5.49) for every € € (0, 1), there is z(€) > 0 such that ¥z > z(e)

K’LLO - - K’LLO
(1—6)'% < h(z+up) —h(z) < (14—6)'%,
Thus for 2z > z(€), as h is increasing
_ - - - 1 Kuyg
h(z+vg(x) —h(z) = (1+€) - Kug Y EENCEE AR (1+e)- e (5.51)
and similarly
B . B ns 1
h(z +wvg(z)) —h(z) > (1 —¢€) - Kug kz:; Tt (= D) (5.52)

Now g(2) < gz + (k — 1)ug) < g(= + (n. — 1)ug), 50

1 - 1 - 1
g(z) ~ glz+(k—1)uo) = glz+ (n: — Dug)’

Therefore from (5.51)

he - 0g(e) = () < (1) SR (1 B (g(u) -+ 1)
< <1+e).m+(1+e).;g.
Thus
h(z+v3(2) —h(z) < K(1+ev+e, Vz>ze). (5.53)

From (5.53), (5.50) and (5.47) we can readily establish the lower limit in part (ii)
which together with the trivial unit upper bound (5.39) completes the proof of part

(ii). To prove part (iii) we prepare estimates that enable us to exploit the self-neglecting
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Logarithmic Transformation with Larger Step-Size

character of g. For z > Z(€), n, < g(2)v/uo, n. +1 > g(2)v/up and so from (5.52)

h(z +vg(2)) — h(z) > (1—6>-KUO2 g(z+(k1—1)uo)
l_(u(mz

' g(z + (nz - 1)“0)

g(2)v 1
= (1=e)- K ( w 1) 3G+ (1 — Do)
—€)- Kv 9(2) - Fuo
z -9 K g(z + (n. — Luy) 1=9 9(z+ (0. — Duo)’
Now
g(z)v _ N g(Z)U _
U o 2] <up(n.—1) <ug o 1

Hence
1 1
9z —2u) gz tum(n 1)  §(z+3(z) )
Thus
h g — h(x —€ v g(x) — — € Kug
hla+15(0) = (@) > (1= ) K T (1) 2 (550
Since

we have from (5.53) that

log (W) >—(14+¢)-Kv+e, VYz>z/(e) uniformly in v € [0, 1]. (5.55)

From (5.54) if g is self-neglecting

log (W) <—((1=¢€)? Kv—c¢), VYz>z/(e) uniformly in v € [0,1].

Thus combining this and (5.55) we get

lim M = ¢ %Y uniformly in v € [0, 1],
2—00 5(2)
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Logarithmic Transformation with Larger Step-Size

which is (5.48) and hence we have part (iii)(a). We now prove part (iv). (5.43) implies
g is decreasing from Lemma 19. Hence g,(z + (k — 1)uy) < g4(2), VK > 1. Then for
ked{l,....n.}

9z + (k= Duo) < g(2) + (k= Duo < g(2) +7(n: = Duo < g(2) +7n:u0

~ z
< 9(z) +y=—vuo.

Thus Vk € {1,...,n.}, g(z + (k — Duo) < g(2)(1 +~yv), Vo € [0,1]. Thus

— _ 7 = 1
Mzt egl) —h() > (1= Ko ) ooy
KU()T]Z

> 179 2T+ o)

RN 41CO LN D S
> s (T 1) S
Kv Kuyg 1
- <1_6).1+07_(1_6)'§(Z) 1+ vy
Hence
h(z +vg(z)) — h(z) > (1 —¢) - : i(1;7 —¢, Yvel0,1].

Hence Vz > Z3(¢)

6(z +vA(2)) —(1—¢)Kv
T < exp (W) exp(e), Vv e|0,1].

We have for all z sufficiently small that

Flze @) — F(z) ' 6(z +vA(2)) <o 1eX —(1-KvY
Ax)z/ f(z) _/0+ 6(2) o= /o+ p< 14wy )d.

Hence

, F(ze 2@ —F(z) . (! —(1—¢€)Kv
s e < e (S )

Letting € — 07 yields

. F(ze2@) — F(x) ! —Kv
s @/ f@) / P <1 + m) -

This proves part (iv). To prove part (iii)(b) observe that 7 is arbitrary in the last limit
and so letting v — 07 in that limit

 Paet) R [
imeup S s [ e

+
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Combining this with (5.55) implies

. Fze20)) — F(x) Y ke
S NSy /0 e dv,

and we obtain (5.45). O

5.4 Examples

We consider a number of examples where we can verify by direct computation the

sharpness of Propositions 9, 10 and Theorem 33.

Proposition 11. Suppose

lim A(z) =00 and lim Ale)e =0,
z—0+ 20+ f(g;)
and
f(z) = zlog (1) (loglog (%))a, r<e‘ ac(0,1]
Define
lim A(z) c

(i) If c =0, then

tim 20 _ iy Jremso U F@du
tn em0t  A(x)x/f(x) '

n—oo

(i) If ¢ € (0,00), then

. F(z,) [ aw 1/ f(u)du log(1l+c)
Jm ——= = lm, A)z/fx) ¢
(iii) If ¢ = oo, then
F(x,) Jovaw 1/ flu)du

lim = lim

nsoo t,  asot Ax)z/f(z)

=0.

Proof. Define

—e

e 1 e 1
F(z) ':/z T ™ :/x ulog (1/u) (loglog (1/u))

log(1/x) 1 loglog(1/x)
= / —dv = / w™* dw.
e v (logv) 1
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Thus

W) = A(x)x _ A(x)x _ A(z)
f(x)  zlog(1/x) (loglog (1/x))*  log(1/z) (loglog (1/2))"

We consider the case when « € (0, 1) first. Thus

Flr) = —— [(log log (é))l_a - 1] |

For a € (0,1)

Plae @) _ pg) = — [<log (= + A(z)))l_“ ~ (log z)l—a} ,

l—«

and -
A(z) A(z)
hiz) = = 5.56
(z) log (1/z) (loglog (1/2))* 2 (log 2)*’ (5.56)
where z := log(1/z) and A(2) := A(e™*) = A(z). Note that A(z)/z — ¢ as z — 00 is
equivalent to A(z)/log(1l/x) — ¢ as © — 07. By the Mean Value Theorem, there is
¢, € (0,1) such that

Flee @)~ F(z) = (log (s +¢.A())) log (1 + A?)

_ <logz +log (1 Yo, Af)» log (1 + @) (5.57)

(i) If ¢ = 0 then A(2)/z — 0 as z — oo so from (5.57) we have

F(ze 2@)) — F(z) ~ ﬁ, as z — 00.

Hence as A(z)/log(1/x) — 0 as x — 07 we get from (5.56)

L Rae) - )
) /xem O NGO

(ii) If ¢ € (0,00) then A(z2)/z — ¢ as z — oo so from (5.57) we have F(ze 2(®) —
F(z) ~ (logz) “log (14 ¢) as z — oo. Also from (5.56), h(x) = A(z)/(z (log 2)®) ~

¢(logz) ™ as z — oo. Hence

, 1 / 1 du = lim (log z) “log (1 + ¢) _ log (1+ ¢)

im —
20t W) Jyene@ f(u) 700 c(logz)™ c
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(iii) If ¢ = oo then A(z)/z — ¢ as z — 0o s0 we have

F(ze @) — F(z) = : i - (log (z - A(z)))la — (log Z)la:|
= 5 i - (10gz +log (1 + Aiz)» ~ (log2)"™®
= [l log (14 a(w)' ™ —w' ]

where w := log z and a(w) := a(e™)
is 0,, € (0,1) such that

a(z). By the Mean Value Theorem there

(1 +log (1 + a(w))) ~* — w'®
11—«

= (w+6,log(1+a(w))) * log(1+a(w)).
We have a(w) = a(e¥) — oo as w — co. Since
A(z) =o(log (%) (loglog (1)), asz — 0%,

we have as w — o0

A (exp (=€)

i(w) = =2

= 0 (e7"log (exp (¢*)) (loglog (exp (¢*)))") = o (w®).
Thus for every € > 0 there is w*(e) such that a(w) < ew® for all w > w*(e). Thus

loga(w) < loge 4+ alogw.

Hence log a(w) = O(logw) as w — oo and so log(1+a(w)) = O(logw) as w — oo

since a(w) — oo as w — oo. Hence
w + 0, log(l 4+ a(w)) ~w, asw — oo,
and therefore as w — oo
ﬁ [(w +1og (1 + @(w)))' ™™ — w'™] ~ w *log(1 + a(w)) ~ w™*log a(w).
Hence as w — oo with w = log z and z = log(1/x)

F(ze @) — F(z) ~ w*loga(w) = o(w™*a(w)) = o(h(z)), as z — 07,

since h(zx) = w™“a(w). Hence

1 x 1
lm —— — du=0.
o0+ h() /mm> Flu) ™ 0
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We now consider the case when o« = 1. Thus

log log(1/x)
F(z) = / v~ dv = logloglog (%) .
1
Thus z = log(1/z) we get
F(ze @) — F(z) = loglog (z + A(z)) — loglog z,

and

ha) = 28

~ zlog 2

(i) If A(z)/z — 0 as z — oo then by the Mean Value Theorem there is ¢, € (0,1)

such that as z — oo

F(ze™2@) — F(z) = _A@) _AE) h(z).

Thus . . .
lim — ——du=1.
o0+ () /m_m w ™
(ii) If A(2)/z = c € (0,00) as z — oo, then

F(ze @) — F(z) = loglog (z + A(z)) — loglog =

A
= log <1ogz + log (1 + ﬁ)) — loglog 2.
z

A(z) :=log (1 + @) —log(1+4¢), asz— oc.

Define

Set A(z) := A(e®) and w := log z. Then A\(w) — log(1 + ¢) as w — co. We have,
with h;(z) = logz and for some ¢, € (0,1) and any w sufficiently large

: : 5
loglog(z + A(z)) — loglog z = log(w + A(w)) — logw = (—wN)
w + A (w)
Hence
A log(1 log(1
Fze @) — F(z) = (wN) ~ og(1 +¢) = og(l + C), as z — 00.
w + cpA(w) w log 2
Since B
A
ha) = 2L L s,

zlog 2 ~ log 2’
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(iii)

we have as © — 0T

F(ze @) — F(x) N log(1 +c)/logz  log(1l+c)

A(x)z/f(x) c/log z c
Hence . . . log(1
lim / 1 gy leell o)
e—0t h(x) Jpe-aw flu) c

If A(2)/z — oo then a(z) :== A(2)/z — oo as z — co and

F(ze @) — F(z) = loglog (z + A(z)) — loglog z
= log (logz +log (1 + a(z))) — loglog =
= log(w +log(1+a(w))) — logw,

where w := log z and a(w) = a(e”) = a(z). By the Mean Value Theorem there
is 0,, € (0,1) such that

log (14 a(w))
w ~+ 0, log (1 + a(w))

log (w +log (1 + a(w))) —logw =

Since a(w) — oo as w — oo then

log (14 a(w)) ~ loga(w) = loga(e”) = log (M> =: log a*(w).

ew
Next A(z) = o(zlogz) as z — oo. Thus A(e”) = o(e”loge®) = o(e®w) as
w — oo. Then a*(w) = A(e®) /e = o(w) as w — oo. Thus for every € > 0 there
is w*(€) > 0 such that a*(w) < ew® for all w > w*(e). Thus

log a(w) =loga*(w) < loge + alogw.

Hence log a(w) = O(logw) as w — oo. Therefore

F(zre @) — F(z) ~ log a(w) =0 (&(w)) =o(h(z)), asx — 0%,

w w
since _ 3
W) = A(z) _ a(z) _ a(e™) _ a(w)‘
zlogz logz w w
Hence

lim / L =
m —-— — au = V.
z—07t h(x) ze—A(@) f(u)
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Remark 26. For f in the example above h(x) ~ ¢ (log log (%))_a as x — 0%. Thus we

can establish the critical rate of convergence of h. The finite values of ¢ distinguish

between
h(z) =0 ((log log (%))ﬂ) and h(x)=o0 ((log logl(l/x))a) , asz — 0T,
[
Remark 27. The criterion (5.37) is
. S(we @)y
Sy b
Since
§(ze=2@) B e~ 2@ / f(re=A@) B e~ 2@ f(z)
ox) z/f(x) - flzemd@)
_ xlog (1/x) (loglog (1/x))% e=2®)
re~2@) log (1/ze~2®) (loglog (1/ze~2@))"
_ log (1/x) { loglog (1/x) }O‘
log (1/z) + A(z) |log(log (1/x) + A(x)) |
Thus
lim §(zeA@) _ lim log (1/z) ‘ { loglog (1/x) }a _
a—0t  O(x) a—0t log (1/2) + A(x) | log (log (1/z) + A(x)) ’

if A(x)/log(1/x) — 0 as x — 07. Therefore, the condition (5.37) which guarantees
the exact rate in Theorem 32 is a sharp estimate on the maximal allowable rate of

growth in A for this example, since A(z)/log (1/x) — ¢ as x — 07 implies

Flan) _ Jse 1/ f@)du_ log(1+0
tn 0t A(x)z/f(x) c

lim
n—0o0

and scrutinising the proof of Theorem 32 we see that A(x) ~ clog (1/z) as x — 0T
where ¢ € (0, 00) implies z,, — 0, t,, — oo and

o) _ o fosw V) du_ log(1 +0)

i tn o0t Alx)z/f(z) c

n—oo

Looking at Theorem 33, rather than doing the calculations, directly we can only

obtain non-unit bounds on liminf, .., F(z,)/t, and limsup,,_, . F(z,)/t,.
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Proposition 12. Suppose

lim A(r) =00 and lim. Af((z)f =0,
and
flx)y=2(log (L))", xz<1l/e, a€(0,1]
Define
lim M =:c.

20+ log (1/x)

(i) If c =0, then
lim ——=

n—oo  t,

=1.

(1)) (a) If a € (0,1) and ¢ € (0,00), then

l-a
lim F(z,) _ (1+¢) 1
n—oco  t, (1 — Oé)C

(b) If a =1 and c € (0,00), then

lim F(x,) _ log(1 + c)'
n—oo t C

(#ii) If ¢ = oo, then

lim ) _
n—oo  t,
Proof. Define
1/e 1 log(1/x)
F(x) = ——du = ““dv.
CEIA - Ly A
Thus
A(x)z A(x)z Alx)

") = )y T 2 log (1) (log (1)

We consider the case when a € (0, 1) first. Thus

Flr) = [(m (1»‘1] |

For a € (0,1)
Flre 29) = Fla) = - i - [(z + A(z))l_a - zla} ,
and
h(z) A Ag)se
(log (1/x))* ’
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where z := log(1/z) and A(z) := A(e™*) = A(z). Note that A(z)/z — c as z — oo is
equivalent to A(x)/log(1l/x) — cas x — 0.

(i) If A(z)/z — 0 as z — oo then by the Mean Value Theorem there is ¢, € (0,1)
such that

F(ze @) — F(z) = [z + CZA(Z)} - A(z) ~ 27%A(z), as z — 0.

Hence as h(z) = A(2)z then

1 1
lm —— —du=1.
0% (x) /mw Flu) ™

(ii) If A(2)/z — ¢ € (0,00) as z — oo then

Flae®) ~ F(z) = ! <<z + A@))l_a - zla>

~ . , as z — 00,
and -
A
h(xz) = () A7~ et as 2 — oo
2
Hence . N | . e q
lim—/ —du:(< +9) — )
a0+ h(x) Jpe-aw flu) (1—a)c

(iif) If A(z)/z — oo as z — 0o then

F(ze 2@) — F(z) = 1 i - <(z + A(z))la — zl_o‘>
- (0o -G
~ Az) as z — 00
l—a’ ’
and Ao o
h(z) = (@) =A(2)z7%, asz— oc.

Hence
i e () o
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We now consider the case when o« = 1. Thus

log(1/xz)
F(z)= / v dv =loglog (1).
1

Thus
F(xe’A(x)) — F(z) = log (1 + @) ,

and h(z) = A(2)/z.

(i) If A(z)/z — 0 as z — oo then

A A
F(ze 2@) — F(z) = log <1 + iz)) ~ Z), as x — 0.

or F(ze @) — F(z) ~ h(z) as x — 0*. Hence

li ! /m 1 du =1
o0+ (@) Jypae Fla)

(ii) If A(2)/z — ¢ € (0,00) as z — oo then
F(xe @) — F(z) = log (1 + M) —log(1+¢), asx—0".
2

Hence then h(z) = A(z)z/f(x) — c as x — 07 and

lim / L gy leslto)
a0t W(x) Jpe-aw flu) c

(i) If A(2)/z — 0o as z — oo then

Hence

lim — / [ S W
m —— — =0.
o0t 1(z) Jyoace Fla) "
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Chapter 6

Comparison of Errors in Estimated

Rates of Convergence

6.1 Introduction

This section compares the error in the rates of asymptotic convergence estimated
by the Explicit, Implicit and Transformed Explicit Euler schemes. We compare the
schemes for A € (0,1) and 5 € (0,1) only because for A > 1 the Explicit scheme
violates positivity and gives poor asymptotics. When § < 1, the integral

/—du

is guaranteed to converge as x — 07 but will either diverge or converge when § = 1.
As a result, 8 < 1 relates to the case of finite-time stability while g = 1 can relate to

either finite-time stability or super-exponential stability.

We start with a brief summary of the estimated rates of converge and the resulting
error for each scheme. For the Explicit scheme with explicit step-size, the estimated

rate of convergence from Theorem 17 part (ii) is

_ F(zy) 1/1 _
lim — = AP AN =: A\g(A) > 1.

The error between the rate predicted by the scheme and the true rate of unity is

1—(1—A))7

Errorg(A) == [Ap(A) — 1] =: Ag(A) = A/ A PN —1 =

For the Implicit scheme, the estimated rate of convergence from Theorem 20 part (ii)
is 7 1+A
F(zx,)
lim — Pdx = M(A) < 1.
L it RS E
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The error between the rate predicted by the scheme and the true rate of unity is

1+ AP -1
A(l—p)

1 14+A (
Errorp(A) == [A(A) = 1| =1 - X (A) = 1-— Z/ A PdN=1—
1

For the Transformed Explicit scheme, the estimated rate of convergence from Theorem
28 part (b)(ii) is

. F(xy) 1t
lim ——% — — AP d) = \p(A) < 1.
A T A / r(4)

The error between the rate predicted by the scheme and the true rate of unity is

1 — efA(lfﬁ)

1 1
Brrorp(A) = Pr(8) = 1] = 1= Ag(A) = 1-— /e_A NP1

6.2 Boundary Cases

If B =0, then estimates rates from each of the three schemes is as follows:

1! 1—e &

Thus the Explicit and Implicit schemes give equal performance by predicting the true

rate of unity and both outperform the Transformed Explicit scheme, summarised as
0= Errorg(A) = Errori(A) < Errorp(A). (6.1)

When S = 1 then we have either super-exponential convergence or finite-time stability.

For the Transformed Explicit scheme

n— 00 Th —t n—oo  t,

=Ar(A) =1,

lim F(en). = lim Flan) = Ag(A) = llog (L) > 1,

n—o0 Th — tn n—o0 tn

with associated error

For the Implicit scheme

F F 1
lim L) gy F@) oy ny los A




Explicit and Transformed Euler Schemes

with associated error
log (1+ A)

Errorr(A) =1 A

Theorem 34. Let B =1. Then
Errorg(A) > Errori(A), VA €(0,1).

Proof. Define
k(A) = Errorg(A) — Error(A) = —=,

where k(A) := —log (1 — A) —log (1 + A) — 2A with k(0) = 0 and k' (A) = 2A%/(1 —
A?) > 0. Hence k(A) > 0 for all A € (0,1). Thus Errorg(A) > Errorp(A). O

Overall, when § = 1, the Transformed Explicit scheme outperforms both the Explicit

and Implicit schemes and estimates the perfect rate of unity, summarised as
Errorg(A) > Errorj(A) > Errorp(A) = 0. (6.2)

When g € (0,1), the result is not as clear as the following sections demonstrate.

6.3 Explicit and Transformed Euler Schemes
The following theorem ranks the performance of the Explicit and Transformed schemes.

Theorem 35. Let 3 = 3} be the unique number in (0,1) such that 23 = e~1=9) . Then
B7 € (0,1/2) and the following hold:

(i) If B < Bf, then

Errorg(A) < Errorp(A), VA €(0,1).

(it) If B € (B5,1/2), then there exists As = Az(B) € (0,1) such that

Errorg(A) < Errorp(A), VYA < Ag,
Errorg(A) > Errorp(A), VYA > Ag,

where A = Az obeys (1 — A8 472070 1 2(1 — B)A = 2.
(1i1) If B > 1/2, then
Errorg(A) > Errorp(A), VA€ (0,1).
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Proof. Define

k(A)

k(A) = FErrorg(A) — Errorp(A) = A-9)A

where k(A) :=2 — (1 — A)1F —e=20-A _2(1 — B)A with k(0) = 0 and k(1) = 28 —
e 100 Thus k(A) > 0 if k(A) > 0 since (1—8)A > 0. Define ky () := 28 —e 105,
Since ky(0) = —e™' < 0, ky(1/2) =1 —e /2 > 0 and ky(B) = 2 — e 1A > 1 for
all 8 € (0,1), there is a unique 8 = 8 € (0,1/2) such that ke(S;) = 0. Moreover,
ka(B) = k(1) < 0 for all B < B and kyo(8) = k(1) > 0 for all B > 7. Furthermore,
B ~ 0.231961. Note that

l%/(A) =(1-5) ((1 —~A) P4 A1) _ 2) ’
with ]%/(0) =0, lima_,1- /;/(A) = oo and
E'(A) = (1—8) (B(1—A)"FH) — (1 - B)e 209

with &”(0) = (1 — 8)(28 — 1). Moreover, k”(0) > 0 for 8 > 1/2 and k"(0) < 0 for
B < 1/2. Thus k”(A) > 0 is equivalent to

(1= A) D > %EA(16)7 (6.3)
which is equivalent to k3(A) < 0 for all A € (0,1) where
1-p
ks(A) :=log 5 )" (1=5)A+(1+8)log(l—A),

with k3(0) := log (%) and lima ;- k3(A) = —oo. Note that k3(0) > 0if g < 1/2,
k3(0) < 0if B> 1/2 and

) = - (-9 + 18 <o

for all A € (0,1) and 5 € (0,1). If k3(A) < 0 for all A € (0,1) then £”(A) > 0 for all
A € (0,1). Then as £'(0) = 0, ¥(A) > 0 for all A € (0,1) and thus k(A) > 0 since

i(0) = 0.

When g < 1/2 then k3(0) > 0, k5(A) < 0 and lima_,1- k3(A) = —oo. Thus there is
A; € (0,1) such that k3(0) > 0 and £"(A) < 0 for all A € (0,A;) while k3(0) < 0
and k”(A) > 0 for all A € (Aq,1). When § < 1/2, ¥”(A) < 0. Since k'(0) = 0 and
k'(1) = oo then k'(A) is decreasing over (0,A;) and increasing over (A;,1). Thus
there is a unique Ay € (Ay,1) such that &'(A;) = 0. Furthermore &'(A) < 0 for all
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A € (0,Ay) and K'(A) > 0 for all A € (Ay,1). Similarly, k(A) is decreasing over (0, Ay)
and increasing over (Ay,1). For g € (8%,1/2), k(1) = ky(B) > 0. Since k(0) = 0,
k'(A) < 0 over (0,Ay) and k'(A) > 0 over (Ay, 1) there is a unique Ag € (Ay, 1) such
that k(A) = 0 and k(A) < 0 for all A € (0,As) and k(A) > 0 for all A € (As, 1).
Thus when g € (57,1/2)

Errorg(A) < Errorr(A), VA < As, (6.4)
Errorg(A) > Errorr(A), VA > As. (6.5)

When g3 € (0, 37) then the situation is similar but k(1) = ky(3) < 0. Thus k(A) = 0
with k(A) decreasing over (0, A;) and increasing over (Ay,1). Thus k(A) < 0 for all
A € (0,1). Therefore when 3 € (0, 37)

Errorg(A) < Errorp(A), YA € (0,1). (6.6)

When 3 > 1/2, then ks(0) < 0, k4(0) < 0 and ks(1) = —oo. Thus k(A) > 0 and

therefore
Errorg(A) > Errorp(A), VB e (1/2,1), VA€ (0,1), (6.7)

as claimed. O

Equations (6.4) and (6.5) identify that the Explicit Euler scheme outperforms the
Transformed Explicit scheme when A < Az, and vice versa for A > As, where Aj is

the unique root of
(1—AYF e 209 1901 - B)A = 2.

We now show that Az = A3(f) is a decreasing function of 5 where 5 € (8f,1/2).
Letting 5 = 1/2, then we may define A3(1/2) := 0 because for 5 =1/2

(1= Ag(8)7 4 B0 4 2(1 = B)Aq(B) =
(1—0)'12 470072 1 o1 —1/2).0=2.

Similarly, we can define As(/57) := 1 because
(1= Ag(B)" 4 720D 421 — B1)Aa(B7) = e 00 12— 287 =2,

by definition of 8. The following lemma shows that 8 — Ajs(5) is a decreasing

function.

Lemma 20. Let 3 = BF be the unique number in (0,1) such that 28 = e~ and A
obeys
2=(1-A)F e 200 L 21— pB)A,
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then A — A3(f) is decreasing.

Proof. Define
(A, B) = (1 - AP 4209 121 - B)A — 2.

Then (A, 3) — ¢(A,B) is in C? in both A and 3 for 8 € (Bf,1/2) and A € (0,1).
By the Implicit Function Theorem 3 +— Az(3) is C?. Since c¢(A3(8),8) = 0 and
c(A, B) # 0 for A # Asz(B) hence

d 0

9 (0y(8),8) = 2 e(Da(8), B) - A(8) + 2

ap - 0A %C(Aa(ﬁ),ﬁ) = 0.

If 2c(As(B),8) < 0 and %C(Ag(ﬁ),ﬂ) < 0 then A4(S) = E;Z;gaf < 0 as required.
Note that

%C(A,ﬁ) - % ((1 — AP e AR o) — B)A)

= (1-8)(2-e 209 —(1-A)F) = —F(A)

From Theorem 35 part (i), when § € (3F,1/2), then &'(A) < 0 for all A € (Ay, Ay)
and k'(A) > 0 for all A € (Ay,1). Since Az > Ay, then k'(Ag) > 0, so 2c(As, 8) < 0.

Now

(A B)= = (1—A)ePlosl=2) L o=RcPA L ON _ 28N — 2.
Thus
%C(A, B) = —(1—-A)log(l — A)e_ﬁlog(l_m L e BAPA _2A

= —(1-A)"log(1—A)+A (e 2077 —2),
Since ¢(As(f), 5) = 0 then
e U= 9 — _9(1 - B)As — (1 — Ag)* 7,

Substituting this into the previous equation implies

%c@g(m, B) = —(1—Ag) P log(l— Ag) + Ag (—2(1— B)As — (1— Ag)')
= —(1—23)"log(l = Ag) = 2(1 = B)AF — Ag(1 — Ay)' 7
= (—log(l —A3)—Asz)(1— As)l_ﬁ —2(1 - B)A§

= A(A37 1- 6)7
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where A(A,7) = (—log(l —A) — A) (1 - A)” — 2yA?% Note

agA(A,v) = (—log(l — A) —A)log(1 —A) (1 —-A) —2A% < 0.

g

Since € (57,1/2), v € (1/2,1 — [57) so as B > 1/5, then v € (1/2,4/5). Therefore
for v > 1/2 and all A € (0,1)

A(A, ) < A(A1/2) = (—log(1 — A) — A) (1 — A2 — A? = q(A).

By Lemma 21, A — a(A) obeys a(A) < 0 for all A € (0,1). Hence, as Az € (0,1)
then 5
%C(Ag(ﬂ),ﬂ) = A(As, 1= P) < A(A3,1/2) = a(A) <0,

as required. N

Lemma 21. Let A € (0,1) and define

a(A) = (—log(1 — A) — A) (1 — A)Y2 — A2,

Then a(A) <0 for all A € (0,1).

Proof. a(A) <0 for all A € (0,1) is equivalent to

AQ

TN > —log(l1—A)—A, VAE€(0,1). (6.8)

Let # = (1 — A)2. Then x € (0,1), A = 1 — 2% and (6.8) is equivalent to

1— 2\2
ﬂ>—loga¢2—(1—x2), z e (0,1).
T
Define for z € (0,1)
(1—=2%)? 2 ~1 3 2
b(x) = ———+1—a*42logr=2"" —2x+2°+1—2"+2logx.
T
Then
3(:52—1)((33—%)24—%)
b/(l‘) = )

so b/(x) < 0 for all x € (0,1). Thus for all x € (0,1) then b(z) > b(1) = 0, as
required. O]
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6.4 Explicit and Implicit Euler Schemes

In the next theorem we show the Implicit scheme outperforms the Explicit scheme

for all 8 € (0,1) and all A € (0,1).

Theorem 36. Let 5 € (0,1). Then
Errorg(A) > Errorr(A), VYA€ (0,1). (6.9)

Proof. Define
k(A) = Errorg(A)— Errorp(A) =

where k(A) = (1 4+ A)"F — (1 — AP —2(1 — B)A with k(0) = 0 and k(1) =
218 —2(1 — ) =2(27% — (1 — ). Thus k(A) > 0 if k(A) > 0 since (1 — 8)A > 0.
Define kqo(8) = 27 —2(1 — 8) = 2(27° — (1 — B)) with ky(0) = 0 and kh(B) =
2(1—log 2e~7182) > 0. Hence ky() > 0 for all § € (0,1), so k(1) > 0 for all § € (0,1).
Thus

H(A) = (1= 1+A)F+(1-p)1-2)"=201-p),

with &/(0) = 0 and lima_,;- &'(A) = oo and

n 1 1
) =80-8) (7= ~ ) >

Hence k'(A) > 0 for all A € (0,1). Since k(0) = 0, then k(A) > 0 for all A € (0,1).
Hence Errorg(A) > Error;(A)VY A € (0,1) which is (6.9). O

6.5 Implicit and Transformed Euler Schemes

The following theorem ranks the Implicit and Transformed schemes. Very roughly
if A is sufficiently small the Implicit scheme outperforms the Transformed scheme if
f < 1/2 while if § > 1/2 the opposite is true.

Theorem 37. Let 3 = 3t be the unique number in (0,1) such that 2!~ + e~ (=8 =0,
Then By € (1/2,1/(1 +1og2)) and the following hold:

(i) If p € (0,1/2) then
Errorp(A) > Error(A), VA€ (0,1).
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(1) If p € (1/2,87) then

Errorp(A) < Error(A), VYA < As,
Errorp(A) > Errorp(A), YA > As,

where A = Az obeys (1 + A)'F 2070 =9,

(1i1) If B € (57,1) then

Errorp(A) < Error(A), YA€ (0,1).

Proof. Define
k(A) = Errorp(A)— Errorj(A) =

where k(A) == (14 A)' 472070 _ 2 with k(0) = 0 and k(1) = 2!F 4 e~ (18 —2,
Define ky(B) = 2'7% 4+ =8 — 2 with ky(0) = 1/e, ky(1/2) ~ 0.0207 > 0 and
ky(1) = 0. Then k4(B) = 7! — log2e9820-5) with ky(1) = 1 — log2 > 0, where
k5(B) = 0 if 81 ~ 0.78353 thus k4(3) > 0 if > 5, and k4(5) < 0 if B < B;. Note that

67(1751)

ko(By) = 2172 o= (=AD) 9 — +e 7R 2 <.

log 2

There exists a 37 € (0,5;) such that ky(37) = k(1) = 0 with ky(87) = k(1) > 0 if
B e (0,8r) and ky(87) = k(1) < 0if B € (8,1). In fact 8 ~ 0.5906. Note that

F(A) = (1= B) (1+A) ™ — e 20-9))

with &(0) = 0. Then A'(A) > 0 if ky(A) > 0 since 1 — 8 > 0 where ky(A) =
A(1 — p) — Blog(l + A) with k4(0) = 0 and ky(1) = 1 — B(1 4 log2). There exists
a (3 such that k(1) = 0 with k4(1) > 0if B < 5 and ky(1) < 0 if B > 5. In fact
B5 ~0.562173. Thus

s

B

arae

Thus kj(A) =0if A=A, =(28-1)/(1 = p), ky(A) > 0if A > A; and kj(A) <0 if
A < Ay where A, € (0,1) if 3 < 2/3. The second derivative of k(A) is

K/(A) = (1= 6) (209 = 1+ 4) ),
with &”(0) = (1 — B)(1 — 28). Thus k”(0) > 0 if 8 < 1/2 and £”(0) < 0 if 3 > 1/2.
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Note that £”(A) > 0 is equivalent to k3(A) > 0 where

fa(A) = (5 + Dlog(1 + 4) - (1= ) +1og (+57),

where

k3(0) = log (TB) and (1) = log (%) +(1+8)log2 — (1),

where k3(0) > 0 if 5 < 1/2 and k3(0) < 0if 8> 1/2 and

iy L EB

3(A) = T A (1-5),
where E5(A) > 0if Ay < 268/(1 — B) and k4(A) < 0 if Ay > 26/(1 — 5). Note that
Ay >1if B e (1/3,1/2) and A, € (0,1) if 8 € (0,1/3).

When g € (0,1/3) then k3(A) > 0, k5(A) > 0 for all A > Ay € (0,1) and k3(1) > 0.
Thus k”(A) > 0 for all A € (0,1). Since &'(0) = 0, &'(A) > 0 for all A € (0,1) and as
k(0) = 0 then k(A) > 0 for all A € (0,1).

When 8 € (1/3,1/2) then ¥(A) > 0 for all A € (0,1) since A; > 1. Therefore
combining both results, when 5 € (0,1/2), therefore

Errorp(A) > Errorp(A), YA € (0,1). (6.10)

When g € (1/3,57) then k4(0) < 0, kg(1) < 1 and kj(A) < 0 for A < A; and
Ey(A) > 0 for A > Ay, Thus there is a unique Ay € (Ay,1) such that k4(A) < 0 for
all A € (0,Ay) and ky(A) > 0 for all A € (Ay,1). Thus &'(0) = 0, k(A) is decreasing
over (0,A;) and increasing over (Ag, 1) with k(1) = k(1) > 0. Therefore there is a
unique Ag such that k3(Ajz) = 0 with k3(A) < 0 for all A € (0,A3) and k3(A) > 0 for
all A € (A3, 1). Therefore

Errorp(A) < Errori(A), VA < Ag, (6.11)
Errorp(A) > Errorr(A), YA > Aj. (6.12)

When S € (55, 8;) then ky(0) =0, ka(1) > 0, kj(A) < 0if A € (0,A1) and £k} (A) >0
if A € (Ay,1). Thus there is a unique Ay such that ky(Ag) = 0 with ky(A) < 0 for
A € (0,A;) and ky(A) > 0 for A € (Ay,1). Thus k'(A) < 0 for all A € (0,A,) and
K'(A) > 0 for all A € (Ay,1). Thus k(A) > 0 for all A € (0,1) since k(0) = 0, k
decreasing over (0, A;), increasing over (Aq, 1) with k(1) < 0.

When 8 > 5 then k4(1) < 0 with k4(0) = 0, kj(A) < 0 for all A € (0,1) since 8 < 2/3.
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Thus k4(A) < 0 for all A € (0,1). Combining both results yields for g € (g5, 1)
Errorp(A) < Errori(A), VA€ (0,1). (6.13)
[

Equations (6.11) and (6.12) identify that the Implicit Euler scheme outperforms the

Transformed Explicit scheme when A < Ags, and vice versa, where As is the root of
(1+ AP 42070 =g,

We now show that Az = Az() is an increasing function of § where 8 € (1/2, ;). Let
f = 1/2, then we may define A3(1/2) := 0 because for § = 1/2

(1+ Ag(ﬂ))lfﬂ + e 2s(B)A-B) — (1+ 0)1—1/2 +700-1/2) _ o
Similarly, we can define Az(/35) := 1 because
(1+ A3(55))1*5§ + e 23B0-53) — o

by definition of 5. The following lemma shows that § — Agz(f) is an increasing

function.

Lemma 22. Let 8 = B3 be the unique number in (0,1) such that 2'=% + e~ 0= =2
and A = Az obeys
2=(1+A)F 420,

then B +— As(f) is increasing.

Proof. Define
(A B) = (1+ A)l_ﬁ + e 20=8) _ 9

Then (A, 8) — ¢(A,B) is in C? in both A and 8 for 8 € (1/2,5;) and A € (0,1).
By the Implicit Function Theorem  — Az(3) is C?. Since c¢(A3(8),8) = 0 and
c(A,B) # 0 for A # As(B) hence

d 0 0
757 8a(8),8) = Re(B(B), B) - 85(8) + F7e(Ba(B), B) = 0.
If e(A3(8), ) > 0 and Ze(Ag(8), 8) < 0 then Ay() = 242 > 0. Now
& (1= B) (1 +2)F e 20) — F(a)
ON - '

From Theorem 37 part (ii), for 8 € (1/2, 83), ¥'(A) > 0 for A € (Ay,1). But As(B) €
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(Az,1), so 2£(As(B), ) > 0. Writing ¢(A, B) = (1 + A)Fleel+8) 4 e=8e52 — 2 then

g—; = —(14+A)log(1 + A)e Ploel+a) 1 oA A\FA
= —log(1+A)1+A) P+ Ae 2078 = Ly (A).
Lemma 23 shows that k5(A) > 0 and hence %Ag(ﬁ) > 0, as claimed. O

Lemma 23. Suppose 5 € (0.5,0.6) and define v :=1— f and
ks(A) =log (1+A)(1+A) —Ae ™, A€ (0,1).

Then ks(A) > 0 for all A € (0,1).

Proof. ks(A) > 0 is equivalent to

A

((1 + A) eA)’Y > m,

and this is in turn equivalent to

2 (log (14 A) + A) > log (m) ~ log (%) |

Thus ks(A) > 0 for all A € (0,1) is equivalent to kg(A) > 0 for all A € (0,1) where

log (1 +A)> .

ke(A) := v (log (1 4+ A) + A) + log ( A

We see that lima o+ kg(A) = 0. Also, as v > 1/4,

i = () (8) (e ) -
~ i(”ﬁ)“L(liA) (log(11+A))_

If k7(A) > 0 for all A € (0,1), then kg(A) > 0 for all A € (0,1) and the result holds.
Thus k7(A) > 0 is equivalent to

E(Hﬁ) _%>_(1iA) (10g(11+A))’

which in turn is equivalent to

> = Bl

= ]{77(A)

1 >1+A 2+A 1
log (1+ A) A 4 A
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The right-hand side is positive for A € (0,1). Thus k7(A) > 0 is equivalent to

1 1 A\!
—_4+-_= log (1 +A) .
(A—I-2 4) > log (14 A)

Define
1 1 A

-1
ks(A) = (Z+§ - Z) —log(1+A).

Notice that k7(A) for all A € (0,1) if ks(A) > 0 for all A € (0,1). Clearly ks(A) — 0

as A — 07, If k{(A) > 0 for all A € (0,1) then kg(A) > 0 and k7(A) > 0 for all

A € (0,1). Hence kg(A) > 0 for all A € (0,1) and so kg(A) > 0 for all A € (0,1).

This shows ks(A) > 0 for all A € (0,1). Define

for all A € (0,1). Then

E(A) = l+l_é _2 Loy ~ AZ(BA+8—A?)
E AT \ BT T IEA T e A@)

Clearly 8A+8—A? > 0 for all A € (0,1), so kg(A) > 0 for all A € (0,1). As indicated
above, this shows that k5;(A) > 0 for all A € (0,1), as required. O
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Chapter 7

Modified Implicit and Multi-Step
Methods

7.1 Introduction

Our analysis to date has considered three one-step numerical methods, all of which
use state-dependent adaptive time-stepping. We have discussed in some detail the
relative advantages of each, but we make a brief synopsis once again in order to motivate
the study of some further schemes which we conduct in this chapter.

The most elementary scheme is the Explicit Euler, with an explicit time-step (i.e.
a time-step which depends explicitly on the current state). This has the advantage of
being simple to implement but has problems for values of the control parameter A > 1,
in that positivity and asymptotic behaviour of the computed solution gives spurious
results. Nevertheless for small A, the performance is not significantly inferior to more
sophisticated schemes.

We have also considered an Implicit one-step method. It has the advantage of
recovering all important qualitative features of the solution and correct asymptotic
behaviour without restriction on the control parameter. However, it has two drawbacks.
First, like implicit methods in general, it is usually necessary to perform non-linear
solving at each time-step in order to proceed. Given that the time-steps must be
taken smaller and smaller as the computed solution tends to the equilibrium, this is
computationally expensive. Second, the time-step is determined “implicitly”, in the
sense that the scheme must know the level to which it will move at the next step in
order to determine the length of the time-step (in contrast to the Explicit scheme).
Whilst this does not present a particular computational problem, as the non-linear
solving is still feasible, it is philosophically concerning that we are in effect choosing at
the same moment how far we should jump and to where we should jump. In addition,
such a method would be questionable in a stochastic setting, because the time-step

would depend on the future value of the solution, thereby creating difficulties with the
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adaptedness in the process.

Our third method is a Transformed Explicit scheme which operates in a new co-
ordinate system; then the computed solution of an auxiliary ODE in the new co-
ordinate system is pulled back to the original system. In this scheme the time-stepping
is again adaptive and explicit. Despite the explicit character of the scheme, the stability,
positivity, monotonicity and recovery of finite-stability (or its absence) is achieved
unconditionally for all values of the control parameter A > 0. This method shares
this advantage with the Implicit scheme but being explicit does not require non-linear
solving and can be implemented almost as easily as the conventional Explicit scheme.
Furthermore, quantitative measures of the asymptotic behaviour are recovered and the
scheme is competitive with the Implicit scheme. Indeed, in the case that the solution
of the ODE converges super-exponentially and does not hit zero in finite-time, the
asymptotic decay rate is recovered exactly. Finally, the explicitness of the method
and automatic and certain preservation of positivity make it an attractive choice for
simulating SDEs and will show in the second half of this thesis that the performance
of this scheme is remarkably reliable for SDEs. Indeed all the desirable properties
enumerated above for ODEs are still true then the method is applied to SDEs.

In this chapter, we ask whether we can consider variants of these three methods
with a view to establishing better performance. One potential place we could improve
matters is to devise an implicit scheme in which the time-step was chosen explicitly.
The details of such a scheme are presented here. Very roughly speaking, we show that
its performance is comparable to the “double” Implicit scheme for equations with reg-
ularly varying non-linearity, since its recovery of qualitative and quantitative features
are unconditional on the control parameter. However, in the case when we assume
only monotonicity hypotheses on the non-linearity, our results are inconclusive and
suggest restrictions on the control parameter may be necessary. This contrasts with
the situation for the fully double Implicit scheme, where our theoretical results show
there is no such potential restriction. Furthermore, the scheme does not significantly
out-perform the Transformed scheme, which has the advantage of avoiding non-linear
solving.

We also consider whether linear multi-step methods with adaptive time-stepping
might give improved performance, but the results for the two-step schemes we have
considered do not point to any significant improvement. Indeed, if anything the inclu-
sion of “out dated” information about the solution in a situation in which the gradient
of the solution can change relatively quickly (due to fast or finite-time convergence)
tends to make these schemes less attractive. In particular, for the Implicit method,
the two-step scheme introduces conditions on the control parameter which were not
present in the single-step Implicit scheme. Nevertheless, we will consider another multi-
step in Chapter 8 (namely Collocation methods) and find that the midpoint method

with adaptive time-stepping appears to give improved performance, as it estimates the
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simulated generalised Liapunov exponent to O(A?) as A — 0.

7.2 Implicit Euler Scheme with Explicit Adaptive
Step Size

In this section we investigate the performance of an Implicit Euler scheme but with
an explicit time step. We approximate z(t,) by z,, where x(t,) is the solution = of
(1.1) at time ¢,. The sequences (z,,), (t,) and (h(z,)) are defined by

Tnt+1 = Tp — h@n)f(InH)a n>0, xzg=§>0, (7-1)

where (t,,) is defined by (1.42) viz.,
tn+1 == Z h(ﬂ?j), n 2 0, to =0.
=0

and

x>0, (7.2)

with A : [0,00) + [0,00) continuous and A(z) — A € [0,00) as x — 0. This is
equivalent to (3.17) where we have chosen to impose properties on A rather than on h
directly. Note h obeys (3.2) as a result.

We will see that when only monotonicity assumptions are imposed on f we will
restrict A € [0, 1) while no such restrictions will be required when f is assumed to be

regularly varying.

7.2.1 Asymptotic Behaviour with Monotone Assumptions on

the Non-Linearity

We suppose that f obeys (3.1) and impose the following monotonicity assumptions on

f:

f is an increasing function; (7.3

x +— x/f(x) is an increasing function. (7.4)

The following results guarantee the existence, positivity and convergence of the solu-
tions of (7.1).

Lemma 24. Suppose f obeys (3.1) and h obeys (3.2). If x > 0, the equation

y+h@)f(y) ==, (7.5)
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has at least one solution in (0,z) and no solutions in [x,00). If y(x) is a solution
of (1.5), y(x) — 0 as x — 07 and there is a unique solution y(x) for each x if [ is

INCreasing.

Proof. Define for each x > 0

K(y) =y+hz)f(y) —z y € [r,00).

Then K(0) = —z < 0 and K(z) = h(z)f(x) > 0. Since K : [0,00) — R is continuous,
K(y) = 0 has at least one solution in (0, x). For y > x

Ky)=y+h(@)fly) —z>y—x>0,

and K (z) > 0. Thus K(y) > 0 for all y > z, and (7.5) has no solutions in [z, 00). Since
any solution y(x) of (7.5) obeys 0 < y(z) < z, it follows that y(x) — 0 as x — 0.
Moreover if f is increasing there is a unique y(z) € (0,z) such that K(y(z)) = 0 due
to the monotonicity of K. O

Remark 28. If f is increasing and continuous the ODE (1.1) has a unique solution and

this property is preserved by the numerical scheme. O

Proposition 13. Suppose f obeys (3.1) and h obeys (3.2). There exists at least one
positive sequence (,,) which obeys (7.1) and any such sequence is decreasing and obeys

xn, — 0 as n — oo. Moreover, if f is increasing then the solution is unique.

Proof. The existence of the sequence is implied by the root of (7.5). Since the solution
y(x) € (0,z) then z,, > 0Vn > 0 implies 0 < 2,41 < x,. Since x, is decreasing, we

have x,, — L € [0,00) as n — oo. Therefore if L > 0 then
L= lim z,. = lim {x, — h(x,) f(zp1)} = L — h(L)f(L),
n—oo n—oo

by (3.1), (3.2) and h(L)f(L) = 0 which is impossible by (3.1) and (3.2). Hence x,, — 0

as n — 0o. The uniqueness under f being monotone follows from Lemma 24. O]
Since (z,,) is positive and decreasing and f obeys (7.3) then z,,1 < u < x, implies

f(zns1) < f(u) < f(zy,). Thus

1 1 1

By (7.1), integrating over [z,.1, z,] yields

Ty — Tpt1 " < Tn = Tnt1 h(zy). (7.6)

1
f(wn) - Tt m du < f(xn-&-l)
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Similarly since f obeys (7.4) then

Lnt1 . 1 < 1 < Ln . 1
)
u

f(@ni1) uw o f(u) f(xn)

and integrating over [x,.1, z,| yields

Tnt1 Tn o 1 Tn T,
log( )S ——du < log( )
f(anrl) Tnt1 Tp41 <U) f(xn) Tn1

Taking the lower inequality from above and the upper inequality from (7.6) yields

Intl _jog ( ) < /;:l ﬁ du < h(w,). (7.7)

f(ajnJrl)
Lemma 25. Suppose (x,,) is a positive decreasing sequence and the solution of (7.1).
If f obeys (3.1), (3.32), (7.3) and (7.4) while h obeys (3.2) and (7.2) with A € [0,1)
then (7.7) holds and implies for all n sufficiently large

a (%) h(zy) < /+ ﬁ du < h(z), (7.8)

where a(x) :=logz/(x — 1), v > 1.

Tn
Tn+41

Proof. The lower estimate of (7.7) implies

O | Tpil T B log (1//\n) B
Tn1 W = f(@ni1) s (%H) 11 h(@n) = a(1/An) h(@n),
where \, := z,41/2,. If f obeys (7.3) then f(x,.1) < f(z,) and
_ f(mn—l-l)
1 - )‘n - A({En> f($n> < A(xn)a

and thus A\, > 1 — A(z,). Since A(z,) - A € [0,1) as n — oo and a is decreasing we

have that
Iy (L
“\N) T \T Ay )
Thus . . )
a| —— ) h(z,) < / ——du < h(x,),
(=amy) e < [ gigannion
as claimed. O

The restriction that A < 1 is surprising in the light of the unconditional positivity
and monotonicity on A in Proposition 13 and in view of the unconditional recovery
of finite-time stability and global positivity in the Implicit scheme with an implicit

step-size. This result is also unexpected in light of analysis later in this chapter, which
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states in the case when f is regularly varying, that the finite-time stability, global

positivity and asymptotic behaviour are recovered without restrictions on A.

Theorem 38. Suppose f obeys (3.1), (3.32), (7.3) and (7.4) while h obeys (3.2) and
(7.2) with A € [0,1). Let (t,) and T}, be defined (1.42) and (3.16).

(i) If f obeys (1.7), then T}, < co.

(i) If f obeys (1.9), then T), = cc.
Proof. By (1.7), f01+ 1/f(u) du < oo then Ty < oo from (3.12). The Comparison Test
applied to (7.8) shows the summability of (f?+1 1/ f(u) du) implies that of (a <#(mn)) h(xy)).

T

Thus (h(z,)) is summable since

e (r=a) = (2a) = e ()

when A > 0 and when A = 0 the limit is unity. Thus ¢, = Z;:& h(zx;) for n > 1 obeys

bty — Tj, := > o hzj) < 00 asn — oo.

