
Deep learning for texture and
dynamic texture analysis

Vincent Andrearczyk

Supervisor: Prof. Paul F. Whelan

School of Electronic Engineering
Dublin City University

This dissertation is submitted for the degree of
Doctor of Philosophy

September 2017

ii

Declaration

I hereby certify that this material, which I now submit for assessment on the pro-
gramme of study leading to the award of Doctor of Philosophy is entirely my own
work, and that I have exercised reasonable care to ensure that the work is original,
and does not to the best of my knowledge breach any law of copyright, and has not
been taken from the work of others save and to the extent that such work has been
cited and acknowledged within the text of my work.

Vincent Andrearczyk
September 2017

iv

Acknowledgements

I would like to first thank Prof. Paul Whelan for giving me the opportunity to pursue
this research program and for his support and guidance throughout the past four
years. I also want to express my gratitude to Dr. Ovidiu Ghita for his precious advice
and interest in my work during the first two years.

I wish to thank all the members of the Centre for Image Processing and Analysis
(CIPA) for making this period enjoyable and memorable. In particular, I thank
Dr. Tony Marrero and Dr. Ram Prasad for sharing their valuable experience and
suggestions. I am also grateful to my friends and former colleagues in DCU Chris
and Vidak for their help.

I would like to thank my brother and my family for the precious time spent at
home and in Castres, as well as my friends Florian, Kevin, Pierre, Sebastien, Thibaud,
and Xavier.

I want to offer a special thank to Sonja whose support, love, patience, and help
have been essential to the completion of this work.

Enfin, je remercie ma mère pour son soutien et son amour inconditionnel,
dépourvu de jugement et d’attentes. Son état d’esprit et sa bonté sont de riches
sources d’inspiration.

vi

Journal Publications and Pre-prints

Vincent Andrearczyk and Paul F. Whelan (2017), Texture segmentation with Fully
Convolutional Networks", arXiv preprint arXiv:1703.05230.

Vincent Andrearczyk and Paul F. Whelan (2017), Convolutional Neural Network
on Three Orthogonal Planes for Dynamic Texture Classification, Under review at
Pattern Recognition, subject to minor revisions, arXiv preprint arXiv:1703.05530.

Vincent Andrearczyk and Paul F. Whelan (2016), Using Filter Banks in Convo-
lutional Neural Networks for Texture Classification, Pattern Recognition Letters, vol.
84, pp. 63–69.

Book Chapter Publication

Vincent Andrearczyk and Paul F. Whelan (2017), Deep Learning in Texture Analysis
and its Application to Tissue Image Classification, Biomedical Texture Analysis
(BTA), Fundamentals, Tools and Challenges (Academic Press, London, 2017), Edi-
tors: Adrien Depeursinge, Omar S. Al-Kadi and J. Ross Mitchell, In Press, Published
Date: 1st October 2017.

Conference Publications

Vincent Andrearczyk and Paul F. Whelan (2016), Deep Learning for Biomedical
Texture Image Analysis, Irish Machine Vision and Image Processing Conference
(IMVIP). Best Overall Paper Award

Vincent Andrearczyk and Paul F. Whelan (2015), Dynamic Texture Classification
using Combined Co-Occurrence Matrices of Optical Flow, Irish Machine Vision and
Image Processing Conference (IMVIP). Best Overall Paper Award

viii

Table of contents

List of figures xiii

List of tables xix

List of abbreviations xxi

1 Introduction 1
1.1 Texture and dynamic texture analysis 1

1.1.1 What is texture? . 1
1.1.2 What is dynamic texture? 3
1.1.3 Analysis and applications 4
1.1.4 Challenges . 5
1.1.5 Classic approaches . 7

1.2 Motivation for the thesis . 8
1.3 Thesis summary and main contributions 9
1.4 Outline of the dissertation . 10

2 Literature review 13
2.1 Introduction . 13
2.2 Texture analysis . 13

2.2.1 Texture perception . 13
2.2.2 Classic texture feature extraction 14
2.2.3 Texture analysis problems 34
2.2.4 Deep descriptor and deep learning in texture analysis 37

2.3 Dynamic texture analysis . 40
2.3.1 Classic dynamic texture analysis 40
2.3.2 Deep learning in dynamic texture analysis 42

3 Convolutional networks for texture classification 45
3.1 Introduction . 45
3.2 Material and Methods . 46

3.2.1 Texture CNN . 46

Table of contents

3.2.2 Details of the network . 48
3.3 Datasets and experimental setups 48
3.4 Results and discussion . 50

3.4.1 Networks from scratch and pre-trained 50
3.4.2 Networks depth analysis 51
3.4.3 Domain transferability . 52
3.4.4 Visualisation . 53
3.4.5 Results on larger images 55
3.4.6 Combining texture and shape analyses 55
3.4.7 Deeper Texture CNN . 57
3.4.8 Discussion . 58

3.5 Application to biomedical tissue images 58
3.5.1 Motivation . 58
3.5.2 State of the art . 58
3.5.3 Method . 59
3.5.4 Experiments . 60
3.5.5 Results . 62
3.5.6 Discussion . 64

4 Dynamic texture recognition with convolutional networks 65
4.1 Introduction . 65
4.2 Materials and Methods . 66

4.2.1 Texture CNN . 66
4.2.2 Dynamic Texture CNN . 68
4.2.3 Domain transfer . 70

4.3 Datasets and experimental setups 71
4.3.1 Datasets . 71
4.3.2 Implementation details . 73

4.4 Results and discussion . 73
4.4.1 Results . 73
4.4.2 Contribution of the planes 77
4.4.3 Domain transferability and visualisation 80

4.5 Discussion . 82

5 Texture segmentation with fully convolutional networks 83
5.1 Introduction . 83
5.2 Material and Methods . 84

5.2.1 Network architecture . 84
5.2.2 Refinement of segmented regions 85

5.3 Experiments . 86

x

Table of contents

5.3.1 Experiment A: Supervised training with multiple training
images per class . 86

5.3.2 Experiment B: Supervised training with single training im-
age per class . 90

5.3.3 Experiment C: Unsupervised training 91
5.4 Discussion . 95

6 Conclusions and future work 97
6.1 Contributions and conclusions . 97

6.1.1 List of contributions . 98
6.1.2 Limitations of deep learning 101

6.2 Future Work . 103

References 105

Appendix A Introduction to deep learning and convolutional neural net-
works 121
A.1 Introduction . 121

A.1.1 Overview . 121
A.1.2 Definitions . 121
A.1.3 Motivation . 122

A.2 Neural networks . 123
A.2.1 The neuron . 123
A.2.2 Artificial neural network architecture 125
A.2.3 Training a neural network: Backpropagation 127
A.2.4 Regularisation methods . 135
A.2.5 Recurrent neural networks 137
A.2.6 Unsupervised learning . 138
A.2.7 Reinforcement learning . 140

A.3 Deep learning . 141
A.3.1 Regularisation . 142
A.3.2 Vanishing gradients . 142
A.3.3 Internal covariate shift . 143
A.3.4 Batch normalisation . 143
A.3.5 Deep recurrent networks 143
A.3.6 Deep unsupervised methods 145

A.4 Convolutional neural networks . 146
A.4.1 Overview . 146
A.4.2 Brief history . 147
A.4.3 Main building blocks . 150

xi

Table of contents

A.4.4 Regularisation . 155
A.4.5 CNN architectures . 155
A.4.6 Applications . 162
A.4.7 Visualisation . 162

xii

List of figures

1.1 Examples of texture images from the kth-tips-2b database [22]. (a)
cork, (b) wood, (c) linen, (d) wool, (e) lettuce, (f) aluminum foil and
(g) white bread. 2

1.2 Examples of DT sequences from the DynTex database [24] of the
following classes: (a) sea, (b) traffic and (c) trees. 3

1.3 Examples of segmentation problems. (a) Image from the Prague
texture segmentation benchmark [26]: mosaic with six texture re-
gions, (b) texture mosaic generated from Kylberg texture images
[31] including five texture regions, and (c) highly textured zebra skin
and grass background. 4

1.4 A texture distortion resulting in patterns of varying sizes, shapes
and frequency. (a) Water ripples appear at different scales and
frequencies due to the camera angle to the surface normal, and (b)
Fisheye effect on bricks texture due to image acquisition. 7

2.1 An example of GLCM computation with a small texture region and
four grey levels [10]. The distance between neighbours is d = 1 and
the orientation is θ = 0. 17

2.2 An example of Fourier transforms and inverse Fourier transforms
(after low-pass and high-pass filters in the frequency domain). Left:
spatial domain; right: frequency domain (magnitude of Fourier
spectrum). 20

2.3 2D Gabor filters for 30°(left) and 120°(right) orientations. Top row:
scale σx = σy = 1.0, central frequency f0 = 1.5/2π; bottom row:
scale σx = σy = 2.0, central frequency f0 = 2.5/2π 22

2.4 A Gabor filter bank in the frequency domain. The set is composed
of filters at five scales and four orientations with a total of 20 filters,
each resulting in a centre-symmetric pair of lobes. The axes are in
normalised frequencies. Figure reproduced from [48]. 23

xiii

List of figures

2.5 A three-level DWT filter bank computing a cascade of high-pass and
low-pass filters followed by downsampling, successively decompos-
ing the image into multiple frequency components. 23

2.6 A 2D DWT in more detail with high-pass and low-pass filters applied
separately horizontally (Hirows, Lorows) and vertically (Hicol , Locol). 24

2.7 A Three-level DWT pyramidal decomposition of an image. Figure
reproduced from [81]. 24

2.8 The original LBP histogram extraction [12]. 25
2.9 The 36 possible rotation invariant LBPri

8,R. The nine uniform LBPs
(LBPriu2

8,R) are depicted in the first row. Figure reproduced from [13]. 27
2.10 Training and testing phases in a texture classification framework.

Note that the feature extraction is learned from the training data in
optimised filters and dictionary learning methods as represented by
the dashed arrow. 34

3.1 A T-CNN architecture with three convolution layers (T-CNN3). . . . 47
3.2 Examples of activation maximisation of neurons in the third convo-

lution layer. The T-CNN3 networks are trained on kth-tips-2b (a)
from scratch and (b) finetuned (pre-trained on ImageNet). Figures
obtained with the DeepVis toolbox [170]. 54

3.3 Examples of activation maximisation of neurons in the last fully-
connected layer (FC3). The T-CNN3 networks are trained on kth-
tips-2b (a) from scratch and (b) finetuned (pre-trained on ImageNet).
Figures obtained with the DeepVis toolbox [170]. 54

3.4 The architecture of the Texture and Shape CNN (TS-CNN-3), inte-
grating T-CNN3 to a classic CNN (AlexNet). 56

3.5 Training and testing phases of the developed collective T-CNN
method with subimages and scoring vote. 60

3.6 Examples of H&E stained tissue images from the IICBU dataset
[175] (a) mice tissue liver images (AGEMAP) and (b) Lymphoma
tissue images. 62

4.1 An overview of the proposed DT-CNN for the classification of a
DT sequence based on T-CNNs on three orthogonal planes in an
ensemble model approach. The T-CNNs separately classify slices
extracted from three planes of a DT sequence. The outputs of the
last fully-connected layers are summed and the highest score gives
the collective classification decision. 66

4.2 A diagram of the DT sequence slicing in three orthogonal planes. . . 68

xiv

List of figures

4.3 Examples of DT slices in three orthogonal planes of foliage, traffic
and sea sequences from the DynTex database. (a) xy (spatial), (b) xt
(temporal) and (c) yt (temporal). 71

4.4 A misclassified sequence of the DynTex beta dataset and examples
from the true class and from the detected one. (a) misclassified
sequence, (b) true class “rotation” and (c) detected class “trees”. . . 75

4.5 A misclassified sequence of the DynTex gamma dataset and exam-
ples from the true class and from the detected one. (a) misclassified
sequence, (b) true class “naked trees” and (c) detected class “foliage”. 75

4.6 Classification rates of individual classes of the Dyntex++ dataset
with the proposed DT-CNN approach (DT-AlexNet). 76

4.7 Classification rates of individual classes using single xy, xt, and yt
planes with DT-AlexNet on the (a) ucla-8 and (b) ucla-9 sub-datasets. 79

4.8 Classification rates of individual classes using single xy, xt, and yt
planes with DT-AlexNet on the (a) DynTex beta and (b) DynTex
gamma sub-datasets. 79

4.9 Classification rates of individual classes of the Dyntex++ dataset
using single xy, xt, and yt planes with DT-AlexNet. 80

4.10 Classification rates of DT-AlexNet with networks trained from scratch
vs. pre-trained on ImageNet with the following planes: (a) xy+xt+yt
(b) xy, (c) xt and (d) yt. 81

5.1 The FCNT architecture inspired from [6]. The grids reveal the rela-
tive spatial coarseness of pooling and prediction layers. Convolution
layers are depicted as vertical lines. Skip connections, represented
by arrows, allow the network to combine local information from
early layers with more global information extracted by deeper layers
(conv6). Diagram adapted from [6]. 85

5.2 Examples of segmentation with FCNT on the supervised Prague
texture segmentation task (experiment B) and comparison with the
state of the art (see Section 5.3.2 for more details on the state of the
art methods). The models are trained with one image per texture
segment (six training images in this example). (a) Input image
to segment; (b) ground truth segmentation; (c) Markov Random
Field (MRF) segmentation [120]; (d) Co-Occurrence Features (COF)
segmentation; (e) Con-Col segmentation; (f) FCNT segmentation
without refinement; (g) FCNT segmentation with refinement. Best
viewed in colour. 87

xv

List of figures

5.3 Examples of segmentation results with FCN8 [6] and with the de-
veloped FCNT on experiment A (Kylberg-seg). First row: input test
image to segment; second row: ground truth segmentation; third
row: FCN8 segmentation; fourth row: FCNT segmentation. Best
viewed in colour. 89

5.4 Examples of segmentation results using different methods on the
Prague unsupervised dataset. (a) Input image with superimposed
ground truth boundaries; (b) FCNT segmentation with K-means train-
ing; (c) FSEG segmentation; (d) FCNT segmentation with FSEG
pre-segmentation; (e) PCA-MS segmentation; (f) FCNT segmen-
tation with PCA-MS pre-segmentation; (f) PMCFA segmentation;
(g) FCNT segmentation with PMCFA pre-segmentation; (h) MK
segmentation; (i) FCNT segmentation with MK pre-segmentation;
Best viewed in colour. 94

A.1 A perceptron linear neuron: first developed artificial neuron. 123
A.2 An illustration of a weight a and bias b in a line equation example

ax+b. 124
A.3 A recent neuron with activation function. 124
A.4 A commonly used non-linear activation functions. 125
A.5 A three layer Multi Layer Perceptron. 126
A.6 The architecture of an L−1 layers neural network (L layers including

the input). 126
A.7 A 1D gradient descent minimisation of f (w) with (a) global mini-

mum, (b) local minimum. 132
A.8 An example of overfit (blue curve). 136
A.9 An illustration of overfitting the training data and early stopping

method by evaluation of the model on an unknown validation set
during training. 136

A.10 A graph representing a basic fully recurrent network. Note that the
inputs, weights, hidden states, and outputs are vectors. (a) graph
with a loop feeding the previous hidden state back into the network,
(b) unfolded graph over time. 138

A.11 The architecture of a simple AE. 140
A.12 The architecture of a Restricted Boltzmann Machine with three

input and four hidden neurons including forward (left) and backward
passes (right). 141

A.13 A basic LSTM block. 144

xvi

List of figures

A.14 An illustration of the GAN structure. The generative model G is
trained to generate samples that seem to originate from the real
training data (i.e. maximise the discriminator’s error), while the dis-
criminative model D is trained to discriminate the generated samples
from the training data (i.e. minimise the error). 146

A.15 A basic overview of a Convolutional Neural Network architecture. . 147
A.16 An illustration of the receptive field of a neuron after three convolu-

tion layers. The receptive field of the neuron n is the red area in the
input image connected to this neuron through the convolutions. Best
viewed in colour. 148

A.17 A timeline of CNN history. 149
A.18 A convolution layer with two input channels and three output feature

maps. The activation functions are not represented for simplicity. . . 151
A.19 An illustration of the filter size, stride and zero padding in the for-

ward pass of a convolution layer. W and H are respectively the width
and height of the input channel. 152

A.20 An example of a pooling layer (Forward pass) with 2×2 filters (a)
max pooling, (b) average pooling. 154

A.21 The LeNet5 architecture. Image replicated from [5]. 156
A.22 The AlexNet architecture. Image replicated from [15]. 156
A.23 The R-CNN object detection framework. Image replicated from [213].157
A.24 A basic FCN architecture with pixelwise prediction. The upsam-

pling, deconvolution, and skip layers are not specified and only the
prediction image is represented. Image replicated from [213]. 158

A.25 A comparison of (a) a convolution layer and (b) a Network in Net-
work block (Mlpconv). Image replicated from [215]. 159

A.26 An inception module used in GoogleNet. Image replicated from [164].160
A.27 The GoogleNet architecture. Convolution layers are depicted in

blue, pooling layers in red, softmax in yellow, concatenation and
normalisation in green and finally, input and labels in white. Image
replicated from [164]. 160

A.28 A residual learning block. Image replicated from [210]. 161
A.29 A visualisation of filters and responses of the neurons in the first

convolution layer of AlexNet trained on ImageNet. (a) Input image,
(b) filters, (c) responses. Figures obtained with the DeepVis toolbox
[170]. 162

xvii

List of figures

A.30 A visualisation of several features learned by neurons in AlexNet
trained on ImageNet and their response to an input image. The first
column depicts the response of a particular neuron. The second col-
umn shows the image patches which maximally activate this neuron.
The third and fourth columns show the deconvolution images and the
images obtained by activation maximisation respectively. (a) input
image, (b) two neurons in Conv1, (c) two neurons in Conv2, (d) two
neurons in Conv5. Figures obtained with the DeepVis toolbox [170].
Note that the deeper receptive fields are larger than shallow ones but
are resized for display. 165

xviii

List of tables

3.1 Classification accuracy (%) of various networks trained from scratch
and finetuned (pre-trained on ImageNet). The number of trainable
parameters (in millions) is indicated in brackets for 1,000 classes.
The state of the art results are as reported by the authors in the
original papers. 50

3.2 Accuracy (%) of various network depths with average and maximum
pooling of the energy layer. 51

3.3 Classification results (accuracy %) on the kth-tips-2b dataset using
networks pre-trained on different databases. 52

3.4 Accuracy (%) of the T-CNN3 and comparison with the literature. . . 55
3.5 Classification results (accuracy %) on kth-tips-2b using AlexNet

and T-CNN3 separately and combined as well as the state of the
art method with a medium depth CNN (VGG-M). The number of
trainable parameters in millions is indicated in brackets for 1,000
classes. 56

3.6 Classification results (accuracy %) on the kth-tips-2b dataset using
T-CNN based on GoogleNet. 57

3.7 Classification accuracy (%) of the collective T-CNN and comparison
with the state of the art on the 10-fold cross-validation setups. The
WND-CHARM results are obtained from a hold-25%-out validation. 63

3.8 Classification accuracy (%) and Mean Average Precision (MAP) (%)
of the collective T-CNN and comparison with the state of the art on
other validation setups. 63

3.9 Confusion matrix of the collective T-CNN on Lymphoma-5p. 64
3.10 Confusion matrix of the collective T-CNN on LG6M-AL-5p. 64
3.11 Confusion matrix of the collective T-CNN on LA-AL-AS. 64

4.1 Architectures of the T-CNN3 and T-CNN3-S based on AlexNet,
where c is the number of colour channels and N is the number of
classes. 67

xix

List of tables

4.2 Hyperparameters used for training the T-CNNs on different datasets.
From left to right: initial learning rate, factor gamma by which the
learning rate is multiplied at every step, weight decay, momentum,
batch size, number of iterations and steps. 73

4.3 Accuracy results (%) of the proposed DT-CNN approaches and of
the state of the art on multiple DT datasets. 74

4.4 Confusion matrix of the proposed DT-AlexNet on UCLA 9-class. . . 77
4.5 Confusion matrix of the proposed DT-AlexNet on UCLA 8-class. . . 77
4.6 Accuracy results (%) of the proposed DT-AlexNet on multiple DT

datasets using various combinations of planes. 77

5.1 Average correct pixel assignment (CO) of the proposed segmenta-
tion with FCN8 [6] and FCNT networks on the developed kth-seg
and Kylberg-seg datasets (experiment A). The numbers next to the
datasets (e.g. kth-X) represent the number of texture regions per test
image. 89

5.2 Results of experiment B on the Prague supervised dataset (normal
size) and comparison with the state of the art. The results of the
developed FCNT before segmentation refinement are referred to as
FCNT-NR (no refinement). The performance measures are described
in Section 2.2.3. Up arrows in the second column indicate that larger
values correspond to better results and down arrows the opposite.
Results marked with * indicate that no publication is currently known. 91

5.3 Results of the FCNT approach with various pre-segmentation meth-
ods on the Prague unsupervised dataset (large size) and comparison
with the state of the art. Results of FSEG, PCA-MS, VRA-PMCFA
and MK are reported as given on the Prague texture dataset website
[182]. Up arrows in the second column indicate that larger values
correspond to better results and down arrows indicate the opposite.
Results marked with * indicate that no publication is known at the
time of writing. 94

A.1 AlexNet layers. The convolution and fully-connected layers are all
activated by ReLU except for FC3. 157

xx

List of abbreviations

AE Auto-Encoder
ANN Artificial Neural Networks [1]
BN Batch Normalisation [2]
BoF Bag of Features [3]
CNN Convolutional Neural Network [4, 5]
DT Dynamic Texture
DT-CNN Dynamic Texture Convolutional Neural Network
DWT Discrete Wavelet Transform
FCN Fully Convolutional Network [6]
FCNT Fully Convolutional Network for Texture
FV Fisher Vector [7]
FV-CNN Fisher Vector Convolutional Neural Network [8]
GAN Generative Adversarial Network [9]
GLCM Grey Level Co-occurrence Matrix [10]
GMM Gaussian Mixture Model
GMRF Gaussian Markov Random Field
H&E Hematoxylin/Eosin
IFV Improved Fisher Vector [11]
K-NN K-Nearest Neighbours
LBP Local Binary Pattern [12, 13]
LBP-TOP Local Binary Pattern on Three Orthogonal Planes [14]
LDS Linear Dynamical System
LRN Local Response Normalisation [15]
MLP Multi Layer Perceptron [1]
MRF Markov Random Field
PCA Principal Component Analysis
ReLU Rectified Linear Unit [16]
RNN Recurrent Neural Networks [1]
SGD Stochastic Gradient Descent
SIFT Scale Invariant Feature Transform [17]

xxi

List of abbreviations

SVM Support Vector Machine
T-CNN Texture Convolutional Neural Network
TS-CNN Texture and Shape CNN
VGG-M Visual Geometry Group-Medium [18]
VGG-VD Visual Geometry Group-Very Deep [19]
VLAD Vector of Locally Aggregated Descriptors [20]

xxii

Abstract

Deep learning for texture and dynamic texture
analysis

Vincent Andrearczyk

Texture is a fundamental visual cue in computer vision which provides useful in-
formation about image regions. Dynamic Texture (DT) extends the analysis of
texture to sequences of moving scenes. Classic approaches to texture and DT anal-
ysis are based on shallow hand-crafted descriptors including local binary patterns
and filter banks. Deep learning and in particular Convolutional Neural Networks
(CNNs) have significantly contributed to the field of computer vision in the last
decade. These biologically inspired networks trained with powerful algorithms
have largely improved the state of the art in various tasks such as digit, object and
face recognition. This thesis explores the use of CNNs in texture and DT analysis,
replacing classic hand-crafted filters by deep trainable filters. An introduction to
deep learning is provided in the thesis as well as a thorough review of texture and
DT analysis methods. While CNNs present interesting features for the analysis of
textures such as a dense extraction of filter responses trained end to end, the deepest
layers used in the decision rules commonly learn to detect large shapes and image
layout instead of local texture patterns. A CNN architecture is therefore adapted to
textures by using an orderless pooling of intermediate layers to discard the overall
shape analysis, resulting in a reduced computational cost and improved accuracy. An
application to biomedical texture images is proposed in which large tissue images
are tiled and combined in a recognition scheme. An approach is also proposed for
DT recognition using the developed CNNs on three orthogonal planes to combine
spatial and temporal analysis. Finally, a fully convolutional network is adapted to
texture segmentation based on the same idea of discarding the overall shape and by
combining local shallow features with larger and deeper features.

xxiii

xxiv

Chapter 1

Introduction

Computer vision is a broad research field which deals with the extraction of in-
formation and understanding of images and videos using computer algorithms. It
encompasses various problems including detection, segmentation, recognition, mo-
tion estimation and image restoration. The technological advances and the amount
of available data offer an increasingly wide range of applications. The focus of this
thesis is the extraction of information from texture images and Dynamic Texture
(DT) sequences for recognition and segmentation using deep learning methods.

The rest of this chapter is organised as follows: The notions of texture and DT
are introduced in Section 1.1 as well as their analysis by computer vision, including
various tasks, applications, challenges, and approaches. The motivation for this work
is introduced in Section 1.2 and a summary of the thesis is provided in Section 1.3
including the main contributions. Finally, the outline of the thesis is described in
Section 1.4.

1.1 Texture and dynamic texture analysis

1.1.1 What is texture?

In common language, texture generally refers to object surfaces, e.g. rough or wavy
variations from a flat surface. Texture can therefore refer to the sense of touch or
visual effect of surfaces. Note that texture can alternatively refer to other senses or
meanings such as sound texture in music, smell texture of perfumes and texture in
text. In this thesis, the term texture (or static texture) refers to the visual texture used
in the fields of image processing and computer vision. Visual textures do not solely
represent and depend on object surfaces but are rather defined by texture properties
of image regions. In biomedical imaging, for instance, textures are not necessarily
related to a surface but to the image acquisition of an organ or tissue. Nevertheless,
natural texture images reflect some physical variations of an observed scene and

1

Introduction

(a) (b) (c) (d)

(e) (f) (g)

Figure 1.1: Examples of texture images from the kth-tips-2b database [22]. (a) cork,
(b) wood, (c) linen, (d) wool, (e) lettuce, (f) aluminum foil and (g) white bread.

reflect the illumination and image acquisition including viewpoint and quality of the
camera or other imaging techniques.

In this context, texture, together with colour, is a fundamental visual cue in image
processing and computer vision which provides useful information about image
regions. Colour commonly refers to the distribution of pixel intensities and can be
described, for instance, by histograms of intensities across a region. Texture, on
the other hand, is often defined as the spatial variation and arrangement of pixel
intensities [10, 21], although there is no generally accepted definition. A texture
region obeys some statistical properties and exhibits repeated patterns with some
extent of variability in their appearance and relative position [3, 10]. Examples of
repeated patterns include wood oriented patterns (see Figure 1.1b) or cells in a biopsy
tissue image (see Figure 3.6, page 62). Textures may range from perfectly stochastic
(i.e. no repetitivity) to perfectly regular (i.e. exactly the same patterns repeated
across the texture region at regular spatial intervals). Textures can be arbitrarily
described with terms as simple as oriented lines and spots or more complex semantic
properties such as directionality, smoothness, coarseness, density, randomness and
regularity.

Surfaces of natural and man-made objects, as well as other natural phenomena,
exhibit various types of textures including the examples illustrated in Figure 1.1.
Human texture perception has been widely studied, as described in Section 2.2.1,
and has largely contributed to the design of texture analysis methods.

2

1.1 Texture and dynamic texture analysis

(a) (b)

(c)

Figure 1.2: Examples of DT sequences from the DynTex database [24] of the
following classes: (a) sea, (b) traffic and (c) trees.

1.1.2 What is dynamic texture?

DT, also called temporal texture, is an extension of static texture to the spatiotemporal
domain, introducing temporal variations such as motion and deformation. A DT is
a sequence of images which exhibits certain spatial repetitivity (similar to spatial
textures) as well as stationary properties in time. DT is distinguished from two other
types of motion in [23], namely motion event (e.g. opening a door) and activity
(e.g. running), both with a compact spatial structure. Similarly to spatial texture
properties ranging from stochastic to regular, a large range of temporal properties
can describe a DT. It can be described, for instance, by various rigid (e.g. translation
and rotation) and non-rigid (e.g. diffusion) transformations as well as temporal
periodicity. Examples of natural processes which exhibit DTs include smoke, clouds,
trees and waves. Figure 1.2 illustrates three examples of DT sequences typically
used in DT recognition.

3

Introduction

(a) (b)

(c)

Figure 1.3: Examples of segmentation problems. (a) Image from the Prague texture
segmentation benchmark [26]: mosaic with six texture regions, (b) texture mosaic
generated from Kylberg texture images [31] including five texture regions, and (c)
highly textured zebra skin and grass background.

1.1.3 Analysis and applications

Texture images and DTs can be automatically analysed by computer vision ap-
proaches. The analysis of texture embraces several problems including texture
classification [13, 25], segmentation [21, 26], synthesis [27, 28] and shape from tex-
ture [29, 30]. These tasks involve the development of an algorithm to automatically
make a prediction from an unknown image or to synthesise an image. It therefore
requires the extraction, from raw pixels, of meaningful features to describe the tex-
ture properties. Texture classification is the process of assigning an unknown texture
image to one of a set of class labels such as “grass”, “wood” and “bricks”. The
classification can also be binary such as “malignant” vs. “benign” cancer or texture
of interest vs. all other textures (i.e. specialist). The classification of textures is
generally used in a supervised approach with multiple training samples for each class.
Several texture images typically used in the literature are shown in Figure 1.1. In
texture segmentation, an image is partitioned into multiple regions of homogeneous
texture properties. Examples of texture images to segment are illustrated in Fig-
ure 1.3. In unsupervised segmentation, there is no a priori knowledge of the textures
present in the image. On the other hand, a supervised model can be trained with
example images or information on the textures to segment. Texture classification

4

1.1 Texture and dynamic texture analysis

and segmentation are used in various applications including document processing
[32], remote sensing (e.g. satellite imagery [32]), industrial inspection (e.g. paint
inspection [32], defect detection [33]), image retrieval [34], and biomedical imaging
[32, 35]. Texture synthesis refers to the generation of texture images from (generally
smaller) texture samples, maintaining identical texture properties. Texture synthesis
is frequently used in computer graphics to make surfaces look real or to manipulate
images [36, 37], in image compression by storing only a sample of a texture region,
or for image inpainting by filling holes in images [32, 38]. Finally, shape from
texture is used to reconstruct a 3D surface from a 2D image by estimating the shape
or orientation based on the texture properties. Typically, the shape and depth of an
object can be estimated based on the visual appearance (deformation) of the surface
texture resulting from the projection of the 3D object onto the 2D plane [29, 30].

The analysis of DTs is a relatively recent research topic, from the early nineties,
as compared to the static texture analysis which started in the fifties. It embraces
the same major problems as texture analysis including classification, segmentation,
and synthesis. Methods to analyse DTs should capture the spatial and temporal
variations of a sequence of images, i.e. static spatial texture properties and dynamics.
The analysis of DTs is essential for a large range of applications including remote
monitoring and surveillance (e.g. forest fire, traffic, and crowd) [39–41], medical
image analysis and remote sensing. The increasing amount of video data due to
smartphones, surveillance, medical imaging, robotics, etc., offers an endless potential
for applications of DT analysis.

These static and temporal texture problems are reviewed in more details in
Section 2.2.3 with a particular attention on classification and segmentation as the
major focus of this thesis.

1.1.4 Challenges

The vast majority of natural textures are easily detected, segmented and recognised by
humans. The visual system has developed throughout millions of years of evolution
to efficiently perceive textures as they carry useful information about an observed
scene. Yet, the automatic analysis of textures by computer algorithms remains a
challenging problem. The level of abstraction in a computer vision system can be
organised in the following list of concepts of increasing abstraction: pixel, image
primitive (e.g. edge or spot), texture, region, object, and scene. While the level of
abstraction required for texture analysis is relatively low as compared to some object
recognition and scene understanding problems, it involves multiple difficulties and
challenges.

The major challenge results from the diversity and complexity of natural textures.
For instance, considering only wooden surfaces, an extremely wide range of textures

5

Introduction

can be found with different types of wood, its age, condition and cut as well as
illumination and image acquisition variations (e.g. point of view, orientation, noise,
and blur). As a result, training samples may be significantly different from test
images, requiring a good generalisation of recognition models to avoid overfitting. It
is also a source of high intra-class variation, making the definition of a discrimination
rule challenging. Moreover, certain approaches are well designed for one type of
textures (e.g. regular, oriented, sparse, small or large texture patterns, etc.) but
will fail for other types as will be explained in Chapter 2. Developing a method to
analyse various types of texture with robust generalisation and multiple invariances
is a complex task, as demonstrated by the research conducted over many decades in
this field. These difficulties are also emphasised by the variety of definitions given to
visual textures which largely depends on the application and type of images [32].

An important notion which requires particular attention in texture is the scale,
closely related to the spatial frequency. The perception or analysis of textures highly
depends on the scale at which a surface or scene is viewed. Leaves on a tree, for
instance, exhibit a certain texture. A single leaf exhibits another texture such as
parallel lines (veins) on both sides of the centre vein. Zooming in even closer,
patterns formed by smaller (higher order) veins may exhibit again a different texture.
Repetitive texture patterns can therefore be found at multiple scales and frequencies.
Texture descriptors generally require scale invariance as textures acquired from
different viewpoints should be recognised as the same class. On the other hand,
the scale may be a discriminative information in some applications with a fixed
viewpoint. Scale variance can even emerge from a single image, for instance with
a non-flat surface, a camera angle distant from the surface normal or a “fisheye”
effect as shown in Figure 1.4. Multi-scale analysis is therefore necessary and most
applications require local and/or global scale invariance. A pyramid representation
is commonly used in texture analysis to perform a multi-scale analysis by the
successive smoothing and downsampling of an image. Additionally to the spatial
scale, DTs may contain meaningful information at multiple scales and frequencies
in the temporal domain. Besides the scale, natural textures may vary in terms
of orientation, illumination, acquisition noise, occlusion, clutter and other visual
appearances. Many applications therefore require various types of invariances to
be able to correctly classify and segment textures. Another difficulty in texture
analysis is the extraction of sufficient discriminative information while maintaining
reasonably low dimensionality and low redundancy of the texture descriptors. Finally,
the lack of information about the textures and the number of regions in unsupervised
segmentation is a challenging problem.

Regarding temporal textures, the human visual system is extremely efficient
and accurate at evaluating the motion and appearance of a scene to effortlessly

6

1.1 Texture and dynamic texture analysis

(a) (b)

Figure 1.4: A texture distortion resulting in patterns of varying sizes, shapes and
frequency. (a) Water ripples appear at different scales and frequencies due to the
camera angle to the surface normal, and (b) Fisheye effect on bricks texture due to
image acquisition.

recognise DTs. Yet, it is a difficult computer vision task. Adding to the challenges of
static textures described previously, a major difficulty arises from the wide range of
dynamics originating from complex motions and interactions of objects or particles
as well as camera motion. The temporal variation of a DT, however, provides a
valuable additional information as compared to the static texture when used in a
recognition scheme. Therefore, the discrimination of DTs should greatly benefit
from a spatiotemporal analysis. In this context, one major challenge is to optimally
extract and combine spatial and temporal information, as detailed in Chapter 2.

1.1.5 Classic approaches

Most texture analysis methods involve the extraction of features which describe
the properties of a texture in order to recognise it, segment it or synthesise similar
samples. Deriving features is necessary to extract meaningful information from
the large number of pixels in an image. Indeed, pixels in their raw form are not
descriptive enough and of too high dimensionality to enable a discrimination of
texture regions or images. Various feature extraction methods have been developed
in the last decades, partly inspired by the studies of the human and animal visual
systems [42–44]. Texture features should be informative, non-redundant and should
offer certain invariances required for a given application. Many classic early texture
analysis approaches use local descriptors in the form of binary patterns [13] or filters
[21] to extract local or global features. Local descriptors can be encoded into a global
descriptor for an entire image or region, for instance by a histogram of occurrence.
These descriptors can then be segmented or classified using classic machine learning
methods such as Support Vector Machine (SVM). These approaches use hand-crafted
and pre-defined local descriptors which have been outperformed by descriptors

7

Introduction

learned from the training samples such as Bag of Features (BoF) [3] and Fisher
Vector (FV) [7].

The first DT studies were built upon the extensive work previously carried on
static textures as well as knowledge of physics targeting specific dynamics [45]. DT
analysis methods are, for the most part, extensions of classic texture methods to the
spatiotemporal domain. For instance, motion and appearance information can be
extracted and combined [46] or a sequence can be considered as a volume to extract
3D local descriptors [14] or filter responses [47].

A few recent approaches for static and temporal texture analysis combine the
learning of features together with their classification, segmentation or synthesis
within a deep neural network. The focus of this thesis is on exploring these deep
learning methods and adapting convolutional networks to the analysis of texture.
More details on hand-crafted, learned, shallow1, and deep descriptors are provided in
the literature review (Chapter 2), while deep learning is introduced in Appendix A.

1.2 Motivation for the thesis

As mentioned in Section 1.1.3, the analysis of static and temporal textures is crucial
in many applications. Currently, biomedical imaging may be the field which benefits
the most from it. As detailed in [35], the analysis of texture is relevant in various
applications of biomedical imaging including the detection of lesions, nodules and
mitoses, the characterisation of tumors, cancers and disease tissues, as well as image
retrieval and radiomics. These analyses are conducted on various image modalities
including Magnetic Resonance Imaging (MRI), Computed Tomography (CT) scans,
Positron Emission Tomography (PET), ultrasounds and biopsies. Besides their
application in biomedical imaging, texture and DT analyses are used in various areas
including remote sensing, image retrieval, and industrial inspection.

Classic shallow hand-crafted features lack invariances and abstraction for many
applications and must be specifically designed for particular problems. In turn,
these methods do not generalise well to complex and numerous textures with high
intra-class variation as encountered in various texture analysis problems. Their use
is therefore limited and their performance often dependent on the application.

Deep learning is a biologically inspired machine learning approach which trains
deep Artificial Neural Networks (ANNs) to perform complex tasks. A Convolutional
Neural Network (CNN) [4, 5] is a deep neural network developed specifically for grid-
like data such as images and videos. The success of deep learning in computer vision
is evident in the last decade as shown by the state of the art in various applications,

1The term “shallow” refers to classic feature extraction methods which do not use deep neural
networks, as well as shallow networks (generally less than three layers). Shallow descriptors can be
hand-crafted (e.g. filter banks) or learned (e.g. dictionary learning).

8

1.3 Thesis summary and main contributions

the number of studies and the media exposure. Neural networks, deep learning,
and CNNs are introduced in Appendix A. CNNs can successfully learn invariances
required for various texture analysis tasks, e.g. to rotation, translation, and scale.
Moreover, CNNs are designed in a succession of convolutions with trainable filters,
combined into increasingly complex non-linear banks of filters. This filter bank
design is well suited to texture analysis and shares similarities with classic feature
extraction methods, while replacing hand-crafted features and standard classifiers
by powerful trainable kernels and end-to-end training. The first layer of a trained
CNN is similar to filter banks used in texture analysis [48] with oriented edges and
other simple patterns. Deeper features can be thought of as a more complex learned
non-linear filter bank.

Despite this appropriate design, complex and large structures and shapes emerge
in deep layers rather than simple texture descriptors as demonstrated in [49]. For
example, in the VGG-16 network [19] trained on ImageNet [50], the neurons in
the last convolution layer respond to complex shapes in the input image such as
faces, cars, persons, etc. Moreover, the receptive field (see Appendix A.4.3) grows
throughout the network, therefore neurons in the deepest layers analyse large portions
of the input image or even the entire image. This hierarchical feature learning of
growing complexity (e.g. pixels → edges, blobs → wheel, door → car, truck) is
required for object recognition. Textures, however, are better characterised by the
distribution of small descriptors of limited complexity.

These observations motivate the study of CNNs applied to texture and DT
analysis as proposed in this thesis, with a key idea of discarding the overall shape
analysis to focus on the orderless pooling of filter responses. Orderless pooling refers
to the computation of a global descriptor from local descriptors (filter responses)
regardless of their spatial location in the input image or in the feature map. The
domain transferability of pre-trained filters should also allow to pre-train networks
on very large datasets (e.g. ImageNet) to transfer and finetune the parameters on
small texture datasets.

1.3 Thesis summary and main contributions

The aim of the research outlined in this thesis is to develop deep learning methods
adapted for the analysis of texture images and DT sequences. The thesis is split
into three research problems: texture classification, DT classification, and texture
segmentation. The ideas and analyses common to these three parts include discarding
the overall shape analysis of CNNs, reducing the number of trainable parameters,
evaluating and using the domain transferability of the latter and visualising and
interpreting learned features. The goal is to improve the accuracy and reduce the

9

Introduction

complexity compared to existing networks, as well as gaining an insight into how
and what deep convolutional networks learn from texture and DT datasets.

The major contributions of the thesis can be summarised as follows:
(1) A CNN architecture is developed for the classification of textures, discarding the
overall shape analysis by orderless pooling of filter responses [25];
(2) a framework is introduced for an application to biomedical tissue images classifi-
cation [35, 51];
(3) a method fusing texture-specific CNNs on spatial and temporal slices of se-
quences is proposed for DT recognition [52];
(4) a fully convolutional architecture is developed for the segmentation of texture
regions and used in supervised and unsupervised tasks [53];
(5) several analyses are conducted to get an insight into what and how CNNs learn
to recognise and segment images including domain transferability, depth analysis
and visualisation of learned features [25, 35, 52, 53].

1.4 Outline of the dissertation

The literature review of texture and DT analysis is presented in Chapter 2 with
a focus on classification and segmentation problems. Studies of human texture
perception and early feature extraction approaches are introduced as a basis on
which more recent trends are built. Various texture feature extraction methods
are described including structural, statistical, spectral, local descriptors and bag of
features. The use of these features in texture analyses is described, with an emphasis
on classification and segmentation.

Chapter 3 presents a CNN architecture specifically designed for texture classi-
fication. Part of this work was published in [25, 35, 51]. Networks are developed,
based on existing architectures, to discard the overall shape analysis by orderless
pooling of intermediate convolution layers. The idea is that intermediate layers
extract texture patterns densely across the feature maps and can be pooled by calcu-
lating their average responses. The developed method is tested on several texture
classification datasets and compared with the state of the art. Higher accuracy is
obtained with a lower computational complexity as compared to classic CNNs. The
domain transferability of pre-trained networks is analysed as well as the features
learned by the networks using visualisation techniques (see Appendix A.4.7). An
alternative approach, combining texture and global shape analysis within a single
network, is also proposed. Finally, an application of the developed texture specific
network is presented on the classification of biomedical tissue images. Making use of
the homogeneity and repetitivity of the tissue textures and of the size of the images,
the latter are split into a grid of subimages which are used in an ensemble classifica-

10

1.4 Outline of the dissertation

tion. The developed method significantly outperforms the state of the art on several
benchmarks evaluating the recognition, among others, of malignant lymphomas.

