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Abstract. Image representations extracted from convolutional neural
networks (CNNs) outdo hand-crafted features in several computer vision
tasks, such as visual image retrieval. This chapter recommends a simple
pipeline for encoding the local activations of a convolutional layer of a pre-
trained CNN utilizing the well-known Bag of Words (BoW) aggregation
scheme and called bag of local convolutional features (BLCF). Matching
each local array of activations in a convolutional layer to a visual word
results in an assignment map, which is a compact representation relating
regions of an image with a visual word. We use the assignment map
for fast spatial reranking, finding object localizations that are used for
query expansion. We show the suitability of the BoW representation
based on local CNN features for image retrieval, attaining state-of-the-
art performance on the Oxford and Paris buildings benchmarks. We
demonstrate that the BLCF system outperforms the latest procedures
using sum pooling for a subgroup of the challenging TRECVid INS
benchmark according to the mean Average Precision (mAP) metric.
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1. Introduction

Visual image retrieval aims at organizing and structuring image databases based
on their visual content. The proliferation of ubiquitous cameras in the last decade
has motivated researchers in the field to push the limits of visual search systems
with scalable yet effective solutions.

Representations based on convolutional neural networks (CNNs) have been
demonstrated to outperform the state-of-the-art in many computer vision tasks.
CNNs trained on large amounts of labeled data produce global representations
that effectively capture the semantics in images. Features from these networks
have been successfully used in various image retrieval benchmarks with very
promising results [1,2,3,4,5,6], improving upon the state-of-the-art compact image
representations for image retrieval.

Despite CNN-based descriptors performing remarkably well in instance search
benchmarks like the Oxford and Paris Buildings datasets, state-of-the-art an-



Figure 1. Examples of the top-ranked images and localizations based on local CNN features
encoded with BoW. Top row: The Christ Church from the Oxford Buildings dataset; middle row:
The Sacre Coeur from Paris Buildings; bottom row: query 9098 (a parking sign) from TRECVid
INS 2013.

swers for more challenging datasets such as TRECVid Instance Search (INS)
have not yet adopted pipelines that depend solely on CNN features. Many INS
systems [7,8,9,10] are still based on aggregating local handcrafted features (like
SIFT) using the Bag of Words encoding [11] to produce very high-dimensional
sparse image representations. Such high-dimensional sparse representations have
several benefits over their dense counterparts. High dimensionality means they are
more probable to be linearly separable while presenting relatively few non-zero
elements, which makes them efficient equally in terms of storage (only nonzero
components need to be stored), and computation (only non-zero elements need to
be visited). Sparse representations can handle varying information content and
are less likely to interfere with one another when pooled. From an information
retrieval perspective, sparse representations can be stored in inverted indices,
which facilitates efficient selection of images that share features with a query.
Furthermore, there is considerable evidence that biological systems make extensive
use of sparse representations for sensory information [12,13]. Empirically, sparse
representations have repeatedly demonstrated to be effective in a wide range of
vision and machine learning tasks.

Many efficient image retrieval engines combine an initial highly scalable ranking
mechanism on the full image database with a more computationally expensive
yet higher-precision reranking scheme applied to the top retrieved items. This
reranking mechanism often takes the form of geometric verification and spatial
analysis [14,15,16,8], after which the best matching results can be used for query
expansion (pseudo-relevance feedback) [17,18].

In this chapter, inspired by advances in CNN-based descriptors for image
retrieval, yet still focusing on instance search, we revisit the Bag of Words encoding
scheme using local features from convolutional layers of a CNN. This work presents
the following contributions:



e We conduct a comprehensive state-of-the-art review analyzing contemporary
approaches using CNN models for the task of image retrieval.

e We propose a sparse visual descriptor based on a bag of local convolutional
features (BLCF), which permits fast image retrieval via an inverted index.

e We present the assignment map as a novel compact representation of the
image, which maps image pixels ito their corresponding visual words. The
assignment map allows fast creation of a BoW descriptor for any region of
the image.

e We take advantage of the scalability properties of the assignment map
to achieve a local analysis of multiple regions of the image for reranking,
followed by a query expansion stage using the obtained object localizations.

Using this approach, we present an image retrieval system that achieves state-of-
the-art performance comparing with other non-fine tuned models in content-based
image retrieval (CBIR) benchmarks and outperforms current state-of-the-art CNN
based descriptors at the task of instance search. Figure 1 illustrates some of the
rankings produced by our system on three different datasets.