By (1.9), f01+ 1/f(u) du = oo then T¢ = oo from (3.11). The Comparison Test applied to
(7.8) shows that (h(z,)) is not summable and thus (h(z,)) obeys t,, = Z?:_Ol h(z;) — oo
as n — 0o. Therefore t,, — 0o as n — oo. O
Theorem 39. Suppose f obeys (3.1), (3.32), (7.3) and (7.4) while h obeys (3.2) and
(7.2) where A(z) = A €[0,1) as z — 0T. Let F, F, (t,) and T}, be defined by (1.11),

(1.10), (1.42) and (3.16).
(a) Suppose f obeys (1.7).

(i) If A =0, then x, >0 for alln >0, (x,) is decreasing, r, — 0 as n — oo,
tn—>Th<oo as n — oo and
F(z,)

1 < liminf —

n—oo Ty — ¢, n—oo 1} —t,

F(xy,
< limsupA(—x) <1.

(i) If A € (0,1), then x, > 0 for all n > 0, (x,,) is decreasing, x, — 0 as

n — oo, t, = 1T, < oo asn — oo and

Th _tn

(1-4) log(1 1A> < liminf F(%) glimsupM <1.

A n—oo Tp —t, n—00

(b) Suppose f obeys (1.9).

(i) If A =0, then x,, > 0 for alln > 0, (z,) is decreasing, x, — 0 as n — oo,

t, — 00 asn — oo and

F(xy, F(xy,
(x)glimsup (:c)

n n—oo tn

1 < lim inf

n—o0

<1
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(i) If A € (0,1), then xz, > 0 for alln > 0, (x,) is decreasing, x, — 0 as

n — oo, t, — 0o asn — oo and

(1-4) log (ﬁ) < lim inf F(an) < lim sup Flan) <1

A n—00 n n—oo tn

Proof. The positivity, monotonicity and convergence of (z,) have been addressed in
Lemma 24 and Proposition 13. Since f obeys (1.7) then f01+ 1/f(u)du < oo and
ty — Tj == > 2o h(z;) < oo by Theorem 38. Hence Ty — t, = > ey (@) = 0 as
n — oo. By the second inequality of (7.8)

F(z,) Z du<2hx] Tj, — t.
x]+1f

Therefore, dividing by T, —t, and letting n — oo yields

F(z,
lim sup — (zn) <1

n—00 Th — 1ty

By the first inequality of (7.8) for n all sufficiently large

o

Z B f u> ;a <%) h(z2).

=n

Therefore dividing by Ty — t, and letting n — oo yields

7 S nal =) h(z,) _
liminfM > liminf ’ (Oi 2 ”)> = (1-4) log ( ! ) ,

by Toeplitz’s Lemma with the limit being unity when A(z,) - A = 0 as n — oo.
Combining both inequalities yields part (i)

1—-A 1 F F(z,
( ) log ( ) < liminf — () < limsup — (zn) <1,
A 1-A n—0o0 Th — 1y n—00 Th —tn

with the limit on the left-hand side being unity in the case when A = 0. Since f obeys
(1.9) then f01+ 1/f(u) du = oo and t, — oo by Theorem 38. By the second ineqaulity
of (7.8), forn >1

F(z,) — F(xo) Z/x+1f—du§2h(xn):tn.
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Therefore, dividing by t¢,, and letting n — oo yields

F
lim sup (zn)

n—0o0 tn

<1 (7.9)

By the first inequality of (7.8), for n > 1

Fla,) — Flzo) Z B fL w > ;a (ﬁ(%)) h(z). (7.10)

Therefore, dividing by t¢,, and letting n — oo yields

M > liminf — =
tn n—00 ijo h(q;n> A

lim inf
n—00

S e () M) _1-a) (1)
1-A)°

by Toeplitz’s Lemma with the limit being unity when A(x,) — A = 0 as n — oo.
Combining both inequalities yields part (ii)

1-A 1 F(x, F(x,
( A )log(ﬂ)gli}gg}f (f>§lizrisolip E;Z)gl,

with the limit on the left-hand side being unity in the case when A = 0, as claimed. [J

Remark 29. An alternative lower bound in Theorem 39 is

f(mn-i-l)
f(zn)

Tn
1 S Ty, — Tt

o T T )

This leads to

h(x,) > h(zn)An > h(x,) (1 — A(zy)).

F(z,
lminf 2 51 A
n—00 Th_tn

in case (i) and to

lim inf
n—oo

in case (ii). O

7.2.2 Asymptotic Behaviour with Regularly Varying Non-Linearity

In this section we investigate the performance of an Implicit Euler scheme with an
Explicit time step by imposing assumptions of regular variation on f. We approximate
x(t,) by x,, where x(t,) is the solution z of (1.1) at time t,. The sequences (z,), (¢,)
and (h(z,)) are defined as before by

Tp+1 = T — h(mn)f(xn+l)7 n 2 07 o = f > 07
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where .
tn+1 = Z h($j>, n Z 0, to = 0,
=0
and Alz)
T)x
h(x) = , x>0,
=)

with A : [0,00) — (0,00) continuous and A(x) — A € (0,00) as  — 0. For brevity
we have omitted the case when A = 0 because this has been dealt with satisfactorily

in Theorem 39 using only monotonicity assumptions on f. Therefore, we have

AN
Tpt+1 = T — #f(xrﬂrl)v

so defining \,, := 2,41 /2, then A, obeys for n > 0

f(Ann)

We start by determining the asymptotic behaviour when g > 0 leaving the case when
£ = 0 until later.

A =1—A(z,)

Lemma 26. Let (z,) be a positive decreasing solution of (7.1). Suppose f obeys (3.1),
(3.32), (7.3) and f € RVy(B), B € (0,1] while h obeys (3.2) and (7.2) then

lim "L = ), (A),

n—oo I,

where A\, (A) is the unique solution of p(\) = 0 where ¢(N\) := XA+ AN — 1. Moreover,
M(A) =1 asA— 0" and 1 — A\ (A) ~A as A = 07.

Proof. Note that

f(Anz

—1— Alx RN DRIV INRY: B_ AN
M= 1= M) 1— Alz) ( o N An) + AN — AN
= 1 AN (A= Az) N — Ala,) <—f§c?;x;) - Ag)

= 1-AN +e,

where

en = (A — A(z2)) N — Azy) (fj(c?;‘:;) . Ag) .

Since (x,) is positive and decreasing then 0 < z,41 < x, s0 0 < A\, = Tpy1/z, < 1.
Thus, for all n > Ni(€), 0 < A\, < 1. Hence for n > Ny(e)

f(Azn) _\B
f(xn) A ‘

f(Anzn)

_\8
f(xn) A

< sup

0<A<L1
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Since z,, — 0 as n — 00, by the uniform convergence theorem for RV;(5) functions,
the fact that A(z,) — A as n — oo and that A, € (0,1)Vn > N;(€), we have ¢, — 0
as n — oo. Therefore, Ve € (0, min(A, 1)) there is Na(A, €) > 0 such that n > No(A,¢)
implies |e,| < €. Hence for n > max(N;(e), N2(A, €))

1AM —e< )\, <1—-AN +e

Define ¢, (A) := A+ AN — (1 —¢). Then ¢,.(0) = —(1 —¢) < 0 and ¢, (1) =
l1—-(1—e+A=ec+A >0 Also ¢, (A)=1+ABN"">1>0. Thus by the
Intermediate Value Theorem ¢, has a unique zero A, (¢) € (0,1). Notice that

di(An) = MFAN —(1—e)=1-AN +e, + AN — (1 —€) = ¢, + ¢ >0,

and so \, > A, (¢). Similarly defining ¢_(\) := A — (1 +¢) + AN’. Then ¢_(0) =
—(14+€) <0,¢_(1) =A—¢e>0with ¢ (\) =1+ BAN"1 >1> 0. Thus by the
Intermediate Value Theorem ¢_ has a unique zero A_(¢) € (0,1). Notice that

d-A) = M+ AN —(1+a)=1-AN 4+, + AN —(1+e)=¢,—€<0,
and so A, < A_(€). Hence for n > max(Ny(€), Na(A,€))
Ai(€) < A < A_(e).

Clearly, A\1(€) = A, € (0,1) as € = 07 where A\, = A\.(A) is the unique zero in (0,1)
of ¢(A\) = 0 where ¢(\) := XA + AN’ — 1. Hence by The Squeeze Theorem A, — A, as

n — 00. Therefore

lim 2L =\ (A).

n—oo ;L’n

Since A\(A) + AN(A) — 1 = 0, we see that A\, (A) — 1 as A — 0*. Moreover,
1= M(A)~Aas A— 0t O

Theorem 40. Suppose f obeys (3.1), (3.32), (7.3) and f € RV,(B), 5 € (0,1] while
h obeys (3.2) and (7.2) where A(x) — A >0 as z — 0. Let F, F, (t,) and T, be
defined by (1.11), (1.10), (1.42), (3.16) and A\.(A) be given by

A(A) =1 —AN(A).

(i) If f obeys (1.7), then x,, > 0 for alln > 0, (x,) is decreasing, x, — 0 asn — oo,
tn—>Th<oo asn — oo and
F(x, 1t
lim (%) :—/ A8 A,
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(11) If f obeys (1.9), then x,, > 0 for alln > 0, (x,) is decreasing, x, — 0 asn — oo,
tn—>Th<oo as n — oo and

1
hmM:l AfldA:M.
n—0o0 tTL A )\*(A) A
Proof. Note
xn ——du = / S
Z/ﬂ%ﬂ f(u ]Z:; Tjt1/T; f(z;v)

o A(zz; 1 f(ay) y
Y50 w5 )

j+1/$]' f(fo])

0 1 fluay)
= h i) Y d

where f € RVy(—f). Note that

1 ! 1017 1 [t
lim —/ f~(’0x]) dv = — v dv,
i=00 A(x;) Tjp1/T) f(xj) A A (D)

by the uniform convergence theorem for regularly varying functions and Lemma 26. If
f obeys (1.7), then f01+ 1/f(u)du < oo hence ([ 1/f(u)du) is a convergent series.

Zjt1

Hence by Toeplitz’s Lemma

o Fln) S hlay) A [, Fwxy) Flag) dv
P S, hia)

1 G 1
— 1 / f~(vx]) dv = l/ v P dv.
70 A(z;) wje/e; [(25) A A« (D)

If f obeys (1.9), then f01+ 1/f(u) du = oo and we must have 8 = 1 and so (f;j+1 1/ f(u) du)

is a divergent series. Hence by Toeplitz’s Lemma

Fla _ Pl + S b) 1/86) [, Swn)/ ) de

lim = lim —
n—oo  {, n—00 ijO h( ])
1 ! F (v
= / M dv
i=oe Az ) Tjy1/w; f(%)
1 [t log(1 4+ A
- ?J_l d'U — Og< + ) ,
A (14+A)-1 A
as claimed. O
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Remark 30. With T), = > oo (), we have

F(x, I
lim — (2n) _ —/ AP AN =: Apr(D).

By the Mean Value Theorem for integrals

1— (D)

£ (A),
where £*(A) € (1,A\;?(A)). Since 1 — M\(A) ~ A as A — 07 and £*(A) — 1 as
A — 07 then we have that Ag;(A) — 1 as A — 0. O

We now tackle the case when f is Slowly Varying. In most instances in this thesis
the generalised Liapunov exponent changes as A changes. However, Theorems 41 and
42 show the exponent is unity for A € (0,1) while the exponent is given by the non-
constant function A — 1/A for A > 1.

Theorem 41. Suppose f obeys (3.1), (3.32), (7.3) and f € RVy(0) while h obeys (3.2)
and (7.2) where A(z) — A € (0,1) asx — 0F. Let F, (t,) and T), be defined by (1.10),
(1.42), (3.16) and A\.(A) be given by

A(A) =1 A.

If f obeys (1.7), then x, > 0 for alln > 0, (x,) is decreasing, x, — 0 as n — oo,

tn—>Th<ooasn—>oocmd ~
F(z,
lim L&)
n%ooTh_tn

Proof. Since f is increasing then f(x,.1) < f(z,) and

f(xn+1>

< A(zy),

and

Thus A\, > 1 — A(z,). Hence liminf, ;oo\, > 1 —A > 0 for A € (0,1). By using
the calculation of Lemma 26 we have \, =1 — A +¢, and ¢, — 0 as n — oo by the

uniform convergence theorem for RV;(0) functions. Hence

lim A\, =1—A =: \(A).

n—oo

Applying a similar argument as in Theorem 40 part (i) then

F 1 /!
lim (@) :—/ A0dN =1,
n—>ooTh_tn A 1—A
182




Implicit Euler Scheme with Explicit Adaptive Step Size

as required. N

Theorem 42. Suppose f obeys (3.1), (3.32), (7.3) and f € RVy(0) while h obeys (3.2)
and (7.2) where A(z) = A > 1 asxz — 0. Let F, (t,) and T}, be defined by (1.10),
(1.42), (3.16) and A\.(A) be given by

A(A) =1-A.

If f obeys (1.7), then x,, > 0 for alln > 0, (x,) is decreasing, x, — 0 as n — oo,

tn—>Th<ooasn—>ooand -
F(z,) 1

Proof. Recall the definition of the scheme as

rnA(xy,)
Tp+1 = Tn — —f([En 1)'
f(xn) !
Suppose limsup,, . Tpr1/T, =: A > 0 then for every € € (0, ) there is a sequence

n; /oo such that x, 1/, > A — ¢ and

f(xnj+1>
f(xn]) '

xanrl = xn]‘ - znjA('mnj)

Now as A(z,) = A as n — 0o, we can go far enough in the sequence n; such that

(146 -A>Azy,) > (1—€)- A, Vj> Ji(e).

Thus
fens) | a JO=dm) (o)
AT,y 7 A Ty 7T AT
Therefore for j > Jy(e)
Lnj+1 N S(@n;+1) C(1—e- JUA = )an,))
A_eé l'n] =1 A( nj) f(xnj) 1 (1 ) A f(xn])
Hence
A—e<l—(1—¢) AM?CT:;;’”)

Since f € RV(0) we may let n; — oo to get A —e <1 — (1 —¢€)-A. Letting e — 07,
then by supposition 0 < A < 1 — A < 0, a contradiction. Hence we cannot have
A > 0. Thus A = 0. Therefore z,,+1/x, — 0 as n — oo if A > 1. For every € € (0,1)
there is a Jy(€) > 0 such that for j > Jy(€), z;41/x; < €. Let j > Ja(e) and define
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f=1/f € RV,(0). Then f(z) — oo as x — 0T. Define for j > Jy(e)

N ! f(vxj) - 1]?(”%') v ) f(z;) v=:a1(j) + az(y
as(j) = /xw/xj T dv = / T d +/xj“/rj f(wj)d =1 a1(j) + az(j).

Next lim; o0 f(2;0)/f(x;) = 1 uniformly for all v € [¢,1] by the uniform convergence
theorem for RV;(0) functions then a;(j) — 1 — € as j — oo and letting e — 07
we arrive at liminf,; ,as(j) > 1. If z,41/2; < v < €, then x;1, < vz; < ex;, so
f(xj) < flua;) < flex;) and

f(zy) f(z;) f(z;)
flexy) = flozy) = )

Thus

. ‘ F@g) oo mm) flo) o f@)
wli) < /:Ej+1/lj f($j+1)d ( )f(%‘ﬂ)g f(@j)

Since Z,,41/x, — 0 as n — oo, then

0= lim “ =1 A fim &)
n—oo Iy, n—00 f(q:n)

Thus
i f(Zni1) 1

= — < 1.
e f@a) A

Since a1(j) — 1 — € as j — oo, limsup;_,, as(j) < €A then
limsup as(j) = limsup(a1(j) + a2(j)) <1 — e+ €A.
j—00 Jj—o0
Letting € — 07 we get lim;_,o a3(j) = 1. Therefore by Toeplitz’s Lemma as n — oo

~

_ > 1 v N asly) | In =t
e =30 iy [ e = e S~ T

Hence P )
lim — (zn) —,
n— 00 Th _ tn A
when A > 1, as claimed. n

From the previous result the exponent 1/A — 0 as A — oo. This suggests that
if A(x) — oo as x — 0 we may not recover all aspects of the asymptotic behaviour.
The next theorem shows that for any g we either fail to recover the finite hitting time

of mispecify the asymptotic behaviour at the finite hitting time.
Theorem 43. Suppose f obeys (3.1), (3.32), (7.3) and f € RVy(0) while h obeys (3.2)
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and (7.2) where A(x) = A — o0 as & — 0*. Let F, (t,,) and T}, be defined by (1.10),
(1.42), (3.16). If f obeys (1.7), then either: t, — oo asn — oo; or F(x,) = O(Th—tn)

as n — Q.

Proof. Suppose limsup,, . Tpi1/x, =3 A > 0. Since A(x) — oo as x — 07 then
A(z,) > 1/e¥n > Ni(e). Also there is a sequence n; ' oo such that x,, 41/, >
A —€eVj > Ji(e). Define Ny(e) := ny ) and Nz(e) := max(Ny(e), Nao(e)). Then for
n; > Nj(e)

T, 41 (@, 41)
A= Tn, b= Alm,) f(@n;)
Al
SO Al )f(xnj+1) J(A = e)zn,) 1
" f(fpn;) f(xnﬂ) ‘

Hence for n; > Nj(e)

A—e<1 - Fn)
Letting 7 — oo yields
Nec1 A=
€
If 3 =0, rearranging yields
A<e+1-— %

Letting € — 07, A < —o0, or A = —o0 if § = 0, a contradiction. If 8 € (0,1] then
again A < —oo by taking ¢ — 0%, a contradiction. Hence A = 0 in this case also. In

the case t,, —>Th < 00 as n — 00, then

_ > 1 ! fvx;
Flan) = Z ) / » J}((xj)) dv,

;)

where f € RVy(—f). We show that the integral term is null. Define

LY floxy) ;
asl) = ‘/xj-!—l/xj f(xy) w

Since z;41/x; — 0 as j — oo, there is Jo(e) € N such that z;11/z; < e Vj > Jy(e).
Take j > Jy(e). Then

N A T W G (70, D
as(j) = / v // e =) + )

Then a,(j) — |, "vPdv as j — oo by the uniform convergence theorem for RV, ()

functions. Thus

Jj—00

1
lim inf a3(7) 2/ v dv.
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If 2j41/2; < v <e, then ;4 <vz; <ex;so f(xjy) < f(vr;) < f(ex;) and

fa)  fla) o f)
flexy) = flozy) = Fla)

Integrating implies

az(j) < /6 Mdv<e- /()

ey F@i) T f(wg)
e Fayw) ) ()
1 ! ;v y a1(J . x;

A(z;) /m]-+1/xj flz;) dv= A(zy) " A(xy) f(zj41)

Since ay(j) — f: v dv as j — oo and A(z;) — o0 as j — oo, the first term on the

right-hand side tends to zero as j — oo. Since 41/, — 0 as n — oo then

A
0= lim 2 =1 — lim M,
e e (@n)
or
i 2 (@ner)
Hence

1 ¢ .
lim sup ﬁ/ fN(%U) dv < e.
J x

J—roo /ey f(T5)

Letting € — 07 yields

1 r .
lim sup / f~(a:]v) dv = 0.
Jj—oo A(mﬁ xjy1/x; f(xj)
Therefore 7
lim — (7n) =0,

n—00 Th _ tn

in the case that t,, — T}, as n — oo; otherwise t,, — oo as n — oo. This exhausts the

two claimed properties. O

7.3 Multi-Step Numerical Schemes

In this section we investigate the qualitative properties of multi-step schemes. Our

examination is confined to two-step schemes for the sake of brevity.

7.3.1 Two-Step Implicit Euler Scheme

In this section we investigate the performance of a two-period Implicit Euler scheme

with an adaptive mesh. We approximate x(t,) by x,, where z(t,) is the solution z of
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(1.1) at time t,,. The sequences (x,), (t,) and (h(z,)) are defined by xy = £ > 0 and

Tp1 = Tn — {ah(@n) f(2n) + (1 — @)h(Tpi1) f(@ns1) } (7.11)

where o € R .

tn+1 = Zh<xj+1)7 n Z 07 tO = 07
j=0
and A
T

h(x) = ——, for some A > 0. 7.12
@)= F (712

Substituting this choice of h(x) into (7.11) implies
Tpr1 = (1 —aA)x, — (1 — a)Az,. .

Concentrating momentarily on explicit schemes, we have already seen that the conver-

gence to a non-trivial limit of

1 Intl ]
s /zn ) ™

guarantees the convergence of

Th, — tn
to the same non-trivial limit. However, note that
1 o I f(\z,
/ ——du ~ — Ex)d)\, as n — 00,
hxn) Jo,  f(w) A wns1fon [ (Tn)

where f = 1/f and h(z) ~ Az/f(z) as + — 0. Therefore due to the uniform

convergence theorem for regularly varying functions if =, 1 /x, — p € (0,1) as n — oo,

then .
1 Tntl 1
lim—/ —du:—/ AP
n—oo h(w,) Jp,  f(u) A,

In other words a key ingredient in the success of this approach is the existence of an

asymptotic common ratio in (0, 1) of the sequence (z,).

Theorem 44. Suppose (x,) is the solution of (7.11) with h given by (7.12). Then

1—aA
Tpt1 = (m) Ty = /\(A)xn,

and the following case distinction applies:
(i) If A =1/«a, then x,, =0¥n > 1.
(i) If A < 1/a, then A(A) € (0,1) and (x,,) is positive for all n > 0 and decreasing
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with x,, — 0 as n — oco.
(iii) If A > 1/, then either:
(a) (x,) is not defined for all n > 1.
(b) MA) <0 and (z,) oscillates in sign.

(c) M(A) > 1 and (z,,) is increasing with x, — 00 as n — 0.

(d) If a < 0, then A(A) € (0,1) is decreasing with z,, — 0 as n — oo.

Proof. If A =1/a, then 1 — aA = 0, and thus \(A) =0 with z, =0Vn > 1.

If A <1/athen1—aA >0and when A >0then 0 <1—aA <1—aA+ A. Hence
A(A) € (0,1) and (z,) is positive Vn > 0, decreasing and x,, — 0 as n — o0.

If A > 1/a, then 1 — aA < 0. If in addition 1 — @A + A = 0 then A\(A) = oo and
hence z, = coVn > 1. If 1 —aA + A > 0 then A(A) < 0 and (z,) oscillates in sign.
If1-aA<0and1—aA+ A <0 then

1 —aA al —1
AA) T 1l—aA+A aA-1-A

> 1,

and thus (z,,) is increasing.

In the case when a > 0 and A < 1/« we have that A(A) € (0,1) and hence (x,)
is a positive decreasing sequence with x, — 0 as n — oo. This deals with part (ii).
Similarly in part (iv), when o < 0 and A is unrestricted A(A) € (0, 1). O

7.3.2 Two-Step Explicit Euler Scheme

In this section we investigate the performance of a two-period Explicit Euler scheme
with an adaptive mesh. We approximate x(t,) by x,, where z(t,) is the solution z of
(1.1) at time t,,. The sequences (x,), (t,) and (h(z,)) are defined by

Tny1 = T — {ah(@n) f(2a) + (1 — @)h(zn-1) f(#n-1)}, (7.13)
where xp, z_1 > 0, a > 0 and

tn+1 = Z h({L‘j), n Z 07 t() = 0,
j=0

and

h(r) = ——, for some A > 0.
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Substituting this choice of h(z) into (7.13) implies
Ty = (1 —alA)z, — (1 — o)Az, . (7.14)

In the following theorem, which concerns the Explicit scheme, we are interested in
establishing necessary and sufficient conditions for when z,, > 0; 0 < z,11/%Tp11 —

A(A) € (0,1). The reason for this is that we know when h(z) = Az/f(z) and [ €
RVy(B) that we obtain the following case distinctions: when f01+ 1/f(u) du = oo then

1
lim M — l/ AP d,

and when f01+ 1/f(u) du < oo then

n 1
i F@n) 1 / AP
n—o00 Th _ tn A A(A)

As we mentioned a moment ago, these remarks are also valid for the Explicit scheme
studied in Theorem 44. We may use the arguments of this chapter to show that under
monotonicity or regular variation hypotheses on f that global positivity, finite-time

stability and asymptotic behaviour is faithfully recovered.

Theorem 45. Suppose
M —(1—al)A+(1—a)A =0,
is the characteristic equation of (7.14) with roots Ay and \g. Assume xg, x_1 > 0.

(a) Suppose a < 1 and define

2—a—2v1—« 2—a+2v1—a
= 5 and Ay = :

o o?

A_

(1) Let A < A_ < 1.
(1) If xg > Aoz _1, then Ay, Ay € (0,1), x,, >0Vn >0 and

lim 2 — max(Ag, A2) € (0,1).

n—oo ‘TTL

(2) If xog < Aox_1, then (z,) is ultimately negative.
(3) If o = Aox_1, then x, > 0¥n >0 and

. Tpta
lim == = \,.

n—o00 I,

(11) Let A > A_. Then A\, Ay € C and (z,,) is oscillatory.
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(117) Let A > Ay. Then A, Ao < 0 and (z,) ultimately alternates in sign.

(b) Suppose o > 1.

(1) Let A <1/a<1. Then \a <0< A\ <1, 2, >0Vn>0 and

. Tn+1
lim

=\ <1

n—oo I,
(ii) Let A > 1/a.

(1) If xg # Mx_1, then

lim 2% — )\, < 0.

n—o0 xn

(2) If o = \yx_q, then x, > 0¥n >0 and

lim 2L =\ € (0,1).

n—oo l’n

Proof. Consider first the case when o < 1 and define the discriminant of the charac-

teristic equation as
S5(A) = (1—aA)? —4(1 —a)A = (1 +al)? —4A = o®A% + (20 — 4)A + 1.

The solutions of §(A) = 0 are

A C —2a—4)+\/(2a—4)2—40? 2-a+2/1-a
ot 202 B a? '

We prove part (i) first. If & < 1, then A_, A € R. Note that §(0) = 1, 6(A) > 0 when
A<A_,§A)<0when A e (A_,A,)and §(A) > 0 when A > A, . Furthermore,

§5(1) =a*+2a—3=(a—1)(a+3).

Thus 6(1) < 0 when o < 1. Therefore 0 < A_ < 1 < A;. The roots of the
characteristic equation (7.14) obey My = (1 — @)A and A\ + Ay = 1 — aA.

If o« <1and A < A_ < 1 then A\, Ay € R. Furthermore My = (1 — a)A > 0
and since oA < 1 then A\; + \y = 1 — aA > 0. Hence A\; > 0 and \y > 0 and since
A+ A =1—aA < 1then A\, A2 € (0,1) proving part (a)(i)(1). If < 1 and
A < A_ < 11it can be shown that the zeros of the characteristic equation A;, Ay obey
0 < A3 < A1 < 1. Therefore z,, can be represented by

Tp = C1A] + 2Ny, n>—1,
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where z(0) = g, ©(—1) = x_; are known. This leads to ¢; and ¢y being given by

)\127_1 — 2o
M/ —1°

_ )\1/)\2 . ($0 — )\21‘_1)

d p—
Mo — 1 and.

C1
In the case (2) where g — Agx_; < 0 then ¢; < 0 and so

lim 22 = ¢, (7.15)

so (x,) is ultimately negative in this case. In case (1) where xg — Aox_1 > 0 then
¢; > 0 and once again (7.15) holds; moreover as ¢; # 0, we have that z,1/z, — A\
as n — o0o. In the case that co > 0 it follows that x, > 0 for all n > 0. If ¢5 < 0,
define r := X\y/A; € (0,1) and a, := x,/A}, n > 0. Then a, = ¢; + cor™. Thus

ag=c1+cy=1x9>0and forn >0

+1

Upi1 — A = €+ cr™ —cp —cor”™ =cor(r —1) > 0.

Hence (a,) is an increasing sequence as ag > 0 and a,, > 0¥n > 0. Hence in this case

we again have x,, > 0, n > 0.

In case (3) where, g — Agx_1 = 0, then ¢; = 0 and z, = c\}. But Mjx_1 — xp =
Mz_p — Xz = (A — Ag)z_y > 0, so ¢g > 0. Therefore z,, > 0Vn > 0 and

Tpi1/Tn — Ay s n — 0.

To prove part (ii), let « < 1 and A_ < A < A;. Then A\, Ay € C and this generates

oscillatory solutions for (x,,).

We now prove part (iii). Let a < 1and A > A;. Then A\j, \a € R, A\jdo = (1—a)A >0
and A\ + Ay = 1 — aA. Hence either Ay > 0, Ay > 0 or A\; < 0, Ay < 0. Note that for
a<1,vV/1T—a>0>a-—1. Therefore 2 — a+2y/1—a > a so A, (a) > 1/a. Thus
A>A; >1/a,s0 aA > 1. Therefore A\ + Ay < 0 and so A\; < 0, Ay < 0.

Ifao>1and A < 1/a < 1, then MjAs = (1 —a)A < 0 and so Ay < 0 < A\ and
A+ A =1—aA € (0,1). Hence |[\| = A1 > |A2] and thus |\| = max;—; 2 |\i].

Moreover as

Cl—aA+/(1+aA)?—4A

7 )
it can be checked by hand that A\; < 1 for all A > 0. Since x_1 > 0, o > 0, a > 1,
1 —aA >0 and (z,) obeys

A1

Tpi1 = (1 —al)z, + Al — D)y y, n >0,
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it follows that x,, > 0Vn > 0. Also as A\; # Ay there exists ¢q, ¢co € R such that
Tp = Cl)\rf + CQA;L,

and moreover

o= >\1/)\2 : (350 - )\25U—1)
! A/ — 1

)\127_1 — X

d =
and ¢ N — 1

Since x, > 0Vn > 0 it cannot be the case that ¢; < 0, for this would imply that
(x,) is ultimately negative. Therefore ¢; > 0. On the other hand suppose ¢; = 0.
Then z, = coA3Vn > 0. Suppose now ¢; # 0. Since Ay < 0, (x,,) alternates in sign,
contradicting the positivity of (z,). Therefore we cannot have ¢; = 0, ¢; # 0. Next
suppose ¢ = 0; this implies x,, = 0V n > 0, again a contradiction. Therefore it is
impossible for ¢; = 0. Therefore ¢; > 0 is impossible. Therefore it follows from this

that x,/A\} — ¢; as n — oo and so

lim 2% — Jim (x"“ AL /\1> =\ € (0,1).

n—oo X n—00 )\711+1 Tn

When a > 1 and A > 1/a, Ay < 0 and Ay + Ay < 0. Thus [Aa| > [Aq], A2 < 0 and
A1 > 0. Once again we have that

Ty = CIA] + 2y
If o # 0, then x,/\} — ¢ as n — oo and as Ay < 0, (z,,) ultimately alternates in sign.
If co = 0, we have x,, = c; \}'; co = 0 occurs only when \jx_; = xy. This forces

o = )\1/)\2 . (ZL‘Q — )\QI_1> _ )\11'_1()\1 — )\2)
! M/ —1 A — A

= )\127_1.

Hence z,, = x,l)\’fﬂ, n > —1 and we have z, > 0 and x,1/x, — A\ as n — oo. It
can again be checked directly that A\; € (0,1). O

Remark 31. The case a = 1 is not considered because this is the one-step Explicit
method. O

The critical values of A for which the two-step Explicit scheme produces acceptable

qualitative behaviour are summarised below in the case when a > 0:

2—a—52\/ﬂ7 a<l,
A<Ala) =41, a=1,

1/a, a> 1.
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Lemma 27. Let a € (0,1) and A_ be the smallest root of

5(A) == a?A* +2(a — 2)A + 1,

where
2—a—2vy1—-a
A_(a) = ~ .
Then o — A_(«) is increasing and
lim A _ 1
lim A-(a) = 7.

Proof. Define k() := /1 — a = (1 — ). Then the Taylor Series of k(a) about zero

to three terms is

Q

k”(O)OzQ N k’”(fa)a?’ 2 km(fa)043

k(@) = k(0)+ K (0)a+ — :

for some &, € (0, ). Hence

2 " 3 2 " 3
2—a-2/I—a :2—a—2(L_g_%“+k@J&):a__k@J@.

2 6 4 3
Hence
I 2—a—2vV/1—a 1
i = -
a—0+ a? 4

Next we have that

a+a(l—a) 12 —a)l? — Ala
My~ @tal—a?Pa—a)? -1 A)

- s ad

Thus A’ (@) > 0 if A(a) > 0 where

Am%:a+v%éa+%ﬂ—a—& Ya e (0,1).

To prove A(a) > 0, let v = /I —a. Then /2 =1—aand a =1 —4% Also a € (0,1)
implies v € (0,1). Hence A(a) > 0 is equivalent to

,  1—19°
11— +T+4’y—4>0, Vv e (0,1),

which in turn is equivalent to the valid inequality (1 —~)(y—1)?> >0, Vv € (0,1). O

Remark 32. By a similar proof to the lemma above, it can be shown that A_(«) is

increasing over (—o0, 0). O
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Remark 33. The Adams-Bashforth method, with an adaptive step-size, is
3 1
Tn+1 = Tn — §h(xn)f($n) - ih(xn—l)f(xn—l) )
which corresponds to (7.11) with o = 3/2. The analysis above identifies 2/3 as a

critical value of A. This gives equivalent qualitative performance when o = o* ~ 0.95
where o is such that A(a*) = 2/3. O

194



Chapter 8

Finite-Time Explosions

8.1 Introduction

In this chapter we wish to explore some topics in recovering good quantitative infor-
mation on explosion asymptotics in ODEs. Our choice of topics is highly selective but is
geared towards the development of computationally efficient methods for SDEs. In ad-
dition we wish to understand whether collocation methods for deterministic equations
(such as an adaptive midpoint method) might produce superior performance.

In in this chapter we also ask whether there is value in attempting to simulate
explosive ODEs by mapping the problem on to an ODE whose solution is stable in
finite-time. Our analysis shows that while this might be achievable in principle, the
issue is that, in general, appropriate closed-form mappings are difficult to obtain in
practice. Therefore, for this reason we will simulate the explosions directly instead.

In our results on simulating finite-time stability we showed under reasonable mono-
tonicity assumptions on the non-linearity f that a step-size h(z) ~ Az/f(z) as x — 0F
is both optimal in the sense that all salient quantitative and qualitative properties of
the finite-time stability are recovered while asymptotically larger step-sizes are unre-
liable. Therefore it is reasonable to try to emulate this type of result for explosive
equations. Although our analysis is less comprehensive than in the finite-time stability
case, we identify that a step-size of O(1/f'(z)) as © — oo is effective.

We have also seen in the finite-time stability case that pre-transforming the co-
ordinate system allows us to use explicit methods whose quantitative and qualitative
behaviour is faithful to the original ODE without restrictions on the control parameter
A. This is certainly advantageous for ODEs but we believe is of even greater value
for SDEs with positive solutions due to the difficulty when using explicit methods
in preserving the positivity of simulated solutions. Therefore, as a precursor to such
stochastic analysis we wish to demonstrate the feasibility and computational efficiency

of this approach for ODEs with regularly or rapidly varying non-linearity.

To a certain degree our results in this chapter may be thought of as a feasibility
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study for different numerical methods and to this end we conclude the chapter by
studying two multi-step techniques in the presence of regular variation. In the case of
a two-step linear multi-step method with adaptive time-stepping, we show once again
that a time-step of O(x/f(z)) as  — oo produces the desired results but that errors
in the simulated generalised Liapunov exponent are generically of O(A) as A — 07,
as we have found for finite-time stability problems. However by a careful choice of the
multipliers of the step-sizes which entails knowledge of the index of regular variation,
the error can be improved to O(A?) as A — 0.

Another popular choice of multi-step method is the so called “Theta Method”.
The most commonly implemented such method is the midpoint method. In the last
section of the chapter, we show that the midpoint method when applied to regularly
varying equations, also approximates the generalised Liapunov exponent to O(A?) as
A — 07. This is interesting because the weighting is independent of the index of
regular variation. For Theta methods with 6 # 1/2 the familiar O(A) error in the

Liapunov exponent is recovered.

8.2 Notation and Preliminaries

We examine the asymptotic and qualitative behaviour of Euler discretisations of the

scalar non-linear ODE:
() = f(z(t), t>0, z(0)=£&>0. (8.1)

We suppose that f has the following properties:

f(z) > 0 for all x > 0; (8.2)
f € C([0,00);R); and (8.3)
f is locally Lipschitz continuous on [0, c0). (8.4)

Sometimes we strengthen (8.3) to (8.4) in order to guarantee a unique solution. In
previous chapters we considered the stable differential equation x'(t) = — f(z(t)). We
have removed the minus sign in this chapter so as to continue working with a positive
f.

It is possible to characterise whether: z explodes in finite-time at time 7¢; or x
approaches infinity as ¢ — oo. Under condition (8.4) on f the Initial Value Problem
(8.1) has a unique continuous solution on a maximal interval of existence [0,T¢). On

this interval of existence, x is positive and increasing. In the case that

<1
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it follows that T; < oco. A formula for 7¢ is given by

>~ 1
ng/5 Wdu, (8.6)

and limt_>Tg x(t) = oo. In the case that

<1

it follows that T = oo and that lim; ., x(t) = oo.

We introduce some auxiliary functions to determine the asymptotic behaviour of x.
In the case that f obeys (8.5), the function F' given by

/ — du x>0, (8.8)

is well-defined. In the case that f obeys (8.7), the function F' given by

|
(L‘):/l mdu, x>0, (8.9)

is well-defined.
In the case when f obeys (8.7) we have that F'(z(t)) = F(§) + t implies

hmwzl

t—00 t ’

(8.10)

while in the case when f obeys (8.5) we have that F'(x(t)) = T — t,t € [0,T¢) which
implies -
F

L Fla(t)

T, Te—1

=1. (8.11)

Our goal in this chapter is to recover discrete analogues of (8.10) and (8.11) at minimal

computational cost.

8.3 Exploding in Finite-Time with Monotonicity

We make the following observations which will be of use in several of our proofs.

Suppose (z,,) is an increasing positive sequence such that z, — oo as n — co. Suppose
[75 1/ f(u) du = oo. If F is defined by (8.9) then F(z) — oo as ¢ — 00, so F/(z,) — 00
asn — 00. Then forn >1

F(xn):/lxnﬁdu _ /1f<1 / —du F(zo +Z/%H—du
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If F(x,) — oo as n — oo then

o Tit1 1
;OL mdu:oo, (8.12)

since F(zo) is finite. Suppose [~ 1/f(u)du < oo then F(z) — L € [0,00) as z — 00,
so F(z,) — L as n — oo. Hence

g/jjﬂ ﬁ du < 0. (8.13)

If T¢ is defined by (8.6) then for n > 0

o0

o 1 Tt ]

Equations (8.12) and (8.13) show that T is finite or infinite according to whether F'(z)
is finite or infinite. If F is defined by (8.8) then F(x) — 0 as x — oo so F(z,) — 0 as
n — o0o. Then forn > 0

_ > 1 — [T

The closed-form expressions for F(x,), F'(x,) and T identify the summand in the last

identity as the key sequence in our analysis.

8.4 Explicit Euler Scheme with Adaptive Step Size

In what follows we attempt to recover the asymptotic behaviour of (8.10) and (8.11)
by adaptive time-stepping. We will assume a new monotonicity hypothesis on f namely
that f’ is increasing. This hypothesis is highly compatible with both super-exponential
growth and finite-time explosion. We also assume that f’'(x) — oo as © — oo. The case
when f'(z) converges to a finite limit, A, means that f(x) is asymptotic to Az as x — oo
and we are in the more conventional linear, or asymptotically linear, case. Guided by
finite-time stability problems, we will parameterise our step-size by a number, A. But
also in this explosive case we will introduce a second control in the form of a positive

function, ¢, which we will seek to determine carefully at a later stage. This leads to
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the following collection of hypotheses. Suppose

c(z)x Az
o) =i (Y05 7 ) .
f and f’ are increasing; (8.15)
A € C([0,00);[0,00)) and A(z) = A € (0,00) as x — o0; (8.16)
f(z) > 0 for all z > 0; and (8.17)
c € C([0,00);[0,00)), ¢(x) > 0 for all x > 0. (8.18)

We approximate x(t,) by x,, where z(t,) is the solution z of (8.1) at time t,. The
sequences (z,), (t,) and (h(z,)) are defined by

Tptl = Tp + h(l‘n>f($n), n > 07 Ty = f > 07 (819)

where .
tn+1 = Z h(.ﬁU]), n > 07 lo = 07 (820)

=0

and h is given by (8.14). Notice that A > 0 and is continuous. By (8.19) and the
positivity of f and h then z,, > 0 for all n > 0. Moreover, (x,,) is increasing. Therefore,

(t,) is an increasing sequence and thus
lim ¢, = T}, = Z; h(z;). (8.21)
j:

As we have often done we deduce a careful integral estimate which enables us to recover

the asymptotic behaviour of our explosive or non-explosive equations.

Lemma 28. Suppose (x,,) is the solution of (8.19). Suppose also f obeys (8.15) and
(8.17), A obeys (8.16) while h obeys (8.14) where ¢ obeys (8.18). Then

1 1 z+h(z)f(z) 1

Proof. 1f f"is increasing, then either f'(z) — L € (—o0,00) as & — 0o or f'(z) — oo
as x — oo. We cannot have L < 0 as this would force f to be ultimately negative. If
L =0, then f'(x) < 0 for all x € R and this contradicts that f is increasing. Hence
we have either L € (0,00) or L = co. For z > 0, and = < u < x + h(z)f(z), then

f(2) < f(u) < f(a+ h(z) f(x)). Thus

ot h@)f@) = >l fw ™=t
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Next by the Mean Value Theorem, for every x > 0 there is 6, € (0,1) so that

f@+h(z)f(x) = f(z) + [(z + 0:h(x) f(x)) - h(x) f ().

Hence
P 1 ot b)) - hio)
Since f’ is increasing and = + 6,h(z) f(z) <  + h(x)f(x) then
et ) < 1k o+ b)) - hio)

By (8.14), h(x) < c(x)x/f(x), so h(x)f(x) < c¢(x)xr and again by the monotonicity of
/" and (8.14)

f(x + h(z)f(x))
()

Hence for > 0 we have (8.22). O

<1+ flle+c(x)z) h(z) <1+ A(z).

Theorem 46. Suppose f obeys (8.15) and (8.17), A obeys (8.16) while h obeys (8.14)
where ¢ obeys (8.18). Let (t,) and Ty, be defined (8.20) and (8.21).

(i) If f obeys (8.5), then T}, < co.
(ii) If f obeys (8.7), then T), = oo
Proof. By (8.5), [°1/f(u)du < oo then T; < oo from (8.13) since

i/fi /f du =T, < 0.

§=0

The Comparison Test applied to (8.22) shows the summability of ( f;:“ 1/f(u) du) im-
plies that of (h(z,)/(1+A(z,))) and hence (h(z,)) is summable since 1/(14+A(x,,)) —
1/(1+ A) € (0,1] as n — oo and we have that ¢, = Z;L:_& h(z;) for n > 1 obeys
tn — Th =Y 2 h(z;) < 00 as n — oo.

By (8.7), /7 1/f(u) du = oo then T = oo from (8.12) since

[e.e]

S g [ qgeT

j=0 X f f
The Comparison Test applied to (8.22) shows that (h(x,)) is not summable and obeys
t, = Z;.:Ol h(xzj) — oo as n — oo. Therefore, ¢, — 0o as n — oo. O

We now show that the asymptotic behaviour at the simulated explosion time is recov-

ered by our method.
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Theorem 47. Suppose f obeys (8.5), (8.15) and (8.17), A obeys (8.16) while h obeys
(8.14) where ¢ obeys (8.18). Let F', (t,) and T}, be defined by (8.8), (8.20) and (8.21).

(i) If A =0, then x,, > 0 for alln > 0, (x,) is increasing, x, — 00 as n — o0,
tn—>Th<oo asn — 0o and
F(z,)

lim — =1.
n—o0 Th — tn

(11) If A € (0,00), then x, > 0 for alln >0, (x,) is increasing, T, — 00 asn — o0,
tn—>Th<oo as n — oo and

< lim inf — < limsup — < 1.
1+ A n—00 Th_tn n—00 Th_tn

Proof. By (8.22) we have that

1 1 zn+h(zn) f(zn) 1
< —du < 1.
1+ A(z,) ~ h(zy) / f(u) ‘=

When A = 0 the implies

lim /+ LI
im ——du = 1.
n—oo W(w,) Sy,  f(u)

By (8.5), [°1/f(u)du < oo then t,, — T, = > oo h(z;) < 00 as n — oo by Theorem
46. Therefore, by Toeplitz’s Lemma

_ F(z) o LY fwydu e
lim — = lim = = lim ——= ——du = 1.
nooo Ty —t,  nmee 3, h(zg) oo h(zy) Jo, o f(u)
When A € (0,00) by (8.22), we have that
B [es) Tt ] 00
F(xy) Z/ 0] du <Y " h(z) =T, —ty
— /.. u
Jj=n J =n

Thus

F
lim sup — * <1

n—oo Th - tn

Similarly for the lower bound we get

& )
F“"):;/Ij 7 M 2T Ay
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Thus by Toeplitz’s Lemma and the fact that A(z;) = A as j — oo

)2 * h(x;) /(14 Az, 1
lim inf — () > liminf ijn (Oi)/( (z3)) = )
n—00 Th _ tn n—00 Zj:n h(iL'j) 1+ A

Combining these limits yields part (ii)

F(x, F(z,
1+A n—oo Ty — ¢, nooco 1}, —t,
as claimed. O

We now consider the corresponding asymptotic behaviour when solutions do not ex-

plode. Once again the growth rate is recovered faithfully.

Theorem 48. Suppose f obeys (8.7), (8.15) and (8.17), A obeys (8.16) while h obeys
(8.14) where ¢ obeys (8.18). Let F' and (t,) be defined by (8.9) and (8.20).

(i) If A =0, then x, > 0 for all n > 0, x, is increasing, T, — 00 as n — oo,

t, — 00 asn — oo and
lim ——=

n—oo  t,

=1.

(i) If A € (0,00), then x, > 0 for all n > 0, x, is increasing, x, — 00 as n — o0,

t, — 00 asn — oo and

F
—— < liminf () < lim sup

1+ A n—00 tn N0 t,

Proof. By (8.22), we have

1 1 Tn+h(zn) f(Tn) 1
< —du < 1.
1+ Az,) — hizn) / Flu) =

When A = 0 this implies

) 1 /x"“ 1
——du=1.
n—oo h(xy) Jy,  flu)

By (8.7), [ 1/f(u)du = oo, then ¢, = Z;:Ol h(xz;) — oo as n — oo by Theorem 46.
Therefore, by Toeplitz’s Lemma

lim = lim = lim ——du=1.

F(:En) ' (CL’O + Z fxﬂ—l /f ‘ ; /ijrl 1
nooo i, n—o0 >0 () im0 hj) Joy o f(w)
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When A € (0,00) by (8.22), we have

Thus by Toeplitz’s Lemma

. Flx,) _ . F(x0) + 3720 h(x;)
lim sup < — =
n—00 tn n—o00 Z 0 h(l'])

Similarly for the lower bound

Thus by Toeplitz’s Lemma and that A(x;) = A as j — oo

F F(x0) + 32020 hlx;)/(1+ Al 1
lim inf Flen) > liminf (o) 23_271( I ), = :
n—00 tn n—00 Zj:(] h(l’]) 1+ A
Combining the limits gives part (ii), as claimed. O

8.4.1 Appropriate Choice of ¢(z)

Up to this point we have left the function ¢ free. We now seek to choose ¢ so as to

maximise the step-size, h, thereby reducing the computational effort. Recall

c(x)x A(x) )
fl@) " [z +c(x)x) )

h(z) = min (
Since f is increasing, if we take n(x) > 0 and = — n(x) is continuous the choice of

_ n@)f(z)
=@

is consistent with (8.18). Thus h satisfies

) = min () Al)
h(z) = (f’(x)’ [z + n(x)ﬁ((?)) |

Now suppose n(x) = A(z). Then

h(z) = min (A(m) Alr) )) :

f'(x)’ Fla+ Az) ]{/((9;)

~
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Since f’ is increasing this implies

A(x) '
[z + Alz) ]{/((Z)))

h(z) = (8.23)

We want to consider two important special classes of rapidly growing functions. The
class of regularly varying functions we have already examined in depth and the class
of functions I'. We pause to introduce the second class of functions I' defined as below
(see Section 3.10 in [12]):

Definition 49. The class I' consists of those functions ¢ : R — (0, 00) non-decreasing
and right-continuous for which there exists a measurable function g : R — (0, 00),
called the auxiliary function of ¢, such that

lim M:e“, Vu e R.

T—00 ¢(gj)
We record some important facts about I'. First if ¢ is an auxiliary function of ¢ € T’

we must have that N
N Jo o(u) du
o(u)

Furthermore we must have that g(z)/z — 0 as x — oco. Moreover, if ¢ € I" then so is

g9()

as r — OoQ.

z— ¢1(z) := [ ¢(u) du and ¢, has the same auxiliary function as ¢. Therefore

o) Jy Y o) dedy
e ([T g(y) dy)”

This limit also characterises I' and is easily checked.

Finally, functions in I obey a uniform convergence theorem and in fact if u is such
that lim, o u(z) = u* € [—00, 00| and lim,_,o(x + u(z)g(z)) = oo then

¢(x +u(r)g(x) _

lim =e".

S o)

The function ¢(z) = e is in I with auxiliary function g(x) = 1. All functions in I" are
also rapidly-varying at infinity.
Armed with this definition and properties of the class I', we now see how the step-

size condition (8.23) simplifies for regularly varying functions and functions in T'.

(i) If f" € RVe(B —1). Then f € RV (f) and zf'(x)/f(z) — B as © — oo.

Therefore

f (x + A(z) ;8) ~ (1 + %)6_1 fi(x), asz— oo

Thus h(z)f'(z) - A as x — oo and h(z) ~ A/f'(x) as © — oo. This is
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known to be optimal for f € RV, (3). We see later in the chapter that having
h(z)f(z)/r — L as x — oo is optimal for explosions with regularly varying

coeflicients.