The developed texture-specific CNN is applied to the recognition of DTs in Chap-
ter 4. Part of this work was proposed in [52]. The analysis of spatial and temporal
slices regularly sampled along the three axes is permitted by the repetitivity property
of DTs in space and time. A late fusion of predictions on three orthogonal planes
is proposed. This method combining spatial and temporal analysis outperforms
the state of the art on multiple DT classification benchmarks. Various analyses are
conducted including the contribution of each plane and the domain transferability of
trained parameters.

A new deep learning approach for texture segmentation is proposed in Chapter 5
and was introduced in [53]. Sharing the idea of discarding the overall shape analysis
with the preceding sections, a Fully Convolutional Network (FCN) is adapted for
texture images. Using “skip” layers, filter responses are combined at multiple
scales as the so-called “where” (local details) and “what” (more complex and larger
features) information. Due to the homogeneity of texture properties across regions,
the developed network can be trained on non-segmented images, i.e. classic texture
classification datasets. It is also shown that this network can be trained on very
little training data by relying on the repetitivity of texture patterns. This allows
developing a supervised framework by training on a single image per class as well
as an unsupervised framework by training on patches of the test image itself. The
proposed method significantly outperforms the state of the art on multiple texture
segmentation benchmarks.

A conclusion is provided in Chapter 6 including discussions, limitation, and
suggestions for future work.

Finally, a technical introduction to neural networks, deep learning and CNNs
can be found in Appendix A. Major concepts, architectures and training methods
are introduced and will be referred to throughout the thesis. In particular, artificial
neurons, ANNs, backpropagation, gradient descent, CNN building blocks and recent
architectures are presented.

11

Introduction

12

Chapter 2

Literature review

2.1 Introduction

This chapter reviews various major advances in the fields of texture analysis (Section
2.2) and DT analysis (Section 2.3). It includes the extraction of features which
describe spatial or spatiotemporal texture regions or images as well as their use in
classification, segmentation, and other analyses. Recent deep learning methods used
in texture and DT analysis are also presented. An introduction to neural networks,
deep learning and CNNs can be found in Appendix A.

2.2 Texture analysis

The analysis of texture is traditionally divided into four problems: classification,
segmentation, synthesis, and shape from texture. A key processing step shared
by most texture analysis methods is the extraction of features which describe the
textures. Feature extraction methods are therefore explained followed by classifica-
tion, segmentation, and other analyses which use these texture features including
K-Nearest Neighbours (K-NN) and SVM.

This section is organised as follows: The human perception of textures is intro-
duced in Section 2.2.1. Various shallow feature extraction methods are described
in Section 2.2.2. Texture classification, segmentation, synthesis, and shape from
texture, using the described shallow descriptors, are introduced in Section 2.2.3.
Finally, recent work on deep CNN features and deep learning methods in texture
analysis are detailed in Section 2.2.4.

2.2.1 Texture perception

The perception of texture is crucial for humans as every object surface reflects a
particular texture which enables, among other analyses, to estimate its shape or

13

Literature review

tactile perception and is a basis for further estimation of depth, motion and object
recognition. The human perception of texture has been widely studied [42] and
has largely influenced the development of computer-based texture analysis methods.
Julesz’s first conjecture [42] stated that two textures with identical second-order
statistics (based on pairs of pixel values) cannot be discriminated by the preattentive
textural system. He later rejected this conjecture with counter-examples and proposed
a “theory of textons” which assumes that the preattentive discrimination of texture
regions is based on similarity/dissimilarity of textons. Textons are described in
[43] as particular local texture features such as corners, end-lines, and closures. In
other words, texture regions with identical texton information are not preattentively
discriminable. The theory of textons has inspired many texture analyses including
early structural methods and more recent dictionary learning ones explained in
Section 2.2.2. Studies in [44] have also shown that simple cells of the visual system
perform a frequency and orientation analysis which has greatly motivated spectral
filtering methods such as Gabor filter banks [21, 32].

2.2.2 Classic texture feature extraction

Traditionally, the extraction of features is necessary for all texture analysis methods,
as a starting point to extract meaningful information from the raw pixel values. Many
feature extraction methods have been developed in the last decades. Various methods
are described in the following sections. The extracted features can then be clustered,
classified etc. to solve texture analysis problems as explained in Section 2.2.3.
Despite an inevitable overlap of concepts in these approaches, they are grouped to
provide a readable and structured review. In this review, the methods are grouped
into structural, model-based, statistical, spectral, local descriptors, learned visual
dictionaries and deep learning approaches.

Structural

Structural approaches consider textures as a composition of texture primitives reg-
ularly arranged according to some spatial organisation rules. These methods first
involve the identification of the texture primitives, followed by an inference of the
placement rules or a statistical description of the primitives shapes. Texture primi-
tives generally refer to blobs, i.e. regions in the image with uniform grey levels [32],
as these are considered meaningful basic elements of a texture. This approach was
supported by psychophysical experiments which have demonstrated that humans can
strongly perceive the structural properties of regular textures [42]. Several methods
have been developed to identify blobs including mathematical morphology [54],
boundaries detection such as Laplacian of Gaussian (LoG) or Difference of Gaussian

14

2.2 Texture analysis

(DoG) filters [55–57], and region split and merge followed with blobs approxima-
tion by medial axes [58]. Other texture primitives include edges [59] and skeleton
extracted by histogram analysis [33].

Once the primitives are identified, texture descriptors can be computed by infer-
ring placement rules which define the spatial relationships between the primitives.
Generalised co-occurrence matrices [59] describe second-order statistics of edges,
inspired by the Grey Level Co-occurrence Matrix (GLCM) and Haralick features
[10, 60] introduced later. The Voronoi tessellation method [57] represents each prim-
itive by a single point (e.g. centroid), forming a set of points S. The perpendicular
bisector of the line joining a pair of points (P,Q) ∈ S is constructed, splitting the
image into two regions (pixels closer to P, and those closer to Q). Repeating this
process for all the pairs of points in S, a polygonal region is obtained for each point
P ∈ S (i.e. for each primitive). Such region contains all the pixels that are closer to
its centre point P than to all other points. The shapes of the polygons which represent
the spatial organisation of the primitives can be used to derive texture features.

Alternatively to the placement rules, measures and statistics of homogeneous
primitives can be computed including intensity, shape and orientation [61, 58].

By considering primitives and placement rules, structural approaches are gener-
ally only used for regular textures. These methods are, by definition, not designed for
textures with a high degree of randomness and variability of patterns as encountered
in recent texture datasets and in real life images.

Model-based

In a model-based approach, the fundamental qualities of a texture are captured
by a model with estimated parameters. These parameters can be used as texture
features or to synthesise textures of desired properties. The most popular model-
based approaches include Markov models and fractals as described in the following
text.

Markov models are based on the Markov property which assumes that the future
state of a system depends only on the current state. This translates to images by
local dependencies of pixel intensities. A Markov Random Field (MRF) assumes
that a pixel intensity depends only on its neighbouring pixels, capturing local con-
textual constraints to globally model an image [62]. To be more precise, given
its neighbouring intensities, a pixel is conditionally independent of other pixels in
the image. A MRF is a graphical model which forms an undirected graph with
pixels or superpixels as random variables and with edges only between neighbouring
pixels/superpixels. The parameters of the model are estimated to best fit the image
based on an optimisation method that minimises an energy function. The estimated
parameters are commonly used as texture features; yet, the determination of the

15

Literature review

energy function and its optimisation are difficult. Gaussian MRFs (GMRFs) have
been extensively used in texture analysis [63]. A GMRF model is expressed by the
probability of a pixel at position (x,y) having a value Ixy given the intensities in its
neighbourhood Nxy. This probability is calculated as follows:

p(Ixy|I(i, j),(i, j) ∈ Nxy) =
1√

2πσ2
exp

{(
I(x,y)−∑

n
l=1 αlsxy;l

)2

2σ2

}
(2.1)

where αl weights the neighbours’ influence, sxy;l is a sum of pairs of pixels in Nxy

symmetric w.r.t. (x,y) and n is the number of such pairs. The latter depends on
the size Nxy and relates to the order of the GMRF model. A first-order model only
considers pairs of direct 4-connected neighbours, a second-order model considers
8-connected neighbours, etc. The parameters ααα and σ (standard deviation) can
be estimated by least square error on the entire texture image or region. Wold
decomposition [34] is another model-based method which measures periodicity,
directionality, and randomness by the decomposition of a homogeneous random
field into three mutually orthogonal subfields. Other popular models used in texture
analysis include the Simultaneous Auto-Regressive (SAR) [64] which is an instance
of MRF and the multi-resolution SAR [65]. Major difficulties with random field
methods include finding an appropriate energy function and optimising it.

Fractal models propose another popular approach to model images [66, 67]. The
fractal geometry is based on the concept of self-similarity across scales, i.e. repeated
patterns at multiple scales. The fractal dimension D is a measure of this fractal
repetitivity and is related to the perceived roughness of a texture. It is calculated as
follows:

D =
log(N)

log(1
r)

(2.2)

where N is the number of repeated patterns downsampled by a ratio r. Several meth-
ods have been proposed to estimate the fractal dimension including the box-counting
and differential box-counting methods [68, 69], fractional Brownian motion with
spectral analysis [70], and area-based approaches such as the triangular prism method
[71]. A major drawback of fractal approaches is that the fractal dimension does
not capture sufficient textural information since textures with different appearances
can have similar fractal dimensions [68]. Another measure is commonly used to
discriminate such textures, namely lacunarity [66] which measures the sparsity of
the texture by considering how fractals fill the image, i.e. gaps between the fractal
patterns.

16

2.2 Texture analysis

Statistical

Statistical approaches describe the relationships between pixel values based on first-,
second-, or higher-order statistics.

First-order features provide information on the values of individual pixels, but not
on the relative positions of the pixel values. These include mean, variance, skewness,
and kurtosis.

Second- and higher-order statistics are commonly extracted by matrix-based
approaches. Second-order statistics consider the distribution of pairs of pixel values,
typically derived with the GLCM [10, 60].

The GLCM aims at describing the relationships between neighbouring pixel
intensities by analysing their joint probability function. It summarises the occurrence
of pairs of pixels (horizontally, vertically or diagonally) in an image. The (i, j)th

entry of the matrix p(i, j) represents the number of occurrences of a pixel with
(quantised) intensity value i, separated from another pixel with intensity value j at a
distance d in the direction θ . An example of GLCM computation with a small texture
region is illustrated in Figure 2.1. GLCMs contain meaningful second-order statistics

1 1 3 3 4
2 1 2 3 2
2 1 3 3 2
1 2 2 4 1

1 2 2 0
2 1 1 1
0 2 2 1
1 0 0 0

1
2
3
4

1 2 3 4

GLCMTexture image
or region

Figure 2.1: An example of GLCM computation with a small texture region and four
grey levels [10]. The distance between neighbours is d = 1 and the orientation is
θ = 0.

information which can be extracted (possibly averaged for different distances d
and directions θ) by a set of features including correlation, contrast, homogeneity
(angular second moment) and dissimilarity (inverse difference moment). These
features are referred to as the Haralick texture features [60]. The contrast measure,
for instance, is computed as follows:

Contrast = ∑
i, j

p(i, j)(i− j)2 (2.3)

where i, j run over the rows and columns respectively. The major drawbacks of
GLCMs are the high dimensionality of the matrix if used raw (without the computa-
tion of features) and the high correlation of the Haralick features.

17

Literature review

Higher-order statistics analyse the joint distribution of more than two pixels.
Instead of the occurrence of pairs of pixels, the Grey Level Run Length Matrix
(GLRLM) [72] summarises the occurrence of runs of pixels, i.e. the occurrence
of a given grey value in a given direction. Higher-order statistical features can be
extracted from the GLRLM. The Grey Level Size Zone Matrix (GLSZM) [73] is
similar to the GLRLM except that zones of connected pixels are considered instead
of oriented runs of pixels. Therefore, it does not require the computation in several
directions contrary to GLCM and CLSZM. Features similar to the GLCM features
can be extracted from the matrix to statistically describe a texture.

Note that the described matrices require a quantisation of the pixel values to limit
the size of the matrices and improve robustness to noise and small intensity variations.
The best quantisation and directions (for GLCM and GLRLM) may depend on the
application. Although improvements of these methods have been proposed, the
performance of statistical approaches remains relatively poor on natural texture
images.

The autocorrelation function is another statistical approach which computes
the dot product of an image with shifted instances of the same image. It has been
used to detect repetitive texture patterns (primitives) and describe the regularity and
coarseness of textures [74]. Note that the autocorrelation is a signal processing
method strongly related to the Fourier transform described below.

Spectral analysis

Signal processing approaches include filter banks, wavelets and Fourier transforms.
These methods analyse the frequency (or spatial-frequency) content of textures in
the spatial domain only (e.g. edges, Laws features, steerable filters), in the frequency
domain (e.g. Fourier transform), or in both frequency and spatial domains (e.g.
Gabor filters and wavelet transforms). A spatial filtering is an image operation which
computes a function of the intensities in the local neighbourhood of each pixel.

Spectral methods in the spatial domain convolve the texture images with spa-
tial filters, extracting frequency information by measuring the variations in local
neighbourhoods. This is typically computed by convolving the image with small
filters or kernels (see Appendix A.4.3) resulting in a set of images being the filters
responses. Texture features are commonly based on statistics of filter responses.
Edge-based filters, e.g. Robert’s or Sobel’s [75], attempt to describe the coarseness of
textures based on the density of edges. Laws [76] developed a set of nine 5×5 filters
to extract local responses to meaningful patterns. The filters are computed as the
product of pairs of vectors from a set of four vectors representing a 1D level, edge,
spot, and ripple respectively. The averaged response to the filters and combination of
filters (e.g. to consider horizontal and vertical edges) are used as texture features.

18

2.2 Texture analysis

Steerable filters were designed in [77] for the analysis of oriented textures. Steerable
filters are a set of orientation-selective filters, obtained at any orientation by a linear
combination of basis filters (e.g. derivative of Gaussian at 0° and 90°). Finally, local
linear transforms, similar to a bank of FIR (Finite Impulse Response) filters, were
used in [78].

Spectral analysis in the frequency domain is performed by Fourier transform. A
2D discrete Fourier transform decomposes an image into its frequency components
as a sum of orthogonal basis functions as follows:

I(x,y) F→ F(fx, fy) = ∑
x,y

I(x,y)e− j2π(fxx+ fyy) (2.4)

where fx and fy are the horizontal and vertical frequencies respectively. This complex
number can be represented by its real and imaginary parts, or decomposed into the
magnitude and phase as follows:

F(fx, fy) = |F(fx, fy)|e j∡F(fx, fy) (2.5)

An example of Fourier transform is shown in Figure 2.2. Spatial edges typically
exhibit a low frequency in one direction and multiple frequencies in the orthogonal
direction. This is represented by straight lines in the Fourier domain (first row
in Figure 2.2). Low-frequency components in the centre of the Fourier transform
occur from the various flat regions as shown in the second row. Low-frequency
components are filtered out in the third row, maintaining high-frequency information,
i.e. mainly edges. Note that the Fourier transform for the zero frequencies (fx =

fy = 0) computes the mean of the image which is often considered a colour measure,
rather than texture. The Fourier transform can be thought of as representing an image
as a weighted combination of vertical and horizontal sinusoids of various frequencies
(fx, fy), similar to various frequencies in different directions. Note that a convolution
in the spatial domain of an image I(x,y) with a filter w(x,y) is equivalent to a
multiplication in the Fourier domain of the respective Fourier transforms F(fx, fy)

and W (fx, fy).

I(x,y) F→ F(fx, fy)

w(x,y) F→W (fx, fy)

I(x,y)∗w(x,y) F→ F(fx, fy)W (fx, fy)

(2.6)

Thus a multiplication in the Fourier domain by a band-pass filter is equivalent to a
convolution in the spatial domain. A set of (localised) band-pass filters in the Fourier
domain can precisely describe the frequencies in the image. This approach, however,

19

Literature review

IFT

IFT

FT

Low
pass

High
pass

x

y

ωx

ωy

Figure 2.2: An example of Fourier transforms and inverse Fourier transforms (after
low-pass and high-pass filters in the frequency domain). Left: spatial domain; right:
frequency domain (magnitude of Fourier spectrum).

is not localised in space as a narrow frequency band-pass describes a large spatial
region. Thus Fourier transform methods cannot describe local variations of textures.
Ideally, a texture analysis should be localised in both spatial and frequency domains,
meaning that local spatial properties are analysed together with the frequency com-
ponents of the image. Yet, the localisation of a texture operator in both domains
is limited due to the principle referred to as Heisenberg’s uncertainty. It states that
many frequencies are required to describe a small spatial region (short pulse) and
vice versa since the localisations in both domains are limited by a lower bound on
their product:

∆x∆y∆ fx∆ fy ≥
(

1
4π

)2

(2.7)

Similarly, a descriptor localised in the spatial domain can precisely describe local
structures; yet, its localisation in the frequency domain is limited.

A Short-Time Fourier Transform (STFT) can be used to extract both the spatial
and frequency information of an image by computing Fourier transforms on local
neighbourhoods [79].

Another type of approaches to describe spatial and frequency information is to
perform a multi-resolution analysis with a bank of filters of various scales, i.e. the
size of the local neighbourhood or window. Small scales extract high-frequency
content while large scales extract low-frequency information. Typical multi-scale
methods include Gabor filters and wavelet transforms. A Gabor filter is a Gaussian
kernel function modulated by a sinusoidal plane wave. It is typically a band-pass
filter with tunable central frequency, orientation and bandwidth. The Gabor form

20

2.2 Texture analysis

was shown to achieve the theoretical limit of localisation in time (extended later to
space) and frequency, ruled by the uncertainty principle (Equation 2.7). It was also
shown that it operates similarly to simple cells in the visual cortex of the human
visual system [44]. A 2D Gabor filter can be computed as follows:

Gσ , f0,φ (x,y) = exp

(
−1

2

[
x′2

σ2
x
+

y′2

σ2
y

])
cos(2π f0x′+φ) (2.8)

where σx and σy are the scales of the Gaussian envelop (standard deviations) in the x
and y directions respectively, and σ = σx = σy in this section for simplicity. f0 and
φ are respectively the frequency and phase of the sine wave. x′,y′ perform a rigid
rotation θ of the spatial plane as follows:

x′ = xcosθ + ysinθ

y′ =−xsinθ + ycosθ
(2.9)

The bandwidth of a filter can be derived from the central frequency and scale:

B = log2

πσ f0 +

√
ln(2)

2

πσ f0 −
√

ln(2)
2

 (2.10)

Examples of Gabor filters with different orientations, scales and central frequencies
are illustrated in Figure 2.3.

A bank of Gabor filters with different frequencies and orientations is commonly
used to extract texture features [80, 21]. The Fourier transform of a Gabor function
is composed of two Gaussians centred at f0 and − f0 respectively, of bandwidth
inversely proportional to the spatial variance and rotated by the orientation θ . A
typical bank of Gabor filters spans the frequency domain as shown in Figure 2.4.
A Gabor filter bank can perform a robust multi-resolution decomposition due to its
localisation both in the spatial and frequency domain. Other filter banks perform
multi-resolution frequency analysis including the Leung-Malik (LM), Schmidt (S)
and Maximum Response (MR) sets. The LM set contains second derivatives of
Gaussians at 6 orientations, 3 scales and 2 phases (i.e. even and odd symmetry)
as well as 8 LoG filters and 4 Gaussians for a total of 48 non-rotation invariant
filters. The S set is rotation invariant and contains 13 isotropic Gabor-like filters.
The MR sets include the MR4 and MR8 sets. They contain LoG and Gaussian filters
(both isotropic) as well as an edge and a bar filter which are reduced to 4 and 8
responses respectively by keeping only the maximum responses. These sets are
rotation invariant while considering the angle of maximum response. Thus, unlike

21

Literature review

Figure 2.3: 2D Gabor filters for 30°(left) and 120°(right) orientations. Top row:
scale σx =σy = 1.0, central frequency f0 = 1.5/2π; bottom row: scale σx =σy = 2.0,
central frequency f0 = 2.5/2π .

the S set, co-occurrence statistics can be computed on the orientations which is
useful to discriminate isotropic from anisotropic textures.

A wavelet transform is similar to a Fourier transform using a critically sampled
bank of local filters (wavelets). While a Fourier transform approximates an image by
a sum of sinusoidal plane waves of varying frequencies (Equation 2.4), a wavelet
transform approximates the image by a sum of dilated and translated local wavelets.
The advantage of wavelet transforms over a Fourier transform, besides a lower
computational complexity, is the spatial resolution of the wavelets, as opposed to
the sinusoidal basis which discards spatial information. The wavelet transform
minimises the Heisenberg uncertainty, capturing localised spatial and frequency
information. A Discrete Wavelet Transform (DWT) is performed by applying a series
of scaled filters, obtained from a cascade of high-pass and low-pass decompositions
followed by downsampling as illustrated in Figure 2.5. Note that the high-pass
and low-pass filters represented by a single block in Figure 2.5 separately filter the
image horizontally and vertically, as shown in Figure 2.6 for a single scale. The
coefficients therefore contain vertical (i.e. rows low-pass and columns high-pass),
horizontal (rows high-pass and columns low-pass) and diagonal (high-pass on both
rows and columns) details as depicted in Figure 2.7. Each subimage in Figure 2.7
contains information for a specific scale and orientation while maintaining the spatial
information. The obtained subimages are commonly used to extract scale dependent

22

2.2 Texture analysis

Figure 2.4: A Gabor filter bank in the frequency domain. The set is composed of
filters at five scales and four orientations with a total of 20 filters, each resulting in
a centre-symmetric pair of lobes. The axes are in normalised frequencies. Figure
reproduced from [48].

Hi

Lo 2

I(x,y) 2

Hi

Lo 2

2

Hi

Lo 2

2

wavelet
coefficients

details

approximation

Figure 2.5: A three-level DWT filter bank computing a cascade of high-pass and
low-pass filters followed by downsampling, successively decomposing the image
into multiple frequency components.

texture features such as energy, variance, and entropy.
The described DWT is derived from the projection of the image onto a basis of

wavelet spaces in the horizontal and vertical axes. In DWT, 1D (child) wavelets are
obtained by dilation by a power of two and translation of a mother wavelet ψ(t) as
follows:

ψ j,k(t) =
1√
2 j

ψ

(
t − k2 j

2 j

)
(2.11)

where j and k are the scale and shift parameters respectively. Typical wavelet
functions used with DWT include Haar wavelets and Daubechies wavelets [82].
Note that Gabor wavelets can be derived from a mother Gabor filter. Yet, a bank
of selected Gabor filters is generally preferred over Gabor wavelets due to their
non-orthogonality inducing redundant information in the filtered images resulting
from the wavelet decomposition. Another wavelet transform was introduced in [83],
called discrete wavelet packet transform. It decomposes not only the high-passed

23

Literature review

Lorows

HirowsI(x,y)

Locol

Hicol2

2

Locol

Hicol

2

2

2

2

Level 1 detail
coefficients

Level 1
approximation

LH

HL

HH

LL

Figure 2.6: A 2D DWT in more detail with high-pass and low-pass filters applied
separately horizontally (Hirows, Lorows) and vertically (Hicol , Locol).

Decomposition of

Figure 2.7: A Three-level DWT pyramidal decomposition of an image. Figure
reproduced from [81].

approximation images but also the detail images (i.e. HL, LH and HH etc. in
Figure 2.7). The major drawbacks of the DWT compared to the Fourier transform
include oscillations, shift variance, lack of directionality and aliasing. The Dual-Tree
Complex Wavelet Transform (DT-CWT) was developed in [84] to address these
problems by using complex wavelets. Inspired by the Fourier transform using real
cosine and imaginary sine, one real and one imaginary wavelets are used with a 90°
phase difference. Other transforms used in texture analysis include Discrete Cosine
Transform (DCT) [38], contourlet transform, and curvelet transform [85].

The filter banks described so far are heuristically designed and generally result
in a large computational complexity and high-dimensional feature vectors. Several
methods have been developed to optimise the filter banks including eigenfilters,
prediction error filters, optimised Gabor filters and optimised FIR [48].

24

2.2 Texture analysis

Distribution of local descriptors (LBP)

Despite the global structure of textures, accurate discrimination can be achieved by
exploiting the joint distributions of pixel values in extremely compact neighbour-
hoods (e.g. 3×3), outperforming filter banks methods with larger neighbourhoods as
reported in [13, 86]. Local descriptors provide a robust texture analysis by describing
the pixel intensity values within local neighbourhoods. This section introduces Local
Binary Pattern (LBP) [12, 13] descriptors and multiple variants. By computing the
occurrence histogram of local descriptors, LBP-like approaches combine structural
and statistical methods, largely contributing to an increase of performance in texture
analysis. Note that the histogram is referred to as dense orderless pooling. It sum-
marises the occurrence of the local descriptors at every pixel location, regardless
of their spatial location, thus discarding the global shapes and image layout. Filter
banks and wavelet methods introduced in the previous section as well as descriptors
used in vocabulary learning approaches introduced in the next section are also based
on the distribution of local descriptors. These approaches are therefore highly related;
yet, they are split in this chapter for clarity. The major difference between the filter
banks and the LBP-like descriptors include the convolution approach and frequency
analysis of spectral methods as well as the compact support (small neighbourhood)
of the LBP methods.

The LBP originates from the combination of the analysis of local structures in
structural methods and the occurrence analysis of statistical methods. It is also a sim-
plification of the signed differences method previously developed by the same authors
in [87]. The original LBP was introduced in [12] with the basic idea to summarise
a texture region or image by comparing each pixel with its local neighbourhood
(originally 3× 3). For each pixel, a binary code is computed by thresholding the
neighbouring pixels based on the centre pixel value as shown in Figure 2.8. A his-
togram of occurrence of binary codes in a texture region or image is then computed
resulting in a 256-dimensional feature vector (28 = 256 possible codes with a 3×3
neighbourhood). This descriptor is very popular due to the simplicity of implementa-

2 2 2

1 4 5

3 5 6

3

1

2

0 0 0

0 1

0 1 1

‘00011100’
‘11111111’

Texture region

LBP histogram

Figure 2.8: The original LBP histogram extraction [12].

25

Literature review

tion, its low computational cost and its invariance to monotonic illumination changes.
However, the described LBP has several major drawbacks. First, it produces long
histograms which are sensitive to image rotation. Secondly, it has a small spatial sup-
port (3×3 neighbourhood) which does not extract large-scale textural information.
Thirdly, the LBP loses local textural information (e.g. contrast) by considering only
the signs of differences of neighbouring pixels. Finally, it is highly sensitive to noise
and blurring since slight fluctuations above or below the centre value change the
binary code similarly to a major contrast. A large number of variants of the original
LBP have been proposed to attempt to overcome these drawbacks. Some of the most
popular methods are introduced in the following paragraphs.

A rotation invariant version named LBPROT was achieved by grouping rotated
versions of the same binary codes in [88]. This results in a reduced dimensionality
of the histogram which represents the occurrences of the 36 unique rotation invariant
patterns. However, the quantisation of the angular space with the eight pixels in the
circularly asymmetric (squared) neighbourhood is unadapted to the computation of
rotation invariance. Moreover, the occurrence of the 36 unique rotation invariant
binary patterns varies largely as some patterns are unlikely to occur.

These difficulties were partly overcome in [13], in which several extensions of the
LBP descriptor were proposed. The rotation invariant LBP is first improved by using
bilinearly interpolated intensity values sampled on a circle of varying radius around
the centre pixel. The quantisation of the angular space can be modified by varying
the number of interpolated values and local structures can be described at multiple
scales by varying the radius. The LBP at a pixel location (xc,yc) is computed as
follows:

LBPP,R =
P−1

∑
p=0

s(Ip − Ic)2p,s(x) =

 1 if x ≥ 0

0 otherwise
(2.12)

where Ic = I(xc,yc), P is the number of interpolated values considered in the neigh-
bourhood and R is the radius of the circle on which these values lie. A uniform
version of the LBP was also introduced in [13] to consider binary patterns that occur
most in images and that represent typical local structures such as edges, corners, and
spots. In the commonly used LBPriu2

P,R , superscript ri refers to the rotation invariant
LBP, while u2 considers uniform patterns with at most two transitions from 1 to 0 or
vice versa in the circular pattern. All non-uniform patterns are grouped into the same
bin. The rotation invariant and uniform LBPs with P = 8 are depicted in Figure 2.9,
reducing the 256 LBP8,R to 36 LBPri

8,R and 9 LBPriu2
8,R patterns. These improvements

help obtaining more balanced histogram occurrences and more robust and rotation
invariant descriptors as well as reducing the dimensionality of the texture descriptors.
The local contrast was used in [13] as a complementarity measure to recover the
information lost by considering only the signs of differences of neighbouring pixels.

26

2.2 Texture analysis

Figure 2.9: The 36 possible rotation invariant LBPri
8,R. The nine uniform LBPs

(LBPriu2
8,R) are depicted in the first row. Figure reproduced from [13].

The contrast is measured by computing the histogram of quantised local variances of
pixel intensities.

Several variations of the LBP have been developed to improve its discriminative
power. The Completed LBP (CLBP) [89] extracts three complementary descrip-
tors. First, the centre pixel provides intensity information using global thresholding.
Secondly, a local difference sign-magnitude transform decomposes the local differ-
ences into the sign and magnitude components. The intensity, sign and magnitude
components are encoded into a CLBP descriptor. Note that the sign component is
equivalent to the classic LBP. The Extended LBP (ELBP) introduced in [90] extends
the CLBP approach by computing four components. The first two descriptors are
based on local intensities (of centre pixels for one and neighbours for the other).
The other two descriptors are based on local differences (radial for one and angular
for the other). The LBP is extended to Dominant LBP (DLBP) by using the most
frequent patterns in the image in order to describe descriptive textural information.
This approach considers complex patterns discarded by the uniform LBP in [13]
which may be frequent and representative in some textures (e.g. high curvature
edges, crossing boundaries or corners). The resulting DLBP descriptor is combined
to Gabor-based features to capture complementary global textural information. Note
that this approach shares the idea of learning a vocabulary (most occurring patterns)
with dictionary learning methods introduced later. A global rotation invariance
is obtained in [91] by extracting features from the Fourier transform of the LBP
histogram on the entire image.

Many extensions have also been developed to reduce the sensitivity to noise such
as the Local Ternary Patterns (LTP) [92]. Neighbouring pixels are thresholded into
three values instead of two to consider small intensity variations in a range of values

27

Literature review

around the centre pixel value [Ic − k, Ic + k], controlled by the constant k. The LTP is
computed using two binary patterns to maintain a relatively small dimension of the
histogram which is twice as large as the LBP. The Local Phase Quantisation (LPQ)
developed in [79] uses local phase information to build texture descriptors insensitive
to blur which is frequent in real images generally due to the acquisition (e.g. motion
and defocus). The phase information is extracted by a local Fourier transform which
is particularly robust to blur. Other descriptors have been extended from the LBP to
build robustness to noise and blur including Median Binary Pattern (MBP), Noise
Tolerant Local Binary Pattern (NTLBP), Robust Local Binary Pattern (RLBP), Noise
Resistant LBP (NRLBP) and Median Robust Extended LBP (MRELBP) [93]. These
methods offer various options to encode the local differences with low sensitivity to
noise while retaining a high discriminative power of the descriptors.

Second- and higher-order local descriptors named Local Derivative Patterns
(LDP) were developed in [94]. They describe the changes of nth order derivative
directions in local neighbourhoods.

The Centre-Symmetric LBP (CS-LBP) [95] combines LBP and Scale Invariant
Feature Transform (SIFT [17], introduced later) to describe interest regions. Interest
point detection is introduced in the next section as it is generally used in texture
analysis with vocabulary learning methods. In CS-LBP, pixels are compared to the
opposing pixel symmetrically w.r.t. the centre pixel, instead of the centre pixel itself.
The robustness to small variations and noise in flat areas is increased by thresholding
small differences.

The Weber’s Law Descriptor (WLD) [96] is a local descriptor not directly inspired
by the LBP. It computes and combines two measures, one based on the differential
excitation, the other one on the orientation of local neighbourhoods. The differential
excitation is inspired by the human perception of stimuli stated by Weber’s law.
For each pixel, ratios are calculated between 1) the difference between a neighbour
pixel value and the centre pixel and 2) the centre pixel itself. These “Weber’s
fractions” are summed in local neighbourhoods to detect salient variations in the
image. In parallel, the gradient orientation is measured at every pixel location and
quantised. A WLD histogram for a given image is then constructed by concatenating
sub-histograms which measure the occurrences of differential excitation values for a
number of quantised dominant orientations. The sub-histograms are rearranged to
group intervals of differential excitations corresponding to a similar variance.

Visual dictionary learning

Visual dictionary or vocabulary learning methods are dataset-dependent as opposed
to LBPs or classic filter banks which can be considered as dataset independent
predefined dictionaries (except for optimised filters). These approaches are therefore

28

2.2 Texture analysis

a transition between the hand-crafted shallow feature extraction techniques and
deep learning methods which learn and classify abstract concepts. The idea of
Bag of Features (BoF) [3, 97], also called bag of visual words, is inspired by the
document processing method called Bag of Words (BoW) in which a text document is
represented by the occurrence of representative words. Dictionary learning methods
in image analysis involve the learning of a visual dictionary. In this context, words
are visual patterns represented by local descriptors and a dictionary is made of
representative patterns clustered in the feature space.

The early BoF [3] and VZ (Varma and Zisserman) [98] algorithms make the link
between filter banks introduced previously and dictionary learning, as the images
are filtered by banks of filters. In the VZ algorithm, training images of a given class
are first filtered by a filter bank (e.g. MR8). The responses are then clustered with
K-means into a visual dictionary. Texture features for a given training or test image
are then obtained by 1) convolving it with the same filters as in the training phase
and labelling each pixel with the nearest visual word from the dictionary in the filter
response space; and 2) building the histogram of occurrence of visual words. The
early BoF and VZ algorithms share the K-means clustering, nearest visual word and
histogram approaches with many recent vocabulary learning methods.

More recent dictionary learning methods use local descriptors which were not
introduced in the previous section as they are not particularly designed for texture
analysis apart from their integration with vocabulary learning. These descriptors are
generally sparse and involve interest point detection as described below. Therefore,
dictionary learning typically involves the detection of keypoints, the extraction of
local descriptors, clustering to learn the dictionary (e.g. K-means), and pooling into
a global image descriptor (e.g. occurrence count histogram). Several dictionary
learning methods are introduced below including BoF [3, 97], FV [7], Improved
Fisher Vector (IFV) [11], and Vector of Locally Aggregated Descriptors (VLAD)
[20] with details of the major stages involved in their computation.

Note that vocabulary learning methods were not originally developed for texture
analysis; yet, they are a suitable extension of classic local descriptors and powerful
tools for extracting representative textons as demonstrated in [99]. FV was ported to
texture analysis in [100] and BoF, VLAD, IFV, and other vocabulary learning meth-
ods in [99]. IFV achieved the best results among the vocabulary learning methods
on the tested texture datasets in [99].

Interest point detection

The interest point detection can be seen as the spatial sampling of local neighbour-
hoods from which descriptors are extracted to describe an image. It can be dense
or, more generally in vocabulary learning, sparse, with the aim to extract robust and
stable descriptors. Dense sampling does not search keypoints based on the intensity

29

Literature review

values and patterns but uses a predefined regular grid (e.g. every pixel or pixels
separated by a fixed interval). This type of sampling is employed in most of the
methods described previously such as LBP and filters which provide a response for
every pixel, pooled into a global descriptor. It can also be used with vocabulary
learning as in the BoF and VZ algorithm mentioned previously. Note that grid
sampling is more adapted to texture images than objects in which sparse fine-grained
distinct features may be lost. In contrast, the basic idea of sparse sampling is to
find keypoints in the image which exhibit particularly well localised patterns (e.g.
corners or blobs). Such detection was primarily developed to match interest points
in multiple images for tracking, stereo matching, and calibration. It can be used in
texture analysis to localise keypoints where robust texture descriptors (i.e. repeated
patterns or textons) can be extracted.

The Harris detector is a popular corner detection method based on the eigenvalue
analysis of the structure tensor (second-moment matrix) which was used in a BoF
method in [101]. Corners are relatively robust and well localised keypoints as a
translation in any direction results in a large change of pixel values, unlike constant
areas and edges which suffer from the aperture problem. The Harris detector origi-
nates from a weighted Sum of Squared Differences (SSD, similar to autocorrelation)
in which the shifted image intensities are approximated by a Taylor expansion, i.e.
based on the partial derivatives Ix and Iy at a single point. To that end, an eigen-
analysis of the structure tensor is performed at each pixel location. A standard Harris
detector is not scale invariant, although it is possible to perform it in a multi-scale
analysis. More complex methods are therefore introduced in the following text to
obtain scale invariance required in keypoints matching and recognition as well as in
many texture analysis tasks.

Alternatively to the Harris detector, robust scale invariant keypoints can be
detected by a scale space analysis using Difference of Gaussians (DoG) [17]. A DoG
is performed by subtracting a smoothed image from another less smoothed image,
resulting in a scale band-pass.

D(x,y,σ) = I(x,y)∗G(x,y,kiσ)− I(x,y)∗G(x,y,k jσ) (2.13)

where G(x,y,kiσ) and G(x,y,k jσ) are Gaussians of standard deviation kiσ and k jσ .
A scale space (x,y,kσ) is obtained by stacking DoG responses at multiple scales
of the full-size image as well as successively downsampled images. Extrema are
sought in local neighbourhoods in the derived scale space as they exhibit robust scale
invariant keypoints. A Taylor series approximation of D(x,y,σ) and an eigenvalues
analysis are then used to remove ambiguous points including low contrast and edge
points (due to the aperture problem).

30

2.2 Texture analysis

Another approach to scale space analysis is based on an approximation of the
Hessian matrix and used to speed up the detection of blob keypoints in [102].
A Hessian matrix involves the convolution of the image with the second-order
derivatives of Gaussian filters w.r.t. x and y as follows:I(x,y)∗ ∂ 2G(x,y,σ)

∂x2 I(x,y)∗ ∂ 2G(x,y,σ)
∂x∂y

I(x,y)∗ ∂ 2G(x,y,σ)
∂x∂y I(x,y)∗ ∂ 2G(x,y,σ)

∂y2

 (2.14)

These second-order derivatives are approximated by simple box filters and a scale
space analysis is performed by applying a set of filters of varying scales. Keypoints
are then detected by non-maximum suppression of the determinants of Hessian
matrices in 3×3×3 neighbourhoods in the derived scale space.

Other robust and fast interest point detection methods found in texture analysis
include LoG and Features from Accelerated Segment Test (FAST) [103], a high-
speed corner detection algorithm used in [104].

Local descriptors

Classic local texture descriptors such as LBP and filter banks were introduced in
the previous sections. Other types of local descriptors, not originally designed for
texture analysis, are generally used in vocabulary learning such as SIFT and SURF
as explained in the following paragraphs. Local descriptors are computed for each
interest point.

The Histogram of Oriented Gradients (HOG) [105] derives local histograms of
gradient orientations. The image is divided into overlapping blocks and cells of
pixels in which the gradient orientation is computed and quantised. Orientations
and magnitudes are computed from the gradient image obtained with simple x and y
derivative filters ([−1,0,1] and [−1,0,1]T respectively).

SIFT local descriptors [17], commonly used in vocabulary learning methods
(e.g. in BoF, FV, IFV and VLAD), are based on local gradient orientation. The
keypoints are commonly detected with DoG as explained previously, although
Harris or other keypoint detectors can be used [101]. First, the keypoint dominant
orientation is computed using a weighted histogram of quantised gradient orientations
in local neighbourhoods. A vector descriptor is then formed by computing weighted
histograms of relative orientations w.r.t. the dominant orientation in blocks of pixels
(e.g. 4× 4) within neighbourhoods (e.g. 16× 16). The dimension of the derived
descriptors is 128 (16 histograms of 8 orientation bins).

SURF local descriptors are inspired by SIFT descriptors and also describe relative
orientations of local neighbourhoods. The keypoint detection is performed in the
scale space based on the Hessian matrix explained previously, and the orientation
assignment and encoding is based on Haar wavelet responses. Note that these

31

Literature review

descriptors were primarily developed for matching images and therefore provide
important invariances or robustness to geometric and photometric transformations
relevant for many texture problems.

Other descriptors used in vocabulary learning, which are or can be ported to
texture analysis, include PCA-SIFT [106], Binary Robust Independent Elementary
Features (BRIEF) [107] used in [104] and the rotation invariant descriptors called
spin image and RIFT (Rotation-Invariant Feature Transform) developed in [108].

Descriptors clustering

This step is the major difference to most methods described in the previous sections
which compute dense local descriptors (e.g. LBP, response to filter banks, etc.)
and directly pool these descriptors into texture features based on their distribution,
energy response, etc. In vocabulary learning, representative patterns are learned
from the training set by clustering the local descriptors into K clusters in the feature
space. Local descriptors are typically clustered in an unsupervised manner using
K-means or Gaussian Mixture Models (GMMs). In the BoF [97, 101] and VLAD
approach [20], K-means is used to cluster the descriptors. Each cluster centre is then
considered as a “word” in a visual dictionary (i.e. representative of multiple local
patches). A repeated pattern or texton is thus described by descriptors clustered into
the same visual word in the feature space.

The FV [7] and the IFV [11]) can be seen as an extension of the BoF method [97,
101] using soft clustering. The clustering in these approaches can be computed by
fitting a GMM to the distribution of descriptors instead of K-means clustering which
cannot capture overlapping distributions in the feature space as it considers only
distances to cluster centres. A GMM considers both cluster centres and covariances
which describe the spread. The Gaussian distributions are optimised with Expectation
Maximisation (EM) similar to the K-means algorithm, while data points are assigned
to clusters with soft probabilities. The GMM therefore generates a probabilistic
visual dictionary, as opposed to the hardcoded dictionary obtained with K-means.

Pooling and normalisation methods

While vocabulary learning methods are often used for matching images and regions
by comparing individual words or pairs of global image descriptors, it can also be
used to build a global descriptor of an image from the learned dictionary, for instance,
for texture classification. The pooling of local descriptors into a global descriptor
is similar to the derivation of global descriptors from LBPs and filter responses. A
typical pooling method is the histogram of occurrences of the visual words from the
learned dictionary [3]. The occurrence is often based on the nearest cluster centre
(with K-means clustering) in the feature space of each local descriptor of an image.
It results in a feature vector which summarises the occurrence of visual patterns.

32

2.2 Texture analysis

VLAD encoding considers distances of local descriptors to the representative
visual words (cluster centres) instead of the simple occurrence used in BoF. For each
visual word, the distance to the cluster centre is accumulated in each dimension for
all the local descriptors in the image which are closest to this visual word.