The remainder of the chapter is structured as follows. Section 2 contains an
extensive overview of related work. Section3 presents different retrieval benchmarks.
Section 4 introduces the proposed framework for BoW encoding of CNN local
features. Section 5 explains the details of our retrieval system, including the local
reranking and query expansion stages. Section 6 presents experimental results on
three image retrieval benchmarks (Oxford Buildings, Paris Buildings, and a subset
of TRECVid INS 2013), as well as a comparison to five other state-of-the-art
approaches. Section 7 summarizes the most significant results and outlines future
work.

2. Related Work
2.1. First CNN Approaches for Retrieval

Several other authors have proposed CNN-based representations for image retrieval.
The first applications focused on replacing traditionally handcrafted descriptors
with features from a pre-trained CNN for image classification. Activations from
the last fully connected layers from the Alexnet network proposed by Krizhevsky
were the first ones to be used as a generic image representation with potential
applications for image retrieval [19,20,21]. Similar images generate similar ac-
tivation vectors in the Euclidean space. This finding motivated early works in
studying the capability of CNN models for retrieval, mostly focused on the analysis
of fully connected layers extracted from pre-trained CNN classification model
Alexnet [2,3,22]. In this context, Babenko et al. [2] showed how such features could
reach similar performance to handcrafted features encoded with Fisher vectors
for image retrieval. Razavian et al. [3] later outperformed the state-of-the-art of
CNN representations for retrieval using several image sub-patches as input to a
pre-trained CNN to extract features at different locations of the image. Similarly,
Liu et al. [23] used features from fully connected layers evaluated on image sub
patches to encode images using Bag of Words.



2.2. Convolutional Features for Retrieval

While descriptors from fully connected layers of a pre-trained CNN in ImageNet
achieve competitive performance, local characteristics of objects at instance level
are not well preserved at those layers, since information contained is biased towards
the final classification task (too semantic) and spatial information is completely
lost (each neuron in a fully connected layer is connected to all neurons of the
previous layer).

A second generation of works reported significant gains in performance when
switching from fully connected to convolutional layers. Razavian et al. [4] performed
spatial max pooling on the feature maps of a convolutional layer of a pre-trained
CNN to produce a descriptor of the same dimension as the number of filters of
the layer. Babenko and Lempitsky [1] proposed sum-pooled convolutional features
(SPoc), a compact descriptor based on sum pooling of convolutional feature maps
preprocessed with a Gaussian center prior. Tolias et al. [5] introduced a feature
representation based on the integral image to quickly max pool features from local
patches of the image and encode them in a compact representation. The work by
Kalantidis et al. [24] proposed Cross-dimensional weighting and pooling(CroW), a
non-parametric spatial and channel-wise weighting schemes applied directly to the
convolutional features before sum pooling. Our work shares similarities with all
the former in that we use convolutional features extracted from a pre-trained CNN.
Unlike these approaches, however, we propose a sparse, high-dimensional encoding
that better represents local image features, particularly in difficult instance search
scenarios where the target object is not the primary focus of the image.

Several authors have tried to exploit local information in images by passing
multiple image sub patches through a CNN to obtain local features from either fully
connected [3,23] or convolutional [22] layers, which are in turn aggregated using
techniques like average pooling [3], BoW [23], or Vector of Locally Aggregated
Descriptors (VLAD) [22]. Although many of these methods perform well in retrieval
benchmarks, they are significantly more computationally costly since they require
CNN feature extraction from many image patches, which slows down indexing
and feature extraction at retrieval time.

An alternative approach is to extract convolutional features for the full image
and treat the activations of the different neuron arrays across all feature maps as
local features. This way, a single forward pass of the entire image through the CNN
is enough to obtain the activations of its local patches. Following this approach,
Ng et al. [25] proposed to use VLAD [26] encoding of features from convolutional
layers to produce a single image descriptor. Arandjelovié¢ et al. [27] chose to adapt a
CNN with a layer especially trained to learn the VLAD parameters. Our approach
is similar to the ones in [25,27] in that we also treat the features in a convolutional
layer as local features extracted at different locations in an image. We, however,
use BoW encoding instead of VLAD to take advantage of sparse representations
for fast retrieval in large-scale databases.