(ii) Suppose ' =: ¢ isin I'. Then ¢; = f is also in I" and we have that

@) Jy f)du o) Jy Jy o(2)dzdy

lim = lim

e @) e ([ oly) dy)”

Therefore as A(x) — A as x — oo and f’ has auxiliary function g(z) =

f(z)/f'(x), by the uniform convergence theorem for I', we have that

lim
T—00 f(x)

_ A

Hence A A
h(xz) = (z) ~ as T — 00.

f (95 + A(z) L2 ) et f'(z)’

f'(=)
We show later in this chapter that h(x)f'(z) — L as x — oo is the optimal
step-size when f € I'; a fact that is implied by f' € T

Hence, under the assumption that f’ is increasing it seems h given by (8.23) is of the
smallest order possible to recover asymptotic behaviour, at least for important classes
like f" € RVoo(B) and T'.

8.5 Step-Size for Deterministic ODE

If we apply a logarithmic pre-transformation to the solution of the ODE (8.1) before
discretising a step-size of O(1/f'(z)) as * — oo is still needed to capture the explosion
asymptotics for f in the subclass I' of rapidly varying functions. More precisely, we
suppose

f" €T and f' is increasing. (8.24)

Recall that this implies that f € I' as well and that f and f’ share (up to asymptotic

equivalence) the same auxiliary function g. The auxiliary function of f’ can be chosen

to be
f(z)

g(z) = , 8.25

(@) =5 (5.25)

and this can also be the auxiliary function for f. Since g(z)/x — 0 as x — oo, we have
I

w0 2 f ()
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Since f’ € I we have seen that z f'(z)/f(z) — oo as © — oo. Therefore for any M > 1
there is (M) > 0 such that xf'(x)/f(x) > M, Vx > x(M). Thus

(i) [ e o)

Hence f(z) > Cya™, Vo > x(M). Since M > 1 is arbitrary then [°1/f(u) du < oc.

8.5.1 Logarithmic Pre-Transformation

We study the ODE (8.1) viz.,
?(t) = f(z(t), t>0, x(0)=&>0.

Define z(t) := logx(t). Then the transformed ODE is 2/(t) =: n(z(t)) where n(z) =
f(e*)/e*. We discretise this so that z, approximates z(t,) and z,, approximates x(t,)

to get

Znt1 = Zp + B('Zn)n(zn)a n > 07 20 = 1Og§7

V4
Tpip =€ n>0, z¢=¢,

where h(x) = A(z)/f'(z) and

. = A(e
bnyr = Zh<zj) - Z f’EeZJ;’ n=0n =0
=0

J=0

and h(z) := h(e?). Thus t, = Y770 h(z;) and

h(n) f(2n)

Tn

Tyl = Ty €XP ( ) , n>0, xg=¢&>0. (8.26)

Proposition 14. There is a unique increasing positive sequence (x,) with xo =& >0

which obeys (8.26) which obeys x,, — 00 as n — 0.

Proof. The sequence exists and is unique by construction. Since h, f > 0 for all x > 0,
we have that (z,,) is a positive increasing sequence. Since (x,,) is increasing, we have

z, — L €[0,00] as n — oco. If L € (0,00) since h, f are continuous

L= nhg)lo Tnt+1 = JLIEO (xn exp (%‘f(%))) = Lexp (—h<L>Lf(L)) 7

which is impossible. Hence z,, — 0o as n — oc. O

Lemma 29. Suppose f obeys (8.24) and (8.25) while A obeys (8.16) and h(z) =
Alx)/ f' ().
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(i) If A =0, then
1 reeh@ i@/
lim —/

e h(z)

(1) If A € (0,00), then

1 z exp(h(x) f(z)/x) 1 1—e2
I du = .

Proof. Define

1 zexp(h(z)f(z)/x) 1 1 zexp(h(z)f(z)/z)—x 1
10 = 5 7 ™= et o)™
B I B L R T D (O N
- f@muol ﬂw+uﬁ@)d__A@)A ot ugl) M 820

and where

Note that (8.25) implies

lim 2@ @) (A(m)- f(x)):A-ozo.

T—00 x T—00

Since € — 1 ~ x as ¢ — 0T then

v (oxp (M9) <1) ) i)
) = @ @ o

We now prove part (i). Since f is increasing, for 0 < u < I(z) then f(z) < f(z +
ug(z)) < f(x +1(x)g(x)) and thus

f@) @)
fl+1@)g@) = T+ ug@)

Hence
l(z) - f(z) I()
@) S+ 1) = = A6
Since I(z) ~ A(z) as @ — oo,
. f(x) . .
hgggolf @t i@)g@) < hg{gloglf[(x) < hrxrisogp I(z) < 1.
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Now [(x) — 0 as © — o0, so by the uniform convergence theorem for f € T’

o 1@+ 1@)g(@)
s ()

=’ =1.

Thus 1 < liminf, ,, I(z) <limsup, . I(z) < 1. Therefore, I(x) — 1 as z — oo, or

1 zexp(h(z)f(z)/z) q
lim —/ ——du =1,

proving part (i). We now prove part (ii). As f is monotone and [(z) — A € (0,00) as

x — oo then for arbitrary € € (0, 1) and all = sufficiently large we have

A(l—e) & —) A(1+e) L :
/0 flx+ug(z / f(z 4+ ug(x)) du < /(; fz + ug(z)) du. (8.28)

Take h > 0 arbitrary and ¢ > 0 with h < ¢ then

C @) S fw) S (C)
[ Feramy @ 2 L e et T
For jh <u < (j+ 1)h, f(z + jhg(x)) < f(z +ug(z)) < f(z+ (j + 1)hg(x)). Thus
Fla)h GV f@) o flh
@+ G+ Dhgle) /jh f(z +ug(x)) < f(x+ jhg(z))
Therefore letting  — oo implies
LC/hZJ_1 e UtV < liminf /C —f(x) du < limsup /C —f(ﬁ) du <
=B T ugle) S TP S R ug() ™S
le/h]—1
Z e Ihp 4 ele/hlpy,
=0

Since h is chosen arbitrarily, we may let h — 0 to give

S du = im C—f(x) u
/Oe du—xlﬁoo/0 f(erug(x))d . (8.29)

Using (8.29) in (8.28) yields

(1—e¢) I(z) f(x)
/ e “du < liminf —————du < lim sup/
0 w=oo Joo f(x+ug(x)) z—00 f( 95‘*‘“9 ))

A(l+e)
/ e “du.
0
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Letting € — 0 yields

. ) f(ZL’) o 2 —u o A
3‘55@/0 f<x+ug<x>>d“‘/o ¢ rdu=1-et

Putting this into (8.27) yields part (ii)

lim ——

1 /xexp(h(zt)f(x)/m) 1 1— G_A
T—00 h(l‘) x

as claimed. O

Theorem 50. Suppose f obeys (8.5), (8.24) and (8.25) while A obeys (8.16) and
h(z) = A(x)/f'(z). Let F, (t,) and T}, be defined by (8.8), (8.20) and (8.21).

(i) If A =0, then x,, > 0 for alln > 0, (x,) is increasing, x, — 00 as n — o0,
tn—>Th<oo as n — oo and
F(z,)

lim — =1.
n—00 Th _ tn

(1) If A € (0,00), then x,, > 0 for alln >0, (z,,) is increasing, T, — 00 as n — 00,
tn—>Th<oo asn — 0o and
Fz,) 1—e™®

lim —
n—oo Th _ tn A

Proof. The positivity, monotonicity and divergence of (x,) have been addressed in
Proposition 14. Since f obeys (8.5) then [ 1/f(u) du < oo, then 2" [**" 1/ f(u) du
tends to a finite limit. Suppose A = 0. By Lemma 29 part (i)

1 /iUnJrl 1 1 Ty exp(h(zn) f(zn)/n) 1 ( )
——du = / ——du —1, asn —oo. (8.30
hMan) Jo,  f(u) Man) Ja, fw)

Therefore (h(z,)) is a summable sequence and so t, — 1), < oo as n — oo and
Ty — tn = > =y h(x;). Hence by Toeplitz’s Lemma and (8.30)

F(x,) S o1 f ) du 1 e g
lim —" = lim = = lim / ——du=1
noeo Ty —t, oo 30, M) oo h(tn) Ju,  f(u)

Suppose A € (0,00). By Lemma 29 part (ii)

1 /xn+1 1 1 zn exp(h(zn) f(zn)/zn) 1— e A
—_— —du:—/ ——du — ———, asn — 0.
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Hence by Toeplitz’s Lemma and (8.31)

L P X [ wde /+ R

1 = = hm o0 = lim —— —du = 7
nooe Ty —t,  moee 37 () n=00 h(@n) Jo,  f(u) A

as claimed. O

This result was anticipated by our general Theorem 47 with h(x) = A(z)/f'(z), A(x)
tending to a constant and c(x) = A(x).

8.5.2 Power Pre-Transformation

In this section we show that power transformations also recover the blow-up asymp-
totics of ODEs in which case f obeys (8.24). Suppose the ODE (8.1) viz.,

' (t) = f(z(t)), t>0, z(0)=¢&>0.

Define z(t) := z(t)?, 8 € (0,1). Then 2/(t) = n(z(t)) where n(z) := 0 (21/9)6_1 f(z19).
The transformed ODE is

Z(t) =n(z(t), t>0, 2(0)=¢&">0.
We discretise this so that z, approximates z(t,) and x, approximates x(t,) to get

Zni1 = Zn + h(z)n(zn), n>0, 2z =&,

1/0
Tn+l = Zpg1, N > O) To = 57

where h(z) = A(z)/f'(z)

no n A(Zl/O)
tn+1 = Z h(2j> = ¢ ) n Z ) tO = 07
j=0 =0 f’(Z;/e)
and h(z'/%) =: h(z). Thus t, = Z;:g h(z;) and
Bz Fe)\
xn+1:xn(1+«9-%) , n>0, xp=&>0. (8.32)

Proposition 15. There is a unique positive, increasing sequence (x,) which obeys

(8.32) and (x,) obeys x, — 00 as n — 0.

Proof. The sequence exists and is unique by construction. Since h, f > 0 for all z > 0,

we have that (z,) is a positive increasing sequence. Since (x,,) is increasing, we have
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z, — L € (0,00) as n — oo. If L is finite since h, f are continuous

1/6 1/6
L= lim 2, = lim (mn (1+9.M) ) =L(1+0-h(L)Lf(L)) |

Tn
which is impossible. Hence z,, — 0o as n — oo. O

Lemma 30. Suppose f obeys (8.24) and (8.25) while A obeys (8.16) and h(zx) =
Alz)/f'(x).

(i) If A =0, then

1 z(1+9-7h( L(2)) 1
lim —)/ ——du=1.

T—00 h(q}

(ii) If A € (0,00), then

. O e R by Lo
B ), T

Proof. Define

(146,120

1 1 I(1+0 h(z) <I))1/97I 1
= <x/ md“zw/o CED
) @

)
) O @,
~ Fh(x) fx+ug T A o

@) f@) 1 w1
f@h(@) ~ f@) fl@) A)  Al)
and where
J;(1+0~M)1/6—x
[(z) = *
g9(x)
Rote that W) f(2) f(a)
Jin MY < (30 ) = a0=0

Therefore by L’Hopital’s rule

e
Ch(x)f(z)
lim = lim

T—00 h(a:)f(:c) y—0 Y y—0+ 0

Therefore as £ — o0

MO ey f@)  A)/f(@) - @)
B B B 1577 ey B )
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From the calculation in Lemma 29 part (i)

SR N e (€ R
2 A @) / e tuga) ™=

Thus
h(z)f(z) )1/9

$(1+0~T
lim L/ L du = 1.
() J,

From the calculation in Lemma 29 part (ii)

lim L /l(z) —f(x) du = 1 /A e “du= 1-e?
0 gz 0 '

z—o00 A(x) flx 4+ ug(zx)) A A
Thus »
i 1 /$(1+9-h(z)zf(z)) / 1 Ty — 1— efA
500 (7). fw ™ T A
as required. N
Remark 34. Notice that the limit is unity as A — 07 while it is 0 if A — oo. O

Theorem 51. Suppose f obeys (8.5), (8.24) and (8.25) while A obeys (8.16) and
hz) = A(z)/f(x). Let F, (t,) and T}, be defined by (8.8), (8.20) and (8.21).

(i) If A =0, then x, > 0 for all n > 0, (z,) is increasing, xr, — 00 as n — 00,
tn—>Th<oo as n — 0o and

lim — =1
n—00 Th _ tn

(i1) If A € (0,00), then x, > 0 for alln >0, (z,,) is increasing, T, — 00 as n — 00,
tn—>Th<oo asn — oo and

n L —A
lim F(In) = 1= .
n—o00 Th _ tn A

Proof. The positivity, monotonicity and divergence of (x,) have been addressed in
Proposition 15. The rest of the proof follows the same line of argument as in Theorem

50 but with Lemma 30 playing the role of Lemma 29 in Theorem 50. O]

8.6 Multi-Step Numerical Schemes

8.6.1 Two-Step Explicit Euler Scheme

In this section we investigate the performance of a two-step Explicit Euler scheme

with an adaptive mesh. We approximate x(t,) by x,, where z(t,) is the solution z of
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(8.1) at time t,,. The sequences (x,), (t,) and (h(z,)) are defined by

Tpt1 = Tp + {O‘h(IN)f(xn) + (1 - O‘)h(xn—l)f(xn—l)} ) (8-33)

where o« > 0

toir =Y _h(z;), n>0, to=0,
=0
and where A > 0 and h(x) = Azx/f(z). Substituting this choice of h(z) into (8.33)
implies that
Ty = (1 +alA)z, + (1 — a)Az,_. (8.34)
Theorem 52. Suppose o > 0 and let

M~ (14+aA))—(1-a)A =0,

be the characteristic equation of (8.34). Then the characteristic equation has roots A1,

Ao € R and we write Ay > X\y. Assume xg > x_1 > 0.

(i) If0<a<]1,then X <0<1<X\,x,>0Vn>0 and

lim 22— A > 1.

n—oo I,

(i) If « > 1, then 0 < Ay <1<\, 2, >0Vn >0 and

lim 22— A > 1.

n—o0 fL‘n

Proof. Equation (8.34) can be written as
Tpa1 — Ty = AA(zy, — Tp1) + Ay .

If 290 > z_; then (z,) is increasing and z, — oo as n — oo. The zeros of the

characteristic equation are

(1+aA) £ /(1 +ad)?2—4(a—1)A

)\1,2 = 9 )

and its discriminant is 6(A) := (1 — aA)? +4A. Thus §(A) > 0VA > 0 with Ay,
A2 € R and Ay # Ay Also as \; # A\ there exists ¢1, co € R such that

n n
Ty = C1A] + C2 Ay,
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where

r_1 —$0/>\2 _ l’o//\z — T and g = 1’0/)\1 — T _ Tr_1 —ZL‘()/>\1

DTN 1 e -1/ Uh — 10 1e—1/A

fOo<a<lthenMh=—-(1-a)A=(a—1)A<0.Since \; +X\y=1+aA>1>0
then Ay < 0 <1< A;. Thus [A| = A > |Ao] and |A1| = max;—1 2 |\;|. Note that ¢; >0
since Ay < 0. It follows that x,,/A} — ¢ as n — oo and so

n n )\n
lim 22 — i (x+1-—1-A1>=A1>1.
T

n—oo I, n—o00 )\?Jrl n

When o > 1 then AiAy > 0 and A\{ + Ay > 0. Thus 0 < Ay <1 < A;. Note that ¢; >0
when x > 1 since 1/Ay > 1 thus zq/\y > x¢g > x_1 by supposition thus z¢g — Aez_1 > 0.

By the same argument as when o < 1 then

x
lim = =¢; >0,
n~>oo>\n !

and we have part (ii). O

We now show that this lemma enables us to recover the asymptotic behaviour of the
explosion in the case that f € RVy(8) for 5> 1 and [71/f(u) < co. We write

LS L s Ay flay) [T
Flan) /%—d“ Z/ W™ = 270, Ag l. Fy ™
Aﬂfj

j=n J

1 [Ti+1/% f(va:j)
- — = dv
() A/l flag)

WERINE

-

n

<.
Il

where f=1/f € RVy(—p). Note that

/%H f . i/h(ayﬁ)v 5
.7‘)00 A . A 1

by the uniform convergence theorem and the fact that z;11/z; = Ai(o, A) as j — oo.

Hence

3 1 A (e, A) R
F(xn)wz/ v dv- (T, —t,), asn — oo.
1

Therefore

F 1 Al(a,A)
lim L&) L / o dvo = Ma, A).
n—oo Th _ tn A 1

We notice that the asymptotic behaviour at the explosion has been perfectly captured

with a step-size h such that h(z) ~ A(z)/f'(x) as x — oo. This was anticipated by
our general Theorem 47 with ¢(z) = A(z) = A.
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Theorem 53. Define

14+ aA+/(1+aA)? —4(a—1)A

)\1(OZ,A) = 92 )

then the error in asymptotic convergence rate o — 6(cv, A) := | A, A)—1]| is minimised
at =1+ 3/2 as A — 07 and moreover §(1 + 3/2,A) = O(A?) as A — 0.

Proof. In this calculation 3 is fixed. The Taylor Series of 1/(1 + al)? — 4(a — 1)A
implies that

M, A)=1+A+ (a—1)A*+0(A?%), as A — 0.

Then
lim M = lim f11+A+(°‘_1)A2+O(A3) v v — A = a—1-— é
A—0+ A A—0+ A2 2
Hence S MaA) =1 3
P e T ‘a -1 5‘ = Ola).

Clearly C(«) is minimised when o = 1+ /2. Further Taylor Series analysis confirms
that §(1 + 3/2,A)/A? has a finite limit as A — 0F. O

8.7 Collocation Scheme

In this section we investigate the performance of a Collocation Scheme with an
Explicit time step. We approximate z(t,) by z,, where x(¢,) is the solution = of (8.1)
at time t,. The sequences (x,,), (t,) and (h(z,)) are defined by

Tpi1 = Ty + h(xn) f(0z, + (1 —0)xpir), n>0, xo=&>0, (8.35)
where 6 € [0,1]
tos1 = Zh(x]), n>0, ty=0,

7=0

and A2)
x)T
h(x , x>0,
D= )

with A : (0,00) + (0,00) continuous and A(x) = A € (0,00) as z — 07.

Lemma 31. Let f be continuous, f(x) > 0 and f € RV (5), B > 1 and define for
x>0
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Then there is a 6 > 0 such that

sup A(x) < 6(0, ),

x>0

implies there is a solution A = \g(x) > 0 of Go(\) =0 for each x > 0.

Proof. Let A\g > 0 be arbitrary. Then

flo) 1

AL F A+ 000 A0

Therefore, there is xg = x (6, Ao, ) such that for x > x5 we have

f@) 1
F(14+0X0)x) = 2(1+0X)8

Thus Mo/ (1) \
= inf 0/ \% > 0 )
% = Il A oa)e) = 201 £ Bog)?

On the other hand, as f is continuous and f(z) > 0Vz > 0

Ao f(z)

6= inf 2o\
! xel[%,a:o] f((l + 0)\0)1’)

> 0.

Clearly ¢y and ¢; depend on 0, xy and 5. Thus with § := min(dy, 1), then

5 = inf /(@)

O+ o)

Therefore, for all x > 0
_ Mof(x) > .
F((1+0X)z)

Then

@M@z%—&@ﬁg%?ﬂlz,mO—gg)

Now suppose sup,~oA(z) < . Then Go(No) > 0 for each z > 0. For each = > 0,
G.(0) = —=A(z) < 0. Since A — G,(\) is continuous by the Intermediate Value
Theorem, there is A € (0, \) such that G,(\) = 0 for each z > 0. O

Remark 35. For implementation purposes, it is clearly important to have an explicit
bound on 4. The following method will generate such a bound, but undoubtedly
this bound will not be optimal. However, since we shall generally be interested in
taking A to be small, a conservative upper bound on ¢ is not a practical limitation for
implementation; rather the problem lies in its a priori identification. Incidentally, if
we choose h(z) = Az/f(x), then A(x) = A for all x, and we merely need to choose the
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constant parameter A < ¢ in order to guarantee existence of a solution of G, (\) = 0.
Pick A\ = 1, say, and noting that 6 is given for a particular problem (typically we

would choose § = 1/2 and do so now), we get

5o g J@)

20 f(3)

We would use standard calculus and majorisation methods to estimate 9. O]

Lemma 32. If, for each = > 0, there is a solution X\ > 0 to G,()\) = 0, where

then there is an increasing sequence (x,) obeying (8.35).
Proof. Let G, be as given. Define G, by G,(\ + 1) := G,()\) and

c%@w:y—x—%%¥ﬂa—mx+@>

Then G, (\z) = G, (\). Let n = ng > 1 be arbitrary. We prove the claim by induction.
Let z,, > 0 and \,, be a solution of GM (A,,) which exists by hypothesis. Put A\, = 1+,

and r,,1 = A\,x,. Then
0= xnéxn(j\n) - xnéxn ()‘n - ]-) = xnéacn()\n) - anxn ()\nxn) = Gazn (xn—i-l)'

Hence
ANE M E

Tpgp1 = Ty + ) f((1—=0)xy, + O0xpyq). (8.36)

Therefore with n = ny we may choose A\,4+1 > 0 to be a solution of Gxn+1(5\n+1) =0
and proceeding in this manner we may construct a sequence obeying (8.36) for all n.

Moreover as A\, > 1 for all n this sequence is increasing. O

Lemma 33. Let f € RV, 8> 1. For x > 0, define

Then Go(0) < 0. If f(z)/z = 00 as x — 00, then Gu(\) = —o0 as A — oo.

(i) Let A < A*(0,5). Then for all x sufficiently large, there is at least one solution
A >0 of G.(\) =0.

(1) Let A < A*(0, ) and x be sufficiently large that there is at least one solution of
G.(\) =0. If
Az) = inf {)\ > 0:GL(N) = o} , (8.37)
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then lim, oo A(z) = A_(A) where A_(A) > 0 is the minimal positive solution of
A= A(1+ 60N

Proof. Note

f((14+6XN)x)
7@)
- a (AL

+FAQ+0N — A1 +0N

=X —A(z)

— (146N +(1+ 8>\)5)

- 1+0A
where ¢(\) :== A — A(1 + 6))?. Notice that G,(0) = —A(z) < 0. Let # > 0, A > 0 be
fixed and suppose A < A*(, ). Then ¢ has two zeros at A_(A) < A (A) by Lemma
34 whose statement and proof follow immediately after this lemma. By the regular

variation of f for all € € (0,1) there exists z1(€) > 0 such that > z;(€) implies

f((1+6N)x)
f(z)

€

—(1+68)°| < min <§, 8%) .

sup
(0,204 (A))]

Since A(z) — A as x — oo, there is z5(€) > 0 such that o > x(€) implies

_ eA € €A
|A(ZII’) - A’ < min <m, g, ?> .

Let x3(e) = max(xq(€),x2(€)). Then for A € (0,2A(A)] and = > z3(e),

G — o) = ‘(A ~A@))(1+ 6N — Az) (—f((ljf(f)m) i ex)ﬁ) ‘
< JA = A@)| (1400 + |Az)] ‘W -1 +0A)ﬁ’.
As A < 2X,(A) then
(140)0)° < (14207 (A))° < (24207 (A)) = 2°(1 + A (A)) = %,

thus

B
A = Az)] (1+ 620 < mm< 2 g%) 2 AZ<A> §

_— <
SWINE =
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Similarly

200 M | < (amin (520059 ) i (5 55)

€ € 9¢
ca(ief) L
= T5)8A S @

Hence for z > x3(€), A € (0,21 (A)]

<-4+ =< —. (8.38)

Define next

8
w0t e (@) 2 @) 56 - 5}
320 = s {d e (@) 2 (8) 0 = .

Clearly A~ (€), A7 (€) = A_(A) as e — 07 and A\;(€), \f(e) > A\ (A) ase — 0. If A €
(AZ(€),A\E(€)) or A € (A\Z(€), AL(€)), then |(N\)| < 3¢/8, while otherwise |p(N)| > 3¢/8.
Therefore for € < ¢ sufficiently small 0 < AZ(e) < AT (e) < 2A(A). Now for z > x3(e),

GOA(6) — B9 < -
Thus 3
Go(A(e) = 9(A(e) < T,
G A=(6)) < (A= (e) % _ —% % ~0
Also for = > z3(€)
GaXH(6) = BN () > =~
Thus ~ " <4 3e 3¢ 3¢
Go(AZ(€)) > 9(AZ(e)) — s-g5 g0

0 < G.(A\T(e)). Hence there is a A(z) €
On the other hand suppose there exists
where © > z3(¢). Then |p(N)| < 3¢/8 by

A
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Let > x3(¢) and define A(z) := inf {)\ >0:Ge(\) = O}. If AM(z) € (0,214 (A)], then
|o(A(2))| < 3€¢/8, 50 M) € (AZ(e), \E(€)) or A(z) € (A (€), AT (€)). But the minimality
of A(x) precludes the second possibility. Thus z > z3(¢), and A(z) € [0,2A(A)] implies
A(e) < M) < AE(¢). On the other hand, if A(z) > 2\, (A) there is a contradiction
because A(z) < AT (e) < 2A,(A) by part (i). Finally, since G,(0) = —A(z) < 0, then
Alx) > 0. Thus Ve € (0,1) sufficiently small, there is z3(¢) > 0 such that for x > z3(e),
A= (e) < M=) < ME(€). Therefore, it follows that

A~ (e) < liminf M\(z) < limsup A(z) < AT (e).

T—00 T—00

Let € — 0%, then A=(¢) — A_(A) as AT (e) = A_(A). Therefore

lim A(z) = A_(A),

r—00

as required. O

We prove the postponed result on the zeros of gz~5 now.

Lemma 34. Let

d(N) = A — A1+ 6N

B-1 -
If A6 < <%> < 1, then there are two positive solutions of ¢p(\) = 0.

Proof. Define ¢(\) := A — A(146X)?. Then ¢(0) = —A < 0 and ¢'(\) = 1 — AGB(1 +
ON)P~1 with ¢/(0) = 1 — AGS > 0. Note that ¢'(\,) = 0 where

1 1\ V6D

if AB9 < 1. This is a local maximum of ¢ since for all A > 0, ¢(\) = —A0?3(3 —
1)(1+ 6X)~2 < 0. Note that

o 1 A+ 1) 1
O = A= ALHOA)THLHOA) = A = =12 = A (1 > 0,

B—1 -
since A0S < (%) < 1. Hence there is A\_(A) € (0, \,) such that ¢(A_(A)) =0

and A (A) > ), such that ¢(Ay(A)) = 0 where Ay (A) > A_(A) > 0. O

Theorem 54. Let f is continuous and f € RV (8), B > 1 and suppose

sup A(x) < 6(0, B).

x>0
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Let \ be defined by (8.37) and define the sequence () by
Tpi1 = (L+Axp))zp, n>0, z9=¢.
Then (x,,) is a positive increasing sequence which satisfies (8.35) and

lim 27 — 1 4 A_(A),

n—00 T

where A_(A) is the smallest root of (\) = 0 where p(N) = X — A(1 4 ON)? and

Proof. By Lemma 31 there is a solution A(x) of G(\) = 0 for all 2 > 0. Then by
Lemma 32 there is an increasing sequence (z,) such that (8.35) holds. In particular
given an x,, we find a \, = A(z,) and define x,,,1 = (1+ A(x,))z,. Then z,, and =,

obey (8.35) and (z,) is increasing with x,, — oo as n — oo. By Lemma 33

lim 2% = fim 14+ A(z,) = 1+ A_(A).

n—oo I, n—00

Since f € RV, (B) for > 1, then

o0

_ _ Tj+1 _ > Az, f(xj) Tit1 q
Fed = | 7 Z/ - Zf( IR A
>

Az; 1 Tjt1/s f(vxj)
. = d
/1 f(zy) "

where f = 1/f € RV (—p). Note that

Tjt1 1+X_
lim — f = — /
]A)OO A

1

by the uniform convergence theorem for RV, () functions and the fact that «;,/x; —
1+ A_(A) as j — oo. Hence

- 1 A=)
F(z,) ~ — v Pdv- (T}, —t,), asn — oo.
A Jy
Therefore ~ ()
F(x, 1 -
lim (za) _ —/ v P dv = A0, A),
n—oo Th _ t A 1
as required. N

Theorem 55. Let A_ := A_(A) be the smallest root of G(N) = 0 where p(\) = A —
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A(1+60))P. Then the asymptotic convergence rate, \(0, A), estimated by the Collocation
scheme according to
F(z,) 1

1+A-(A) 5
lim — :—/ v 7 dv =: \(0,A),
n—o0 Th _ tn A 1 ( )

obeys as A — 0T

A(G,A)—l—i—ﬁ(@—%)A—i— ((52—1—@) 92—529—1—@) A? +0(AY).
Moreover,
A1/2,A) =1+ %Az +O(A%), as A —0F.

Proof. Computing A(0, A) gives

_ 1-8
\O,A) = 1 A“(;_A;))

We see that A_(A) — 0 as A — 0". The Taylor Series expansion of

_ 1-8
ai(z) = ! (/;i—f) )
asz — 0" is s
1_(51jf) :x—§x2+—6(56+ 1)1‘3—1—0(1)4).

Define Ay := A_/A. Then as A\_ ~ A as A — 0T, then Ay — 1 as A — 07 and

_B
2

A+ BB ED sne L oan,

A0, A) = Mo (A) .

The Taylor Series expansion of ay(z) = (1 +z)% as z — 07 is

B6—1)

(1+z) =1+ pz+ 5 z® + O(z?).
Therefore as A_ = A),, then
—1
Ao = (14+0AN)° =1+ BAON, + %Ne% + O(AY).

As A — 07, then

BB—-1)

>\2:1+66A+(ﬁ2+ 5

) 2A2 + O(AY).

Since
B(B—1)

A§:1+259A+2<52+ 5

)92A2+5292A2—|—O<A3),
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and A3 =1+ 380A + O(A?), then

AO,A) = 1+ﬁ6A—§A+ ((52+m) o — BZB@) A+

2 2
Hence
A0, A) :1+ﬂ<9—%>A+ ((ﬁz—i-@) 92—529+@> A2+O(A3).

Taking 6 = 1/2 eliminates the O(A) term in which case

M(A) = \N1/2,A) = 1+ G (B2 - w)) A% 4+ O(A?)

2
_ B(B+1) 3
= 1+TA + O(A°).

8.8 Connection Between Finite-Time Explosion and

Finite-Time Stability

In this thesis we have devoted the bulk of our efforts to stability problems, but we
believe that this also gives insight into the related problem of finite-time blow-up.

One rather natural question arises: given that we have highly reliable methods
for examining the asymptotic behaviour of finite-time stability or super-exponential
stability, it would be highly convenient if we could, by means of co-ordinate transforms,
translate our results from the finite-time stability case to the blow-up case.

The first question is: can any finite-time explosion problem be mapped onto a finite-
time stability problem which has an equilibrium at zero (or in other words for which
there is a soft landing)? Roughly speaking, the answer to this question is “yes”. The
second question, which is of practical importance to us, is: can we recast the blow-up
problem as a finite-time stability problem, recover information about the blow-up by
simulating the stability problem directly and compute the corresponding value of the
explosive solution? The answer to this question is “it depends”, but there are significant
practical challenges in many cases. This likely means that we cannot always circumvent
the need to simulate directly the blow-up problem by considering an auxiliary finite-
time stability problem.

We formalise this discussion in the theorem below.
Theorem 56. Suppose f : (0,00) — (0,00) is continuous with [~ 1/f(u)du < oo and
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let © be the solution of (8.1) viz.,

Then x blows-up in the finite-time at

<1
T—/; mdu<00,

i.e. limy_,p- x(t) = co. Moreover, suppose that € : (0,00) — (0,00) is continuous with

€(x) = 0 as x — oo. Then the function ® given by

O(z) = /:o ()

€
du, x>0, 8.39
f(u) (539

is well-defined and decreasing. Moreover, if n : [0,00) — [0, 00) is defined by

n(z) = (27 a), =>0, (8.40)
0, xz =0,

then n is continuous on [0,00) and the solution of the ODE
y(t) = —n(y®t), t>0, y(0)=_C:=), (8:41)
is such that y(t) = ®(x(t)), Vt € [0,T) and

lim y(t) = 0.

t—T—

Proof. Since ¢(z) > 0 for all x > 0 and €(z) — 0 as © — oo, it follows from the fact
that [ 1/f(u) du < oo that [ e(u)/f(u)du < oo for every z > 0 and therefore that

® is well-defined. Since € is continuous, ® is in C!, positive and obeys

GRS o8

so clearly @ is decreasing and hence invertible. Moreover ®(z) — 0 as z — 0o so
d~!(x) — oo as x — 0. Therefore the function 7 in (8.40) is continuous on [0, c0)

because
lim n(x) = lim e(®*(z)) = 0 = 7(0).

z—0t z—0t

Moreover n(z) > 0 for all z > 0. Then for any a > 0

/Ojﬁdu:/oje@_lwdu _ /:— (a)Tlv)'_fE(Ej;) du:/:(a) f(lm .
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Therefore the solution of (8.41) tends to zero in the finite-time 7" given by

T

Finally, we check that y(t) = ®(z(t)), t € [0,7). Since

W [
/y(o) U(U)d _/0 U(y(s))d =—t, tel0,T),

y(®) 1 y(0) 1
/ LN / Lo
o+ "7(“) o+ 77(“)

Thus with F(z) = [7°1/f(u) du, we have

/ ool(y / T

or F(®~Yy(t) =T —t, t €[0,T). But F(z(t)) = T —t so z(t) = &~ (y(t)) for
t € [0, T) and therefore y(t) = ®(x(t)), t € [0,T). O

SO

Remark 36. The substance of the theorem is evident: given an arbitrary scalar blow-
up problem, it is possible, by means of a co-ordinate transformation to reformulate
the problem as a finite-time stability problem. The theorem also shows what would be
needed in order to implement the numerical scheme for the blow-up problem indirectly.
One should find a function e which is continuous, positive and vanishing at infinity
such that the function @, defined by (8.39), has an inverse, ®', which is computable
in closed-form. The constraint that ®~! be computable in closed-form is potentially
formidable but the wide range of feasible choices of € makes this a practical proposition
in many cases. This makes the function 7 in (8.40) computable in closed-form. In this
case one is free to implement an adaptive time-stepping algorithm to the solution y of
the ODE (8.41), and if, at the time point ¢,,, we have the approximation y, for y(t,),
the corresponding approximation for x(t,) is given by z,, = ®~*(y,), which of course
can be found if ®~! is computable in closed-form. We also note that the explosion time
of x and the finite stability time of the ODE (8.41) are identical. O

Remark 37. If © — €(x) is decreasing, then

lim n(x)

r—0t I

Proof. We have for u > z, e(u) < €(z). Thus

:17):/:0 Jii‘;)) duge(:v)/:oﬁdu.
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Hence as F(z) — 0 as z — oo, we get

(I)—l
lim inf M = lim inf w = liminf ﬂ = lim inf & = 00,
a0t 20+ x y—oo O(y)  y—oo e(y)F(y)
as claimed ]

Remark 38. We note also if € is decreasing, that 7 is increasing, which is a desirable
property. To check that x +— n(x)/z is decreasing (a condition under which the finite-
time stability numerical algorithms perform well) can be carried out for specific f and
€. O

Remark 39. The calculations give some insight as to how step-sizes might be chosen
for the explosion problem. We have seen that in the case when f is in the appropriate
subclass of rapidly varying functions, that a step-size of the order O(1/f'(z)) as z — oo
is optimal. We can also see how this might be achieved by discretising the finite-time
stability problem and transforming co-ordinates.

In the case of finite-time stability, we have seen that a step-size iz(y) at state y
obeying h(y) ~ Ay /n(y) as y — 07 is optimal. This suggests that the corresponding
step-size for the explosive equation, when the state in the explosive equation is x =

d~1(y), should be

A [ e(u)/f(u)du
e(z) ’

In the case where € is smoothly regularly varying but f” € T', in which case (f f")(x)/(f'(x))* —
1 and zf'(z)/f(x) — oo, we have that

W) = h(D(x)) ~

as r — OQ.

< €(u) - 1 _ e2(x) oS T oo
| e~ T ~ e e M
h(z) ~ A _ A
fi(@) = f(@)/z -z (x)/e(x) f’y) (1= f(x)/xf'(x) - x€(z)/e(x))
~ ) as T — 00,
because xf'(z)/f(x) — oo as x — oo and x€'(x)/e(x) tends to a finite limit. O

Example 57. Clearly we need to perform numerical simulations on the explosive ODE
(8.1) only when we are unable to compute the solution exactly in closed-form. To show
a case in which a closed-form solution cannot be found but in which transformation to

a finite-time stability problem is practicable, consider the ODE in which
f(z)=2°(1+isinz), z>0.
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Now choose
1

T

e(z) = (1+ 3sinx)

Clearly e is positive, continuous and vanishes at infinity. Moreover, it has been chosen

to compensate for the analytically awkward sinusoidal term in f. With this choice of

@(x):/xm;((z))du:/xm%du:%,

and ®~1(z) = 1/v/2z. Thus in this case @ !(z) can be found in closed-form. The

finite-time stability problem that results is

€ we get

n(y) =n(@ ' (y)) = 2y (1 + Lsin (ﬁ)) ,

Here 7 is rapidly oscillating between y — /2y and y — 3/2-1/2y as y — 07, suggesting
a step-size of the form h(y) = A/y. ]
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Chapter 9

Asymptotic Behaviour of

Super-Linear SDEs

9.1 Introduction

In this chapter, we determine conditions under which solutions of the SDE (1.17)
Viz.,

dX(t) = f(X(t))dt + g(X(t)) dB(t),
tend to zero super-exponentially fast or to zero in finite-time. Very roughly, if we
assume the scale function p of X obeys p(co™) = oo and the limit (1.25) viz.,

rf(x) _

=0t g%(x)

exists with L € [—o0, 1/2), the solution will tend to zero almost surely in the case when
f is such that the functions z — |f(x)|, = — z/|f(x)| are asymptotically increasing
at zero and L = —oo. The question as to whether X tends to zero in a finite time,
generally denoted by T, or not hinges on the finiteness of f01+ 1/|f(w)| du; if this integral
is infinite the solution remains positive for all time and X (¢) tends to zero as t — oo
almost surely. On the other hand if the integral is finite X (¢) > 0,Vt € [0,T),
lim; .- X (¢) = 0 and 7T is a.s. finite. This constitutes the a.s. finite-time stability of
the equilibrium = = 0. Similarly, if L € (—o0,1/2) then X (¢) tends to zero in finite-
time, or not, with probability one according to whether the integral f01+ u/g*(u) du is

finite or not.

The speed of convergence to zero, in the case when X (t) tends to zero as t — oo,

can also be found. When L = —oo we prove that
F(X
lim M =1, a.s.,
t—o0
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and when L € (—o0,1/2) we have

X 1
tlim M =5 L, as.,

where F' and G are defined by (1.29) and (1.34). In the case when there is an almost
surely finite 7" > 0 such that X (¢) > 0, V¢ € [0,7) and X(t) — 0 as t — T~ we can

prove analogous asymptotic results. For example, when L € (—o00,1/2) and we define
G by (1.33), we find that

(—logo G~ (\x)

lim lim inf — =
ADLE B0t (—logoG-Y)(z) O
implies -
X(t 1
lim w =——L, a.s.,
t—»7- T —1 2
nd logo G-1)(A
lim limsup (—logo — J(Az) =1,
A=1= 40+ (—logoG—1)(x)
implies
1 —log X (1) .
im — =1, as.
t—7- (—logo G_l)((% — L) (T —1))
Analogous results are available in the case when L = —oco. We also consider examples

under which these asymptotic conditions on (—log o G~1) hold and determine sufficient

conditions on g which imply these technical conditions and are easier to check.

We introduce the following notation and assumptions throughout our analysis:

P={weQ: X(t,w)>0forallt>0};and (9.1)
A={we: tlim X(t,w) =0}. (9.2)
—00

We will consider the situation where P[P] = 1 or P[P] = 0. If the former is true then
P[A] = 1. In this case the solution remains positive for all time and converges to the
zero equilibrium solution asymptotically on the a.s. event A because of (9.1) and (9.2).
The assumption and probabilities of the events in (9.1) and (9.2) may be dealt with
by the functions p and v defined by

p(x) = / exp { / y _gifgg) dz} dy, >0, (9.3)

v(z) = /:p’(y) /: 2 dzdy, x>0, (9.4)

: - P'(2)9%(2)

where x* > 0. The function p is referred to as a “scale function” and describes whether

the process is attracted to a boundary or not. A boundary is a.s. attracting if the

scale function is finite when evaluated at it, but infinite when evaluated at the other
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boundary. The function v decides whether the process is attracted to a boundary in
finite-time or not. It acts as a stochastic analogue of the function F' for the ODE
(1.1). The finiteness of v can therefore be thought of as a type of stochastic Osgood
condition. The finiteness of p and v (as x — 07 and * — o0) give necessary and
sufficient conditions to determine the probabilities of the events A, P and {T' < oo} if
we impose the assumptions on f and ¢ discussed earlier. The value of the lower limit
x* in the definitions of p and v is arbitrary. Indeed if one replaces x* by any other
2’ > 0, say, then the finiteness of p and v at the boundaries zero and infinity will be
the same as for the functions with the original lower limit z*. For this reason in proofs
we choose values of z* which are convenient for calculations.

In the case that P[P] = P[A] = 1, we say that the zero solution of (1.17) is a.s.
super-exponentially stable if

i 208X G _

t—o00 t ’

and X (t) is a unique, non-trivial, continuous adapted solution of (1.17).

9.2 Global Positivity and Finite-Time Stability

We now look at the asymptotics of the continuous SDE. The first question to resolve
is whether X (¢) hits zero in finite-time or not. This is resolved by the following result
(see Karatzas and Shreve [34], Proposition 5.5.22).

Theorem 58. Suppose X (t) is the solution of (1.17). Let T and p be defined by (1.22)
and (9.3).

(i) If p(0%) = —o0 and p(oo™) = oo, then T = oo and X is recurrent on (0,00) a.s..
(it) If p(0T) > —oo and p(co™) = oo, then

lim X(t)=0 and sup X(t) <oo, a.s.
T~ 0<t<T

(111) If p(0T) = —o0 and p(co™) < oo, then

lim X(t) =00 and inf X(¢) >0, a.s.

e 0<t<T
() If p(07) > —o0 and p(co™) < oo, then
{w: lim X(t,w) =00} U{w: lim X(t,w) =0},
t—T— t—=T—

1s an a.s. event, with each event in the union having positive probability.
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We focus on when zero and infinity are a.s. attracting, cases (ii) and (iii) respec-
tively. We determine sufficient conditions below for when this is the case. Case (i) does

not apply to stability problems.

Lemma 35. Suppose X (t) is the solution of (1.17). Let T and p be defined by (1.22)

d (9.3). If
e sup z/(z) < 1 (9.5)
z>0 () 2’ .

then p(0T) > —oo and p(co™) = co. Furthermore,

lim X(t)=0 and sup X(t) <oo, a.s..

t—T— o<t<T
Proof. From (9.5)
zf(x) 1
<A< = :
P =0T v
Thus 5 Y
fa) AN
g'lx) = x

where A’ < 1. We consider first when 2 > 0 is small. For z < y < u < ¢ we may

estimate as follows

c c 2f(u) c c A B CA’ (Cl—A’ _ le_A,) c
/zexp{/y gz(u)du}dyg/mexp{/y ;du}dy = Y <1—A"
Hence

_ [ Y —2f(u) _ [ ©2f(u) —c
p(x) —/C exp{/c () du} dy——/z exp{/y o) du} dy > T
and p(0") > —oo. By the argument above for z > ¢, —2f(x)/g*(z) > —A’/x. Thus
x y _ x Yy _A/
p(z) ::/c exp{/c %i)u)du} dy > /c exp{/c - du} dy
= / exp {log (%)A } dy

1 s AN (N AN
- — / y N dy = ( )
x

cA 1—A

As A’ < 1, we have p(x) — oo as z — oo. Thus sup,.,xf(z)/g*(x) < 1/2 implies
p(0T) > —o0 and p(co™) = co. By Feller’s test (Proposition 5.5.22 part (b) in [34])

lim X(¢)=0 and P [ sup X () < oo] =1,
=T~ 0<t<T

as claimed. O
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The next result shows that (9.5) cannot be relaxed too much.

Lemma 36. Suppose X (t) is the solution of (1.17). Let T and p be defined by (1.22)

d (9.3). If
e it L) 9.6
250 2(z) ~ 2 5:6)

then p(0T) = —oo and p(co™) < co. Furthermore,

lim X(t) =00 and inf X(t)>0, a.s.

t—T— 0<t<T
Proof. The proof is similar to that of Lemma 35. [

It should be mentioned that if (9.5) is suppressed and we suppose that L > 1/2,
then no solutions of (1.17) will tend to zero and so this case is irrelevant to questions
of super-exponential convergence or hitting zero in finite-time. We take (9.5) as a
standing assumption throughout the rest of this thesis, unless stated otherwise. We
claimed earlier that the function v played the role of F' in the ODE when zero is
attracting. The following result (see e.g. Theorem 5.5.29 in [34]) indicates how the

finiteness of T" depends on that of v, and we state it to aid understanding.
Theorem 59. Let T, p and v be defined by (1.22), (9.3) and (9.4).

(i) Suppose p(0T) > —o0 and p(co™) = oo. If v(0F) < oo (resp. = 0), then

lim X(t) =0 and T < oo, (resp. =o0) a.s..
t—T—

(1) Suppose p(07) = —oco and p(co™) < co. If v(00™) < 00 (resp. = 00), then

lim X(t) =00 and T < oo, (resp. =00) a.s..
t—T—

Conditions (9.5) and (9.6) seem to identify the case when zf(z) and ¢*(x) are of
comparable size is critical. The next result shows that this is the case. Furthermore, the
complicated finiteness conditions in Theorem 59 on v are replaced by simple, Osgood-

type conditions.

Theorem 60. Let L, T and p be defined as (1.25), (1.22) and (9.3). Suppose that

p(oo™) = 0.
(a) If L = —o00 and

(i) © — |f(x)| is asymptotically increasing, then f01+ L/|f(u)] du < oo implies
T < o0 a.s..
(ii) x — |f(x)|/x is asymptotically decreasing, then f01+ 1/]f(u)]| du < oo implies

T =00 a.s..
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(b) If —oo < L < 1/2, then

(i) fmu/g u) du < oo implies T < 00 a.s..

(i1) f0+ u/g*(u) du = oo implies T = 00 a.s..
(¢c) If L >1/2, then P[X(t) = 0ast — T~] =0.

Proof. We prove part(a)(i) first. Define M () := 2z|f(x)|/g*(z) and u(z) := M(z)/z.
Then there exists 1 > 0 such that M(z) > 0 and p(z) > 0 for all z < z;. Note
that L = —oo implies M(x) — oo as © — 0%. Then with 2" temporarily free, for

x < 2" < 21 we have

p'(x) = exp (—2 g ;(<l;)> du) = exp (— /;H p(w) du) :

Substituting the expression for p’ into v implies
z!! exp u u> 2 1
v(x) = / / G dz dy
exp p(u) u) g*(2)  |f(2)]

- {/j”»« o) e - [

where

1

I(y) == /yx 11(z) exp <— /yzu(U)d ) :?Eg: dz.

Since z — |f(z)| ~ ¢(x) as x — 07 where ¢ is increasing then exists x5 such that

< 2, Vo< xs.

Let 2" = min(zy, z5). Hence for y < z <y < a9 then |f(y)| < 20(y), |f(2)| > ¢(2)/2
and ¢(y) < ¢(z). Thus

fW)] _ 20(y)
Fo)l Sz =

Hence as 2”7 < x5 then

1 1

1(y) §4/j 1(2) exp (—/yzu(u)du) dz — 4[ d% (—exp (—/yzu(u)du>) d-
. ( ( [ d)) 1

Now pu(u) > 0 as u < 2" < zy, so I(y) < 4. Thus v(z) < 4f 1/|f y)|dy. So
v(z) = L' < 0o as x — 07 since f01+ 1/|f(z)|dz < 0o, as claimed. We now prove part
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(a)(ii). Since y — |f(y)|/y ~ ¢1(y) as y — 07 where ¢, is decreasing. There exists 2’
such that
|f )|/

b1()
We may also take 2’ so small such that M(z) > 4 for all z < 2. Thus for y < z <2’
then ¢1(y) > ¢1(2) and

el _,

LVl _, 1
2 oy 2 M T S

Thus [f(y)] > y¢1(y)/2 and [f(z)] < 22¢1(2) < 2y¢n(y). Hence |f(y)|/[f(2)] =

1/4 /> Thus
o(z) > %/ (/y 1(2) exp <—/yz,u(u)du> %@) ﬁdy.

Next, using integration by parts

/yxl ’“‘(ZZ> exp (—/yzu(u)du) dz:/yxl%l-d% (exp (—/yzu(u)du)) dz
Lo (- [ uwar)|
__x_/l.exp (—/yx/u(u)du> —_71—/; exp<—/yzu(u)du>%dz

/

< <2, r<«x.

N —

/

v(x) > i/:/ (1 - %exp (— /://L(u) du) - /:/ exp (— /ywl () du) %dz) ﬁdy.

Thus for z < 2’/2, the positivity of the integrand implies

(z) > i/j/z (1 - %exp (— /y 11(u) du) - /y exp (— /yz/,u(u) du> %m) ﬁdy.

In the integral y < 2’/2, so y/a' < 1/2. Also fyx, p(u) du > 0, so exp <— f;/ p(u) du) <

1. Hence
1 z' /2 1 x’ z 1
v(x) > Z/ (5 —/ exp (—/ p(w) du) %dz) mdy.
T Y Y
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Next u € [y, z] and z < 2’. Thus p(u) = M(u)/u > 4/u and

/yzu(u)du > /yZ%du — 4log (;) — log (2)4
exp (— /y ) du) < exp (log (2) _4> - (g) -

Thus

1/1 1 /M 1
vix) > ~-=— = ——dy — 00, asz — 0T,
@215 7o

0o. We now prove part (b)(i). Write

([ £ 2504)

Next for all 0 < € < 2L there is z(e) > 0 such that

L—E<M<L+E.