As mentioned previously, FV and IFV cluster local descriptors using GMM. A
FV is then computed by assigning each local descriptor in an image to a visual word
in the learned dictionary, and by computing the gradients of the soft assignments
w.r.t. the mixture weights, means, and covariance matrices. In this way, the FV
does not only encode the occurrence of local descriptors like a BoF (probabilistic
occurrence related to the gradients w.r.t. the mixture weights) but also higher-order
statistics (gradients w.r.t the means and covariance matrices). The FV thus contains
significantly more information than the BoF and VLAD vectors and its dimension
is significantly larger. For comparison, with K visual words of dimension D (e.g.
D = 128 for SIFT), the BoF vector dimension is K, VLAD’s is DK and FV’s is 2DK.

Normalisation of the obtained vectors is often computed to improve the classifi-
cation or matching results. The vectors are generally normalised by the number of
local descriptors in the image to avoid the dependence on the sample size. Two other
normalisation methods were developed in the IFV [11], namely ℓ2 normalisation
and power normalisation. Despite the multi-scale analysis in the extraction of local
descriptors, FV still depends on the proportion of image-specific information (i.e.
background information) and consequently depends on the scale of the observed
scene. To remove this dependence, the vector is ℓ2 normalised. The power nor-
malisation refers to the signed square root applied to each dimension of the image
descriptor vectors (i.e. each element xi is transformed into sign(xi)

√
xi) to reduce the

sparsity of the representation. This is motivated by the poor measure of similarity of
sparse vectors with the dot-product used for classification (e.g. with SVM in [11],
see Section 2.2.3).

The described pooling methods are suited to texture analysis as they are orderless,
i.e. they do not carry layout or global shape information since the spatial position
of local descriptors is discarded, for instance by the histogram of occurrence. BoF,
SIFT and VLAD were ported to texture classification in [99], in which a significant
improvement was reported from classic hand-crafted methods.

Vocabulary learning methods have partly motivated the use of CNNs in texture
analysis, sharing the idea of extraction and pooling of learned descriptors. Note that
FV encoding has also been applied to the output of CNNs, as described in Section
2.2.4.

33

Literature review

2.2.3 Texture analysis problems

The described texture features can be extracted for every pixel or every interest
point and pooled into a global descriptor for a texture region or an entire image
depending on the task. Note that feature selection [12, 87] and dimensionality
reduction [78, 106, 8] (e.g. PCA) can be used to avoid redundancy, a curse of
dimensionality and overfitting the training data. This section introduces four major
texture analysis problems, namely texture classification, segmentation, synthesis and
shape from texture.

ClassifierTraining
images

Feature
extraction

Training
labels

Training

ClassifierTest
image

Feature
extraction

Testing

Class
prediction

Figure 2.10: Training and testing phases in a texture classification framework. Note
that the feature extraction is learned from the training data in optimised filters and
dictionary learning methods as represented by the dashed arrow.

Texture classification

In texture classification, a set of training images is used to train a model in a
supervised manner as shown in Figure 2.10. A trained model is then used to classify
unknown texture images. The feature extraction methods introduced in the previous
section build a N-dimensional feature vector (e.g. statistical/structural measures or
histogram) for a given image. Texture classification methods extract these texture
features for all the training samples. Samples from the same class are ideally
clustered in the feature space. A decision rule (classifier) is then learned to label an
unknown test image to a given class based on its projection into the feature space.
Several distance measures and classifiers have been used in texture classification.
Distance measures estimate the similarity of descriptors in the feature space (e.g.
Euclidean, Mahalanobis, Manhattan and chi-square distances). A distance measure
is typically used in a K-NN classifier which assigns a test image to the majority
voting of the K nearest training samples in the feature space.

A linear classifier makes a decision rule for a given image based on a linear
combination of its feature vector. A linear SVM is a binary classifier which constructs

34

2.2 Texture analysis

a hyperplane in the feature space to separate two classes represented by multiple
training samples. The hyperplane maximises the margin (calculated as vectors)
on both sides to the nearest samples. While linear classifiers have the advantage
of low complexity, the data is often not linearly separable in which case a non-
linear SVM is more appropriate. The non-linear SVM maps the feature space
into a higher-dimensional space in which the data is linearly separable. Several
kernel functions are used to map the feature space including polynomial and radial
basis function. Texture classification problems generally involve more than two
classes. A multi-class SVM is generally constructed by considering multiple binary
classification problems including one-against-all, one-against-one, and Directed
Acyclic Graph SVM (DAGSVM) methods [109]. Alternatively, SVMs can be
trained with gradient descent (introduced in Appendix A.2.3) [110]. Neural networks
such as MLP introduced in Appendix A can also be trained for classification with
backpropagation using feature vectors as inputs. Other classification methods used
in texture classification include naive Bayes [101, 111] and Adaptive Boosting
(AdaBoost) [38].

Most texture classification datasets evaluate the recognition of materials, includ-
ing kth-tips-2b [22, 112], Kylberg [31], CUReT [113], and UIUC [108]. These
datasets contain texture images with ground truth class labels. It is common prac-
tice to split a dataset into training (with ground truth) and testing (unknown) sets
to evaluate the performance of a classification algorithm. Note that on very large
image classification datasets like ImageNet [50], training, validation and test sets
are predefined. Several methods exist to evaluate and compare the performance of
classification algorithms, while avoiding to overfit a single test set. The dataset can
be randomly split into training and testing sets (e.g. 80% and 20% respectively) and
repeated multiple times to average the accuracy and report the standard deviation
on the test set. This approach, also referred to as Monte Carlo cross-validation,
does not ensure that each sample is used for testing. Other cross-validation methods
ensure that each sample is used once for testing, providing a powerful measurement
of performance. K-fold cross-validation is a non-exhaustive method in which the
dataset is partitioned into K folds of equal sizes (typically K = 10). Each fold is used
once for testing and the remaining folds for training. Leave-N-out cross-validation is
an exhaustive cross-validation method, commonly used with N = 1 (leave-one-out)
in which each sample is used once for testing and the rest for training. Leave-one-out
is thus a particular case of K-fold where K is equal to the number of samples.

The performance of a texture classification algorithm is typically measured by
the average accuracy and standard deviation over the various splits described above.
A confusion matrix can also provide meaningful information about the performance.
The confusion matrix of an N-class problem is an N ×N matrix which represents the

35

Literature review

true and false classification of each class. Other performance measures can be used
for datasets with unbalanced numbers of samples per class.

Texture segmentation

Texture segmentation aims at partitioning an image into regions of homogeneous
texture properties. It therefore requires the classification or clustering of every pixel
in the image. It can be supervised (providing training samples of the textures to
segment) [26, 114, 115] or unsupervised [21, 26, 57, 65, 68, 116, 117]. In both
cases, texture descriptors introduced in Section 2.2.2 are typically obtained for every
pixel or superpixel and either classified (supervised) or clustered (unsupervised) in
the feature space. Local spectral histograms from Gabor and other filters responses
are commonly used features in texture segmentation [116–118]. Model-based seg-
mentation such as MRF and GMRF are also well suited for this task [119, 120].
The segmentation of texture descriptors can be performed, among others by curve
evolution with level-set optimisation [114], region growing and merging [121] and
functional minimisation (Mumford-Shah functional) [116, 117]. Other basic meth-
ods to cluster texture descriptors in the feature space include K-means, mean-shift,
GMM, region splitting and watershed [38].

Texture segmentation benchmarks can be mosaics, i.e. artificially created from
segments of multiple texture images, or real images with multiple texture regions.
The Brodatz texture dataset is commonly used to create mosaics in the literature
[21, 65, 68, 78]. Note that using mosaics automatically provides precise ground truth.
The Prague texture segmentation benchmark [26] enables the testing and comparison
of algorithms on a range of supervised and unsupervised segmentation tasks with
various texture mosaics.

Commonly used performance metrics of segmentation algorithms can be grouped
into pixel-wise, region-based, consistency and clustering measures. Pixel-wise
measures are based on counts of wrongly interpreted pixels (e.g. classified as class
i but different ground truth class) and wrongly assigned pixels (e.g. ground truth
i but classified as another class). These metrics include the Omission (O) error
(a ratio of wrongly interpreted pixels), Commission (C) error (a ratio of wrongly
assigned pixels), weighted average Class Accuracy (CA), recall (CO, the average
correct assignment) and precision (CC, overall accuracy). Note that the ground truth
classes of pixels are compared to segmented results using the Munkres algorithm
in the unsupervised case. Region-based measures compare segmented and ground
truth regions Ri, i = 1, ...,M and R̄ j, j = 1, ...,N respectively, where M and N are the
number of segmented and of ground truth regions. These metrics include Correct-,
Over-, and Under Segmentation (CS, OS and US) as well as Missed-, and Noise Error
(ME and NE). A region Rm is considered CS if and only if Rm ∩ R̄n ≥ kR̄n, where k

36

2.2 Texture analysis

is a threshold parameter (e.g. 0.75). OS is a count of regions R̄n split into smaller
regions Rm (and vice versa for US). ME and NE are counts of regions R̄n and Rm

respectively that do not belong to CS, OS and US. Other metrics include Global- and
Local Consistency Error (GCE and LCE) and clustering measures (Mirkin metric,
Van Dongen metric and variation of information). A detailed description of these
performance measures is provided in [26].

Texture synthesis

Texture synthesis involves the generation of a texture image or region from a texture
sample. It is commonly used for image inpainting, computer graphics, and image
compression. Model-based methods are well suited for image synthesis by building
a parametric model which captures the statistical properties of a texture image and
allows it to generate visually similar images with identical properties. Typical models
used for texture synthesis include MRF [27] and fractals [67] introduced in Section
2.2.2. Filter banks and wavelets have also been used for texture synthesis, modelling
images by statistics on responses and wavelet coefficients [28]. Finally, recent deep
learning texture synthesis methods are introduced in the Section 2.2.4.

Shape from texture

Shape from texture, originating from [29], is used to reconstruct the shape of a
3D object from a 2D image. The distortion of a generally regular surface texture
is analysed to infer the orientation and shape of a surface. Effects of the visual
geometry on the 2D texture appearance include foreshortening, compression, scaling
and changes in area and density. Common analysis methods include measures of
gradients of texture appearances in the 2D plane and model-based (e.g. isotropy
texture model) methods [30].

2.2.4 Deep descriptor and deep learning in texture analysis

This section describes recent works on CNNs and deep learning in texture analysis.
Neural networks, deep learning and CNNs are introduced in Appendix A to which
the reader may refer if not familiar with the concepts used here.

In [122], the authors argue that the dimensionality of texture datasets is too large
to classify them with deep neural networks without explicitly extracting hand-crafted
features beforehand, as opposed to digits or object datasets which lie on a lower-
dimensional lattice. They affirm that neural networks must therefore be redesigned
to learn texture features similar to GLCM and Haralick features. Recent work on
CNNs applied to texture analysis, however, illustrates that they cope very well with
texture datasets [8, 25, 36, 123]. It was shown that convolutional architectures are,

37

Literature review

subject to minor modifications, well designed for the analysis of texture and that
they largely improve the state of the art in this field.

Basic CNN architectures have been applied to texture recognition such as [124],
in which a simple four layer network was used in the early stages of deep learning to
classify simple texture images. More recent CNNs were applied to forest species
images with high texture content [125]. Transfer learning between texture datasets
was studied in [126] with classic CNN architectures and applied to the forest species
classification, similar to a texture recognition problem. While more complex and
more accurate than [124], these approaches still do not take the characteristics
of texture images (i.e. statistical properties, repeated patterns and irrelevance of
the overall shape analysis) into consideration as they are simple applications of a
standard CNN architecture to a texture dataset. A Recurrent Neural Network (RNN)
approach (see Appendix A.2.5) was used for texture classification in [127] and
texture segmentation in [115]. This approach, however, does not benefit from the
weight sharing and local connectivity of CNNs to efficiently detect texture patterns
and requires data augmentation to learn simple invariances. A wavelet scattering
convolution network (ScatNet) was developed in [128] using hand-crafted wavelets
as convolution filters and extended to affine invariance in [129]. The PCA Network
(PCANet) [130] inspired by ScatNet uses a cascade of PCA to learn filter banks
in a CNN-like architecture with binary quantisation used for non-linearity. Block-
wise histograms of the quantised responses are pooled and classified using SVM or
softmax.

Following these early applications of CNN to texture images, several methods
have been developed with a general idea of discarding the overall shape analysis of
CNNs by an orderless pooling of feature maps with excellent results as described in
the following paragraphs.

Deep Convolutional-network Activation Features (DeCAF) [131], which extract
the penultimate fully-connected layer of AlexNet for SVM classification, were ported
from object recognition to texture classification in [99]. Texture descriptors were
densely extracted from a convolutional network with the Fisher Vector CNN (FV-
CNN) in [8]. Inspired by DeCAF, a CNN (VGG-M or VGG-VD) pre-trained on
ImageNet [50] is used as a feature extractor. The output of the last convolution
layer is used in a FV encoding classified with one-vs-rest SVM. The overall shape
information is discarded in this analysis by replacing the fully-connected layers by
the FV orderless pooling and SVM classification. As the network is only being
used for feature extraction, the convolutional network is not finetuned and does not
learn from the texture dataset. However, due to the domain transferability of filters
pre-trained on ImageNet, they achieve impressive results on both texture recognition
and texture recognition in clutter datasets. The FV-CNN is also combined with

38

2.2 Texture analysis

shape analysis by extracting the outputs of the penultimate fully-connected layer
(called FC-CNN, similar to DeCAF), demonstrating the complementarity of the
shape and texture analysis. Finally, the FV-CNN can efficiently be used in a region-
based approach as it requires computing the convolution output once and pooling
the desired regions with FV encoding. In [123], the FV-CNN is improved with a
dimensionality reduction to reduce the redundancy and increase the discriminative
power of the features extracted from the CNN prior to SVM classification. This
approach involves extracting the output of a pre-trained CNN, FV encoding, training
an ensemble of fully connected neural networks for dimensionality reduction and
training an SVM for classification.

A Texture CNN (T-CNN) was developed in [25] which includes an energy layer
to extract the dense response to intermediate features in the network, improving the
results on texture classification tasks while reducing the complexity compared to
classic CNNs. The complementarity of texture and shape analysis is shown with an
end-to-end CNN training scheme. A framework splitting the images and using the
T-CNN with a voting score approach was developed in [35, 51] for the classification
of biomedical texture images. A fully convolutional approach was developed for the
segmentation of texture regions in [53]. These three methods [25, 51, 53] will be
presented in the thesis as part of the main contributions.

A bilinear CNN model was developed in [132] for fine-grained recognition (i.e.
visually and semantically very similar classes), combining two CNN streams to
extract and classify local pairwise features in a neural network framework. One
stream made of convolution and pooling layers works as an object recognition
network (i.e. the “what”), while the other stream analyses the spatial location of
the object in the image (i.e. the “where”). Their output feature maps are multiplied
using outer product and densely pooled across the image by summing the extracted
features. Robust image descriptors are obtained which capture translational invariant
local feature interactions. The developed architecture can also generalise several
classic orderless pooling descriptors including VLAD and FV in a deep learning
framework. This method is successfully applied to texture classification in [36] and
obtains slightly better results than the FV-CNN while being trained end-to-end.

A Deep Texture Encoding Network (Deep-TEN) was introduced in [133] by
integrating an encoding layer on top of convolution layers, also generalising orderless
pooling methods such as VLAD and FV in a CNN architecture trained end-to-end.

Rotation invariance was embedded in a shallow CNN in [134] by tying the
weights of multiple rotated versions of filters for texture classification. While
rotation invariance of simple texture descriptors can be learned and pooled orderless
with average pooling, the benefit over hand-crafted rotation invariant descriptors is
limited by the use of a single layer.

39

Literature review

In [93], multiple deep texture descriptors were evaluated including FV-CNN,
ScatNet and PCANet, and compared to several variants of LBP descriptors. As
expected, the deep convolutional descriptors obtain the best results, at the cost of a
much higher computational complexity as compared to LBP variants.

Finally, deep networks have also been applied to texture synthesis. A pre-trained
CNN was used in [135] to compute statistics (correlation between feature maps) at
multiple layers using a source image as input. A new texture image is then generated
by optimising an initial random image via gradient descent (see Appendix A.2.3) to
obtain similar statistics at multiple depths. A spatial GAN (see Appendix A.3.6) was
used in [37] to synthesise texture images of arbitrary sizes by replacing the random
noise vector generally used as input to the generator by a spatial tensor.

2.3 Dynamic texture analysis

DT is an extension of texture in the temporal domain. Various spatial texture de-
scriptors introduced in the previous section have therefore been extended to the
spatiotemporal domain to capture temporal variations such as motion and deforma-
tion. The major DT analysis problems include recognition [14, 45–47, 136–147],
segmentation [40], synthesis and compression [45]. DT recognition datasets com-
monly used in the literature include UCLA [45], DynTex [24] and Dyntex++ [39].
More details on these datasets are provided in Section 4.3.1.

2.3.1 Classic dynamic texture analysis

Difficulties in DT analysis arise from the large range of phenomena resulting from
natural scenes and recording methods including scale, illumination and rotation
variation as well as static and moving cameras. Most classic DT analysis approaches
that attempt to overcome all or some of these difficulties can be classified into five
categories, namely statistical, local descriptors, model-based, spatiotemporal filtering
and motion-based.

Statistical and local descriptor approaches extend standard spatial texture meth-
ods such as GLCM and LBP to the spatiotemporal analysis of DTs. The LBP was
extended to DTs in [148], considering a spatiotemporal neighbourhood. This method
was improved and its computational cost reduced in [14] by extracting histograms
on Three Orthogonal Planes (LBP-TOP): xy which is the classic spatial texture
LBP as well as xt and yt which consider temporal variations of the pixel intensities.
Several variants of the LBP-TOP have also been proposed including the extension of
LPQ to Three Orthogonal Planes (LPQ-TOP) [138]. The LBP-TOP was combined
to a Weber Local Descriptor on Three Orthogonal Planes (WLD-TOP) in [40] to

40

2.3 Dynamic texture analysis

analyse local spatiotemporal neighbourhood and combine it to motion features for
DT segmentation. More recently, a noise resistance feature was incorporated to
the LBP-TOP with a Weber’s law threshold in the creation of the patterns [149],
achieving high accuracy on the Dyntex++ and UCLA datasets. The main drawbacks
of the LBP-TOP approaches include the limited amount of information that it is able
to extract with the hand-crafted patterns and the poor robustness to camera motion.
The latter is addressed by computing the discrete Fourier transform of LBP-TOP
histograms in [150] resulting in a rotation invariant descriptor robust to changes in
viewpoint.

Motion-based methods exploit the statistical properties of the extracted motion
between consecutive frames of the DT sequences. Several motion extraction methods
have been used for the analysis of DT including complete flow [40] and more
commonly normal flow [46, 140, 141]. Statistical features are extracted from the
motion to describe its spatial distribution such as GLCM [151, 46], Fourier spectrum
[46], difference statistics [46], histograms [40] and other statistics calculated on the
motion field itself [140] and on its derivatives [141].

Model based methods aim to estimate the parameters of a Linear Dynamical
System (LDS) using a system identification theory in order to capture the spatial
appearance and dynamics of a scene. Originally designed for synthesis, the estimated
parameters can be used for a classification task [45]. Positive results were obtained in
the learning and synthesis of temporal stationary sequences such as waves and clouds
in [45]. The model-based approach, however, raises several difficulties such as the
distance between models lying in a non-linear space of LDSs with a complicated
manifold. It also offers a poor invariance to rotation, scale, and illumination. In
[143] impulse responses of state variables learned during the system identification
were used to capture the fundamental dynamic properties of DTs. This approach was
developed to deal with the problems of non-linear space, segmentation and presence
of multiple DTs in a sequence. The view-invariance problem was tackled in [142]
using a Bag of dynamical Systems (BoS) similar to a BoF with LDSs as feature
descriptors. In [136], a new distance between LDSs was defined in the non-linear
space based on the notion of aligning LDSs. It enables the computation of the mean
of a set of LDSs for an efficient classification, particularly adapted to large-scale
problems.

Filtering and transform approaches for texture analysis were also extended to
the spatiotemporal domain for the analysis of DTs [47, 144–147]. Spatiotemporal
oriented filters (3D Gaussian third derivatives) were implemented in [47] to extract
oriented energy features which describe intrinsic properties of the DTs. A spatiotem-
poral directional number transitional graph was proposed in [152]. Graph-based
descriptors are computed from the response to a set of spatiotemporal oriented local

41

Literature review

filters (2D and 3D Kirsch compass masks) to represent the signature of DTs. In [144],
a 3D DT-CWT used the spatial orientation and motion selectiveness of wavelets to
combine spatial and dynamic analyses. Other filtering methods have been developed
including Wavelet Domain Multifractal Analysis (WDMA) [146], Spatiotemporal
Oriented Energy (SOE) [147], and spatiotemporal Gabor filters [145].

Finally, many methods combine two or more approaches for their complementar-
ity in the spatiotemporal analysis [39, 40, 139, 140]. In [39], the LBP was combined
with a pyramid of HOG and an LDS model approach to jointly analyse the spatial
texture, the spatial layout and the dynamics of DT sequences. More recently, an en-
semble SVM was used in [139] to combine static features such as LBP and responses
to Gabor filter banks with temporal model-based features.

2.3.2 Deep learning in dynamic texture analysis

Similarly to the analysis of static textures, several attempts have been made to apply
deep features and deep learning methods to videos and/or DT analysis.

End-to-end convolutional networks with 3D filters were developed in [153],
capturing spatial and temporal information for human action recognition. In [154],
the 3D convolution and pooling were generalised to cope with large video datasets.
Excellent results were obtained on action, scene and object recognition. In [155],
several CNN architectures were evaluated on a video classification task including
classic single-frame CNN, two-stream single frame networks with various fusion
approaches and 3D convolution filters. However, their attempt to combine motion
analysis to the classic spatial convolutional network by using stacks of images as
input resulted in a surprisingly modest improvement. Although a few sequences
benefit from the motion analysis, the latter increases the sensitivity to camera motion.

A two-stream CNN method was developed in [156] including spatial and tempo-
ral analysis for action recognition. In this architecture, a spatial network is trained to
recognise still video frames while a motion network is trained on dense optical flow.
The two networks are trained separately and their softmax scores are combined by
late fusion. This work demonstrated the complementarity of spatial and temporal
analysis with deep learning in video classification. A long-term recurrent CNN was
introduced in [157] to learn compositional representations in space and time for video
analysis. This recurrent approach is able to learn complex temporal information from
sequential data on account of a temporal recursion. While this method is appropriate
for activity recognition, image captioning, and video description, it is not designed
for DT analysis in which one is more interested in statistics of the distribution of
pixel intensities (in time and space) than in the sequential detection of particular
events.

42

2.3 Dynamic texture analysis

The semantic selectiveness of spatial convolution filters was used in [158] to
discard the background in crowd scenes followed by a combination of spatial and
temporal convolutions in a CNN architecture for crowd video understanding. In
[159], the same authors used a FCN (see Appendix A.4.5) on spatial and temporal
slices and on the motion extracted from the sequences, with various fusion strate-
gies in order to create a per-pixel collectiveness map from crowd videos. These
approaches share some similarities with the method proposed in the thesis; however,
they were designed for the analysis of crowded scenes with assumptions (e.g. pres-
ence of background) and methods (e.g. FCN for collectiveness map) which do not
apply to the DT recognition tasks considered in Chapter 4.

While the deep learning methods for video analysis introduced so far were mainly
developed for human action recognition, several recent neural network approaches
have focused on classifying DTs. Temporal gradients and Group Of Pictures (GOP)
were used in [160] as inputs to CNNs to classify DTs. In order to use the pre-trained
AlexNet, the authors dilate and warp the 50×50 images to the AlexNet input size
227×227. This pre-processing step results in a waste of computation and a network
architecture which is not adapted to the input images. Similar to the spatial approach
in [8], in which CNNs are used to extract features from static texture images, a
CNN extracts features from the DT database in [41]. A pre-trained CNN is used
as a feature extractor to obtain mid-level features from each frame of the sequence
and then compute and classify the first and second-order statistics. A variant of
stacked auto-encoder was trained in [161] to learn video dynamics which can be
more complex than those based on LDS estimation. The deep encoded dynamics can
be used similarly to classic model-based methods to synthesise and recognise DTs
and segment motions. The PCANet was extended to DT in [162] using filters learned
via PCA on three orthogonal planes. DT features are pooled via histogram count and
classified with linear SVM. A deep dual descriptor was developed in [163] which
uses a pre-trained CNN (VGG-VD) to first extract key frames from the sequence. A
visual dictionary of static features is then learned from key frames, while a dictionary
of dynamic features is learned from segments of adjacent frames in the temporal
neighbourhood of the key frames.

Finally, the T-CNN [25] was ported to DT classification in [52] by training
networks end-to-end on three orthogonal planes and using a late fusion approach at
test time as described in Chapter 4.

43

Literature review

44

Chapter 3

Convolutional networks for texture
classification

3.1 Introduction

This chapter is dedicated to the classification of texture images with deep learning.
A new CNN architecture is introduced, which is trained end-to-end to learn texture
descriptors and their classification. Intermediate convolution layers are pooled
similarly to an energy response within the CNN, allowing forward and backward
propagation to learn and classify robust texture features. The learned features are
visualised and analysed together with their domain transferability. Networks from
scratch as well as pre-trained are evaluated on both texture and object datasets.

The experiments demonstrate that simple networks with reduced number of
neurons and weights are able to obtain competitive results on texture recognition
datasets. One of the major trends in the community of deep neural networks is
to develop more and more complex networks, using the increasing power and
memory of computers and GPUs to train very deep and computationally expensive
networks. The interest and use of CNNs, however, is not limited to powerful desktop
computers and designing efficient networks while restraining their size is important
for mobile and embedded computing as mentioned in [164]. In consequence, the
work presented in this chapter is not focused on competing with the state of the art in
texture recognition but rather on designing simple architectures specifically designed
for textures as well as gaining insight on how CNNs learn texture feature.

To summarise, the main contributions of this chapter can be described as follows:
(1) A simple CNN is developed with reduced complexity to extract, learn and classify
texture features;
(2) the domain transferability of pretrained features is evaluated and compared with
randomly initialised parameters;
(3) various network depths are tested when applied to texture and object classification

45

Convolutional networks for texture classification

datasets;
(4) texture and shape analyses are combined within a new network architecture;
(5) an application of the developed texture specific CNN is proposed on the classifi-
cation of biomedical tissue images in a framework adapted to large images.

The rest of this chapter is organised as follows: The architecture of the proposed
texture network and its combination with a classic CNN is introduced in Section 3.2.
Section 3.3 describes the texture classification datasets and experimental protocols.
The results on commonly used texture datasets are detailed in Section 3.4. Finally,
an application to tissue images is presented in Section 3.5.

3.2 Material and Methods

This section describes the developed architecture named Texture CNN (T-CNN), and
its combination with a classic CNN approach.

3.2.1 Texture CNN

Convolutional networks naturally densely extract features by the weight sharing and
local connectivity of the convolution layers (see Appendix A.4.3). These layers can
be compared to filter bank methods widely used in texture analysis (see Section
2.2.2). While these filters are pre-designed in classic filter bank methods, the power
of CNNs is to learn meaningful features through gradient descent. A simple network
architecture is developed based on this observation. As explained in [8], the global
spatial information is of minor importance in texture analysis as opposed to the
necessity of analysing the global shape for an object recognition task1. Therefore,
dense texture descriptors are pooled from the output of a convolution layer. The
proposed network is derived from AlexNet [15], while the same approach is briefly
evaluated with the deeper GoogleNet architecture [164] in Section 3.4.7. A new
energy layer is introduced in the following description, and implemented in multiple
configurations with varying numbers of convolution layers. Each feature map of the
last convolution layer is simply pooled by calculating the average of its activated
output. The forward and backward propagation of the energy layer are similar to an
average pooling layer over the entire feature map, i.e. with a kernel size equal to the
size of the feature map.
The forward computation of the energy layer is computed as:

e j =
1

WH

W

∑
x1=1

H

∑
x2=1

f j(x1,x2) (3.1)

1Note that in this chapter, “shape” refers to the global shape of objects rather than low-level shapes
which are part of an object.

46

3.2 Material and Methods

Fully connected
384x1

Pooling Convolution Energy

C1 96x55x55

P1 96x27x27

C2 256x27x27 FC1
E3

FC2
FC3

Convolution

Input 3x227x227

4,096x1

4,096x1

P2 256x13x13

C3 384x13x13

Pooling Convolution

Figure 3.1: A T-CNN architecture with three convolution layers (T-CNN3).

where eee ∈ RN is the vector output, f j(x1,x2) is the jth input feature map at spatial
location (x1,x2). Lowerscript j enumerates the N input feature maps and W and H
are the number of columns and rows of the input feature maps respectively. This
results in one single response per feature map, similar to an energy response to a filter
bank, whereas learned features of varying complexity are used instead of fixed filters.
Note that it is referred to as energy in reference to the filter bank approach even
though an averaging of the responses is performed. The gradients are backpropagated
through the energy layer by computing:

∂e j

∂ f j(x1,x2)
=

1
WH

(3.2)

The architecture of the T-CNN3 includes three convolution layers C1, C2 and C3
as illustrated in Figure 3.1. The vector output of the energy layer (E3) is simply
connected to a fully-connected layer FC1, followed by two other fully-connected
layers FC2 and FC3. Similar to other networks, FC3 is of size equal to the number of
classes and the probabilities of the classes are calculated with a softmax layer. Linear
rectification, normalisation and dropout are used in the same way as in AlexNet. Five
architectures are experimented, T-CNN1 to T-CNN5, with one to five convolution
layers respectively. The energy is pooled from the output of the last convolution
layer. The support of the filter responses pooled by the energy layer is equivalent to
the receptive field which increases throughout the network, from 11×11 in C1 to
163×163 in C5. However, the “effective” receptive field may be considered smaller
since pixels in the centre of the receptive field have more influence in a neuron’s
activation than those on the side.

The complexity of the proposed T-CNN approach is largely reduced when com-
pared to a classic AlexNet or VGG [18] network. Convolution layers are removed
from the T-CNN architectures (except T-CNN5 which has the same number of con-
volution layers as the original AlexNet) and the number of parameters between the
energy layer and the fully-connected layer FC1 is largely reduced as compared to
the classic full connection of the last convolution layer. The number of trainable

47

Convolutional networks for texture classification

parameters of the different networks used in this chapter are indicated for comparison
in Table 3.1. These numbers account for the weights and biases of the networks
applied to ImageNet (1,000 classes).

3.2.2 Details of the network

The networks are implemented with Caffe2 [165] and derived from AlexNet. The
number of feature maps, kernel sizes, etc. are kept unchanged from AlexNet for
comparison. However, it is possible to reduce the size of the fully-connected layers
of the T-CNN by a factor greater than two in average without loss of accuracy due to
the smaller number of outputs of the energy layer. In most cases, the base learning
rate is 0.001 for networks trained from scratch and 0.0001 for finetuning while the
weight decay is 0.0005. Yet, this is not a fixed rule and even though it is relatively
stable, the hyperparameters must be adjusted to the experiments (number of training
samples, depth, finetuning, or from scratch). The results are also robust to small
variations of the batch size yet it is also adapted to the training sizes. A batch size of
32 is used for the smallest training sets and up to 256 for ImageNet. Finally, input
images larger than 227×227 are cropped to this size for the sake of comparison.

3.3 Datasets and experimental setups

The experiments are conducted on a total of ten datasets; seven are texture classifica-
tion datasets, the other three are object recognition datasets.

The ImageNet 2012 dataset [50] contains 1,000 classes. The training set con-
tains 1,281,167 images and the validation set used for testing 50,000 images (50
images/class) of size 256x256.
Three subsets of ImageNet are created in order to evaluate the domain transferability
of features learned on texture and object image datasets to the classification of texture
images. For each subset, 28 classes are selected from ImageNet and the training and
testing splits of the full set are maintained. Therefore, each subset contains 1,400
test images and approximately 36,000 training images (35,513, 35,064, 36,318 for
ImageNet-T, -S1 and -S2 respectively). The full list of classes selected for each
subset is detailed in [25].

ImageNet-T is a subset which retains texture classes such as “stone wall”, “tile
roof” and “velvet”. Based on visual examination, 28 classes with high texture content
and with a single texture per image are selected.

2An implementation to train (from scratch and finetune) and test the T-CNN3 on kth-tips-2b is
provided here: https://github.com/v-andrearczyk/caffe-TCNN

48

https://github.com/v-andrearczyk/caffe-TCNN

3.3 Datasets and experimental setups

ImageNet-S1 is another subset with chosen object-like classes such as “Chi-
huahua”, “ambulance” and “hammer”. Based on visual examination, classes of
object images with remarkable global shape are selected.

In the last subset ImageNet-S2, 28 classes are chosen randomly from the 1,000
classes.

kth-tips-2b [22, 112] contains 11 classes and 432 texture images per class. Each
class is made of four samples, i.e. 108 images per sample. Each sample is used
once for training while the remaining three samples are used for testing. The images
are resized to 227×227 with nearest neighbour interpolation as for the resizing of
the following datasets. The experiment is repeated ten times and the accuracy is
averaged over the four splits and the ten repetitions. The standard deviation is also
reported as the average over the four splits of the standard deviation of the accuracy
over the ten repetitions.

Kylberg [31] is a texture database containing 28 classes of 160 images each of
size 576×576. The validation setup is reproduced from [166]. One orientation out
of 12 available is randomly chosen for each image. The images are split into four
non-overlapping subimages which results in 17,920 images of size 288×288 which
are resized to 256×256. A ten-fold cross-validation is used and the average accuracy
is reported. The cross-validation folds are created once and kept fixed throughout
the experiments for a fair comparison of the methods.

CUReT [113] is a texture database with 61 classes. The setup is reproduced from
[99] in which 92 images are used per class, 46 for training, the other 46 for testing.
The 200×200 images are resized to 227×227. The experiment is repeated 20 times
and the average accuracy and standard deviation are reported.

DTD [99] consists of 47 classes which contain 120 images each obtained “in
the wild”. The images are of various sizes and even though using multiple input
sizes is possible with the developed T-CNN, the images are resized to 227×227 for
comparison with AlexNet which requires fixed input images. The dataset includes
10 available annotated splits with 40 training images, 40 validation images and 40
testing images for each class. The average accuracy and the standard deviation are
reported over ten splits.

The Macroscopic [167] and Microscopic forest species databases [168] are used
in Section 3.4.5 to test the developed CNNs on larger texture images (respectively
3,264× 2,448 and 1,024× 768). The Macroscopic dataset consists of 41 classes
with over 50 images per class. Half of the set is used for training, the other half for
testing. The Microscopic dataset contains 120 classes of 20 images each. In each
class, 70% of the images are used for training, the rest for testing. The images of
both datasets are resized to 640×640. These experimental setups are reproduced

49

Convolutional networks for texture classification

from [125] except that the results are averaged over ten trials instead of three, for
more stable results.

Table 3.1: Classification accuracy (%) of various networks trained from scratch
and finetuned (pre-trained on ImageNet). The number of trainable parameters (in
millions) is indicated in brackets for 1,000 classes. The state of the art results are as
reported by the authors in the original papers.

Kylberg CUReT DTD kth-tips-2b ImNet-T ImNet-S1 ImNet-S2 ImNet
From scratch

T-CNN1 (20.8) 89.5 97.0 ±1.0 20.6 ±1.4 45.7 ±0.5 42.7 34.9 42.1 13.2
T-CNN2 (22.1) 99.2 98.2 ±0.6 24.6 ±1.0 47.3 ±0.8 62.9 59.6 70.2 39.7
T-CNN3 (23.4) 99.2 98.1 ±1.0 27.8 ±1.2 48.7 ±0.7 71.1 69.4 78.6 51.2
T-CNN4 (24.7) 98.8 97.8 ±0.9 25.4 ±1.3 47.2 ±0.5 71.1 69.4 76.9 28.6
T-CNN5 (25.1) 98.1 97.1 ±1.2 19.1 ±1.8 45.9 ±1.3 65.8 54.7 72.1 24.6
AlexNet (60.9) 98.9 98.7 ±0.6 22.7 ±1.3 47.6 ±0.9 66.3 65.7 73.1 57.1

Finetuned
T-CNN1 (20.8) 96.7 99.0 ±0.3 33.2 ±1.1 61.4 ±0.5 51.2 46.2 53.5 -
T-CNN3 (23.4) 99.4 99.5 ±0.4 55.8 ±0.8 73.2 ±0.6 81.2 82.1 87.8 -
AlexNet (60.9) 99.4 99.4 ±0.4 56.3 ±1 71.5 ±1.2 83.2 85.4 90.8 -
state of the art 99.7 [166] 99.8 ±0.1[99] 75.5 ±1.1[123] 83.3 ±1.6[123] - - - -

3.4 Results and discussion

3.4.1 Networks from scratch and pre-trained

The results of the various T-CNN architectures (i.e. one to five convolution layers)
trained from scratch and finetuned are reported in Table 3.1. The developed T-CNN3
outperforms AlexNet on most texture datasets: Kylberg, DTD, kth-tips-2b and
ImageNet-T from scratch and Kylberg, CUReT, and kth-tips-2b in the finetuned
experiments; while containing nearly three times fewer trainable parameters. Trained
from scratch, T-CNN3 also performs well on the object-like and random subsets of
ImageNet, i.e. ImageNet-S1 and ImageNet-S2. The T-CNN3 with simpler features
and fewer parameters is also faster and easier to train on the smaller sub-datasets than
AlexNet, which may explain why T-CNN3 outperforms AlexNet on these datasets
from scratch. When using pre-trained networks, however, the original AlexNet
outperforms the T-CNN architectures on non-texture images (i.e. ImageNet-S1 and
ImageNet-S2), confirming intuition since it is designed for object recognition and
can learn more complex and larger features from the large training set than the
T-CNNs.

Note that the T-CNN does not compete with the state of the art as seen in Table 3.1
because the latter use much more complex and deeper architectures. For this reason,
the comparison to AlexNet is more meaningful.

50

3.4 Results and discussion

Table 3.2: Accuracy (%) of various network depths with average and maximum
pooling of the energy layer.

ImageNet-T ImageNet-S1
method average max average max
T-CNN1 42.7 41.3 34.9 24.1
T-CNN3 71.1 71.0 69.4 70.6
T-CNN5 65.8 67.4 54.7 67.6

3.4.2 Networks depth analysis

As reported in Table 3.1, the best T-CNN architecture is with three convolution
layers (T-CNN3), while T-CNN4 and T-CNN2 are close behind. The energy layer
measures the response to a set of patterns which are the results of the combination of
multiple simple filters. Generally, the more convolution layers are used, the more
complex the features sought in the last convolution layer are. In [49], the authors
demonstrate that the concept of texture emerges at the first and second convolution
layers, whereas high-level concepts such as objects and parts emerge in the deepest
layers. This idea is confirmed in these experiments, as using five layers degrades
the T-CNN performance since the fifth layer detects complex object-like features.
Such large and complex features, unlike simpler local texture features, are likely
to be sparsely detected in the input image, often detecting a single object in the
image. Averaging the response to such features over the entire feature map seems
inappropriate as it results in a massive loss of information. Intuitively, a maximum
pooling of these deep features could achieve better results than an average pooling,
especially in an object recognition task. To evaluate this idea, a maximum pooling
layer is experimented instead of the average energy layer and is computed as follows:

e j = max(f j(x1,x2)) (3.3)

where x1 and x2 span the rows and columns of the input feature map f j. This
maximum pooling measures whether a certain feature is detected in the input image,
disregarding its location and number of occurrences. The results in Table 3.2 confirm
this idea, as the shallow T-CNNs are more accurate with an average energy layer
while deeper ones are more accurate with a maximum pooling.

On the other extreme, features sought in the first layer are too simple (mainly
edges and colours) to extract meaningful and discriminative information from the
images. Firstly, the T-CNN1 obtains better results on texture datasets (ImageNet-T)
and on the random selection of classes (ImageNet-S2) than on the object-like set
(ImageNet-S1). The basic texture features extracted in the first convolution layer are
not able to describe the complex object shapes which exhibit the most discriminative

51

Convolutional networks for texture classification

Table 3.3: Classification results (accuracy %) on the kth-tips-2b dataset using
networks pre-trained on different databases.

ImageNet ImageNet-T ImageNet-S1 ImageNet-S2
T-CNN1 61.4 ±0.6 54.3 ±0.6 52.9 ±0.5 53.1 ±0.3

T-CNN3 73.2 ±0.6 61.8 ±1.0 56.3 ±0.5 59.0 ±0.5

AlexNet 71.5 ±1.2 56.9 ±0.4 55.5 ±0.7 58.2 ±0.6

information. Secondly, even in texture datasets, the accuracy of the T-CNN1 is
significantly lower than T-CNN3 as these simpler and fewer features (fewer feature
maps) cannot represent the more complex patterns present in the texture images. As
shown in Table 3.1, T-CNN3 performs significantly better than T-CNN1 both from
scratch and finetuned.

Note that this depth analysis does not generalise to all network architectures and
datasets as a deeper approach (e.g. VGG-VD), with a large number of parameters,
can implement complex functions and has obtained excellent results in texture
classification with different texture descriptors (e.g. FV-CNN [8]). The relation
between the depth of a network and the complexity and spatial support of the features
varies between architectures. In deeper networks such as GoogleNet or VGG-VD,
the receptive field and complexity of features increase slower throughout the network
than in AlexNet. Thus, as shown in Section 3.4.7, the T-CNN approach can be
successfully applied to deeper architectures.

3.4.3 Domain transferability

Domain transferability is a key concept of deep learning which enables obtaining
high accuracy on many tasks with relatively little training data. As it is not possible
to obtain labelled datasets like ImageNet for all recognition tasks, in particular for
biomedical images, CNNs are often pre-trained on this large dataset. In this scenario,
ImageNet is referred to as the source and the source task is object recognition. The
pre-trained parameters are then finetuned on another dataset with a target task (in
this case texture recognition) which can be close or far from the source task. The
features learned on ImageNet are transferred to the target task and the weights of the
last fully-connected layer are finetuned to remodel the combination of the detected
features. Weights of previous layers are generally finetuned at a lower speed or kept
unchanged. It is important to distinguish between the affine invariances required
for general computer vision tasks (e.g. ImageNet) and some biomedical and texture
datasets which only require invariances to rigid motions. For instance, the CNNs
trained on ImageNet learned invariance to scale which may have a negative impact on
datasets such as CUReT, Kylberg, forest species datasets and tissue images (Section
3.5) with fixed viewpoints and where scale can be a discriminative property. Yet,

52

3.4 Results and discussion

the networks largely benefit from the pre-training. A possible explanation for this
observation is proposed in the following text. The invariance to scale can be learned
independently from the recognition of patterns at different scales; i.e. two neurons
respond to the same pattern at different scales and are combined in a deeper layer so
that one deeper neuron responds to both scales. This is a (simplified) hierarchical
property of CNNs in which deep representations are obtained from a composition of
simpler and shallower ones. The weights can therefore be easily remodelled through
finetuning, given sufficient training data, to drop the unnecessary invariances and
learn important discriminations from the target dataset.