Several of the cited approaches propose systems that are based or partially
based on a spatial search over multiple regions of the image. Razavian et al. [4]
achieve a remarkable increase in performance by applying a spatial search strategy
over an arbitrary grid of windows at different scales. Although they report high



accuracy in several retrieval benchmarks, their proposed approach is very compu-
tationally costly and does not scale well to larger datasets and real-time search
scenarios. Tolias et al. [5] introduce a local analysis of multiple image patches,
which is only applied to the top elements of an initial ranking. They propose an
efficient workaround for sub patch feature pooling based on integral images, which
allows them to quickly evaluate many image windows. Their approach improves
their baseline ranking and provides approximate object localizations. They apply
query expansion using images from the top of the ranking after the reranking stage,
although they do not use the obtained object locations in any way to improve
retrieval performance. In this direction, our work proposes using the assignment
map to quickly build the BoW representation of any image patch, which allows us
to apply a spatial search for reranking. We apply weak spatial verification to each
target window using a spatial pyramid matching strategy. Unlike [5], we use the
object localizations obtained with spatial search to mask out the activations of
the background and perform query expansion using the detected object location.

Another method to improve the representativeness of the convolutional features
is weighting them with some sort of attention map. Jimenez et al. [28] have
proposed a technique that can be seen as a combination of the ideas introduced in
CroW [24] and R-MAC [5]. They propose using Class Activation Maps (CAMs) [29],
which is technique that can be applied to most of the the state-of-the-art CNN
networks for classification to create a spatial map highlighting the contribution of
the areas within an image that are more relevant for the network to classify an
image as one particular class. This way, several weighting schemes can be generated
for each of the classes for which the original pre-trained network was trained
(typically the 1000 classes of ImageNet [30]). Each of the weighting schemes can
be used in the same way as in CroW to generate different vectors per class. All the
obtained class-vectors are then sum-pooled to get a final compact representation.
BLCFs can also be enriched with a weighting scheme, as proposed in [31]. In this
case, instead of weighting them with a class-activation map, the attention map
was computed with a prediction of the gaze fixation over egocentric images. In this,
case, a visual saliency map was estimated with SalNet [32], a deep convolutional
network trained for that purpose.

Focused on exploring the advantage of processing different regions of the
image independently, Salvador et al. [33] propose to use a fine-tuned version of an
object detection network. In particular, they use the Faster R-CNN [34] which is
a network composed of a base module, which is a fully convolutional CNN (i.e
VGG16 architecture), and a top module composed of two branches: one branch
is a Region Proposal Network that learns a set of window locations, and the
second one is a classifier (composed by three fully connected layers) that learns
to label each window as one of the classes in the training set. Object proposals
can be understood as a way of focusing in specific areas of the image so they
are equivalent to a weighting scheme if their features are pooled. In this sense,
BLCF may also benefit some these type of tools at the expense of an additional
computation time and indexing resources.



2.3. End-to-End Learning

Deep learning has been proven as a mechanism to successfully learn useful semantic
representations from data. However, most of the discussed work use off-the-shelf
CNN representations for the task of retrieval, where representations have been
implicitly learned as part of a classification task on ImageNet dataset. This
approach presents two main drawbacks: the first one comes from the source dataset
ImageNet from where features have been learned. While Imagenet is a large-scale
dataset for classification, covering diverse 1000 classes (from airplanes, landmarks,
general objects) and allowing models to learn good generic features, it has been
explicitly designed to contain high intra-class invariance which is not a desirable
property to retrieval. The second, consists in the used loss function: Categorical
cross entropy evaluates the classification prediction without trying to discriminate
between instances from the same class, which may be desirable in several retrieval
scenarios.

One simple but yet effective solution to improve the capacity of the CNN
features consists in learning representations that are more suitable to the test
retrieval dataset by fine-tuning the CNN network to perform classification in
a new domain. This approach was followed by Babenko [2], where the Alexnet
architecture was trained to perform classification in a Landmark! dataset, more
semantically similar to the target retrieval domain. Despite improving performance,
the final metric and the layers utilized were different to the ones actually optimized
during learning.

State-of-the art CNN retrieval networks have been tuned optimizing a similarity
loss function [35,4,26]. For that, the whole fine-tuning process of a CNN is casted
as a metric learning problem, where the CNN represents an embedding function
that maps the input image into a space where relative image similarities are
preserved. Siamese and Triplet networks are commonly used for that task.