2 ¢*(u) 2

since fol+ 1/|f(x)|dz

Hence or y < z < z(€), and u € (y, z), so

/ 2L_€du§/ 1-2u2f<u>du§/ 2L+€du.
y U , U g% (u) y U

Therefore
z 1 2uf(u) z
2L—elog<—>§/—- du < 2L—|—elog<—>,
( ) , U gg(u) ( )
and so 2L 2L+
A\ _ P ) (2) ‘
Z < <[ - , y<z<uwle).
(y) p'(z) — \y )
Recall © ro(d
€ (€ / 1
v(z) = 2/ / p/(y) - dz dy,
.y PR gP()
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thus for x < x(¢)/2

( ) z(e)  pa(e) p 2L+e 1 z(€) z 2L+ 52L+e
v(x §2/ / (—) —dzdyzQ/ (/ Yy~ 6dy>—dz
« Jy o\ 9%(z) z . 9%(2)
_, /:c(s) Zl—2L—e B xl—QL—e 22L+e "
- 1-2L—¢ 1—-2L—¢) ¢*(2)
2 z(e) 1-2L—¢
- / 1 (f)  _dz
1—-2L—¢€ ), z g%(2)

2 SO d
< — .
_1—2L—e/m g%(2) N

Hence v(z) — L' < oo as # — 0. We now prove part (b)(ii). For x < z(e)/2 and

z >y > x then

( ) z(e) pz(e) p 2L—e 1 x(€) z (2L-9) 2L—¢
v(x 22/ / (—) dzdyzQ/ (/ Yy dy) dz
 Jy \Y 9%(2) v . 9%(2)
z(€) 1—2L+€ 1—2L+€ 2L—e
—9 / ° - = S
- 1-2L+€¢ 1-2L+¢) ¢%(2)
z(e) 1—2L4¢
) / 1= (%) g,
1—-2L+¢€¢/ Jy z g%(2)

Now z > 2z, 80 1/2 > x/z. Thus (1/2)" 72" > (x/2)"7*"*°. Therefore

() (- () ) [ e

Thus v(z) — 0o as x — 0T since f: u/g*(u) du — oo as x — 07. We now prove part

(c). Since
=1 ) oo ).
thus
logp(e) 20V —uf@/Pwdn ()
om0t log(1/z)  amot log(1/z) a0t g2(z)
Therefore

—00, L>1
lim p(z) = 2
z—0+ > —00, L < 3

Since p(oco~) = oo by Theorem 58 we have that lim, ,p- X () = 0 if L < 1/2 and
P [lim, - X(t) = 0] = 0if L > 1/2. O

These Osgood-type conditions strongly suggest that an appropriate auxiliary ODE will
describe well the behaviour of the SDE.
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9.3 Super-Exponential and Finite-Time Stability

Our next task is to establish convergence rates. These can be obtained under essen-

tially the conditions of Theorem 60. The first case deals with the case when T = oc.

Theorem 61. Suppose that p(co™) = oco. Let F, G, L and p be defined by (1.29),
(1.34), (1.25) and (9.3).

(i) If L = —oc0, f obeys (1.27) and x — |f(x)|/x is asymptotically decreasing, then

F(X(t
lim M =1, a.s.
t—ro0
(ii) If L € (—00,1/2), g obeys (1.32) and x — g*(x)/x* is asymptotically decreasing,
then
lim
t—o0 2

Proof. We prove part (i) first. Since L = —oo and p(co™) = oo, then we have that
p(07) > —o0 and p(co™) = co. Therefore

lim X(¢) =0 and sup X(t) < oo, as.

t—T— 0<t<T

Furthermore as x +— | f(z)|/x is asymptotically decreasing and f01+ 1/|f(u)] du = oo we
have from Theorem 60 that 7' = oo a.s. and that X (t) > 0, Vt € [0, 00) a.s.. Therefore,

by Ito’s Lemma, we have a.s. for all ¢ > 0

kgxu):mgxmy+4t(ﬂX@D_1.£1§ED)d&+KT“X“»dB@y

X(s) 2 X2(s) X(s)
Let M (t fo ) dB( ) which is a continuous local martingale with quadratic
variation ( fo s))/X?(s)ds. Then we can write

I%X@:mX@+A£%%M&éM@@+M@

If D:={w: (M) (t,w) = (M) (co,w) < 00, t — oo} then a.s. on D, the martingale
convergence theorem for continuous local martingales holds viz., M (t) converges to a

finite limit as ¢ — oo a.s. on D - see Proposition 5.1.8 [47]. Therefore we have that
log X () / F(X(s)) s, ast— o0 a.s. onD. (9.7)

Then D' := {w: (M) (t,w) = (M) (co,w) = 00, t = oo} then a.s. on D', the strong
law of large numbers for continuous local martingales holds viz., M(t)/ (M) (t) — 0

as t — oo a.s. on D' - see Exercise 5.1.16 in [47]. Therefore, as L = —oo and
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X(t) = 0 as t — oo for each w € D', t <f(f X(s))/X ( )d ) (w) is decreasing on
[T"(w), 00) for some T"(w). However, because (M) (t) = [ ¢*(X(s))/X?(s)ds — oo as
t — oo, g*(x)/2* = o(|f(x)|/x) as x — 0T and X (t) — O as t — oo, it must be that
fot f(X(s))/X(s)ds — —o0 as t — oo. Thus by L’Hopital’s Rule

(M) ()

lim =0, as. onlD,

e [ (X (5))/X (s) ds

and since M (t)/ (M) (t) — 0 as t — oo a.s. on D', we have

log X (t) / JX 8) s, ast—ooa.s. onD. (9.8)

Hence by (9.7) and (9.8) since D U D’ is an a.s. event then

lim logX()
H°"f —f(X(5))/X(s)ds

=1, as. (9.9)

By hypothesis there is a continuous 7 such that n(x) ~ |f(x)|/z as © — 07 and 7 is

decreasing. Therefore

Q*:{w: lim t—logX(t) :1},
t—00 fo n(X(s),w)ds

is an a.s. event. Define on Q*, = [yn(X(s))ds, t > 0. Then I is in C*(0, 00) by
the continuity of n and X. Thus —logX( )/I( ) — last — oo and I'(t) = n(X(1))
then X (t) = n~1(I'(t)) by the monotonicity of . Therefore, for every € € (0,1), w € Q*
there is a T'(w, €) such that for ¢t > T'(w, €)

1—e< _log?;u/(t)) <1+e (9.11)

We treat the left-hand side of the inequality in (9.11), the analysis of the right-hand
side being similar. The left-hand side of (9.11) yields for t > T'(w, ¢)

ef(lfe)l(t) > n71(1/<t))’

and because 7 is decreasing n(e” =) < ['(t) for t > T(w,¢). Thus we have for

t > T(w,e) t »
I'(s
N s > T(e) — t,
/T(e) n(e-(1=91() (€
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where we drop the w-dependence for simplicity. Next for ¢ > T'(e)

¢ I 1 (1-e)I(t) 1 1 exp(—=(1=e)I(T(e))) 1
/ (S) ds = / du = / dv.
( e

7(e) N(e=1791() L — € Ja—arnre) ne™) L =€ Joxp(——ar@y  vn(v)

Since I(t) — oo as t — oo and 1/(an(x)) ~ 1/|f(z)| as x — 0T then

t I 1
/ # ds ~ L F(em 17910y a5t — oo.
7(e) N(e~(1=91() l—e¢

Therefore,
1 t I F —(1—e)I(t)
1§1iminf—/ L&ds: -liminf€—>,
t—00 (o) 77(6—(1—6) (s)) 1—€ too t
o -
F(e—(1—€
lim inf (e ) >1—e.
t—o00

However, for t > T(e), then e"1=9® > X(t), so for t > T(¢) as F is decreasing
F(X(t)) > F(e=(=91®)  Therefore

F(X F(e—1=)I(t)
lim inf M > lim inf M

t—o00 t—o00 t

>1—e

Letting € — 07 yields

F(X(t
lim inf <—()) > 1.

t—o0 t
Proceeding similarly pathwise on the right-hand side of (9.11), we get

lim sup M <1

t—o00

’

from which the result immediately follows. The proof of part (ii) is similar but with G
in place of F', noting that the convergence of (M) in this case leads to a contradiction.

We set n(z) ~ (3 — L)g*(x)/2? in this case. O

If at least one of the conditions below holds
9*(x)

| f(=@)] - _
lim =00 or lim 5 = 00,
z—0t T z—0t T

then we have lim; ., log X (¢)/t = —oc a.s. in both parts of the theorem. This is the
aforementioned super-exponential stability.
In the case when T' < oo a.s., we can once again determine the asymptotics as

t — T~. We give the result when L if finite, the case where L = —oo being similar.

Theorem 62. Suppose p(co™) = 0o, L € (—00,1/2), g obeys (1.31) and x — g*(x) /x>

is asymptotic to a continuous non-increasing function. Let T, G, L and p be defined
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by (1.22), (1.33), (1.25) and (9.3) where and G(z) — 0 as x — 0F.

v ( 7 ()
1. (=logoGTH(A\x
A Cogea (@) — (512)
fher axm) 1
tgrjl“l— T——t = 5 — L7 a.s.. (913)
(ii) If ~
) ) (—logo G™H(A\x)
lim 1 , —1 14
ol ot (—logoG (@) 91
then low X (¢
lim — log X(1) =1, as. (9.15)

-7 (—logo G=1)((5 — L)(T — 1))

We state the following lemma which is used in the proof of Theorem 62. We defer

proving the lemma until after the proof of the theorem.

Lemma 37. Suppose that there is 7(¢) € (0,T] such that for 0 <T —t < 7(¢). Let T,
G and L be defined by (1.22), (1.33), (1.25) where L € (—00,1/2), A_(¢) = (1—¢)-a/2
and Ay (€) = (1+¢€)-a/2.

GH(1— A ()(T = 1))+ < X (1) < G (14 ) () (T — )=+ (9.16)

If (9.12) holds, then

_ G(X@®) a
tgr%l_ T — g3 &5 (9.17)
Proof of Theorem 62. Suppose (1.25)
o)
B o L€ (-00,1/2).
By It6’s Lemma, the SDE for Z(t) = —log X (¢) is
_(ZfX@) 1 gAX(®) —9(X(1))
d(—log X(t)) = ( X0 +5 X ()2 > dt + WdB(t). (9.18)
Now
S L Y W (O N W
20+ g*(x)/z? 2 asot 2g%(z) 2 '

The conditions on G ensure that X (¢) > 0 for all t € [0,T) a.s. and that X (t) — 0 as
t — T~. Therefore [} g*(X(s))/X(s)>ds — 0o as t — T~ and
—log X (1) 1

=——1L, as.

lim
ST (X () /X (s)ds 2
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If the integral in the denominator were convergent we would have from (9.18) that
—log X (t) tended to a finite limit as ¢ — 7'~ which is impossible and therefore generates
a contradiction. Define n(z) := ¢?(x)/x?* ~ 7j(z) as * — 0T where 7] is permitted to be
continuous and decreasing. Then

—log X () 1

—--L

im T a.s..
=T i i(X(s)ds 2

Y

Suppose I(t) := fotf](X(s)) ds. Thus I'(t) = 7(X(t)) or 771 (I'(t)) = X (t). Thus

. —logf '(I'(t)) 1 a
1 =—-——L== S..
T 1(t) 2 g *F

Hence, for every € € (0, 1), there is 7 (¢) > 0 such that T'— t < 71 (€) implies

(1—¢)- % < _log?(t)(p(t)) <(l4e)-

a
5 .

Since 7] is decreasing then 7 (e *=()10) < I'(t) < ij (e *+(1®)) where Ay (€) := a(l +
€)/2. Thus for T —t < 7(€)

T I T T
T [ oAt [ T
;M (e_Af(QI(S)) : M (6_>\+(5)[(5))

Since I(t) — oo as t — T'~ then

& 1 o 1
T—t§/ ——————du and / _——du <T —t.
1) 7 (e A=) 1) 1 (e +(9n)

For T'—t < 11 (€), then

exp(-A- (1) 1 10 _)_ (e)e->(u o
/ dv:/ _(c)e du = )\(e)/ —
0 I

vn(v) w71 (e u) e=A-(u o (e~ (u)
> A (e)(T —1).

Define G(x) := Jy 1/(uij(u)) du. Then G(z)/G(z) = 1 — 0" and for T —t < 7(e),
G (e -TM) > X_(e)(T — t). Next for every e € (0,1) there is a1(e) > 0 such that
for z < z1(e), (14 €) - G(z) > G(z) > (1 —€) - G(x). Now e~ < 2,(e) for all
T —t < 1y(€). Define 73(¢) = min(7(€), 72(€)). Then T"— ¢ < 73(€) implies

G (6_’\*(6)[“)) >(1—¢)-G (e_L(E)I(t)) >(1—¢€) - A(e)(T —1t).

Thus for T —t < 73(€), e O > G (1 —e)A_(e)(T —1)). Now T —t < 71(e)
implies
—log X (1)

A_(e) < 0

< Ay (e),
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thus eI > X (¢) > e +OIO | Thus for T —t < 3(e)
X ()0 5 A1 5 G=1 (1 — )A_(e)(T — 1)),
and thus
X()> G (1= A_(e)(T — )/ (9.19)

Similarly G(e 1) < X\ (e)(T —t) for T —t < 7(e). Now A (€) > A_(e) so
—Ai(6) < =A_(¢) and e+ < e*A—W(t). Hence for T —t < my(e), e MO0 <
e =10 < 3(e). Thus (1 +e€) G(eMTW) > G(em (10, Hence for T —t < 73(e)

Ge M) < (1+€) - Gle ™) < (14 €) - A (e)(T ).

Thus for T —t < 73(€) we have e 1) < G=1((1 + )\ (e)(T — t)). Hence for
T —t < T3(€)

X (MO < e+ < GTH(1+ €Ay ()(T — 1)),
X(t) < GH1 4+ )My (e)(T — )M+, (9.20)

Combining inequalities (9.19) and (9.20) give (9.16) with a/2 = 1/2 — L. If (9.12)
holds, by Lemma 37 we have

lim M:gzl—L, a.s.,
t—»T7- T —1t 2 2

which proves part (i). We now prove part (ii). Inequalities (9.19) and (9.20) hold for
T —t < 13(€) so

GH(1 = OA()T — MOP- < X () < G (L + QA ()(T — 1)+,

Hence
tg (—=logo G™H ((1 —A_()(T — 1)) > —log X (t) >
A_(€) ~—1
o) (—logoG™) (1 + €)As(e)(T"— 1))

AsAi(e)=(1+¢)-a/2=(14¢)-(1/2—L)and \_(e) = (1 —¢)-(1/2 — L) then

—log X (2) S ON logo G™1) (1 + A (e)(T — 1))
(—logo G- )((——L)(T—t)) Ay () (—logo G-t (%— )(T—t)) '
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Hence

>/
~—r

i ~log X (1) s 2 g G (1T —1)
t—T~ (—logoG ) ((——L)(T—t)) — A(e) t—=T- (—logoG ) ((——L)(T—t))
(120 e C1o820 )0

20+ (—logoG—1) (2)

) - lim inf (= l(zg ° G‘l)(y)
y=07 (—logoG™1) (y/(1 +¢€)?)

=) (1 (~logo G (y/(1+7)
St (“logeG(y) |

(@)

+

€

—_ =

[

—_
™M

—_

_|_

(@)

Letting e — 07 by (9.14), we get

lim inf _— log X (1)
t—-7- (—logoG~1) ((% — L)(T - t)) B

Similarly

_—log X(1) o M0 (FlogoGT((1— A (T~ 1))
(=logoG—1) ((3 — L)(T —1)) A(e)  (=logo G;l) (3 —L)(T—1)

1—e€
Thus
_ VSR
ne (—logo G‘I;Oé?f)L)(T — ) = G J_r Z) +lim sup ( k()f 10Ggo )G_“})(;)) ?),
By (9.14), letting ¢ — 0T, then
—log X (t)

lim sup

<1
S Tloge G ) (1- DT —0)
0 (9.15) holds, as claimed. O

There appears to be a gap in Theorem 62, as the conditions in (i) and (ii) are not
exhaustive. However, in practice these conditions are comprehensive. Sufficient condi-

tions to guarantee (9.12) or (9.14) are available which are more readily verified.

Lemma 38. If (9.12) viz.,

lim lim inf (—logoG )( ?)
A—1t a0+ (—logo G1)(w)

= 00,

holds then G( )\)
T
lim sup — =1,

VA<l (9.21)
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Proof. Let A < 1 and define

e (mlogo G (Ax)
b =t it @)

For y < A < 1, then G~ (ux) < G7*(\x), so (—logoG~Y)(ux) > (—logo G1)(Ax)
and thus b(p) > b(A). Thus, p— b(p) is non-increasing. Since b(\) — oo as A — 17,
b(\) = 0o VA < 1, so liminf,_,o+ (—logo G~1)(A\x)/(—logo G1)(z) = oo and

o (ClogoG ()
=0t (—logoG~1)(x)

= OQ.

Fix, A < 1. Then VY M > 1, there is z(A, M) > 0 such that Vz < z(\, M)

(—logoG~1)(A)

ClogoG (@) ~

Thus
(—logo G (M) > M - (=logo G™Y)(z) = (—logo G7Y)(x)M,

or G7Hx)M > GY(\x) for x < (M, )). Let y := G~1(z). Then z < z(M, \) if and
only if y < G~ 1(z(M,\)) =: y(M,)). Thus y™ > G71(AG(y)) so G(y™) > \G(y)
for y < y(M, ). Therefore for each fixed p < 1, and all A := 1/M < 1 there is
y(1/\, 1) > 0 such that G(y'/*) > uG(y), for y < y(1/\, pn) = G™Hx(1/\, u)). Let
z =y and z(\, p) = y(1/A\ ) = G Ha(1/\, 1)Y*. Then for z < z(\, u),
G(2) > puG(z"). Thus for each fixed u < 1, and all A < 1, there is z(\, u) such that
G(M)/G(z) < 1/u for all z < z(\, u). Let zp(\, 1) = min(z(\, i), 1). Since A < 1,
G(2") > G(2) for all 2 < z9(\, ). Hence for each fixed p < 1 and all A < 1, there is
22(A, 1) > 0 such that for z < z9(\, 1)

G

1< 8

<

S

Thus for each fixed p < 1 and all A < 1

, G(2Y)
1 <1 — <
=T G ©

=~

Therefore ¥ A < 1, limsup, o+ G(2*)/G(2) = 1 as required. O
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We now give a proof of Lemma 37.

Proof of Lemma 37. By Lemma 38, (9.12) implies (9.21). For 7' — ¢ < 7(¢), then

G (G = A ()T - G(X(1))

Tt T —t
G (G (1 + AL ()(T — 1) -A+()
- C(9.22)

Thus by (9.22)
im in (X(1)) min G (G (1 = e)A_(e)(T — 1))+ (9/A-(9)
I'HT_f (1 =e)A(e)(T —1) = 1t—>T—f (1= )A_(e)(T — 1)

 liming GG @O i GO

- lxﬁwf x B lya(ﬁrf G(y)
Thus

G (y+OP-)

L GX(1) o
htIB]l{lf — > (1—¢€)-A_(e) hyrgégrlf W
(

- - )
= (=0 A(9liminf = (- O/+@)

_ 2 @ G(2)
= (1-¢ 3 llgéEfG( 1-9/(1+0))

W

-1
G (20-9/0+0) a
= — 2 R 1 — f— — 2 —
= (1—¢ (llinjjp B 1—e) 3,
by (9.21). Letting ¢ — 0 yields
lhn}nf(; (?) > g (9.23)
t—T~ -
By (9.22)
. (X (1)) . G (G + A ()(T = 1))-(IM+)
lim su > limsu
e (LA (OT =) = o T+ A (T — 1)
G (G (2 O+
= limsup
z—0t T
G (i /A+9)
= limsup = .
y—0+ G(y)
Thus by (9.21)
. G(X(t) , a G (y-9/0+a) a
lim su <(l+¢€) =" -limsu = 14+e)*- =
t—>T*p Tr—t ( ) 2 y—>0er G(y) ( ) 2
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Letting € — 07 yields -
, G(X(t) a
limsup ———= < —,
t—T— T—t 2
whence the result (9.17) by combining the above limit with (9.23). O
In principle, Equation (9.24) is weaker than (9.12).

Theorem 63. Suppose -
- G(a%)
lim 1 = = 1. 9.24
T (624

fhen G(X(t 1
lim M =——0L, as.
t»T7- T — 1t 2

Proof. The proof of this result uses a modified version of the proof of Lemma 37. [
Next we come up with a condition which implies (9.14) but is easier to check.

Proposition 16. If

lim sup fo u/g (u) du

z—0+ 372/92(%) - log (1/x) =t L7 < oo, (925)

then (9.14) holds.
Proof. Define y(z) := ¢g*(x)/x. Let = be the solution of the ODE
2(t) = —y(z(t)), te€[0,T), «(T)=0.
Then x(t) = G™YT —t). Define u(t) := (T —t), t € [0,T). Then u(0) = 0 and
u'(t) = =2'(T —t) = y(&(T — 1)) = y(u(t), te[0,T).
Hence u(t) = G71(t). Let 2(t) = —logu(t) = (—logo G™1)(t). Also

Sy = 40 _ ) (™) _ —g*(e*)
u(t) u(t) e—=(t) e—2%(t)

Define n(z) := g*(x)/2z®. Then 2/(t) = —n(e™*®) = —ni(2(t)) where n,(z) = n(e ).
Define 71(z) := 7(e™*). Then 7; is increasing as z — e * and z — 17)(z) are decreasing.
Now n(z) ~ 7(z) as  — 0" then

m(z) (z)

lim — = lim = lim —=% =1.
amoo 0y (2)  zooodj(e7F) a0t A(z)

n(e )

Let A > 1. Then, as t — z(t) is decreasing

0 < =(t) — 2(\) = /t (s)ds = — /tM (s)ds = /tM m((s)) ds.
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Since z(t) = oo as t — 07, n1(c0™) = o0, then

Jrms)ds N m(e(s) ds/=(1)

lim =1.
S0 X)) ds o0 [ () ds/(0)
Also N
- z(\t) _ I m(z(s)) ds
2(t) z(t) ’
" . %AWM)_l
N -
0 J 7 (= (s)) ds/=(t)
Thus since z(t) = (—logo G~1)(¢)
i L (—logo GH)(\t)/(—logo G1)(t) _q
=0+ (A —1Dax(t) ’
where fA
o "1 (2(s)) ds
(A —Day(t) = D) :
Hence _ _—
iy L= (ZlogoGT)(M)/(~logo GT(#) _ (9.26)
t—0+ ax(t)
For each A > 1, there is T'(\) > 0 such that for ¢ > T'(\)
— (=logo G=H(At)/(—1logo G~1)(¢) _ 3(A—1)
ax(t) 2
Since [N 71(2(s)) ds < [N (2(t)) ds = (A — D)t -7 (2(t)), we get
(g de((s) ds ., @) (1)
e I O TE I
Thus 7 (2(0))
iz
a(t) <t- T (9.27)
Hence for each A > 1, there is T'(A) > 0, such that for ¢t > T'(\)
(—logoG™H(M) _3(A—-1)  (z(t))
Ol Tgea e = 2 e
Thus

0 < Tim sup (1 (( logo G~ )(( ))) <3O sup (t_ﬁl(Z(t)))'

t—0t log oG~ 1)
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Since z(t) — oo as t — 01 and 7j(z) ~ n(z) as z — 07 then

lim sup (t' ﬁl(z(t))) = lim sup (Z_I(U) . ﬁl(u))

t—0+ z (t) U—00 u

::hggi¥>(z—1uo- - >
— limsup (zl(log(l/x))- (@) )

20+ log(1/x)

S_ince z(u) = (—logo G~ Y)(u) then 271 (u) = G(e™*). Hence 27! (log(1/z)) = G (e‘log(l/z)) =

G(z). Thus

lim sup (t-ﬁl(z(t))) — limsup <z—1 (log(1/x)) - —1&) )

Rl
—
ml

IS
S~—

t—0+ Z(t) z—0t ‘ IOg(l/x)
z 2(0) du - 2 2
= limsup fo u/g-(u)du - g (z)/x =L,
20+ log(1/z)

by (9.25). Thus

3(\—1)L*
2 7

0 < limsup (1 — <

t—0t

(~logo G—l)(/\t)>
(—logo G (1)

or for each A > 1, we have

— ~—1 . N
ogl—mmﬁ(l%OQ)Oﬂ§3Q nL
=0t (—logoGTH)(?) 2

Thus for each A > 1

— -1 B .
0<1— liminf (—logoG™)(x) §3(A L
e—0t (—logo G—1)(z/)) 9

Put 4 =1/X < 1. Then for each u < 1, we have

—logo G 1
0<1— liminf \—128°C (@) §g<——1>L*.

a—0t (—logo G~1)(ux) v
Thus ~ )
_ (—logo G~ Y (uz)\ ~ 3 /(1
0<1—1{1 _ < —-|==1])L"
= (‘iﬁﬁp (~logoG)(x) )~ 2\
Define

e
HO) =l s S g e G ()

Then for each A € (0, 1)
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Hence
1

-1

1< L) <

The denominator on the right-hand side is positive if 1 > X > (1 +2/3L*)~'. Thus

1
1 <liminf L(\) < limsup L(A) < lim sup =1.
A—1~ ( ) A—1— ( ) A—1— - %(% - 1>L*
Hence limy_,;- L(A) = 1 and thus
-1 -1

lim limsup ( ogoG_ J(Az) =1,

A1 4o+ (—logo G (2)
which is (9.14). O

Remark 40. Since G(x) — 0 as x — 07 and o + ¢?(x)/2? is asymptotically decreasing,

then o (1
L atlog (1)
=0t g%(r)

=0.

Proof. Let 7j(z) ~ n(z) = ¢*(x)/x* as x — 0" and 7 is decreasing. Thus x7(z) ~
g*(z)/z as x — 0T and hence 1/(z7(z)) ~ x/g*(x) as  — 0T. Thus, there is z(¢) > 0
such that for x < x(e)

Hence as 7 is decreasing then

ORI (e)
/ — du§2/ 2u du =: I5.
0 urj(u) 0 g% (u)

Let a,, = 27" and N(e) be such that 27V < z(¢). Then an() < z(€), so

AN ()
/ = du S IQ.
0 uij(u)

aN(e) 1 0 an 1
I > / du = E / du.
0 a
)

wife) ™= 22 ], i)

Thus

For a,+1 < u < ap, 1/apy1 > 1/u > 1/a, and since 7 is decreasing then 7(a,11) >

ii(u) > ii(a,) and
1 1 1

) = (@) = an)’

Hence for a,.1 < u < a,.
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So .
/ n . du > In = Gnil
ant1 Uﬁ(u) N anﬁ(an-l-l)
Therefore -
Z Qp — Ap41 ~ 1 <1
Thus
= 27" — 2~ (D) 1
Z —n F(9—(nt+1)) = L,
e 2 7(2 )
or equivalently
s 1
)Py
5(9—(n+1)) —
Wt 12 )

Define b, := 1/7(2=™*Y). Then > men(e) bn < 21 and (by) is decreasing, so nb, — 0
as n — oo and n/f(27"*D) = 0 as n — oo. Let 277! < u < 27" then §(27") <
i(u) < 727 *)) so for 2 < u < 27D then

log (1/x) < log(2-2") (log2+nlog2) log2  nlog2

USTRE S Taey T aem g Tae

— 0, asn— 0.

Hence | .
lim 22 /7)
=0t 7)(x)

Since n(z) ~ 7(x) as x — 07 then

1
lim 28 /7)
=0t n(zT)
So
. z%log (1/x)
li =0,
e—0t  g%(x)
as claimed. 0

Remark 41. If g € RVy(B) and § € [0, 1) then (9.25) holds.

Proof. By Karamata’s Theorem (see e.g. Theorem 1.5.11 in [12])

T owu 1 x?
du ~ . , asx — 0T,
/0 92(u) 2-28 g¢*x)

since z — x/g%(z) € RVp(1 — 28) and thus G(x) € RVy(2 — 23). Hence

b hwewde 1 /g (x) _0

e—0t x2/g%(x) -log (1/x)  2(1 = B) a—ot+ 22/g%(x) - log (1/x)
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Remark 42. If x — ¢*(z)/z is asymptotic to a decreasing function, then (9.25) holds.

Proof. Let ni(z) = ¢*(x)/x and 7y (z) ~ m(x) as * — 0T where 7); is decreasing. Hence

lim M = lim —fo L/m (u =1
z—0+ fo 1/m(u)du  z—o0t fO 1/ (u) du :
Consider
Jo w/g*(u) du _ Jo 1/m(u)du ‘ Jo 1/ (u) du
z?/g*(x) - log (1/z) o Ym(w) du -x/g*(x) - log (1/x)
_ fom 1/mi(u) du ) fogc 1/ (u) du . 1 . 1
Jo Uin(uydu — a/in(z)  iu(e)/m(z) log(1/z)’

For 0 < u <, iy (u) > M (x) so 1/m(u) < 1/f(x). Thus

/om 7711“) = /ox 771137) = ﬁlfx)'

Therefore

“1/5 d
lim SUPM < 1.
z—0+ «75/771 (ilf)
Thus N )
. Jo u/9*(u) du _
20+ 22/g?(x) - log (1/x) ’
as claimed. O

Remark 43. If g € RVj(1), then (9.25) is not always true. In fact, we can have

e—0+ x2/g%(x) - log (1/x)

]

Remark 40 identifies a critical rate of decay of the step-size when the diffusion is

dominant. This is explored further in the following discussion.

Remark 44. Suppose p is defined by

g(z)

p(x) == 20oa(1/2))172" (9.28)

then p(z) — oo as x — 07, Furthermore if g € RV;(1), then p € RV;(0).

Proof. By the definition of p ¢?(x) = 22log (1/z) u*(x) or 1/p*(z) = 2%/¢*(x) -
log (1/z). Thus 1/p%(z) — 0 as z — 07 so p(zr) — oo as x — 0%, If g € RVy(1)
then x — ¢*(z)/2* € RVy(0), thus z — p?(z) = ¢*(z)/z* - 1/1og(1/z) € RVy(0) and
p € RVy(0). O
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The following lemma determines a sufficient condition on p such that (9.25) holds.

Lemma 39. Define u by (9.28). Suppose u € C*. Then

—zp'(x)log (1/x)

li =M €|0
e w(z) 0, o0,
ol
tmpies fx u/g2(u> " X
lim ! = € (0, o0].

=0t x2/g%(x) - log (1/x)  2M*

Proof. Since p € C'. Then by L’Hopital’s Rule

lim Jo w/g*(wydu hmM = lim z/(x?log (1/) pi*(x))
=0+ 12/g%(x) -log (1/x)  amot  1/u?(x) om0t =2u(x)73 - p/(z)
_ gy Y(log (1) -1/ ()
T ) @)
L il @)los (1/n)
= 5 (m =)
1
= o
as claimed.

We now explore examples to which Theorem 62 applies. The first example show the
theorem discriminates for a parametrised family of ¢’s, critical parameter values for
which finite-time or super-exponential stability occurs. We can also identify the ap-

propriate case in Theorem 62 to apply.

Example 64. Suppose

g(x) = zlog (1)"* (loglog (1))

Then p(z) = (loglog(1/z))" and

' (z) -«
p(z)  log(l/z)loglog(1/x)
Hence ) og (1
i o @loe (/) @y
20+ p(x) 2—0+ loglog (1/x)
and so by Lemma 39
Jo u/g*(u) du

li =
oot 22/g%(z) -log (1/z)  °
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_ x x o0 1
G(z) = / 2u du = / Y 5o du = / —=dw
o 9%(u) o u?log (1/u) (loglog (1/u)) log log(1/z) W™

(loglog (1/x))~%*Y
200 — 1 ’

If « < 1/2, then fxl u/g*(u) du — oo as x — 07 and we do not hit zero in finite-time.
However, if a > 1/2 then G(x) — 0 as z — 0. Thus, for a > 1/2

) 1
G(x) = :
@ (20 — 1) (loglog (1/2))** ™

So we have from Lemma 37 and Theorem 62,

lim w = 1 — L, as.
t»T7- T — 1t 2

By Theorem 63 we could have also concluded that

S A
im G g vt
z—0t G(x)

We now demonstrate that (9.12) holds. Since z = G(G~*(z)) then
(—logo G™1)(z) = exp ((2a — 1)~ Y@a=b) a:_l/(m_l)) = exp (a, - x_l/(Qa_l)) :
where a, := (2a — 1)7%/=)_ Then

(“logoGH(Ax) _ exp (an - (Az)~V/E7) —1/@a=1) (\-Y/Re=1) g
(_ ].Ogoé_l)(])) o exp (a* . x—l/(Qog—l)) - eXp (a* - . ( _ )) )

If A <1and o > 1/2, then A"/ — 1 > 0 and a, - 27/ — 00 as z — 0%,

Thus _
(—logo G™1)(A\x)
1

li =
o0+ (—logoG—1)(x)

= 00.
[l

A cursory glance at the structure to Theorem 62 might suggest that the asymptotic
behaviour (9.13) and (9.15) are incompatible. The following examples demonstrate
that this is not the case by using Theorem 62 to show the implication (9.14) implies
(9.15) holds but using Theorem 63 to show that the asymptotic behaviour in (9.13)
also holds.

Example 65. Suppose

o) = = 10g (1)) = (1og (1)) (105 (1))
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Then u(x) = (log (1/x))°. We have that

[e.e]

i . - " p-1-2et1
G(x) = / ———du = / du = —————
(@) o 9%(u) o u? (log (1/u))" % —1—-2c+1 log(1/z)

()

Thus G(z) — 0 as  — 0. We have y/(z) = —¢/z - (log (1/z))°"". Hence

—xp'(x)log (1/x)  —x-—c(log (1/x)) " log (1/x) . o
() a z (log (1/x))° —ee e
Thus T 2
lim Jo u/g"(w) du _ 1 € (0,00).

=0t 22/g%(x) - log (1/x)  2c
So (9.25) holds and hence (9.14) holds. Thus by Theorem 62 part (ii)

—log X
lim og X(t)

-1~ (—logo G-1)((2 — L)(T - 1)) =1, as. (9.29)

On the other hand we can use Theorem 63 to determine the asymptotic behaviour.
Let A <1

o - 3 oe() - () ()

(A
tim S -
e—0+ G(x)
By Theorem 63 ~
lim GxW®) _1_ L, as. (9.30)

tor- T —t 2
We now show that (9.29) and (9.30) are equivalent. Since z = G(G~!(x)) then

(—logo G~ (x) = (i) "

2cx

Hence (9.29) reads

I —log X () B
im . Yo a.s.,
=T (2¢(3 = L)(T — 1))
and (9.30) reads
1/2¢- (=log X(t))™* 1
lim [2e- (“log X(t)) =—-—L, as,
t—T— T—1 2
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and both limits are clearly equivalent. O]

Example 66. Suppose

g(x) = (log (3)) " (loglog (1))"* (loglog log (1))*

Then p(z) = (loglog (%))1/2 (log log log (%))a and so G is given by

G(z) = T du = ’ al du
(z) o 9*(u) /0 u?log (1/u)loglog (1/u) (logloglog (1/u))**
= L (loglog log (1/z)) ™Y,

200 — 1
If « < 1/2, then f; u/g*(u) du — oo as & — 0% while if o > 1/2, then G(z) — 0. We
now check whether condition (9.12) holds. Since z = G(G~*(z)) then
(—logoG™1)(x) = exp (exp ((2a — 1)_1/(2a_1) . x_l/(2"‘_1))) = exp (exp (a* . x_l/(%‘_l))) ,
where a, := (2a — 1)7%/*=) Then

(—logo G~ (\x) exp (exp (. - (Az)~/e=D))
(—logo G—1)(x) exp (exp (a, - x=1/(2a-1)))
= exp (eXp (a* . ()\];)71/(20471)) —exp (a* ] xq/(zaq)))

= exp (exp (z* . )\’1/(2“’1)) — exp (z*)) ,

where z, := a, -z YD If\ < 1and a > 1/2, then A/ @a—1) 1 and \7V/@e-D) 5 1
Thus z, — 00 as x — 0. Thus (9.12) holds:

(—logo G~ (\x)

li — = 00.
a0t (—logoG-1)(z)
Thus by Theorem 62, part (i)
~ _ . —(2a-1)
i CX@) /(20— 1) (logloglog (/X)) 1 o
t—T— T —1 t—T~ T—t 2
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Chapter 10

Asymptotic Behaviour of Numerical

Schemes for Superlinear SDEs

10.1 Introduction

In this chapter, we show by making an appropriate discretisation of the SDE (1.17)
Viz.,

dX(t) = F(X() dt + g(X (1)) dB(t),

that all the continuous time results in Chapter 9 for super-exponential stability and
finite-time convergence can be recovered. This is achieved via a discretisation of the
SDE for the process Z(t) := —log X (t) and taking a step-size at state x for the simu-
lated value of X (t) given by

2
x x
h(z) :== Amin (1, —_ —) :
[f(@)]" g*(x)
More specifically we recover faithfully the positivity of simulated solutions, the presence
or absence of a finite stability time and the asymptotic rates of convergence detailed
in the main results in Chapter 9 for all positive values of A. We recover analogous
convergence results regardless of whether these results refer to super-exponential rates

of convergence or the asymptotic behaviour as the finite stability time is approached.

10.2 Discrete-Time Stability and Finite-Time Con-

vergence

The logarithmic transformation is also helpful for understanding the convergence rate
and asymptotic behaviour of SDEs in the neighbourhood of the time at which equilib-
rium is reached. Preserving the positivity of solutions of SDEs by conventional direct

discretisation is essentially impossible to achieve for the highly non-linear equations
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Discrete-Time Stability and Finite-Time Convergence

studied here even with state-varying step size. A pre-transformation which preserves
positivity, such the logarithmic one, is much more intuitively natural for SDEs.

Let h(z) > 0 and let X (¢) be the solution of (1.17). We approximate the solution
Z(t) == —log X(¢) at the time ¢, by Z,. Discretise Z(t) by defining the sequences
(Z,), (X,) and (t,), where Zy = —log(, Xo = ¢ and to = 0, by

Znir = Zn + h(X,) - <_f)((X”) + % : 92;)2”)) +Vh(X,) - _g)((X") bnp1, n>0
' ' ' (10.1)
Xy =e 1 n>0, (10.2)
tort = tn + h(X,), n >0, (10.3)

where
T

h(z) = A - min (1, F@ m) . (10.4)

and (&,) is a sequence of independent and identically distributed Standard Normal

random variables. We define as before

lim ¢, =: T), (10.5)

n—o0

recognising that this limit can be finite or infinite. Under monotonicity conditions on
f or g (whichever is dominant asymptotically at the boundary zero or infinity) the
scheme correctly predicts in all circumstances whether the boundaries are reached in

finite time or not. This is laid out in Theorem 67.

Theorem 67. Suppose Z, is the solution of (10.1). Let L, (t,), T), be defined by
(1.25), (10.3) and (10.5).

(a) If L € (—00,1/2) and x + x*/g*(x) is asymptotically increasing, then

(i) f01+ u/g*(u) du = oo implies t, — 00 asn — 00 a.s..

(i1) f01+ u/g?(u) du < oo implies t, — Tj < 00 asn — 00 a.s..
(b) If L = —oc0 and x +— x/|f(x)| is asymptotically increasing, then

(i) f01+ 1/|f(u)] du = oo implies t, — 00 as n — 00 a.s..

(i1) f01+ 1/|f ()| du < oo implies t, — Tj < 00 asn — 00 a.s..

For simplicity, we prove Theorem 67 with the step-size

B(X,) = A - min (1, 1/ ‘f%) B 922(%)

) . (10.6)

The proof when the step-size obeys (10.4) is similar. Theorem 60 dealt with finite-time

or super-exponential stability. Theorem 67 is the discrete time analogue. As can be
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Discrete-Time Stability and Finite-Time Convergence

seen in Theorem 78 we can prove analogous preliminary asymptotic results for those

in Lemma 40 below with the simpler step-size specified in (10.4).

Lemma 40. Suppose (9.5) holds, Z, is the solution of (10.1) and X, obeys (10.2)

where ) )
- : f(X (X,
tny1 = Zh ]Z;A-mln<1 1/‘ —92X2 )

and L is defined by (1.25). Then

. B (X)) fX)N _
g, Xo =0, J;%me(’ e X, )T

and
log X,

lim =—-A, a.s..

noee S N min (1, g2(X;)/2X2 — f(X;)/X;)

Proof. Under (9.5), zf(z)/¢*(z) < A < 1/2,Vz € RT. Thus f(z)/z < A - ¢*(z)/z?

and 5o @) g 1\ ¢2(2)
) g4z g% (z
222 = <A_§) x2 <0
Hence f@) )| @) fa) (1 2(y)
ﬂ(x):‘ x _92x2 :g2:v2 oz Z(ﬁ_A)gxz =0
Now defining an = —&,11 we get

Tnir = Zn+ (X)) - (X)) + /R g 3

. 1 ~ \/_Q(Xn) . 1 r
= Z,+ A -min (m, 1) (X)) + —x. - min - (1, m) “Enit

— min (1. 7 i [ 950 9/ X 2
— Z,+A (1, 4(X,.)) + VA ( e ﬂ(Xn)> -

where

fn :=min (1, 1(X,)) and 7, :=min (an ’

Thus for n > 1

n—1 n—1 n—1
Z, = Zo+ZA'Mj+Z\/Z'7]j'€j+1 ZZo+ZA'Mj+M(n>7
j=0 j=0 Jj=0
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Discrete-Time Stability and Finite-Time Convergence

where M (n) := Z?’:—g VA ;- €41. Note that

ftn, = min (1, (X)) > min ( (% - A> 2%”)) >0,

and
s () P L (PN (X)X
= ( Xz T (X) ) = < Xz ’(1/2—A)92(Xn)/X%>

— min (gan)’ § /21— A))

n

= e (0 (5 ) <

Thus (1/2 — A)n? < p,. Then M is an L:-martingale because n? < (1/2 — A)~! with

quadratic variation (M) (n) = A7~ Y 17 - we give a careful proof of this later in this

proof. Consider the events:
A=A{w: (M) (n,w) > L<oo,n—o0} and A ={w: (M) (n,w)— oo, n— oo}.

Then there is an a.s. subevent of A on which M (n) — L’ by the martingale convergence
theorem - see Theorem 12.13 in [59]. Moreover, 7, — 0 as n — 0o on A a.s.. Since
> 0 then we have either > 72 ) p; = oo or 372 p; < oc. In the former case Z, — oo

and X,, — 0 as n — oo and therefore

Zn,
lim ———— = A.

n—0o0 ZJ —0 /’L]

In the latter case ) ™2 j1; < 0o in which case Z, — Z* € (—00,00) as n — oo, and
therefore X,, — X* € (0,00) as n — oo. But this implies u,, — min(1, 2(X*)) > 0 as

n — 00, 80 Y tij = 00, a contradiction. Therefore a.s. on A

n—1

1 X
lim —22% — A and  lim E pj =00, VweAas. (10.7)
n—o0 —

n— 00 Ej o

Suppose next we are on A, Since (M) (n) = 37~ 0177]2 —ooasn —ooand (1/2 —A)n? <

by, then Z] Op]—>ooasn—>ooonA’. Thus

n—1 9
Zn DA M(n) 2=

ok i i (M) (n) >80y

(10.8)

On A, a.s. we have M(n)/ (M) (n) — 0 as n — oo by the strong law of large numbers
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Asymptotic Behaviour for Discrete Equations

for martingales - see Theorem 12.14 in [59]. Also

n—1 9
0< 20" <1

T Xom 124

< OQ.

Therefore the last term on the right-hand side of (10.8) tends to zero as n — oo on A'.

Clearly, so does the first term. Hence once again a.s. on A’, we have

1 Xn n—1
lim OET =—A and lim E pi =00, VweA as. (10.9)

Combining (10.7) and (10.9) implies

log X,
lim 08 =—A, as..

n=eo S M min (1, g2(X;)/2X7 — f(X;)/X;)

n—1 2

o o S i (1 95) SO0

fi X, =0 and i 3min (1,580 - 0 ) = oo
]:

as required.

Note that M(n) is in the form M, := M(n) = Z?;& K;&;+1 where the |K;|'s are
uniformly bounded by a constant C' > 0. Therefore E [M?] < Cn? < oo for all n.
Moreover, because the K; is .#;-measurable, where .%, is the filtration generated by

the iid Standard Normal random variables (§),>1, we have that

Therefore, as (M,,) is clearly adapted to (#,), M, is an L?—martingale. ]

10.3 Asymptotic Behaviour for Discrete Equations

We show in the case that T) = 0o, that the rate of super-exponential convergence
exhibited by the solution of the SDE in Theorem 61 is recovered precisely by the
numerical scheme (10.1). This holds regardless of whether the drift or diffusion term
dominates. We also recover, in the case when f and g have finite non-trivial derivatives

at zero, the finite Liapunov exponent a.s. of the original SDE.

Theorem 68. Suppose L = —oco and x — x/|f(x)| is asymptotically non-decreasing.
Let L, F, Ty, (t,) and h be defined by (1.25), (1.29), (10.5), (10.3) and (10.6). Define

. T
lim —— =:¢c.

w=0+ | f ()]
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Asymptotic Behaviour for Discrete Equations

(a) Let ¢ € (0,00). Then X,, € (0,00) for alln >0 a.s., X, = 0 asn — oo a.s.,

t, — 00 asn — 0o a.s. and

log X,
lim —22n — f(0) <0, as.
n—oo

n

(b) Let ¢ = 0.

(1) If f obeys (1.27), then X,, € (0,00) for alln >0 a.s., X;, — 0 as n — oo

a.s., t, — 0o asn — oo a.s. and

F(Xn)

n

lim
n—oo

=1, a.s.

(ii) If f obeys (1.26), then X, € (0,00) for alln >0 a.s., X;, = 0 as n — oo

a.s., t, — Ty asn — 0o a.s..

Notice that Theorem 68 part (b) tackles the case of Theorem 67 (b) when L = —o0.

Proof of Theorem 68. We first prove part (a). Since lim, o+ z/|f ()]
then |f(x)| ~x/casx — 07 so f/(0) = —1/¢ < 0. Thus

Therefore 2y ¥
lim min (1, QQ(XQ”) - f(X ”)> = min(1, —f'(0)).
As
n—1 1
t, = A - min (1, ) ;
2 (X, 2XT — 1(X%,)/X,
then

lim b _ A -min (1,—-1/f(0)),

n—oo M

so t, — 0o as n — oo. Furthermore,

. log X, A
im =— a.s..
n—oco - min (1, — f(0)) ’
Hence, as f'(0) < 0, then
log X, log X,
lim —22% = iy 08 = f(0) <0,

n—oo 1, n—oom - Amin (1, —1/f(0))

=: ¢ € (0,00)

as required. We now prove part (b). In this case lim, .o+ z/|f(x)| = 0 then

2z f(2) x
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Asymptotic Behaviour for Discrete Equations

and

lim <g2<x> - M) —

z—0+ \ 272 x

Therefore there is Ny(e) such that ¥n > Ny(e)

i <1’ g (Xn) f(Xn)) _q

2X2 X,
Hence o
lim —82n —A, a.s.,
n—o00 n
and for n > Ny(e) + 1
A
t, =1 .
et ;( X))/2X7 = )/,
J o(e)

Suppose ¢(x) ~ x/|f(z)] as z — 0" and ¢ is non-decreasing. Thus ¢*(x)/2z% —
fx)/x ~|f(x)]/z ~ 1/p(x) as © — 0. Hence for every e € (0, 1), there is zo(€) > 0
such that for z < x(e)

1 1
1—e¢)- < - < (1 .
U m e T g
Define oy := (1 —¢€) - A and a_ := (1 + €) - A then there is Ny(e) > 0 such that
for n > Ni(e), e " < X, < e " and there is Ny(e) > 0 such that e " <
zo(€),¥n > Ny(e). Define N3(e) := max(Ny(e), Ni(€), No(€)) + 1, and n > Nj(e) + 1.
Since N3(e) > Ny(e) + 1, then

A
b=t 3 X2 = FOG)%;

j= N3(€ J J

Since X,, < e ™" < xo(e) for n > max(Ny(€), Na(€)), for n > max(N;(€), Na(e))

1 9°(Xa)  f(Xn) 1
(1—6)-¢(Xn)< oX? X, <(1+6)-¢(Xn),
so for n > max(N;(€), No(¢))
1 A 1
T Aodn) > PO 2X2 — [(X)/ X~ Tte A¢(Xn).

Now for n > Ni(e), then e " < X, < e *" s0 as ¢ is non-decreasing for n >
max (N1 (e), Na(€)), then ¢(e ") < ¢(X,,) < p(e*+") thus

1 i A 1
T AT BN X, T T

T - Agp(e ).
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Asymptotic Behaviour for Discrete Equations

Therefore, for n > Nj(e) + 1 > max(N;(€), Na(€)) then

tn <ty + Z Ap(e ) (10.10)
J =N3(e)
n—1
1 o
tn 2ty + T > Age). (10.11)
j=Ns(e)

Next consider e~ < ¢ < eon, Then, as ¢ is non-decreasing, we can deduce (see
the similar calculations between (10.18) and (10.19) for the details) the inequality

exp(—an)
p(e~Hh)) < l/ ’ Malu < ¢p(e™ ). (10.12)

O Jexp(—a(nt1)) U

By (10.11) for n > Nj(e) + 1

1 - N )
by > tae Y Ad(e ) >ty = d
Z vy T 75, Pp(e™*7) N3()+1 o / . u
J=Ns(€) :N exp(—a—(j

1 exp(—a—j) ”

J=Na(e) Jexp(—a-(+1) U

Thus for n > Nj(e) + 1

exp(—a—Ns(e)) d(u)
tn Z tNg(e) + m /;(p(a " T du. (1013)
By (10.10), for n > Ns(e) + 1
—1 -1 _ -
1 n Iy 1 n A [epl=a(G-1) d(u)
tn S oo T T Do DG < by + T o L,
j=N3(e) j=N3(e) T exp(—a+j)
1 .
1 n exp(=a+(G=1)) 44,
Ns(e) T 777 / _gb( ) du.
(1 — 6)2 ) (- ) Uu
J=N3(e) © FPLTAHI
Thus for n > Nj(e) + 1
1 exp(—a4(N3(e)—1))
bn < Ty + —/ M du. (10.14)
(1 - 6)2 exp(—a4(n—1)) U

We now concentrate on the proof of part (b)(i) and suppose f01+ 1/|f(u)| du = 0o. Then
f01+ é(u)/udu = oo because ¢(x) ~ x/|f(z)| as + — 0. Define ®(z) := le d(u)/udu.
Then ®(z) — o0 as ¢ — 07 and ®(x)/F(z) — 1 as + — 07. By (10.13), for n >
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Asymptotic Behaviour for Discrete Equations

Nj(e) +1

1
ty >ty + ——— - (Ple™ ") — (e N3 |
> N3<)+(1+€)2 (P(e™") — D(e )

So t, — oo asn — oo. Also, as e " < X, < e " forn > N3(e) + 1 and P is
decreasing then ®(e=*") > ®(X,,). Thus for n > N3(e) + 1

t, > tN3(€) + 5 ((I)(Xn) — @(e_a’N3(e))) .