The accuracy of several networks pre-trained on multiple datasets and finetuned
on a texture dataset are reported in Table 3.3. As expected, a network pre-trained on
a texture dataset (ImageNet-T) achieves better results on another texture dataset than
the same network pre-trained on a non-texture dataset (ImageNet-S1 and ImageNet-
S2). This is explained as the tasks of object recognition and texture recognition are
relatively distant. Yet, the amount of pre-training data predominantly influences
the accuracy of the finetuned network in the target task. Indeed, all the networks
pre-trained on the entire ImageNet significantly outperform the other ones. Note that
the CNNs trained on an object detection task such as ImageNet sometimes learn to
recognise parts on the image that one would not expect such as the grass or trees
in the background which are highly textured. When such background is redundant
within classes, the networks can learn this discriminant information even though it
is not the salient object that is primarily sought. It shows that the network is able
to learn texture-like patterns from texture regions (e.g. cheetah and background
grass) and these features transfer particularly well to texture recognition tasks. These
observations confirm that domain transferability greatly helps the training on texture
datasets and suggest that a very large labelled texture dataset could bring a significant
contribution to CNNs applied to texture analysis.

3.4.4 Visualisation

Visualising the features learned by T-CNNs from scratch and finetuned can provide
an insight into the learning process as explained in Appendix A.4.7. The activation
maximisation method via gradient ascent [169] is used in this section for visualisation.
Examples of image patterns that activate the neurons in the third convolution layer
(C3) are shown in Figure 3.2 for T-CNN3 trained on a texture dataset both from
scratch and pre-trained on ImageNet. Similar examples for the last fully-connected
layer (FC3) are depicted in Figure 3.3. The patterns which activate the neurons of the
intermediate layer (C3) are more complex in finetuned networks than those trained
from scratch. Note that in the finetuning approach, most of the learning is carried
by the last fully-connected layer while the weights in intermediate layers vary only

53

Convolutional networks for texture classification

(a) from scratch (b) finetuned

Figure 3.2: Examples of activation maximisation of neurons in the third convolution
layer. The T-CNN3 networks are trained on kth-tips-2b (a) from scratch and (b)
finetuned (pre-trained on ImageNet). Figures obtained with the DeepVis toolbox
[170].

(a) from scratch (b) finetuned

Figure 3.3: Examples of activation maximisation of neurons in the last fully-
connected layer (FC3). The T-CNN3 networks are trained on kth-tips-2b (a) from
scratch and (b) finetuned (pre-trained on ImageNet). Figures obtained with the
DeepVis toolbox [170].

slightly from the pre-trained weights as the learning is controlled by learning rates.
Therefore the features in Figure 3.2b are similar to the pre-trained ones before

finetuning which explains their complexity. The complexity here refers to the shape
of the patterns in the input image and their level of abstraction. For instance, the
neurons in the third convolution layer of the finetuned network respond to complex
patterns such as a head or an object as shown in Figure 3.2b. The features learned
from scratch are simpler texture patterns. However, the features that activate the
neurons of the last fully-connected layer (Figure 3.3) are of similar low complexity
for both the networks from scratch and finetuned. These neurons mainly detect
simple repeated patterns, even though the last neurons respond to patterns which are
the combination of features in previous layers. Although the complexity generally

54

3.4 Results and discussion

increases with the depth, it is not the case here since the orderless pooling strategy
of the energy layer discards the global shape information to focus on the repetition
of simple texture patterns.

3.4.5 Results on larger images

The previous experiments were conducted on classic texture datasets with medium
size images which fit most CNN input dimensions (AlexNet, VGG, GoogleNet, etc.).
In this section, the developed method is evaluated on larger texture images from the
forest species databases. The T-CNN approach, due to the average pooling strategy,
enables using the same model architecture with various input sizes and transferring
features between datasets of varying image sizes3. A fully convolutional approach
[6] is not necessary here since the energy layer pools a single value per feature map
regardless the input size. The weights of the T-CNN pre-trained on ImageNet can
therefore be transferred and finetuned on the forest species images of size 640×640.
The results obtained with T-CNN3 are compared to the state of the art in Table 3.4.
Note that the standard AlexNet cannot be evaluated as it requires fixed input sizes
(227×227). The T-CNN3 outperforms the state of the art [125] on the Macroscopic
forest species dataset (+1.4%) and obtains similar results on the Microscopic one
(-0.3%). Note that the method in [125] is of higher computational complexity and
uses different hyperparameters for both datasets.

Table 3.4: Accuracy (%) of the T-CNN3 and comparison with the literature.

Macroscopic Microscopic
T-CNN3 97.2 ±0.40 97.0 ±0.61

[125] 95.77 ±0.27 97.32 ±0.21

3.4.6 Combining texture and shape analyses

A CNN architecture is developed to combine the texture and global shape analysis
within a single network, referred to as Texture and Shape CNN (TS-CNN). Figure 3.4
illustrates this new architecture in which the energy layer of the T-CNN3 is extracted
within the classic AlexNet. The output of the energy layer is concatenated to the
flattened output of the last pooling layer, skipping the other convolution and pooling
layers. In Caffe, existing layers are used to first flatten the outputs of the energy
layer and of the last pooling layer P5 separately. These flattened outputs are then

3Note that this only holds to some extent as very small images may require an adapted architecture
to take into account the size of the features and receptive fields as explained in Section 4.2. Alterna-
tively, very large images with homogeneous properties and repetitive patterns may also require an
adapted approach as shown in the application to tissue images in Section 3.5.

55

Convolutional networks for texture classification

P5C5C4C3C2+P2
C1+P1

Input

FC6

energy (Texture)

concat
FC7 FC8

(Shape)

Figure 3.4: The architecture of the Texture and Shape CNN (TS-CNN-3), integrating
T-CNN3 to a classic CNN (AlexNet).

Table 3.5: Classification results (accuracy %) on kth-tips-2b using AlexNet and
T-CNN3 separately and combined as well as the state of the art method with a
medium depth CNN (VGG-M). The number of trainable parameters in millions is
indicated in brackets for 1,000 classes.

Shape AlexNet (60.9) 71.5 ±0.9

VGG-M FC-CNN [8] 71.0

Texture T-CNN3 (23.4) 73.2 ±0.6

VGG-M FV-CNN [8] 73.3
Texture
and
Shape

sum scores AlexNet T-CNN3 (84.3) 73.4 ±1.0

TS-CNN3 (62.5) 74.0 ±0.7

VGG-M FV+FV-CNN [8] 73.9

concatenated and connected to the fully-connected layers without modifying the
latter from the AlexNet layers. In this way, the features of the early layers (C1, C2
and C3) and weights of the fully-connected layers are shared by the texture and
shape analyses, keeping the complexity of the network close to the classic AlexNet.
Table 3.5 shows the improvements obtained with this texture and shape analysis. The
networks are pre-trained on the ImageNet dataset and finetuned on kth-tips-2b.

In a first attempt to combine texture and shape, the classification vectors (outputs
of the softmax layer) of T-CNN3 and AlexNet are summed to provide an averaged
classification of the two networks. This simple score summing method achieves
73.4% accuracy, an increase of 0.2% as compared to the T-CNN3 and 1.9% as
compared to AlexNet. In the second experiment, the network combining texture and
shape analyses (TS-CNN) obtains the best result with 74.0%. These experiments
show the complementarity of the texture and shape analyses on this dataset and the
possibility to share the same simple features in early layers to conduct both analyses
within the same network.

In Table 3.5, approaches within the “shape”, “texture” and “texture and shape”
method groups reveal comparable results. The TS-CNN is trained end-to-end as a
single CNN architecture whereas [8] uses two CNNs of significantly higher com-

56

3.4 Results and discussion

Table 3.6: Classification results (accuracy %) on the kth-tips-2b dataset using T-CNN
based on GoogleNet.

nb. layers kth-tips-2b
T-CNN-G1 13 (2 FC) 75.6 ±0.7

T-CNN-G2 19 (2 FC) 76.3 ±0.9

GoogleNet 21 (1 FC) 75.0 ±0.8

plexity together with a FV encoding and an SVM classifier. Note that the number of
parameters used in [8] is not reported in the table as this number differs between pre-
training and finetuning and requires extra processing for encoding and classification.
As a rough comparison, the VGG-M network has 101.7 million trainable parameters,
whereas the T-CNN3 has 23.4 million and the TS-CNN3 62.5 million.

3.4.7 Deeper Texture CNN

The T-CNNs introduced so far have been based on the AlexNet architecture. The
energy layer approach is now explored with the deeper GoogleNet Inception-v1
architecture [164] (see Appendix A.4.5). In GoogleNet, errors are measured at the
end of the network, as well as after two intermediate inception modules in order to
help the learning of parameters in early layers of the network. A new architecture is
developed by adding energy layers before the fully-connected layers used to calculate
the two intermediate errors. This architecture is pre-trained on ImageNet and is
then finetuned on texture datasets. Three accuracies are provided at different depths;
two at different intermediate layers after the energy layers and one at the end of the
network. The first two accuracies can be obtained by finetuning shorter networks of
reduced complexity similarly to the T-CNNs. For instance, the accuracy derived from
the first energy layer after 11 convolution layers can be obtained from a shortened
network which discards all the following convolution and inception blocks. The
shortest network is referred to as T-CNN-G1 while the deeper one is referred to as
T-CNN-G2. The full network is referred to as GoogleNet as it only differs from
the original one by the energy layers in the derivation of the intermediate errors
during pre-training. The T-CNN-G1 is 13 layers deep and the T-CNN-G2 19 layers
deep, both including two fully-connected layers. Their complexity is significantly
lower than the 21 layers GoogleNet as, with the width of the network increasing with
depth, the deepest inception modules contain most parameters. The results of these
deeper T-CNNs on kth-tips-2b and their depths are summarised in Table 3.6. These
results demonstrate that the GoogleNet architecture also benefits from the orderless
pooling of intermediate features with the energy layer, while significantly reducing
the computational complexity of the network. Note that the original GoogleNet

57

Convolutional networks for texture classification

model, pre-trained on ImageNet and available from the Caffe zoo, achieves 74.9%
accuracy on kth-tips-2b, almost equal to the 75.0% reported in Table 3.6.

3.4.8 Discussion

In this section, a new type of CNN architecture has been developed for analysing
texture images. Inspired by classic neural networks and filter banks approaches,
an energy measure has been introduced to discard the overall shape information
analysed by classic CNNs. This method has achieved an increase of performance in
texture recognition from two widely used networks (AlexNet and GoogleNet), while
largely reducing the complexity, memory requirement and computation time. Finally,
a network has been introduced to incorporate the developed texture specific approach
into a classic network architecture, demonstrating their complementarity with an
improvement of accuracy. The T-CNN architecture will be applied to biomedical
tissue images in the next section.

3.5 Application to biomedical tissue images

3.5.1 Motivation

The analysis of tissue images is crucial for studying the cells behaviour and cellular
senescence or detecting abnormal cells and cancers. The automatic analysis of these
images helps to obtain more consistent, and more straightforward diagnoses. This
section focuses on the recognition of malignant lymphomas and the classification
of mouse liver tissue based on the age, gender and diet. The tissue images are
obtained from biopsies sectioned and stained with Hematoxylin/Eosin (H&E). An
application of the T-CNN is presented on this recognition task as an extension of
the experiments in the previous section. As depicted in Figure 3.6, tissues exhibit
high texture contents which make them good candidates for the proposed T-CNN
approach. A framework is developed to use this low complexity network in an
ensemble approach and significantly improves the state of the art on several tissue
classification benchmarks.

3.5.2 State of the art

Recent methods used in the literature to which the developed framework will be
compared are briefly described here. These approaches are based on classic machine
learning techniques with hand-crafted feature extraction, dimensionality reduction,
and classification.

58

3.5 Application to biomedical tissue images

A classification method named WND-CHARM (Weighted Neighbour Distance
- Compound Hierarchy of Algorithms Representing Morphology) was developed
in [171] and applied to many tissue images datasets. Its accuracy is reported with
a hold-25%-out validation. In this method, a large set of statistical, wavelets and
transform features are extracted from the image. The most discriminant features are
classified with a variant of a nearest neighbour classifier. CP-CHARM (CellProfiler
- Compound Hierarchy of Algorithms Representing Morphology) [172] is a more
recent approach which extracts a large set of features which differs to some degree
from the WND-CHARM features, reduces the dimension with PCA and uses linear
discriminant analysis for classification. CP-CHARM is tested on the same datasets
as WND-CHARM with both hold-25%-out and 10-fold cross-validation.

Texture and colour descriptors are evaluated in [173] both separately and jointly
with an SVM classifier for the recognition of tissue images. Histograms in multiple
colour spaces are used for the colour features while LBP and co-occurrence matrices
are used as texture descriptors. In [174], a set of statistical and transform features are
extracted from the images and classified with an ensemble SVM. This approach is
applied to the prediction of mouse cells senescence by analysing liver tissue images.

3.5.3 Method

The number of labelled tissue images is often limited due to data privacy and to
the need of experts for labelling the data. On the other hand, the resolution of
microscopic tissue images being generally high, the images are large with commonly
more than 1,000×1,000 pixels. Also, the analysed tissues exhibit highly repetitive
texture patterns across the image. Therefore, the input images can be split to increase
the number of training samples. A sum voting score can then be used at test time
to combine the classification of the subimages in a collective decision. For this
application, the T-CNN3 based on AlexNet is used. The proposed approach, named
collective T-CNN, is illustrated in Figure 3.5 including the training and testing phases.
The images of size 1,388×1,040 from the Image Informatics and Computational
Biology Unit (IICBU) dataset [175] are split into 24 non-overlapping subimages
as shown in Figure 3.5. The resulting images are resized to 227 × 227 with a
nearest neighbour interpolation. In the training phase, all the subimages from the
training set are used as independent samples to finetune the network pre-trained
on ImageNet. In the testing phase, a sum voting score is applied among the 24
subimages to classify each full-size image. The collective score of a given test
image is obtained by summing the softmax output vectors of the T-CNN3 for all
the subimages. The obtained score vector gives for each class a confidence score,
as a sum of 24 probabilities, to belong to that class. The original full-size image is

59

Convolutional networks for texture classification

assigned the class with the largest sum in the vector as follows:

c = argmax
i

24

∑
n=1

σ
(n)[i] (3.4)

where i spans the classes and σ (n) is the softmax output of the nth subimage. This
voting algorithm behaves as an ensemble model which takes a collective decision
based on the analysis of different non-overlapping spatial areas of the image.

T-CNN3
trained

sum
scoring vote

softmax

outputs
Collective

classification
split

sub-images

split

sub-images

Training set

Test image

T-CNN3 Ground truth

TRAINING

TESTING

Figure 3.5: Training and testing phases of the developed collective T-CNN method
with subimages and scoring vote.

3.5.4 Experiments

To compare with the state of the art, several experiments are reproduced from the
literature. The datasets used in these experiments are part of the IICBU dataset [175],
a collection of benchmarks for the analysis of biomedical images. It includes several
benchmarks of organelles, cells, and tissues images available online for testing and
evaluating automatic analysis algorithms.

AGEMAP

The Atlas of Gene Expression in Mouse Aging Project (AGEMAP) [175] contains
images of livers from 48 male and female mice of four ages (1, 6, 16, and 24 months),
on ad-libitum or caloric restriction diets. The sectioned livers were stained with
H&E, and imaged by a bright-field microscope. All the staining and imaging were
performed by the same person, which minimises the variability. The AGEMAP
dataset is divided into four sub-datasets with a total of five validation setups.

60

3.5 Application to biomedical tissue images

The first sub-dataset and setup is the Liver Aging of female mice on Ad Libitum
diet (LA-female-AL) [172] in which the aim is to predict the age of the mice. This
benchmark contains 529 images from 11 mice grouped into four classes (1, 6, 16 and
24 months). The validation process is a 10-fold cross-validation repeated 100 times.
The accuracy is averaged over the 10 folds for all 100 iterations and the median and
standard deviation across the 100 iterations is reported.

The second sub-dataset and setup is the Liver Aging Across Subjects on Ad
Libitum diet (LA-AS-AL) reproduced from [174]. It contains four classes (1, 5, 16
and 24 months) and 1,027 images from 21 mice. For each mouse, all the images are
randomly divided into training (5/6) and test images (1/6). The accuracy is averaged
over 30 runs and reported together with the standard deviation.

The third sub-dataset: Liver Gender 6 Months on Ad Libitum diet is used
in [173, 172] in which the aim is to predict the gender of the mice in a binary
classification. It contains two classes (male and female) with images from six mice
for a total of 265 images. Note that two different validation setups are used with this
sub-dataset as follows:

The third setup: (LG6M-AL-5p) is reproduced from [173], as a hold-95%-out
validation, i.e. 5% of the data is used for training, the rest for testing. The reason for
this split is to experiment with few training samples to simulate real conditions. The
Mean Average Precision (MAP) measure is averaged over 5,000 runs as suggested
in [173].

The fourth setup: (LG6M-AL) is reproduced from [172]. It is the same validation
setup as the one used in LA-female-AL with a 10-fold cross-validation repeated 100
times.

The last sub-dataset and setup derived from the AGEMAP dataset is the Liver
Gender 6 Months on Calories Restriction diet (LG6M-CR) reproduced from [172].
This sub-dataset contains two classes (male and female) with a total of 303 images
obtained from six mice. The validation setup is the same as LA-female-AL and
LG6M-AL with a 10-fold cross-validation repeated 100 times.

Lymphoma

The Lymphoma dataset [175] contains images of three types of malignant lymphoma,
namely Chronic Lymphocytic Leukemia (CLL), Follicular Lymphoma (FL), and
Mantle Cell Lymphoma (MCL). Lymphoma is a cancer affecting the lymph nodes.
Its detection and diagnosis can greatly benefit from the automatic analysis of tis-
sue images obtained from biopsies stained with H&E. In particular, this dataset
was developed to evaluate methods to automatically distinguish the three types of
lymphoma. The samples were prepared by different pathologists at different sites,
leading to a large variation in staining and image quality which reflects real acquisi-

61

Convolutional networks for texture classification

tion conditions. It also makes the automatic classification a realistic and challenging
task. The Lymphoma dataset contains 374 images grouped into three classes (CLL,
FL and MCL). It is used with two different validation setups as follows:

The first setup (Lymphoma-5p) is reproduced from [173]. It is the same valida-
tion setup as LG6M-AL-5p with 5% of the data used for training, the rest for testing.
The MAP is averaged over 5,000 runs.

The second setup: (Lymphoma) is reproduced from [172]. The validation setup
is the same as the one used in LA-female-AL, LG6M-AL, and LG6M-CR with the
repeated 10-fold cross-validation.

To summarise, two datasets (AGEMAP and Lymphoma) are divided into five
different sub-datasets for a total of seven experiments with different validation setups.
Example images of the AGEMAP and Lymphoma datasets are shown in Figure 3.6.

1 Month female AL
diet

6 Months male
AL diet

6 Months female
CR diet

6 Months female
AL diet

(a) AGEMAP

CLL FL

MCL

(b) Lymphoma

Figure 3.6: Examples of H&E stained tissue images from the IICBU dataset [175]
(a) mice tissue liver images (AGEMAP) and (b) Lymphoma tissue images.

3.5.5 Results

The results on the 10-fold cross-validation setups are presented in Table 3.7. Note
that the results of WND-CHARM are given in [172] and are obtained from a hold-
25%-out validation. Yet, they are compared to the other results as it was shown
in [172] that the average accuracy is similar to a 10-fold cross-validation although
the results vary more between the tests (higher standard deviation). The collective
T-CNN developed in this section obtains significantly better results with an increase
of accuracy of up to 32.7% on the Lymphoma dataset. This large difference in
accuracy must be put into perspective as CP-CHARM and WND-CHARM use

62

3.5 Application to biomedical tissue images

simple machine learning methods and are generalised image classifiers, not specific
to texture analysis. They are not designed for a specific task and perform reasonably
well on many various tasks, whereas the collective T-CNN uses deep learning and is
specifically designed for the analysis of texture tissue images.

The developed collective T-CNN achieves 100% accuracy on all but one of the
10-fold cross-validation experiments which demonstrates its accuracy and reliability.
To evaluate the benefit of the collective classification with sum scoring vote, it can
be compared with the average accuracy of all subimages. The average per-subimage
classification accuracy is 99.7%, 98.2%, 95.2% and 95.5% for respectively LA-
female-AL, LG6M-AL, LG6M-CR, and Lymphoma. These results demonstrate the
important impact of the collective decision on the accuracy of the method.

Table 3.7: Classification accuracy (%) of the collective T-CNN and comparison with
the state of the art on the 10-fold cross-validation setups. The WND-CHARM results
are obtained from a hold-25%-out validation.

LA-fem-AL LG6M-AL LG6M-CR Lymphoma
Collective T-CNN 111000000 ±±±000...111444 111000000 ±±±000...000 111000000 ±±±000...000 999888...777 ±±±000...333333

CP-CHARM [172] 89 ±0.4 98 ±0.5 99 ±0.1 66 ±0.1

WND-CHARM [171] 93 ±3 98 ±1 99 ±1 79 ±4

Table 3.8: Classification accuracy (%) and Mean Average Precision (MAP) (%) of
the collective T-CNN and comparison with the state of the art on other validation
setups.

LA-AL-AS LG6M-AL-5p (MAP) Lymphoma-5p (MAP)
Collective T-CNN 999999...111 ±±±000...777 999888...777 ±±±333...222 666555...111 ±±±555...777

feature selection + SVM [174] 97.01 - -
LBPriu + I1H2H3 [173] - 97.3 57.6

CCOM [173] - 82.5 63.3

The results on LA-AL-AS, LG6M-AL-5p and Lymphoma-5p are presented in
Table 3.8. The developed approach again outperforms the state of the art methods on
the three sub-datasets. Of all the experiments, only Lymphoma-5p seems to create
problems for the collective T-CNN with 65.1% accuracy. This lower accuracy can
be explained by the variation in data acquisition and the low number of training
images. The confusion matrices for these datasets are shown in Tables 3.9, 3.10
and 3.11. The confusion matrix of Lymphoma-5p shows that most confusions occur
between the CLL and MCL classes. Table 3.11 illustrates the correlation between
the age of the mice and the misclassification as the few confusions occur between
images of mice of close age, e.g. 6 months misclassified as 1 month and 16 months.
Confirming intuition, the similarity between the classes decreases as the difference
between the ages increases.

63

Convolutional networks for texture classification

Table 3.9: Confusion matrix of the
collective T-CNN on Lymphoma-5p.

True
CLL FL MCL

CLL 0.56 0.16 0.28
FL 0.1 0.75 0.14

MCL 0.26 0.21 0.53

Table 3.10: Confusion matrix of the
collective T-CNN on LG6M-AL-5p.

True
Male Female

Male 0.93 0.07
Female 0.06 0.94

Table 3.11: Confusion matrix of the collective T-CNN on LA-AL-AS.

True
1 Month 6 Months 16 Months 24 Months

1 Month 0.99 0.01 0 0
6 Months 0 0.99 0.01 0
16 Months 0 0.02 0.98 0
24 Months 0 0 0 1

The average per-subimage classification accuracy for the LA-AL-AS sub-dataset
is 93.1% vs. 99.1% with the collective decision, which again demonstrates the power
of the ensemble approach in the final classification.

Finally, similar observations are made on the visualisation of the features learned
by the network as in Section 3.4.4. The neurons in the last fully-connected layer
respond to simple repeated texture patterns.

3.5.6 Discussion

An application to tissue image classification has been presented based on the analysis
of non-overlapping areas of the images using the T-CNN3 and a scoring vote method.
The texture in tissue images being repetitive, each image patch can be treated as
an independent sample at training time and the predictions of multiple patches
can be combined at test time. While labelled training sets for biomedical imaging
are generally small, the developed approach can benefit from the high resolution
images by increasing the number of training samples with this splitting approach.
After training, the predictions of subimages are combined to accurately classify an
unknown image. The collective T-CNN has largely improved the state of the art
on multiple tissue images benchmarks including microscopic mice liver tissues and
lymphoma tissue images.

64

Chapter 4

Dynamic texture recognition with
convolutional networks

4.1 Introduction

This chapter presents a new framework based on convolutional networks for the
classification of DTs. The idea is to extend the T-CNN introduced in Chapter 3 to
the analysis of DTs based on the spatial distribution of pixels and on their evolution
and dynamics over time. To this end, T-CNNs are trained to analyse the sequences
on three orthogonal planes in the 2D+ time space. This approach is partly inspired
by the extension of LBP on three orthogonal planes (LBP-TOP) introduced in [14].
It is also influenced by ensemble models which extract useful diverse knowledge
from the training data by learning different models in parallel and by averaging their
predictions. An overview of the new approach, referred to as Dynamic Texture CNN
(DT-CNN), is illustrated in Figure 4.1 and explained in more detail in Section 4.2.2.
Slices from the DT sequences are first extracted to train an independent T-CNN on
each plane. The outputs of all the slices on the three planes are then summed to
obtain the class with maximum prediction score during the test phase in an ensemble
data fusion approach.

The main contributions of this chapter are described as follows:
(1) A new framework is introduced to analyse DTs on three orthogonal planes;
(2) networks adapted to the small images of several DT datasets are developed based
on the original T-CNN;
(3) experiments are conducted on three DT databases using seven benchmarks with
considerable differences in terms of number of classes, inter- and intra-class variation
number and size of images, and experimental protocol;
(4) an evaluation of the contribution and complementarity of each plane is conducted
as well as an analysis of domain transferability of trained parameters.

65

Dynamic texture recognition with convolutional networks

xy

xt

yt

Fine-tuned
Texture CNN

Labels
scores

Sum Max
Collective
detected

label
(test)

Fine-tuned
Texture CNN

Fine-tuned
Texture CNN

Labels
scores

backpropagation (train)

backpropagation (train)

backpropagation (train)

Figure 4.1: An overview of the proposed DT-CNN for the classification of a DT
sequence based on T-CNNs on three orthogonal planes in an ensemble model ap-
proach. The T-CNNs separately classify slices extracted from three planes of a DT
sequence. The outputs of the last fully-connected layers are summed and the highest
score gives the collective classification decision.

The rest of this chapter is organised as follows: The new method for DT analysis
with T-CNNs on three orthogonal planes is introduced in Section 4.2. The experi-
mental setups and datasets on which the developed method is evaluated are presented
in Section 4.3. The results are described in Section 4.4 and compared with the state
of the art. Finally, a discussion is proposed in Section 4.5.

4.2 Materials and Methods

The main idea of the proposed DT-CNN is to use convolutional networks on three
orthogonal planes in order to learn, pool and classify features which are repetitive in
the spatial and temporal domains.

4.2.1 Texture CNN

The texture specific CNN was introduced in the previous chapter. In this chapter, the
T-CNN3 based on AlexNet and the T-CNN-G2 based on GoogleNet are used.

A new version of these networks is also developed for smaller input images. A
CNN is used in [160] to analyse small DT sequences (frame size: 50× 50). The
authors dilate and warp the input images in order to match the input frame size of
AlexNet (227×227). This approach is not optimal both in terms of complexity of the
network and its capability to learn from the small images. Instead, new architectures
are designed in this chapter to analyse small input images such as those of the
Dyntex++ (frame size: 50×50) and UCLA (frame size: 48×48) datasets. While
the T-CNNs do not require fixed input sizes due to the energy layer, it is necessary to
adapt them to these small input sizes for the following reasons. The receptive field
of the neurons should be small enough to tile the input image in such a way that the

66

4.2 Materials and Methods

Table 4.1: Architectures of the T-CNN3 and T-CNN3-S based on AlexNet, where c
is the number of colour channels and N is the number of classes.

Output sizes kernel, pad, stride trainable param.
Layer type T-CNN3 T-CNN3-S T-CNN3 T-CNN3-S T-CNN3 T-CNN3-S

crop c×48×48 c×227×227 - - 0 0
Conv (C1) 96×48×48 96×55×55 5, 2, 1 11, 0, 4 c×2,400+96 c×11,616+96

ReLU 96×48×48 96×55×55 - - 0 0
Pool (P1) 96×24×24 96×27×27 2, 0, 2 3, 0, 2 0 0

LRN 96×24×24 96×27×27 - - 0 0
Conv (C2) 256×24×24 256×27×27 3, 1, 1 5, 2, 1 221,440 614,656

ReLU 256×24×24 256×27×27 - - 0 0
Pool (P2) 256×12×12 256×13×13 2, 0, 2 3, 0, 2 0 0

LRN 256×12×12 256×13×13 - - 0 0
Conv (C3) 384×12×12 384×13×13 3, 1, 1 3, 1, 1 885,120 885,120

ReLU 384×12×12 384×13×13 - - 0 0
Energy 384 384 - - 0 0

Fully-con. (FC1) 3,000 4,096 - - 1,155,000 1,576,960
ReLU 3,000 4,096 - - 0 0

Dropout 3,000 4,096 - - 0 0
Fully-con. (FC2) 3,000 4,096 - - 9,003,000 16,781,312

ReLU 3,000 4,096 - - 0 0
Dropout 3,000 4,096 - - 0 0

Fully-con. (FC3) N N - - 3,000×N +N 4,096×N +N
Softmax N N - - 0 0

energy layer will behave similarly to a filter bank spanning the input image. Using a
T-CNN3 architecture, the receptive field of the neurons in the third convolution layer
would be larger than the input image itself. The new network, referred to as T-CNN3
Small (T-CNN3-S), is detailed and compared to the T-CNN3 in Table 4.1. Similarly,
a version of T-CNN-G2 is developed for small images.

As mentioned in Appendix A and Section 3.4.3, the domain transferability of
CNNs is an important aspect for training deep architectures. The kernels learned by
any network can generally be transferred to another network if the kernel sizes are
equal, including a CNN with smaller input size. However, the kernel sizes of the
T-CNN3 and the T-CNN3-S being different, the latter cannot be initialised using the
kernels learned by the T-CNN3 on ImageNet [50]. Therefore, the T-CNN3-S and
its equivalent based on GoogleNet are pre-trained on a version of ImageNet with
images resized to 50×50.

The resulting DT recognition frameworks are referred to as DT-AlexNet and
DT-GoogleNet depending on the network architecture1.

1The normal and reduced architectures (e.g. T-CNN3 and T-CNN3-S) are reported as the same
DT framework for simplicity (e.g. DT-AlexNet).

67

Dynamic texture recognition with convolutional networks

h

w

d

x

t (temporal)y S
xy

xt

yt

md

h
w

Resize frames

Resize slices

mw

h

d

Resize slices

mw

Syt

mh

n
n

n
n

md

n

n
Sxy

Sxt
mh

d
w

Figure 4.2: A diagram of the DT sequence slicing in three orthogonal planes.

4.2.2 Dynamic Texture CNN

Slicing the Dynamic Texture data

Slices of the DT sequences are extracted as illustrated in Figure 4.2 to enable the
training of the networks on the three orthogonal planes.

XY plane (spatial): A sequence of DT with d frames of size h×w is represented
as S ∈ Rh×w×d×c where h (height), w (width) and d (depth) are in the x, y, and t
axes respectively and c is the number of colour channels, i.e. three for RGB or
one for greyscale. In the spatial plane, md frames equally spaced in the temporal
axis are extracted from S. All the frames are resized using bilinear interpolation
to the size n×n to obtain a sequence Sxy ∈ Rn×n×md×c with md ≤ min(d,h,w) and
n ≤ min(d,h,w).

XT and YT planes (temporal): From the same sequence S, mh and mw slices are
extracted in the xt and yt planes, equally spaced on the y and x axes respectively.
The slices are resized to n × n resulting in sequences Sxt ∈ Rn×n×mh×c and Syt

∈ Rn×n×mw×c. A slice in the xt (or yt) plane reflects the evolution of a row (or
a column) of pixels over time throughout the sequence. After pre-processing a
sequence, three sets of slices are obtained which represent the same DT in three
different planes. Examples of spatial and temporal slices are shown in Figure 4.3.

Training on three planes

In order to evaluate the developed methods, the sequences are split into training and
testing sets. Details on the training and testing splits are provided in the experimental
setups in Section 4.3.1. A dataset containing M original sequences is split into T
training sequences and (M −T) testing sequences. In each plane, there is a total
of T ×m training and (M −T)×m testing slices, where m ∈ {md,mh,mw} is the

68

4.2 Materials and Methods

number of slices per sequence. For each plane, the T ×m training slices are used to
finetune an independent network. In the testing phase, the slices in each plane are
classified and the outputs are combined as explained in the following section.

Sum collective score

An independent network is used for each of the three orthogonal planes, thus multiple
outputs must be combined in the testing phase. A collective score is implemented by
summing the output predictions of the T-CNNs. Firstly, a sequence is represented in
each plane by a stack of slices. Therefore, a score for a given plane is obtained by
summing the outputs of all the slices in this plane. The score vector of a sequence in
a plane p with m slices is computed as follows:

sp =
1
m

m

∑
i=1

sp
i (4.1)

where sp
i ∈ RN is the output (non-normalised classification score) of the last fully-

connected layer of the ith slice on plane p, with p ∈ {xy,xt,yt} and N is the number
of classes. All the scores sp

i with i = {1, ...,m} are obtained with the same finetuned
network for a particular plane p and each plane uses an independently finetuned
network. A global score for a given sequence is then obtained by summing over the
three planes as follows:

s = ∑
p={xy,xt,yt}

sp (4.2)

Note that in Section 4.4.2, sums over two planes or single planes are also used to
analyse their contribution and complementarity.
The collectively detected label l for a sequence is the one for which the sum score s
is maximum.

l = argmax
j

(s[j]) (4.3)

where j = {1, ...,N} enumerates the DT classes. This ensemble model approach
combines three weak classifiers to create a more accurate one. A late data fusion
approach is used as it requires three network classifiers to recognise three data types
derived from the sequences, i.e. slices in three different planes. The late fusion
adopted here is different from the one used in [155], in which the fully-connected
layers combine multiple “streams” of frames analysed at multiple time steps. By
using a sum collective score, the classification confidence of each slice, given by
the output vector of the last fully-connected layer, is taken into account for the
collective classification. Confidence in this context refers to the magnitude of the

69

Dynamic texture recognition with convolutional networks

output activations of the convolutional network as each neuron gives a score similar
to a non-normalised probability for the input image to belong to a certain class.

Moreover, summing the raw output of the last fully-connected layer gives bet-
ter results than the softmax normalised probability output. Using the raw output,
large non-normalised scores can be attributed to a sequence by a single plane for a
particular class if the confidence is high. This is similar to an automatic weighting
strategy based on the detection confidence of each network. Note that in Section
3.5, the softmax outputs are summed. Although there is no large difference in using
the softmax or raw outputs, the reasoning is that the subimages are from the same
image and same plane. Due to the homogeneity of tissue images, all subimages are
expected to contribute similarly to the collective score. On the other hand, summing
across multiple planes means that one plane could be detected with more confidence
than the others and this confidence should have a greater impact. It may also help by
weighting slices in sequences which are not repetitive throughout the entire temporal
domain.

Finally, it was confirmed experimentally that a sum collective score performs
better than a majority or a Borda count voting scheme.

4.2.3 Domain transfer

Similarly to the previous chapter, the networks are pre-trained on ImageNet to
transfer the knowledge learned from this large image dataset to the DT analysis.
It is only possible to pre-train on the spatial (xy) plane since ImageNet does not
contain videos, yet it transfers relatively well to the analysis of temporal slices (xt
and yt). As suggested in [176], transferring features from the relatively distant task
of object recognition is better than using random initialisations for the recognition of
temporal texture slices. Although the improvement in terms of accuracy is minor,
using pre-trained networks also makes the training significantly faster.

Several video datasets exist such as human actions and sports recognition [155].
The proposed approach, however, is designed for the classification of homogeneous
and repetitive DTs as opposed to activities localised in space and motion events
localised in space and time [23]. The temporal slices are extracted at multiple
spatial locations of the sequence and should all exhibit the dynamic of the analysed
DT. By definition, the spatial slices should also exhibit the same texture properties
across time. Therefore, the networks are not pre-trained on other video datasets as
sequences localised in space and/or time would extract multiple types of dynamic
with potentially only a few slices that represent the dynamic of interest.

70

4.3 Datasets and experimental setups

(a) xy (b) xt (c) yt

Figure 4.3: Examples of DT slices in three orthogonal planes of foliage, traffic and
sea sequences from the DynTex database. (a) xy (spatial), (b) xt (temporal) and (c)
yt (temporal).

4.3 Datasets and experimental setups

This section presents the datasets and protocols used in the experiments and provides
implementation details.

4.3.1 Datasets

Three datasets are used and organised in seven benchmarks to test the developed
algorithm and compare the results with the state of the art. These experiments cover
most of the DT datasets used in the literature. They include many DT types, various
number of training samples, balanced and unbalanced classes, static and moving
cameras, rotation, illumination and scale variation as well as several validation setups
(leave-one-out, N-folds cross-validation, and random splits).

The DynTex Database [24] is a diverse collection of DT videos. Three sub-
datasets are compiled from the DynTex database. For all of them, the processed and
downsampled (352×288) colour images are used. All sequences are at least 250

71

Dynamic texture recognition with convolutional networks

frames long, therefore 250 frames are used for all sequences to extract the slices.
The experimental setups are reproduced from [41] with a leave-one-out classification
and the average classification accuracies are reported. The three sub-datasets are
defined as follows:

DynTex alpha contains 60 DT sequences equally divided into three categories:
“sea” (20), “grass” (20) and “trees” (20), where the number of sequences is given in
brackets for each class.

DynTex beta contains 162 sequences divided into 10 classes: “sea” (20), “vegeta-
tion” (20), “trees” (20), “flags” (20), “calm water” (20), “fountains” (20), “smoke”
(16), “escalator” (7), “traffic” (9) and “rotation” (10).

The DynTex gamma dataset [24] contains 264 sequences grouped into 10 classes:
“flowers” (29), “sea” (38), “naked trees” (25), “foliage” (35), “escalator” (7), “calm
water” (30), “flags” (31), “grass” (23), “traffic” (9) and “fountains” (37).

Dyntex++ [39] is derived from the DynTex database by cropping and processing
the sequences. It consists of 36 classes of 100 sequences each. Each sequence
contains 50 greyscale frames of size 50×50. The experimental setup is reproduced
from [39], where 50 sequences are randomly selected from each class as the training
set, and the other 50 sequences are used for testing. This process is repeated 20 times
and the average classification rate is reported.

The UCLA database [45] contains 50 classes of four DT sequences each. A DT
sequence includes 75 greyscale frames of size 160×110 which are cropped to the
size 48×48 to show representative dynamics. The classes can be grouped together
to form more challenging sub-datasets. Three commonly used setups are evaluated,
defined as follows:

UCLA 50-class: This setup is reproduced from [39]. A 4-fold cross-validation is
performed with three sequences of each class used for training, the remaining one
for testing in each of the four splits (i.e. 150 training and 50 testing sequences).

UCLA 9-class: This experimental setup is also reproduced from [39]. The
sequences taken from different viewpoints are grouped into 9 classes: “boiling water”
(8), “fire” (8), “flowers” (12), “fountains” (20), “plants” (108), “sea” (12), “smoke”
(4), “water” (12) and “waterfall” (16), where the number of sequences is given in
brackets for each class. In each class, 50% of the sequences are used for training,
the other 50% for testing (i.e. 100 training and 100 testing sequences). The average
classification rate is reported over 20 trials with random splits which are created once
and used unchanged throughout the experiments.

UCLA 8-class is similar to the 9-class setup except that the “plant” category is
removed since it contains many more sequences than the other classes. The number
of remaining sequences is 92, which is split into 46 training and 46 testing samples.

72

4.4 Results and discussion

The same evaluation is used as in the 9-class setup with 20 trials. This experimental
setup is reproduced from [177].

Table 4.2: Hyperparameters used for training the T-CNNs on different datasets.
From left to right: initial learning rate, factor gamma by which the learning rate is
multiplied at every step, weight decay, momentum, batch size, number of iterations
and steps.

hyperparam. lr γγγ weight decay momentum batch size nb. iter steps
Dyn++ 0.01 0.01 0.0005 0.9 64 25,000 5,000; 20,000

UCLA-9 0.01 0.01 0.0005 0.9 64 4,000 1,000; 3,000
Dyn, UCLA-50, UCLA-8 0.0001 0.1 0.004 0.9 64 2,000 1,500

4.3.2 Implementation details

The networks are implemented with Caffe2 [165]. As explained in Section 4.2.1,
different architectures are developed to adapt the T-CNNs to the large difference of
image sizes in the various experiments. The results are reported without distinction
since the same approach is used for all the experiments as described in Section 4.2.2.
Two methods are reported, namely DT-AlexNet and DT-GoogleNet depending on
the T-CNN architecture employed.

The hyperparameters of the networks slightly depend on the size of the datasets,
setups and input sizes and are summarised in Table 4.2. The number of slices per
sequence is equal in the three planes and the results are relatively robust to variations
of this number. For Dyntex++ and UCLA, the number of slices is equal to the height,
width, and depth of the sequences, i.e. 50 and 48 respectively. The sequences of the
DynTex database being much larger (352×288×250), only 10 slices are extracted
per plane. All the slices from DynTex are resized after extraction to 227×227. The
networks are trained using stochastic gradient descent with softmax and multinomial
logistic loss.

4.4 Results and discussion

4.4.1 Results

The results of the proposed DT-CNN approach are compared with the state of the
art in Table 4.3. The methods from the literature that obtain the best results on
each dataset are reported, namely 9-Plane mask Directional Number transitional
Graph with SVM classifier (DNG) [152], Dynamic Fractal Spectrum (DFS) [177],
spatial Transferred ConvNet Features (s-TCoF) and concatenation of spatial and

2An implementation of the method is available at the following GitHub repository:
https://github.com/v-andrearczyk/DT-CNN

73

https://github.com/v-andrearczyk/DT-CNN

Dynamic texture recognition with convolutional networks

Table 4.3: Accuracy results (%) of the proposed DT-CNN approaches and of the
state of the art on multiple DT datasets.