2.3.1. Siamese Networks

Siamese networks [36,37,38] are architectures composed by two branches (composed
by convolutional, ReLu, Maxpooling layers) that share exactly the same weights
across each layer. It is trained on paired data consisting in an image pair (i, j)
where Y (i,7) € {0, 1} represents the binary label indicating if the images belong
to the same category or not. The network optimizes the contrastive loss function
defined for each pair as

N

L(i,j) =

where D(i,j) represents the Euclidean Distance between a pair of images
D(i,5) = ||f(¢) — f(j)||, and f the embedding function (CNN network) that maps
an image to a point in an Euclidean space. When a pair of images belong to
the same category, the loss function tries to directly reduce the distance in the
feature space, whereas when images are different the loss is composed by a hinge

Lhttp://sites.skoltech.ru/compvision/projects/neuralcodes/



function that maximizes those distances, which are too small as they do not reach
a minimum margin a.

First introduced in 1994 for signature verification [39], Siamese networks have
been applied for dimensionality reduction [37], learning image descriptors [40,41,42]
or face verification [36,38].

2.3.2. Triplet Networks

Triplet networks are an extension of the Siamese networks where the loss function
minimizes relative similarities. Each training triplet is composed by an anchor
or reference image, a positive example of the same class as the anchor, and a
negative example of a different class to the anchor. The loss function is defined by
the hinge loss as

L(a,p,n) = max(0, D(a,p) — D(a,n) + ), (2)

where D(a,p) is the Euclidean distance between the anchor and a positive
example, D(a,n) is the Euclidean distance between the anchor and a negative
example and a a margin. The loss ensures that given an anchor image, the distance
between the anchor and a negative image is larger than the distance between the
anchor and a positive image by a certain margin .

The main difference between triplet and Siamese architectures is that the
former one optimizes relative distances with a reference image or anchor, whereas
the later optimizes separately positive and negative pairs; which usually leads to
models with better performance [43,44].

2.3.8. Training Data for Similarity Learning

Generating training data for similarity learning is not a trivial task. A usual
procedure of collecting a new image dataset is mainly divided into two steps:

e Web crawling: Given pre-defined text queries depicting different categories,
querying them in some of the popular image search engines (Google Image
Search, Bing, Flick) to download a set of noisy labeled images.

e Data cleaning: Images retrieved by available search engines usually contain
noisy results such as near-duplicates or unrelated images, high intraclass
image variations such interior or exterior images of a particular building or
high diversity in the image resolution. Two approaches are followed after
the web crawling:

* Manual data cleaning: Which can be based on manual processing, ex-
haustively inspecting all images for a dataset of moderate or small
sizes [1,45,46,7] or by making use of a crowdsourcing mechanism such as
Amazon Mechanical Turk for large scale datasets [30,47,48].

x Automatic data cleaning: In this approach, metadata associated with
the images is exploited as an additional filtering step such as geo-tagged
datasets [49,27] and/or the usage of image representations to estimate
similarity and geometry consistence between images, a process that usually
rely in handcrafted invariant features [50,35,51].



2.3.4. Hard Negative Mining

During learning, networks are optimized via mini-batch Stochastic Gradient
Descent (SGD). Sampling pairs or triplets at random is an inefficient strategy
because many of them can already accomplish the margin criteria of equations 1
and 2. That means that no error is generated and no gradients are backpropagated,
so the weights of the CNN model are not updated and no learning is performed.

To sample positive pairs, a common procedure consists of sampling images
that belong to the same class [35], 3D point or cluster [41,51]. Some approaches
select positive pairs with minimal distance within the initial embedding space [26].
In order to avoid sampling very similar images, Radenovié et al [51] make use of
the strong matching pipeline with 3D reconstruction to select only positives that
share the minimum amount of local matches, so matching images depict the same
object but also ensuring variability of viewpoints.

For the negative pairs, a common procedure consists in iterating over non-
matching images that are “hard” negatives, those being close in the descriptor
space and that incur a high loss. For that, the loss is computed over a set of
negative pairs and only a subset with higher losses is selected for training. This
procedure is repeated every N iterations of SGD, so hard examples are picked
during all the network learning [41,35]. Variability in the sampling is ensured
in [51] by selecting the negative pairs from different clusters or 3D points. Selecting
negative pairs based on the loss generally leads to multiple and very similar
instances of the same object.