(1+¢)
Since ®(X,,) — o0 as n — oo, then

lim inf tn > 1
11 111 .
o B(X,) ~ (1+ o)

Letting € — 07 yields

t
. . n >
ey 2t

Since F(x) ~ ®(x) as x — 07 and X,, — 0 as n — oo, then

F(X
lim sup (Xn)

n—oo tTL

<1 (10.15)
From (10.14) for n > Nj(e) + 1

ln1 <tp < tng(e) T . (@(e*a“”*l)) — @(e’a+(N3(€)’1))) )

(1—¢)?
Since X,,1 < e~ for n > Ny(e) + 1 then ®(X,_;) > ®(e~*+™Y). Thus for

n > N3(e) + 1

tno1 <ty + (P(Xnoy) — Bem MO

(1—-¢)?
Dividing by ®(X,_1) and letting n — oo yields

o1
(-

lim su

Letting € — 0T, taking reciprocals and noting that F(X,) ~ ®(X,) as n — oo, then

lim inf F(X0) > 1.
n—00 tn
Combining with (10.15) yields
F(X
lim M =1, a.s.,
n—00 tn

as required. This completes the proof of part (b)(i). To prove part (b)(ii) we now
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suppose f01+ 1/]f(u)|du < co. Then f01+ d(u)/udu < co. By (10.14), for n > Ns(e) + 1

1 exp(—a+(N3(e)=1)) 40y,
ly < tNg(E) + / ¢( )

. 27 .
(1 =€) Jexp(—ar(n-1)) u

Taking the limit as n — oo on the right-hand side yields

li tn < (o) + ————
sty < oo +

1 /exp(—a+<Na<s)—1>> B(u)
0

—— du < 0.
U

Since (t,) is increasing, it follows that (¢,) tends to a finite limit. O

The next result deals with the case when the diffusion term dominates and covers
Theorem 67 part (b) when L is finite and also part (a). Together with Theorem 68,
Theorem 69 covers all the parts of Theorem 67.

Theorem 69. Suppose L € (—o00,1/2) and x — x?/g*(x) is asymptotically non-
decreasing. Let L, G, Ty, (t,) and h be defined by (1.25), (1.34), (10.5), (10.3) and
(10.6). Define

7 )
im —— =: ¢
=0+ g2(x)
(a) Let ¢ € (0,00). Then X,, € (0,00) for alln >0 a.s., X, — 0 asn — o0 a.s.,
t, — 00 asn — oo a.s. and
log X;,

n

lim
n—oo

(b) Let ¢ =0.

(1) If g obeys (1.32), then X,, € (0,00) for alln >0 a.s., X;, = 0 as n — oo

a.s., t, — 0o asn — oo a.s. and

lim % = L L, a.s..
n—oo  t, 2
(i1) If g obeys (1.31), then X,, € (0,00) for alln >0 a.s., X;, = 0 as n — oo

a.s., t, — 1T, <00 asn — oo a.s..

Proof. We prove part (a) first. Since lim, .o+ z/g(z) = ¢ € (0,00) then g(x) ~ ¢'(0)z
as x — 07 and ¢ = 1/¢’(0). Then

gx)  [fl=) _ g (1 :vf(:v))‘

2x? x 22 \2 @)

sy (57 1) =0 (3-1).

Thus
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Therefore
2
o 9" (Xn)  f(Xn) -
nh_)rglo min (1, 2X,% — X, = min (1,9/(0)2 (% — L)) , a.s..
Thus
. 1
ZA min ( 5 5 > ,
= 9 (X;5)/2X5 — f(X;)/X;
and low X
lim - 08 2n T =—-A, as.
n—co - min (1, ¢'(0)2 (3 — L))
Thus
lim t—":A-min 1,+ .
Hence
. log X log X,
1 o=l =—g'(0*(3-L
et A ygoraony - OG- h

We now prove part (b). If lim, .o+ x/g(x) = 0 then

Thus

2 2
TN (A AR Y [T GO,
e—0+ \ 222 x =0t 12
Therefore, there is Ny(w,A) such that min (1, ¢*(X;)/2X; — f(X;)/X;) = 1 for all
n > No(w,A). Hence
. log X,
lim

n—oo n

=—-A, a.s.,

and for n > Ny(w, A) + 1

A
tn = tNo(w,a) + Z g*(X;)/2X2 — f(X;5)/ X,

j=No(w,A) J J

Since X, — 0 as n — oo and ¢*(z)/22% — f(z)/z ~ (3 — L) - ¢*(z)/2* as © — 07 the

convergence of (t,) to a finite limit is equivalent to the convergence of the series

I
—

— AX?

J

2(X;5)

<.
Il
o
Ne)
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Suppose y(z) ~ 2?/g*(z) as  — 0T and 7 is non-decreasing. Thus

g;g)_@NG_L)'ﬁ’ as z — 0%

Hence for every € € (0,1), there is zg(€) > 0 such that for z < zy(e)

(1—6)'(%—L)'7($)< 5E T <(1+e)-(%—L)-Tx>.

Also for every e € (0, 1) there is Ni(€) € N such that for all n > Ny(e)

log X,

—A—Ae < < —=A+ Ae,
or —(1+¢€)-An <logX,, < —(1 —¢€)-An which implies for all n > N;(e)

e - — 6—(1+6)An < Xn < 6—(1—6)An — o+

where ay = (1 —€)- A and a_ = (1+¢€)-A. There is Ny(e) > 0 such that ¥n > Na(e)
then e~ 2079 < g4(e). Let N3(e) := max(Ny(e), N1(€), Na(€)) + 1. Let n > Ns(e) + 1.
Since N3(€) > Ny(e) + 1 then

A
T i Z X)2XE — [(X,)/%,

Jj= N3(6 J J

Since X,, < e 2079" < z4(e) for n > max(N;(e), No(e)) for n > max(N;(e), No(e))
then

(X, X, 1
(1_6)'(%_”.7()1@1) < 92()(%) — f(Xn) <(l+e-(1-1)- 7()1(71)
Hence for n > max(Ny(¢), Na(€)), we have

1 Ay(X,) A 1 Ay(X,)
-0 -1~

> . .
L)~ g3 (Xa)/2X2 - f(Xo)/ X~ (L+€) (5-1L)
For n > Ni(e), then e™®" < X, < e *" so as 7 is non-decreasing, for n >

max (Vg (€), Na(€)) then y(e*=") < (X)) < y(e~*™). Thus for n > max (N (€), Na(¢))

1 Ay(em™m) - A S 1 Ay(e)
(I—e¢) (-L1) ~ @(Xn)/2X2 = f(X0)/ X~ (1+€)  (3-1L)

(10.16)
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Therefore for n > N3(e) + 1 > max(NV;(€), Na(€)) then

A
t ft]\/':; + Z 2 )
2 PN )/
then .
— 1 Avy(em+7)
th <twyo+ >, ———— , (10.17)
Jj=N3(e) (1 6) (5 B L)
and .
— 1 Ay(e*‘"—])
tn > tago + Z . . (10.18)
Jj=N3(e) 1+6> (§—L)
Consider e+ < 4 < e7®". Then as + is non-decreasing y(e ") < y(u) <
y(e7") or
et t) _y(u) _ ae)
u -~ u T u
Therefore

exp(—amn) 1 exp(—amn) exp(—an) 1
v(e‘a("ﬂ))/ —du < / () du < fy(e_a”)/ — du.

xp(—a(n+1)) U xp(—a(nt1)) U sp(—a(n+1)) U

Since f;:;p( ;(Z)Jrl)) 1/udu = log (e=") —log (e ™)) = —an+a(n+1) = a, we have

1 exp(—an)
,y(e—a(n-&-l)) < _/ 7(“) du < ’7( —om) (10‘19)
@ Jexp(—a(nt+1)) U
By (10.18), for n > Ns(e) + 1
-1
t, > tN3(€) + — T Z e~ - J
1 + 6 5 — ZNs(o)
-1
1 exp(—a_j) U)
> tN,(€)+—'1 / du
1 ” exp(—a—j) u)
tNy(e) + . / du.
’ (1+€)? l - J No(e ~(j+1))

Thus for n > Ns(e) + 1

1 ' 1 /exp(—aN3(e)) ’Y(U)

tn >ty + —— du. (10.20)

- (1+€)? s-L
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By (10.17), for n > Ns(e) + 1

n—1
1 1 —aai
b < tnot T T > Ay(e)
2 Jj=Ns(e€)
1 1 n—1 A repl=ar(G=1) ~ oy
S tN3(€)+1T'ﬁ —/ Mdu
€ 35— j=N3(e) At Jexp(—aqs) u
n—1 _ -
1 1 exp(—a4(j—1)) ~(u)
= tN3(€) + (1 I 6)2 T / . U du.
2 j=Na () exP(=a+])
Thus for n > N3(e) + 1
1 1 exp(—a4(N3(€e)—1)) ~(u
tn < tng(e) + Ao 1 L/ Qdu. (10.21)
€ 2 = exp(—a4(n—1)) u

We now concentrate on the proof of part (b)(i) and suppose now f01+ u/g*(u) du =
oo. Then fol+ y(u)/udu = oo because y(z) ~ 2%/g*(x) as * — 0T. Define I'(z) :=
fml v(u)/udu. Then I'(x) — oo as ¢ — 0T and G(x)/T'(z) — 1 as x — 0. By (10.20),
for n > N3(e) + 1

1
1+e2 11

tn = tNg(e) + (T(e™ ™) = (e~ M),
so t, — oco as n — oo. Also, as e " < X, < e " for n > N3(e) + 1 and T is
decreasing I'(e”*-") > I'(X,,). Thus for n > Nj(e) + 1

1 1

th >t .
_N‘“’jL(l—i-E)2 —L

(D(X,) —T(e ™ N0))

]
2
Hence as I'(X,,) — oo as n — oo, then

L tn 1 1
lim inf 5" T .

Y

n—00 F(Xn)

Letting ¢ — 0" and taking the reciprocal yields

lim sup L(Xo)

n—oo tn

<- -

?

DN | —

and therefore as G(z) ~ I'(z) as ¢ — 07, then

. G(Xn) _ 1
lim sup <=
n—o0 tn 2

— L, as. (10.22)
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By (10.21), for n > Ns(e) + 1

1 1
1+e2 T-L

by < tng(e) + (F(e"“(”’l)) — F(e*%(Ns(e)fl))) .

1
2
Since X,,_1 < e forn > Ny(e) + 1, T (X,_1) > T (e_a+(”_1)). Thus for n >
N3(€) —|— 1

1 1
tho1 <tn < Tng(e . (X, 1) — D(e@rWNs=1)
1 —N3()+(1_|_6)2 %—L<( 1) (6 ))
Hence as I'(X,,_1) — oo asn — o0
tho1 1 1

li . )
el T(X, )~ (1—e? I-L

Proceeding as above,

X 1
liminfc;(—nl) >_—L, as
n—oo n—1 2
Combining with (10.22) yields
X 1
lim G(Xo) =—-—L, as. (10.23)
n—oo t 2

We now concentrate on the proof of part (b)(ii) and suppose now f01+ u/g?(u) du < oco.
Then f01+ v(u)/udu < co. By (10.21)

1 1 exp(—a (N3(€)—1))
tn S tN3(e) + . I / M du.

1
(1—€)? 53— L Jexp(—ar(n-1) U

Taking the limit as n — oo the right-hand side yields

— du < oo.

limsup £, <ty +
u

L
. (1-€)? 2-LJ

Since (t,) is an increasing sequence, it follows that (¢,) tends to a finite limit, as

claimed. O

We are now going to prove an analogue of Theorem 62 which describes the asymp-
totic behaviour of the SDE in the vicinity of 7;. We note that Theorem 69 part (b)(ii)

does not supply such asymptotic behaviour in contrast to part (i).

Theorem 70. Suppose L € (—00,1/2), g obeys (1.31) and x — g*(x)/z? is asymptotic
to a continuous non-increasing function. Let L, G, (t,), Ty, be defined by (1.25), (1.33),
(10.3), (10.5).
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Asymptotic Behaviour for Discrete Equations
(i) 1f -
lim lim inf (—logoGi )(Az) = o0,
A=l z—0t (—logo GT1)(x)
then a(x .
lim A< ) =—-——0L, as
n—oo Th _ tn 2
(i) If
lim limsup( logo G7)(A) =1,
A=17 L 0t ( IOgOG 1)( )
then
—log X,
m _
n—00 (

_ - =1, a.s.
—logo G1)((3 = L)(Th — tn))

Proof. We start by developing some useful estimates connecting G, Ty — t, and X,,.
Define T'(z) := [ y(u)/udu. If f01+ u/g*(u) du < oo, then T'(z), G(z) — 0 as z — 0
and G(z)/T(z) — 1 as  — 0T, Then ¢, — T, < co. For n > Ny(e) + 1

~

A
Th tNg + Z 2 )
g PN =TT
A
t, = t .
wol) ¥ Z X;)/2X2 = f(X,)/X,
Jj=N3( 6)
Thus for n > Ns(e) + 1
. > A
T —tn = Z 2(X

2 ) 2XE — F(X)/X,
and for n > max(N;(e), No(¢))

1 Ay(e ™)

S A < I Ay(e > ™)
1—e¢ s—L T (Xn)/2X2 - f(Xn)/Xn T 1+4e :—L
Hence
o) > ty > < - Z Avy(e™@7).  (10.24)
2
Define a_

(14¢€)-Aand oy := (1 —¢€)-A. Then by (10.19)

N N T
ZM =3

—du = ! i/exp(a—j) —V(U) du
xp(—a—(j+1) U L+e= /e

xp(—a—(j+1) U

1 exp(—a_n)
= / M du.
1+e€e )y

u
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Asymptotic Behaviour for Discrete Equations

Hence for n > Ns(e) + 1

(10.25)

Also by (10.19)

© A ree-at(i-1) 1 exp(—a4(j—1))
ZA,Y —oa+] Sza_/ ﬁy(u) du = Z/ 7<u) du

xp(—or..5) u 1 — €= Joxp(-ars) u
_ 1 /exp(a+(n1)) () "
1—€J, u '
Hence for n > N3(e) + 1
1 Ple-ost-Dy
(c R (10.26)

Next recall that e=*-" < X,, < e~ " for n > N3(€). From (10.25), for n > N3(e) + 1
Fleem) < (1+ - (4 — D)(Th — ),
since T'(e7-") /G (e ") > 1/(1 + ¢€) then Vn > Ny(e)

Gle™* ™) < (1+¢€)?’ (3 —L)(T) — t,). (10.27)
Define Nj5(e) := max(N3(e), Ny(€)). Thus for n > Ns(e) + 1

e < G ((1 +e)* (L= L) (T - tn)> .

Now Xg~/*+ < (em+m)a=/a+ = e=@=" for n > Ny(e). Thus for n > Ns(e) + 1, as
a_jfar = (1+¢€)/(1—e€), then

X7(11+e)/(1—e) < ! ((1 + 6)3 (% _ L) (Th _ tn)) ) (10.28)
This implies
1 B .
. i_i -—log X,, > (—logoG™") ((1 +e)’ (% - L) (Th — t”)> : (10.29)

From (10.26), for n > Nj(¢) + 1, then
[ (e D) > (1—€)? (2 = L) (Th — tn).

Now for n > Ng(e), G (e7+(""D) > (1—¢)-T' (e7*+"~V). Define Ny(€) := max(N3(e), Ng(e)).
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Asymptotic Behaviour for Discrete Equations

For n > Nz(e) + 1
Ge ™) > (1—e)? (- L) (Th —t). (10.30)

Thus
e~ L o0t = gk (n—1) > G-l ((1 — 6)3 (% — L) (Th - tn)> .

For n > Nj(e), X3/ > (e=o-m)o+/a= = ¢=o+n Thus for n > Ny(e) + 1

X(1-9/(149 > oot . G <(1 —eP (L —1L) (T}, — tn)> , (10.31)

or

1—¢
1+e€

- —log X, < a; + (—logoG™Y) ((1 — P (L—L)(T) - tn)> . (10.32)

We now use the estimates we have derived to establish a direct connection between X,
and T, — t,. Recall from (10.27) that for n > Ny(e) + 1

Gem ) < (1+e)?P (L= L) (T} —tn).
Now X2/ < e=a-n for p > N3(e) or X (H/A=9)  p—an thyg for n > Ns(e) +1
G (XWH/0=m) < (14 e)*- (L = L) (T) —t.). (10.33)
Similarly recall (10.30) is
Ge™-e ") > (1+e’ (53— 1) (Th — tn),
for n > N7(e) + 1. Then because X5/ > (e=0=m)a+/0= = ¢=0+n e get
G (eATIXIHI =) > (14 e)® - (L — L) (T} — t). (10.34)

2

Let y, = X\ 079; then ¢~/ = X, Hence by (10.33)

~ A (,,(1—e)/(1+e)
G (X.) G )
T G-0) -t O
Therefore, as y, — 0 as n — oo
_ ~ (1—€)/(1+4¢)
G, , G
lim sup — < (14€)?- (2 =L)limsu =

G x(lfe)/(H»e)
< ra (3 1t S
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Asymptotic Behaviour for Discrete Equations

Now because (10.33) and (9.12) holds by Lemma 38 then lim sup, .o+ G(2*)/G(z) =
for all A < 1. Hence letting e — 07 yields
G(X,) _1

lim sup — < - —L. 10.35

It remains to prove a corresponding lower bound. Next for e € (0,1),A > 0, de-
fine zo(€, A) 1= e~ A0+I0+29/¢  Quppose z < (e, A) so x < e A0F90+29/¢ - Hence
x% < e A0=9) or 2179 < m(1+5>((71+26> Thus €200 < g~ 15T 155 ag 1w A0 <
x5 . Now, as X, — 0 as n — oo, there is Ng(e, A) > 0 such that X, < z2(e, A)Vn >

Ns. Let No(e) = max(Ny(e), Ns(e)). Then X'~/ 0H9ea0-a o x(179/0+29 5q

G (Xél_e)/(1+€)€A(1_e)) < G (X7(ll—e)/(1+26)) )

By (10.34) for n > Ny(e) + 1

G (X(V0H29) > (14 e (3 = L) (T), — t).
How )/( )
A ~ (1—e)/(142¢
(1408 (- L) (B 1) _ G (N )
SO
~ G X(l—e)/(l-‘r?e))
. Th - tn . < n 3 /1
Gy < mw gy /UG- D
' Gt (2(1-9/(+20)) L
< hii?)lip G /(1 +€) (5 — L)
1

(I+e€?3(3-L)

Thus by (9.12) and Lemma 38

lim inf ?(X”> > (1+¢€)?- (— - L) :

n—oo h— tn

Letting € — 07 yields -
X 1
lim inf Cf< n) > - — L.
n—oo Th _ tn 2

Combining this with (10.35) completes the proof of part (i). To move to part (ii) recall
(10.29): for n > N(€) + 1, we have

1+¢
1—¢

- —log X,, > (—logo G™1) ((1 +e?(i-1) (T), — tn)> :
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Therefore with 7, := (3 — L) (T), — t,)

—log X, - (1 — e) (= logo G1) ((1 + €)37,)
(~logoG) (3= 1) (T~ 1)) \LHe (—logoG~1)(ra)
so as 7, — 0 as n — oo, this yields
_ _ _ ~-1 3
lim inf ] log X, A > (1 6) i inf (—logo G )—(,(11 +€)°1y)
e (—logo GY) ((% — L) (T}, - tn)> Lde/ noe (—logo G71) (15)
1— —1 -1 ((1 3
> € -liminf( ogoG )_(( +€) :(;)
1+e) a0t (—logoG—1) (2)
Letting € — 07 and using (9.14) gives
_ _ -1 3
lim inf _ —logXn > 1. lim liminf 128°C )_(_(11 +e)'z)
"% (~1ogo G (5 - L) (Th — 1)) 0t w0t (=logoGTY) (2)

- 1. (10.36)
Proceeding in a similar manner with (10.32), we arrive at the estimate

. - log Xn
lim sup

s (<logo G (3= 1) (T~ 1) =t

Combining this with (10.36) gives the desired conclusion of part (ii), as claimed. [
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Chapter 11

Finite-Time Stability with Small

Noise

11.1 Introduction

We have already observed that the solution of the ODE
() = f(e(t), t>0, 2(0)=¢€>0, (11.1)
with F(x) = fxl 1/|f(u)]du — o0 as  — 07 and f(z) < 0Vz < 0 obeys

N AC0)

t—o0 t

= 17
and that this rate of decay is recovered for SDEs with “small” noise. In fact if

g*(x) _
@] Y (112)

then the solution of the SDE (1.17) obeys

lim
t—o0 t
However, Theorem 62 suggests that a diffusion term satisfying the small noise condition
(11.2) may not be sufficient to ensure preservation of the finite-time stability hitting
asymptotics of the ODE (11.1). More precisely, if F(z) = [1/|f(u)|du — 0 as
x — 07 then the solution of (11.1) obeys
F(a(t))

lim ——22 =1, (11.3)

t_>T£_ Tg —1
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where Ty = fog 1/]f(u)| du. While the solution of the SDE (1.17) obeys

tlir%l_ F;L_(tt)) =1, as. (11.4)
if _
lim T inf (10800 (11.5)
A=1t 20t (—logoF~1)(x)
and
lim — lo_g X(t) 1,
t—T- (—logoF=1)(T —t)
if _
lim limsup (~logoF ) () = 1.

A1 g0+ (—logoF—1)(z)
In the latter case we do not have asymptotic behaviour of the type seen in (11.3), while
in (11.4), the asymptotic behaviour in (11.3) is recovered.
In what follows next, we impose a stricter condition on the noise term which forces
it to be smaller than specified in (11.2). In fact, we ask that (1.55) holds with implies
9*(x)

there exists 6, 9; > 0 such that sup —————— =:¢ < . 11.6
! o<o<e; | f(2))] (0

It can easily be seen that this is more restrictive than (11.2), indeed (11.6) implies

(11.2) for
2 2
g (x) : g°(z) 0
1 = 1 _— =
I D@ e <w1+9\f(x)\ v) =
so we must have L = —o0.

The rationale for this condition is that it allows the asymptotic behaviour in (11.4)
to prevail without placing additional conditions on f, such as (11.5). We assume the

following hypotheses on f

f(z) <0,0 <z <d; (11.7)
x| f(z)|/x is asymptotically decreasing; and (11.8)
x — |f(x)| is asymptotically increasing. (11.9)
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Continuous Asymptotic Behaviour

11.2 Continuous Asymptotic Behaviour

We now prove our main theorem in this direction.

Theorem 71. Suppose p(co™) = co. Suppose also there exists 0 such that (1.55) holds
while f obeys (1.26), (11.7), (11.8), (11.9). Let p, F and T be defined by (9.3), (1.29)
and (1.22). Then X(t) > 0,Vt € [0,T) a.s., X(t) >0 ast - T a.s., T < oo a.s.

l““ — 1’ a.s.. 11.1

Proof. As pointed out above (1.55) implies (11.6). Let # > 0 be the number in (11.6).
If g (z) ~ |f(z)|/r as * — 0F is decreasing since x +— x7Y is decreasing so n(z) =
m(x)r~? is decreasing on (0,d,). Here n(z) ~ |f(x)|/z'T% as © — 0T is decreasing.

Since
9% () 9*() o

df @) @ f@)]

then )
R G
im =
e—0+ x| f(z)]
Thus as f(z) < 0, we have zf(z)/g*(z) — —oo as x — 0T. Since (11.8), (11.9) are
true and F(z) — 0 as  — 0%, it follows that X (t) — 0 as t — T~ a.s. from Theorem
60. Consider Z(t) := X (t)~%. Then Z(t) — oo ast — T~ a.s. and by It6’s Lemma for

te0,7)

w+1%X@
(s)

)) ds+

) f(X
[
Define
(7)) = O+1) £ O+ D) . —g()
) ’ +f()(1 2z f(x) ) d v@) o110
Then

= X(O)9+/t7r(X(s))ds—|—M(t), (11.11)
where M(t) := ftV(X(S))dB(S). Thus

0

— 0. (11.12)
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Hence

09°(x)

y2($) 9292(x)x_(2+29)
lim su = lim su = limsup ————+*— < 0. 11.13
e 7 B e Gl o Ty ] (11.13)

Define A := {w : (M) (t,w) = L' < ccast — T}. Then M(t) - L* ast — T~ a.s. on
A. Since X(t) — 0 as t — T~ a.s., the left-hand side of (11.11) tends to infinity as
t — T~. Therefore t — fot (X (s))ds — o0 ast — T, a.s. on A. Therefore

: X(@®)™

lim ———— =1, a.s. on A.

=T~ fOtﬂ'(X(S))dS
Finally, (11.12) implies that

lim X(t)ie
=T 0 [ F(X(5))]/X ()74 ds

=1, as. onA. (11.14)

Define A" := {w: (M) (t,w) — occast — T'}. Then limsup, ,,- M(t) = oo and the
liminf, ,7—- M(t) = —o0 a.s. on A’. Also, we see that m(x) > 0, Vz sufficiently small,
so there is 7" < T such that 7(X(t)) > 0Vt € [T",T). Therefore fJW(X(s)) ds tends

to a limit as ¢ — T—. If it is finite, a contradiction results because

t—T— t—T—

liminf X (+)~% = lim inf (X(O)‘g + /OtW(X(s)) ds + M(t)) = —00.

Hence, we must have f(f (X (s))ds = o0 ast — T~ a.s. on A’. Therefore

lim —M(t) = lim < M(
)
)

H (M) )

=1 [Tr(X(s)ds =1 (M) () [Tr(X(s)) ds

o MO [y v3(X (s)) ds
=1 (M) () =7~ [T7w(X(s))ds

(11.15)

Consider the second quotient as ¢ — T—. First, we have v?(z)/7(x) < ¢ from (11.13)
for all x < §; and some ¢ > 0. Also X(t) < 0,Vt € [T”,T). Thus for t € [T",T),
V(X (t)) < em(X(t)). Thus for t € [T",T),

"

/Otz/Q(X(s))ds _ /OT" VQ(X(s))d3—|—/t V(X (5)) ds

IN

/OTN V(X (s)) ds + c/t (X (s)) ds.

1

Thus

Jo V(X(s)ds +C}

lim su
= p{ [r(X(s) ds

T~ fot m(X(s))ds T~
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Returning to (11.15) yields lim, ,,— M(t)/ fot m(X(s))ds =0 a.s. on A’. Hence

—0
i tXL =1, as.onA.
=T [ m(X(s))ds
Using (11.12) yields

lim X(t)_e
=T 0 [7]F(X(5))]/X (5)+ ds

=1, as. onA. (11.16)

By (11.14), (11.16) and since AU A’ is an a.s. event then

X(t)™?
lim —; (®) =1, as. (11.17)
=70 [ [F(X ()] /X ()74 ds
Next we have that there exists a function n with n(z) ~ |f(x)|/2'™ as x — 07 which
is decreasing. This follows from the asymptotic monotonicity of z — |f(z)|/z and

x— =% Thus
X(t)™*

T fg On(X(s))ds

=1, a.s.

Define I(t) := fotn(X(s))ds, t €[0,7). Then I € C'(0,T), I(t) - oo ast — T~ and
n(X(t)) = I'(t). Since 7 is invertible then

LOX@ i)
t—17- 0I(t) 7 OI(t)

=1, a.s.

Thus for every € € (0,1) and t € [Ty(€),T)

X~
l1—-e< o

< 1+e¢,

or for To(e) <t < T
1—-e< %((tt)))e <l+e
Thus for t € (Ty(e), T), (1 —¢€)-0I(t) <n (I'(t))"% < (1+¢€)-0I(t) or
(1—e) Yo 97V 1) V0 > Y (I'(t)) > (L+ €)Y .97 V0 1 (1)~ 17,
Since 7 is decreasing for t € (Ty(€),T), we have

n ((1 — 6)71/9971/9[@)71/9) <I'(t)<n ((1 + 6)71/9971/91<t>71/9) .
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Hence for T' > t > Ty(€)

TLS) —t an TL s _
/tn(a[(s)l/H)dSZT t d /tn(a+f(8)1/9)d <T-—t,

where a_ == (1 — €)Y . 079 a, := (14 ¢)7Y%. 0719 Now recalling that F(z) =
Jo 1/1f(u)| du, then as t — T~

TS s
/w(af(s)w)d ba’F (al(t)),

because I(t) — oo ast — T~

T T al(t)=1/0 1
/ LZIO ds = 9&9 / IR VRN dU,,
e n(al(s)=) 0 uttn(u)

and u'*%n(u) ~ |f(u)| as u — 0F. Therefore

T _
I I —-1/6 d egF _It_1/9
| <t S L@ L) ds 00 Pl 1O
t—T— T—1t t—T— T —t

and

. _
I I(s)~Y%) d 0a’ F(a,I(t)~4/0
1 > limsup ft (s)/n (a+ () ) - lim sup @i Fay ®) )
T T—1t PN T—1t

Thus, as ). = (1 £¢)71- 671 then

F(a_I(t)~V/? F(agI(t)=1/°
1 — e <liminf (a (t) ) and limsup (a+() )

<1 s.. (11.18
t—T— Tt T~ T—t sl+e as. | )

Recall also for Th(e) <t < T, (1 —¢)-0I(t) < X(t)™? < (1+¢€)-0I(t), then
(1—e) V0070 1) Y0 > X(t) > (14 €)Y 070 (1)~1/9.
Thus for Tr(e) <t < T
a_I(t)™Y0 > X(t) > a, I(t)~V°. (11.19)

Now by (11.19), F(a_/as - X(t)) > F (a_/ay - asI(t)"/%) = F (a_I(t)""/%). Thus
by (11.18)

F(a_/as - X(t)) F(a1(t)”')

lim inf > lim inf > 1 —e.
i inf ———77 = > liminf —— o > 1
Hence
()" x)
lim inf > 1 —e. 11.20
im in T zl=e¢ (11.20)
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Similarly by (11.19) F(ay/a_-X(t)) < F(ay/a_-a_I(t)"%) = F (ayI(t)~?).
Thus by (11.18)

F(ay/a_ - X(t)) F(a 1(t)71)

lim sup < lim sup <1l+e
t—T— T—1 t—T— T—1
Hence ) »
() xm)
lim sup <l+e (11.21)
t—=T— Tr—t
Now
_ _ - \1/6
F(X(1) Fixe) P69 x0)
limir_lfT—t = liminf | — 1 T
t—T — t—T F ((1—1-2) X(t)) —
F(X(t
> (1 —¢)-liminf — ( 159))
SR (19 X))
F
= (1-¢)-liminf (x)l

20+ <<§) /9$>.

Hence if we temporarily assume that

lim liminf (11.22)

e—0tT z—0t F ((1+e) /0 Z’) ’

then
>1, as. (11.23)

Also

t—T- F

< (1+e€)-limsup _((

= (1+¢)-limsup .
(1+¢) msu F((b) /9x>

Hence if we once again momentarily suppose that

F
lim Tim sup —— ) =1, (11.24)
e B ((59) )

—_

=
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then we have

F(X(t
limsupM <1, as. (11.25)
tor— T —t

Combining (11.23) and (11.25) gives the result. It remains to prove (11.22) and (11.24)
hold. (11.22) is equivalent to
F(x)

lim liminf —= =1 11.2
S Moot oy = o

and (11.24) is equivalent to

R
| | = =1. 11.2
af{{ 1&2313 F(ax) ( )

Putting y := az in (11.26), then © = y/a = ay where o := 1/a. Then (11.26) is

equivalent to ~
Flay)

lim liminf =22 = 1, (11.28)
a—1— y—0t F(y)
as @ > 11in (11.26). Similarly (11.27) is equivalent to
F
lim Tim sup %) _ 1, (11.29)
a—=1t o+ F(y)
We consider (11.29) first. Firstly, F(ay)/F(y) > 1 for e > a > 1. Write
Flax) F()+/M L (11.30)
azx) = F(z u. :
o ()]

We have 1 (z) ~ | f(x)|/z as x — 01 and n; is decreasing and n3(z) ~ | f(z)| as x — 0T
and 73 is increasing. Then for z < x1(€) for € € (0,1) so small that (1 +¢)?/(1 —¢)?-

log v < 1 (which implies 0 < € < (y/1/loga —1)/(y/1/loga + 1)) then

1-09- T iy <@g DL

and (1 —¢€) - |f(z)] < m3(x) < (1 +¢€)-|f(x)]. Let ax < z1(e). Then, as |f(z)| >
xm(z) /(1 +€) for ax < x;(e),

azx 1 azx 1 1 arq 1
[ mes ) mw mare <00 st

Now ny(x) > ni(u) > mi(ax) for u € [z, ax], so 1/m(u) < 1/n(ax). Thus as n(ax) >
(1 —€) - |f(az)|/az then for ax < xq(€)

1+e€ ox
l—e [f(az)|

/ ——du<(l+¢€)-—— loga <

| f(w)] m(az) -loga. (11.31)
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Now for x < 1 (€)

_ T * 1
k) :/0 Wd“z/o /(=€) - ns(x)

because |f(x)| < n3(z)/(1 —€). Hence for x < z1(e)

For 0 < u < z, then n3(u) < n3(x). Hence 1/n3(u) > 1/n3(z). Thus

F(x)z(l—e)/:@du.

— X

Pla)2 (1=

and as n3(z) < (1+¢€)-|f(z)], then 1/n3(x) > 1/(1+¢€)-1/|f(z)]. Thus for x < z1(e)

Therefore, by (11.32) for ax < z1(e)

Thus

_ 1—c¢ T
P> 1 e
_ 1—e¢ ax

F(ax) > 1+e'|f(ozx)|‘

ox 1+e -
Faz) < 1_€-F(am).

Hence by (11.31), for ax < x1(€)

/OL[L’
x

1 du§1+€-1+6
|f(w)] 1—€e 1—c¢

Putting this in (11.30) yields for az < z1(¢)

F(ar) < F(z) +

Thus as (1+¢€)?/(1 —¢)?

Thus

Letting € — 07 yields

(1+¢)?
(1—¢€)?

-log v < 1, then for azx < z1(€)

F(ar) < (f:ﬁ()? )
1-— o -log v

F 1
lim sup _(Om) <

ot F(r) 71— gfgz loga

_ F(ax) 1
1 <limsup — < .
esor F(x) 1 —log a
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Continuous Asymptotic Behaviour

Therefore _ _
1 < liminf lim sup F_(ax) < lim sup lim sup F_(ax) <1.
a=1t L o+ (x) a1t aoot F(x)
Hence (11.29) holds. We consider (11.28) for 1/e < a < 1. Let € € (0,1) be so small
that (1 4+ ¢)?/(1 — €)? - log(1/a) < 1. It is important to obtain a lower bound on

F(ay)/F(y): write

F(z) = F(ax) + ) ﬁ du. (11.33)
Now by (11.31), for z < x1(e),
| 1 “1 1 1
s o e ara e (2)
Thus, as my(z) > (1 —¢€) - | f(z)|/x, we have
| 1 1 1+e T 1
[t 0o oe () < 20 g s (a).
Hence by (11.33) for = < z(e)
F(z) < Flax) + 11LE -ﬁ-log (é) : (11.34)

Since z/|f(z)] < (14 €)/(1 —¢€) - F(z) from (11.32), from (11.34) we get for z < x;(e)

F(z) < F(azx) + (1+e) - F(x) - log (é) ,

which rearranges to give for x < z1(e)

Flaz) > F(x) (1 _ 8 - 32 og (é)) .

Therefore

.. . F(ax) _(1—}-6)2'0 1
At T B lg<a)'

Letting € — 07 yields for « € (1/e, 1)

F 1
1> timinf 20 S g g (—) .

a0t F(x) a
Thus P P
1 < liminf lim inf _oz:v) < lim sup lim inf _(ax) =1.
asl- 2—0+t  F(x asl—  a—0t  F(x)
Hence (11.28) holds. This completes the proof. O
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11.3 Power Pre-Transformed Scheme

Define the sequences

—09(X5)

h(Xn) ' W ’ Sn-‘rla

n>0, Zy=C"? (11.35)

and (&,) is a sequence of independent and identically distributed Standard Normal

random variables and

X, =2 n>0, Xo=¢, (11.36)
tn+1 = tn + h(Xn), n 2 O, to = O, (1137)

where h satisfies
h:[0,00) [0, 00) is continuous with h(0) = 0, h(z) > 0,V > 0 (11.38)

T 2

@) g3 (@)

Our first main result shows, very roughly, that under the conditions of Theorem 71 the

there exists A > 0 such that h(z) = A min (1 ) NVa >0, (11.39)

discretised solution remains positive, tends to zero and obeys an asymptotic relation-
ship which is the discrete analogue of (11.16). Recall that (11.16) enabled us to obtain
direct asymptotic information about the behaviour of the solution of the SDE near the

finite stability time.

Theorem 72. Let ¢ > 0. Suppose there exists 0, & > 0 such that (11.6) and
x € R/{0} implies /% € (0, 00). (11.40)
holds. Suppose g : [0,00) — [0,00) is continuous, f obeys
f(0)=0, f(x) <0Vz >0, f is continuous on [0,00), (11.41)

while h obeys (11.38). Then X, € (0,00) for alln >0 a.s., X,, = 0 as n — o0, a.s.

and
X 0

n*wz »h(X)0X; Y (X))

=1, as. (11.42)

Remark 45. Suppose p,q € N with p, ¢ relatively prime, ¢ odd and p even. If § = q/p
then (11.40) is true
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Proof of Remark 45. Let x # 0. Then

1
16 _
x = @ for x # 0

—~

and so as 2'/9 € R and p is even thus =% > 0 for 2 # 0.

Proof of Theorem 72. Define

o 1= B (60D FX,) (1—%)) and v =

2X,f(X,)

h(Xn)

_99<Xn)

0+1
Xn

so that for n > 0, Z,11 = Z,, + pin + Vp€ni1. First note that X, > 0Vn € N, a.s.. We

prove this by induction as follows: Clearly X, > 0. Suppose
P[X, >0Vne{0,...,N}] = 1.

Then by (11.43)

P[X,>0Vne{0,...,N+1}] =P[X,1 >0N{X, >0Vn e {0,...

Zns1 €R|X, > 0Vn € {0,...,N}|

=P[
=P[Xyi1 >0[X,>0Vne{0,...,N}]
=P
=P[Zns1 € R| Xy > 0, Zx well-defined] .

N}
Xni1 > 01X, >0Vn e {0,...,N}]P[X, >0Vn € {0,...,

(11.43)

N}

It is clear by (11.41) that if X > 0, then vy and py are well-defined and finite. Thus,
as Zy is well-defined so is Zy41 and hence Xy | = ZN+/19 > (0 by (11.40). Hence

Ay :={X, € (0,00)Vn € {0,...,N}} is an a.s. event for each N.

Thus
A= | J Ay = {w: X, € (0,00)Vn € N},

N>1

is also an a.s. event. Henceforth, we work on this event. Since f(z) < 0Vx > 0, then

0+V@) _, , 0+ V@)

e R )]

> 1.

Thus pn, = h(X,)0Xn "V F(X,)|0(X,) for w € Ay by (11.41). Since h(X,) > 0Vn >

0 then for n > 0
pn > B(X,)0X, O] £(X,)] > 0,
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Note next that Z;11 — Z; = p; + vj&j+1, 7 > 0. So for n > 1
n—1 n—1
Zn = Z() + Z M + Z ngj—i-l- (1145)
§=0 §=0

Define M, :=>""" =0 VJ@H Suppose temporarily that M,, is an L?—martingale. Since

&’s are Standard Normal random variables, it can be shown that if

Blz{w:Zyj(w)2<oo} and Bzz{w:ZVj(w)ono},

J=0 J=0

then on By a.s. lim, oo M,, =: My, € (—00,00) and on By a.s. lim,, . M,/ (M) (n) =
0 where (M) (n) := 77" v v?. Clearly By U B, is an a.s. event. On By, the right-hand
side of (11.45) has a limit, possibly infinite, as n — oo because M,, converges to a finite
limit and g, > 0 by (11.44). Suppose on By, there is Bf with positive probability such
that Z, — Z* € (—00,00) as n — 0o. Then X,, — e % >0, X, >0asn — oo on B].

By (11.44) and the continuity of f and h then

lim inf g2, > h(X,)0X OV f(X,) = p. > 0.

n—oo

As f and ¢ are continuous, x +— ¢(x) is continuous. Finally, it must follow that
Z?;& ftj — oo a.s. on Bi. Hence Z, — oo a.s. on Bf, a contradiction. Therefore, on

By, we must have that Z, — oo or X,, — 0 as n — oo a.s.. Hence on B;
Zn . ZO Mn
hm = hm e —|— 1 —l— 1 = 1,
oo E; —o Mj T ijo Hj ijo Hj

because Z;:Ol p; — oo and M, tends to a finite limit as n — co. Also, since Z,, — oo
as n — 00, it follows that Z,, > 0 for all n sufficiently large so Z,, is uniquely defined
by Z, := X, . Therefore

lim —*— =1, a.s. on By. (11.46)

v? = 0o. In Lemma 41, which follows

Now we can work on By. On By we have » 22 v:

the proof of this theorem, we show that
e > K(0,6,)v2, VneN. (11.47)

This implies Z;io (; = 0o. Recall also p1; > 0V j. Now

Mn — Mn . <M> (n) Mn ) Zj:(]
Siow M)y(n) iy (M) (n) gy
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By (11.47), we have

Therefore, as M,,/ (M) (n) — 0 as n — 0o a.s. on By, it follows that

lim ———— =0, a.s. on B,.
N—00 ZJ "o My
Hence
Y/ . Zo Mn
hm [ = hm e + 1 4+ —- = 17 a.s. on BQ.
oo ijo Mg T Zg —o My Z] —o Hj

Therefore Z,, — oo as n — oo. Proceeding as in the case of B; above we see that

X
lim —"— =1 a.s. on By. (11.48)

Since By U By is an a.s. event by (11.46) and (11.48) we have

0
lim —%— X =1, as. (11.49)
n—r00 Z] —0 ’u]

Also on B; and By a.s. we have that Z, — oo as n — o0, so clearly X,, — 0 as
n — oo. Next, we determine asymptotic behaviour of u,, using the fact that X,, — 0
as n — o0o. Since by (11.6)

2 2
9°() _ 9°(x) 2 < ea?

el f(@) 20 f@)] T

we have that ¢*(z)/(z|f(z)]) — 0 as z — 07. Hence ¢*(X,)/(X,.f(X,)) — 0 as
n — oco. Thus pi, ~ h(Xn)0X5(9+1)|f(Xn)| as n — o0o. Hence, as Z;:ol [tj — 00 as

n — oo, by Toeplitz’s Lemma and (11.49) if follows that

X—9
nhﬁoo n—1 (6+1) - 1’
D im0 MXR)OX; (X))

as claimed. It remains to check that M, is an L*—martingale. The property E [M,|-%,] =

M, follows once E[12] < oco. So to prove M, is L? it follows from E[(M), ] =
E[M?] < oo that it is sufficient to prove E[v2] < oo for all n. It is easy to check that
v2 < Ki(A,0)X? for some constant K; > 0. Therefore showing that E [X‘e] < 00
for all n suffices. Similarly, one can estimate 0 < p,, < Ky(A,0)X Y. Since X,, = Z,, —
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and X,, > 0, we have |Z,| = X ?. Now
Znt1 = Zn + fin + Vn&nt,
80 [ Zns1| S |Z] 4 [pn] + |[Vn&nia or as iy >0
Xt S X7 i+ o] < X077+ Ko (A 0) X7 + |vnboa |-

Next suppose that E [X,j 0] < o00. Clearly this is true for n = 0. To deal with the
general step, since 12 < K(A,0)X,?. Thus by the Cauchy-Schwarz inequality

E (Il <E 2] E[€2,,] < K:(A,0)B [X,] < oc.

Hence
1/2

E[X;0] <1+ Ko (A, 0)E[X;°] + VEKi(AOE [X;°]"* < oo,

as claimed. O

Lemma 41. Suppose there exists 61 > 0, 6 > 0 such that (11.6) holds viz.,

2
wup I ()

—~ 7 = (C <o
o<z<s, 10| f(2)]

If

= 00 (14 GEDEER) ana = i) )

2X0|f (Xanl) X
then there ezists a constant K = K(0,01) > 0 such that (11.47) holds.
Proof. Let X,, € (0,6,]. Then 1, > h(X,)0Xn "tV | £(X)]. Also g%(X,)) < CX1| (X))

Thus s, > h(X,)g2(X,)-0/C-X5, ®* . On the other hand 12 = h(X,)0%¢2(X,,) X, *7+2).
Thus

o 9/C 1
2= 2 o
Hence X,, € (0, 6] implies
o 1 (11.50)
2o ‘

Let X,, > 6;. Then

(0 +1D)g*(Xo) _ 000+ Dh(Xn)g*(Xn) Xa ™

[ > W(X,)0X, OV £(X,)] - n)
(Xa) X SX D 2
Thus
o o 000+ D)X (04 1)XE (0 + 1)
27 opx @D T 29 T 20
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Thus X,, > ¢; implies
Ha 0+ 1)6¢

2o (11.51)
Hence by (11.50) and (11.51), for any n € N
Lo N ACE S
o =: K(0,6
V2 —mm( 20 " C(0,)0 (6. 02)
S0 fi, > K(0,61)v2, Vn € N which is (11.47). O

The next result is an easy consequence of (11.39) and (11.42). The next two lemmas
establish that the sequence (X,,) has an asymptotic and deterministic common ratio
and this is used to obtain precise asymptotic information in the forthcoming Theorem
73.

Lemma 42. Suppose all hypotheses of Theorem 72 hold and in addition h obeys
(11.39). Then X, € (0,00) for alln >0 a.s., X, = 0 asn — o0, a.s. and

X—9
n—00 ijo AHXJ
Proof. The above discussion shows that (11.42) holds. Define fi,, := h(Xn)QXJ(QH) | (X))
Then as n — oo

B (X)X CTVFXG)] R(G) XY (X)) h(X,)

AOX0 AOX," A T AX/[f(X)]

— 1,

by the fact that 0 < X,, — 0 as n — oo and (11.39). By (11.42) and Toeplitz’s Lemma,
(11.52) holds. O

Lemma 43. Suppose all hypotheses of Theorem 72 hold and in addition h obeys
(11.39). Then

Xy
lim XH = (1+A0)7Y  as.

n—o0 n

Proof. Define S, := 37  AOX; . Then Sp4y — S, = AOX, 7, or

(Sn—l—l - Sn) _
Hence by Lemma 42, (11.52) holds and
—0 _
1= lim —— =1 (S Snfl)/Ae.
n—00 Oy _1 n—o0o Snfl

Thus
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50 lim,, o0 S,/Sn_1 = 1 + Af. However, by this limit and X;?/S, | — 1 as n — oo
then

X (X Se o Saa
X ( S, B xo0)T1TAd
Hence )
. XnJrl - .
(i ) =120
or X,11/X, — (14+A0)7Y% as n — oo a.s., as claimed. O

Theorem 73. Suppose all hypotheses of Theorem 72 hold and in addition f obeys
(1.26) and (11.8) while h obeys (11.39). Let F and (t,) be defined by (1.28) and
(11.37). Then

lim ¢, =: T, < 0o, a.s.. (11.53)

n—o0

Proof. Since X,, — 0 as n — oo, the summability of ¢, = Z?;& h(X;) is equivalent to

that of 7,, := Z;:& AX;/|f(X;)]. Moreover, if t,, — T}, < oo as n — oo by Toeplitz’s
Lemma and (11.39)
Th —1n Z]Oin h<XJ)

lim = lim

nooo 30 AXG/F(XG)] noee 302, AXG/[f(XG)]

=1. (11.54)

Since (1 + Af)~Y% < 1 for any A > 0, X,, is decreasing for n > N; and for some
N € N. Now, z — z/|f(x) ~ m(z) as x — 0" and 7, is increasing. Thus for every
€ € (0,1) there is z1(€) > 0 such that for z < ()

(1—€)-m(x) < | < (L+¢)-m().

x
f(@)|
Hence, as X, — 0 as n — oo, there is Na(e) € N such that X,, < z1(e)Vn > Ny(e).
Thus for n > max(Ny, Na(€)), as X411 < X, < x1(€) then

/Xn ! du /Xn L _u du < /Xn ! (1+€)-m(u)du
_ - < —_ €) -
o FT T iy T7w)] Ko 1

Xnq
< (1+6)'771(Xn)/ —du
Xpp1 U
X
= (1+¢€) -m(X,) - lo .
(1 om(6) - log (52 )
1+¢ X, X,
< . -log< ) .
I—e ‘f(Xn>| Xn+1
Thus <
" 1 1+e€ X, X,
——du < . -log( ) . 11.55
/X Fl S T Tl \ X (11.55)
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Similarly
o1 /Xn 1w /Xn 1
du = — - du > —(1—¢€)-m(u)du
/xn+1 [f ()] Xy W |f(w)] Xpps U
Kol
> (1= m(Xw) [ L du
Xpy U
1—e¢ Xn+1 1 ( Xn )
= : log | —— ).
e [l 2\ Xt
Therefore for n > max(Ny, Na(e€))
| l—e X, X
— du > . - -log (—n> ) 11.56
Joo e e o (R4 50
Hence
AXpi1 1+e A /Xn 1
< . du.
‘f(XnJrl)‘ I—e log (Xn/XnJrl) Xn+1 ‘f(u)‘

Since X,/ Xpi1 — (1+A0)Y9 log (X, /X,i1) — log(1 + Af)/0 as n — oco. Therefore
: n—1 (X, X

n— AX,1/|f(Xnp1)] is summable because ijg fX;H 1/1f(u)du= [°1/|f(u)]du

tends to a finite limit as n — oo, by (1.26) and the fact that X,, — 0 as n — oo a.s..