Dyntex++ Dyn-alpha Dyn-beta Dyn-gamma UCLA-50 UCLA-9 UCLA-8
LBP-TOP [14, 178, 41] 71.2 96.67 85.8 84.85 86.1 - 96.8

DNG [152] 93.8 - - - - 99.6 99.4
DFS [177] 89.9 - - - 100 97.5 99

s-TCoF [41] - 100 99.38 95.83 - - -
st-TCoF [41] - 98.33 98.15 98.11 - - -

MEWLSP [137] 98.48 - - - 96.5 98.55 98.04
DT-AlexNet 98.18 100 99.38 99.62 99.5 98.05 98.48

DT-GoogleNet 98.58 100 100 99.62 99.5 98.35 99.02

temporal Transferred ConvNet Features (st-TCoF) [41] and Multiresolution Edge
Weighted Local Structure Pattern (MEWLSP) [137]. Finally, the LBP-TOP [14] is
also reported as it was tested on most of the datasets and also combines an analysis
of three orthogonal planes. The results of the LBP-TOP are provided in [178] and
[41] with the original author’s implementation [14] for the former and their own
implementation for the latter. The proposed DT-CNN methods (DT-AlexNet and
DT-GoogleNet) consistently obtain high accuracy results on all the datasets and
overall outperform all other methods in the literature. The UCLA dataset contains
few training samples per class and therefore the DT-CNNs do not outperform the
current state of the art, but a significant improvement is obtained on the large
DynTex and Dyntex++ datasets. The consistency of high accuracy results across
all the datasets demonstrates the robustness of the developed approach. The deep
DT-GoogleNet approach outperforms the shallower DT-AlexNet even though more
challenging datasets would be required to fully demonstrate the power of using
deep architectures. In the following paragraphs, the results of each experiment are
discussed in more detail.

DynTex alpha: The classification rates of DT-AlexNet and DT-GoogleNet are
100% on this dataset which is not challenging as it contains high inter-class separabil-
ity and low intra-class variability and each sequence has at least one other sequence
of the same class which is very similar. The spatial TCoF (s-TCoF) in [41] also
obtains 100% on this dataset.

DynTex beta: The recognition rate on DynTex-beta is 99.38% with DT-AlexNet
and 100% with DT-GoogleNet, which outperforms the state of the art s-TCoF
[41] (99.38%). The only sequence misclassified with DT-AlexNet is illustrated in
Figure 4.4a with some sequences of the true class (4.4b) and of the detected class
(4.4c). This misclassification is due to the background of this sequence containing
mainly a blue sky and trees and occupying the major spatial part of the sequence.

DynTex gamma: On the DynTex-gamma dataset, only one sequence is misclassi-
fied out of 264 by the DT-CNNs, improving the state of the art [41] from 98.11%
to 99.62%. The 79th sequence of true class “naked trees” is misclassified as class

74

4.4 Results and discussion

(a) misclassified sequence (b) true class (c) detected class

Figure 4.4: A misclassified sequence of the DynTex beta dataset and examples from
the true class and from the detected one. (a) misclassified sequence, (b) true class
“rotation” and (c) detected class “trees”.

(a) misclassified sequence (b) true class (c) detected class

Figure 4.5: A misclassified sequence of the DynTex gamma dataset and examples
from the true class and from the detected one. (a) misclassified sequence, (b) true
class “naked trees” and (c) detected class “foliage”.

“foliage” with a very similar appearance and dynamic. As depicted in Figure 4.5,
the tree in the misclassified sequence is denser as compared to other trees in the
same class “naked trees”, which causes the confusion. This result is satisfying as
DynTex-gamma contains relatively high intra-class variations (e.g. “fountains” and
“flags”) and inter-class similarities (e.g. “naked trees” vs. “foliage” and “sea” vs.
“calm water”) both in terms of spatial appearance and dynamics.

Dyntex++: In this experiment, the DT-GoogleNet (98.58%) also outperforms
the best results in the literature [137] (98.48%). The classification rate of each
of the 36 classes with DT-AlexNet (98.18%) is detailed in Figure 4.6. The most
misclassifications occur for the classes with high intra-class variation “water fountain”
and “smoke”, with sequences which, with a closer look, do not always exhibit the
expected DT due to the automatic splitting process of the original sequences from
DynTex described in [39]. The confusion matrix is not illustrated due to the large
number of classes, yet one may notice by visualising it that there are no dominant
categories with which these misclassified sequences are confused (i.e. the confusions
are spread over several classes). This experiment shows the effectiveness of the

75

Dynamic texture recognition with convolutional networks

100

90

80

70

60

xy + xt + yt

1-textured cloth
2-artificial hair
3-blossom

ing tree
4-escalator

6-grass sw
aying

7-boiling w
ater

8-evap. w
ater/fum

es
9-river w

ater
10-faucet w

ater
11-fish sw

im
m

ing
12-underw

ater life 1
13-underw

ater life 2
14-underw

ater life 3
15-underw

ater life 4
16-ants
17-w

aterfall
18-candles
19-rain on w

ater
20-flushing w

ater
21-w

ater in sink
22-C

D
 in C

D
 player

23-w
ash cycle

24-w
ater pouring

25-lam
p globes

26-lights blinking
27-leaves
28-birds flying in sky
29-pond w

ater
30-rotating w

ind orn.
31-vehicle traffic
32-flag
33-branches

5-w
aves on beach

34-w
ater fountain

35-clouds
36-sm

oke

Figure 4.6: Classification rates of individual classes of the Dyntex++ dataset with
the proposed DT-CNN approach (DT-AlexNet).

proposed approach with a relatively high number of training samples and classes as
well as high intra-class variation.

The UCLA database contains only four sequences per primary category (50
classes setup). Therefore, the number of training sequences per primary category
is three, which is much lower than the other datasets. CNNs require a high number
of training samples to adjust the weights in order to learn meaningful features,
generalise the recognition task to new unknown data, and avoid overfitting the
training data. The database is not highly challenging because of low intra-class
variation; hence, the proposed DT-CNNs are able to reach nearly 100% classification
accuracy and are close to the state of the art. As a result of the training size, however,
they do not outperform the best shallow hand-crafted methods in the literature on the
three sub-datasets as described below.

UCLA-50: A classification rate of 99.5% is achieved with only one sequence
misclassified out of 200 with both DT-CNNs. The best performance in the literature
is 100%, achieved by DFS in [177]. However, DFS performs poorly with larger and
more challenging datasets and is largely outperformed by the DT-CNN on Dyntex++
by over 8%.

UCLA-9: The proposed DT-AlexNet and DT-GoogleNet obtain 98.05% and
98.35% classification rate respectively, close to the best result 99.6% in the literature
[152]. The confusion matrix obtained with DT-AlexNet is detailed in Table 4.4.
The number of training samples of a class largely influences the recognition rate of
the test samples of that same class. The “smoke” class contains only four samples
and obtains the lowest 75% classification. These results confirm that the DT-CNNs
perform best on large datasets with a high number of training samples per class.

UCLA-8: The proposed approach achieves a classification rate of 98.48% with
DT-AlexNet and 99.02% with DT-GoogleNet, close to the state of the art on this

76

4.4 Results and discussion

Table 4.4: Confusion matrix of the proposed DT-AlexNet on UCLA 9-class.
boil fire flow. pl. fount sea sm. wat. wfall

boil 1 0 0 0 0 0 0 0 0
fire 0 0.97 0 0 0 0 0.03 0 0

flower 0 0 0.92 0 0.08 0 0 0 0
fount 0 0 0 0.96 0 0 0 0 0.04
plants 0 0 0 0 1 0 0 0 0

sea 0 0 0 0 0 0.97 0 0.03 0
smoke 0 0 0 0 0 0 0.75 0.25 0
water 0 0 0 0 0 0 0.03 0.97 0
wfalls 0 0 0 0.01 0 0 0 0 0.99

Table 4.5: Confusion matrix of the proposed DT-AlexNet on UCLA 8-class.
boil fire flower fount sea smoke water wfalls

boil 0.99 0.01 0 0 0 0 0 0
fire 0.01 0.99 0 0 0 0 0 0

flower 0 0 1 0 0 0 0 0
fount 0 0 0 1 0 0 0 0
sea 0 0 0 0 0.95 0.02 0.02 0.01

smoke 0 0 0 0 0 1 0 0
water 0 0 0 0 0 0 1 0
wfalls 0 0 0 0.01 0 0.02 0.01 0.96

Table 4.6: Accuracy results (%) of the proposed DT-AlexNet on multiple DT datasets
using various combinations of planes.

Dyntex++ DynTex-alpha DynTex-beta DynTex-gamma UCLA-50 UCLA-9 UCLA-8
xy 94.28 100 98.77 98.11 99 95.7 98.04
xt 96.57 100 95.68 97.35 98.5 97.4 95.76
yt 96.28 100 95.06 97.73 93 97.15 95.65

xy+ xt 97.57 100 99.38 99.24 99.5 97.4 98.26
xy+ yt 97.71 100 99.38 99.62 99 97.8 98.59
xt + yt 97.84 100 97.53 98.11 98 97.95 96.85

xy+ xt + yt 98.18 100 99.38 99.62 99.5 98.05 98.48

sub-dataset of 99.4% [152]. The confusion matrix in Table 4.5 shows that the few
confusions with DT-AlexNet mainly occur for classes which exhibit high similar-
ities in the spatial appearance and/or dynamics (e.g. “sea”, “smoke”, “water” and
“waterfalls”).

4.4.2 Contribution of the planes

The results obtained with DT-AlexNet using different combinations of planes are
reported in Table 4.6.

Single plane analysis

The spatial analysis of the xy plane performs better overall than the temporal ones (xt
and yt). Yet, the temporal analyses are close to, and at times outperform the spatial

77

Dynamic texture recognition with convolutional networks

analysis. Note that the performance of the xt and yt planes for certain classes may
depend on the angle at which the DT videos are captured as important temporal
information may be captured in one or the other plane. For instance, translational
motions such as waves and traffic may be contained in only one of the temporal
planes if the direction of the motion is parallel/perpendicular to one of the spatial
axes. Furthermore, independent CNNs are finetuned on each plane and thus learn
differently from the training data. Therefore, differences are noticeable between the
temporal analyses of the xt and yt planes.

The good results obtained with both single temporal planes go against early
conclusions made in the literature stating that DT recognition mostly relies on the
spatial analysis while the motion analysis can only provide minor complementary
information [39, 151, 179]. This statement is based on experimental results and on
the human perception of DTs. It might be true for the experiments conducted in
[39, 151, 179] and for a human being able to differentiate most DTs with a single
frame. Yet, the proposed experiments demonstrate that it does not generalise to
all the analysis methods, and that deep neural network approaches are excellent at
finding their own ways to analyse data. Indeed, when it might be difficult for a human
to recognise sequences of temporal slices like those illustrated in Figure 4.3b and
4.3c, the proposed approach is able to accurately classify sequences given only the
temporal slices. Similar observations were made in [14] in which the LBP histograms
on all three single planes result in similar accuracies on the DynTex dataset. Note
that the analyses of the xt and yt planes are not purely temporal as they reflect the
evolution of 1D spatial lines of pixels over time. Yet these planes exhibit temporal
variations and this type of approaches is generally referred to as temporal analysis.

The spatial analysis performs 1% to 3% better than the temporal ones for most
of the datasets (DynTex beta, DynTex gamma, UCLA-50 and UCLA-8), while the
temporal analysis outperforms the spatial one on Dyntex++ and UCLA-9 by 2%
and 1.45% respectively. The accuracy of each class using a single plane analysis is
detailed in Figure 4.7a, 4.7b, 4.8a, 4.8b and 4.9 for the UCLA-8, UCLA-9, DynTex-
beta, DynTex-gamma and Dyntex++ datasets respectively. No evident and consistent
patterns emerge from the results across datasets to conclude and generalise what
recognition the spatial analysis is able to achieve better than the temporal ones.

Combination of planes

As detailed in Table 4.6, the combination of all the planes results in a consistent
increase of accuracy as compared to the sole spatial analysis. Similarly to [14], these
results highlight the complementarity of the spatial and temporal planes. In [14], the
authors heuristically assign weights to the contribution of the planes based on the
recognition rate. Such experiments are not reported here in order to avoid heuristic

78

4.4 Results and discussion

1-boil

2-fire

4-fount

5-sea

6-sm
oke

7-w
ater

8-w
fall

3-flow
er

100

95

90

85

xy xt yt

(a) ucla-8
1-boil

2-fire

4-fount

6-sea

7-sm
oke

8-w
ater

9-w
fall

3-flow
er

100

92

84

76

68

xy xt yt

5-plants

(b) ucla-9

Figure 4.7: Classification rates of individual classes using single xy, xt, and yt planes
with DT-AlexNet on the (a) ucla-8 and (b) ucla-9 sub-datasets.

1-sea

2-vegetation

4-flags

6-fountains

7-sm
oke

8-escalator

9-traffic

3-trees

100

87.5

75

62.5

50

xy xt yt

5-calm
 w

ater

10-rotation

(a) DynTex beta

1-flow
ers

2-sea

4-foliage

6-calm
 w

ater

7-flags

8-grass

9-traffic

3-naked trees

100

96

92

88

84

xy xt yt

5-escalator

10-fountains

(b) DynTex gamma

Figure 4.8: Classification rates of individual classes using single xy, xt, and yt planes
with DT-AlexNet on the (a) DynTex beta and (b) DynTex gamma sub-datasets.

and biased results. Also, learned parameters do not always generalise similarly to
the test set; e.g. a low training loss can typically result in a low test accuracy if the
network overfits the training data. For this reason, the weights are not assigned based
on the training loss or any other measure of performance calculated on the training
set.

The xy plane captures the spatial information while the other two planes mainly
capture the dynamics of the sequences. As expected, combining the spatial plane to
a single temporal plane performs generally better than the sole spatial plane or the
combination of the two temporal planes. The best overall performance is achieved
by the combination of the three planes which again highlights their complementarity.

Finally, note that for some datasets, the temporal slices xt and yt could be
probabilistically expected to exhibit the same dynamic. It would be the case for

79

Dynamic texture recognition with convolutional networks

1-textured cloth
2-artificial hair
3-blossom

ing tree
4-escalator

6-grass sw
aying

7-boiling w
ater

8-evap. w
ater/fum

es
9-river w

ater
10-faucet w

ater
11-fish sw

im
m

ing
12-underw

ater life 1
13-underw

ater life 2
14-underw

ater life 3
15-underw

ater life 4
16-ants
17-w

aterfall
18-candles
19-rain on w

ater
20-flushing w

ater
21-w

ater in sink
22-C

D
 in C

D
 player

23-w
ash cycle

24-w
ater pouring

25-lam
p globes

26-lights blinking
27-leaves
28-birds flying in sky
29-pond w

ater
30-rotating w

ind orn.
31-vehicle traffic
32-flag
33-branches

5-w
aves on beach

34-w
ater fountain

35-clouds
36-sm

oke
100

87.5

75

62.5

50

xy xt yt

Figure 4.9: Classification rates of individual classes of the Dyntex++ dataset using
single xy, xt, and yt planes with DT-AlexNet.

instance with random rotations of the field of view across different sequences or for
DT sequences without dominant orientation of motion. In such scenario, it could be
useful to combine the temporal slices xt and yt into a single analysis, i.e. using two
finetuned networks instead of three and obtain more rotation invariance and more
training data for the temporal plane. However, this approach has not resulted in an
increase of accuracy in the experiments proposed in this chapter.

4.4.3 Domain transferability and visualisation

A comparison of DT-AlexNet using networks from scratch and pre-trained is depicted
in Figure 4.10. Pre-training the networks only slightly improves the accuracy of
the proposed method using the combination of three planes (see Figure 4.10a). The
networks are able to learn from scratch due to the relatively large number of samples
resulting from the slicing approach and to the low intra-class variation and high
inter-class separability of some of the datasets. As shown in Figure 4.10, the smaller
T-CNN3-S network used for Dyntex++ and UCLA learns better from scratch than
the larger T-CNNs used for the DynTex datasets. This observation is particularly
evident for single plane methods (Figure 4.10b to 4.10d). With fewer parameters,
they learn better from small datasets with less overfitting and thus do not benefit as
much from the pre-training.

Moreover, one could expect the spatial analysis to benefit extensively more
from the pre-training than the temporal analysis as the source (ImageNet) and target
(spatial textures) domains are closer. Yet, the temporal planes benefit almost similarly,

80

4.4 Results and discussion

D
yn++

D
yn-alpha

D
yn-gam

m
a

U
C

LA
-9

U
C

LA
-8

D
yn-beta

100

90

80

70

60

pre-train

U
C

LA
-50

scratch

(a) xy+xt+yt

D
yn++

D
yn-alpha

D
yn-gam

m
a

U
C

LA
-9

U
C

LA
-8

D
yn-beta

pre-train

U
C

LA
-50

scratch
100

90

80

70

60

(b) xy

D
yn++

D
yn-alpha

D
yn-gam

m
a

U
C

LA
-9

U
C

LA
-8

D
yn-beta

pre-train

U
C

LA
-50

scratch
100

90

80

70

60

(c) xt

D
yn++

D
yn-alpha

D
yn-gam

m
a

U
C

LA
-9

U
C

LA
-8

D
yn-beta

pre-train

U
C

LA
-50

scratch
100

90

80

70

60

(d) yt

Figure 4.10: Classification rates of DT-AlexNet with networks trained from scratch
vs. pre-trained on ImageNet with the following planes: (a) xy+xt+yt (b) xy, (c) xt
and (d) yt.

which demonstrates the transferability of the learned parameters across domains. It
also indicates that the learning is not biased by an overlap (i.e. similar images and
classes) between the pre-training ImageNet dataset and the DT datasets.

Visualising the kernels learned by the networks and the features that they detect
can provide an insight of what is learned during training as explained in Appendix
A.4.7. Some classes in ImageNet contain images with high texture content such
as “cheetah”, “chainlink fence”, “theater curtains” and “grille”. As demonstrated
in Chapter 3, pre-training a T-CNN with such classes transfers better on texture
datasets than pre-training with object-like classes. The networks learn repetitive
texture patterns from these classes, which transfer well to spatial and temporal
texture slices in DTs. Inputting spatial or temporal slices from the DynTex database
to T-CNN pre-trained on ImageNet often highly activates neurons that learned to
recognise these classes with high texture content, even though the patterns are not
identical. This suggests that the repetitivity is learned by the networks to some extent
independently from the patterns shapes. Finally, the response at the last convolution
layer of the T-CNN to both spatial and temporal DT slices is denser than the response

81

Dynamic texture recognition with convolutional networks

to an object image and is repetitive across the feature map. This is also expected and
motivates the use of the energy layer for texture and DT analysis.

4.5 Discussion

A new DT-CNN approach has been designed for the analysis of DT sequences
based on convolutional networks applied on three orthogonal planes. The T-CNN
architecture proposed in the previous chapter has been applied to DT recognition and
another architecture has been developed for smaller images (Dyntex++ and UCLA).
Training independent networks on three orthogonal planes and combining their
outputs in an ensemble model has obtained conclusive results on DT classification
by learning to jointly recognise and pool spatial and dynamic features.

The approach has been evaluated on various datasets commonly used in the liter-
ature. The deepest architecture (DT-GoogleNet) obtained slightly higher accuracy
than the shallower one (DT-AlexNet) and has established a new state of the art on the
DynTex and Dyntex++ databases. The deep learning process enables the developed
approach to analyse and learn from many diverse datasets and setups with a good
invariance to rotation, illumination, scale, sequence length and camera motion. The
developed DT-CNNs achieved high accuracy (>98%) on all the tested datasets;
whereas previous methods in the literature are generally specialised in the analysis
of one particular database and fail for other ones (see Table 4.3). The saturation
of the results on these experiments has also revealed the lack of larger and more
challenging DT datasets to fully exploit and evaluate deep learning methods.

High accuracies have been obtained using single temporal planes, at times
outperforming the spatial analysis. It demonstrates both the domain transferability of
the features learned only on spatial images and the importance of temporal analysis
in DT recognition. Finally, the results have demonstrated the complementarity of the
spatial and temporal analyses with the best results obtained by the combination of
the three planes over single and two planes analyses.

82

Chapter 5

Texture segmentation with fully
convolutional networks

5.1 Introduction

The previous chapters have presented conclusive results in the classification of
texture and DT using convolutional networks. This chapter investigates the use of
Fully Convolutional Networks (FCNs) [6] (see Appendix A.4.5) for the segmentation
of texture images. A new architecture, referred to as FCNT (Fully Convolutional
Network for Texture) is developed for texture segmentation. This network discards
very deep shape information and combines the responses to filter banks at various
depths to make use of local information from shallow features and more global and
abstract information from deeper ones.

This chapter differentiates between two major texture segmentation problems
with different application focuses. The first problem concerns the semantic segmen-
tation of types of textures with a potentially large intra-class variation (e.g. wood,
grass, and textile). This is relatively similar to a classic image classification or
segmentation task in which an algorithm is trained to detect an object with many
possible variations (shape, scale, lighting, etc.) in a supervised manner with many
samples of each class. The second problem is to segment textures with a single
training sample (supervised) or with no training data at all (unsupervised). Note
that the approach is unsupervised but the training of FCN itself is supervised as
explained in Section 5.2. For this second problem in particular, the repetitivity of
the textural patterns is used which can be efficiently learned by finetuning a FCN
with little training data. Three sets of experiments are conducted to evaluate the
proposed approach including A) a supervised semantic segmentation with multiple
training images, B) a supervised segmentation with a single training image per class
and, C) an unsupervised segmentation. The developed approach is evaluated on
images generated specifically for experiment A, as well as on the Prague texture

83

Texture segmentation with fully convolutional networks

segmentation benchmark [26] (experiments B and C) with a significant improvement
of the state of the art.

The main contributions of this chapter include the following:
(1) A FCN architecture is developed for texture segmentation combining the anal-
ysis of simple local texture patterns with more global and complex patterns while
discarding the overall shape analysis;
(2) it is demonstrated that such network can learn to segment textures from non-
segmented training texture images;
(3) the developed FCNT can also be trained with very little training data (single
image per class and even parts of the test image itself) which enables learning texture
segmentation in an unsupervised framework;
(4) a segmentation refinement method is developed based on simple mathematical
morphology and information contained in the network output generally discarded by
classic inference.

The rest of this chapter is organised as follows: The developed approach is
described in Section 5.2 including network architecture, training, and segmentation
refinement methods. Three sets of experiments (A, B and C) are then presented in
Section 5.3 including supervised and unsupervised texture segmentation. Finally, a
discussion is provided in Section 5.4.

5.2 Material and Methods

This section describes the FCNT architecture for texture segmentation as well as a
simple segmentation refinement method1.

5.2.1 Network architecture

As demonstrated in the previous chapters, the overall shape analysis processed in
the deepest layers can be discarded for the analysis of texture. Therefore, a fully
convolutional architecture is developed based on the FCN8 network [6] with fewer
convolution layers, based on the same idea as T-CNN (see Chapter 3).

Segmentation difficulties can occur, in particular across texture boundaries, due
to downsampling in deep networks, resulting in large receptive fields with high
abstraction and a loss of local information. This issue can be addressed by using
skip connections [6] in FCNs in order to combine local and global information
in the deconvolution layers. This is particularly relevant in texture segmentation
as it does not only improve the boundaries segmentation but also provides high-
frequency details and analysis of small simple texture patterns. Where the FCN8

1The network architecture implemented with Caffe [165] and more details are available on GitHub:
https://github.com/v-andrearczyk/FCNT

84

https://github.com/v-andrearczyk/FCNT

5.2 Material and Methods

pool1

2x pool2

4x pool3

8x conv6

pool1 pool2 pool3conv1 conv2 conv3 conv4 pool4 conv5-6

2x upsampled
Prediction

(FCNT)

input

Figure 5.1: The FCNT architecture inspired from [6]. The grids reveal the relative
spatial coarseness of pooling and prediction layers. Convolution layers are depicted
as vertical lines. Skip connections, represented by arrows, allow the network to
combine local information from early layers with more global information extracted
by deeper layers (conv6). Diagram adapted from [6].

fuses the outputs of the third, fourth and seventh convolution blocks using skip layers,
the developed network aggregates information of the first, second, third and sixth
convolution blocks (conv1, conv2, conv3, and conv6) instead. The architecture of
the proposed FCNT is illustrated in Figure 5.1. The upsampling is performed by
successive deconvolution operations. Note that conv5 and conv6 are the equivalents
of fully-connected layers in classic CNN architectures.

5.2.2 Refinement of segmented regions

As explained in the previous section, local information from shallow layers is used
to significantly improve the boundary segmentation. Nevertheless, boundary pixels
remain a difficulty for segmentation and a major cause of misclassification of the
FCNT. For this reason, a segmentation refinement method is developed based on
the output of the network. In the classic inference phase of a FCN, each pixel is
assigned a prediction vector of size equal to the number of training classes. The
segmentation result is obtained by assigning each pixel to the class which corre-
sponds to the highest score in the corresponding prediction vector. However, more
information is available as each class is assigned a score in these vectors. The idea
of the refinement method is to make use of this extra information to improve the
segmentation results and to obtain a single texture region per class in experiments
B and C. To do so, N largest patches are isolated and filled (“largest patches” in
Algorithm 1), where N is the number of texture classes in the segmented image to
refine. A patch refers to a connected region that corresponds to an individual class
label. As illustrated in Figure 5.2f, there is generally more than one patch per texture
label before refinement. For instance, one large orange region detected the middle

85

Texture segmentation with fully convolutional networks

left wood texture, while multiple small other orange regions wrongly detected the
same texture. In an iterative process, the small isolated regions (pixels not part of
the largest patches) are then assigned the second best prediction of the network to
attempt to merge them with larger patches. Successively, the remaining isolated
regions are assigned to class labels with incrementally lower probability scores in
the output vectors. The refinement stops when a segmentation with a single patch
per class is obtained. The pseudo code for this approach is provided in Algorithm 1
below.

Algorithm 1 Pseudo code of the segmentation refinement method.

while N̄ ̸= N do
for n = 1..N do

Relabel n, largest patches → imn
if imn−1 ̸= imn(n > 1) then

break
end if

end for
end while

The number of patches and the number of texture classes are noted N̄ and N respec-
tively. “Largest patches” means that the largest patches of each class are filled, i.e.
the labels of the small regions fully contained in the N largest patches are changed
to the patches’ labels. “Relabel n” refers to the relabelling of the pixels which are
not part of the largest patches to the nth best class prediction of the network at these
pixel locations. Finally, imn is the image output of “largest patches” at the current
loop iteration. An example of refinement result is illustrated in Figure 5.2g (refined
from Figure 5.2f).

5.3 Experiments

In this section, the developed method is evaluated on a set of supervised and unsu-
pervised experiments. Three types of experiments (A, B and C) are conducted as
follows:

5.3.1 Experiment A: Supervised training with multiple training
images per class

This task is relatively similar to a classic FCN training method in the sense that
multiple training instances of the same class are used. The intra-class variation forces
the network to learn certain invariances to scale, rotation, and even types of textures.
However, the major differences with classic object segmentation problems are the

86

5.3 Experiments

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.2: Examples of segmentation with FCNT on the supervised Prague texture
segmentation task (experiment B) and comparison with the state of the art (see
Section 5.3.2 for more details on the state of the art methods). The models are trained
with one image per texture segment (six training images in this example). (a) Input
image to segment; (b) ground truth segmentation; (c) Markov Random Field (MRF)
segmentation [120]; (d) Co-Occurrence Features (COF) segmentation; (e) Con-Col
segmentation; (f) FCNT segmentation without refinement; (g) FCNT segmentation
with refinement. Best viewed in colour.

texture nature of the images and the fact that the training images are not segmented.
This means that the texture properties are homogeneous across an entire training
image and a single class label is given to all the pixels.

Datasets

For this experiment, two datasets are introduced as follows: For the kth-seg dataset,
images are taken from the kth-tips-2b dataset [22] which contains 11 classes of
texture images (see Section 3.3). Each class is made of four groups and each group
contains images at nine different scales. Images at scale 10 are used, therefore each
group in a particular class of the derived kth-seg dataset contains 12 images for a
total of 528 images. The evaluation is based on the idea of 4-fold cross-validation
used in [8, 25]. Each group is used once to create test images of multiple texture
regions while the remaining groups are used for training. Two to five images are
randomly picked from the test set to create a mosaic image with one texture region
from each image (all from different classes). For each fold, there is a total of 396
training images and 80 test images. For the Kylberg-seg dataset, images are taken
from the Kylberg texture classification dataset [31] which contains 28 classes of 160

87

Texture segmentation with fully convolutional networks

images each. One of 12 available orientations is randomly selected for each image
similarly to Section 3.3. Half of the dataset is used for training, the rest to create
test images. The 576×576 images are split into four subimages of size 288×288.
Images from the test set are randomly picked to create test images of size 288×288
with two to five texture regions from different classes, similarly to kth-seg. There
is a total of 8,960 training images and 80 test images. Examples of the developed
Kylberg-seg dataset are shown in the first row of Figure 5.3.

Note that in such supervised approach with non-segmented images, training
mosaic images could be created to help the network in taking boundary decisions.
However, this would be heavily biased, as the artificial segmentation would be very
similar to the test segmentation. This approach might not generalise well to real life
texture segmentation problems as the boundary between two real textures can be
curved, melted, blurred, etc.

Details of the network

In this experiment, the developed FCNT network is compared with the original
FCN8 [6]. Both networks are initialised with the weights learned with FCN8 on the
PASCAL VOC 2011 dataset [180]. Layers which are not common to both networks
(fully-connected and deconvolution layers) are initialised with the Xavier method
[181] (see Appendix A.2.3). The width of the network in the deconvolution layers
(number of feature maps in the last fully connected layer and following layers)
is equal to the number of training texture classes, i.e. 11 for kth-seg and 28 for
Kylberg-seg. The networks are trained with stochastic gradient descent similarly to
[6]. The amount of training data is relatively large (as compared to experiments B
and C), and the networks need to learn a high amount of information and variation.
Therefore, the networks are trained for 300,000 and 400,000 iterations for the kth-seg
and Kylberg-seg experiments respectively. Neither pre-processing, post-processing
nor refinement is applied to demonstrate only the discriminative power of FCNs in
texture segmentation with multiple training images per class.

Results

In this experiment, the FCN8 developed in [6] is compared with the developed FCNT
network. The results are summarised in Table 5.1 as the average correct assignment
of pixels, referred to as CO and explained in Section 2.2.3. Figure 5.3 illustrates
examples of segmentation results with two to five texture regions per test image.
Note that the segmentation results are directly given by the output of the network
which learned to recognise multiple classes from non-segmented training images.
The kth-seg and Kylberg-seg datasets contain 11 and 28 classes respectively with
challenging inter-class similarities and a high intra-class variation for kth-seg. The

88

5.3 Experiments

Table 5.1: Average correct pixel assignment (CO) of the proposed segmentation with
FCN8 [6] and FCNT networks on the developed kth-seg and Kylberg-seg datasets
(experiment A). The numbers next to the datasets (e.g. kth-X) represent the number
of texture regions per test image.

kth-2 kth-3 kth-4 kth-5 Kylb-2 Kylb-3 Kylb-4 Kylb-5
FCN8 67.93 72.60 67.76 64.98 85.94 79.13 77.43 76.33
FCNT 68.70 73.05 68.31 63.60 88.81 80.59 79.11 76.80

Figure 5.3: Examples of segmentation results with FCN8 [6] and with the developed
FCNT on experiment A (Kylberg-seg). First row: input test image to segment; second
row: ground truth segmentation; third row: FCN8 segmentation; fourth row: FCNT
segmentation. Best viewed in colour.

FCNT outperforms FCN8 on the developed texture segmentation datasets (except for
kth-5) which highlights the importance of using local information and discarding the
overall shape analysis. The best architecture for a given application, however, might
depend on the complexity of the texture patterns, the scale variation, the number
of texture regions, as well as the desired results (e.g. precise boundary decision,
minimum over-segmentation, etc.).

89

Texture segmentation with fully convolutional networks

5.3.2 Experiment B: Supervised training with single training im-
age per class

This experiment explores the application of the FCNT in a supervised segmentation
task using one training image per class, i.e. per texture region.

Dataset

The Prague texture segmentation benchmark [26] facilitates the testing and compari-
son of algorithms on a range of supervised and unsupervised texture segmentation
tasks. In this experiment, the supervised dataset with 20 test images is used. Each
test image contains a number of texture regions of different classes ranging from 3
to 12 and a single training image is provided for each class, i.e. N training images
for a test image containing N texture regions. Although different images are used
for the training and testing sets, the variation between training and testing images is
limited due to their visual similarity.

Details of the network

The FCNT is, like in experiment A, initialised with the weights learned by FCN8 on
the PASCAL VOC 2011 dataset, and layers which are not common to both networks
are initialised with the Xavier method. The width of the network in the deconvolution
layers is again equal to the number of training texture classes which is given for each
test image by the number of training images (3 to 12), and in turn is equal to the
number of ground truth regions in the test image. The networks are trained for 5,000
iterations similarly to [6], although the results are stable to small changes of this
number with a fast learning and negligible overfit.

Results

For this experiment, the developed method is compared to three algorithms whose
results are provided on the Prague texture segmentation website [182]. The algorithm
referred to as MRF is an implementation of the method developed in [120], an
image segmentation algorithm using a Markov Random Field pixel classification
model. Little information is provided about the second algorithm, referred to as
COF as it uses co-occurrence features with a nearest neighbour classifier. Finally, no
information is provided regarding the third method which reports the best results on
this supervised dataset. This last algorithm is referred to as Con-Col as named in
[182].

The results of this experiment are summarised in Table 5.2 in the form of various
segmentation evaluations including region-based, pixel-wise and consistency mea-

90

5.3 Experiments

Table 5.2: Results of experiment B on the Prague supervised dataset (normal size)
and comparison with the state of the art. The results of the developed FCNT
before segmentation refinement are referred to as FCNT-NR (no refinement). The
performance measures are described in Section 2.2.3. Up arrows in the second
column indicate that larger values correspond to better results and down arrows the
opposite. Results marked with * indicate that no publication is currently known.

Measures MRF* COF* Con-Col* FCNT-NR FCNT

Region-
based

↑ CS 46.11 52.48 84.57 87.52 96.01
↓ OS 0.81 0.00 0.00 0.00 1.56
↓ US 4.18 1.94 1.70 0.00 1.20
↓ ME 44.82 41.55 9.50 6.70 0.78
↓ NE 45.29 40.97 10.22 6.90 0.89

Pixel-wise

↑ CA 65.42 67.01 86.21 87.08 93.95
↑ CO 76.19 77.86 92.02 92.61 96.73
↑ CC 80.30 78.34 92.68 93.26 97.02
↑ EA 75.40 76.21 91.72 92.68 96.68
↑ MS 64.29 66.79 88.03 88.92 95.10
↑ CI 76.69 77.05 92.02 92.81 96.77
↓ O 14.52 20.74 7.00 7.49 2.72
↓ C 16.77 22.10 5.34 6.16 2.29
↓ I. 23.81 22.14 7.98 7.39 3.27
↓ II. 4.82 4.40 1.70 1.49 0.68
↓ RM 6.43 4.47 2.08 1.38 0.86

Consistency ↓ GCE 25.79 23.94 11.76 12.54 5.55
↓ LCE 20.68 19.69 8.61 9.94 3.75

sures (see subsection “Texture segmentation” in Section 2.2.3 for more information
on these performance measures). The proposed FCNT largely outperforms the best
results from the literature and significantly benefits from the segmentation refinement
method (see Section 5.2.2). Figure 5.2 illustrates examples of segmentation results
of the three algorithms from the literature and of the FCNT method with and without
segmentation refinement.

5.3.3 Experiment C: Unsupervised training

In this experiment, the FCNT is evaluated on an unsupervised texture segmentation
task, using patches extracted from the image as training data.

Dataset

In this last experiment, the Prague unsupervised texture segmentation dataset (ICPR
2014 contest [26]) is used. It contains 80 test images, including the 20 test images of
experiment B, without any training sample. Each test image contains 3 to 12 texture
regions which should be segmented as individual textures.

91

Texture segmentation with fully convolutional networks

Pre-segmentation

While this experiment is unsupervised, labels are required to train the network and
therefore a rough pre-segmentation map must be obtained from the test images.
The idea is that the FCNT can learn from little training texture data due to the
homogeneity and repetitivity across the regions of the test images. Therefore, the
network can be trained from patches of texture regions roughly segmented in an
unsupervised manner from the test images. Two methods are tested to obtain a
pre-segmentation map.

First, a simple K-means clustering method is used. To that end, the input image to
the pre-trained network is downsampled with bilinear interpolation by a factor of four
in order to obtain more homogeneous label regions and a fast clustering. A K-means
algorithm with a known number of clusters is run on the output of the FCNT. The
K-means clustering is performed in a feature space of dimensionality equal to the
number of classes in the pre-trained FCNT network. In this case, the dimensionality
is 11 as it is pre-trained on kth-tips-2b. Note that in the ICPR 2014 contest [26],
the number of clusters is unknown. This experiment is designed to demonstrate the
power of the FCNT in a texture segmentation with rough pre-segmentation and not to
evaluate such pre-segmentation methods. A known number of clusters K is therefore
used as it provides a simple pre-segmentation map. The problem of obtaining more
accurate pre-segmentation labels from the network with an unknown number of
textures is kept for future work. The obtained label map is then upsampled by the
same factor used to downsample the input image. The largest connected label region
for each class is filled and used for training while other small isolated regions and
dilated borders between regions are not used.

In a second approach, shallow segmentation algorithms from the literature are
used to obtain the pre-segmentation labels. The four algorithms, with segmentation
results provided in [182], are described in the following text. The Factorisation based
texture Segmentation (FSEG) [118] uses the local distribution of filter responses
(local spectral histograms, see Section 2.2) to construct a feature matrix. This matrix
is factorised based on singular value decomposition into two matrices, one containing
representative features, the other containing the weights used for linear combination
of the representative features at each pixel location. These weights indicate the
resulting segmentation map. The variational multi-phase segmentation framework
(PCA-MS) developed in [116] also uses a filter bank approach. It performs a PCA
dimensionality reduction of the extracted local spectral histograms and an energy
(Mumford-Shah) minimisation segmentation. The Priority Multi-Class Flooding
Algorithm (VRA-PMCFA) [183] involves a voting selection of a parameterised
number of representative blocks of pixels based on wavelet distributions, followed
by an iterative computation of segmentation maps by clustering, flooding and region

92

5.3 Experiments

merging. Finally, the last method achieves the state of the art on the unsupervised
Prague dataset [182], although no information is provided about the algorithm. This
method is referred to as MK in reference to the author’s name (Martin Kiechle).

Details of the network

When using a K-means pre-segmentation, the FCNT is pre-trained on kth-tips-2b to
obtain a first output without finetuning.

In order to train the network with the pre-segmentation map generated from
K-means or from other algorithms, the FCNT is initialised similarly to experiments
A and B. The test image itself is fed as training data with the pre-segmentation map
as training labels. The width of the network in the deconvolution layers is equal to
the number of training texture classes, given for each test image by the number of
classes present in the pre-segmentation map.

As patches of the test image are used for training with rough pre-segmentation
labels, the overfitting should be avoided. An assumption must be made that a
majority of pixels in the pre-segmentation map are correctly classified and that the
FCNT will first learn to segment these pixels which form a region of homogeneous
texture properties. Misclassified pixels in the pre-segmentation map should exhibit
a different texture. Yet, if it overfits, the network will learn a representation that
merges these outliers and the correct regions into the same class. This is due to
both the plasticity of the network and the small amount of training data. In order
to avoid overfitting, the output of the network is evaluated on the test image during
training. The training is stopped P iterations after all the texture classes present in
the pre-segmentation map are detected in the output of the trained network. In other
words, when at least one pixel is assigned to each class in the output segmentation
map, the network is only allowed to learn for P more iterations. This early stopping
method avoids overfitting the pre-segmentation training labels. Note that the number
of iterations is limited to Q if the previous condition is not reached. This limit avoids
overfitting an over-segmented training map in certain scenarios. In Figure 5.4d, for
instance, the orange over-segmented region present in Figure 5.4c has been discarded,
whereas the red one has been maintained. The parameters P and Q have been set by
trial and error to 60 and 400 respectively.

Results

The results are reported in Table 5.3 with the same evaluation measures as in experi-
ment B. Images of segmentation results obtained with the shallow algorithms as well
as the FCNT approach with different pre-segmentation methods are illustrated in
Figure 5.4. The FCNT used with existing pre-segmentation labels (FSEG, PCA-MS,
VRA-PMCFA and MK) consistently improves the results from the segmentation of

93

Texture segmentation with fully convolutional networks

Table 5.3: Results of the FCNT approach with various pre-segmentation methods
on the Prague unsupervised dataset (large size) and comparison with the state of the
art. Results of FSEG, PCA-MS, VRA-PMCFA and MK are reported as given on
the Prague texture dataset website [182]. Up arrows in the second column indicate
that larger values correspond to better results and down arrows indicate the opposite.
Results marked with * indicate that no publication is known at the time of writing.

Method FCNT FSEG FCNT PCA-MS FCNT VRA-PMCFA* FCNT MK* FCNT
labels K-means - FSEG - PCA-MS - VRA-PMCFA - MK

Region-
based

↑ CS 62.59 69.24 71.90 72.27 75.00 75.14 75.62 77.73 79.34
↓ OS 13.02 12.28 9.82 18.33 17.09 12.13 11.51 15.92 13.67
↓ US 16.31 17.03 19.86 9.41 9.69 9.85 10.17 6.31 6.25
↓ ME 13.98 7.71 4.73 4.19 3.62 4.38 4.76 3.93 3.80
↓ NE 14.09 6.89 4.26 3.92 3.32 4.37 4.66 3.92 3.80

Pixel-wise

↑ CA 74.58 76.32 78.67 81.13 83.02 83.45 83.77 82.80 84.17
↑ CO 82.79 84.05 85.62 85.96 87.41 88.12 88.54 86.89 87.97
↑ CC 83.90 84.15 84.35 91.24 91.77 90.73 90.51 93.65 94.15
↑ EA 81.42 82.53 83.71 87.08 88.20 88.07 88.23 88.03 88.97
↑ MS 74.18 77.11 79.18 81.84 83.61 83.92 84.28 83.98 85.23
↑ CI 82.30 83.26 84.32 87.81 88.87 88.72 88.80 89.03 89.91
↓ O 10.43 11.66 9.99 7.25 5.34 4.51 4.76 7.68 6.47
↓ C 12.45 11.71 8.46 6.44 5.53 8.89 7.81 24.24 22.88
↓ I. 17.21 15.95 14.38 14.04 12.59 11.88 11.46 13.11 12.03
↓ II. 3.56 3.29 3.11 1.59 1.47 1.48 1.48 1.50 1.42
↓ RM 5.21 5.00 5.11 4.45 4.25 3.75 3.71 3.27 3.12

Consistency ↓ GCE 14.21 10.75 7.62 8.33 6.75 6.55 6.39 7.40 6.46
↓ LCE 8.17 7.52 4.97 5.61 4.10 3.90 3.97 5.62 4.75

(a) (c) (e) (g) (i)

(b) (d) (f) (h) (j)

Figure 5.4: Examples of segmentation results using different methods on the Prague
unsupervised dataset. (a) Input image with superimposed ground truth boundaries;
(b) FCNT segmentation with K-means training; (c) FSEG segmentation; (d) FCNT
segmentation with FSEG pre-segmentation; (e) PCA-MS segmentation; (f) FCNT
segmentation with PCA-MS pre-segmentation; (f) PMCFA segmentation; (g) FCNT
segmentation with PMCFA pre-segmentation; (h) MK segmentation; (i) FCNT
segmentation with MK pre-segmentation; Best viewed in colour.

these shallow algorithms. The FCNT trained with labels from the MK segmentation
largely outperforms the state of the art (MK segmentation). When compared to the
literature, it obtains the best score on 12 out of 18 measurements and second best
score on four others.