More sophisticated approaches take advantage of the training batches. For
instance, Song et al. [52] propose a loss function that integrates all positive and
negative samples to form a lifted structured embedding. A smart mining represents
crucial step for succeeding in training SML models and is an active research area.

2.4. Retrieval CNN Architectures

Recent end-to-end networks proposed for retrieval are based on state-of-the-art
architectures for image classification (Alexnet, VGG16, ResNet50). Final retrieval
representations are built from convolutional layers. Architectures mainly differ in
the top layers designed to aggregate the local convolutional features, as illustrated
in Figure 2.

Some of the approaches directly fine-tune the original classification network [48,
50,53], using fully connected layers as image representations. For instance, the full
Alexnet architecture is used in [48], where authors explore a multitask learning
by optimizing the model for similarity learning along with a classification loss for
product identification and search. To switch between classification and similarity
comparison, the “softmax” operation at the end of the network is replaced with
an inner product layer with a Lo-normalized vector. The full architecture Alexnet
is also used in [50], in this case, two additional channels containing a shallow
CNN are considered to process two low-resolution versions of the original image.
With that, the final descriptor includes multi-scale information to alleviate the
limitations of working with fully connected layers. Similarly, Wan et al [53]
perform the fine-tuning of Alexnet directly on the Oxford and Paris datasets. The
three approaches, however, heavily rely on manually annotated data [53,48] or
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Figure 2. Architectures for similarity learning. The baseline network is initialized with the weights
of a state-of-the-art CNN for classification. The top layer can be seen as the aggregation step
base in: A) fully connected layers [53]. Approaches dominated by direct pooling: B) direct pooling
sum/max-pooling followed by feature post processing [51] and C) Region pooling followed by
feature post processing [35] and D) custom aggregation model such as VLAD [27].

a combination of human annotations with a relevance score for image based in
handcrafted descriptors [50].

Recent works based their architectures in VGG16 exploiting the capabilities
of convolutional layers [51,35,27]. Gordoet al et al [35] proposed a fine-tuned
version of Regional Maximum Activation of Convolutions (R-MAC) [5], where
a Region Proposal Network (RPN) [34] is learned as a replacement of the fixed
grid originally proposed in [5]. PCA is modeled with a shifting and a fully con-
nected layer that are tuned during the optimization process for similarity learning.
Randenovié [51] follows the same architecture as in [35] but directly pooling all
descriptors generated by the convolutional layer (MAC), without learning an RPN.
PCA transformation is learned via linear discriminant projections proposed by
Mikolajczyk and Matas [54] using the annotated training data. Arangjelovié [27]
propose a more sophisticated encoding by implementing a VLAD layer on top of
the convolutional features using soft-assignments to be able to tune the parameters
via backpropagation. Similarly, Fisher-Vector layer has been proposed in [55]
to aggregate deep convolutional descriptors. Although those approaches follow
automatic cleaning process (exploiting the GPS associated to with the images [27]
or annotating the images based on strong handcrafted baselines [35,51]), image
domain is restricted to landmarks and it is uncertain how models perform in more
challenging retrieval scenarios.

Table 1 contains the performance of the discussed CNN approaches. Fine-
tuned models for retrieval clearly generate better descriptors than those generated
by off-the-shelf networks. However, generating a suitable training dataset for
retrieval relies in human annotations and computational expensive annotation pro-



Table 1. Summary discussed CNN approaches in different retrieval benchmarks. The table does
not include approaches with spatial verification and re-ranking pipelines.

Method Dim Oxford5k  Oxford105k  Paris6k  Parisl06k  Holidays
Neural Codes [2] 128 0.433 0.386
Off-the-shelf
CNNastounding [3] 4-15k  0.68 0.79
Fully connected
MOP [22] 2048 0.802
SPoC [1] 256 0.589 0.578 0.802
) Ng et al [25] 128 0.593 0.590 0.816
Off-the-shelf .
. Razavian [4] 32k 0.843 0.879 0.896
Convolutional
R-MAC [5] 512 0.669 0.616 0.830 0.757 0.852
CroW [24] 512 0.682 0.633 0.797 0.710 0.849
Neural Codes [2] 128 0.557 0.523
Wan [53] 4096 0.783 0.947
End-to-End
L NetVLAD [27] 256 0.635 0.735 0.843
Training
R-MAC [35] 512 0.831 0.786 0.871 0.797 0.891
MAC [51] 512 0.800 0.751 0.829 0.753 0.795

cedures that limits the generalization of the methods, usually related to landmarks
scenarios.