This means that (¢,) tends to a finite limit as n — oo, as claimed O

Similar to the deterministic case we obtain discrete analogues of the limit lim; - F(X (t))/T—

t. Note as in the deterministic case the time indices in these limits differ by unity.
Theorem 74. Suppose all hypotheses of Theorem 72 hold and in addition f obeys
(1.26) and (11.8) while h obeys (11.39). Then

log (1 4+ A F(X F(X log (1 4+ A
—og( + e)gliminf—A (X0) , limsup A( n) < og (1 + 9).

Af n—oo Ty — tht1 n—oo 1y —t, - Af

(11.57)

Proof. We employ the notation and constructions of Theorem 73. For n > max(Ny, Na(€))
the following estimate pertains by (11.55) and (11.56)

</Xn 1 " 1—|—€ AX, 110<Xn)
= Lo Tl ™ S T ) A e\ )

1—c¢ AXn—i—l 1 ( Xn >

. -—1lo
Tt+e [fXm) A 2\ X

Hence for n > max (N7, Na(€))

[e.9]

1—e¢ AXH 1+ e
1—{—EZ| ’ J—Z/JH —1_€Z| a;,

where a; :=log (X,,/X,+1) /A. Thus as X,, — 0 as n — oo and (11.9) holds, we have

[e.9]

1—e¢ AX]H 1 +e—
a;. 11.58
e 27X —1_€Z| (11.58)
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Note a, — log(1 + A#)/(Af) as n — oco. Also, as n — oo then

= s log(1+ Af) . log(1 + Af)
Z I/ ( Z I£( AO ~ (Th — tn) VI (11.59)

by (11.54) and Toeplitz’s Lemma. By (11.58) and (11.59)

3 A6
lim sup F(X") < L+e log(l+ )

Letting € — 07 yields -
F(X,) _ log(1+ Af)

lim sup — 11.60
By (11.58) and (11.59) we have
F(X 1— 1 AX; 1—¢ log(l+Af
lim inf — (X») > € - lim inf Z] 1 /17155 = €. og(1 + )
n—00 Th_tn+1 1+¢€ n—00 Th_thrl 1+€ Af
Letting € — 0 gives -
F(X log(1 + A6
lim inf ) log(1+ A6) (11.61)
n=o0 Th — tpta Ab
Combining (11.60) and (11.61) gives (11.57) as required. O

As in the deterministic case we refine the result of Theorem 74 to align the time indices

in the denominator.

Theorem 75. Suppose all hypotheses of Theorem 72 hold and in addition f obeys
(1.26), (11.8) and (11.9) while h obeys (11.39). Let A < Ag = (¢ —1)/6 and F, T),
and (t,) be defined by (1.28), (11.53) and (11.37). Then

log(1 + A6) 1 log(1 + Af) < Jiminf £ F(X, ) < limsup F(X,) < log(1 + Af)
Al 0 n—00 Th — n—00 Th —t, - Af '
(11.62)
Proof. By (11.61)
(X F(X,, F(X log (1 + A0 F(X
liminfM = hmlnf( ( V - = (Xn) ) > M hmlnfg.
n=o0 T —thi n—00 F(Xn) Ty — tns1 A nooo F(X,,)

Next, as Xp11/X, — (1+A0)7? = A(A) as n — co. Therefore for n > Ns(e)

(1_6).A(A)<%<(1+e)-x(m.

Thus X,11 > (1 —¢€) - AMA)X,. Thus for n > Ns(e) F(X,p1) > F((1 — e)AMA)X,,).
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Hence

F((1—eNA)Xn)

F(X11) > log (1 + A9)

EE e A RRTRN)
> log (1+ Af) lim inf F((1 —76))\(A)x).
Af x—07+ F(l’)
Since f obeys (11.9), we have for a € (1/e,1) that
T Gl (1) . (11.63)
-0+ F(x) a

Set o := (1 —€) - A(A). Clearly, if A\(A) € (1/e, 1), we can choose € € (0,1) so small
that o € (1/e,1). Now a € (1/e,1) if and only if 1/e < (1 + Af)~Y? < 1. Clearly
we have (1+ A@)~/% < 1 for any choice of A > 0. Also, as lima_o (1 +A0)" 7 =1
and lima_eo (1 +A0) 77 = 0 and A — (1 + AG)~Y/? is decreasing in A, there exists
Ay = Ag(f) such that A < Ay(#) implies 1/e < (1 + Af)~Y9 < 1. Moreover, A, is
determined by e = (1 + A¢#)/? or 1/e < A\(A) < 1. Thus by (11.63), for ¢ € (0,1)

sufficiently small we have

R -9n@d) |
e Fy 2 ls ((1 - e)A(A)) |

Hence by (11.57)

liming £ (Xn) S log(1+A40) <1 ~log <#)) .

n—oo Th — tn - AQ

Letting € — 07 yields

. F (Xn) log (1 + A0) ( ( 1 ))
lim inf — > (1 —-1log | —— .

Now AM(A) = (1 +A0)79 so 1/A(A) = (1 + AH)Y/%. Therefore

log (%) = log ((1 + A@)l/a) = M.

(A) 0
Hence F(X,)  log(l+Af log (1 + Ad
limian( ”>2 og (1 + >.<1_M),
which is (11.62). O

We notice in Theorem 75, as in earlier deterministic results, that the upper and
lower estimates in (11.62) tend to unity as A — 0%. In order that the numerical
scheme is computationally efficient and preserving asymptotic behaviour it would be

reassuring to show that these limits are indeed A-dependent and unequal to unity for

296



Power Pre-Transformed Scheme

small A. In the next result we show as in the deterministic case when |f| is regularly

varying we have a non-unit limit which tends to unity as A — 0.

Theorem 76. Let |f| € RVy(B) where B € [0,1]. Then, with f obeying (1.26), (11.8),
(11.9) and h obeying (11.39), we have for any A >0,

F (X, I
lim A( ):—/ v d,
n—00 Th — tn A (1+A9)*1/9

Remark 46. If § = 0, then (1.26) and (11.8) hold. If f = 1, then (11.9) holds. If
g € (0,1), then f obeys (1.26), (11.8) and (11.9). O

Proof. Define \, := X,,11/X,,. Then A\, — (1 + Af)~/? as n — oo and

X X LR
du = du = d
Aﬂmﬂw|“ AﬂAﬂw\“ FX S, [F@)] ™

Xo
1 (X))
Xo)l I, [F(0Xa)]

X, dv.

|/ (

Hence

Xn 1 Y X, 1 ~(UXn) )
/XW | f(w)] du = 1F(X0)]| A F(X.) dv, (11.64)

where f = 1/|f| € RVo(—f). Thus by (11.64)

LGS YR u = H( X —v P v lv—ﬁ v
X, Xmuwwiiﬂ<ﬂmg )d+/n w

Since A\, — (1 + AG)~/? as n — oo by the uniform convergence theorem for regularly

varying functions, we get from (11.64) and the fact that X,, — 0 as n — o0,

X Xn 1 1
lim |/ (X0)] — du= / v dv.
(

noo X, Xnt1 | f(w)] 1+A0)-1/6

Hence

o | f(u)du g

Xn+l

lim = _ v 8 dv. 11.65
oo AXL XD A Jupag-ue (11.65)

Therefore by Toeplitz’s Lemma and the fact that both numerator and denominator in

(11.65) are summable, we have

00 X; X;
2 T Y Wlde o [T f(u)de B
lim S = lim — = — v dv.
nooo D AXG/FXG e AXG/IF(XH] A Jarae-ie
Since Tj, — t, ~ > e AXG/1f(X;)] as n — oo, this yields the result. O

We have already demonstrated under weaker conditions on the diffusion term, that the
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log-transformed scheme preserves exactly the super-exponential asymptotic behaviour
of the SDE. We now show the power-transformation preserves the asymptotic behaviour

but with a A-dependent Liapunov exponent. We give details now.

For completeness, the following theorem summarises all our results in this section.

Theorem 77. Suppose all hypotheses of Theorem 72 hold and in addition f obeys
(11.8) while h obeys (11.39). Let F, F, T) and (t,) be defined by (1.29), (1.28),
(11.53) and (11.37).

(i) If f obeys (1.27), then X, € (0,00) for alln >0 a.s., X;, = 0 as n — o0 a.s.,

t, — 00 asmn — oo a.s. and

Lo F(G)  log (14 A6)

Jim —- N = A(AQ).

(ii) If f obeys (1.26), then X,, € (0,00) for alln >0 a.s., X,, = 0 as n — oo a.s.,
tn—>Th<oo asn — oo a.s. and
F(X F(X
AMA) < limian<—"), lim sup — (Xn) < AA).

n—oo Ty — trt1 n—oo 1}, — t,

If in addition f obeys (11.9) and A < Ag = (¢! —1)/0, then

AMA) (1 —AXA)) < liminf fp(X") < lim sup {T(X") < \A).
n—reo Th - tn Th - tn

(iii) If |f| € RVh(B) with 8 € (0,1), then for any A > 0 then X,, € (0,00) for all
n>0as,X,—0asn— o0 a.s., tn—>Th<oo as n — oo a.s. and

F(X 1 [t
lim A( n)

_ -8
= — v " dv.
n—00 Th — tn A (1+A6)—1/0

Proof. By (11.55) and (11.56), for n > N3(€) := max(Ny, Nao(¢))

l—e  Xnop (Xn> /Xn 1 l+e X, (Xn)
. log | —— | < du < . - log .
L+e |f(Xn)l X1 X 1f(w)] 1—e [f(Xn)] X1
(11.66)
Since > 7 f;(iil 1/|f(u)] du — oo as n — oo, it follows that (AX,,/|f(X,)|) is diver-

gent because log (X,,/X,,11) — log(1 4+ A8)/6 as n — oo. Hence t,, — oo as n — oo if
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f01+ 1/|f(u)|du = oo. In this case, for

o= [ = [ /XN

R %f/

Since t, — o0 as n — oo and h(X,) ~ AX,/f(X,) as n — oo then

LONIAXIX) S AN/
= o

Y

by Toeplitz’s Lemma. Thus, as t,.1/t, — 1 as n — oo using (11.66) and Toeplitz’s

Lemma again

¢ 1/1f ()] du
lim inf F(Xo) = lim inf F(Xo) = liminf 2 nNd( fX R

n—o00 tn n—00 tn—i-l n— 00 Z] N3(€ )+1 AX /f( )
] N3(6 fXJ_H 1/|f )| du

e Z; 1{/3 (6) AXj/ f(Xj41)
1—¢€ log(1+ A¥9)
1+e Af '

Similarly, as log (X,,/X,41) — log (1 + Af) /6 as n — oo, we have

limsupm hmsup ] N3 E) fX i1 1/|f )’ dU,
Lte ) Z] e X/\f( Al -log (X;/X;41)
< - lim sup
bme o Z oo AN /(X))
< Lltfe log (1 4+ Af)
— l-—e Af '

Letting ¢ — 0% in both these inequalities gives

F(X,) log(1+4 Ad)

li =
nsos  t, A
as needed in part (i). Parts (ii) and (iii) are covered by Theorems 75 and 76. O

Remark 47. The bound A(A) is hard to improve. If § = 1, then x — z/|f(z)| is
asymptotically increasing and f01+ 1/|f(u)| du < oo then
F(Xy)

lim — = \A).
n—00 Th — tn
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]

11.4 Logarithmic Pre-Transformed Scheme

We now show that we can use the logarithmic transformation in the presence of
small noise and recover the full strength of the results in the last section where a power
transformation was used. This is interesting because in the last section the choice of
the power is connected to an assumption on the coefficients f and g. It can be argued
that the logarithmic transformation has the advantage of not relying on this additional

information on the coefficients.

Define the sequences (Z,), (X,,) and (¢,,), where Zy = —log ¢, Xo = ( and ¢, = 0,

by
7 _f(Xn) QQ(Xn) 7 g(Xn> c

Zni1 = Zn + h(Zy,) ( X + ox? +\/h(Z,) - X pi1, n>0, (11.67)
Xy =e 1 n>0, (11.68)
tnpr = tn + h(Z,), n>0, (11.69)

where h(z) := h(e™*) and

Ar  Az? )

h(r)=min ( A, ———, —— | , 11.70
o) =i (& (757 s 0

This section consists of two parts. The first gives a fundamental convergence result
which we use several times in the remaining part of the thesis in different contexts.
The second section proves an analogue of Theorem 77 for finite-time stability under

the small noise condition.

11.4.1 Fundamental Convergence Theorem

Theorem 78. Let L be defined by (1.25). Suppose (9.5) holds, Z, is the solution of
(11.67) and X, t, and h obey (11.68), (11.69), (11.70). Then X,, € (0,00)¥n > 0
a.s., X, =0 asn— oo a.s. and

—log X,
lim o8 =1, a.s.

n—00 Z;L;é h(Xn) (*(Xn)/2X3 — [(X0)/Xn)

Proof. Define

fn = h(X,) (gzgg)—fg”)> and oy = /(X - 2K
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Then forn > 1
n—1 n—1
Tn=Z0+ Y 15+ Y, 051,
=0 =0
Suppose for n > 1 M(n) = Z;:& 0;€;41. Then M(n) is a L?*-martingale, because

9*(X,)
X

o2 = h(X,) - <A, foralln>0.

by the same consdierations as in Lemma 40. We claim there exists § > 0 such that

2 2
g'(x) _[flx) _ 09°(x)
— > . 11.71
507 2T Vao>0 (11.71)
This is equivalent to
2
L)W @)
2 2 T o
or zf(z)/g*(x) < 1/2—60Vx > 0 and this is true because of hypotheses. By (11.71),
09°(X.,)

Hence (M) (n) := >707; 10 <1/0- ZJ "o - If (M) (n) tends to a finite limit on A
then M(n) tends to a finite limit on A a.s. by the martingale convergence theorem -
see Theorem 12.13 in [59]. Since p,, > 0V n then lim, ,, 7, =: Z,, € [—00,00] on A.
Clearly, Z,, € (—00,00]. Suppose Z,, € (—00,0), then X, — e %> =: X, € (0,00)

as n — oo on A a.s.. This implies that

h(X,) — Ami (1 Koo X ) Ahy >0 —
n min ) ) = 00 , asn Q.
[f(Xoo)|" 9% (Xos)
Therefore by (11.71)
2
: _ 9" (Xoo)  [(Xo)
tim = S (S5 - 5 ) € 0.0

This implies E?;& pj — 00 as n — oo and

I Z M
lim ———— = lim ——— —|— 1+ lim nf?) = 1.
n—00 Z] o My n—00 Z Nn—00 Zj:() 1

Hence Z,, — oo as n — 00, a contradiction. Therefore a.s. on A, Z,, — oo, X,, — 0 as

n — 00, SO Z;:OI Wi = Zn — Zy — M(n) — oo and therefore

Zn
lim ———— =1, a.s. on A.

n—o0 Z] —0 IU/j
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On A’, we have (M) (n) — oo as n — oco. Therefore

lim M(n)
n—o0 (M) (n)

=0, as.onA.

by the strong law of large numbers for martingales. Then as (M) (n) < 1/6 - Z;:ol [

-1
and ) 77, pt; — 00, we must have

M(n
lim ——5— =1+ lim % =1, as.onA,
n—oo . n—oo .
j=0 Mj j=0 Hj

because

su |M(n)| i sun | )] M) ()
hga_wopZ ln_>oop<(M> (n) ZT&M) !

This implies Z,, — oo and X,, — 0 as n — oo a.s. on A’. Combining the analysis on

A and A’ yields
Ln
lim ——— =1, a.s.,
n—o0 E] —0 ’uj

as claimed. O

11.4.2 Asymptotic Behaviour for Small Noise and Finite-Time
Stability

We give here for completeness and ease of comparison the analogue of Theorem 77 in

the logarithmic case.

Theorem 79. Suppose all hypotheses of Theorem 72 hold and in addition f obeys
(11.8) while h obeys (11.39). Let F, F, T), and t, be defined by (1.29), (1.28), (10.5)
and (11.69). Then

(i) If f obeys (1.27), then X, € (0,00) for alln >0 a.s., X;, = 0 as n — o0 a.s.,

t, — 00 asn — oo a.s. and

F(X,
lim M

n—oo 1t

= 1.

(i) If f obeys (1.26), then X, € (0,00) for alln >0 a.s., X;, = 0 as n — o0 a.s.,
tn—>Th<oo asn — oo a.s. and
F(X,)

F(X,
1 <liminf — and limsup A( ) <1.
n—00 Th — tn—l—l n—00 Th — tn

(i11) If f obeys (1.26) and (11.9), then X, € (0,00) for alln > 0 a.s., X, — 0 as
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n— 00 a.s., t, =1, <oo asn — 0o a.s. and

1—e 2 F(X F(X,
¢ < hmmf(—) < hmsupg <1
n—oo Ty — ¢, nooco 1}, —t,

() If f obeys (1.26) and |f| € RVo(B) with 8 € [0,1], then X,, € (0,00) for alln >0
a.s., X, = 0 asn — oo a.s., tn—>Th<oo asn — oo a.s. and

- 1
fim LK) _ 1 / A2 do.
n—o0 Th — tn A e—A

Proof. Define for j > 0

. (X)) | ¢* (X)) . 9(Xj;)
D; -:h(Xj)< X, + 2XJ2) and  Tji1:=/h(X;) - ;e

J

“&jr,s

and M(n) := > 77, Ty, for n > 1. Then M is a martingale, by the same argument

as in Lemma 40, with quadratic variation for n > 1

RS 9% (X))
(M) (n) = 2 h(X;) X7

and forn > 1, Z, = Zo—i‘Z?:_é Dj+M(n). Then by Theorem 78 we have that ) 7~ ' D;
diverges, Z,, — oo, X,, — 0 as n — oo and

As usual ¢*(x)/(zf(z)) = 0 as  — 0. Hence there is N; > 0 such that for n > Ny,
hX,) =AX,/|f(X,)|. Thus for n > N,

Pni= If(X)I( X, 2xz ) o ax
VAX,? 9 VAg(X,)
PO X S T ) X

Tn+1 =

: £n+1'

Define p(z) := g*(x)/(z|f(x)]), x > 0. Then for n > N,

Znr = Zn + A+ FAR(X,) + VAV (X)) &1,

Then 0 < p(z) = 0asx — 07, so u(X,) = 0asn — co. Now, as D,, - A as n — oo,

then )
. log X, ) —Z, Zn D;
lim = lim = —1.
A n—s00

n—oo M Z" ! D; nA
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Next, there is § > 0 and §(6), C(0) > 0 such that for x < §(), ¢*(z) < C(0)z1?| f(z)|.
Since X,, = 0asn — 00, X, < d(0)Vn > Ny(e). Let n > Nj(e) := max(Ny, Na(e))
then ¢%(X,) < CO)X|f(X,)| so u(X,) < C(O)X?Y for n > Ni(e). Since X,
tends to zero exponentially fast, u(X,) tends to zero exponentially fast and so does

V1 Xn)Enr1, because &,11 = O(y/logn) as n — oco. Therefore

lim (Zypy1 — Zn — A) = 0. (11.72)
n—oo
Therefore from (11.72) we have that X,,,1/X,, — e 2 asn — oo and X,,e"> — e~ L as
n — oo. Notice that X, is decreasing for n > Nj(¢). Assume F(z) = [ 1/|f(u)| du —
0asx — 07 and x — |f(x)|/x is asymptotically decreasing. Suppose that x;(e€) is such
that for x < z1(e)

—_— <(l1+4¢€)-o(x),
e (149 o(a)
where ¢ is decreasing. Then there exists Ny(¢) such that X,, < xq1(€) Vn > Ny(e). Take
N5(€) := max(Ny(€), N3(€)). Then for n > Nj(e) + 1

-1

tN5 + Z h tN5 e) Z

Jj=Ns(€) =Ns( ]

Now we have (X;)72 Ny(o) 18 decreasing. Let j > Ns(e), u € [X;41, X;j]. Then ¢ (Xj11) >
6 (w) > ¢ (X;). Hence

! oS NP S E N B
1+e |f( X)) ¢6(Xjm)  o(u)  o(X)) (X5
Now ¥ |
gt €) —— € u .

T =9 5w <09 T

Thus X ¥ . .
J 1 i1 02 J
./;HJzL G =0 >‘/;H4|f<u>|d”’

SO

X; X |
1 d
Og(&ﬂ)|f<ﬁn|—“+f)/ﬂmﬂw|“

Since the sequence on the right-hand side is summable because 7%, / ;(( j+1 /| f(w)| du =

S 1/ () du = F (Xo) < 00 then X232 X;41/1f (Xj41)] < 00 because log (X;/X,11) —
A as j — oo. Therefore (t,) tends to a finite limit. Write 7}, := > 2o h(X;). Then
Th—tnzz;?on (X5) = 22, AX;/|f (Xj) | for n > Ns(e) + 1. Let n > Ns(e) + 1.
For u € [ X, 41, X,,] we have

1 Xan 1
L+e |f(Xpe)| ~ o(u)
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1 U 1 X,

Tre @1~ ow =M reaT
Hence for n > Ns(e) + 1, Xpp1/|If (Xns1) | < (1 + €)? - u/|f(u)| and u/|f (u)| <
(1+¢)?-X,/|f(X,)]. Thus

AXnH /Xn /Xn 1
—du < (l1+¢€ du,
)] B Je, a ™0 T

and

Xno 1 AX 1 (X1
du < 1+62-—”-—/ ~du
/X | f(u)] 1+o If(Xn) | AJx,., u

1 and 11 (Xn>
ap = — —au = ——lo ;
Ay, u AB\X, .

Define

so a, — 1 asn — oo. Hence for n > Ng(€), 1/(14¢€) < a, < 1+e. Let n > N7(e)+1 :=
max((NVs(e) + 1), (Ng(e) +1)). Then

CAX X Xno g AX,
d d d .
K] =0+ /X RO /X T =+ R

Thus for n > Nr(e) + 1

= AX, 1 Xno
LS A, [
277 1+esz AT ef Jo 17l
1 _
- F(X, ’
and
- n 1= =~
. M| 7 (X | 2 [ i)
— (40 F(X),
Therefore Pix Fix
1< limian(—n) and limsup — (X») < 1.
n—00 Th_tn+1 n—00 Th—tn

We now prove part (iii). By the monotonicity assumption on |f| we have for every

e > 0 that for z < z(e)

Tre Y(x) < [f(2)] < (L+€) ¥(z).

Let Ng(€) be so big that X, < x5(e) Vn > Ng. Then for n > Ny(e) := max(N3(e), Ns(¢)),
and u € [X,41, X, then 1/(1 +¢€) - |f(X,)] < ¥(u) < (1 +¢€) - |f(u)] and f(u) <
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(1+¢€) - 9¥(u) < (1+¢€)*-|f(X,)|] Therefore

1

(1+e? [f (X))l < If(u)] < (14 [£(Xa)],

SO

1 Xn 1 Ko Xn 1
T+ P /X FoG) s /X T usdrer /X T

1 Xn - Xn+1 X 1 Xn - Xn+l
. —d 1 _—
T+ef 170X S/X T = 09 R

/X" 1 > 1 _l(l_XnH) AX,
X ST (L6 A Xo J1f(Xa) |

1 Xnt1 1 _A
bn::Z(l— Xn>_>z(1_€ ) as n — 00,

for n > Nyg(e) then b, > 1/(1+€)- (1 —e ?) /A. Let n > max(Ng(e), N1g(€)). Then

Now

Since

/Xn Lo 1 (1-e?) AX,
Yo [F@] 7 (14€)? A f (Xa) [

Thus for n > max(Ng(€), Nig(e) + 1)

< (1+e) (1—eb) i/

[e.9]

Xjt1
= 1 'F X
(40" =y F )
Therefore B A
1 o
i inf - Kn) S Ui}
n—oo Th_tn A

If we assume |f| € RVy(8), 8 € [0,1], we have that f = 1/|f| € RVy(—3) and

Iy
lim ”1 / AP d,
Jj—00 AX; /’f A Xj41/X; f A

by the fact that X;,1/X; — e as j — oo and the uniform convergence theorem for

regularly varying functions. Therefore by Toeplitz’s Lemma

_ o X;
COF(X) L ey Y )lde oyt
lim ——= = lim = = — AP dA,
n—o0 Th - tn n—oo Zj:n A‘)(]/|f (Xj) | A e—A
which completes the proof. O]
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Chapter 12

Sub-Exponential Stability

12.1 Introduction

In this section of the thesis, we explore whether it is possible to determine precise
asymptotic behaviour for solutions of autonomous SDEs with positive solutions and
“weakly attracting” equilibria. Furthermore, we determine whether it is possible to
recover numerically this asymptotic behaviour. We make precise later what is meant
by “weakly attracting” but for now we note that it excludes the type of drift and
diffusion studied in the super-exponential and finite-time stability cases in Chapters 9
and 10. Putting aside for now continuous time results, it would appear superficially that
the numerical analysis problem is significantly easier and even perhaps already solved
within the literature. We wish to indicate briefly now that this superficial appraisal is
incomplete.

The first point at issue is whether positivity of simulations is preserved with cer-
tainty without recourse to pre-transformation or adaptive time-stepping. Even in the
case where the drift and diffusion obey global linear bounds, this cannot be guaranteed.
Furthermore, in the weakly attracting case, it can still be the situation that the drift
and diffusion violate linear bounds for large x even though they are well-behaved close
to the equilibrium at zero. This suggests that we will have problems preserving pos-
itivity with constant step-sizes, however small they are taken. It is then tempting to
ask whether adaptive time-stepping without a positivity preserving pre-transformation
would suffice as it does for ODEs.

A moment’s consideration, however, shows that this cannot be successful if we
assume that the increments of Brownian Motion in our simulation are replaced by
Standard Normal random variables which can be unbounded. Taking a step-size h(x)

at state x leads to the direct discretisation of the SDE given by:

Xn+1 = Xn + h(Xn)f(Xn) + \Y h(Xn)g(Xn)gnJrla
where (§,) is a sequence of independent and identically distributed Standard Normal
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random variables. In particular, &, is independent of X, which is a function of
&, ...,&, only. Therefore, no matter how small A is chosen to control the size of the
drift and diffusion terms, the probability of the process X,, changing from positive to
negative at any time step is positive. This is not acceptable if we wish to ensure that

the simulated process remains positive for all time with probability one.

A related problem is that the solution might change sign but nevertheless con-
verge to the equilibrium from the negative side for large n because asymptotically
h(X,)f(X,) dominates y/7(X,)g(X,)€s1. This is possible in the case where h(z) =
AV z. A good bound on the pathwise rate of convergence of X, is known and g(z) is
appropriately small in relation to f(z) as  — 07. Then because the &,’s are Normal
and &, = O(y/logn) as n — oo if g(X,,)v/logn = o( f(X,,)) as n — oo, there will be no

change of sign beyond a certain w-dependent n.

While it is certainly the case that sub-exponential convergence rates can be recov-
ered by constant step-size discretisations of SDEs, these results rely on global linear
bounds on the drift and diffusion and require the imposition of symmetry hypotheses
on the drift and diffusion to counteract spurious negative solutions. Rather than make
these restrictive assumptions or be forced to devise different methods for weakly and
strongly attracting equilibria we instead seek to employ a numerical method which will
recover the important qualitative and asymptotic information for the largest possible
class of problems. We have already seen that the combination of adaptive time-stepping
and logarithmic (or power) pre-transformation performs this task very well for SDEs
whose solutions can tend to zero exponentially or super-exponentially fast or in finite
time, regardless of whether the drift or diffusion was inducing this stability. Therefore,
it seems a natural step to ask whether this will also work if we have sub-exponential
stability. Furthermore, we would wish that this performance can be achieved at a
reasonable computational cost. We should certainly request that our method uses con-
stant step-sizes asymptotically, bearing in mind that conventional constant step-size

methods can recover the right asymptotic behaviour with positive probability.

In this chapter, we show that these requirements can be met. In order to know
that we do indeed have the appropriate asymptotic behaviour for the numerical meth-
ods, we must also establish new continuous-time asymptotic results under irrestrictive

conditions on the drift and diffusion, which yield sub-exponential decay.

Although we do not present our results here, the work in this chapter can easily
be adapted to deal with the case where solutions of the SDE (both in continuous-time
and discretisaton) grow to infinity sub-exponentially. In fact, we can use once again
the very same numerical scheme as outlined in this chapter in the sub-exponential de-
cay case, and in the previous chapters in which super-exponential decay or finite-time

stability are covered.
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12.2 Asymptotic Behaviour for SDE

Consider the SDE (1.17). Define F' and G by (1.29) and (1.34). We suppose that f
and g obey the hypotheses (1.19), (1.20) and (1.25) namely:

. f,9 € C([0,00); R) with f(0) = g(0) = 0;
g*(x) > 0 for all x > 0; and

zf(x)

=0t g%(x)

For simplicity we assume that f and g are locally Lipschitz continuous, (1.21), to
guarantee the existence of a unique continuous adapted solution to (1.17). As before
let p be the scale function, (9.3), of X and recall by Theorem 58 that p(co™) = oo
and L < 1/2, (9.5), implies X (t) — 0 as t - T~ a.s. where 7', (1.22), is the first exit
time of X from (0, c0). Since we are interested in sub-exponential convergence, we will
make assumptions on f and g at zero which ensure not only that 7" = oo a.s. but also
that lim; o log X (t)/t = 0 a.s.. We now state and prove our main result concerning

sub-exponential rates of convergence of X (t) — 0 as t — oc.

Theorem 80. Suppose f and g obey (1.19), (1.20) and (1.25). Let F, G and L be
defined by (1.29), (1.34) and (1.25).

(i) If L € (—00,1/2) and x — g*(x)/x? is asymptotic to an increasing function, then

, —log X (1)
lim 1 =1, a.s
t—00 (— log o Gil) ((5 — L) t)
(i1) If L = —o00 and x — |f(x)|/x is asymptotic to an increasing function, then
—log X (¢
og X (1) =1, as.

.
S (—logo F1) (1)

Proof. We now prove part (i). The proof of part (ii) is similar. Define Z(t) :=
—log X (t),t > 0. Then by It6’s Lemma

—f(X(1) |, g°(X(1)) —9(X(1))
dZ(t):< X@ )dt+WdB(t).

Then P[A] > 0 where A = {w: X(t,w) — 0ast — oo} and

—log X (1)

lim =1
t=oo [1— f(X(5))/X () + g*(X(5))/2X2(s) ds

, a.s. on A.
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If L € (—o0,1/2) then

. —f@)/r+gi@)/2* 1 af(r) 1
xlggh g?(x) /22 T2 a0 g*(x) 2 L=>0.
Hence
—log X (t) 1

lim — - —

= [y 9?(X(s))/X2(s)ds 2
Suppose 7(x) ~ ¢g*(x)/z* as  — 0% where 7] is increasing and continuous. Define
I(t) == [[7(X(s))ds, t > 0. Then I'(t) = (X (t)), and 7~(I'(t)) = X (t). Thus

=—1(7/
limM:— 1—L , a.s. on A.
t—o00 1(t) 2

Therefore for every € € (0,1) there is T (€) > 0 such that for ¢ > T} (e)

—(14+¢-(31-1)< log;();(t) <—(1—-¢€-(

N[ =
|
h

~—

and R
—(1+e)-(%—L)<W<—(l—e)~(%—lj).

1 (L
Thus for ¢ > T3 (e), 67(1+6)(2 L)1) <X(t)<e (-0 (3-2)10) and since 7 is increasing
1 _(1-o(i-
7 (e‘“*% LW) <I'(t) <7 <e 1-9(3 LW).

Hence for t > T} (e)

We now seek to integrate across these inequalities. To this end we prepare the following

calculation:
t I 1 —al(Ti(e)) 1 1 exp(—al(t)) 1
/ %dsz—/ v — du = —/ — dv
T (e) (e ) a J_aI(t) i (e=) Q Jexp(—al(Ti(e))) VT (v)
1
— Z(N —al(t) - N —al(Ti(e)) ]
LN (¢ 10) - N (eI ))

where N(z) := fml 1/(vi(v)) dv ~ le u/g*(u) du = G(x) as x — 0F. Thus for t > Tj(e),

st=hl) = (-1 !
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where
N_(€):=N (67(176)(%%)1(%(6))) and N, (e):= N (6*(1+6)(57L)I(T1(e))) .
Hence for t > T (¢)

N (e 0OG0) 2 (149 (3~ L) - (= Ti(0) + No(),

N<e (1-(3- )f<t>> <(A—e¢)-(L=L)-(t—Ti(e) + N_(e).

N[ =

Therefore

N (e—(1+e)(%—L)1(t)) N (e—(l—e)<%—L>I(t))

(I+e)-(3-L) < litrgioglf ; : hﬂigp ; <
(1--(3-1)
Hence as I(t) — 0o as t — oo and N(x) ~ G(z) as x — 01 we have
e (e—(l-f—e)(%—L)I(t)) G( —(1-e)(1- )I(t)>
(I+e)-(3-L) < litrg(i)glf ; , hl;gigp ; <
(1-0-(-1)
For t > Ti(e)
- (5-L)1) _ (e—(l—e)< —L)1 ())(”6)/(1 ) S X (£)(1+9/0-9),

Hence for t > Ty (¢), G <e_(1+€)(%_L)I(t)> < G (X(t)+9/0=9) " Similarly for ¢ > T;(e),
G (67(176)(%7L)I(t)> > G (X (t)(179/0+9)) . Therefore

() (1+9/(1-9 () (1-9/(+9
(1+€)-(3 — L) < liminf G (X ), lim sup G (X )

<(1-e(3-1).

Considering the liminf for every n € (0,1), there is Ty(n,€) > 0 such that for all
t> TQ(T]a E)
G (X (1)(+9/0-0
( ; )><1—77)~<1+€)'(%—L).
Pick 7 = ¢/(1 4 ¢) and Ty(e) := To(e/(1 + €),€). Then t > Ty(e), G (X (t)H+9/0=9) >
(3 — L) t. Thus for t > Ty(e), X (¢)+9/079 < G=' ((1 — L) ). Hence

(1+¢€)
(1—¢)

log X (t) < (logo G ((3 = L) 1).
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Therefore 1-0
—log X(1) > (17 Z) (=logo G ((1 = L)1),
and so log X (1 a
. —log —€
llgglf (—logoG-Y) ((5— L)1) = (1+¢€)

Letting € — 07 yields

lim inf —log X(t)
B Chogea ) (-0

Similar consideration with the limsup yields

lim su —log X(¢)
ot (—logoG-1) (1= L))

as required. O

We have frequently alluded to the fact that solutions of the SDE are sub-exponential
under the hypotheses in Theorem 80. By sub-exponential, we mean that X (t) — 0 as

t — oo at a rate slower than any negative exponential function or equivalently

lim e X (t) = 0o, a.s. Ve > 0. (12.1)

t—o00

If X(t) — 0ast— oo and

lim log X (t)

t—o0 t

=0, a.s., (12.2)

then (12.1) holds. This is easily seen. From (12.2) we have for every ¢ > 0 that there
is T'(¢) > 0 such that for ¢t > T'(e)

— log X (t
e _log (t) €

2 t 2’

and so X (t)exp(e/2-t) > 1 for all t > T'(¢). Hence e X (t) — oo as t — oo, for each

€ > 0 as claimed.

Proposition 17. Under the conditions of Theorem 80, the solution X(t) of (1.17)
obeys

lim 08X o (12.3)
t—00 t
Proof. We consider only the case where L = —oo and |f(z)|/z — 0 as + — 0%. Then
—log X (t)

lim

t=00 (—logo F—1)(t) =1, as. (12.4)

Since F(xz) — oo as x — 0" and logx — —o0 as © — 07, we may use L'Hopital’s Rule
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to determine the following limit in indeterminate form:

1
F 1 d —1
fm F@ _ oy S V@I @]
e—0+ logx  a—0+t log e—0t 1)z
Therefore logo F-1)(¢ |
ti (10800 oy ZlosT
t—o0 t z—0+  F(x)
Combining (12.4) and (12.2) gives (12.3), as claimed. O

12.3 Asymptotic Behaviour for Logarithmically Pre-

Transformed Scheme

We now show that the asymptotic behaviour of the SDE under sub-exponential
hypotheses can be recovered. We make the same assumptions on f and g as the
previous section.Our first result proves, when the drift is dominant and sub-linear, that
the asymptotic rate of decay of the solution of the SDE is recovered by the difference

scheme.

Theorem 81. Let F' and L be defined by (1.29) and (1.25). Suppose f and g obey
(1.19), (1.20) and (1.25). If L = —oc0 and x — |f(x)|/x is asymptotic to an increasing
Ct function at 0, then X,, € (0,00) for alln >0 a.s., X, = 0 as n — 00 a.s., t,, — 00

as n — oo a.s. and
i —log X,
im
w5 (“logo F1)(6,)

=1, a.s.

Proof. We have from the proof of Theorem 78 that X,, — 0 as n — oo, Z,, — o0 as

n — oo and

Zn
lim ~ =1, a.s..

e S BZ) (— 1 (X)) /X5 + (X)) /2X7)

Thus as L = —oo then

lim — log Xn
n=oo S CR(XG) - —F(X)/X;

=1, a.s.

Since X,, — 0 asn — oo, f(X,)/X, — 0 as n — oo. Because ¢*(X,,)/(X,.f(X,)) = 0
as n — oo, then h(X,) = A for all n > N. Thus for n > N

n—1 N-1 n—1
th =Y h(X;) = h(X;)+ ) (X)) =ty + (n— N)A.
j=0 3=0 j=N
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So t,/(nA) — 1 as n — oo and indeed

lim —log X,
nooe S (X)X

Define n(z) := f(e~*) where 7 is the increasing function asymptotic to x — |f(z)|/x.

lim 28X Av A (12.5)

n=oa 3T C(X;)
Define S, := ZJ 0 M(X;). Then S,, — S,—1 =7 (X,,) so X, =77 (S, — S,—1). Hence

log 77! (S — Sp-1)

i S A
Thus there is Ny(e) € N such that for all n > Ny(e)
CAf - Afe< bgsﬂ < —A* 4 A%, (12.6)
or e=ATH9S) < X < e(AT(1295) and
LA Afe < log 7" (Sn41 — Su) < —A*+ A%

S
or e(7A 1+ < p=l (S, 1 — S,) < e(7A1=9%) or for n > N (e)
Sp+ 7 (e 0FI) < 5,1 < S, 47 (e 2179
Define ®,(z) := M (e~**) where M (x f 1/(vi(v)) dv. Then

ae a
P! (x) =M (e7*) - —ae™ ™ = — = — > 0.
( ) efazn(efax) 7 (67ax)

Thus by the Mean Value Theorem there is 6,, € (0,1) such that

Pas(i1e) (Snt1) > Par(ito (S 7 ( (- A*(1+G)Sn)))
= Par(rse (Sn) + Phae(rie (Sn+ 0n (727 0FIT)) g (e 27 (OFAS)

Hence for n > Nj(e), with y,, := exp (—A*(1 +¢€)S,,), then

7 (e7A7 (495
(e_A*(l—i-e)(Sn+9nﬁ(e—A*(1+6)Sn))>

q’A*(1+e) (Sn+1) - CI>A*(1+e) (Sn) > A*(l + 6) T
n

= A"(1+e) P (gne = 0t > A*(1 +e).
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Now 6, € (0,1),50 1 > ¢~ & 0Hnun) > =A"(1+0un) - Hence y,, > ype 2 1T >
Yo~ W) and 7 (y,) > 7 (ye 02 1HW)) > (y,e~A7(149()) - Hence

Ui (yn) = n (yne*‘gnﬁ*(lﬂ)ﬁ(yn)) = n (yne*A*(lJré)ﬁ(yn))'

Thus for n > Ni(€), Paare) (Snt1) — Parare) (Sn) > A*(1 4 €). Therefore

1t 1 Dar(14e) (Sn
liminf—/ L gy = liming 2arax9 (5n) o A*(1+e). (12.7)

n—o00 N J, —A*(1+e)Sn '1)77(1}) n—00 n
Similarly there is 6,, € (0,1) such that
q)A*(l—e) (Sn—l-l) < (I)A*(l—e) (Sn +1 (e—A*(l—e)Sn))
— @A*(l—g) (Sn) + q)/ *(1_6) (Sn + Qnﬁ (e—A*(l—E)Sn)) . 7«7 (B—A*(l—ﬁ)sn) .
Thus

,,7 (e—A*(l—E)Sn)
7 (67A*(176)(Sn+6’nﬁ<e—A*(1—€)Sn))) :

Par(1—e) (Sn41) — Par(1—o (Sn) < A" (1 —¢) -

Define y,, := exp(—A*(1 —€)S,,). Then

Par(1-¢) (Snt1) = Par-¢ (Sn) <A (L —¢) - 7 (e B (-00itum)

Since 6,, € (0,1),
1 1

T_] (yne_enA*(l_e)ﬁ(yn)) S ’]’_] (yne_A*(l_e)ﬁ(yn)) )

Hence for n > Nj(e)

) 1(Yn)
(I)A*(l—e) (Sn+1> - (I)A*(l—e) (Sn) <A (1 - 6) ' 7 (y e—A*(1—6)77(yn))' (128)

Next for z > 0, as i € C*,
0 < () — 7 (e~ 07910 = if (26(x)) & (1 — e~ 47 (=T

where 6(z) € (exp(—A*(1 — €)7(z)),1). Thus

A(we-d 0-0n@)y | _ e—A-an@)
0<1-— — = x0(x)) - z6(x) - — . .
@) 7 (@0(@)) - 28(@) - ——r— 5
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Since 7j(z) — 0 as  — 0% by L’Hopital’s Rule

| — =2 (1-9i() 1 — o-A*(1-ay
lim — = lim — = A*(1—e).
20+ n(x) y—0+ Y

Note that 6(z) — 1 as  — 07 by The Squeeze Theorem because 7j(x) — 0 as x — 07,
We have that ¢(z) ~ f(x) asz — 0" and ¢ € C*, so f(0) = 0 implies ¢(0) = 0,7(z) =
¢(x)/x, s0 7' (z) = (x¢'(x) — ¢(x))/2? so 27 (x) = ¢'(z) — d(x) /x = ¢/(x) — (). Now

lim ¢(z) = ¢(0*) = lim 2 =90 _

z—0t z—07F x—0 z—0t

Hence z7/(z) — 0 as x — 0". Therefore

= J:e—A*(l—e) T
lim (1 _al

z—0t

Bl
—~
8

S~—
S\\
N
N~

I
VO

or lim, o+ 77 (ze=2"(1797®)) /ij(z) = 1. Therefore
: 7(Yn) _
e A =)

Thus from (12.8)

1 ! 1 DA~ —€ Sn
lim sup —/ —— dv = limsup Par-g (5) < A*(1—e). (12.9)
n

n—oo 1 Je—Aa*(1-€¢)Sn UT](’U) n—00
Now [11/(vii(v)) dv ~ F(x) as x — 0. So by (12.7) and (12.9) then
. n y

—A*(146)Sn —A*(1-€)Sn
A*(1+¢€) < liminf G ) , limsup G )

n—o00 n n—o00 n

< A*(1—¢)

As t, ~nA as n — oo then

F e—A*(1—€)Sn F e—A*(l—e)Sn A A*
liinﬁs;}p ( - ) = lig;s:ip ( ( X ) : nt—n < A (1—¢)=(1—¢).
Similarly
F (e—A*(l—i-e)Sn) A*
o . & _
hgrl)g.}f t’n z X (14+¢€) = (1+e).

Define [y := 1. Then for every e € (0,1)

F —A*(14€)Sn F —A*(1—€)Sn
(1+¢€)-lp <liminf (e ) lim sup (e )

)
n—ro0 ty n—00 ty

<(1=e)-ly. (12.10)
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By (12.6), for every ¢ € (0,1) there is Ny (€) € N such that for n > Ny (), e=2 (095 <

X1 < e 71-980 Thyg e=A"1-95: — (efA*(1+e)Sn)(1—€)/(1+ﬁ) < X7(11+—le)/(1+e) w0 as F

is decreasing then for n > Ny (e)

F (6—A*(1—6)Sn) > F <X7$;1€)/(1+6)> ) (12.11)
Similarly =2 (1495 = (e‘A*(l_E)S")(Hg)/(l_e) > X7(11++1€)/(1fe)' Thus for n > Ny (e)

r (G—A*(H—e)sn) < F <X751++15)/(1_6)> ) (12.12)

By (12.10), (12.11), (12.12)

F (X({:Ff)/(lff)) F <X(i_*1€)/(1+6)>
(I1+¢€)-lp <liminf , limsup < (1—¢)-lo.
n—00 tn n—00 tn

Since t, ~ nA as n — 00, t,11/t, — 1 as n — co. Hence

F <X(1—e)/(1+e)

n+1

P (X{50/079) )
(1+¢€)-lp <liminf , limsup < (1—e€)-lp. (12.13)

n—00 b1 n—00 L1
Hence for every n € (0,1), there is Ny(1, €) € N such that for n > Ny(n, €)

F <X7(L1_6)/(1+e)>

; <(1—=¢-(14+n)-lb.

Now fix n = ¢/(1 —€) < 1if < 1,e < 1/2. Then, with Ny(e) := No(e/(1 — €),€) we
have for n > Nj(e)

F <X72176)/(1+6)>

tn

S(l—e)'(1—|—1L_6)'l():l0'(1—6+6):l0-

Hence F <X¢(L1_6)/(1+6)> < oty or X3 0T 5 g1 (lotn) for n > Ns(e). Thus for
n > Ny(e)

1—e€
e log X,, > (logo F) (Ipt,) .

Thus for n > Ny(e)
1+e 1
—log X,, < . (—logo F) (lotn)
—€

so because (—logo F'~1) (Igt,) — 0o as n — oo, then for n > Ny (e)

—log X, < 1+e¢
(—logo F1) (lot,) — 1—¢€
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Therefore

I —log X, < 1+e€
im su )
n_wop (—logo F=1) (lot,) — 1—¢

Letting € — 07 yields

—log X,
li <1 12.14
el (“log o FY) (Ioty) = 21

By (12.13) for every 1 € (0, 1), there is N3(n, €) € N such that for n > Ns(,€),

P (Xr(Ll-i-e)/(l—e))

tn

> (L+e)-(1=mn)-l.

Now, fix 7 = ¢/(1 + €). Then with N(€) := N3(e/(1 4 €), €), for n > Ns(e)

F <X7(L1+6)/(1—e)>

tn

2(1+€)(1—1i6)l0:l0(1+€—€):lo

Hence for n > Nj(e) then F <X7(11+E)/(1_€)> > Iot, or X§079 < F1(gt,.). Thus
for n > N3(e)
1+e

1 log X,, < (logo F1) (Iot,,) .
—€

So for n > Nj(e)

1—e€ _
—log X, > o (—logo F1) (lpt,) -

Therefore for n > N3(¢)
—log X, 1—e¢

(—logo F—1) (lot,) “1 +€

SO

i inf —log X, S 1—e€
imin :
n—oo (—logo F=1) (lgt,) — 1+e€

Letting € — 07 yields
lim inf —log X,
nheo (—logo F1) (otn)

Combining this with (12.14) yields and noting lop = 1 yields

> 1. (12.15)

. —log X,
11m
n—oo (—logo 1) (t,)

=1,as., (12.16)

as claimed. O

We now deal with the case where the diffusion is of comparable order to the drift
or dominates it in the sense that L € (—o0,1/2). We note for L € (0,1/2) that the
underlying ODE is unstable so we are particularly interested in this case to recover
the stabilisation by the noise term. In our main result, Theorem 82 below, we show

that the rate of convergence of the SDE recorded in Theorem 80 is preserved by the
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numerical scheme.

Let Z,, X, and t, be given by (11.67), (11.68) and (11.69) where h(z) = h(e™?)
given by (10.4) viz.,

h(x):mm( Az A:ﬁ)

@) ¢ ()

Theorem 82. Let G and L be defined by (1.34) and (1.25). Suppose f and g obey
(1.19), (1.20) and (1.25). If L = (—00,1/2) and x — g¢*(x)/x? is asymptotic to an
increasing C function at 0, then X,, € (0,00) for allm >0 a.s., X, — 0 as n — oo

a.s., t, — 0o as n — oo a.s. and

lim — log Xn
n—00 (— logoG_l) ((% — L) tn)

=1, a.s.