94

5.4 Discussion

Note that these results are obtained on the Prague dataset referred to as “large”
in [26] (80 test images), whereas the supervised results are presented in Table 5.2 for
the “normal” Prague dataset (20 test images) in order to compare to the state of the
art. A comparison between supervised and unsupervised approaches is possible as
the results on the normal and large supervised datasets are very similar and the large
dataset is an extended version of the normal one. The supervised FCNT method
obtains 96.01% correct segmentation (CS) on the normal dataset and 95.64% on the
large dataset; as expected, significantly higher than the unsupervised best result of
79.34%.

5.4 Discussion

This chapter has demonstrated the power of FCNs in the segmentation of texture
regions. A fully convolutional architecture has been designed by combining shallow
features encoding local high-frequency information and deeper features containing
more abstract and lower frequency information. The developed FCNT can learn
to perform semantic segmentation from classic texture recognition datasets with
non-segmented textures such as kth-tips-2b and Kylberg datasets. This network can
also be trained with a very small amount of training data due to the repetitivity and
low-complexity of texture patterns. Indeed, the complexity of the texture patterns
is limited as compared to objects or scenes, and these simple patterns are easier to
learn via gradient descent. Numerous patterns at multiple scales and frequencies
are generally present in a texture region and the FCNT is trained to recognise each
pattern by learning filters at multiple scales, with a training label for every input
pixel. Each pattern can be thought of as an individual training sample with certain
variation from the others. These observations have been made in experiment B by
using a single training image per class and in experiment C by using texture regions
of the test image itself as training data. The FCNT has been tested on several tasks
including challenging supervised and unsupervised segmentations. The proposed
approach has largely improved the state of the art on the supervised and unsupervised
Prague texture segmentation benchmarks.

95

Texture segmentation with fully convolutional networks

96

Chapter 6

Conclusions and future work

This chapter summarises the thesis, highlights the contributions and limitations of
the research that was carried out and suggests several directions of research for
future work. In particular, Section 6.1 summarises the thesis and details the major
and minor contributions. Conclusions are drawn from the challenges, results, and
analyses developed throughout the dissertation. A discussion is proposed about
the limitations of the developed methods and, more globally, of deep learning.
Suggestions for future work are provided in Section 6.2 based on the limitations,
possible improvements, and alternative research paths.

6.1 Contributions and conclusions

This thesis has examined the analysis of textures and DTs using convolutional net-
works and deep learning. Texture and DT analysis is crucial in various applications
including remote sensing, industrial inspection, content-based image retrieval and
biomedical imaging. The scope of the research has been limited to the classification
of static and temporal textures as well as the segmentation of texture regions. The
motivation has raised from the following observations. Firstly, classic shallow texture
analysis methods often lack invariances to rotation, scale, noise, blur, etc. and of
abstraction of concepts. In turn, these methods lack generalisation to unknown data
in the context of high intra-class variation commonly encountered in texture analysis
problems. Moreover, classic approaches also require designing hand-crafted features
for particular applications, which may not perform well on other applications. A
thorough literature review of texture and DT analysis has been presented in Chapter
2. Classic feature extraction methods have been introduced including statistical,
model-based, filter banks, wavelets, LBP-like, as well as dictionary learning methods
which are a transition between hand-crafted descriptors and deep neural networks.
Secondly, CNNs and deep learning are currently the state of the art in a variety of
machine learning tasks across fields including computer vision, natural language

97

Conclusions and future work

processing, and speech recognition. CNNs learn multiple levels of visual features
from large amounts of training data in a hierarchy of concepts which performs very
well at recognising, detecting, segmenting or generating complex objects and scenes.
An introduction to neural networks, deep learning, and convolutional networks is
provided in Appendix A and recent deep learning methods applied to texture and
DT analysis have been presented in Chapter 2. A CNN can often be naively applied
to solve most computer vision problems due to its powerful learning scheme, its
good generalisation, and its flexibility. However, CNNs offer characteristics that
are particularly well suited for textures, with an extraction of features of increas-
ing complexity and increasing spatial supports throughout the network similar to a
multiscale non-linear filter bank. While this filter bank idea is shared with numer-
ous classic texture analysis methods, CNNs offer a powerful end-to-end training
of the filters and of the classification or segmentation of filter responses. Thirdly,
despite these similarities, CNNs are designed for object recognition and thus analyse
the overall shape and layout of images, whereas textures would benefit from an
orderless pooling and classification of relatively small and simple texture patterns.
The learning of complex and large features is conducted in the deepest convolution
and fully-connected layers of CNNs. These observations motivated the proposed
adaptations of deep convolutional networks to the analysis of texture images and
temporal textures.

The homogeneity and pattern repetitivity across texture images or regions, and
across time for DTs, have been largely exploited in this research. It enables the
orderless average pooling of feature maps activations for classification, similarly to an
energy response in a classic filter bank method. It also allows patches of large images
to be considered as individual samples of identical texture. Similarly, slices of a DT
sequence sampled across a spatial or a temporal plane can be treated as individual
samples providing variations of the same spatial or temporal texture. Moreover, it
enables the training of a texture segmentation network from non-segmented training
images, i.e. with a single homogeneous texture across the training image. Thus,
ground truth segmentation labels defined by hand are not required as opposed to
object segmentation datasets. Finally, it allows a network to be trained to segment
texture regions in an image directly from patches of this same image.

6.1.1 List of contributions

The first set of major contributions has been presented in Chapter 3. A CNN
architecture, referred to as T-CNN, has been developed for the classification of
texture images. The overall shape and layout analysis of classic CNNs (AlexNet and
GoogleNet) has been discarded by orderless average pooling of intermediate feature
maps. This energy approach significantly reduces the computational complexity

98

6.1 Contributions and conclusions

and memory consumption of the networks, while improving its performance. One
limitation, however, is that the developed deep network (GoogleNet adapted to
texture) does not reach the same accuracy as the FV encoding of deep convolution
layers in [8]. Texture and shape analyses have also been combined to demonstrate
their complementarity within an alternative new network architecture. An application
of the developed T-CNN has been introduced for the particular problem of biomedical
tissue images classification. The number of annotated biomedical images is often
limited due to privacy and to the lack of experts or of diagnosed patients. However,
the size of tissue images is large and, as mentioned previously, the textures are highly
repetitive. A framework has therefore been introduced in which the images are split
into subimages in order to increase the number of training samples and combine
multiple predictions at test time in an ensemble approach.

The second major contribution has been introduced in Chapter 4 as the extension
of the developed texture specific CNN to the spatiotemporal domain for the recogni-
tion of temporal textures. A framework has been designed which trains independent
networks to recognise spatial and temporal slices in three orthogonal planes (xy, xt,
and yt), regularly sampled along the temporal, horizontal, or vertical axes. Three
independent prediction outputs are then summed in an ensemble model to recognise
unknown DT sequences. Despite the lack of challenging datasets, the results have
highlighted the complementarity of the spatial and temporal analyses, outperforming
the state of the art on multiple benchmarks. The analysis of single and pairs of planes
has revealed that the temporal slices carry highly discriminative information. Even
though some temporal slices are relatively meaningless for humans (e.g. foliage in
the xt and yt planes illustrated in Figure 4.3), the developed networks are able to
extract informative and discriminative features from it, resulting in recognition rates
close to the spatial analysis results (xy plane).

The third major contribution has been presented in Chapter 5 as the segmentation
of texture regions using a new framework with an adapted fully convolutional archi-
tecture. FCNs classify every pixel in the input image into a given class. Some pixels
can be misclassified, in particular across region boundaries since the network makes
a prediction, for a given pixel, based on its neighbourhood. The neighbourhood
of a boundary pixel may be part of different texture regions which may result in
a wrong segmentation. This problem is mitigated in the segmentation of objects
as the contour or shape in the large neighbourhood, together with training ground
truth segmentation, provides information on the class of a given pixel. Textures,
however, are characterised by statistical properties and simple repetitive patterns
rather than their region shape and contour and must be analysed differently. A new
architecture, named FCNT, has therefore been designed to discard the overall shape
analysis and to combine filter responses at multiple scales. The local (“where”)

99

Conclusions and future work

information of early layers has been combined with the deeper and more global
(“what”) information. A segmentation refinement method has also been introduced
based on the fact that a FCN outputs a probability prediction for every class it is
trying to detect. Whereas only the highest prediction score is generally used as the
segmentation result for a given pixel, simple mathematical morphology methods
have been used with the full prediction vectors to grow and refine texture regions.
This refinement method results in the merging of isolated misclassified pixels with
larger regions and in a single texture region per class. It significantly improves
the segmentation across boundaries and largely outperforms the state of the art in
multiple supervised and unsupervised tasks. The experiments have demonstrated that
the developed FCNT can learn to segment textures from images of a single homoge-
neous texture, i.e. without ground truth segmentation. A first set of experiments has
demonstrated that it can semantically segment textures with high intra-class variation
from relatively large texture classification datasets (kth-tips-2b and Kylberg). The
second and third sets of experiments have demonstrated that little texture data is
required to train the networks due to the repetitivity and low-complexity of texture
patterns. Thus, a single training image per class is sufficient to finetune a pre-trained
network. Alternatively, a patch of an unknown test image can also be used to train a
network to segment that same image in an unsupervised scheme.

The domain transferability of pre-trained parameters has played an important
role in each chapter, in particular for the challenging and small datasets in Chapters
3 and 5. Various analyses of the learning process and of the domain transferability
have been conducted, including a depth analysis of the T-CNN, an evaluation of
domain transferability of pre-trained parameters and the visualisation of patterns
that neurons in trained networks respond to. Performance comparisons have also
been conducted between the developed texture specific deep approaches, classic
CNNs and shallow machine learning methods, as well as between supervised and
unsupervised segmentation problems. These analyses have shown that networks
pre-trained on a texture dataset transfer better to another texture analysis task than
those pre-trained on an object recognition dataset. Yet, the size of the training set is
predominantly important, which suggests that the proposed DT recognition method
could benefit from a large texture classification dataset with millions of images. The
visualisation methods explained in Appendix A.4.7 and used in Sections 3.4.4 and
4.4.3 have revealed that neurons in deep layers of the developed texture specific
CNNs respond to simple repeated patterns when trained on texture images, even
when the network was pre-trained on ImageNet. This visualisation has also suggested
that the repetitivity of texture patterns is learned as an important concept, to some
extent independently from the patterns shapes.

100

6.1 Contributions and conclusions

Besides these major contributions, minor contributions of this research are listed
in the following paragraphs.

A preliminary work has been presented in [151] for DT recognition based on
a hand-crafted statistical analysis of motion in the spatiotemporal domain and its
combination with binary pattern descriptors. The proposed approach was derived
from co-occurrence matrices [10, 60] to jointly analyse pairs of magnitudes and ori-
entations of the optical flow extracted between consecutive frames of DT sequences.
This work has not been included in the thesis as it significantly deviates from the
proposed deep learning ideas and approaches.

Three subsets of ImageNet have been introduced in [25] with (i) high texture
content images, (ii) object images and (iii) randomly selected classes. Each subset
contains 28 classes out of the 1,000 available classes in ImageNet and includes all
the training and validation images of the selected classes. These datasets can, for
instance, be used to compare the effect of pre-training a texture classification network
on different types of datasets as proposed in Section 3.3.

Two texture segmentation datasets have been developed in Section 5.3.1 based
on existing texture classification databases. They have been designed to evaluate
supervised texture segmentation methods trained with multiple images per class,
each image exhibiting a single homogeneous texture. These texture segmentation
datasets are available upon request for other researchers.

Algorithms have been made available at the following GitHub repositories. An
implementation of the T-CNN with 3 convolution layers finetuned and trained from
scratch on the kth-tips-2b database is available at: https://github.com/v-andrearczyk/
caffe-TCNN. An implementation of the DT-CNN approach developed in Chap-
ter 4 for the classification of DTs (Dyntex++) is provided at: https://github.com/
v-andrearczyk/DT-CNN. Finally, an implementation of the FCNT and the segmenta-
tion refinement method developed in Chapter 5 for texture segmentation is available
at: https://github.com/v-andrearczyk/FCNT.

In conclusion, this thesis has highlighted through various experiments and analy-
ses that CNNs are, subject to simple adaptations, well suited for the analysis of static
and temporal textures. This work has demonstrated that the orderless pooling of
intermediate feature maps is more adapted to the analysis of textures than the overall
shape and layout analysis of classic CNNs.

6.1.2 Limitations of deep learning

Deep learning and CNNs are the most popular machine learning methods and have
achieved the state of the art in most applications. Yet, it may not necessarily always
be the best solution to a machine learning problem. Several elements and limitations
are suggested in this section to emphasise this point.

101

https://github.com/v-andrearczyk/caffe-TCNN
https://github.com/v-andrearczyk/caffe-TCNN
https://github.com/v-andrearczyk/DT-CNN
https://github.com/v-andrearczyk/DT-CNN
https://github.com/v-andrearczyk/FCNT

Conclusions and future work

One drawback of deep neural networks is its memory requirement and computa-
tional complexity as compared to shallow machine learning algorithms. Although
this is a system problem rapidly vanishing due to technological advances, a less
complex model should always be preferred given equal performance [184]. Deep
networks should, therefore, be chosen for their better performance rather than for the
simplicity to apply them to various applications with little modification.

It has also been shown that CNNs are easily fooled. Trained CNNs, for instance,
can achieve accurate recognition on a very large and challenging dataset; yet, an
image can be modified in a way imperceptible to the human eye, which leads to a
misclassification [185]. In [186], the authors demonstrated that generated adversarial
images unrecognisable to humans are classified with high confidence by neural
networks as one of the training classes. Although adversarial images can also be
generated for classic machine learning algorithms, a certain knowledge about what
a system should learn can be directly incorporated into the design of hand-crafted
features to avoid likely fooling occurrences.

Not integrating any knowledge about the domain and data into a system, and
letting a CNN learn from images can be a source of erroneous model behaviour.
There are scenarios in which a simple machine learning approach may be a better
solution because an understanding of the problem and data can be used to engineer
relevant hand-crafted features. For instance, if the training set consists of a small
number of samples with low intra-class variation, a network may overfit. It may
learn to recognise a feature which does not represent the class of interest, e.g. the
colour of the background instead of an object of interest, and therefore will not
generalise well to unknown data. This difficulty may also occur with the texture and
DT analysis methods proposed in this thesis. With small training sets, it might be
difficult to control what CNNs learn as discriminative features. It could be fooled,
for instance, by orientation, illumination, scale, or artefacts and shapes which are
only present in the training set as the invariance to these transformations must be
learned through training. An analogy to the colour background example can be made
in texture analysis. A network may learn to recognise a particular shape or object
which is part of the training texture images rather than the texture of interest (e.g.
a person on the beach, a bird in the sky, a brand logo on clothes or the contour of
a shape containing a texture). An unknown image without this particular object
or contour will be misclassified. Note that this problem is mitigated by the use of
intermediate responses and the energy layer in the proposed TCNN approach, but
many other examples can be found with non-representative training sets. On the
other hand, invariance to specific variations, or knowledge of which type of feature
should be sought can be voluntarily enforced in shallow classifiers.

102

6.2 Future Work

These difficulties mainly concern small training datasets. As demonstrated in
Chapter 4, the proposed TCNN was outperformed by classic shallow DT recognition
algorithms on the smallest dataset while achieving significantly higher accuracy on
large datasets. Note that methods can be employed to attempt to overcome these
difficulties such as pre-training, synthetically increased training sets, learning to
recognise adversarial examples, regularisation methods, domain adaptation, and
Bayesian priors. However, designing appropriate simple hand-crafted features is
easier and may perform better in some scenarios. CNNs might also be combined
with hand-crafted knowledge and features in an ensemble manner.

A last important drawback of deep neural networks and of the solutions proposed
in this thesis is not knowing what the networks learn and how they make a prediction.
This problem, often referred to as the “black box”, is related to the difficulty in
tracing the prediction of a network back to important features, and revealing the
internal process of a model. The interpretability of a model may be crucial in certain
applications, for instance in medical image analysis, to obtain the approval of a
diagnosis system or to find hidden structures and proceed with further analysis.
Visualisation methods exist, however, to gain an insight into the complex functions,
decisions, and features in CNNs. These methods were described in Appendix A.4.7
and used in Chapters 3 and 4. Finally, Bayesian modelling [111] can be used
to understand what a network learns and why it makes a certain prediction for
interpretability.

6.2 Future Work

Future research can be considered to overcome the limitations of the proposed
approaches, to explore other research paths and to continue to advance the field of
texture analysis using deep learning.

Firstly, large and challenging datasets should be developed to fully exploit and
evaluate deep convolutional architectures in DT analysis. A solution to the difficulty
of capturing a large database of videos with high variations and a large number of
classes, could be to extract DT videos from the web. This approach, often referred to
as “in the wild” as opposed to data obtained under controlled settings, is commonly
used in computer vision. A texture recognition dataset is, for instance, developed in
[99] with images obtained “in the wild”.

Secondly, an interesting line of research for the recognition of DTs is to incorpo-
rate the analysis of the three planes into a single network architecture. A slow fusion
could be used instead of the late fusion adopted in Chapter 4, by allowing connec-
tions in intermediate layers between features extracted from different planes. This

103

Conclusions and future work

approach would allow a network to learn how to combine the spatial and temporal
information instead of learning it independently via multiple networks.

Thirdly, the fully convolutional method developed in Chapter 5 requires a pre-
segmentation step for the unsupervised segmentation. The results highly depend on
the obtained pre-segmentation map, in particular on the number of detected regions
since an under- pre-segmentation cannot be corrected by the FCNT approach. Note
that “under-segmentation” refers to the number of detected texture regions being
lower than the ground truth number. Since the FCNT is trained to recognise the pre-
segmented regions, it cannot detect more regions than these training instances. On
the other hand, an over- pre-segmentation can be corrected by the FCNT approach,
yet it is not always the case as illustrated in Figure 5.4. The best results have been
obtained in the experiments by using shallow segmentation algorithms from the
literature as label maps for training the networks. It has also been shown that the
output of the network can be used for pre-segmentation using a K-means clustering
method. This approach could be explored in more detail using robust clustering
methods in the output feature space with spatial constraints.

Finally, the proposed methods have been successfully evaluated on various
texture, biomedical tissue, and DT datasets. They could now be applied to various
texture problems and, in particular, in biomedical imaging for the segmentation
and recognition of lesions, nodules, and cancers or for the analysis of temporal
textures exhibited in sequences of ultrasound or X-rays. Note that the T-CNN has
been satisfyingly used by other authors, for instance in conjunction with haptic
information for surface material classification [187] or in combination with other
deep networks for image emotion recognition [188].

104

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[2] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167,
2015.

[3] T. Leung and J. Malik, “Representing and recognizing the visual appearance of
materials using three-dimensional textons,” International Journal of Computer
Vision, vol. 43, no. 1, pp. 29–44, 2001.

[4] K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,” Biological
cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3431–3440, 2015.

[7] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for image
categorization,” in Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, pp. 1–8, IEEE, 2007.

[8] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi, “Deep filter banks for
texture recognition, description, and segmentation,” International Journal of
Computer Vision, vol. 118, no. 1, pp. 65–94, 2016.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in
Neural Information Processing Systems, pp. 2672–2680, 2014.

[10] R. M. Haralick, K. Shanmugam, et al., “Textural features for image classifi-
cation,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 3, no. 6,
pp. 610–621, 1973.

[11] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel for
large-scale image classification,” in European Conference on Computer Vision,
pp. 143–156, Springer, 2010.

[12] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of tex-
ture measures with classification based on featured distributions,” Pattern
Recognition, vol. 29, no. 1, pp. 51–59, 1996.

105

References

[13] T. Ojala, M. Pietikäinen, and T. Maenpaa, “Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7,
pp. 971–987, 2002.

[14] G. Zhao and M. Pietikäinen, “Dynamic texture recognition using local binary
patterns with an application to facial expressions,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, no. 6, 2007.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems, pp. 1097–1105, 2012.

[16] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pp. 807–814, 2010.

[17] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Computer Vision, 1999. The proceedings of the seventh IEEE international
conference on, vol. 2, pp. 1150–1157, Ieee, 1999.

[18] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the
devil in the details: Delving deep into convolutional nets,” arXiv preprint
arXiv:1405.3531, 2014.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[20] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descrip-
tors into a compact image representation,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pp. 3304–3311, IEEE, 2010.

[21] A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using gabor
filters,” Pattern Recognition, vol. 24, no. 12, pp. 1167–1186, 1991.

[22] E. Hayman, B. Caputo, M. Fritz, and J.-O. Eklundh, “On the significance of
real-world conditions for material classification,” in Computer Vision-ECCV
2004, pp. 253–266, Springer, 2004.

[23] R. Polana and R. Nelson, “Temporal texture and activity recognition,” in
Motion-based recognition, pp. 87–124, Springer, 1997.

[24] R. Péteri, S. Fazekas, and M. J. Huiskes, “DynTex: A comprehensive database
of dynamic textures,” Pattern Recognition Letters, vol. 31, no. 12, pp. 1627–
1632, 2010.

[25] V. Andrearczyk and P. F. Whelan, “Using filter banks in convolutional neural
networks for texture classification,” Pattern Recognition Letters, vol. 84,
pp. 63–69, 2016.

[26] M. Haindl and S. Mikes, “Texture segmentation benchmark,” in Pattern
Recognition, 2008. ICPR 2008. 19th International Conference on, pp. 1–4,
IEEE, 2008.

[27] G. R. Cross and A. K. Jain, “Markov random field texture models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, no. 1, pp. 25–39,
1983.

106

References

[28] J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint
statistics of complex wavelet coefficients,” International Journal of Computer
Vision, vol. 40, no. 1, pp. 49–70, 2000.

[29] J. J. Gibson, “The perception of the visual world.,” 1950.

[30] J. Malik and R. Rosenholtz, “Computing local surface orientation and shape
from texture for curved surfaces,” International Journal of Computer Vision,
vol. 23, no. 2, pp. 149–168, 1997.

[31] G. Kylberg, “The Kylberg Texture Dataset v. 1.0,” External report (Blue
series) 35, Centre for Image Analysis, Swedish University of Agricultural
Sciences and Uppsala University, Uppsala, Sweden, September 2011.

[32] M. Tuceryan, A. K. Jain, et al., “Texture analysis,” Handbook of Pattern
Recognition and Computer Vision, vol. 2, pp. 235–276, 1993.

[33] J. Chen and A. K. Jain, “A structural approach to identify defects in textured
images,” in Systems, Man, and Cybernetics, 1988. Proceedings of the 1988
IEEE International Conference on, vol. 1, pp. 29–32, IEEE, 1988.

[34] F. Liu and R. W. Picard, “Periodicity, directionality, and randomness: Wold
features for image modeling and retrieval,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 18, no. 7, pp. 722–733, 1996.

[35] A. Depeursinge, O. S. Al-Kadi, and J. Mitchell, “Biomedical texture analysis,”
Fundamentals, Tools and Challenges (Academic Press, London, 2017), 2017.

[36] T.-Y. Lin and S. Maji, “Visualizing and understanding deep texture represen-
tations,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2791–2799, 2016.

[37] N. Jetchev, U. Bergmann, and R. Vollgraf, “Texture synthesis with spatial
generative adversarial networks,” arXiv preprint arXiv:1611.08207, 2016.

[38] R. Szeliski, Computer vision: Algorithms and applications. Springer Science
& Business Media, 2010.

[39] B. Ghanem and N. Ahuja, “Maximum margin distance learning for dynamic
texture recognition,” in Computer Vision–ECCV 2010, pp. 223–236, Springer,
2010.

[40] J. Chen, G. Zhao, M. Salo, E. Rahtu, and M. Pietikäinen, “Automatic dy-
namic texture segmentation using local descriptors and optical flow,” Image
Processing, IEEE Transactions on, vol. 22, no. 1, pp. 326–339, 2013.

[41] X. Qi, C.-G. Li, G. Zhao, X. Hong, and M. Pietikäinen, “Dynamic texture and
scene classification by transferring deep image features,” Neurocomputing,
vol. 171, pp. 1230–1241, 2016.

[42] B. Julesz, “Visual pattern discrimination,” IRE Transactions on Information
Theory, vol. 8, no. 2, pp. 84–92, 1962.

[43] B. Julesz, “Textons, the elements of texture perception, and their interactions,”
Nature, vol. 290, no. 5802, pp. 91–97, 1981.

107

References

[44] J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual cortical filters,” JOSA A,
vol. 2, no. 7, pp. 1160–1169, 1985.

[45] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic textures,” Interna-
tional Journal of Computer Vision, vol. 51, no. 2, pp. 91–109, 2003.

[46] C.-H. Peh and L.-F. Cheong, “Synergizing spatial and temporal texture,” Image
Processing, IEEE Transactions on, vol. 11, no. 10, pp. 1179–1191, 2002.

[47] K. G. Derpanis and R. P. Wildes, “Dynamic texture recognition based on
distributions of spacetime oriented structure,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pp. 191–198, IEEE, 2010.

[48] T. Randen and J. H. Husoy, “Filtering for texture classification: A comparative
study,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 21, no. 4, pp. 291–310, 1999.

[49] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network dissection:
Quantifying interpretability of deep visual representations,” arXiv preprint
arXiv:1704.05796, 2017.

[50] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual
recognition challenge,” International Journal of Computer Vision, pp. 1–42,
2014.

[51] V. Andrearczyk and P. F. Whelan, “Deep learning for biomedical texture
image analysis,” in Irish Machine Vision & Image Processing Conference
proceedings IMVIP 2016, 2016.

[52] V. Andrearczyk and P. F. Whelan, “Convolutional neural network on
three orthogonal planes for dynamic texture classification,” arXiv preprint
arXiv:1703.05530, 2017.

[53] V. Andrearczyk and P. F. Whelan, “Texture segmentation with fully convolu-
tional networks,” arXiv preprint arXiv:1703.05230, 2017.

[54] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using math-
ematical morphology,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, no. 4, pp. 532–550, 1987.

[55] H. Voorhees and T. Poggio, “Detecting textons and texture boundaries in
natural images,” in Proceedings of the First International Conference on
Computer Vision, vol. 59, pp. 250–258, 1987.

[56] D. Blostein and N. Ahuja, “Shape from texture: Integrating texture-element
extraction and surface estimation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 11, no. 12, pp. 1233–1251, 1989.

[57] M. Tuceryan and A. K. Jain, “Texture segmentation using voronoi polygons,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 2, pp. 211–216, 1990.

[58] F. Tomita and S. Tsuji, Computer analysis of visual textures, vol. 102. Springer
Science & Business Media, 1990.

108

References

[59] L. S. Davis, S. A. Johns, and J. Aggarwal, “Texture analysis using generalized
co-occurrence matrices,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, no. 3, pp. 251–259, 1979.

[60] R. M. Haralick, “Statistical and structural approaches to texture,” Proceedings
of the IEEE, vol. 67, no. 5, pp. 786–804, 1979.

[61] T.-H. Hong, C. R. Dyer, and A. Rosenfeld, “Texture primitive extraction using
an edge-based approach,” tech. rep., DTIC Document, 1979.

[62] R. L. Kashyap, R. Chellappa, and A. Khotanzad, “Texture classification using
features derived from random field models,” Pattern Recognition Letters,
vol. 1, no. 1, pp. 43–50, 1982.

[63] F. S. Cohen, Z. Fan, and M. A. Patel, “Classification of rotated and scaled
textured images using Gaussian Markov random field models,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 13, no. 2, pp. 192–
202, 1991.

[64] N. Cressie, Statistics for spatial data. John Wiley & Sons, 2015.

[65] J. Mao and A. K. Jain, “Texture classification and segmentation using multires-
olution simultaneous autoregressive models,” Pattern Recognition, vol. 25,
no. 2, pp. 173–188, 1992.

[66] B. B. Mandelbrot and R. Pignoni, “The fractal geometry of nature,” 1983.

[67] Y. Fisher, M. McGuire, R. F. Voss, M. F. Barnsley, R. L. Devaney, B. B.
Mandelbrot, H.-O. Peitgen, and D. Saupe, The science of fractal images.
Springer Science & Business Media, 2012.

[68] J. M. Keller, S. Chen, and R. M. Crownover, “Texture description and seg-
mentation through fractal geometry,” Computer Vision, Graphics, and Image
Processing, vol. 45, no. 2, pp. 150–166, 1989.

[69] N. Sarkar and B. Chaudhuri, “An efficient differential box-counting approach
to compute fractal dimension of image,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 24, no. 1, pp. 115–120, 1994.

[70] A. P. Pentland, “Fractal-based description of natural scenes,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, no. 6, pp. 661–674,
1984.

[71] K. C. Clarke, “Computation of the fractal dimension of topographic surfaces
using the triangular prism surface area method,” Computers & Geosciences,
vol. 12, no. 5, pp. 713–722, 1986.

[72] M. M. Galloway, “Texture analysis using gray level run lengths,” Computer
Graphics and Image Processing, vol. 4, no. 2, pp. 172–179, 1975.

[73] G. Thibault, B. Fertil, C. Navarro, S. Pereira, P. Cau, N. Levy, J. Sequeira,
and J.-L. Mari, “Shape and texture indexes application to cell nuclei classifica-
tion,” International Journal of Pattern Recognition and Artificial Intelligence,
vol. 27, no. 01, p. 1357002, 2013.

[74] H. Kaizer, “A quantification of textures on aerial photographs,” Tech. Note,
vol. 121, 1955.

109

References

[75] A. Rosenfeld and A. Kak, Digital picture processing. Academic Press, 1982.

[76] K. I. Laws, “Rapid texture identification,” in 24th annual technical symposium,
pp. 376–381, International Society for Optics and Photonics, 1980.

[77] W. T. Freeman, E. H. Adelson, et al., “The design and use of steerable filters,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13,
no. 9, pp. 891–906, 1991.

[78] M. Unser and M. Eden, “Multiresolution feature extraction and selection for
texture segmentation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, no. 7, pp. 717–728, 1989.

[79] V. Ojansivu and J. Heikkilä, “Blur insensitive texture classification using
local phase quantization,” in International Conference on Image and Signal
Processing, pp. 236–243, Springer, 2008.

[80] A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel texture analysis
using localized spatial filters,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 12, no. 1, pp. 55–73, 1990.

[81] J. F. R. Herrera and V. G. Ruiz, “Image coding fundamentals,” 2014. Accessed:
2017-03-30.

[82] I. Daubechies, Ten lectures on wavelets. SIAM, 1992.

[83] T. Chang and C.-C. Kuo, “Texture analysis and classification with tree-
structured wavelet transform,” IEEE Transactions on Image Processing, vol. 2,
no. 4, pp. 429–441, 1993.

[84] N. Kingsbury, “Complex wavelets for shift invariant analysis and filtering
of signals,” Applied and Computational Harmonic Analysis, vol. 10, no. 3,
pp. 234–253, 2001.

[85] I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-tree complex
wavelet transform,” IEEE Signal Processing Magazine, vol. 22, no. 6, pp. 123–
151, 2005.

[86] M. Varma and A. Zisserman, “Texture classification: Are filter banks neces-
sary?,” in Computer Vision and Pattern Recognition, 2003. Proceedings. 2003
IEEE computer society conference on, vol. 2, pp. II–691, IEEE, 2003.

[87] T. Ojala, K. Valkealahti, E. Oja, and M. Pietikäinen, “Texture discrimination
with multidimensional distributions of signed gray-level differences,” Pattern
Recognition, vol. 34, no. 3, pp. 727–739, 2001.

[88] M. Pietikäinen, T. Ojala, and Z. Xu, “Rotation-invariant texture classification
using feature distributions,” Pattern Recognition, vol. 33, no. 1, pp. 43–52,
2000.

[89] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local binary
pattern operator for texture classification,” IEEE Transactions on Image Pro-
cessing, vol. 19, no. 6, pp. 1657–1663, 2010.

[90] L. Liu, L. Zhao, Y. Long, G. Kuang, and P. Fieguth, “Extended local binary
patterns for texture classification,” Image and Vision Computing, vol. 30, no. 2,
pp. 86–99, 2012.

110

References

[91] T. Ahonen, J. Matas, C. He, and M. Pietikäinen, “Rotation invariant image de-
scription with local binary pattern histogram Fourier features,” Image Analysis,
pp. 61–70, 2009.

[92] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition
under difficult lighting conditions,” IEEE Transactions on Image Processing,
vol. 19, no. 6, pp. 1635–1650, 2010.

[93] L. Liu, P. Fieguth, X. Wang, M. Pietikäinen, and D. Hu, “Evaluation of
LBP and Deep Texture Descriptors with a New Robustness Benchmark,” in
European Conference on Computer Vision, pp. 69–86, Springer, 2016.

[94] B. Zhang, Y. Gao, S. Zhao, and J. Liu, “Local derivative pattern versus local
binary pattern: face recognition with high-order local pattern descriptor,”
IEEE Transactions on Image Processing, vol. 19, no. 2, pp. 533–544, 2010.

[95] M. Heikkilä, M. Pietikäinen, and C. Schmid, “Description of interest regions
with local binary patterns,” Pattern Recognition, vol. 42, no. 3, pp. 425–436,
2009.

[96] J. Chen, S. Shan, C. He, G. Zhao, M. Pietikäinen, X. Chen, and W. Gao,
“WLD: A robust local image descriptor,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 32, no. 9, pp. 1705–1720, 2010.

[97] J. Sivic, A. Zisserman, et al., “Video google: A text retrieval approach to
object matching in videos.,” in Computer Vision, 2003. ICCV 2003. Ninth
IEEE International Conference on, vol. 2, pp. 1470–1477, 2003.

[98] M. Varma and A. Zisserman, “A statistical approach to texture classification
from single images,” International Journal of Computer Vision, vol. 62, no. 1-
2, pp. 61–81, 2005.

[99] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing
textures in the wild,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3606–3613, 2014.

[100] G. Sharma, S. Ul Hussain, and F. Jurie, “Local higher-order statistics (LHS)
for texture categorization and facial analysis,” in European Conference on
Computer Vision, pp. 1–12, Springer, 2012.

[101] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categoriza-
tion with bags of keypoints,” in Workshop on statistical learning in computer
vision, ECCV, vol. 1, pp. 1–2, Prague, 2004.

[102] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,”
in European Conference on Computer Vision, pp. 404–417, Springer, 2006.

[103] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine
learning approach to corner detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, no. 1, pp. 105–119, 2010.

[104] J.-H. Lee, M.-Y. Wu, and H.-T. Kuo, “Evaluation of robust feature descriptors
for texture classification,” Evaluation, vol. 1, p. 11046.

[105] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 1, pp. 886–893, IEEE, 2005.

111

References

[106] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation for
local image descriptors,” in Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on,
vol. 2, pp. II–II, IEEE, 2004.

[107] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary robust
independent elementary features,” in European Conference on Computer
Vision, pp. 778–792, Springer, 2010.

[108] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation using
local affine regions,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1265–1278, 2005.

[109] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support
vector machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2,
pp. 415–425, 2002.

[110] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classification
with the fisher vector: Theory and practice,” International journal of Computer
Vision, vol. 105, no. 3, pp. 222–245, 2013.

[111] C. M. Bishop, Neural networks for pattern recognition. Oxford university
press, 1995.

[112] B. Caputo, E. Hayman, and P. Mallikarjuna, “Class-specific material cate-
gorisation,” in Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on, vol. 2, pp. 1597–1604, IEEE, 2005.

[113] K. J. Dana, B. Van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance
and texture of real-world surfaces,” ACM Transactions On Graphics (TOG),
vol. 18, no. 1, pp. 1–34, 1999.

[114] N. Paragios and R. Deriche, “Geodesic active regions and level set methods for
supervised texture segmentation,” International Journal of Computer Vision,
vol. 46, no. 3, pp. 223–247, 2002.

[115] W. Byeon and T. M. Breuel, “Supervised texture segmentation using 2D
LSTM networks,” in 2014 IEEE International Conference on Image Process-
ing (ICIP), pp. 4373–4377, IEEE, 2014.

[116] N. Mevenkamp and B. Berkels, “Variational multi-phase segmentation us-
ing high-dimensional local features,” in 2016 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 1–9, IEEE, 2016.

[117] X. Liu and D. Wang, “Image and texture segmentation using local spec-
tral histograms,” IEEE Transactions on Image Processing, vol. 15, no. 10,
pp. 3066–3077, 2006.

[118] J. Yuan, D. Wang, and A. M. Cheriyadat, “Factorization-based texture segmen-
tation,” IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3488–
3497, 2015.

[119] C. Bouman and B. Liu, “Multiple resolution segmentation of textured images,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13,
no. 2, pp. 99–113, 1991.

112

References

[120] Z. Kato, T.-C. Pong, and J. C.-M. Lee, “Color image segmentation and
parameter estimation in a markovian framework,” Pattern Recognition Letters,
vol. 22, no. 3, pp. 309–321, 2001.

[121] P. C. Chen and T. Pavlidis, “Segmentation by texture using a co-occurrence
matrix and a split-and-merge algorithm,” Computer Graphics and Image
Processing, vol. 10, no. 2, pp. 172–182, 1979.

[122] S. Basu, M. Karki, S. Mukhopadhyay, S. Ganguly, R. Nemani, R. DiBiano,
and S. Gayaka, “A theoretical analysis of deep neural networks for texture
classification,” pp. 992–999, 2016.

[123] Y. Song, Q. Li, D. Feng, J. J. Zou, and W. Cai, “Texture image classification
with discriminative neural networks,” Computational Visual Media, vol. 2,
no. 4, pp. 367–377, 2016.

[124] F. H. C. Tivive and A. Bouzerdoum, “Texture classification using convolu-
tional neural networks,” in TENCON 2006-2006 IEEE Region 10 Conference,
pp. 1–4, IEEE, 2006.

[125] L. G. Hafemann, L. S. Oliveira, and P. Cavalin, “Forest species recognition
using deep convolutional neural networks,” in Pattern Recognition (ICPR),
2014 22nd International Conference on, pp. 1103–1107, IEEE, 2014.

[126] L. G. Hafemann, L. S. Oliveira, P. R. Cavalin, and R. Sabourin, “Transfer
learning between texture classification tasks using Convolutional Neural Net-
works,” in 2015 International Joint Conference on Neural Networks (IJCNN),
pp. 1–7, IEEE, 2015.

[127] W. Byeon, M. Liwicki, and T. M. Breuel, “Texture classification using 2D
LSTM networks,” in Pattern Recognition (ICPR), 2014 22nd International
Conference on, pp. 1144–1149, IEEE, 2014.

[128] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1872–1886, 2013.

[129] L. Sifre and S. Mallat, “Rotation, scaling and deformation invariant scatter-
ing for texture discrimination,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1233–1240, 2013.

[130] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “PCANet: A simple
deep learning baseline for image classification?,” IEEE Transactions on Image
Processing, vol. 24, no. 12, pp. 5017–5032, 2015.

[131] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Dar-
rell, “DeCAF: A Deep Convolutional Activation Feature for Generic Visual
Recognition.,” in Icml, vol. 32, pp. 647–655, 2014.

[132] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear CNN models for fine-
grained visual recognition,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 1449–1457, 2015.

[133] H. Zhang, J. Xue, and K. Dana, “Deep TEN: Texture Encoding Network,”
arXiv preprint arXiv:1612.02844, 2016.

113

References

[134] D. Marcos, M. Volpi, and D. Tuia, “Learning rotation invariant convolutional
filters for texture classification,” arXiv preprint arXiv:1604.06720, 2016.

[135] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convolutional
neural networks,” in Advances in Neural Information Processing Systems,
pp. 262–270, 2015.

[136] B. Afsari, R. Chaudhry, A. Ravichandran, and R. Vidal, “Group action in-
duced distances for averaging and clustering linear dynamical systems with
applications to the analysis of dynamic scenes,” in Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference on, pp. 2208–2215, IEEE,
2012.

[137] D. Tiwari and V. Tyagi, “Dynamic texture recognition using multiresolution
edge-weighted local structure pattern,” Computers & Electrical Engineering,
2016.

[138] E. Rahtu, J. Heikkilä, V. Ojansivu, and T. Ahonen, “Local phase quantization
for blur-insensitive image analysis,” Image and Vision Computing, vol. 30,
no. 8, pp. 501–512, 2012.

[139] F. Yang, G.-S. Xia, G. Liu, L. Zhang, and X. Huang, “Dynamic texture
recognition by aggregating spatial and temporal features via ensemble SVMs,”
Neurocomputing, vol. 173, pp. 1310–1321, 2016.

[140] R. Péteri and D. Chetverikov, “Dynamic texture recognition using normal flow
and texture regularity,” in Pattern Recognition and Image Analysis, pp. 223–
230, Springer, 2005.

[141] S. Fazekas and D. Chetverikov, “Dynamic texture recognition using optical
flow features and temporal periodicity,” in Content-Based Multimedia Index-
ing, 2007. CBMI’07. International Workshop on, pp. 25–32, IEEE, 2007.

[142] A. Ravichandran, R. Chaudhry, and R. Vidal, “Categorizing dynamic textures
using a bag of dynamical systems,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 35, no. 2, pp. 342–353, 2013.

[143] K. Fujita and S. K. Nayar, “Recognition of dynamic textures using impulse
responses of state variables,” in Proc. Third International Workshop on Texture
Analysis and Synthesis (Texture 2003), pp. 31–36, 2003.

[144] Q. Yu-long and W. Fu-shan, “Dynamic texture classification based on dual-
tree complex wavelet transform,” in Instrumentation, Measurement, Computer,
Communication and Control, 2011 First International Conference on, pp. 823–
826, IEEE, 2011.

[145] W. N. Gonçalves, B. B. Machado, and O. M. Bruno, “Spatiotemporal Ga-
bor filters: A new method for dynamic texture recognition,” arXiv preprint
arXiv:1201.3612, 2012.

[146] H. Ji, X. Yang, H. Ling, and Y. Xu, “Wavelet domain multifractal analy-
sis for static and dynamic texture classification,” Image Processing, IEEE
Transactions on, vol. 22, no. 1, pp. 286–299, 2013.

[147] C. Feichtenhofer, A. Pinz, and R. Wildes, “Bags of spacetime energies for
dynamic scene recognition,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2681–2688, 2014.

114

References

[148] G. Zhao and M. Pietikäinen, “Dynamic texture recognition using volume local
binary patterns,” in Dynamical Vision, pp. 165–177, Springer, 2007.

[149] D. Tiwari and V. Tyagi, “Improved Weber’s law based local binary pattern for
dynamic texture recognition,” Multimedia Tools and Applications, pp. 1–18,
2016.