Despite the rapid advances of CNNs for image retrieval, many state-of-the-
art instance search systems are still based on Bag of Words encoding of local
handcrafted features such as SIFT [56]. The Bag of Words model has been enhanced
with sophisticated technique such as query foreground/background weighting [57],
asymmetric distances [58], or larger vocabularies [45,10]. The most substantial
improvements, however, are those involving spatial reranking stages. Zhou et al. [9]
propose a fast spatial verification technique which benefits from the BoW encoding
to choose tentative matching feature pairs between the query and the target image.
Zhang et al. [8] introduce an elastic spatial verification step based on triangulated
graph model. Nguyen et al. [7] propose a solution based on deformable parts
models (DPMs) [59] to rerank a BoW-based baseline. They train a neural network
on several query features to learn the weights to fuse the DPM and BoW scores.
In our work, we revisit the Bag of Words encoding strategy and demonstrate its
suitability to aggregate CNN features of an off-the-shelf network, instead of using
handcrafted ones such as SIFT. Our method is unsupervised and does not require
of any additional training data, and it is not restricted to any particular domain.
We also propose a simple and efficient spatial reranking strategy to allow query
expansion with local features. Although we do not use many of the well-known
improvements to the BoW pipeline for image search [57,45,58], we propose a
baseline system in which they could be easily integrated.

3. Image Retrieval Benchmarks

Publicly available image retrieval benchmarks such as the Oxford Buildings [45],
Paris dataset [46], Sculptures [60], INRIA Holidays [61] or Kentucky [62] are
relatively small size datasets used in the image retrieval community to test and
to compare different approaches for CBIR systems (see Table 2). Results are
reported in terms of mean Average Precision (mAP) of the list of images retrieved



from the dataset per query. Metrics such as memory or time required to conduct
the search are also important factors to take into account for most real-world
problems or when dealing with video, due to the large quantity of images in
the dataset. Some recent works reported excellent results using CNNs as image
representations [4,35,51,53].

Table 2. Datasets for image retrieval benchmarking. The table shows the total number of images
and queries of each dataset as well as the domain of search.

Dataset Images Queries Domain
Oxford 5062 55 Buildings

Paris 6412 55 Buildings
Sculptures 6340 70 Sculptures
INRIA Holidays 1491 500 Scenes/Objects
Kentucky benchmark 10200 2550 Objects

Figure 3. Samples from some retrieval benchmarks. First row, Sculptures; second row Paris;
third and fourth rows Kentucky.

However, the kind of queries for these datasets (see Figure 3 for some examples)
can be considered simpler than the queries in a generic instance search. In those
datasets, the objects are usually the main part of the image and topics to retrieve
are usually restricted to a particular domain.

3.1. TRECYVid Instance Search

A generic instance search system should be able to find objects of an unknown
category that may appear at any position within the images. TRECVID [63] is an
international benchmarking activity that encourages research in video information



retrieval by providing a large data collection and a uniform scoring procedure for
evaluation. The Instance Search task in TRECVID consists of finding 30 particular
instances within 464 hours of video (a total of 224 video files, 300GB). For each
query, 4 image examples are provided. A common procedure to deal with videos
is to perform key frame extraction. For example, in our 2014 participation [64],
the image dataset contained 647,628 image frames (66GB) by extracting 0.25
frames/second of the videos (which can be considered a low rate for a key frame
extraction).

Objects

Figure 4. Query examples for TRECVID Instance search task [63]. Instance queries are divers:
they can be logos, objects, buildings or people. Location and scale of the instances is also diverse.

There is no ground truth for the query images within the dataset and the
number of examples per query is limited to 4 frames. Figure 4 shows an example
of some of the 2014 TRECVid Instance Search queries.

