

Concurrent Validity of Fitbit Charge HR and Microsoft Band 2 to Measure Heart Rate

Clare M. McDermott ^{1,2}, Andrew McCarren ^{2,3}, Kieran M. Moran ^{1,2}, Niall M. Moyna ^{1,2} ¹ School of Health and Human Performance, Dublin City University, ² Insight Centre for Data Analytics, ³ School of Computing, Dublin City University

Abstract:

Purpose: Wrist-worn monitors are developed to unobtrusively measure heart rate (HR) at rest and during exercise. This study assessed the concurrent validity and reliability of the Microsoft Band 2 (Microsoft-Band2) and Fitbit Charge HR (Fitbit) to measure HR at rest and during exercise.

Methods: Healthy men (n=12) and women (n=12) (mean (± SD); age 24.3 ± 3.1 yr) were tested on two occasions separated by at least 7 d. The same protocol was used during each visit and consisted of 3-min conditions in the following order - supine, sitting, 6 km.h⁻¹ walk, 10 km.h⁻¹ run, and 12.km.h⁻¹ run. HR was continuously measured using a Holter monitor, Microsoft-Band2, and Fitbit, and averaged across each 3-min condition. A Bland Altman analysis was conducted to calculate the intervals of agreement (95%). A 2 tailed t-test at α = 0.05 was also used to compare the mean differences in measurements with the Holter for both devices and an F-test $(\alpha = 0.05)$ was used to compare the measurement dispersion characteristics of both devices.

Results: The intervals of agreement for the Fitbit had comparable dispersion characteristics with the Microsoft-Band2 with the exception of the supine condition (p = 0.004). The difference between Fitbit and Holter are significantly further from zero than the difference between Microsoft-Band2 and Holter for sitting (p = 0.004) and 6 km.h⁻¹-walk (p = 0.001).

Conclusion: Microsoft-Band2 is more accurate than Fitbit at seated rest and during low intensity exercise, walking, and is comparable to Fitbit at 10km.h⁻¹ run.

INTRODUCTION

Advances in wearable technology has led to the emergence of new consumer-based wrist-worn HR monitors for personal health management. There is currently limited information available on the validity of wrist-worn HR monitors. The purpose of this study was to assess the validity of two commonly used wrist-worn HR monitors - the Fitbit Charge HR and the Microsoft Band 2.

METHODOLOGY

A total of 12 male and 12 females (mean (± SD); age 24.3 ± 3.1 yr, height 172.9 ± 10.1 cm; weight 69.4 ± 13.3 kg, BMI 23.1 ± 3.1. kg/m²) made 2 separate visits to the vascular health research laboratory at DCU. Participants were fitted with a Holter monitor and wore both a Fitbit and a Microsoft-band2 (figure 1a-c) during each laboratory visit.

Figure 1c

Figure 1a

Figure 1b

During each visit which was separated by 7 d, HR was measured while supine, sitting, walking and (figure 2). The dispersion between the Holter monitor and the Fitbit and Microsoft-Band2 were compared for each experimental condition using a F-test at α =0.05. The mean difference for each watch with the Holter monitor were then compared using a 2 tailed paired t-test at α =0.05.

RESULTS

The intervals of agreement for the Fitbit had comparable dispersion characteristics with the Microsoft-Band2 with the exception of the supine condition ($F_{24.24} = 3.05$, p-value = 0.004). The MB displayed significantly higher accuracy for both sitting (t_{24} = 2.93, p-value=0.004) and the 6 km.h⁻¹ walk $(t_{24} = 3,24,p\text{-value} = 0.001)$. During the 10 km.h⁻¹ run, there was an equivalent difference between the Holter and both the Microsoft-band2 and the Fitbit, but in opposite directions.

Mean, SD & significance values for each experimental condition

Parameter	SD Holter- MB	SD Holter- Fitbit	F _{24,24}	P-value	Mean Holter- MB	Mean Holter- Fitbit	t ₂₄	P-value
Supine	8.97	2.939	3.05	0.004	-3.977	-0.058	2.03	0.026
Sitting	4.746	3.295	1.44	0.188	-0.766	2.689	2.93	0.004*
6 km.h ⁻¹	5.405	7.825	0.691	0.814	2.916	9.222	3.24	0.001*
10 km.h ⁻¹	6.832	6.245	1.09	0.414	-2.902	2.147	2.67	0.007**
12 km.h ⁻¹	6.887	7.346	0.937	0.561	4.166	6.141	0.961	0.173

(Holter + MB)/2

10 km.h⁻¹ run

(Holter + Fitbit)/2

Figure 4: Bland Altman plots