Proof. By Theorem 78 we have that lim,,_,., Z, /Z] "o 1ty = 1. Now as z — 0T, even
when L = 0, we have
A O

— : : — : — 00, asx— 0T,

[f@)] - g?@) 2 [f(0)]  ¢*x) =z[f(2)]

since 2?/g*(z) — oo and ¢*(x)/z|f(x)| — 1/|L| as * — 0F. Therefore, as X,, — 0 as
n — oo, a.s. then h(X,) = A for all n sufficiently large because AX,, /|f(X,)| — oo
and AX?/¢*(X,) — oo as n — oo. Therefore ¢, ~ nA as n — oo, and

lim o8 A -
n—00 Zn ! h(X;) (92(Xj)/2XJ2 - f(X])/XJ)

Since h(X,) = A for all n sufficiently large, X,, — 0 as n — oo and zf(z)/¢*(z) —
L € (—00,1/2) we get

lim logX 2:—A-(1—L) — _A.
’H‘”Z g( j)/Xj 2

Let 77 be the continuous monotone function such that 7(z) ~ ¢*(z)/z* as z — 0F.
Then

*

lim log X, _

% T (X)) |
where A* = (1/2 — L)A. Then by following the proof of Theorem 81 from (12.5) and
letting S, = Z;:Ol 7(X;) — oo then we obtain the limits (12.7) and (12.9) viz.,

. S YA 1 , 1! 1 ,
A*-(14€) < liminf — dv, limsup — dv < A*-(1—e),

n—so0 N J—axatos, vij(v) nooo M Je—ara-as, vi(v)

and there is N;(¢) € N such that for n > Ny () then e=2"0+9)% < X, | < e‘A*(l_e) :
which is (12.6) in Theorem 81. Since t,, ~ nA as n — oo and G(z f 1/(vi(v

319



Asymptotic Behaviour for Logarithmically Pre-Transformed Scheme

as x — 0T, then

(efa*(ue)sn)

A" (1+¢€) < liminf , limsup <A (1—e),
n—oo n n—00 n
and with lp = 1/2 — L we have
—A*(1+4€)Sn G —A*(1—€)Sn
(I+e€)-lp <liminf (e ) , limsup (e ) < (1—¢€)-lo.
n—00 n n—+00 n

The rest of the proof mimics that of Theorem 81 from (12.10) to the end with G in
the role of F' and we get

—log X,

li =1 .S.
oo (—logo G 1) (Iot,) 7
or
1i — log Xn 1, as
im =1, as.,
n—00 (— log o G_l) ((% — L) tn)
as claimed. O
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Chapter 13

Sub-Exponential Stability with

Small Noise

13.1 Introduction

In the previous chapter we saw that the existence of the limit (1.25) viz.,

i 2 @)

=0t g%(x)

enables us to classify the sub-exponential convergence of solutions of the SDE (1.17)
viz.,

dX(t) = f(X(t)dt + g(X(t))dB(t).

Roughly, if L € (00,1/2) and x — ¢?(x)/2? is increasing then the asymptotic behaviour

is given by
. —log X()
1 =1 S.
e (—logo G (B —1Lyr) M
while in the case when L = —oo and x +— | f(z)|/x is increasing, we get

—1
lim og X (1)

=1 .S. 13.1
B Clogor iy 0 M (181)

where F' and G are defined by (1.29) and (1.34) viz,.

| Lo
F(Z‘):/x |f(u)|du and G(a:):/x mdu.

In the latter case, when L = —oo and hence ¢?(z) = o(z|f(z)]) as x — 0T, it is

impossible to draw stronger conclusions about the rate of decay of solutions such as

F(X
lim ( (t))zl or lim

t—o0 t t—o0 Fﬁl(t) - 1’ a5 (132)



Introduction

which prevail for the solution of the ODE
' (t) = f(z(t)), t>0, =z(0)=¢>0. (13.3)

Based on the evidence of Chapter 11, a more stringent restriction on the size of the

diffusion term should enable decay results of the type listed in (13.2) to be proven.

Recall in the case of finite-time stability in solutions of (1.17), that the “small

noise” assumption (1.55) viz.,

2
there exists 6§ > 0 such that limsup ngi < 00,
w0+ T f(2)]

enables us to prove that

F(X(t
lim M =1, a.s..
t»T7- T — 1t
This asymptotic result improves on that obtained when it is known only that L = —oc.

The result also matches asymptotic results for finite-time stability in solutions of the

ODE (13.3).

Therefore, it seems reasonable to once again improve the “small noise” condition
(1.55), which implies L = —oo but is stronger since ¢g*(z) = O(z1*?|f(x)|) as x — 0*.
Therefore, our goal under (1.55), is to establish the desired refined asymptotic results
in (13.2) and in the first part of this chapter we show that this indeed can be achieved,
at the small expense of additional monotonicity hypotheses. Very roughly, if § > 0 is

the number in (1.55) and furthermore x ~ | f(z)|/2x'*? is decreasing then

F(X
lim (X(®) =1, as., (13.4)
t—o00 t
while if z — | f(z)|/2'*? is increasing
LX)
tliglo P 1, as., (13.5)

The intuition behind this classification is that (13.4) deals with faster than power-law
decay rates in X while (13.5) deals with power-law decay.

The second half of this chapter discusses whether these results can be reproduced
by the numerical schemes we have presented. In general terms, the precise asymptotic
behaviour is recovered but we observe that in the case of power transformations fewer
side conditions are needed on f in order to establish the desired rate of decay. Nev-
ertheless, the logarithmic pre-transformation performs equally well for all reasonable
functions f and has the advantage that the value of the parameter 6 in (1.55) need not

be known in order to construct the scheme.
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13.2 Polynomial or Sub-Polynomial Decay in SDEs

We are now going to prove our first result.

Theorem 83. Suppose f,g are continuous, f(0) = g(0) =0, f(z) <0, ¢*(x) > 0 for
all x > 0. Suppose further there is 0 > 0 and a continuous function ¢ : (0,00) — (0, 00)
such that

g*(x)

limsup ————— < o©
w0t T f(2)]

|f(2)| ~ é(z) as = 0F, 2 — ¢(z) /2" is increasing and $(z)/x'+?

—0asx— 0T,

Then the solution of (1.17) obeys

lim X(0) =1,
t—o00 F_l(t)

a.s..

Proof. First, since f(x) < 0 for all z > 0, g*(z) > 0 and f(0) = 0, it follows that
p(oo™) = o0o. Also

@ P B
A @] et <w1+9|f(w)l ) -0

and as f(z) < 0, this implies L = —oo. Furthermore, by assumptions on ¢, we have
i MO o) 0 Y
a0t T z—0t X a—0t \ z1t?
and ) )
i L@ _ oy (9°@)f(2)] _o,
=0t 22 emot \z|f(x)] =«

soT =inf{t >0: X(t) ¢ (0,00)} = 0 and we have X (¢t) > 0, Vt > 0, lim;_,o, X(t) =0

a.s.. Hence by It0’s Lemma,

X(t)_g _ X(O)_g n /Ot _QX<S)_(6+1)f(X(S)) (1 B (9 + 1)92(X(3))) ds—+

2X(s)f(X(s))
" —0g(X(s))
i —X(S)H" dB(s).

Since X (t) — 0 as t — oo and ¢*(z) = o(x|f(x)|) as z — 07 the integrand in the drift
is asymptotic to 0.X (t)~@*V|f(X(t))| as t — oco. Define as usual
_ [P (X(s)

209X gy and oy () = [ ELXE)

M(t) = . X(s)+0 o X(s)2t%

Suppose (M) (t) tends to a finite limit on the event C. Then M (t) converges on C.

Moreover, the drift has a limit as ¢ — oo, which can be finite or infinite because the
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drift integrand is asymptotically positive. If the drift has a finite limit, then X (¢)~°
tends to a finite limit on C' which contradicts the fact that X(¢) — 0 as t — oo a.s..
Thus the drift tends to infinity as ¢t — oo on C' and

lim X(t)_a
=00 [FOX (s)~CHD| (X (5))] ds

=1, as.onC. (13.6)

On C', (M) (t) — oo so M(t)/ (M) (t) — 0 as t — oo and liminf, .. M(t) = —o0.
Once again the drift has a limit at infinity. If the drift tends to a finite limit, then
liminf, . X (¢)~% = —oo which is impossible. Thus the drift tends to infinity a.s. on

C'. Moreover,

(M) (1) _ L PP )/ X (s ds
Jy OLF QXX ()0 ds — fyo1(X(s))1/X (5) 0 ds

For each zy > 0 and some ¢ = ¢(xg) > 0 we have ¢?(x) < cz'?|f(x)|, Vo < x0. Since
X(t) — 0 as t — oo there exists 7" > 0 such that for t > T', X (¢) < zo. Thus

(M) (t) (M) (T) . [109%(X (5))/X (5)>% ds
Jo 01 (X (5))]/X (5)1+¢ ds f O1f(X())/X ()40 ds [ 1F(X(5))]/X ()1 ds
(M) (T) N Jp 0eX ()0 F(X (5))]/X (5)* 1 ds
Jo O1F (X (5))/X ()49 ds Jo LF(X()|/ X (s)140 ds
= W) (1) + ch.
Jo O1F(X(s))1/X (s)1+4 ds
Therefore
lim sup —; (M) () < ch.
t=oo fo O] F(X(s))]/ X (s) 0 ds
Hence
lim M(t) =
= [30F(X ())I/X ()4 ds
Thus
X(t)ie =1, as. on(C".
i Jo OlF(X(s))/X (s)H0ds

Combining (13.6) and the last limit gives

X<t>—9 _
B TR X)X ()70 ds

Define n(x) := 0¢(z)/x'+? then g is increasing. Moreover

X ()~
lim (*)

LAV 13.7
t—00 fo n(X(s))ds (18.7)
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Then with I(t) := fg n(X(s))ds, t > 0 for every € € (0,1) there is T'(¢) such that

X

€<

and 1 —e <~ 1(I'(t))~?/1(t) < 1+ € with both inequalities holding for ¢ > T'(€). Since

7 is increasing
n((L—e) YI@)" V) > I'@#) >0 ((L+e) 1)), t>T(e).

Next

t I’ 1 [la(T@)~" 0
/ (s) gs— 1 / L
T(e) n ((a](s))_l/9> a Jarwy-re  v0n(v)

Thus for ¢t > T'(e),

1 e
/ LAY <t—T(e).
(

1—c¢ 1—e)~1/01()—1/6 U1+977(U)

Thus

I
¢ 0
limsup—/ ——dv <1 —c¢
twoo U Ja—e-1/e1(t)-1/0 v1ton(v)

Now F(z) = fwl /| f(uw)] du ~ fml 1/¢(u) du = fxl 0/(u**n(u)) du as x — 0F. Hence

F((1— o 01(t)-/9)

hrff;gp ; <l-—e
Similarly for ¢ > T'(e),
1 e 0
1+e¢ /(1+e)1/91(t)1/9 v1+‘9—n(v) dv >t —T(e),
leading to
hgng«1+dt”u04w)21+a

Now for t > T(e), (1 —€)-I(t) < X#)™ < (14+¢€) - I(t). So (1 —e) V. I1(t)~1/? >
X(t) > (1+e)~Y. [(¢)~1/%. Thus

N 1/6 _e)-1/6 _)1/6 _ _ _ _
(B9 X(t) = o= X() > 97 - (1™ ()7 = (1= 7 1)

so for t > T'(e), I ((%)I/GX@)) < F((1—¢)"%1(t)~"/%). Hence

e 1/0
lim sup i <(1t6) X(t)>

t—00 t

<l-e (13.8)
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Similarly
—e\1/6 —ey1/e _ _ _ _
(59" X (1) < 50 - (L= ™0 1) = (17 1(1) 7,
i 1-¢\1/0
L. F <(1+6) X(t)>
lim inf >1+e (13.9)
t—o0 t

By (13.8), for every v > 0 there is Th(v, €) such that for all t > Th(v, €)

F ()" x)

t

<(1—e)-(1+)

Now fix v = v/(e) such that (1 —€)- (14 v) = 1 and write T(e) = Ty(v(€), €). Then for
t Z TQ(E)

F ()" x(0)
t
Hence (1—f2)l/0 - X (t) > F7Y(t) for all t > Ty(¢). Therefore, for t > Ty(¢)

N 1/0
lim inf X() > Ll )
t—o0 Fﬁl('[;) 1+e

< 1.

Letting € — 0T gives

e X(2)
>

hgg}f ) - 1
Proceeding similarly with (13.9) yields

. X(2)

1 <1

TP ) <
as claimed. O

In the following example we verify that the results of Theorem 83 hold.

Example 84. Let 3 > 1, 2y > 1 + 3. Suppose f(z) = —2” and g(z) = 27. Then

s |f(z)| _ . B-1-0

=x
rlt+o ’

so x — |f(x)]/x1*? is increasing for 0 < 6 < 8 — 1. Also

2
. 9° () . 2y—1-0—p

limsup ————— = limsup z*’ < 0
z—0t $1+0’f($)’ z—0t ’

once 2y —1—-60—F>0o0r0<6<2y—1-— 0. Hence if we pick any 6 € (0, min(5 —
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1,2y — 1 — f)), all the conditions of Theorem 83 are fulfilled and we have that

. X(t) . X(t)
T R A T

=1,a.s.,

because F(x) ~ 217 /(8—1) as z — 0% and so F1(t) ~ (8 — 1)) Y? ™V as t — oo.

13.3 Faster-than-Polynomial Decay in SDEs

Theorem 85. Suppose f,g are continuous, f(0) = g(0) =0, f(x) <0, g*(x) > 0 for
allz > 0. Suppose further there is 0 > 0 and a continuous function ¢ : (0,00) — (0, 00)
such that
2
. g°(2)
lim sup ————+— < o0,
a0t o0 f ()]

1f(2)] ~ é(z) as © — 0F, 2 ¢(z) /2" is decreasing and ¢(x)/x — 0 as x — 0T

Then the solution of (1.17) obeys

i FX@)

t—o00

=1,

Proof. Define n(x) := 0¢(x) /21 as the decreasing function. Arguing as in the proof
of Theorem 83 and using the hypotheses that f(x)/z — 0 as x — 07 we once again
have that X (t) — 0 as t — 0o, X(t) > 0V¢ > 0 and that the relationship (13.7) holds,

Viz., . L}_e )
o0 [Fn(X (s)) ds

t

Define I(t) := [, n(X(s))ds. For every e € (0,1) there is a Ti(e) > 0 such that for

t > T(e)
1 M7,
ENI0) /
1—e<n_1<[+i)t))_9<l+e,

Since 1 is decreasing, for t > Ti(€), n (((1 — e)[(t))_l/e) <I'(t)y<n (((1 + e)[(t))_1/9>
and
(L—I) ™ > X(t) > (1 +e)I(t) . (13.10)

Therefore for ¢ > Ti(e)

I'(t) o I'(#)
p (=t ) B ((+arn™")
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Now let @ > 0 and compute

t I 1 [t I 1 al(t) 1
/ (S)_l ~ds = —/ e (S)_l ~ ds = —/ iy
Ti(e) n ((al(s)) / ) 4 JTi(e) ((a[(s)) / ) @ Jarri (o) 1 (w7)

1 /<a1<T1(e>)>—1/@ 0 ;
= — —— av.
@ J(ar(t))=1/ !+ (v)

Therefore using the above identity with a = 1 + ¢ we obtain for ¢ > T (e)

1 /<(1+E>I<T1<e>)>-“9 0 1 /<<1—e>zm<e>>)-“9 0
— dv.
( («

dv <t—"Ti(e) < -
L+eSararey—e  v"n(v) T o) < L—e€Jia—arwy-ve v (v)

Thus calling the upper limits of integration I* for brevity we get:

1 I 2 1 ]:'_ 0
1—e < liminf—/ R E dv, limsup —/ T dv < 1+e.
t=oo tJ(a-arwy-e v (v) tsoo b S (rery-1e v (v)

Now F(x) = fxl /| f(w)| du ~ f; 0/(u'n(u)) du as x — 0F. Thus

1 — e < liminf i <((1 _ E)I(t))il/‘g) . limsup d <((1 i E)I(t)ylw)

<1+e.

Next by (13.10), F (((1 - e)](t))_w) <F(X@®)<F (((1 + e)](t))_w). Hence

F (= erw)™")
X
lim inf (X (1) > lim inf >1—c¢,
t—o0 t t—o0 t
and
~1/6
| x@) . Fa+are™)
lim sup < lim sup <1l+e.
t—00 t—00 t
Thus letting e — 07 yields F(X(¢))/t — 1 as t — oo a.s., as claimed. O

Example 86. Suppose v > 1, > 0 and

—T

) = i)

and g(x) =27,

for all x sufficiently small. Then for § > 0, z — |f(2)|/z, * — |f(z)|/2'*0 are

increasing and decreasing functions respectively on an open interval to the right of zero.

Consequently, we cannot apply Theorem 83 to the SDE with this drift and diffusion

coefficient. However, Theorem 85 can be employed because for 0 < 8 < 2y — 2 we have
g9*(x)

limsup ————— = 0.
w0t T f ()]

328



Refined and Consolidated Results for Subexponential SDEs

Then as F(z) ~ 1/(6 4 1) -log’™ (1/z) as  — 0 we have that

(5 L log**! <t1/X<t>>)

lim = lim
t—o0

o log X (t
i 108 (t)

log X(t) _ 1/(8)
i —Zery = —(B+ 1), as

13.4 Refined and Consolidated Results for Subex-
ponential SDEs

In the case that the hypotheses of Theorem 83 hold, we have that X(t) ~ F~(¢)
as t — oo and therefore it is essentially impossible to obtain more refined asymptotic
information concerning X. On the other hand in Theorem 85, we prove only that
F(X(t))/t — 1 as t — oo which leaves the question as to whether we can prove the
stronger limit X (¢) ~ F~'(t) as t — oco. In the following theorem (which also consoli-
dates Theorems 83 and 85) we show that this can be achieved with a small additional
cost by imposing a smoothness hypothesis on f. In fact the following hypotheses are
employed.

9*(x)

I I o VO (0,6 13.11
P g <% VOO0 -

VO >0 x> |f(z)]/z""? is asymptotic to a continuous decreasing function (13.12)
30 >0 x> |f(x)]/z" is asymptotic to a continuous increasing function (13.13)

|f(z)] € CH((0,00);(0,00)), > |f(x)|/x is asymptotically increasing  (13.14)

We start by proving under rather general sub-exponential hypotheses that

lim X(t) =1 = lim —F(X(t)) =1 = lim — log X(?)
t—oo F'1(t) =500 n 5% (—logo F-1)(1)

=1.

In order to achieve this we start by stating a lemma by Appleby and Patterson [7, §]

concerning the preservation of asymptotic behaviour under transformation.
Lemma 44. Suppose ¢ is such that ¢p(z) — 0o as x — oo, ¢'(x) > 0Vx > 0 and z —
@' () is decreasing with ¢'(x) — 0 as x — oo. If b, ¢ € C(RT;RT) obey lim;_,, b(t) =

limy o c(t) = 00 and b(t) ~ c(t) as t — oo, then ¢(b(t)) ~ ¢(c(t)) ast — oo.

Proposition 18. Suppose x € C((0,00); (0,00)) is such that z(t) — 0 as t — oo and

L Fla()

t—o00 t

=1.
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If | f| is such that x — |f(z)|/x is increasing and |f(x)|/z — 0 as x — 0T, then

—1
lim og z(t)

M Clogo P

Proof. Define y(t) := F~(t), t > 0, so that y/(t) = f(y(t)), t > 0, y(0) = 1. Define
f(z) :== |f(z)|/x so f is increasing and set ¢(x) = (—logo F~')(z), x > 0. Then as

—log and F~! are decreasing, ¢ is increasing and ¢(x) — oo as x — oco. Also

oa) = sk~ WL iy,

and since f is increasing and y is decreasing, ¢’ is decreasing. Moreover, as f(z) — 0
as ¢ — 07 and y(x) — 0 as * — o0, ¢'(x) — 0 as © — oo. Now set b(t) = F(xz(t)),
c(t) = t. Clearly b(t) ~ ¢(t) as t — oo by hypothesis. Therefore all the conditions of

Lemma 44 are satisfied and we have as t — oo:

—loga(t) = (~logo F)(F(x(t))) = 6(b(t)) ~ ¢(c(t)) = (—logo F~)(t),

as claimed. O

The implication that x(t) ~ F~1(t) as t — oo implies —logz(t) ~ (—logo F~1)(t) as

t — oo is an immediate consequence of the slow variation of —log.

Proposition 19. Suppose x € C((0,00); (0,00)) is such that x(t) — 0 as t — oo and

L a(t)
Jim AT

If | f| is such that x — | f(z)|/2*% is decreasing for some 0 > 0 with |f(x)|/z' —

as v — 0T, then
i 2E®)

t—o0 t

Proof. Define ¢(x) := F(x=1/%), b(t) := 1/x(t)? and c(t) := 1/F~*(t)°. Then b(t) ~
c(t) = oo ast — oco. Since x +— 7Y% = coas v — 0 and F(x) — 0o as v — 0,

¢(xr) — 0o as r — oo and since

- (1+1/0)

¢'(x) = 0 F (/9] >0,
thus ¢ is increasing. Let ¥(x) = |f(x)|/2'T. Then v is decreasing, so x — 1/(6%(z))

is increasing. Since
1 (:l:’_ 1/6 ) 1+6

Op(c=1%) ~ G| f (a1

(13.15)
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then ,
/ —_—
qb ('I) - ew(xfl/g)a
which must be decreasing. Also as ¢)(x) = oo as x — 01, ¢'(x) — 0 as © — oo. Hence

we can apply Lemma 44 to get as t — oo:
F(x(t)) = Fb(t)™") = 6(b(t)) ~ d(c(t)) = F(c(t)™") = F(F~'(1)) = ¢,

as claimed. n
We are now in a position to state the main result of this section.

Theorem 87. Suppose f,g are continuous, f(0) = g(0) =0, f(x) <0, ¢g*(x) > 0 for
allx > 0. Let |f(z)|/x — 0 as x — 07.

(i) If (13.11) and (13.12) hold, then

i PO

a.s..

)

(11) If (13.11), (13.12) and (13.14) hold, then

I X(t)
iee F1(1)

=1, a.s.

(111) If (13.11) and (13.13) hold, then

Lo X@®)
i F1(1)

=1, a.s.

To see how part (ii) of the Theorem can improve existing results, we refer to the

previous Example 86, in which v > 1, § > 0 and
—x

" log’(1/x)

We can use the fact that f € C'((0,6); (0,00)) for some § > 0, to employ part (ii) of
Theorem 87 to prove that

/()

and g(x)=2".

lim X(®) =
t—o0 exp <_ ((ﬁ + 1)t)1/(5+1)>

?

because F~1(t) ~ exp <— (B + 1)25)1/(6“)) as t — oo. This is a stronger statement
than we are able to establish using Theorem 85.
Theorem 87 part (ii) requires the following lemmas which we state now to aid

understanding. The following result shows how growth rates of ODEs are preserved
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with respect to changes in the time argument. We state the result with asymptotic
monotonicity of functions required, but prove it under the simplifying assumption that

such functions are monotone.

Lemma 45. Suppose ¢ : (0,00) — (0,00) is continuous with z — ¢(z) asymptotically
increasing and z — ¢(z)/z — 0 as z — oo is asymptotically decreasing. Let I :

(0,00) — R be continuous such that

lim M}(@(z)) — 0,

Z—r00 z

where ®(z) = [["1/¢(u) du. Then the solution of the ODE
Z(t) =¢(2(t)), t>0 ,2(0)=¢>0,

obeys

Proof. Define

Then a(z) — 0 as © — 0o. Since we may take z(0) = 1 without loss of generality then
2(t) = ®71(t) — oo as t — oo. Thus for every € € (0,1), there is T'(¢) > 0 such that
a(t) := a(P1(t)) obeys |a(t)| < e YVt > T(e). Let t > T(e) and suppose I(t) > 0. By
the Mean Value Theorem, there is 6, € (0, 1) such that

2(t) <z2(t+1(t) = 2(t) + 2'(t + 6:L(2) - I(t) = =2(t) + ¢(2(t + 6:1(2))) - I(t)
< 2(t) +o(z(t+ (1)) - 1(D),

since ¢ is increasing. Also, as z(t) < z(t + I(t)) as © — ¢(z)/x is decreasing and
I(t) >0

at) P+ IM) I 2t | #=(t) It

<+ 1) S+ 1) S+ 1) =(0)
Hence 0
ST O
Thus as —e < a(t) < e, Vt > T(e),
S+ I0) 1 |
'="7@ “1Zapm “1-¢
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Thus t > T'(e), 1(t) > 0 implies

2(t+ 1(t))
2(t)

We now tackle the case when I(t) < 0. Then there is 6; € (0,1) such that

—_— 13.16
“1—e ( )

—1‘< ¢

2(t) > 2(t+ 1) = 2(t) + 2 (t+ 0,I(1) - I(t) = =(t) — 2'(t + 6,1(1)) - |I(2)|
= 2(t) = o(2(t + 0,1(1))) - [1(1)]
< 2(t) —o(2(1)) - [1(1)].

e 1) | e)
1> D) >1 0 1I(t)]=1—]a(t)| >1—¢,
and so ¥Vt > T'(e)
0> 2(t+1(t)) s

z(t)

Thus for ¢t > T'(¢), I(t) < 0 implies
2(t+1(t))

FE 1‘ <e. (13.17)

Hence by (13.16) and (13.17), for all t > T'(¢)
2(t+1(t)) €
RO 1‘ S7=¢

Thus z(t + I(t))/z(t) — 1 as t — o0, as claimed. O

Lemma 46. Let I : R — R be a continuous function. Suppose x + |f(x)|/x'+? is

asymptotically decreasing and x — | f(x)|/x is asymptotically increasing and

lim @1 (F(z)) = 0. (13.18)
Then

pFTL )

o FUL)

_ —0r@) _ 0lf(y(®))]
y(t)ue y(t)1+9 ’
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or 2/(t) = ¢(z(t)) where ¢(z) = 0| f(z~1/9)|/ [z71/¢] "% Then

= . 2—1/0 Lol Z—l/@

0C) _ BIGC _OICT _ey

~1/0

where ¢1(z) := |f(z)|/x is asymptotically increasing on (0,0), since z — z is de-

creasing, z — ¢(z)/z is asymptotically decreasing. With ¢o(x) := |f(z)|/2'*? we have

1/0

o(2) = O (Zil/ 9), S0 as ¢ is asymptotically decreasing and z +— z7"/" is decreasing

then ¢ is asymptotically increasing. Therefore by Lemma 46

2(t+1I(t)
tg?oT =1, (13.19)
provided
li_)m %Z)I (®(2)) =0, (13.20)
where
— du (13.21)

u

Note that (13.19) implies y(¢t + 1(t))/y(t ) — 1 as t — oo, and hence the result. It
remains to show that (13.18) implies (13.20). Now with z = 2~ /¢

@ I(D(2)) = ol —1/19/9 (/ o(u) ) B %ﬂje)l . (/12 Hrf((lwl)//jﬂ du)

o]
= T I</ RO (M)dv)’

so with o = 2~ /0 o(2) 015 (a)|
z T
2 1@z = N1 ()
Since (13.18) holds, so does (13.20) and therefore the claim. O

Proof of Theorem 87 part (). Since f € C' by Itd’s Lemma we have

FOC0) = FOO) 1+ [ BT ) - 5 / f’(x<s>>—?zEX(s—;) ds.

o f(X(s)) X(s))

Define
[P e(X(s)) S an *(X(s)) .
v = [ Gy B wa hi / PN iy 4

Then

[P,
0= [, ey =0

If C ={w:limy o (M) (t,w) < oo} then M(t) converges to a finite limit on C'. This in
turn implies [;(¢) tends to a finite limit on C', because f € C', f(07) = 0 and X () — 0
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as t — 0o0. On C| since both M and I; converge, so F(X(t)) —t — L* € (—o00,00)
as t — oo. This implies X (t) ~ F~1(t) as t — oo on C. Suppose we are on C’ where
(M) (t) — oo as t — oo. Clearly, as f/(X(t)) — 0 as t — oo, then I1(t)/ (M) (t) = 0
as t — oo by L’Hopital’s Rule. Defining

I(t) :== F(X(0)) + M(t) — 31, (¢),

we see that [;(t)/ (M) (t) — 0 as t — oo, because M (t)/ (M) (t) — 0 as t — oo by the
Strong Law of Large Numbers for Martingales. Thus on C’, X (t) = F~'(¢t + I(t)) and

L) = o(J(t)) = 0 (/Ot%ds) Cast o oo

We now wish to verify condition (13.18) in Lemma 46 to conclude. Next, as X (t) — 0
as t — oo, and ¢2(z) /(21| f(x)|) < C* for all z € (0,5) and X (t) is bounded a.s., we
have that g2(X (t)) < C*(w)X ()] f(X(t))|, t > 0 for some bounded random variable
C*. Hence

L[t X (o)
J(t)gC/Omds, £>0.

Now by hypothesis there is a decreasing function 1 such that n(x) ~ |f(z)|/2'*? as
x — 0%. Therefore, with

_ t X<S)1+9
Tt ::/ 2 s,
O ) X))
we either have J;(t) — oo as t — oo or Ji(t) — Ji(00) < 0o on C” as t — co. In the

latter case limsup, .. J(t) < oo, a contradiction. Hence J;(t) — oo as t — oo and so

if
_ t 1
lt) = / (X)) *

we have J(t) < C*Ji(t), so J(t) < C**Jy(t) for all t > 0 and some bounded random
variable C**. Next by Theorem 85, F/(X(t)) ~ t as t — oo, so we have for ¢t > T(e),
(1—€)-t<F(X() <(l+¢)-t. Then F7'((1 —e)t) > X(t) > F7'((1+€)t). Now
for t > T'(e), since

1 1 1
n(F=H (A =e)t) = n(X(@#) = n(F((1+e)))’

then for t > T'(¢) we have

Jo(t) < Jo(T(e)) + /T(E) D ((11 — o)) ds
s L 1 [FU-oT@) 1
Fa(t) < Jo(T(0) + 1—e/F1(<1_em ORIO
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and so for ¢t > T'(e)

O /Fl((l—E)T(E))

- 1
(t) < C™a(T) + e 1w ()

1—c¢

and I(t) = o(J(t)) as t — oo. Next, as n(x) ~ |f(x)|/z**? as z — 0, we have for
some C'(¢) and all u < F~1 ((1 — €)T'(¢))

1 C/(e)ulw
) = 1f ()]

Hence for t > T'(€), since F~1 ((1 — €)t) > F~1(¢),

Cs(e) ulto Cs(e) 140

It < GO +Cale) [ i P B S GO+ Ol / o P = O

Now I(t) = o(J(t)) as t — o0, so if
lim sup (f(F—l(t))Jg(t)> < 00, (13.22)

then

and so by Lemma 46

as required. In fact it is clear that it suffices to prove

e (H@L [T et u)
1 sp( . /x|f(u)|2d < 00, (13.23)

z—0t

in order to prove (13.22). Finally since z +— |f(z)|/x is asymptotically increasing, we

have that |f(z)|/x ~ ¢1(x) as x — 07 where ¢, is increasing. Thus for z < z1(€) < 1,

1—_i_€¢1<l') < 1+€>¢1(SL’)

Let o < z1(€) and write

F@)] 1wt F@)] (2O W f@)] [P u
du = d du.
v / FwE™ T e / FwrE™ /me) FwpE ™

The second term on the right has zero limit as x — 0%. As to the first, as ¢1(u) > ¢1(x)
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for u € [z1(€), ], then

f@)] [ Wt @) Y W
@ / FaE™ = T2 / @l TF ™
0

@) O w0 14
L
v / F@)] pi(w)

z1(€)
S (1+€)2/ u9 . ¢1(ZL‘) du

IN

|f(w)| ¢1(w)
x1(€) u?
< (1+e¢) /x —|f(u)|du

Since x + |f(z)|/2'+? is asymptotically decreasing for all # > 0 sufficiently small, we
have for each # > 0 that there is aj,, b, such that Vz < b},

/()]

rl+¢’

>a;/.

Also as f(z)/x — 0 as @ — 07 there exists ¢p such that Vo < by, | f(2)|/z < cp. Thus
for x < b,

ag 't < |f(2)] < coa.

o () 107t (2) =t () = () s ().

log (1/|f(z)|) < Timsup log (1/f(z)])

1 < liminf
= 0ot log(/z)  — aet? log (1/a)

Then log (2°/|f(x)|) ~ log(1/z) (6 — 1) as x — 0F and since ¢ can be chosen arbi-

trarily small

Hence

SO
<1+96.

. log (1/]f(z)])
e ()

Thus lim,_,q+ f;l(e) u’ /| f(u)] du < co. Hence

@) [t
iy (V2 [ i) <o

as required of (13.23). Thus

as claimed. O
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13.5 Asymptotic Behaviour of Power Pre-Transformed

Scheme

In this section, our main goal is to show that using a power transformation enables
us to recover the refined asymptotics for sub-exponential SDEs with small noise given
in Theorem 87. This can largely be achieved, but in order to do so we generally impose
some additional smoothness on f close to the equilibrium.

Recalling Theorem 87, we have in part (ii) that the small noise condition in con-
junction with the assumption that x ~ |f(z)|/2'"? is increasing close to zero yields
X(t) ~ F~(t) as t = oco. This deals with SDEs where the non-linearity at the equi-
librium is of “power type” or is exceptionally flat. Our first main result (Theorem 88)
shows that this prevails for the discretisation of the pre-transformed SDE where we
make the transformation Z(t) = X (t)~%, discretise the SDE for Z and recover X in the
discretisation by making the inversion, X,, = Z, Y 9, remembering to choose X, > 0 by
construction.

In the case when the small noise condition continues to hold but = ~ | f(z)|/2'**
is decreasing close to the equilibrium we have in Theorem 87 part (i) that F'(X(t)) ~ ¢
as t — oo. This monotonicity assumption covers the case when the non-linearity at the
equilibrium promotes sub-exponential and faster than polynomial decay. This result
can be recovered for the power pre-transformed numerical method and a sketch of the
main points is presented in Theorem 89. In fact, much of the machinery of Theorem
88 can be reused with the change in monotonicity assumption causing the reversal in
sense of certain difference inequalities used in Theorem 88.

The second part of Theorem 87 shows that we can improve the result F'(X (¢))/t — 1
as t — oo under the sub-exponential hypotheses in part (i). This works if we are
prepared to also request that f € C1(0,00). We have not presented here an analogous
theorem for the power numerical method but have shown in a forthcoming section
that such an asymptotic numerical result can be established for the logarithmic pre-
transformation with additional conditions which ensure f € RVj(1). We anticipate
that by following in broad terms the methods of this later result it should be possible
to obtain an analogue of part (ii) of Theorem 87 in the power pre-transformed case.

Define Z(t) := X (t)~% where

dX(t) = f(X())dt + g(X(¢))dB(), X(0)=¢.

Then by Ito’s Lemma the SDE for Z is given by

00— DX ()P (X (1))

az(t) = —OX(6) " (FX(0)dt + g(X (1) dB(D)) + : :
OF(X() | 00+ DP(XW)Y . Og(X (1)
= (Kap+ x-Sy 450
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Define the sequences (Z,), (X,,) and (t,) by Zo = X%, Xo = ¢, to = 0 and

—0f(Xy) | 006+ 1)g°(Xs) 09(Xy)
Zn+1 - Zn + h(Xn) ( X2+1 2X,2+2 h(X’fL> : W : §n+1a n Z 07
Xo1 =210, n>0,
tor1 = to +h(X,), n>0,
where A A2
x x
h(z) = min (A, ar _) .
[f (@) g*(z)
Assume
f(z) <0,Vz >0, f(0)=0, g(r)>0,Vx >0, g(0) =0; (13.24)
0 is chosen so that 27/ € [0,00)Vz € R; (13.25)
2
. g°(z)
limsup ————— < oo 13.26
A 2] (o) 10
and

|f(2)] ~ é(z) as 2 — 0T, x — ¢(2)/2' 17 is increasing,

o(x) /20 = 0asx — 0%, ¢ € C((0,00),(0,00)), (13.27)

|f(x)] ~ ¢(x) as & — 0T, ¢(0) =0, ¢(x)/x — 0 as z — 0T,
o(z) /' is decreasing, ¢ € C((0,00); (0,00)). (13.28)
Theorem 88. Assume (13.24), (13.25), (13.26) and (13.27). Then

li Xn = [ Xn =1 13.29
A ET ) T AN Ay (13.29)

holds.

Proof. Define for n > 0

0|f (X, 0(0 +1)g*(X,, 0/ h(X,)g(X,
D,, == h(X,) < |§((g+1)| + ( _;X}?_J >> and T4 = (Xg‘Zlg< )

Then forn > 1

€n+1 = Tn §n+1-

n—1 n—1 n—1
Zn = ZO—FZDJ'—FZ]}_H - Zo+ZD]+M(n),
7=0 7=0 7=0
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where M(n) := Z?’:—g T;11 is a martingale with quadratic variation

"Zle% g*(X;)
29 2 :
XJ +

J=0

M is a martingale by the consdierations of Lemma 40, provided the increment of the
quadratic variation is bounded which we now show. Note if z > 1, h(z) < Ax?/g*(z)
so for X; >'1

Ch(X;)9"(Xs) _ o AXT g (X))

< < 02X 20 < A2
X]2c9+2 92 <X3> X20+2

For z < 1, |f(2)|/2'"% < K3, ¢(x)/2'7? < K, and ¢?(z) < Kyx'*?|f(x)|. Thus for
Xj <1

)(29-{-2 - )(29—}—2 J X +0
j J .71

< PPKoK3h(X;) < 0Ky KA.

Thus, there is K5 := K;K3 > 0 independent of A such that h(X;)g*(X;)/X;*"* <
0’KsA. For X,, > 1,

0(0 + 1)g*(Xn)h(X0)
Dn 2 2X0+2

00+ D)g*(Xo)h(Xn)  (0+1) ,
2 X 20+2 29 M

>

and for X,, < 1, ¢*(X,) < Ko X! f(X,,)|. Hence

0h(X,)g*(X,) _ Ko0*h(X,) f(Xn) On(Xn)| f(Xn)]
2 n n n n n n
M = X 20+2 < X1+0 and D, > X O+1 ’

SO ’l’]i < KQ@DTL Therefore for all n € N
M = 2Y, 9 1 n - 6~n-

Thus if

(i) Zj o D; diverges, then (M) (n) < Kg Z;:& D; and either (M) (n) is convergent
in which case M (n) converges and hence M (n)/ > 7~ ' D; — 0or (M) (n) diverges
in which case M (n)/ (M) (n) — 0asn — oo and M (n )/Z:j:0 D; — 0asn — oo.

Hence

(ii) If Z;‘;Ol D; converges, then (M) (n) < Kg Z?;& D; converges and so M (n) tends
to a finite limit. Hence Z,, tends to a finite limit and so X,, — X, € (0,00).
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Then

01f(Xeo)l | 00+ 1)g*(Xe0)
X0+ 2X 012

lim D, = h(Xs) (

n—o0

)::DOO>0,

and this means that Z?;S D; — oo as n — oo, a contradiction.

Thereforezg;ng%ooasn—)oo,Zn—>ooasn—>ooanan—>Oasn—>ooand

Since X,, — 0 and ¢?(x)/(2'*?|f(2)]) < Ky, Vo < 1 then z/|f(z)] — o0 as 2 — 0

" (0 (0
. g-\z . g\ 0
lim L\ gy (M)
b ol f@)] e <xl+"|f(w)\ ' ) |
so 2%/g*(x) — oo as © — 0F. Therefore h(X,) = A for all n sufficiently large and

D.—A <9|f(Xn)| L o0+ 1)92(Xn)> A9 f(X,)|

Yot 92X 0+2 Yot 0 s oo
Thus
X—9
lim —— . 5 =1 as, (13.30)
oo 300 A0LF(X5)1/X;
and for n > N
n —=UN — . .
th=tn+ (n— N)A (13.31)

By hypothesis 7(x) is the increasing function where 7j(x) ~ Af|f(z)|/2'*? as z — 0F.
Then »

lim ——*—— =1, a.s.
n—oo

> A(X5)
Define S, := >77_7(X;), n > 1. Thus S, — S,1 = 7(X,) so 77 (Sp — Sui1) = Xa.

Hence

77_1 (Sn B Snfl))_e

lim (

o S =1 oor lim S, =L
Hence for every € € (0,1) there is an N(e) such that for all n > N(e)
Slg gyt
e T Gun=S)) -y, (13.32)

Sn
or 7 <(1 — 6)71/9551/9> > Spt1 — Sp > 1 ((1 + 6)*1/951;1/9) Thus for n > N(e)

Su+ 7 (146 05,%) < Spiy < Sp 477 (1 —€)7/05,1). (13.33)
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Set ¢q () := 7j(ax™"?). Let ®4(x) := [;"1/¢q(u) du. Then by the Mean Value Theorem
there is 6,, € (0, 1) such that

Po(Sns1) > Po (Sp+7((1+ E)71/957:1/9))
= B (S) B, (S0 0 (1) 18, 1)) i (147 08,2°)

Thus
7 ((1 + e)‘”eS;l“’)

b <Sn + 0,7 ((1 i 6)71/957:1/9» .

D,(Spt1) — Du(Sn) >

Let a := a, := (1 +¢)~"/?. Then
(o5

1 (o (s as9) ™)

Since S, + 07 (aES,Zl/ 9) > S, then 7 (ae <5n + 0,7 <a65,71/ 9))1/9) <7 (aeSﬁl/ 9).
Therefore @, (Sp11) — o, (Sn) > 1 s0

(I)ae(sn-i—l) - qDae<Sn) >

lim inf —(I)a‘ (50)
n—00 n

> 1.

Thus
o1 1
lim inf — ———du > 1.
0 Rea )

Now 7 (acu=%) ~ AB|f(acu=?)|/ (acu=0)""" = AG|f(acu=9)|/(al+0u=1+0/) as
x — 0%. Hence

1 [Sn ql+0y,~(140)/0
lim inf £ du > 1.
o n/ A f (a7 =
Let v = acu /. Hence u = (a./v)’ and so
1 423 ae
liminf — —dv>1
we nA Jy o [f)] T
or
a/@ Qe
liminf & dv > 1.
n—00 tn aES;l/g |f(1))|
Hence

F((+e7s
lim inf = lim inf

n—00 tn n—00 n

r (a€sgl/9>
— 2 >a=1+e
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Also from (13.32), (1 —€)- S, < X, %, < (1+¢)-S, so

(1—e) V0. 8- 5 X, > (1+e) V.50

n

Suppose CX,p1 < S (14 €)™Y then F(CX, 1) > F <S{1/9(1 + e)_1/9>. Since
Xpt1 < (1—6)*1/(95;1/9, so (1-e)YX,,, < Sy % and ( )1/9 Xpa1 < (14¢)71/0.

~1/6 _ (1—¢ 1/0
Sn 7. Hence we may take C' = (1_+e)

l1—e
1+4e€
SO

lim inf >1+e.
n—oo n
Since t,11 ~ 1, as n — oo then
1—e 1/
P39 x)
lim inf >1+e.

n—oo n

Therefore for v = v(e) such that (1 +¢)- (1 —v) = 1. Then for n sufficiently large we

P (59" x.)

have

>(1+e-1-v)=1

tn
Hence F ((}—;)1/9 Xn) > t,,. Therefore (}—J:)l/e X, < F7!(t,). Thus for n sufficiently
large, X,,/F~(t,) < (}f:)l/e. Therefore
li X
imsup ——— < 1.
v P () =

We now obtain the corresponding lower bound. Let a_. := (1—¢)~/%. Using the Mean
Value Theorem applied to the right-hand side of (13.33)

Pa-(Sns1) < Pa_, (Sn) + @, (Sn + 0l (a-c5,17)) -7 (a-5,"7)

then
i (aesa )

6 7 (ae (Sn + 0,7 (&GSnl/e))_1/0> |

Since 0, € (0,1) then S, + 0,7 (a—esgl/g) < Sut1 (a_esgl/e) and

ﬁ <a—e (Sn + enﬁ (afesgl/e))—l/e) Z 77 (aie (Sn + 77 (aiesgl/g))—l/G') .
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Thus with y, := a_.Sn 1/9

~1/0

ﬁ( (Su 477 (o 51/9>)_1/6) i (e (S () 7)

s 75(Sn+1) - Qa,E(Sn) < ﬁ (a—eSn ) _ ﬁ(yn)

Thus -
71(Yn)

7 (a_€ (a% /5 + ﬁ(yn))fl/e) |

q)a_é (Sn+1) - CI)a—e (Sn)

IN

We now seek to prove for a = a_, > 0

lim i) ~ 1. (13.34)

w20 77 (a (@ fyf + 7 (2)))

Thus

()" - () )

(13.34) is equivalent to

lim

=05 (2 (1t atn(a)fat) )

(13.35)

Recall j(z) ~ AO|f(z)]/21t? as 2 — 0% so 2%7(z) ~ AO|f(x)|/x — 0 as z — OF.
Define c(z) := 27(z)/a’. Then for £(z) € [(1+ ¢(z))~/%, 1] then

(@) — (el + c(z)) ) 7 (E(@)r) -2l — (1 +c(2)")
)

(1
(e
L (A= tc@))

§(7) () '

Since c¢(x) = 0asx — 0T and 1 — (1 + h)"Y% ~ h/0 as h — 0. Hence as x — 0F

1— (14 c(x) Y~ % :%-x ng).

Thus (1 — (14 ¢(z))~Y) /A(z) ~ 27/(0a’) as x — 0F. Therefore
i (2(1 4+ c(z))~ 0 20¢( )0
77( (1‘?;(;))) ) ~ 7 (&(x)z) - E(x)m - £<$§1+9 ) 259)

= 7 (€))7 5 e

1—
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Finally we show that y'*7/(y) — 0 as y — 0%, which will yield (13.35) with

¢(z)

10’

n(x) =0A x>0,

where 7} is increasing C'! away from zero. By construction ¢(x) = Az *97(x), 7(z) — 0
as x — 0. Also since f(z)/x — 0 then ¢(x)/z — 0 and ¢'(07) = 0. Thus ¢'(x) exists
for all z and ¢/(07) = 0. We have for 2 > 0 :

oy =0 (2 1+ 022).

Hence 2107 (z) = 0A(¢' (z) — (1 + 0)¢(x)/z) — 0 as z — 0. Now ¢/(07) = 0 so
¢'(xr) — 0 as * — 0 because ¢ € C'. Thus 2! (z) — 0 as 2 — 0" as needed.

Therefore returning to (13.34) with a = a_., we see that

q)a n Sn
limsupﬁ <1 or limsupl/ %;_dug 1.
1N

n—00 n n—oo T

As for the liminf we get

a@ a_.

lim sup —=

dv < 1.
n—00 tn a_esgl/" |f(U)| N

Thus as a_. = (1 — €)% then

F((1—eg s, ")

lim sup <1l-e

n—o0 tn

Also from (13.32), (1 =€) S, < X% < (1+€)-S,s0 (1 —¢)71/0. S s X >
(1+e)*1/9-5’{1/6. Then (1—€)~ V0. (1+6)Y0. X, 41 > (1—6)*1/9-5,21/9 or (%)1/9 Xpy1 >

(1—e)~15, "% Therefore F ((%)1/9 Xn+1> < F ((1 _ e)*1/9551/9> <

F ((%)w X,m)

lim sup <1l-e
n—oo tn
Since t,, ~ t, 11 as n — oo then
F ()" x,)
lim sup <1l-—c¢
n—oo tn

Thus for any v > 0 and n > N(e,v)

()" x.)

T <(1—¢€-(1+4v).
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Choose v such that (1 —¢€) - (1 +v) = 1. Then Vn > N(ev(e)) =: Na(e) then
F ((li)l/a Xn> < t,. Hence (He)l/a X, > F~1(t,). Therefore

1—e 1—e

. n

lim inf

X 1—e¢€ 1/
) S '
e F (R, (m)

Letting € — 07 yields

- X

Combining with the lim sup gives the result, as claimed. O

Theorem 89. Assume (13.24), (13.25), (13.26) and (13.28). Then

F(X
lim —< n)

=1, a.s.,
n—00 tn

holds.

Proof. We can repeat the calculations at the start of Theorem 88 as far as the inequality
(13.32) viz, for every € € (0, 1), there is N(€) := N(e,w) € N such that Vn > N(e)

(77" (Spsr — S)) "
Sn

l—e< <l+e (13.36)

Note here that 7 is monotone but in contrast to the situation in Theorem 88, 7 is
decreasing. Furthermore, X,, = 77 (S,;1 —S,) just as in Theorem 88. The point
of departure of this proof from Theorem 88 is at (13.33), where now the fact 7 is

decreasing forces
Su+ i ((1—e) 08,0 < Sy < S+ (1+€)708, 1) . (13.37)

Putting a. := (1 + ¢)~'/% and taking Taylor expansions in the upper inequality in
(13.37) as in the argument immediately following (13.33), we see that

CDae(Sn-i-l) - (I)ae(Sn) <1

where the fact that 77 is decreasing has been explained. This leads to

®CL n
lim sup —= (S )

n—00 n

<1

which following the method of calculation in Theorem 88, leads to

F((1+es77)
lim sup

n—o0 tTL

<l+e
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From (13.36) we have that (1 +¢)~¢. 8, < X, .1 < (1 —€)~*/? . 5,"* from which
we get directly
. F (Xn—i-l)
lim sup ————=

n—o00 n+1

<1+k¢,

and letting € — 01 gives the upper bound

F(X
lim sup (Xn)

n—oo tTL

<1. (13.38)

~1/6

To get the corresponding lower bound, put a, = (1 —¢) and take Taylor expansions

in the lower inequality in (13.37). This gives
1(Yn)
i (ac (a2/98 + i) ")

®ae (Sn+1) - ®ae(8n> >

where vy, = a.Sn Y0 5 0asn — co. The quantity on the right-hand side tends to

unity as n — oo, because the limit in (13.34) still holds. Therefore, we arrive at

lirninfM > 1.

n—oo n

This implies, after the usual calculations

F((1—e s,

n

>1—c€

lim inf
n—oo

From which we proceed as before to get

F (X
liminfM21—e

)
n—00 t’fH-l

and letting € — 07 yields the lower bound

lim inf w > 1.
n—oo n

Combining this with (13.38) yields the result. O

13.6 Polynomial and Sub-Polynomial Decay in Log-

arithmically Pre-Transformed Scheme

In the previous section it was shown that a power pre-transformation and subsequent
discretisation preserved the asymptotic behaviour of sub-exponentially stable SDEs,

subject to the small noise condition. However, the choice of power transformation
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depends on a parameter # whose value must be inferred from the behaviour of f and
g in the neighbourhood of the equilibrium. Therefore, it is pertinent to ask whether
we can choose a pre-transformation which does not depend so directly on the structure
of the SDE. In this section, we show that a logarithmic pre-transformation performs
acceptably, recovering the desired asymptotic rates of decay under the small noise
condition. However, in order for this to happen we find it necessary to impose some
further control condition on the drift. These conditions are more restrictive than those
needed in the case of power transformations. Nevertheless for most drift coefficients
that promote sub-exponential decay and possess nice regularity properties, such as
regular or rapid variation, these conditions do not represent a practical limitation.
Our first main result is an analogue of Theorem 88 part (iii). However, the desired
asymptotic behaviour is recorded under a condition on the solution and noise term
which is impossible to verify a priori. We will shortly establish sufficient deterministic
conditions which can be readily checked in advance of simulations which imply this

technical condition.