[150] G. Zhao, T. Ahonen, J. Matas, and M. Pietikainen, “Rotation-invariant image
and video description with local binary pattern features,” IEEE Transactions
on Image Processing, vol. 21, no. 4, pp. 1465–1477, 2012.

[151] V. Andrearczyk and P. F. Whelan, “Dynamic texture classification using
combined co-occurrence matrices of optical flow,” in Irish Machine Vision &
Image Processing Conference proceedings IMVIP 2015, 2015.

[152] A. Ramirez Rivera and O. Chae, “Spatiotemporal directional number transi-
tional graph for dynamic texture recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 37, no. 10, pp. 2146–2152, 2015.

[153] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks for hu-
man action recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[154] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” arXiv preprint
arXiv:1412.0767, 2014.

[155] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, “Large-scale video classification with convolutional neural networks,”
in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 1725–1732, 2014.

[156] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in Advances in Neural Information Processing
Systems, pp. 568–576, 2014.

[157] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional net-
works for visual recognition and description,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2625–2634,
2015.

[158] J. Shao, C.-C. Loy, K. Kang, and X. Wang, “Slicing convolutional neural net-
work for crowd video understanding,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5620–5628, 2016.

[159] J. Shao, C. C. Loy, K. Kang, and X. Wang, “Crowded scene understanding by
deeply learned volumetric slices,” IEEE Transactions on Circuits and Systems
for Video Technology, 2016.

[160] D. Culibrk and N. Sebe, “Temporal dropout of changes approach to convolu-
tional learning of spatio-temporal features,” in Proceedings of the 22nd ACM
International Conference on Multimedia, pp. 1201–1204, ACM, 2014.

[161] X. Yan, H. Chang, S. Shan, and X. Chen, “Modeling video dynamics with
deep dynencoder,” in European Conference on Computer Vision, pp. 215–230,
Springer, 2014.

115

References

[162] S. R. Arashloo, M. C. Amirani, and A. Noroozi, “Dynamic texture repre-
sentation using a deep multi-scale convolutional network,” Journal of Visual
Communication and Image Representation, 2016.

[163] S. Hong, J. Ryu, W. Im, and H. S. Yang, “Recognizing dynamic scenes with
deep dual descriptor based on key frames and key segments,” arXiv preprint
arXiv:1702.04479, 2017.

[164] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–9, 2015.

[165] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional Architecture for Fast Feature
mbedding,” arXiv preprint arXiv:1408.5093, 2014.

[166] G. Kylberg and I.-M. Sintorn, “Evaluation of noise robustness for local binary
pattern descriptors in texture classification,” EURASIP Journal on Image and
Video Processing, vol. 2013, no. 1, pp. 1–20, 2013.

[167] P. L. Paula Filho, L. S. Oliveira, S. Nisgoski, and A. S. Britto Jr, “Forest species
recognition using macroscopic images,” Machine Vision and Applications,
vol. 25, no. 4, pp. 1019–1031, 2014.

[168] J. Martins, L. Oliveira, S. Nisgoski, and R. Sabourin, “A database for au-
tomatic classification of forest species,” Machine Vision and Applications,
vol. 24, no. 3, pp. 567–578, 2013.

[169] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-layer
features of a deep network,” University of Montreal, vol. 1341, 2009.

[170] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding
neural networks through deep visualization,” arXiv preprint arXiv:1506.06579,
2015.

[171] N. Orlov, L. Shamir, T. Macura, J. Johnston, D. M. Eckley, and I. G. Goldberg,
“WND-CHARM: Multi-purpose image classification using compound image
transforms,” Pattern Recognition Letters, vol. 29, no. 11, pp. 1684–1693,
2008.

[172] V. Uhlmann, S. Singh, and A. E. Carpenter, “CP-CHARM: Segmentation-free
image classification made accessible,” BMC Bioinformatics, vol. 17, no. 1,
p. 1, 2016.

[173] N. Hervé, A. Servais, E. Thervet, J.-C. Olivo-Marin, and V. Meas-Yedid,
“Statistical color texture descriptors for histological images analysis,” in 2011
IEEE International Symposium on Biomedical Imaging: From Nano to Macro,
pp. 724–727, IEEE, 2011.

[174] H.-L. Huang, M.-H. Hsu, H.-C. Lee, P. Charoenkwan, S.-J. Ho, and S.-Y.
Ho, “Prediction of mouse senescence from HE-Stain liver images using an
ensemble SVM classifier,” in Asian Conference on Intelligent Information
and Database Systems, pp. 325–334, Springer, 2013.

116

References

[175] L. Shamir, N. Orlov, D. M. Eckley, T. J. Macura, and I. G. Goldberg, “IICBU
2008: A proposed benchmark suite for biological image analysis,” Medical &
Biological Engineering & Computing, vol. 46, no. 9, pp. 943–947, 2008.

[176] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?,” in Advances in Neural Information Processing
Systems, pp. 3320–3328, 2014.

[177] Y. Xu, Y. Quan, H. Ling, and H. Ji, “Dynamic texture classification using dy-
namic fractal analysis,” in Computer Vision (ICCV), 2011 IEEE International
Conference on, pp. 1219–1226, IEEE, 2011.

[178] E. Norouznezhad, M. T. Harandi, A. Bigdeli, M. Baktash, A. Postula, and
B. C. Lovell, “Directional space-time oriented gradients for 3d visual pattern
analysis,” in Computer Vision–ECCV 2012, pp. 736–749, Springer, 2012.

[179] J. Ren, X. Jiang, and J. Yuan, “Dynamic texture recognition using enhanced
LBP features.,” in ICASSP, pp. 2400–2404, 2013.

[180] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2011 VOC2011 results.” http://www.pascal-
network.org/challenges/VOC/voc2011/workshop/index.html, 2016.

[181] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks.,” in AISTATS, vol. 9, pp. 249–256, 2010.

[182] M. Haindl and S. Mikes, “The prague texture segmentation datagenerator and
benchmark.” http://mosaic.utia.cas.cz/index.php?act=view_res, 2008. [Online;
accessed 25-January-2017].

[183] C. Panagiotakis, I. Grinias, and G. Tziritas, “Natural image segmentation
based on tree equipartition, bayesian flooding and region merging,” IEEE
Transactions on Image Processing, vol. 20, no. 8, pp. 2276–2287, 2011.

[184] I. G. Y. Bengio and A. Courville, “Deep learning.” Book in preparation for
MIT Press, 2016.

[185] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[186] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436,
2015.

[187] H. Zheng, L. Fang, M. Ji, M. Strese, Y. Özer, and E. Steinbach, “Deep learning
for surface material classification using haptic and visual information,” IEEE
Transactions on Multimedia, vol. 18, no. 12, pp. 2407–2416, 2016.

[188] T. Rao, M. Xu, and D. Xu, “Learning multi-level deep representations for
image emotion classification,” arXiv preprint arXiv:1611.07145, 2016.

[189] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review
and new perspectives,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

117

http://mosaic.utia.cas.cz/index.php?act=view_res

References

[190] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory, 1957.

[191] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

[192] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[193] D. Kingma and J. Ba, “ADAM: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[194] G. E. Hinton, “Learning translation invariant recognition in a massively par-
allel networks,” in International Conference on Parallel Architectures and
Languages Europe, pp. 1–13, Springer, 1987.

[195] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting.,” Journal
of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[196] D. O. Hebb, The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

[197] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[198] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[199] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[200] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,
“Mastering the game of go with deep neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[201] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[202] M. A. Ranzato, C. Poultney, S. Chopra, Y. L. Cun, et al., “Efficient learning
of sparse representations with an energy-based model,” in Advances in Neural
Information Processing Systems, pp. 1137–1144, 2006.

[203] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[204] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing
with LSTM recurrent networks,” Journal of Machine Learning Research,
vol. 3, no. Aug, pp. 115–143, 2002.

[205] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional
networks,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pp. 2528–2535, IEEE, 2010.

118

References

[206] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of
monkey striate cortex,” The Journal of physiology, vol. 195, no. 1, pp. 215–
243, 1968.

[207] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective re-
ceptive field in deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, pp. 4898–4906, 2016.

[208] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[209] M. A. Ranzato, F. J. Huang, Y.-L. Boureau, Y. LeCun, et al., “Unsupervised
learning of invariant feature hierarchies with applications to object recogni-
tion,” in 2007 IEEE conference on Computer Vision and Pattern Recognition,
pp. 1–8, IEEE, 2007.

[210] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770–778, 2016.

[211] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European Conference on Computer Vision, pp. 818–833, Springer,
2014.

[212] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for
simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.

[213] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587,
2014.

[214] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hypercolumns for
object segmentation and fine-grained localization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 447–456,
2015.

[215] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[216] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” arXiv preprint arXiv:1512.00567,
2015.

[217] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave like
ensembles of relatively shallow networks,” in Advances in Neural Information
Processing Systems, pp. 550–558, 2016.

[218] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-
ResNet and the impact of residual connections on learning,” arXiv preprint
arXiv:1602.07261, 2016.

[219] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and< 0.5 MB model size,” arXiv preprint arXiv:1602.07360, 2016.

119

References

[220] F. Chollet, “Deep learning with separable convolutions,” arXiv preprint
arXiv:1610.02357, 2016.

[221] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[222] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, and
G. Wang, “Recent advances in convolutional neural networks,” arXiv preprint
arXiv:1512.07108, 2015.

120

Appendix A

Introduction to deep learning and
convolutional neural networks

A.1 Introduction

A.1.1 Overview

This appendix introduces neural networks and deep learning methods followed by
Convolutional Neural Networks (CNNs). It seeks to explain the main concepts used
in the thesis as well as some of the most popular architectures and advances. An
effort was made to keep the content concise while giving an overview and defining
important notions used in the thesis. Only a small portion of the constantly expanding
deep learning and CNN research is therefore covered. Many references are provided
throughout the chapter for the readers who seek more information on specific topics.
In particular, more details on neural networks can be found in [111] while deep
learning methods and CNNs are covered in detail in [184].

A.1.2 Definitions

Neural network

Neural networks, also known as Artificial Neural Networks (ANNs), are biologically-
inspired machine learning approaches which can learn how to perform tasks from
observed data. In an ANN, sets of neurons are organised in interconnected layers.
The connections between neurons are called weights (the equivalent of synapses in a
biological neural network) and can be trained automatically to infer a function with an
optimisation method. A key difference from classic machine learning approaches is
the possibility of replacing the hand-crafted features by powerful learning algorithms.

121

Introduction to deep learning and convolutional neural networks

Deep learning

Deep learning is a machine learning approach to train deep neural networks, i.e.
ANNs with many layers. Deep neural networks learn multiple levels of data repre-
sentation in order to build a hierarchy of concepts. It is based on a cascade of layers
which compute linear and non-linear transformations of the input data to build an
increasing level of abstraction of the data. Abstraction refers in this document to the
invariance of features to variations of the same concept [189]. Similarly to machine
learning algorithms, it can be supervised, semi-supervised or unsupervised.

A.1.3 Motivation

Simple artificial intelligence algorithms enable computers to compute tasks that are
difficult for humans (e.g. playing chess, weather or stock market forecast). These
tasks are formal and restricted in the level of abstraction of representation required
to perform them. However, other tasks that are very easily computed by humans
and sometimes animals (e.g. vision, speech, speech understanding and reading) are
extremely difficult to implement with classic machine learning algorithms. These
difficulties arise from the size of input data and the fact that the tasks are more
informal and require a higher level of abstraction. Traditional machine learning
algorithms use pre-defined (or hand-crafted) features to infer a function to perform
a formal task from a small training dataset. The idea of neural networks is to
replace these hand-crafted features by trainable parameters which are able to learn
complex and abstract concepts. In theory, a shallow network (generally less than
three layers) can approximate arbitrarily well any continuous function on a compact
domain. However, the width of the network (number of neurons per layer) must
be large and the optimisation of such network is difficult. Deep networks can infer
complex functions more efficiently with fewer parameters and are easier to train.
The cascades of layers in deep neural networks build representations of increasing
complexity. These representations are expressed as an abstraction of previous simpler
representations in the network. With the development of the computational power of
computers (mainly GPUs), the breakthrough of deep learning algorithms has been to
train deep neural networks with very large databases. Deeper architectures, larger
databases, and new learning methods keep improving the accuracy of deep learning
on the currently most challenging artificial intelligence tasks. Some of the most
important deep learning advances are found in computer vision and natural language
processing.

122

A.2 Neural networks

A.2 Neural networks

This section introduces the artificial neurons and shallow neural networks. It provides
an explanation of the backpropagation algorithm used to train neural networks as
well as several important network architectures.

A.2.1 The neuron

An artificial neuron (called neuron for simplicity) is a mathematical function inspired
by biological neurons. Neural networks are designed by connecting multiple neurons
together.

Linear neuron

The first artificial neuron (also known as a unit) was developed in 1957 [190] in
a single layer network called perceptron. This neuron performs a very simple
supervised binary classifier. An example of linear neuron used in a perceptron is
shown in Figure A.1. The neuron represented by a circle takes a vector input x and
computes a single binary value output as:

h(x) =


1 if

m
∑

i=0
wixi +b > 0

0 otherwise
(A.1)

where w is a vector of m real-valued weights, m is also the number of inputs and b is
the bias. The weights and biases are interchangeably called (trainable) parameters.
The ith input value xi is “connected” to the neuron by the multiplication to the weight
wi. The bias shifts the decision boundary of a neuron away from the origin without
being connected to any input value, similar to a bias b that shifts a line l = ax+b
regardless the value of x (see Figure A.2).

output

bx1

xm

h(x)

neuron
input

1

w1

wm

Figure A.1: A perceptron linear neuron: first developed artificial neuron.

123

Introduction to deep learning and convolutional neural networks

x

Bias b

ax+b

Figure A.2: An illustration of a weight a and bias b in a line equation example
ax+b.

h(x)

output

1
x1

xm

a(x)

neuron
input

σ

b

w1

wm

Figure A.3: A recent neuron with activation function.

More recent neurons with non-linearity

More recent neurons can be represented by Figure A.3. They compute a real value
as opposed to the binary output of the linear neuron. These neurons introduce a non-
linearity, by the “activation” of the linear weighted combination of inputs, essential
in neural networks with multiple layers as discussed in Section A.2.2. A commonly
used neuron computes a non-linear weighted sum as:

a(x) = σ(h(x)) = σ(
m

∑
i=1

wixi +b) (A.2)

where w are the weights and x the inputs. Both are vectors of size m. Parameter b is
the bias and σ is a non-linear function inspired by the “firing” of biological neurons.
The use of non-linearity is necessary when using multiple layers of neurons which
will be explained later. In Figure A.3, the neuron encapsulates the computation of
h(x) and its activation with a non-linear function a(x) = σ(h(x)). In the rest of this
section, neurons are illustrated with a single circle which implies that the hidden
neurons compute the activation a(x). Several non-linear functions have been used in
neural networks. The most frequently used and popular ones are the following.

124

A.2 Neural networks

(a) ReLU (b) Sigmoid (c) tanh

Figure A.4: A commonly used non-linear activation functions.

• Rectified Linear Unit (ReLU) [16]:

σ(x) = max(0,x) (A.3)

• Sigmoid:

σ(x) =
1

1+ e−x (A.4)

• Hyperbolic tangent:
σ(x) = tanh(x) (A.5)

These activation functions are applied element-wise to pre-activation vectors
when denoted σ(x). Note that ReLU is generally used in deep networks for avoiding
the vanishing gradients problem as explained in Section A.3.2.

A.2.2 Artificial neural network architecture

Neurons are organised in an ANN into multiple layers. A basic example of such
network is the Multi Layer Perceptron (MLP) [1]. An MLP consists of an input
layer (bottom of the network), an output layer (top of the network) and at least one
hidden layer between them. The depth of a network generally refers to the number
of layers in the network excluding the input layer, i.e. number of hidden layers plus
one output layer. An example of a three layer MLP is illustrated in Figure A.5. A
MLP is fully connected, i.e. each neuron of a given hidden layer is connected to all
the neurons of the previous and next layers.

Non-linearity

In the given example, similar to most current neural network architectures, each
hidden neuron computes its output based on Eq. A.2. Note that in Figure A.5, the
biases are omitted for simplicity although each neuron is connected to a bias of value
1 with a weight b as shown in Figure A.1. If only linear neurons were used, a network

125

Introduction to deep learning and convolutional neural networks

x1

x2

x3

input hidden 1 output

w1,1
2

hidden 2

w4,2
4

w1,1
4

w1,1
3

Figure A.5: A three layer Multi Layer Perceptron.

of any depth could be reduced to a single layer perceptron network which would
perform a linear regression. Instead, the output of the neurons are “activated” with a
non-linear function σ and more complex non-linear functions can be achieved.

Notations

To generalise to other possibly deeper architectures than the one in Figure A.5, an
L− 1 layer network (L layers including the input) is considered as illustrated in
Figure A.6.

w1,1
2

wm ,m
2

1 2

x1

xm1

Layer 1
(input) Layer 2 Layer l Layer L-1

wi, j
l

Layer L
(output)

w1, 1
L

wm , m
L

L-1 L

h1(x)

hm(x)

L

L

L

x1

xm1

Figure A.6: The architecture of an L−1 layers neural network (L layers including
the input).

.

126

A.2 Neural networks

In this architecture, hl
j is the output of neuron j at layer l (with l=1 being the

input layer) before activation with:

hl
j =

ml−1

∑
i=1

wl
i ja

l−1
i +bl

j (A.6)

where al−1
i is the output of the activation function σ(hl−1

i), wl
i j is the weight con-

necting al−1
i to the jth neuron at layer l and ml is the number of neurons at layer l.

With these notations the output of a hidden neuron is given by:

al
j = σ(hl

j) = σ(
ml−1

∑
i=1

wl
i ja

l−1
i +bl

j) (A.7)

A.2.3 Training a neural network: Backpropagation

Two tasks are commonly studied with neural networks, namely classification and
regression. Both are discriminative models which learn to estimate a class label
(classification) or a prediction value (regression) knowing an input sample, as op-
posed to generative models mentioned in Section A.2.6. The common scenario
of classification with an ANN will be described in the following sections. In this
scenario, the output of the last layer is a vector of size N, where N = mL is the
number of classes. The values of the output neurons represent a class score or a
(non-normalised) probability of the input layer to belong to a certain class. Labelled
training data is fed into the network to infer a function whose outputs are close to
the given labels and ideally generalises to unknown (unlabelled) data. This approach
is called “supervised learning”. In the example given in Figure A.5, the network can
be used for a binary classification as the output layer contains two neurons.

As mentioned previously in the appendix, a key factor of success of neural
networks is the automatic learning of the weights (and biases). Backpropagation is
a training method to iteratively update the weights in order to minimise the error
between known training labels and the predictions of the network. To this end, the
error is propagated backwards through the network by calculating the gradients of
a defined loss function w.r.t. all the parameters. These gradients are a measure of
how the error will change when each weight is varied individually. An optimisation
function then uses these gradients to update the weights and reduce the error. The
backpropagation algorithm can be summarised as a succession of the following
operations: forward pass, error calculation, backpropagation of the gradients and
optimisation of the weights. These operations will be discussed in more details as
well as other concepts to efficiently train neural networks. Note that the forward
and backward passes are computed many times with various input samples during
training.

127

Introduction to deep learning and convolutional neural networks

Forward pass

In the forward pass, the outputs of all the neurons are computed from the input layer
to the output layer. The hidden neurons compute al

j = σ(h(al−1)) and the output of
the network is f (x) = hL = h(aL−1).

Error

The output of the last layer as mentioned previously is a vector of real values that
represent class scores. With a training set or subset of input vectors x(k) ∈ X, k in
the range (1,K) and associated ground truth vectors (also known as target or desired
output) y(k) = f (x(k)) ∈ Y, the network is trained so that it computes a function f (X)

which maps X to Y. This function should also generalise well to unknown input data.
Overfitting and underfitting will be discussed later in this appendix. To know how
well the network is performing, the errors between the ground truths y(k) of the given
inputs x(k) and the predictions of the network f (x(k)) are calculated and averaged
across the multiple K samples. Common error functions (also known as loss, cost or
objective functions) include the mean squared and the cross entropy errors.

The mean squared error (also known as Euclidean loss) is often used for real-
valued regression tasks but can also be used for classification. The error for a given
input x(k) is computed as:

E(k) =
1
2

N

∑
n=1

(hL(k)
n − y(k)n)2 (A.8)

The error across the set of inputs X is given by:

E =
1

2K

K

∑
k=1

N

∑
n=1

(hL(k)
n − y(k)n)2 (A.9)

The multi-class cross entropy (also known as logistic loss) is often used for predicting
targets interpreted as probabilities. The cross entropy calculates the difference
between a predicted probability vector p̂(x) and its ground truth p(x). A vector
of predictions of the network f (x) = hL is generally interpreted (or squashed) as a
probability vector using the following softmax function.

p̂(k)n =
ehL(k)

n

∑
N
j=1 ehL(k)

j

for n = 1, ...,N (A.10)

where hL(k)
j is the jth value of the output vector of the network with input x(k). The

values of the probability prediction vector p̂(k) are in the range [0,1] and sum to 1.

128

A.2 Neural networks

The cross entropy loss is then computed as follows:

E(k) =−
N

∑
n=1

p(k)n log p̂(k)n (A.11)

The values of pn being constant, minimising Eq. A.11 is equivalent to minimising
the function:

−
N

∑
n=1

p(k)n log p̂(k)n +
N

∑
n=1

p(k)n log p(k)n (A.12)

Doing so a new error function is obtained with convenient partial derivatives as will
be shown in the next section.

E(k) =−
N

∑
n=1

p(k)n log

(
p̂(k)n

p(k)n

)
(A.13)

The error across the set of inputs X is:

E =− 1
K

K

∑
k=1

N

∑
n=1

p(k)n log

(
p̂(k)n

p(k)n

)
(A.14)

Backpropagation of the error

With the error of the network’s output calculated, the gradients (partial derivatives)
of the error w.r.t. all the parameters can now be derived. The gradients are calculated
in this section with the softmax cross entropy loss (Eq. A.10 and A.13). A similar
calculation can easily be derived with other differentiable loss functions. Using the
chain rule, the partial derivative of E w.r.t. the parameters of the last layer can be
expressed as follows:

∂E(k)

∂wL
i j

=
∂E(k)

∂hL(k)
j

∂hL(k)
j

∂wL
i j

(A.15)

For simplification of the equations, δ l (not to be confused with the Kronecker delta)
is introduced as follows:

δ
l(k)
j =

∂E(k)

∂hl(k)
j

(A.16)

δ l is sometimes referred to as the errors at a certain layer l. The gradients equation
becomes:

∂E(k)

∂wL
i j

= δ
L(k)
j

∂hL(k)
j

∂wL
i j

(A.17)

129

Introduction to deep learning and convolutional neural networks

The chain rule can be applied for the calculation of δ
L(k)
j by summing over all the

output neurons.

δ
L(k)
j =

∂E(k)

∂hL(k)
j

=
N

∑
n=1

∂E(k)

∂ p̂(k)n

∂ p̂(k)n

∂hL(k)
j

(A.18)

From the cross-entropy Eq. A.13, the first partial derivative can be expressed as
follows:

∂E(k)

∂ p̂(k)n

=− p(k)n

p̂(k)n

(A.19)

And from Eq. A.10, the second term is derived as:

∂ p̂(k)n

∂hL(k)
j

=

 p̂(k)n (1− p̂(k)j) if n = j

−p̂(k)n p̂(k)j if n ̸= j
(A.20)

The above equation can be simplified using the Kronecker delta δn j (not to be
mistaken with the errors δ l) so that:

∂ p̂(k)n

∂hL(k)
j

= p̂(k)n (δn j − p̂(k)j) with δn j =

 1 if n = j

0 if n ̸= j
(A.21)

Eq. A.18 can be re-written to substitute Eq. A.19 and A.21 as follows:

δ
L(k)
j =

∂E(k)

∂ p̂(k)j

∂ p̂(k)j

∂hL(k)
j

+ ∑
n̸= j

∂E(k)

∂ p̂(k)n

∂ p̂(k)n

∂hL(k)
j

(A.22)

Which can be simplified as:

δ
L(k)
j = p̂(k)j − p(k)j (A.23)

The partial derivatives of the outputs hL(k)
j w.r.t. the weights can now be easily

calculated:
∂hL(k)

j

∂wL
i j

= aL−1(k)
i (A.24)

The partial derivative of the error w.r.t. the weights (Eq. A.17) now becomes:

∂E(k)

∂wL
i j

= δ
L(k)
j aL−1(k)

i = (p̂(k)j − p(k)j)aL−1(k)
i (A.25)

130

A.2 Neural networks

The gradients for the bias bL
j are also easily computed as:

∂hL(k)
j

∂bL
j

= 1 (A.26)

Having calculated the gradients of the weights at the last layer L, the backpropa-
gation can continue by calculating the gradients of all the weights in the network.
For all other layers, the neurons compute their output with Eq. A.7. The weights
gradients at layer l < L are calculated as:

∂E(k)

∂wl
i j

= δ
l(k)
j al−1(k)

j (A.27)

where the δ ’s are:

δ
l(k)
j = σ

′(hl(k)
j)

ml+1

∑
n=1

wl+1
jn δ

l+1(k)
n (A.28)

where ml+1 is the number of output neurons at layer l +1 and σ ′ is the derivative of
the activation function, e.g.:

σ
′
ReLU(x) =

 1 if x > 0

0 otherwise
(A.29)

σ
′
sigmoid(x) = x(1− x) (A.30)

σ
′
tanh(x) = 1− tanh2(x) (A.31)

Stochastic gradient descent

Gradient Descent (GD) (or steepest descent) is an optimisation method to find a local
(preferably global) minima of a function. In backpropagation, it is used to iteratively
update the weights in order to minimise the error function. Figure A.7a illustrates a
gradient descent approach which updates a parameter (or weight) w to minimise a
function f (w). Figure A.7b shows the common local minimum problem with GD
methods. In neural networks, the optimisation is applied to a much higher dimension
with many local minima. In a GD optimisation, all the training samples are used
for each update of the weights whereas in Stochastic Gradient Descent (SGD), only
one or a small batch of training samples are used for each step. With the often large
training sets, the computation time of the GD optimisation can become extremely
long as one must compute the outputs, errors, and gradients of all the samples at
each iteration. SGD is therefore almost always preferred to GD in neural networks.

131

Introduction to deep learning and convolutional neural networks

w

f(w) f(winitial)

fmin(w)

gradient

(a) global minimum

w

f(w)

f(winitial)

floc(w)

Global
minimum

(b) local minimum

Figure A.7: A 1D gradient descent minimisation of f (w) with (a) global minimum,
(b) local minimum.

The weights are updated using:

wτ+1
i j = wτ

i j +∆wτ
i j (A.32)

where τ is the gradient descent iteration and ∆wi j is the weight update. Two variants
of SGD are usually used, namely on-line learning and batch learning.

In on-line learning, the weights are updated for every single input x, i.e. in
Eq. A.32 the update is computed as:

∆wi j =−η
∂E(k)

∂wi j
=−ηδ

l
ja

l−1(k)
j (A.33)

where the learning rate η (0 < η < 1) is a hyperparameter of the network that
determines the amount of change of the weights at every iteration. The learning rate
can be either fixed or gradually lower throughout the entire training.

In batch learning, on the other hand, the error is calculated for a batch of K inputs
X and the weights gradients are averaged as:

∆wi j =−η
∂E

∂wi j
=−η

K

K

∑
k=1

δ
l(k)
j al−1(k)

j (A.34)

With on-line learning, the stochastic error surface is noisy which helps to escape
local minima. Batch learning, by averaging the gradients, removes noise and is more
prone to being caught in local minima. Batch training, however, is preferred as it can
be implemented very efficiently with modern computers. Moreover, other methods
have been developed to escape local minima and these will be described in detail in
the following sections.

132

A.2 Neural networks

Momentum

As mentioned before, a common issue with the gradient descent is being trapped in a
local minimum far from the desired global minimum as illustrated in Figure A.7b.
The momentum [1] is a method which helps to escape from a local minimum by
diminishing the fluctuations in weight updates over consecutive iterations. One can
think of it as a ball rolling down the slope in the weights space and picking up
speed, thus rolling up the opposite slope to some extent when reaching a minima. It
also helps to converge faster when the gradients are very small. The weight update
is based on the accumulation of first-order information (gradients) over time and
Eq. A.34 becomes:

∆wτ
i j =−η

∂Eτ

∂wτ
i j
+m∆wτ−1

i j (A.35)

where the momentum m ∈ [0,1] is another hyperparameter which determines the
contribution of earlier gradients to the weight change.

Adagrad

The adaptive gradient (Adagrad) [191] is a method to adapt the learning rate in SGD
to the trainable parameters, avoiding the manual tuning of the learning rate used
for all the weights in the classic SGD. The learning rate used in Eq. A.32 and A.34
is calculated at each time step and for each weight based on the previous squared
gradients (second-order information) and becomes:

wτ+1
i j = wτ

i j −
η√

vτ
i j + ε

∂Eτ

∂wτ
i j

(A.36)

where vτ
i j is the sum of the squared gradients (∂Eτ

∂wτ
i j
)2 up to time step τ and ε is a

small constant to avoid division by zero.

Adadelta

Adadelta [192] is an extension of Adagrad developed to overcome the decay of
learning rates throughout training. Instead of accumulating all the previous squared
gradients, the idea is to restrict the accumulation over a fixed size time window. This
is efficiently performed by calculating a decaying average of the previous squared
gradients. The accumulation vi j in Eq. A.36 becomes:

vτ
i j = γvτ−1

i j +(1− γ)

(
∂Eτ

∂wτ
i j

)2

(A.37)

where γ controls the exponential decay rate of the average vi j.

133

Introduction to deep learning and convolutional neural networks

Adam

The Adaptive Moment estimation (Adam) [193] is yet another variant which accumu-
lates the decaying average of squared gradients like Adadelta as well as a decaying
average of gradients. The former (mτ

i j) estimates the first moment (mean) of past
gradients, while the latter (vτ

i j) is an estimate of the second raw moment (uncentred
variance). These estimates are computed as follows:

mτ
i j = γ1mτ−1

i j +(1− γ1)
∂Eτ

∂wτ
i j

vτ
i j = γ2vτ−1

i j +(1− γ2)

(
∂Eτ

∂wτ
i j

)2 (A.38)

where γ1 and γ2 are hyperparameters to control the decay rates. These moment
estimates are then corrected to avoid an initial bias towards zero as follows1:

m̂τ
i j =

mτ
i j

1− (γ1)τ

v̂τ
i j =

vτ
i j

1− (γ2)τ

(A.39)

The Adam update rule is finally computed as:

wτ+1
i j = wτ

i j −
η√

v̂τ
i j + ε

m̂τ
i j (A.40)

The choice of the best optimiser (SGD, momentum, Adagrad, Adadelta, Adam
and others) depends, among others, on the application, the network architecture, the
training data and on a trade-off between speed and performance. A fast convergence
of deep networks can generally be obtained with adaptive learning rate methods (e.g.
Adagrad, Adadelta, and Adam), sometimes at the cost of lower accuracy.

Weights initialisation

The initialisation of the parameters (weights and biases) to start the learning process
has not been discussed so far, yet it is a key step which requires careful design. While
a first guess might be to initialise all the parameters to zero, it does not work in
practice as they all compute the same gradients and do not allow gradient descent
learning. Indeed, asymmetry is required in the weights initialisation. Also, one must
pay attention to the effect of “vanishing” or “exploding” gradients that may occur

1Note that in Eq. A.39, (γ1)
τ represents “γ1 to the power of τ” as opposed to mτ

i j which is the
value of mi j at time step τ .

134

A.2 Neural networks

generally in deep architectures with respectively too small or too large initial weights
(see Section A.3.2).

A common initialisation method is the Gaussian initialisation. With this method,
the weights are drawn from a Gaussian distribution of zero mean and usually small
variance (e.g. 0.01). A more recent and frequently used method is the Xavier
initialisation [181]. With the Xavier approach, the initialisations are also drawn from
Gaussian distributions. However, the variance is a function of the number of input
and output connections.

var(w) =
2

nin +nout
(A.41)

where nin and nout are the number of input and output connections respectively. In the
fully connected networks presented in this section, a weight wl considers nin = ml−1

and nout = ml numbers of connections. This initialisation keeps the initial parameter
values in a certain range to avoid the signal to shrink or grow extensively. Note that
it is common to initialise the biases to zero as the symmetry is broken by the weights
initialisation.

A.2.4 Regularisation methods

Overfitting is a frequent problem in machine learning when training a model. It
occurs when an excessively complex model describes the noise in the training data.
The overfitted model will often not generalise well to unknown test data. An example
of 1D overfitting is illustrated in Figure A.8. Neural networks are particularly prone
to overfitting due to the large number of parameters to train as extremely complex
models can be learned to fit the training data. Several regularisation methods are
used to prevent overfitting by generally penalising the complexity. Commonly used
regularisation methods include weight decay, early stopping, dropout, and artificial
data expansion.

Weight decay

The weight decay is a regularisation method that penalises large weights [194]. For
batch learning, Eq. A.33 becomes:

∆wi j =−η

(
∂E(k)

∂wi j
+λwi j

)
(A.42)

where λ is the weight decay hyperparameter. Note that Eq. A.42 originates from a
penalty added to the error function:

Ẽ = E +
λ

2 ∑
i

w2
i (A.43)

135

Introduction to deep learning and convolutional neural networks

f(x)

x

overfitted

real expected
values

Figure A.8: An example of overfit (blue curve).

where wi represent all the weights and biases of the network. By penalising large
weights, the curvatures of the mapping function are also reduced, thus reducing the
model flexibility to overfit the training data.

Early stopping

Early stopping is another regularisation method to limit the complexity of a network.
The idea is to use an independent validation set during training to evaluate the
performance of the network on unknown data. When the error on the validation
set starts saturating and increasing, the training is stopped to avoid overfitting. An
example of early stopping is illustrated in Figure A.9.

error

iterations

validation error

training error

overfit

early stop

Figure A.9: An illustration of overfitting the training data and early stopping method
by evaluation of the model on an unknown validation set during training.

136

A.2 Neural networks

Dropout

Dropout is a recent regularisation method [195] which refers to the “drop out” of
certain neurons during training. The effect of dropout is similar to averaging the
predictions of multiple independently trained models while being considerably more
efficient. At each training iteration (forward and backward passes), individual
neurons and their connections are “dropped out” of the network with a probability
of 1− p. Thus, multiple reduced networks are trained, preventing complex co-
adaptations of the parameters by learning various independent representations of
the training data. At test time, the entire network is used without dropout, behaving
like an ensemble model. The neuron outputs are weighted by a factor p to keep the
same expected values as in the training phase. On top of the efficient regularisation,
dropout also reduces the training time.

Artificial data expansion

This regularisation method mainly relies on obtaining invariances to transformations
of the input data that may occur in unknown test data. A typical example is a neural
network with images as inputs for an object recognition task. The network should
recognise objects of varying scale, rotation, or position in the image as the same
object. However, the training set might provide only a limited number of such
variations. A simple way of avoiding the network to overfit certain orientations,
scales, and positions present in the training data is to artificially expand this data with
controlled transformations. A number of random rotations, scalings, and croppings
can be applied to the training images to expand it and explicitly teach the network to
recognise such variations.

A.2.5 Recurrent neural networks

All the architectures presented so far are feedforward in the sense that the connections
between neurons do not form a cycle or a loop. These feedforward networks make the
assumption that the inputs are independent of each other. Recurrent Neural Networks
(RNN) [1], on the other hand, make use of the inter-dependency of sequential data.
RNNs contain at least one feedback connection and thus form a directed cycle.
They were developed for sequential data as the inner loops create internal states
of the network used to analyse sequential (generally temporal) behaviours. The
fully recurrent network is a basic RNN architecture which is similar to an MLP
with the hidden activations fed back into the input of that same hidden neuron at
the next iteration as shown in Figure A.10a. Note that in this illustration, the input
vectors and hidden neurons are represented as a single rectangle to illustrate the
recurrence in a graph instead of a neurons representation. This differs from other

137

Introduction to deep learning and convolutional neural networks

at

delay

wIH

wHO wHH

xt

ht

(a) feedback loop

at-1

wIH

wHO

wHH

at

wIH

wHO

at+1

wIH

wHO

wHH wHH
wHH

ht-1

xt-1 xt xt+1

ht ht-1

(b) unfolded graph

Figure A.10: A graph representing a basic fully recurrent network. Note that the
inputs, weights, hidden states, and outputs are vectors. (a) graph with a loop feeding
the previous hidden state back into the network, (b) unfolded graph over time.

figures in the appendix and is specified by the bold fonts in which ht represents the
hidden states of the neurons. Figure A.10b shows the same network unfolded over
time. The weights wIH , wHH and wHO connect respectively the input to the hidden
neurons, the hidden neurons to the hidden neurons at the next iteration and the hidden
neurons to the output. Note that these weights are shared across all sequential steps.
Backpropagation can be used to train this network although it is often referred to
as Back Propagation Through Time (BPTT) as the error for a given sequence is the
sum of the errors at each iteration.

Eseq = ∑
t

Et (A.44)

where t spans the iterations of the sequence. In this way, the update of the weights
through gradient descent depends on the activation and error at previous iterations.

∆wi j =−η ∑
t

∂Et

∂wi j
(A.45)

A.2.6 Unsupervised learning

The network architectures introduced so far are trained in a supervised manner. It
is supervised in the sense that the network learns a function from labelled training
data. Each training sample is fed into the network together with the desired output
value which can be a class for a classification problem or a real value in a regression
task. In other words, an input sample is presented to the network, specifying what
is being shown in order to teach the network how to recognise it. This is how the
error between the prediction and the target was calculated in the previous section for

138

A.2 Neural networks

backpropagation. Ideally, the network trained on this labelled data will be able to
generalise, i.e. perform the learned task on unknown data.

Unsupervised learning, on the contrary, aims at building representations that
describe the structure of unlabelled input data. The backpropagation method as
described in Section A.2.3 cannot be implemented as such as the error cannot be
calculated between the prediction of the network and the desired target value. Most
popular unsupervised machine learning methods include the K-means clustering
algorithm and the Gaussian Mixture Models (GMMs). Unsupervised learning has
also been widely investigated in ANNs and several approaches have been developed
including Hebbian learning and other unsupervised neural networks described below.

Hebbian learning

Hebbian theory [196] is based on the idea that neurons that activate together wire
together. Thus, in a Hebbian learning scheme, the weight between two neurons will
increase if they activate at the same time and will reduce if they activate separately.
An on-line formulation of the Hebbian learning can be expressed as:

wτ+1
i j = wτ

i j +ηxτ
i aτ

j (A.46)

where η is still the learning rate, wτ+1
i j is the updated weight connecting the ith

input xτ
i to the neuron with activation aτ

j . This formulation is highly unstable due
to unbounded variations of the weights and is not often used as such in ANN
unsupervised learning. Other methods based on this approach have overcome the
instability and improved the learning process including BCM, Oja’s learning, and
the generalised Hebbian method.

Unsupervised neural network

An Auto-Encoder (AE) is an unsupervised ANN which learns a representation of an
input dataset to extract meaningful features from the data. AEs use an input layer, at
least one hidden layer and an output layer to encode and decode (reconstruct) the
input data. A basic example of AE is illustrated in Figure A.11. The learning of AEs
is performed by comparing the reconstructed input x′ to the real input x and adapting
the weights through backpropagation to minimise the error in the reconstruction.
The latent representation z learned in the intermediate layers of AEs have been
successfully used for dimensionality reduction, feature learning, classification and as
a generative model (variational AE [197]).

Another simple shallow example of unsupervised network is the Restricted
Boltzmann Machine (RBM) [198]. An RBM architecture is very similar to an AE
in the sense that it learns to encode and decode (reconstruct) input data. RBMs,

139

Introduction to deep learning and convolutional neural networks

input hidden 1 output

x

z

x’

Figure A.11: The architecture of a simple AE.

however, contain only two layers as shown in Figure A.12. The training of an RBM
is also different from AEs. The error between the reconstructed and original inputs is
calculated by contrastive divergence. The learning is then carried by a gradient-based
optimisation comparable to the backpropagation explained in Section A.2.3 to obtain
a reconstruction of the input as close as possible to the original input. An RBM is a
generative model, as opposed to discriminative models, in the sense that the network
generates a model of the data by learning a joint probability distribution of the inputs
x and activations a. This joint probability arises from the reconstruction (backward
pass) with the same weights as the forward pass. Note that while a classic AE can
represent the input data in a lower space, it is not a generative model. RBMs can be
stacked into multiple layers to form a Deep Belief Network which will be introduced
in Section A.3. Note that in Figure A.12, the weights and biases are the same in both
the forward and backward passes and the biases are not represented for simplicity.
The RBM is restricted as opposed to a standard Boltzmann Machine (BM) as there
is no connection between neurons of the same layer.

A.2.7 Reinforcement learning

Supervised learning was introduced in the previous sections, where target labels
(ground truth) are provided together with training samples to teach the models.
Unsupervised learning was also described in the previous section, where models
learn to describe hidden structures in training data without training labels. For
completeness, Reinforcement Learning (RL) is now briefly described. RL can be
defined as a learning method between supervised and unsupervised as the model

140

A.3 Deep learning

x1

x2

x3

x4

input hidden 1

a1

a2

a3

reconstructed
input

hidden 1

forward backward

a1

a2

a3

Figure A.12: The architecture of a Restricted Boltzmann Machine with three input
and four hidden neurons including forward (left) and backward passes (right).

makes a prediction and is taught whether it is correct or not with sparse and time-
delayed labels. The model referred to as agent interacts with the environment by
trying different actions and is trained by getting feedback in the form of rewards
from the consequences of these actions. RL in combination with deep neural network
(Section A.3) is often used in robotics or to teach a model how to play games such
as Atari [199] or Go [200]. This learning approach is extensively studied as it shares
ideas with the way humans learn and enables models to learn directly from the results
of their actions on the environment; yet, RL is outside the scope of this thesis.

A.3 Deep learning

So far, the described networks have not been referred to as deep neural networks.
A deep neural network is simply an ANN with many layers. Particular attention is
required to train these more complex networks and this is what deep learning does. In
particular, problems such as the “vanishing gradients” and the “covariate shift” often
arise from training networks with many layers using classic gradient-based learning
methods described previously. For several decades after the development of the first
neural network methods, researchers were only able to train shallow networks with
three or fewer layers. It was only in 2006 that advances in deep learning and the
computational power of computers allowed deeper architectures [198, 201, 202] to
be trained. This section introduces some difficulties that arise with training deep
models as well as key methods to overcome them. Finally, some of the major deep
network architectures are presented.