Although promising results have shown the power of CNN representation on
different retrieval benchmarks, results have mainly been reported for relatively
small datasets, which are not sufficiently representative in terms of generalization
or complexity of the queries for real world problem such as instance search in
videos. Approaches that work well in small datasets may not work well in larger
and more realistic datasets, such as TRECVID

4. Bag of Words Framework

The proposed pipeline for feature extraction uses the activations at different
locations of a convolutional layer in a pre-trained CNN as local features. A CNN
trained for a classification task is typically composed of a series of convolutional
layers, followed by some fully connected layers, connected to a softmax layer that
produces the inferred class probabilities. To obtain a fixed-sized output, the input
image to a CNN is usually resized to be square. However, several authors using
CNNs for retrieval [5,24] have reported performance gains by retaining the aspect
ratio of the original images. We therefore discard the softmax and fully connected



layers of the architecture and extract CNN features maintaining the original image
aspect ratio.

Each convolutional layer in the network has D different N x M feature
maps, which can be viewed as N x M descriptors of dimension D. Each of these
descriptors contains the activations of all neurons in the convolutional layer sharing
the same receptive field. This way, these D-dimensional features can be seen as
local descriptors computed over the region corresponding to the receptive field of
an array of neurons. With this interpretation, we can treat the CNN as a local
feature extractor and use any existing aggregation technique to build a single
image representation.

Convolutional layer

Feature mapN

Local descriptors

width

Figure 5. Re-interpretation of activation tensor into local descriptors

We propose to use the BoW model to encode the local convolutional features
of an image into a single vector. Although more elaborate aggregation strategies
have been shown to outperform BoW-based approaches for some tasks in the
literature [26,65], BoW encodings produce sparse high-dimensional codes that can
be stored in inverted indices, which are beneficial for fast retrieval. Moreover, BoW-
based representations are faster to compute, easier to interpret, more compact,
and provide all the benefits of sparse high-dimensional representations previously
mentioned in Section 1.

BoW models require constructing a visual codebook to map vectors to their
nearest centroid. We use k-means on local CNN features to fit this codebook. Each
local CNN feature in the convolutional layer is then assigned its closest visual
word in the learned codebook. This procedure generates the assignment map, i.e.
a 2D array of size N x M that relates each local CNN feature with a visual word.
The assignment map is, therefore, a compact representation of the image, which
relates each pixel of the original image with its visual word with a precision of
(%, %) pixels, where W and H are the width and height of the original image.
This property allows us to quickly generate the BoW vectors of not only the full
image, but also its parts. We describe the use of this property in our work in
Section 5.

Figure 6 shows the pipeline of the proposed approach. The described bag
of local convolutional features (BLCF) encodes the image into a sparse high
dimensional descriptor, which will be used as the image representation for retrieval.
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Figure 6. The Bag of Local Convolutional Features pipeline (BLCF).

5. Image Retrieval

This section describes the image retrieval pipeline, which consists of an initial
ranking stage, followed by a spatial reranking, and query expansion.

(a) Initial search: The initial ranking is computed using the cosine similarity
between the BoW vector of the query image and the BoW vectors of the full images
in the database. We use a sparse matrix based inverted index and GPU-based
sparse matrix multiplications to allow fast retrieval. The image list is then sorted
based on the cosine similarity of its elements to the query. We use two types of
image search based on the query information that is used:

e Global search (GS): The BoW vector of the query is built with the visual
words of all the local CNN features in the convolutional layer extracted for
the query image.

e Local search (LS): The BoW vector of the query contains only the visual
words of the local CNN features that fall inside the query bounding box.

(b) Local reranking (R): After the initial search, the top T images in the
ranking are locally analyzed and reranked based on a localization score. We
choose windows of all possible combinations of width w € {W, %", %'} and height
h e {H, g, % , where W and H are the width and height of the assignment map.
We use a sliding window strategy directly on the assignment map with 50% of
overlap in both directions.

We additionally perform a simple filtering strategy to discard those windows
whose aspect ratio is too different to the aspect ratio of the query. Let the aspect
ratio of the query bounding box be AR, = % and AR, = % be the aspect

. . . . in(ARy,AR
ratio of the window. The score for window w is defined as score,, = %.
w q

All windows with a score lower than a threshold th are discarded.

For each of the remaining windows, we construct the BoW vector represen-
tation and compare it with the query representation using cosine similarity. The
window with the highest cosine similarity is taken as the new score for the image
(score max pooling).

We also enhance the BoW window representation with spatial pyramid match-
ing [66] with L = 2 resolution levels (i.e. the full window and its 4 sub regions).
We construct the BoW representation of all sub regions at the 2 levels, and weight
their contribution to the similarity score with inverse proportion to the resolution
level of the region. The cosine similarity of a sub region r to the corresponding
query sub region is therefore weighted by w, = ﬁ, where [, is the resolution
level of the region r. Figure 7 depicts the described approach.
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Figure 7. Spatial pyramid matching on window locations.