Theorem 90. Let f,g be continuous with f(0) = ¢g(0) = 0. Suppose f(x) < 0,
g*(x) > 0Vx > 0 and there exists 0 > 0 such that

_g)

f(z)/x =0 asz— 0", sup < 00,
Wi mmﬂfqun

(
[f(@)] ~ ¢(x) as z — 07, 6 € C", ¢(0) =

x = ¢(x) /2 is increasing and ¢(x)/x* 0 — 0 as x — 0T

Then 3(X )
. g n 3
1 -n) =0 13.39
i (i i) =0 (13.39)
mmplies
Xy
R Fy T
Remark 48. Under the conditions of Theorem 90 we see that
2 2
g*(x) . g°(x) 0
1 = ], —_— = 0
Jﬂww|éﬁgwwmx !
and
xr — |f (=)l = ’fffgl .2’ is asymptotically increasing,
T T
so by Theorem 90
—log X,

li =1 S..
D% (—logo FY)(t,) = P

]

We now give a deterministic, sufficient condition which implies (13.39) and thereby

enables Theorem 90 to be used reliably.
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Theorem 91. Suppose that the conditions of Theorem 90 hold and that

1/3
lim ((w) y’(logo F) (y1+5)) =0, Ve>0. (13.40)

y—0t Yy

Then

Proof. By virtue of Theorem 90, it suffices to show that condition (13.40) and the
deterministic conditions on f and g imply (13.39). We start by observing that for
every € € (0,1)

—log X,
(—logo F~1)(nA)

<l+4+e€ Vn> Nie).

Therefore X,, < F~1(nA)™¢, Vn > N;(¢). Notice also that the iid sequence of Stan-

dard Normal random variables (&,,) obeys

li ‘£n+1 | _
1Imsup —(—————

= 1’
n—oo 2 lOg?’L

so we have for n > Ny(w) that |£,+1] < 24/log(nA). Also by the small noise condition
it follows that ¢?(z) < C2'*?|f(z)| V2 < z; and that X,, < x; for all n > N3(w). Also
since x +— |f(x)|/x is asymptotically increasing there is ¢(x) ~ |f(z)|/x as © — 0T

a.s.,

which is increasing so

v(z) _ |f(2)] < 4p(z), T <>

4
and © < xo for n > Ny(w). Let Ns(w) := max(Ny, Ny, N3, Ny). Then for n > Nj as

x +— (x) is increasing

X)) (CXI|£(xX))™

Tr v N vo 3/2
' Focopat] = o e
1/2
— 8(C3/? <|f<)?(n)|) X26/2 (log(nA))3/2

8C3/2 . 9 (¢<Xn))l/2 L X302 (log(nA))3/2
]CB/2. 2¢1/2 (Ffl(nA)lfe) . (Fﬁl(nA)lff)?’gm ) (log(nA))3/2

(P~ (nA) )]
F~1(nA)l—«

1/2 30/2 2
< 8C%?.2.2 ( ) (FH(nA) )T (log(nA))3/ .
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Put y, = F~'(nA)'"¢. Then for n > N5

H(Xn) s

1/2
’ |f‘?X )|X2 5 3203/2 . <|f(yn>|) . y20/2 . ((lOgO F)(yrl/(l_e)))g/Q
n n yn

3205 ((—'f w)l) 18 loge F><y:/<“>>>

Yn

3/2

Since y, — 0 as n — oo then the term in brackets tends to zero as n — oo by (13.40)
and the deterministic conditions on f and ¢ imply (13.39). O

The condition (13.40) holds for a large class of functions f. For example if f € RV, (B),
for B> 1, then F € RVy(1 — ) so y — (logo F)(y*™) € RV,(0). Hence

1/3
g (%) o (log o F)(y™*) € RVy(1/3- (8 — 1)+ 0),

so it follows that

lim (M> 1/3 y?(logo F)(y't) =0, Ve>0,

y—0F Y

which is (13.40). Hence if the other conditions in Theorem 90 hold we get that X, ~
F~(t,) as n — oo where f € RVy(p) for 8 > 1.

If f € RVy(1), Theorem 90 is inapplicable owing to the monotonicity hypothesis
that o — |f(z)|/2'*? is asymptotically increasing. Therefore, we need to prepare
another result to deal with that case. We shortly present Theorem 93 to that end.

The other large class of functions which might attract our attention are those which
are “arbitrarily flat” at zero, such as the function f(z) = e~%/* 2 > 0, f(0) = 0 which
is infinitely differentiable in a right neighbourhood of zero but for which f™(0) =
0, Vn > 1. The following conditions, which are easy to check, characterise nicely many
such “superflat” functions:

f@)f"(x)

lim —~~—~*>=1 and lim M

=0. 13.41
a0t f'(x)? -0+ X ( )

We now prove a result which captures some of the important properties of functions
f that obey (13.41). In the lemma below the function f is a positive, increasing C*
function. It is not the function f which stands for the drift in our SDE. However, the

salient results for negative f can be read off from the result below.

Lemma 47. Suppose f is in C? and

o LI _ o 1) _
S e L AT T
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Then
(i) F(x) = [} 1/f(w)du~1/f(x) asx — 0.
(ii) lim, o zf'(x)/ f(2) = o,
(iii) log (1/f'(x)) ~ log (1/ f(x)) as = — 07
(iv)

L log (1/£(a)
z—0+  log(1/x)

Proof. Define v(z) := log(1/f(z)) so ¢» € C%. Then f(z) = e %@ and f'(r) =
—(x) f(z), f"(z) = =" (x) f(z) + ' (2)*f(x). Hence ¥/(x)? — 4" (x) > 0 and indeed

oy W@ =" @) f@) (@)

S Y (x)? Cesot f(3)?

Since f”(x) > 0 and f’(0) = 0, then f'(z) > 0 so ¢"(z)/v¢'(x)? — 0 as x — 0T for
x € (0,6). Define y(z) := —¢/(x). Then v(z) > 0 and M(x) := v/(z)/7*(x) — 0 as
r — 0. Clearly, as f(z)/x — 0 as x — 07 and thus f'(z) — 0 as z — 0T, we have
that F(x) — oo and 1/f'(x) — oo as x — 01. By L’Hopital’s rule

F(x) . —1/f(x)

lim = =1

o0t T/(@) om0t — (@) /f (@)

completing the proof of part (i). For part (ii), we start by noting that f”(z) > 0 so
f'(z) > 0 and f’ is increasing on (0,6). Thus for z € (0,9), there is &, € (0,z) such
that

f@) = f(0) + f(&)r = f(&)x < f(z)z.

Since " = —='f, —=/(x)z > 1 for all z € (0,9). Hence y(z) > 1/x for all z € (0,9).
Hence v(z) — 0o as z — 0. Now

/ Tl /0 W= [ du

+ 73 (uw) o+

Thus

y(z)t = ' —M (u) du.

o+

Now 1/(zv(z)) = 1/z- [;. =M (u) du — 0 as & — 0. Hence z¢'(x) = —oc as x — 0*.

Thus ,
lim i (x> =
z—0+ f(x) z—0t

This completes the proof of part (ii). To prove part (iii) notice first from part (ii) that

g £~ (1)) o
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Now define ny(z) == f/(2)/f(x), np(x) = [/(x)/(x). Since (/f/f?)(x) - 1 as
r — 07, ne(z) ~ np(z) as  — 07, and ny(z),np(zr) — oo as © — 0. Thus as
xns(r) = oo as x — 07 for any K > 1, we have that ns(z) > K/z for all z < z(K).

Hence

z(K) z(K) q K
/ nf(u)du>K/ —du = Klog (aj( )) — 00, asx — 0F.
x x Uu

X

Thus f ng(u) du — oo as & — 01 and likewise f ng(u) du — oo as x — 0F. Moreover,
fnf du~f ng(u)du as x — 07, Also for z < ¢

o (1) - /ff &fm<m

and as x — 0%, log(1/f'(x)) ~log(1/f(x)) because as x — 0"

o (19) - [t [ s (1)

completing the proof of part (iii). Finally, to prove part (iv), notice that = f'(z)/f(z) >
K, Vo < z(K) and any K > 0. Thus f'(z)/f(x) > K/z for x < z(K) and so for
r < z(K)

() - [ [ (42),

SO
1
og(I/f(@))  Kloga(K) . log(1/f(=(K)))
log (1/2) ~ log(1/2) log (1/2)
Hence loo (1
i inf 208 (1/f(2)) > K,
=0+ log (1/x)
and letting K — oo yields the proof of part (iv), as claimed. ]

Armed with Lemma 47 we can simplify appreciably the condition (13.40) for functions
f obeying (13.41).

Lemma 48. Suppose (x) =log (1/|f(x)|) and

1 1+e

1
z—0t ¢($) 3’
and let | f| satisfy (13.41). Then (13.40) holds.

Proof. By Lemma 47 parts (i) and (iii), as x — 0*:

(Vi—“’)'yﬂ 2 (log o F)(z*) ~ (@)1/3 27 log (W) .
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Hence with ¢ (z) := log(1/|f(z)|), taking limits as x — 07, we get

(22 e

~ S loglf(a)| + (0 - %) log  + log log (W)

(7)) s (5) + osvs ey

= () (o (20 i) - etostfs )

since —1/3 - log (1/|f(x)|) = —oc as & — 07 and

o1 log (1/x) s 7 o O
al) = (3 e)logu/\f(xnﬁo’ = 0%

by Lemma 47, part (iv). O

We now provide an example.

Example 92. Let f(r) = —e~/*", a > 0. Then it can easily be checked that

L @)

o paE

Define ¢ (z) := log(1/|f(x)|) = log(e'/*") = 1/2*. Then

! L . log (1 _ N
%%i{%wzmﬁ log (3) (1 +6) =0,

Therefore, the condition in Lemma 48 holds, and with this choice of f by Theorem 89

we have that

li Xn 1
ey b
m
Proof of Theorem 90. We have Z, = —log X,,, t, ~nA asn — oo, X,, = 0asn — oo,
X,>0foralln>0, Z, = oo asn — oo and
—log X,
lim °8 ~1.

n—00 (— log o F_l)(TLA)

Also for all n sufficiently large h(X,) = A, and therefore

+ = &ar1

an 2Xn Xn
Zn+1:Zn+A<| (Xn)l gzgfg))J”/Z'g(Xn)

353



Polynomial and Sub-Polynomial Decay in Logarithmically Pre-Transformed Scheme

Define A(z) := €. Then A(Z,) = %% = (eZ")e = X% Define

, f(Xa)| | 9°(Xn) ._ 9(Xy)
E, = ( X+ 2X2) and Rnﬂ._\/Z-X—n.gnH.

Then there is 7,41 in the interval with endpoints Z,, and Z,; such that

A(Zpy1) = AZ,+ F,+ Rui1)
= A(Z,) + A(Z,)(Fn+ Rpt) + %Aﬂmn-&-l)(Fn + Ryya)”.

Thus

A(Zn-i-l) - A(Zn)
= 0A(Z,)(Fo + Rug1) + 502 Al (F7 + 2F, Ry + R )

Xy
= OA(Z,) P+ S0P A ) P2+ 3024, )AL (2 1) 1 0A(Z,) R
gz(Xn)
X2

n

+ 92A(7]n+1)Fan+1 + %92A(nn+1)A

Define (41 :=&2,; — 1 and

2
Dy = 0A(Za)Fy + 36 A0, 1) F2 + %QQA(%H)A%,
Top1 = %HQA( n+1)Ag g( )Cn+1 +0A(Z )ﬂggn>€n+l+
A1) A <|fg( DI 2(X2)> \/—g( )én+1

Then for n sufficiently large A(Z,4+1) = A(Z,) + Dy + Tyia. Fixn e N If Z, > Z, 11
then 1,41 € [Zny1, Zn] and A(n,41) < A(Z,). Then

2 2
914(77714_1) Fn 4 1 ) HA(T]TH-I) . Ag (Xn)/Xn — 0<1), as n — oo.

1
0A(Z)F, ~ 2 A(Z,) 2 A(Z,) F,

If Z, < Zpyq then n,11 € [Z,, Znia] and A(ny1) < A(Zy41). Then

2 2
oo Du 10U L 0AZi) AP(X)/X
6A(Z,)F, 2 A(Z,) 2 TA(Z) F,
2 2
— %'6 <69(Zn+1Zn)Fn+69(Zn+1Zn)Ag ()F(:n)/Xn) )

354



Polynomial and Sub-Polynomial Decay in Logarithmically Pre-Transformed Scheme

Thus

D A(X,)/X
1< 9 “Ene) 4 fFn—Bns) VL) (1342

V< 9AZ.)F, ( te ol (13.42)
Now F,, — 0 asn — oo and (Ag*(X,,)/X?)/F, — 0 as n — co. Moreover since (13.39)

holds and 3 3
R3 . — A3/2. |/ (X3)] ) (Xn)&ni1
m X, XZf(G)]

we have R, .1 — 0 as n — 0o. Therefore we have

li 1.
nioo 0A(Z,)F,
In fact
lim D, =1 (13.43)
nooo XA F(X0) ]/ X0 '
Let

10 = 20AZ)A LT 6 v 0z VB g, 1

X?
92A(an<\f( Xl g <2>)fg< )

Xn 2X

By applying the induction agrument in Theorem 72, it can be shown that T +)1 is a

martingale difference and we also define

2 1
Tr(wr)1 =T — T1§+)1

— A(Z) (192 A1) = A(Zn)  AgP(Xn) Aler) — A(Z)

Cn+1 + 92 °

If Z,11 > Z, then n,11 € [Z,, Znia] and A(nyy1) < A(Zy41) sO

0 < [A(nt1) — A(Zn41)| < ! Zns1—2n)

A7) < — 1 =FntRar) 1 — (1), asn — oo,

because F,, R,y1 — 0asn — oo. If Z,, > Z, 1 then 0,1 € [Z,11, Z,] and A(Nnaq1) <
A(Z,) so

[ A1) = A(Zn)| = A(Zn) = A1) < A(Zn) = AlZnsa).

<1 — fnii=Zn) — |0Znn1=2n) _ 1| = (1), asn — oo,

355



Polynomial and Sub-Polynomial Decay in Logarithmically Pre-Transformed Scheme

because F,,, R,.1 — 0 as n — co. Hence

|A(77n+1> B A(Zn+1)|

0< A(Z,)

=o(1), asn— oo,

in all cases. Thus

A3 (X,
72 = A(2) (o) 2LE) Gt b ol1) By ).

where the o(1) terms behave according to
o(1) < |efZn+1=20) _ 1| ~ 0 (F, + Ryy1), asn — oo.

Recall D,, ~ 0A(Z,)F,, asn — co. Then the second term in T(Jrl is A(Z,)o(1)F,Rp 1 =
o(D,,). The first term is

2 2
A(Z,) - o(1) - % o1 = O (A(Zn)(Fn + Royq) - % . §n+1) . asn — oo.

Therefore, if

. Rn+1 92(Xn) . gz(Xn)
Tim (Tn 3 (&,,-1)) =0 and lim Cns1 =0, (13.44)

n

then T(Jr)1 = o(D,) as n — oo. The second condition in (13.44) holds if ¢(X,)/X, -

&ni1 — 0 as n — oo. To see this write

(Q(Xn>£ >3_ g(X) ¢3 |f(Xn)|
X, o FXIX2 X,

and apply (13.39). The first condition in (13.44) is equivalent to

2 XTL 2 Xn Xn gn Xn
(g E(g )ffm 9 g(% )> : g?f())(n)Jlr/l)/(n — 0, asn— oo,
2 2
éEX ))|fn+1 <g E()gn) '5121—&—1 -9 g()gn)) —0, asn — oo (13.45)

For the second term, recall that g(X,)/X, - &+1 — 0 as n — 00 so

X)L eX), )
FOG)XE ST X, (X)X,

— 0, asn — oo.

Hence the second term in (13.45) tends to zero. The first term is

R® _ 9*(Xn) )
n+1 |f<Xn)|X2 n+1
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and tends to zero by (13.39). Therefore T )1 = o(D,,) as n — 0o, as required. Define

now M(n) =3 7" 1Tj+1 Then

AZj1) — A(Zy) = D(Z;) + T, + T,

SO

AZy) = A(Zo) + Z Zﬂﬁﬁ

Since Tﬁ)l =o(D(Z,)) as n — oo if we can show that M(n) is o(>_ D(Z,)) as n — oo

we will be able to reduce the remaining asymptotic analysis to that covered in the

proof of Theorem 88. Define (M) (n) := 7" | E[(M(j) — M(j — 1))*|#;_1]. Hence
n 1)?

(M) (n) = Sy B [T 1254 Now

TV = Az,

J J

Gt

1)2 02A92<Xj71) ) C + 9\/ZQ(XJ,1)
oxz, ¥ X,

7j—1

0°F; 1 VAg(X; ) ¢ 2
X, J

7j—1

= A(Zj)*-

0°Ag*(X;_1) (6\/Z9<Xj—1)

2
GG OFE
X7, D P A 15])

Thus with E; := A(Z;)*0*Ag*(X;)/X;, we have

2Ag% (X 0V ’
= A(Z;1)*- % -E ( 2;;,( - G+ (1+ 9Fj—1)fj> Fi1
02Ag2(X;_ 20v/A 1+ 0F;
=P B % JREAES 2];53( =G+ (14 0F ) €| 7 J”]
2AG? (X 0 14 0F;
= Ej, (% E[G] + = ]le)<1 ) E[GE] + (1 +0F)° E Kﬂ) '

Now ¢; = &€ — 1. Then ¢ = & -2 +1 ThusE[(}] =3-21+1 =2 and
E (6] =E[¢(& —1)] = 0. Thus

2 0>Ag*(Xj-1)
1 1
E |:T]( ) §j71:| = Ej,1 (TQIJ + (1 + (QFJl)2>
j—
A (X, ) P AR(X, )
= AZ) —m <1 +20Fj + OF L+ T)
J— J—
2AGH (X
~ A(Zj_1)2 . 99—531)7 as j — 00.
X5
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Hence as n — o

(1) () ~ Y- a2 PEEEE) N g PR
Now D(Z;) ~ 0A(Z;)A|f(X,)|/X; as j — oo. Thus as j — oo we have

E; A(Z)-0°Ag*(X;)/XF NCAC.O) I (0. 0).

bz~ Az NOx, A X — T X))

09°(X;) <5
X P~

Thus for some a.s. bounded random variable E*

lim sup M < E*.
e S D)

If (M) (n) diverges, then M(n)/ Y270 D(Z;) — 0 as n — oo. Since T\3; = o(D(Z;))
as j — oo then A(Z,) ~ > 7" 2 D(Z;) as n — oo. Thus

lim X,
o Y OAZ)AI )1/

Y

or
X@

ST A (X)X

=1, a.s. on Aj,

where A; .= {w : (M) (n) = 0o, n — oc}. Now consider the event
Al ={w: (M) (n) < 0o, n — oo} .

On A} M(n) converges. We have that T](Jr)1 =o(D(Z;)) as j — oo. Since D(Z;) > 0, V j
S0 D i v D(Z;) — 00 as n — oo or > v D(Z;) = D* < 00 as n — oo. In the former

case, we have

A(Z,) A(Zo) i T M(n)

Sz sinz) S by Sy

— 1, asn — oo.

In the latter case, as 7}@1 = o(D(Z;)) as j — oo, then Y 7~ lTji)l — T*. Then as

n— o0

X =AZ,) = A(Zy) + D" +T* + M* := X* € (—00,00).

If X* =0, then X,, & X, € (—00,00) a contradiction. If X* =0, then X,, — oo, also
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a contradiction. Therefore if (M) (n) converges, then
lim — =" — 1 on Al

Thus
X—9

n

lim —
novo Y00 OALF(X5)]/ X

=1, as.

Following the proof for the power pre-transformation, we have that (13.30) and (13.31)

implies

as required. O

13.7 Super-Polynomial Decay in Logarithmically Pre-

Transformed Scheme

We showed in Theorem 87 part (ii) that when z — |f(x)|/z*"? is decreasing, x —
|f(x)]/x is increasing, |f| € C((0,4);(0,00)), then under the small noise condition,

we can strengthen the conclusion of Theorem 85 from

lim M =1, as.,
t—o00

to X(#)
tliglo (D) =1, as.

In this section we show that the improved asymptotic result is satisfied by the loga-
rithmically pre-transformed scheme under strengthened hypotheses which ensure that
|f| € RVh(1). We state now the main result.

Theorem 93. Suppose that

(i) Y0 >0
2
: g-(x)
1 [ S
e e f] <

(ii)
IfleCt, I(z):=|f(z)|/z is increasing, 1 € RVy(—1)
(111) x — xl'(x) is increasing.

Then
) X _ ) Xo 4
oo Fo1(nA) oo Py 0 4
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We now wish to show that the conditions imposed in Theorem 93 imply that of The-
orem 87 part (ii). In doing so we show the discrete-time dynamics are preserving the
asymptotic behaviour specified in Theorem 87 part (ii) for an important subclass of

relevant drift coefficients.

Proposition 20. Under the conditions of Theorem 93, the solution of the SDE obeys

lim X(®) =1,
t—o0 F_l(t)

a.s..

Proof. Since |f| € C((0,00);(0,00)), we have automatically the first part of (13.14).
We have [(z) := | f(x)|/x increasing so x +— | f(x)|/x certainly fulfills the second part of
(13.14). Next as I’ € RVy(—1) we have that [ € RV;(0) and therefore as | f(x)| = zl(z),
we have |f| € RVy(1). Hence x — |f(z)|/21"? € RV,(—0) for > 0 is asymptotically
decreasing at zero, which is condition (13.12). Condition (13.11) is nothing more than
the small noise condition we impose in Theorem 93. Therefore all the conditions of
Theorem 87 part (ii) hold and it follows that

.0
e F1(1)

=1, a.s.,

as claimed. O
Example 94. Reconsider Example 86 where § > 0, v > 1 and

—T

x) = W and g(x) =27,

for z > 0 sufficiently small. Then for 0 < 6 < 2y — 2 the small noise condition in (i)
holds, |f] € C*((0,6); (0,00))) for some ¢ > 0 and

A N S i §
@) = = P 8 ’ (x)

Clearly [ is increasing close to zero, as required in hypothesis (ii) and
1
I'(x) = é log~(#+1) (—) ,
x x

so I' € RVy(—1). Finally  +— zl'(x) = 3/log”™(1/2) is an increasing function close

to zero as needed in part (ii). Therefore we may conclude from Theorem 93 that

: Xn
lim =
" exp (= (8 + 1)) )

In the proof of Theorem 93, we will frequently need to use the fact that solutions of

the numerical scheme decay a prior: faster than any negative power of n. We prove
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the veracity of this observation now.

Proposition 21. Let |f| € RVy(1),  — |f(x)|/z be asymptotic to an increasing C*
function and f(x) <0 for all z > 0. If L = —o0, then

. log X,
lim =

n—oo logn

—0Q.

Proof. By Theorem 81 we have that

i —log X,
w0 (—logo F1)(t,)

=1,

and because t, = nA +t* for all n sufficiently large and F~!'(t+¢) ~ F~1(t) as t — oo
for any ¢ € R, we have that

. —log X, )
im =1.
n—00 (— log @) F_1>(7”LA)
Since |f| € RVy(1), it follows that F' € RV;(0) and so
log F
lim 28 F @) _
z—0t+  logx
with the limit being approached from below. Hence
) —logx
lim = —00.

=0+ (—logo F~1)(x)
Therefore as F~'(nA) — 0 as n — oo, this limit implies

_ -1
i (logo T (mA) .,
n—00 lognA

and as log(nA) ~ logn as n — oo, we have

. —log X, . —log X, (—logo F71)(nA)
lim ————— = lim . = 00,
n—00 log n n—00 (— 10g 0] F_l) (TZA) IOg n
proving the claim. O

Proof of Theorem 93. Let X,, = e~?» where for all n sufficiently large, we have
Zn—i—l = Zn + Fn + Rn-‘,—la

where as before

F,=A (lf(Xn)l + gQ(Xn)) and R, = %fnﬂ.

X 2X2

n
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Define A(z) := F(e™*). Since F(x f 1/|f(u)| du then F'(x) = —1/|f(z)] = 1/f(x)
and F*(z) = —f(2)/ f(x). e H(z) = —e~*/f(e) = e /|f(e)] and A"(z) =
e 7/ fle?)—e > f'(e7)/f*(e?) = —6_2/\f(6_z)|—6_2Zf'(€_z)/f2(6_z)- Furthermore,
by Taylor’s Theorem there is 7,41 € [min(Z,, Z, 1), max(Z,, Z,+1)] such that

A(Zusr) = A(Zo) + A(Z,) (o + Rusr) + A4 0hosa) (Fo + Ruir).

This expansion gives

Ag*(X )+\/_9( n)
2Xn|f (X)) [f(X)]

Define 7,41 := e ™ € (min(X,,, X,,11), max(X,, X,,4+1)) and

e 2f()
ORNEC

so that A”(z) = B(e™*). Hence A”(1,41) = B(7jp11). Define (41 := €21 — 1. Then

1
F(Xp1)—F(Xy) = A+ §n+1+§A”(77n+1)(F§+2Fan+1+Ri+1)-

F(Xpp) — F(Xn) — A

Ag2 (Xn) B(nn—H) noy \/_g< ) QB(ﬁn-l-l)Fan-i-l + B(ﬁnJrl)R?LJrl

T 2 o) T 2
_ Ag2(Xn) i B(ﬁn-&-l)Fg 4 2 (B(ﬁn-&-l) - B<Xn)) Fo Ry \/Zg(Xn)g
2X,|f(X0)] 2 2 [F(Xa)] >
B(Xn)Fn\/Zg(Xn) AB(Xn)QQ(Xn> 2 AB(Xn)QQ(Xn>
X, 1 + 2X? (i — 1)+ 2X?
L ABw) ~ BOG) (X
2X?2 il
- ) SEOWEE 4 (i) - BOG) (Fultuns + 32,1
B(iln1)F2 | VAVAg(X,) VAB(X,) Fag(X,)
+ 9 + ’f( n)| €n+1 + Xn gn—i-l
AB<Xn)92(Xn)C
2X2 e

Let AB := B(7,+1) — B(X,,). Then for n > N(w),

-A (X, , 1 1.
D, = 7 ’ ?QEXH)) ’ f (Xn) + AB(Fan_H + ERZ—H) + EB(nn—&-l)Fr?’
and forn >0
VAg(X, f(X,)|B(X,,)F, B(X,))A¢%(X,
T = —|f(i£n)|) (1+ il )|Xn( ) >§n+1+ ( ;Xg () *Cnt1

= Kp&ug1 + LpGogr,
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so that for some N = N(w) and all n > N(w)
F(X,1)—F(X,) =A+D, + Ty
For 0 <n < N(w) set D, := F(X,41) — F(X,)) = A —=T,41. Then Vn >0
F(Xpi1) — F(X,) = A+ Dy + Tty 10> 0.

Then F(X,) = F(Xo) + nA + 3/70 D; + M(n), n > 0 where M(n) = 307 Tjs1.

Clearly M is a martingale. Moreover

E [Tj%rllyn] = E [(Kn€n+1 + LnCnJrl)Q |yn]
=E [Kﬁ§2+1 + 2K n Ln&nt1Carr + Li<¢%+1|§4
= K7 + 2K, LoE [Guaén] + LIE [CF4] = K2 + 212

The last line follows because in the second term (,11 = &2, — 1 and (o1& =

&1 — &1 50 E &) = E[€,,] — E[641] = 0 and in the third term ¢2,, =

A =28 4+ 1landE ([, ]| =E[&,,] —2E[¢2,,] +1=2. Thus

AQQ(Xn)
f2(X5)

[f(Xn)|

n

. A294(Xn)

E [T2+1|<%J - X3

(1 + B(X,)F, >2 + 1B*(X,,)

Then with f(z) = —f(z) = | f()|, we see that as n — oo

S gy HEDE A(;Xn f'an>X,%> JA(X,)
BXo) =5 B(Xa) ™+ X A

_]E<Xn) £
- A( X +f(Xn)>.

By definition then f(z) = zl(x) and f'(x) = xl'(z) + I(z). Hence as [ is increasing

f(x) - @ =zl'(z) = Az) > 0,
and A is increasing. Thus B(X,)F,|f(X,)|/Xn ~ AXNX,,) as n — oo. Also A\(X,,) —
A(0T) € ]0,00) as n — oo, as A is increasing. Suppose A(07) > 0. Then zl’(z) — A(0T).
But A(0") = lim,_ f(z)/z = 0 forcing a contradiction. Hence A(0¥) = 0. Thus
B(X,) | f(X,)]/Xn ~ AXNX,) — 0 as n — oo. Thus the first term in E [T72,,].7,]

is Ag?(X,)(1+0(1))/f*(X,) as n — oco. Also
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o ) XL MK e 9%
ER S T R < R T
Thus
2 o1 QQ(Xn> 1 2 92<Xn)
E [12,15] - AL (1+0(1)+§-A>\ (X) f2<Xn>)’ as 1 oo
Now

(X)) _ OXIUF(X,)| _ Ox[

X)) fA(XG) /(X0
Since I' € RVy(—1),1 € RV,(0) and so f € RV;(1). Therefore z — x'+9/ f(x) € RV,(6).
Since X,, — 0 faster than any power as n — oo, the sequence n X%*e/f’(Xn)

tends to zero faster than any negative power of n. Since A(X,) — 0 as n — oo and

*(X,)/f(X,) = 0 as n — oo we have that

A292 (Xn)

A (1+ o(1)).

E [T§+1|¢Oj n} -
Thus ¢2(X,,)/f2(X,) is a summable sequence a.s.. Hence (M) (n) = > o JE [T%,|7;]
tends to a finite limit as n — oo and so M(n) tends to a finite limit as n — oo,
contingent on M being a martingale. Since the projective property for martingales
holds it suffices to prove that E [X ‘9} < oo for all n and this can be done using an
inductive argument in Theorem 72. The first term on the right hand side of D,,, DY is
also summable because f(X,,) — 0 as n — oo and ¢2(X,)/f2(X,) is summable. Next,
as Zni1 = Zn + F, + R,y 1, then

Xn+1 _ 6_(F"+R"+1)

Since F, ~ Af(X,)/X, — 0 as n — oo, showing R,;; — 0 as n — oo implies
Xni1/X, — 1 and so 7,11 ~ X,, as n — o0, since 7,1 is contained in the interval

[min(X,,, X,,11), max(X,, X,,+1)]. To show R,;1 — 0 we bound according to

CX%/Z—FG/Q Xn 1/2
|Rn+1|—\/_|g( )||£n+1| S \/Z )(’f( )| |§n+1|

= OVAX)PT (X Pl

Since f € RVy(1),z — f(x)/22%271/2 € RV,(0/2). Therefore, as X,, — 0 faster than
any negative power of n, and |&,1| = O(y/logn) as n — oo, R,1 — 0 as n — oo.
Therefore as B(x) = Ax)22/f(x)?, Mz) = zl'(x) and A € RVy(0), we have that
B € RVy(0). Hence, as 7,11 ~ X, as n — oo, we have that B(7,41) ~ B(X,). Thus
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the third term in D,, obeys

B(ﬁn-i-l)Fr% ~ B(XH)F2 B(Xn)Azf2(Xn)

" 2 2 2X?2
Thus ~
D(3) A2)‘(Xn) fQ(Xn) Xg _ A2)‘<Xn)

2 X2 f2(X,) 2

Define the second term in D,, to be

1 A n
D® := (B(fin41) — B(Xy)) (FuRuy1 + 1R2.)) = (AB)F, (1 + Z}f ) VA ;(X ).5n+1.
Now
Eno A ( FX0)/ X0 + g2(Xn)/2X,3) f(X2) 2X, f(Xn)

The last factor tends to 1 because ¢?(z) < Cz'*?f(z) implies ¢2(x)/(zf(z)) — 0 as
x — 0. Also

CXrll/2+0/2f(Xn)l/2

F(X) (psa| = CXI2H02F(X,)72(€, 1],

~ €n+1

f(Xn)

‘g(Xn)

since f € RVp(1),z — zM/20/2f(2)"Y/2 € RV,(0/2) so n — X/ 2 f(X,)"Y/2 tends
to zero faster than any negative power of n, due to the faster than polynomial decay of
X, = 0. Since |&,41] = O(v/Togn), we have g(X,)éns1/f(X,) — 0. Hence R, 1 /F, —
0 as n — oo. Thus as n — oo

Af(Xn> ) \/Zg(Xn> .
X, X,

D = (AB)- (1+0(1)) - &nya-

We have that B(7),+1) ~ B(X,). Thus AB = B(7,+1) — B(X,,) = o(B(X,)) and so

X2 f(X0)? X2

)

Dr(LZ) =0 <B(Xn) ' AS/Qf(Xn)g(Xn) ' £n+1>

o (A(XN)XZ ) f(Xn)g(Xn) ¢ +1>

«

= 0 ()\(Xn)

Hence DY ~ TA?)\(X,,) and since 9(X0)éni1/f(Xn) = 0 we see that DY = o(M\(X,,)).

Hence we have that

1
DW .= D® 1 DB ~ EAZ)\(Xn) as n — 00,

n
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and D,, = Dg) + fo) with Dg) summable. Hence

n—1 n—1 n—1
P = PO 418 5200+ ) 52000 ) 002 52000
j=0 7=0 =0

where ¢(n) tends to a finite limit and DJ(-4) ~ A*X\(X;)/2 as j — oco. Note that
AMz) = zl'(x) > 0 for all z sufficiently small. Thus there exists j* € N such that
DJ(-4) >0V > j5*. We have that n > 7* + 1 implies

jr—1 n—1

F(X,) = cn)+nA+Y DY+3 DY
§=0 =5
i1
> c(n)+ Y DY +nA,
7=0

and clearly as ¢(n) — c¢(o0) as n — o00,¢(n) > ¢* for all n* > j* + 1. Thus there is
F* € R such that F(X,) > F* +nA,Vn > j*+ 1. Hence X,, < F"Y(F* +nA), n >
7% + 1. Define S, := S/} D§4). Clearly for € > 0 there is an Ny(¢) € N such that for

n > Nl(ﬁ)
2

A
DW < (1+4¢)- 7A(Xn),

and indeed there is a finite K* such that DY < K* -A?/2-\(X,,) for n > j*+1. Thus
n > 7* 4+ 1 the monotonicity of A implies that

*A n—1 - . ‘
Sjep1 < Sn < Sjey + K75 > AXN(FTH(FT 4 jA)).

j=3+1

Let F* + jJA <z < F*+ (j+ 1)A. Then
F Y F*+iA) > F ' (2) > FH(F + (j+ 1)A),

so N (F7L(F*+jA) > A(F Y (2)) > A\(FY(F*+ (5 + 1)A)). Hence for n > j* + 2

Sj*+1 <5, < Sj*+1 + A (F_l (CL’)) dx

AK* n—1 F*+jA
oy

g1 Y FG-1)A

AK* /F*+(n—1)A

Fr+j*A

A(F~' (z)) dz.
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Now integrating by substitution

AK* [FHEFE+Mn-1)4) -1
Sjrp1 <8 < Spa+ / Au) - =—du
2 F=1(F*+j5*A) f(u)
AK* F** I
= Sjpy1+ / e (w) du
2 Jprperm-na) f(u)
AK* [F7 I'(u)
= Soiq+ / du
7 2 Jrresm-na) Hu)
AK* Kk —1 *
= Sji1+ —— (logl(F™) = logl (F7 (F* + (n— 1)A))) .

Hence for n > j* + 2, there are S, S, K, F such that

= 1
S<S,<S+KI — .
=== o8 (z(F—l(F+nA))>
Using this estimate, X,, < F~' (F* + nA) forn > j*+1 and X,, = F~(c(n)+nA+S,)
we will now obtain the claimed asymptotic behaviour of X,,. First h(X,) = A for all
n sufficiently large, so we may write ¢, =ty + (n — N)A. This implies

n

X
limsup ——— <1 and limsup <1,

n—so0 F_l(nA) n—00 F_l(tn)
due to the sublinearity of f at zero. On the other hand we have X,, = F~1 (¢(n) + nA + S,,)

SO

1
(F1(F +nA))

anF_l(nA+S*+[_(log( )):F_l(nA+[(nA)),

where

- 1
It)y=25 —i—Klog(m).

We want to show that

1 Xn >1
nbo F1(nA) =
However
e X, . YA+ I(nA) . CFTYE+1(1))
pE I VE L VA S SO

Now by Lemma 46, we have F~'(t + I(t))/F~'(t) — 1 as t — oo once

Y 1(F(x)) = 0. (13.46)
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To get (13.46) it is enough to show that

- fFET() 1 _
tlir?oFT(t)log (l (F—l(F+t))> =0

Next as [ € RVy(0) and F7Y(F +t) ~ F~1(t),t — oo we have that [(F71(F + 1)) ~
[(F~1(t)),t — oo and as log € RV{(0) we have

Hence as f(z)/x = I(x) — 0 as 2 — 0T, we have

. fF7H(t) 1 (P 1
B (l(F—l(Fth))) = Ty 08 <l(F—1(t))>

- f) T >_ - <l>_
o0t T log (f(;r) —ygr&ylog y =0

o Xn
) = b

and the claim holds. O
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Chapter 14

Future Work

In this short chapter, we indicate some other aspects of the work which we have started

to investigate, or whose study forms a natural sequel to the results in this thesis.

14.1 Strong Approximation

In this work, we have chosen to discretise the SDE
dX(t) = f(X(t)dt+ g(X(t))dB(t) (14.1)
by discretising the transformed SDE
dZ(t) = f(Z(t)) dt + §(Z(t)) dB(t)
where Z(t) = —log X (t) with adaptive stepsize according to
Zuis = T+ WX F(Z0) + VAK)3(Za)rir, 120 (14.2)

where X, 11 = e 7+ and t,,.1 = t, + h(X,,) and (&,),>1 is a sequence of independent
standard normal random variables. Clearly, X,,, Z,, and t, are adapted to the natural
filtration ¥, generated by the &’s. However, a strong approximation of e.g. Z would
read

Zwis = Zn+ huf(Z) + §(Z0) (Bltass) — B(t), 0 >0 (14.3)

where h,, = t,11 — t,. It can be seen from this discretisation (14.3) that replacing
B(tn1) — B(t,) by \/h(X,)€ni1, as in (14.2), will not preserve the strong approxima-
tion, since the increment AB depends on t,, whereas in (14.2) the ¢’s are independent
of t,, and other quantities that are ¢,-measurable.

The way in which this is tackled is to ensure that the sequence (t,,),>0 is a sequence
of stopping times adapted to the natural filtration of B. This can be achieved along
the lines of Mao and Liu and Kelly, Rodkina and Rapoo.
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To this end, we would modify the sequence defined by writing h,, instead of h(X,,)

where h,, is given by

. 1 1
hn, = Amin (17 | f(X,)/ X, L92(Xn)/X721J)

where |x| denotes the integer part of x € [0,00) so that |z +1 > z and A > 0
is a small convergence parameter. This will make the sequence (,),>0 a sequence of

stopping times adapted to the filtration of B.

In order to recover the desired asymptotic results it is necessary to reconsider the
proof of asymptotic stability, but only up to the point we obtain an estimate of the

form

. ¢(Xn+l>
1 L S A
oo ST (X))

A key ingredient of the new proofs would be to exploit the fact that AB is % (t,)-

=1

conditionally normally distributed, with conditional distribution

CI)n—i—l(t) )dl',

1 t
_ / =2/ 2t —tn)
\/ 27T(tn+1 — tn) —00

noting in particular properties of the condition moments of AB,,;; e.g.

E[ABnJrl'y(tn)] = Oa a.s.,
E{ABZJrlly(tn)] = tn+1 - tny a.s.

Consideration of strong convergence also motivates the choice of a power pre-
transformation which we have presented here, since strong convergence in the new

co-ordinate system would only guarantee control of quantities of the form

E[ sup |log X (t) —log X (1)["]
0<t<T
where Z = —logX is a suitable continuous time extension of the discrete skeleton

generated by the numerical method.

14.2 Growth

The results on SDEs in this thesis, both in continuous and in discrete time, have
been confined to stability problems. However, in the case that the solution of (14.1)
obeys

lim X (t) = 00, a.s.
t—T
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and T := inf{t > 0 : X(¢) ¢ (0,00)} is such that 7" = oo a.s., so that solutions grow
but do not exhibit finite-time explosion, we can proceed as above with the identical
continuous time analysis and numerical methods. The only change that is needed is to
ask that monotonicity conditions or sub- or super-linearity conditions on f and g are

satisfied at infinity. In the case, for example, that

x— f(x), 1) are asymptotic to increasing functions as r — oo,
x
p(0+) = —oo and
.z f(x)
1 = Ly € (1/2,00], 14.4
Bl (1/2, 0] (14.4)

and [~ 1/f(x)dx = oo we can show for F defined by

F(x):/lmﬁdu

that X (¢) > 0 for all t > 0, lim;—,o X () = 00 a.s. and

i FE@) 1

fim ———== ST a.s.

For the numerical scheme, we recover the same sort of result, contingent on the

condition

WP 2 (145)

holding. More specifically, if the scheme is generated by (14.2), then X,, > 0 for all

n >0, lim,,_, X, = oo and

_F(X,) 1
nh_)ngo T = — m, a.s.

Analogues of subexponential growth results are also available, with both moderate

noise conditions, such as (14.4), and small noise conditions such as

2
There exists § > 0 such that hgl—fogp % < 0. (14.6)

14.3 Explosion

We showed that the asymptotic behaviour at the blow-up time in the deterministic

differential equation

#(t) = f(x(t), t€[0,T); =(0)=¢>0



Explosion

could be recovered by means of adaptive time-stepping when the time step is of size

h(z) for state = and h is given by

A(x)
f'(@+ Alx) ')/ f ()

in the case that f and f’ are increasing, as A(x) — A € [0,00). In the case where [’ is

h(z) =

a rapidly growing function in the class I'; and we take logarithmic pre-transformations,
we have further shown that the approximations obey t,, — Ty < 0o as n — oo and
Flz,) 1—e*

lim —
n—oo Th _ tn A

and

F(x)—/:oﬁdu,

where the step-size obeys h(z)f'(z) — A as © — oo.

This approach can also be applied to determine the blow-up asymptotics for the
SDE (14.1). Using the approach we developed in the small noise case (i.e., under
condition (14.6)), we can show, provided that p(0") > —oo that there is an a.s. finite
T such that X(t) > 0 for all t € [0,7), lim; ,p- X(t) = o0 a.s. and

LX)

=1 .S.
t—-T—- T —t ’ a-s

so the rate of explosion in the deterministic case is preserved under small noise.

Moreover, if one takes the adaptive time step

o) = 3 (555 1 )

and the condition (14.5) prevails, then for the logarithmically pre-transformed scheme
WehaveXn>0f0ralln20,Xn—>ooasn—>oo,tn—>Th<ooasn—>ooa.s. and
F(X(t)) 11— e A

lim —
n—oo Th _ tn A

(14.7)

Once again, this demonstrates that we have identified the critical order of magnitude
of the step-size at which the asymptotic rate of growth is preserved at the singularity.

It should be mentioned that if, for example, f' € RV (5 — 1) for some 5 > 1,
the same results hold; however, in this case (or the more general situations in which
f € RV, (B) for B> 1,0r x — f(x)/2'? is asymptotically decreasing, and x — f(z)/z

is asymptotically increasing) it would suffice to take a step-size of order

hlw) = Amin (1ﬁ£®>
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This gives O(A) estimates on

F(X, F(X,
lim inf M lim sup g
n—ooo Ty — ¢, n—oo 1}, —t,

and one recovers the limit (14.7) in the case when f € RV ().

14.4 Recurrence

Our results in this thesis, as well as those discussed in this last section, centre on
discretised solutions of the SDE (14.1) in which X () tends to 0 or co with probability
one.

However, it is also interesting to ask whether the logarithmically transformed
scheme can also recover the dynamics when the solution is recurrent on (0, 00). This

arises for the solution of (14.1), for instance, when

xf(x) 1 xf(x) 1
20t g%(x) 0”9 % g*(x) <5
In particular, we have T' = 0o a.s.,
PI{Jim X(1) = 0} U {im X(t) = oc}] =0
and
P[{litm inf X (¢) =0} N {limsup X (t) = co}] =1 (14.8)
—00

t—o00

If we consider the discretisation (14.2) with the usual step-size

h(x) = Amin (1’ %xnﬁzx))

we can show that Lo > 1/2 and L., < 1/2 implies ¢, — Th =00 asn — 0o a.s.
P[{ lim X, =0} U {lim X, = oco}] =0,
n—oo n—0o0
that liminf, . X, < limsup,,_,. X, a.s. and

}P’[{ligg'g.}f X, =0}U {hgl—igp X, =00]=1
Therefore, this shows the scheme does not settle down to a limit, and “fills out” the
state space at least for very large or very small values. This does not preclude the
better result

P[{ligr_l)iogf X, =0} U{limsup X,, = co}| =1

n—oo
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which is the appropriate discrete analogue of (14.8), but which we have not yet been

able to prove.

14.5 Non-positive Processes

The logarithmic pre-transformation is of course designed to deal with discretisations
of the solution of (14.1) in which X (¢) > 0 for all ¢ € [0,T") and the natural state space
of the process is (0, 00).

It is rather natural to ask whether the numerical method can, in some sense, detect
when solutions of (14.1) would have natural state space S D (0,00) in the case when
the solution starts at X (0) = ¢ € (0,00). Take as an example the case when ¢(0) # 0
and zf(x) — 0 as z — 07 with f(z) < 0 for z > 0, and we define f and g on the

interval (—oo, 00). Then clearly
T=inf{t >0: X(t) =0} <oo, as.

Moreover, using the modulus of continuity of standard Brownian motion and the mar-

tingale time-change theorem, one can show that

log X (¢
lim sup 22 X0

<
t—T— 10g(T o t)

5 A (14.9)

It should be noted in the case that f and g are regularly varying at zero, and

finite-time stability results we have

. log X(t) 1
lim ————— =\ # — 14.10
e e R e (14.10)
(except in the case that the index of regular variation of g at zero is zero).
For the numerical scheme, we can show that ¢, — Th < 00 a.s. and
X Xe o Xen— X |g0)
limsup ————— = o0, liminf = —
as well as low X .
B ln (14.11)

nson log(T), —t,) 2
In other words, the limits here are representative of the typical behaviour of the solution
of an SDE at a point away from the natural boundary, whereas one sees limits of the
form (14.10) with limit not equal to 1/2 at a finite-time hitting of a boundary, when that

boundary is an equilibrium solution. It should also be noted that (14.11) is consistent
with (14.9)
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14.6 Preserving Dynamics in an Interval

In this thesis, we have considered SDEs in which the solution stays in (0, 00). Our
approach has been to take transformations of the state space which are not especially
reliant on the structure of the drift or diffusion coefficients. This motivates taking

logarithmic pre-transformations.

It is reasonable to ask whether the important long-time dynamics can be preserved
by discretisation for SDEs in the state space is another subinterval of R. A semi-
infinite interval I can be tackled in the same way as (0,00) by simply making an
affine transformation of I onto (0, 00), and then proceeding as before. For this to work

properly it is however necessary that the finite end point of I is known explicitly.

In the case that the interval is finite and we have I = (a,b) and —oo < a < b < 00, it
is presumably general enough to work on the interval I’ = (0, 1), once again supposing
that a and b are known explicitly. Therefore, we consider a solution of (14.1) such that
X(t) € (0,1) for all £ € [0, 7). This suggests that

f(0)=g(0)=0, f(1)=g(1)=0, g¢*x)>0 forallze(0,1).

A simple C? and one-one mapping from I’ = (0,1) to (0,00) is T} : (0,1) —
(0,00) : x — Ti(z) := x/(1 — x). Once again, this transformation is independent of
the structure of the SDE being analysed. Then we define the one-one mapping and C?
mapping 75 : (0,00) = (—00,00) : & — Tr(z) = log .

A possible programme for the simulation of the processs X is now as follows: con-

sider the process
Z(t) = T(Ti(X(1))) = T5(X(t)), te[0,T)
Clearly T3 is in C?((0,1); (—o0, 00)) is increasing, is known in closed-form i.e.,
Ts(x) = log(z/(1 —z)), € (0,1)

and has closed-form inverse 75 ' : (—o0, 00) — (0, 1)

Moreover, the derivatives of T3 are also known in closed-form. Therefore, given that

we know f and g, using [t6’s Lemma, Z obeys the SDE

1

aZ(t) = {Té(X@))f(X(t)) . ;'<X<t>>g2<x<t>>} dt + TY(X()g(X (1)) dB (1)
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and as Z(t) = Ty (X (t)), by defining

~ 1

F(2) =TT DT (2) + 5T(T ()" (T3 (2)), - 9(2) = To(Ty ()9 (T3 (2)

we have

dZ(t) = f(Z(t)) dt + §(Z(t)) dB(t)

We would now seek to study the dynamics of Z by discretising it as before, and re-

questing that the step-size when the original SDE is at z is given by

— Amin r 1—-z 2% (1-—x)?
o) =4 <1’ @ @l 2@ ¢ )

and with Xy = ¢ € (0,1), tc = 0 and Zy = T3(¢) we have for n > 0:

i1 = Zn+ h(X )+ VR(X0)§(Xn)Ent1,s

X”'H - T3_1(Zn+1)7 tn—i—l =t, + h<Xn)

Therefore, the step-size at state z is h(z) := h(T5 *(2)).

14.7 Numerical simulations

This thesis has set out how we might perform numerical simulation of diverse ODEs
or SDEs, but we have confined ourselves here to theoretical analysis. Clearly, an
important part of future research is to demonstrate that the computer simulations
conform broadly to the theory given here, and to investigate the sharpness of the
theoretical results.

A related question is to ask how well the scheme with small parameter A approxi-
mates the true explosion time 7. Work of Davila et al suggest for SDEs with g = o(f)
and h(z) = A/f(z) that direct discretision of the SDE leads to T}, converging in dis-
tribution to T as A — 0%. It would clearly be of interest to establish similar results
for finite-time stability and explosion in our methods, which allow for asymptotically

larger step-sizes.
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