141

Introduction to deep learning and convolutional neural networks

A.3.1 Regularisation

Deep architectures are prone to overfitting and the methods introduced in Section
A.2.4, including Dropout, weight decay and data expansion are commonly used
in deep learning. Also, very large datasets are often needed to generalise better to
unknown data. For instance, the ImageNet 2012 training dataset [50], used in many
computer vision deep learning methods, contains more than one million images
grouped into one thousand classes.

A.3.2 Vanishing gradients

The gradients in a deep learning scheme are unstable as they are generally the
product of many other gradients from deeper layers. The gradient values tend to
decrease dramatically, or sometimes explode, as they are backpropagated towards the
input layer. This is a frequent problem which arises with training deep architectures
referred to as vanishing/exploding gradients. This matter makes the training of the
parameters in early layers difficult as the updates become extremely slow and likely
to get caught in a local minimum or to degenerate. Several methods have been
developed to avoid vanishing gradients.

The choice of the activation function largely influences the vanishing gradients
problem. ReLU is generally preferred over other activation function (e.g. sigmoid
and tanh) because it is not saturated. Therefore, a ReLU function does not squash
the values into a small range as the other activation functions do ([0,1] or [−1,1]).
Mapping the input space into such a narrow space means that even large variations in
the input space result in small variations in the squashed feature space, which causes
small gradients. The vanishing problem can also be explained with the derivatives
of the sigmoid and tanh functions which lie mostly in a range close to zero. Thus,
the product of the partial derivatives in the chain rule (Eq. A.17 and A.18) results
in very small gradients in early layers. The cascade of many layers accentuates
this phenomenon which is frequently encountered in deep learning with squashing
activation functions. Note that alternatives to ReLU are sometimes used such as the
“leaky” ReLU which avoids the zero gradients for negative input values.

A small learning rate, together with an appropriate initialisation of the weights
(when trained from scratch), helps to obtain an initial convergence and stable gradi-
ents. The initialisation of the weights is highly related to the vanishing and exploding
activations which in turn also affect the gradients and the learning process. Briefly,
if the initial weights are too small, the variance may dramatically decrease in the
feedforward pass. If they are too big, the activations in the higher layers may saturate
(with a sigmoid or tanh function) or explode with the unbounded ReLU. This is the

142

A.3 Deep learning

reason why the Xavier initialisation A.2.3 is normalised to keep the weights in a
reasonable range and avoid vanishing and exploding activations.

An early attempt to control the range of values of the activations throughout
the network was to normalise the activations of intermediate layers. This Local
Response Normalisation (LRN) method [15] has been outperformed by the recent
batch normalisation method [2] which will be introduced shortly.

A.3.3 Internal covariate shift

Another frequent problem with deep learning is the “covariate shift”. The covariate
shift refers to the change in the input distribution of the intermediate layers of a
network. The inputs to intermediate layers are affected by the parameters of all
previous layers. Therefore, small changes to the weights are amplified throughout
the network and result in large changes in the input distribution of intermediate
layers. This problem is naturally amplified with deep architectures. A solution to the
covariate shift is the use of batch normalisation.

A.3.4 Batch normalisation

Batch Normalisation (BN) [2] is a recent method to help training deep neural net-
works. The idea is to normalise, scale and shift the inputs of the activation functions
hl(x). This normalisation regularises the network and reduces the dependence of
the gradients on the range of its weights and their initialisation. It largely helps the
vanishing gradients and allows the gradient descent algorithm to use higher learning
rates while ensuring the convergence. Moreover, BN reduces the covariate shift of the
input of intermediate layers. In turn, BN is generally preferred to most regularisation
methods and other methods for avoiding vanishing gradients and internal covariate
shift in deep architectures.

A.3.5 Deep recurrent networks

Deep recurrent network architectures have been extensively researched for speech,
handwriting, and video analysis. Deep recurrent networks are merely RNNs (see
Section A.2.5) with many layers. With long input sequences, the covariate shift and
vanishing gradients are severe in RNNs and require extra attention. This is due to
the fact that the chain rule used to calculate the partial derivative of the error at time
t in Eq. A.45 involves many partial derivatives from the previous steps. A deep RNN
cannot remember everything from the past and a method is required to retain useful
information. To this end, the Long Short Term Memory (LSTM) [203] is often used
in deep RNNs. This approach prevents the gradients from vanishing or exploding

143

Introduction to deep learning and convolutional neural networks

during backpropagation through time by memorising the error values. The main idea
of LSTM is to include gating units in the recurrence which will decide when to write
into memory, read from it or erase it. Very deep LSTM networks can therefore learn
from long sequences which require a selective memory of long sequential events. A
basic LSTM block is depicted in Figure A.13 which replaces the simple hidden layer
in the classic fully recurrent network shown in Figure A.10b. The gates are sigmoid

xt

input
gate

output
gate

forget
gate

httanh tanh

ht-1 whh

wxh

xt ht-1

whi wxi

xt ht-1

who wxo

xt ht-1

whf wxf

sigm sigm

sigm

LSTM block

cell

Figure A.13: A basic LSTM block.

functions which behave like smooth switches and output approximately one or zero
based on the current input xt , the previous hidden state ht−1 and trainable weights.
In turn, the output of a gated unit may allow the signal (input, cell memory or output)
to propagate or block it as represented by the multiplication signs which perform
a Hadamard product. The input gate controls whether the current input should be
written into memory (cell) and computes its output as:

it = sigm(wxixt +whiht−1 +bi) (A.47)

The forget gate decides when to erase the memory (with another recurrence loop).
Finally, the output gate controls when to read from the memory. The forget and
output gates compute their output similarly to the input gate with different weights.

Note that the LSTM block in Figure A.13 and the simple recurrent network in
Figure A.10 in which the LSTM can replace the hidden layer, have many variants
including the feedback loops, activation functions (usually hyperbolic tangent and
sigmoid), the number of hidden layers and of LSTM blocks, as well as peepholes
[204] which enable the gates to “look at” the cell state.

144

A.3 Deep learning

A.3.6 Deep unsupervised methods

Shallow unsupervised networks introduced in Section A.2.6 have been extended,
as most neural networks, to deep architectures. Some deep unsupervised neural
networks are introduced in the following sections.

Deep belief network

A Deep Belief Network (DBN) [201] is a deep feedforward unsupervised network
which consists of stacked RBMs. This network can be used to pre-train a deep
network. The pre-trained weights can be used as initial weights to a backpropagation
training in a supervised manner. It can be useful for instance to make use of a large
amount of unlabelled data together with a small labelled dataset. A DBN is trained
layer by layer. The first RBM is trained by reconstructing the inputs as shown in
Section A.2.6. The hidden outputs of the first RBM are used as inputs to the second
RBM and so on until the entire network is trained.

Stacked Auto-Encoder

A stacked Auto-Encoder is a deep feedforward network obtained by stacking multiple
AEs. Similarly to a DBN, the first AE is trained then its outputs are used as inputs to
the following AE. A frequently used alternative approach is the stacked denoising
Auto-Encoder. This is used to avoid inferring the identity mapping through a classic
stacked AE training and to learn meaningful representations of the data. In a stacked
denoising AE training, the input is corrupted by adding noise and the network is
trained to output an uncorrupted version of the input data. The error is simply
calculated between the reconstructed output and the original non-corrupted input. A
trained stacked AE or stacked denoising AE can be used, like a DBN, for pre-training
a network which will be finetuned on a supervised task.

Generative adversarial networks

A Generative Adversarial Network (GAN) [9] involves the training of two models
which compete against each other, a generative and a discriminative model. A dis-
criminative model maps the input data x to the desired class labels y in a classification
or regression scheme, i.e. it learns the conditional probability distribution p(y|x). A
generative model (e.g. RBM Section A.2.6, DBN Section A.3.6, deconvolutional
network [205]) learns the joint probability distribution of the input data and labels. A
conditional probability can then be formed from the joint probability with the Bayes’
rule.

In a GAN, a generative network G is trained to capture the data distribution and
generate samples that seem to come from the training data. A discriminative network

145

Introduction to deep learning and convolutional neural networks

G

D

random
input

training
(real) data

real

generated

error

backpropagation

Figure A.14: An illustration of the GAN structure. The generative model G is
trained to generate samples that seem to originate from the real training data (i.e.
maximise the discriminator’s error), while the discriminative model D is trained to
discriminate the generated samples from the training data (i.e. minimise the error).

D, on the other hand, is trained to discriminate samples created by G from those in
the training data (binary classification optimised with backpropagation). Figure A.14
illustrates a simple GAN structure. To produce a fake sample, G is fed with an
input from a fixed random distribution and maps it to a data distribution which is
optimised through training to approximate the distribution of the training data. This
optimisation is carried by a backpropagation algorithm to minimise the accuracy of
D, i.e. maximise its error.

A.4 Convolutional neural networks

CNNs are a type of ANN for analysing grid-like data including 1D time-series
(e.g. sound), 2D images, 3D volume data, and videos. This section provides a
brief overview of CNNs including the history, the description of different layers and
concepts involved in the current architectures and applications.

A.4.1 Overview

A CNN is a supervised feedforward ANN (although unsupervised and recurrent
variations have been developed). It is, like other networks introduced in the previous
section, a succession of linear and non-linear operations applied to the input data. The
analysis of the visual cortex [206] inspired the arrangement of neurons which respond
to overlapped regions tiling the input grid-like data. In this section, the input data is
an image (i.e. 2D array of pixels) unless stated otherwise. The neurons in a CNN
behave as a bank of filters with local receptive fields in the input image and enable
to exploit the local correlation present in natural images (i.e. correlation of pixel
values in image neighbourhoods) in a deep learning approach. The key component
of a CNN is the convolution layer which consists of a set of small trainable filters

146

A.4 Convolutional neural networks

Input data

Cascade of:

C
on

vo
lu

tio
n

P
oo

lin
g

N
on

-li
ne

ar
ity

Output

Fu
lly

-c
on

ne
ct

ed

Figure A.15: A basic overview of a Convolutional Neural Network architecture.

locally connected to the output of the previous layer. A basic CNN approach can be
summarised by a succession of convolution, pooling, non-linear and fully-connected
layers as shown in Figure A.15. Each layer will be explained in detail in the next
sections. CNNs are generally used for classification or regression and are trained in
a supervised manner. The convolution filters and fully connected weights are trained
by backpropagation and SGD (see Section A.2.3). Once successfully trained, the
filters at multiple layers of a convolutional network respond to features of different
complexity similarly to the visual cortex [206]. The bottom layer has been shown
to detect edge-like features (similar to a Gabor filter set) while deeper layers detect
more complex and abstract features with larger receptive fields (see Section A.4.7).
This complexity in deep layers arises from the successive combination of simpler
features using linear and non-linear operations. The receptive field in a CNN is an
important notion illustrated in Figure A.16. The receptive field of a neuron is the area
that it covers in the input image by a cascade of connection. The size of the receptive
field of a neuron in the first convolution layer is the kernel size. The receptive field
of the neurons increases with the depth of the CNN through convolution and pooling
layers. Note that pixels in the centre of the receptive field will have a greater impact
on the output of a neuron due to the multiple connections. For the same reason,
the gradients at a certain intermediate neuron will influence more the update of the
weights connected to the pixels at the centre of its receptive field than those at the
border [207].

A.4.2 Brief history

Classic neural networks such as MLPs introduced in Section A.2.2 do not scale well
to image analysis. The number of pixels in an image is large and a fully-connected
approach leads to a very large number of weights which are difficult to optimise and
prone to overfitting.

The discovery of cells in the visual cortex responding to sub-regions of the visual
field was made in 1968 [206]. It was shown that simple cells respond to edge-like

147

Introduction to deep learning and convolutional neural networks

Receptive field
of neuron n

Neuron n

3x3 conv
3x3 conv

3x3 conv

Input image

Figure A.16: An illustration of the receptive field of a neuron after three convolution
layers. The receptive field of the neuron n is the red area in the input image connected
to this neuron through the convolutions. Best viewed in colour.

patterns while more complex ones detect larger, more global and more invariant
features. Based on this work, research on convolutional networks started in the 1980’s
with the predecessor of the CNN named “neocognitron” [4]. This method already
used multiple layers (two hidden layers) to gradually combine simple local features
into more complex patterns. Several key concepts of CNNs were developed in this
work including the local connectivity, the weight sharing and a type of subsampling
(averaging pooling). The neocognitron was not trained with backpropagation and
the first CNN trained with backpropagation was introduced in 1989 [208]. In 1998,
an improved version of CNN named LeNet5 was developed [5] for handwriting
recognition which resembles many recent networks in terms of operations (e.g.
convolution, non-linear activation, max-pooling, and fully-connected layers) applied
to the data but not in terms of depth and complexity. Except for the handwriting
application, CNNs had limited attention in the computer vision community at this
time. Their success was mainly restricted by the computational power and memory of
the computers, the lack of labelled data, and the difficulties to train deep architectures.
The year 2006 was important for deep learning and CNNs. The work of Hinton et.
al on DBNs [201] and on deep AEs [198] attracted interest for deeper architectures
and allowed pre-training complex deeper networks. The parallel computing of GPUs
significantly improved the speed and memory capacity of the computers, making
the training of deeper networks possible. More powerful CNN architectures were
developed at the same time [202, 209], including a backpropagation training of a
max-pooling CNN, and obtained the state of the art in several computer vision tasks.

Until 2010, CNNs achieved excellent results on small images and simple recog-
nition benchmarks which required limited abstraction of concepts and invariance.
However, they were outperformed by classic handwritten machine learning algo-

148

A.4 Convolutional neural networks

Deeper CNNs

8533

Perceptron
[Roseblatt]

Development of Backprop

Visual cortex
tiling visual field

[Hubel]
Neocognitron:

Conv + weight sharing
+ ave pool
[Fukushima]

LeNet5
[LeCun]

Deep Learning
(DBN, GPU CNNs,

improved CNNs etc.)
[Hinton],[LeCun] ...

ImageNet
[Russakovsky]

GoogleNet

Many applications
and states of the art

ResNet

Regularisations

R-CNN

CNN depth:
(layers)

>1,000

Early NNs

no learning

1957

1968

1980

1980

1960 1970 1990 2000

Backprop for CNN
[LeCun]

1989

1998

2006

2012

AlexNet
[Krishevsky]

2010

2010
FCN

VGG

Figure A.17: A timeline of CNN history.

rithms on more complex problems with larger images and fewer training data. The
second success of CNNs in the last seven years was highly related to ImageNet [50].
This large labelled dataset enabled training deeper architectures with less overfit of
the training data. In particular, the seven layer AlexNet [15] trained on ImageNet
marked an important advance in CNNs. An interesting aspect of the CNN is its
domain transferability. Pre-training a deep network on a very large dataset such as
ImageNet and finetuning it on another smaller dataset has shown that the learned
features generalise well to other tasks. Note that in finetuning, the parameters in
the top layer are optimised for the target task while the weights in earlier layers
are generally either kept unchanged or only slightly modified. It resulted in a new
state of the art even on datasets with a small amount of training data. Since 2012,
CNN has become the most popular approach in computer vision and other fields,
establishing a rapidly changing new state of the art on most of the benchmarks.
In particular, many new regularisation methods, learning algorithms, architectures,
and applications have been proposed. The number of layers used in a network has
increased exponentially in the last years with architectures such as VGG [18, 19] (7,
16 and 19 layers), GoogleNet [164] (22 layers) and deep residual networks [210]
(50, 101, 152 layers and even >1,000). These architectures will be covered in more
details in Section A.4.5. In the meantime, significant work has been conducted to
attempt to visualise and understand how and what CNNs learn [211] as described in
Section A.4.7.

149

Introduction to deep learning and convolutional neural networks

A.4.3 Main building blocks

The various building blocks of a CNN will now be introduced. The reader should
keep in mind that a network is built with a succession of these layers and that
many different architectures exist. The same notations as in Section A.2 are kept
throughout this section.

Convolution

The convolution layer is the most important building block of a CNN. It incorporates
several key concepts which are well suited to the analysis of images and other
grid-like data. The convolution of two functions h and w is given by:

(h∗w)(t) =
∫

∞

−∞

h(τ)w(t − τ)dτ (A.48)

where h and w are defined in R.
For a discrete variable x, the convolution operation is:

(h∗w)(x) =
∞

∑
n=−∞

h(n)w(x−n) (A.49)

In two dimensions (image), the discrete convolution becomes:

(h∗w)(x,y) =
∞

∑
nx=−∞

∞

∑
ny=−∞

h(nx,ny)w(x−nx,y− xy) (A.50)

In CNNs, functions operate on multi-dimensional arrays of data. In the general
case (2D images), the dimensionality of input and output data is the product of three
dimensions C×H ×W for respectively the number of channels, the height, and the
width. Note that the number of channels in the input image is generally three for
colour or one for greyscale data. The number of images per batch (see batch training
in Section A.2.3) is sometimes included in the data dimension as multiple images
are simultaneously fed. The inputs of a convolution layer are called input channels
while the outputs are referred to as feature maps after activation (see non-linear
activation in Section A.2.2). A convolution layer is mainly defined by a set of filters
(or kernels) by which the input data is convolved in the forward pass. Thus, the main
parameters of a convolution layer include the number and size (usually small) of the
filters. An output feature map is obtained by summing the convolution results of
each input channel with the appropriate kernel as shown in Figure A.18 and applying
non-linearity (not represented in Figure A.18). The biases are not represented in the

150

A.4 Convolutional neural networks

Input channels
(input volume)

Kernels Output feature maps
(output volume)

h1

h2

h3
w3

w3

w2

w2

w1

w1

x1

x2

*

*
*

*
*
*

∑

∑

∑

Figure A.18: A convolution layer with two input channels and three output feature
maps. The activation functions are not represented for simplicity.

figure for simplicity. An output h j is obtained as:

h j =
C

∑
i=1

xi ∗wi j (A.51)

where h j is the jth output of the convolution layer and wi j is the kernel between the
ith input channel and the jth output. The sum runs over the C input channels. The
operator ∗ is a 2D convolution as defined in Eq. A.50. The filters scan the input
channels with a certain stride by which they slide. A large stride results in smaller
output feature maps. The input channels can be zero padded with a desired size to
convolve the edges of the input channels. For instance, a padding of one pixel can be
used to convolve an image with a 3×3 kernel, maintaining the output size equal to
the input size. The stride, padding, and kernel size are illustrated in Figure A.19.

Local connectivity (or sparse connectivity) is a key concept of the convolution
layer. Unlike fully connected architectures (see MLPs Section A.2.2), convolution
layers ensure that each neuron of the network is connected to a small number of
neurons in the input channel equal to the size of the filters as shown in Figure A.18
and A.19. On top of capturing local dependencies, the local connectivity also
performs a large reduction of trainable parameters. Indeed, the high dimensionality
of the input images (number of pixels) makes the fully-connected approach very
impractical.

151

Introduction to deep learning and convolutional neural networks

p1,1 p4,1

stride = 3 pixels

padding = 2 pixels

Filter size
= 5x5

pW,H

Figure A.19: An illustration of the filter size, stride and zero padding in the forward
pass of a convolution layer. W and H are respectively the width and height of the
input channel.

The second key concept of the convolution layer is the weight sharing. In a
CNN, the hidden neurons are grouped into feature maps. All the hidden neurons
within a feature map share the same parameters (i.e. filters) and each hidden neuron
within a feature map covers a particular local part of the input channels. This can be
interpreted in the sense that the same features (edges, corners, and more complex
patterns) are sought everywhere across the image. This is particularly true in the
analysis of textures with repetitive patterns. Note that for certain types of images,
this might not be the case and one might allow different filters for different parts
of the image. For a face analysis task, for instance, different filters can be used for
different parts of the image to detect the mouth, the eyes etc. [184].

To summarise, the hyperparameters of a convolution layer include the number of
filters (or number of output channels), the filter size, the initialisation of the filters
(see Section A.2.3), the stride and the padding size. The size (height and width) of
the output feature maps is a function of the input size of the convolution layer and of
the hyperparameters. It can be computed as:

lout =
(lin − lw +2× pad)

s
+1 (A.52)

152

A.4 Convolutional neural networks

where lout and lin are the size (height or width) of the input channels and of the
output feature maps respectively. lw is the filter size, pad is the padding size, and s
is the stride. Note that the number of trainable parameters (weights and biases) in
a convolution layer can be calculated as Ni ×No × l2

w +Ni, where Ni and No are the
number of input channels and number of output feature maps respectively k is the
kernel height and width.

The backpropagation and SGD used to train a CNN are similar to the MLP
(Section A.2.3), keeping in mind the local connectivity and weight sharing. In
particular, the gradients at a convolution layer w.r.t. the weights are backpropagated
using:

∂E
wl

i j(nx,ny)
= ∑

x,y

∂E
∂hl+1

j (x,y)

∂hl+1
j (x,y)

∂wl
i j(nx,ny)

= ∑
x,y

∂E
∂hl+1

j (x,y)
xl

i(x−nx,y−ny)

=
∂E

∂hl+1
j (x,y)

∗xl
i(−nx,−ny)

(A.53)

Similarly, the gradients w.r.t. the inputs xl
i for further backpropagation through

earlier layers are computed as:

∂E
xl

i(nx,ny)
= ∑

j
∑
x,y

∂E
∂hl+1

j (x,y)

∂hl+1
j (x,y)

∂xl
i(nx,ny)

= ∑
j
∑
x,y

∂E
∂hl+1

j (x,y)
wl

i j(x−nx,y−ny)

= ∑
j

∂E
∂hl+1

j (x,y)
∗wl

i j(−nx,−ny)

(A.54)

Non-linearity

The reader should refer to Section A.2.1 for an explanation of the non-linearity in
ANNs. ReLU layers are generally used after the convolution and fully-connected
layers to activate the neurons as explained in Section A.2.1.

Pooling

The benefit of a pooling layer is three-fold. First, a pooling layer is used to reduce
the size of the data throughout the network. Secondly, it helps the network to learn
small transformation invariances (translation, scale, rotation) as the pooling operation
detects features regardless its position in a small neighbourhood. Thirdly, it also
increases the receptive field of the neurons. The receptive field is the area in the

153

Introduction to deep learning and convolutional neural networks

2 4 4 5

3 3 0 1

0 3 4 2

2 1 1 3

4 5

3 4

(a) max

2 4 4 5

3 3 0 1

0 3 4 2

2 1 1 3

3 2.5

1.5 2.5

(b) average

Figure A.20: An example of a pooling layer (Forward pass) with 2× 2 filters (a)
max pooling, (b) average pooling.

input image to which a neuron is directly or indirectly connected as illustrated in
Figure A.16. Receptive fields in the top layers are larger than in early layers due to
the filter sizes and the stride of the convolution and pooling layers. The most popular
pooling approach is “max” pooling. The max pooling layer outputs the maximum
values of small non-overlapping patches in the input channels. A filter size, stride
and padding size must be specified similarly to the convolution layer (Figure A.19).
Note that, unlike a convolution layer, there is no trainable parameter in a pooling
layer.

Another approach discussed in this thesis is “average” pooling. Figure A.20
illustrates an example of max and average pooling with a typical filter size 2× 2.
The same idea of splitting the input channels into non-overlapping patches is applied,
and the average of each patch is calculated.

The gradients are backpropagated through a max pooling layer only through the
neuron with maximum value (maximally activated in the forward pass) as changing
non-maximum neurons does not affect the output. Therefore, the location of the
maximum values in the input of a max-pooling layer during the forward pass must
be saved for backpropagation. The gradients are copied to the maximum locations,
the rest are set to zero. In an average pooling layer, all the input neurons covered by
a pooling kernel are given the same gradient value, i.e. the output gradients divided
by the kernel size. Average pooling can alternatively be seen as a special type of
convolution with fixed weights.

Note that several recent approaches get rid of pooling operations [212] by using
convolution layers with increased stride.

Fully-connected layer

Fully-connected layers are often used after a cascade of convolution, non-linear and
pooling layers as shown in Figure A.15. A fully-connected layer is similar to an
MLP layer, i.e. the neurons are connected to all the input neurons. The output of a
fully-connected layer is a vector of dimension equal to the number of neurons. In a
classification scheme, the last fully-connected layer contains a number of neurons

154

A.4 Convolutional neural networks

equal to the number of classes. In a trained network, a high activation of the ith

output value of the last fully-connected layer reflects a high probability of the input
image being of class i. Note that the fully-connected layer can be thought of as a
1× 1 convolution layer. Several recent architectures replace the fully-connected
layers by 1×1 convolution layers [6] to obtain a spatial map of output score vectors
from input images of varying sizes.

Loss

The loss, as explained in Section A.2.3, measures the error between the output of
a network and a target (or label) vector. The loss is used during training for the
backpropagation of the gradients and the SGD optimisation (see Section A.2.3). A
commonly used loss in CNNs is the cross-entropy. Please refer to Section A.2.3 for
the forward and backward computation of this loss function.

A.4.4 Regularisation

Several regularisation methods are used in CNNs as described in Section A.2.4.
The most common ones include Dropout, DropConnect (randomly setting weights
instead of the activations to zero), stochastic pooling, data augmentation, weight
decay, early stopping, and ℓ1 and ℓ2 regularisation. Also, BN [2] introduced in A.3.4
is used in many recent network architectures.

A.4.5 CNN architectures

Many CNN architectures, learning algorithms, regularisation methods, and applica-
tions have been developed and this area is in constant expansion. Some of the most
popular CNN architectures used in the literature are described in the following list.

LeNet5

LeNet5 [5] is the first popular CNN architecture trained with backpropagation to
recognise digits. The LeNet5 architecture contains two convolution layers, two
pooling layers and two fully-connected layers as depicted in Figure A.21. Note
that the depth of a CNN refers to the number of layers with trainable parameters
(convolution and fully-connected). Thus, LeNet5 is 4 layers deep. The input sizes,
number of feature maps and other details are shown in the figure.

AlexNet

AlexNet [15] is a CNN architecture which includes five convolution layers and three
fully-connected layers. The main difference from LeNet5 is the depth, the input size

155

Introduction to deep learning and convolutional neural networks

Figure A.21: The LeNet5 architecture. Image replicated from [5].

and the number of neurons, which significantly increased due to the development
of computational power and expansion of training data. Dropout and LRN are also
incorporated to the network’s architecture. The architecture of this network is shown
in Figure A.22 and summarised in Table A.1. Note that the channels are grouped
into two separate groups which are processed by two different GPUs.

Figure A.22: The AlexNet architecture. Image replicated from [15].

VGG

The VGG-M architecture [18] slightly varies from AlexNet in the kernel size and in
the number of feature maps. It contains eight layers like AlexNet (five convolution
and three fully-connected layers). The VGG-16 and VGG-19 architectures [19]
introduce a more significant change with an important increase of the depth of
the network (as indicated by the numbers). Replacing convolution layers of large
filter sizes by multiple convolution layers of smaller (3× 3) kernel size showed
improvement of the CNNs. This approach increases the depth of the network and
reduces the number of parameters while keeping the same receptive fields of the
neurons. Three convolution layers with 3× 3 filters, for instance, have the same
receptive field as a single convolution layer with 7× 7 filters and less trainable
parameters (3×3×3+3 = 28 parameters versus 7×7+1 = 50 for a single input
and output layer). The receptive field of the three 3 × 3 convolution layers is

156

A.4 Convolutional neural networks

Table A.1: AlexNet layers. The convolution and fully-connected layers are all
activated by ReLU except for FC3.

Layer type output size kernel, pad, stride
Input c×227×227 -

Conv (C1) 96×55×55 11, 0, 4
Pool (P1) 96×27×27 3, 0, 2

LRN 96×27×27 -
Conv (C2) 256×27×27 5, 2, 1
Pool (P2) 256×13×13 3, 0, 2

LRN 256×13×13 -
Conv (C3) 384×13×13 3, 1, 1
Conv (C4) 384×13×13 3, 1, 1
Conv (C5) 256×27×27 3, 1, 1
Pool (P5) 256×6×6 3, 0, 2

Fully-con. (FC1) 4,096 -
Dropout 4,096 -

Fully-con. (FC2) 4,096 -
Dropout 4,096 -

Fully-con. (FC3) N -
Softmax N -

illustrated in Figure A.16. The VGG-16 and VGG-19 architectures are successions
of multiple 3×3 convolution layers followed by a pooling layer. The large number
of feature maps used in these networks (i.e. width of the network) results in a large
number of trainable parameters.

Region-based CNN

A Region-based CNN (R-CNN) was developed in [213] for object detection and
semantic segmentation. It is based on a region proposal followed by a classification
of each region with a large CNN. Therefore, it does not introduce a new network
architecture but a method to use an existing trained network to detect objects. The
R-CNN framework is described in Figure A.23.

Figure A.23: The R-CNN object detection framework. Image replicated from [213].

157

Introduction to deep learning and convolutional neural networks

Figure A.24: A basic FCN architecture with pixelwise prediction. The upsampling,
deconvolution, and skip layers are not specified and only the prediction image is
represented. Image replicated from [213].

Fully convolutional network

A Fully Convolutional Network (FCN) was developed in [6] by adapting classic
CNN architectures for semantic segmentation. A FCN is trained end-to-end similarly
to classification CNNs except that training images with pixel labels are fed instead
of image class labels. An error must be calculated for every pixel location which
requires a pixelwise representation of the network’s output, unlike a classification
output of classic CNNs. To that end, fully-connected layers are first replaced by
1×1 convolution layers to allow arbitrary input sizes. The output feature maps of
these 1× 1 convolution layers are smaller than the number of input pixels due to
convolution and pooling. They are therefore upsampled by deconvolution [205]
and interpolation to get back to a pixelwise representation as shown in Figure A.24.
Following the idea of hypercolumn in [214], information obtained at multiple depths
in the network is combined using skip layers. The local information (“where”)
in early layers is combined with the global information (“what”) in deep layers.
This approach allows the network to extract deep features of high complexity while
maintaining a locality information crucial for segmentation across boundaries.

Network in network

Based on the idea of stacking simple convolution layers in LeNet5, AlexNet, VGG
etc., a new type of architecture emerged in [215] in which the convolution layers
are replaced by blocks of operations in “micro” neural networks. In the Network in
Network approach (NIN) [215], blocks of 1×1 convolutions (similar to small MLPs)
replace the convolution layers to increase the depth and enhance the abstraction
ability of the network. This method maintains the local connectivity and weight

158

A.4 Convolutional neural networks

Figure A.25: A comparison of (a) a convolution layer and (b) a Network in Network
block (Mlpconv). Image replicated from [215].

sharing of convolution layers. A comparison of a classic convolution layer and this
micro network called Mlpconv is illustrated in Figure A.25. Moreover, this block
approach and the following ones which will be described replace the max pooling of
the last feature map (typically of size 6×6) by an average pooling. In NIN, no fully-
connected layer is used to avoid overfitting, that typical consecutive fully-connected
layers following a max pooling are prone to in AlexNet and VGG networks. Thus,
each feature map in the last Mlpconv layer is generated for a particular class of
the training data. Most block CNN approaches based on this work, as described
in the following sections, maintain the average pooling method yet use a single
fully-connected layer for convenience in adapting the networks to different label
sets.

GoogleNet and Inception modules

A new concept named “Inception module” was introduced in [164] (Inception-v1)
based on the block approach of the NIN. An Inception module processes the data
at multiple scales as illustrated in Figure A.26. It applies a set of convolutions with
different kernel sizes and a pooling operation in parallel and combines the outputs.
A trick of dimension reduction (with 1× 1 convolutions inspired by NIN) before
the convolution with large kernels enables a significant reduction of computation
complexity. This is commonly referred to as bottleneck as information is “squeezed”
into a lower dimension. GoogleNet is a 22 layers network including three convolution
layers, nine Inception modules (two layers each), and one fully-connected layer.
The number of feature maps is up to 1,024 in the last Inception module. The
full architecture of GoogleNet is illustrated in Figure A.27. To efficiently train
GoogleNet, the error is calculated at multiple intermediate layers.

Several variants of the Inception module were proposed following this initial
work. Batch-normalisation was added to the Inception module in [2] (Inception-v2).
In Inception-v3 [216], the convolutions are factorised into smaller convolutions.

159

Introduction to deep learning and convolutional neural networks

Figure A.26: An inception module used in GoogleNet. Image replicated from [164].

Figure A.27: The GoogleNet architecture. Convolution layers are depicted in blue,
pooling layers in red, softmax in yellow, concatenation and normalisation in green
and finally, input and labels in white. Image replicated from [164].

5×5 convolutions can be replaced by two 3×3 convolutions as suggested in the
VGG networks and to go further, 3× 3 convolutions are replaced by asymmetric
3×1 followed by 1×3 convolutions for a more efficient implementation.

Deep residual networks

Residual connections were introduced in [210] to train very deep networks. Deep
residual networks are significantly deeper than the previously discussed CNNs with
up to more than 1,000 layers. It was shown that adding more layers to classic CNNs
results in a saturation and rapidly a degradation of the accuracy. This is not due to
overfitting but to the difficulty to optimise deeper architecture.

Rather than approximating a function H(x), a residual approach approximates
a residual function F(x) := H(x)− x. The resulting original function F(x)+ x is
implemented by adding a “shortcut” connection as shown in Figure A.28. Note
that this shortcut connection is frequently compared to an LSTM unit without gates.
A deep ResNet is then created by stacking many residual learning blocks with
mainly 3×3 convolution filters. This residual approach allows the data to flow from
one block directly to a deeper block through the shortcut connections. Similarly,

160

A.4 Convolutional neural networks

Figure A.28: A residual learning block. Image replicated from [210].

gradients propagate directly from any block to shallower ones in the backward pass.
Therefore, very deep residual networks can be efficiently optimised from scratch
without the error calculation at multiple levels adopted in GoogleNet.

Intuitively, the residual block is motivated by the fact that it performs an identity
mapping if the weights of the convolution layers are zeros (F(x)+x = x). Adding
an identity mapping cannot degrade the performance of the network, as opposed to
adding classic layers. A residual block will therefore learn a residual if it results in a
gain of accuracy, or drive the weights towards zero to perform the identity mapping.

Originally directly attributed to the increased depth [210], the reason for the
performance of deep ResNets is currently subject to broad interest [217]. This
discussion is beyond the scope of the thesis.

Other block approaches

More block-based approaches were developed in the literature based on the NIN,
Inception and ResNet architectures including Inception-v4 and Inception-ResNet
[218], SqueezeNet [219] and X-ception [220].

Convolutional generative adversarial networks

This section presents an application of the GAN introduced in Section A.3.6 with
convolutional networks. In a convolutional GAN [9], the generator is a deconvolu-
tional network [205] which generates images. The discriminator is a convolutional
network which performs a binary classification to predict whether an input image is
generated (“fake”) or a sample from the training dataset (“real”).

In the Deep Convolutional Generative Adversarial Network (DCGAN) [221], the
generator and discriminator are equipped with recent developments in supervised
CNNs including BN (see Section A.3.4) and strided convolutions [212]. DCGANs
can generate very realistic looking images and learn unsupervised representations
which have been successfully used as a feature extractor for image classification.

161

Introduction to deep learning and convolutional neural networks

(a) input image (b) filters (c) responses

Figure A.29: A visualisation of filters and responses of the neurons in the first
convolution layer of AlexNet trained on ImageNet. (a) Input image, (b) filters, (c)
responses. Figures obtained with the DeepVis toolbox [170].

A.4.6 Applications

Convolutional networks have been highly successful in most machine learning
problems, in particular in computer vision for the analysis and synthesis of data
from various modalities. CNNs can be applied to data of multiple dimensions, e.g.
1D audio signals, 2D images, 3D volumetric data or videos and higher-dimensional
medical data. Single or multiple input channels can be used, multiple modalities
can be integrated and recent architectures allow various input sizes. This flexibility,
together with its performance and the computational power and scalability which
arose from recent GPUs, have made CNNs one of the most popular approaches in
machine learning in the last decade. An exhaustive list of the extensively growing
number of applications is outside the scope of this thesis. Some of the major
applications in computer vision include image recognition, object detection and
tracking, pose estimation, text detection and recognition, visual saliency, action
recognition, and scene labelling. Other machine learning applications include speech
processing, natural language processing, and text classification. A survey of CNN
applications can be found in [222].

A.4.7 Visualisation

Several methods have been developed to visualise and analyse what and how CNNs
learn. The simplest method is to visualise the feature maps and weights at different
layers in the network. Figure A.29 shows the weights of the first layer of AlexNet
trained on ImageNet as well as the feature maps of the first layer in response to an
input image.

162

A.4 Convolutional neural networks

Most filters have learned to detect edge-like features similar to a Gabor filter
bank approach and to the primary visual cortex feature detection. Other filters have
learned colour blobs and edges. Note that the visualisation of the weights is mainly
interpretable for the first layer as the feature maps of deeper layers are a result of a
combination of multiple filters in previous layers.

For this reason, more advanced methods were developed to visualise what the
neurons in intermediate layers actually perceive from the input images. Recall that
the receptive field grows as one navigates towards the output of the network and
neurons learn to respond (i.e. fire) to larger and more complex patterns. Three
methods will be introduced here to visualise what the neurons detect in the input
image.

The first method is to simply find which input image maximally activates a
certain neuron. In other words, all images from a dataset (generally unknown to
the network) are used one by one as input to the CNN and the one for which the
activation of the neuron of interest is maximal is selected. This is a very basic method
which is most relevant for neurons in high layers. Figure A.30 (second column)
shows image patches which maximally activate two neurons in the first, second and
fifth layers of AlexNet trained on ImageNet.

Another approach is based on the deconvolution [211]. The idea is to reconstruct
an input image by reversing the operations of the CNN. To visualise what a neuron at
a certain layer has learned to detect, the activation that fires most with unknown input
images is found and the operations are reversed to project the activation back into the
pixel space. In particular, deconvolution, reversed max-pooling, and reversed ReLU
operations are used. Note that the deconvolution pass uses the same convolutional
kernel and pooling “switches” as the forward pass. Figure A.30 (third column)
shows the deconvolution visualisations of the same neurons as the first visualisation
method.

The last visualisation method presented here involves the generation of an image
(a receptive field) which maximally activates a neuron [169]. To that end, the input
values are updated in a gradient ascent optimisation to maximise the activation of a
neuron as a function of the inputs of all layers up to the input image. Figure A.30
(last column) illustrates the generated receptive fields for the same neurons as the
previous visualisation methods.

Figure A.29 and A.30 illustrate that deep neurons respond to complex patterns
and enable to analyse which patterns are sought by the neurons. For instance, the
neurons in the first convolution layer mainly detect edges and colours. Neurons in
the third layer respond to more complex patterns such as a cylinder-like shape (dog’s
leg) or a texture with straight edges like the parquet floor. Finally, the neurons in the
last convolution layer respond to complex patterns such as the dog’s face, and learn

163

Introduction to deep learning and convolutional neural networks

some type of invariances and abstraction necessary to image recognition. Various
interesting analyses and conclusions can be drawn from such visualisation methods.

(a) input image

max im, Max deconv, regularized opt

(b) Conv1

max im, Max deconv, regularized opt

(c) Conv3

164

A.4 Convolutional neural networks

max im, Max deconv, regularized opt

(d) Conv5

Figure A.30: A visualisation of several features learned by neurons in AlexNet
trained on ImageNet and their response to an input image. The first column depicts
the response of a particular neuron. The second column shows the image patches
which maximally activate this neuron. The third and fourth columns show the decon-
volution images and the images obtained by activation maximisation respectively. (a)
input image, (b) two neurons in Conv1, (c) two neurons in Conv2, (d) two neurons
in Conv5. Figures obtained with the DeepVis toolbox [170]. Note that the deeper
receptive fields are larger than shallow ones but are resized for display.

165

	Table of contents
	List of figures
	List of tables
	List of abbreviations
	1 Introduction
	1.1 Texture and dynamic texture analysis
	1.1.1 What is texture?
	1.1.2 What is dynamic texture?
	1.1.3 Analysis and applications
	1.1.4 Challenges
	1.1.5 Classic approaches

	1.2 Motivation for the thesis
	1.3 Thesis summary and main contributions
	1.4 Outline of the dissertation

	2 Literature review
	2.1 Introduction
	2.2 Texture analysis
	2.2.1 Texture perception
	2.2.2 Classic texture feature extraction
	2.2.3 Texture analysis problems
	2.2.4 Deep descriptor and deep learning in texture analysis

	2.3 Dynamic texture analysis
	2.3.1 Classic dynamic texture analysis
	2.3.2 Deep learning in dynamic texture analysis

	3 Convolutional networks for texture classification
	3.1 Introduction
	3.2 Material and Methods
	3.2.1 Texture CNN
	3.2.2 Details of the network

	3.3 Datasets and experimental setups
	3.4 Results and discussion
	3.4.1 Networks from scratch and pre-trained
	3.4.2 Networks depth analysis
	3.4.3 Domain transferability
	3.4.4 Visualisation
	3.4.5 Results on larger images
	3.4.6 Combining texture and shape analyses
	3.4.7 Deeper Texture CNN
	3.4.8 Discussion

	3.5 Application to biomedical tissue images
	3.5.1 Motivation
	3.5.2 State of the art
	3.5.3 Method
	3.5.4 Experiments
	3.5.5 Results
	3.5.6 Discussion

	4 Dynamic texture recognition with convolutional networks
	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 Texture CNN
	4.2.2 Dynamic Texture CNN
	4.2.3 Domain transfer

	4.3 Datasets and experimental setups
	4.3.1 Datasets
	4.3.2 Implementation details

	4.4 Results and discussion
	4.4.1 Results
	4.4.2 Contribution of the planes
	4.4.3 Domain transferability and visualisation

	4.5 Discussion

	5 Texture segmentation with fully convolutional networks
	5.1 Introduction
	5.2 Material and Methods
	5.2.1 Network architecture
	5.2.2 Refinement of segmented regions

	5.3 Experiments
	5.3.1 Experiment A: Supervised training with multiple training images per class
	5.3.2 Experiment B: Supervised training with single training image per class
	5.3.3 Experiment C: Unsupervised training

	5.4 Discussion

	6 Conclusions and future work
	6.1 Contributions and conclusions
	6.1.1 List of contributions
	6.1.2 Limitations of deep learning

	6.2 Future Work

	References
	Appendix A Introduction to deep learning and convolutional neural networks
	A.1 Introduction
	A.1.1 Overview
	A.1.2 Definitions
	A.1.3 Motivation

	A.2 Neural networks
	A.2.1 The neuron
	A.2.2 Artificial neural network architecture
	A.2.3 Training a neural network: Backpropagation
	A.2.4 Regularisation methods
	A.2.5 Recurrent neural networks
	A.2.6 Unsupervised learning
	A.2.7 Reinforcement learning

	A.3 Deep learning
	A.3.1 Regularisation
	A.3.2 Vanishing gradients
	A.3.3 Internal covariate shift
	A.3.4 Batch normalisation
	A.3.5 Deep recurrent networks
	A.3.6 Deep unsupervised methods

	A.4 Convolutional neural networks
	A.4.1 Overview
	A.4.2 Brief history
	A.4.3 Main building blocks
	A.4.4 Regularisation
	A.4.5 CNN architectures
	A.4.6 Applications
	A.4.7 Visualisation