With this procedure, the top T elements of the ranking are sorted based on
the cosine similarity of their regions to the query’s, and also provides the region
with the highest score as a rough localization of the object.

(c) Query expansion: We investigate two query expansion strategies based on
global and local BoW descriptors:

e Global query expansion (GQE): The BoW vectors of the N images at the
top of the ranking are averaged together with the BoW of the query to form
the new representation for the query. GQE can be applied either before or
after the local reranking stage.

e Local query expansion (LQE): Locations obtained in the local reranking
step are used to mask out the background and build the BoW descriptor of
only the region of interest of the N images at the top of the ranking. These
BoW vectors are averaged together with the BoW of the query bounding
box. The resulting BoW vector is used to perform a second search.

6. Experiments
6.1. Datasets

We use the following datasets to evaluate the performance of our approach:

Oxford Buildings [45] contains 5,063 still images, including 55 query images
of 11 different buildings in Oxford. A bounding box surrounding the target object
is provided for query images. An additional set of 100,000 distractor images is also
available for the dataset. We refer to the original and extended versions of the
dataset as Oxford 5k and Oxford 105k, respectively.

Paris Buildings [46] contains 6,412 still images collected from Flickr including
query images of 12 different Paris landmarks with associated bounding box an-
notations. A set of 100,000 images is added to the original dataset (Paris 6k) to
form its extended version (Paris 106k).

TRECVid Instance Search 2013 [63] contains 244 video files (464 hours in
total), each containing a week’s worth of BBC EastEnders programs. Each video
is divided in different shots of short duration (between 5 seconds and 2 minutes).
We perform uniform key frame extraction at 1/4 fps. The dataset also includes
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Figure 8. Query examples from the three different datasets. Top: Paris buildings (1-3) and Oxford
buildings (4-6); bottom: TRECVid INS 2013.

30 queries and provides 4 still images for each of them (including a binary mask
of the object location). In our experiments, we use a subset of this dataset that
contains only those key frames that are positively annotated for at least one of
the queries. The dataset, which we will refer to as the TRECVid INS subset, is
composed of 23,614 key frames.

Figure 8 includes three examples of query objects from the three datasets.

6.2. Preliminary experiments

Feature extraction was performed using Caffe [67] and the VGG16 pre-trained
network [68]. We extracted features from the last three convolutional layers
(conv5_1, conv5-2 and conv5_3) and compared their performance on the Oxford
5k dataset. We experimented with different image input sizes: 1/3 and 2/3 of the
original image. Following several other authors [1,24], we Lo-normalize all local
features, followed by PCA, whitening, and a second round of Ls-normalization.
The PCA models were fit on the same dataset as the test data in all cases.
Unless stated otherwise, all experiments used a visual codebook of 25,000
centroids fit using the (La-PCA-Ly transformed) local CNN features of all images
in the same dataset (1.7M and 2.15M for Oxford 5k and Paris 6k, respectively). We
tested three different codebook sizes (25,000; 50,000 and 100,000) on the Oxford
5k dataset, and chose the 25,000 centroids one because of its higher performance.
Table 3 shows the mean average precision on Oxford 5k for the three different
layers and image sizes. We also consider the effect of applying bilinear interpolation
of the feature maps prior to the BoW construction, as a fast alternative to using
a larger input to the CNN. Our experiments show that all layers benefit from
feature map interpolation. Our best result was achieved using conv5_2 with full-size
images as input. However, we discarded this configuration due to its memory
requirements: on a Nvidia GeForce GTX 970, we found that feature extraction on
images rescaled with a factor of 1/3 images was 25 times faster than on images



Table 3. Mean average precision (mAP) on Oxford 5k using different convolutional layers
of VGG16, comparing the performance of different feature map resolutions (both raw and
interpolated). The size of the codebook is 25,000 in all experiments.

convb_l convb_2 convbH_3

N x M raw 0.641 0626 0498
2N x 2M interpolated 0.638  0.536
2N x 2M raw 0620  0.660  0.540

twice that size. For this reason, we resize all images to 1/3 of their original size
and use convb_1 interpolated feature maps.

6.2.1. Center Prior Weighting

Inspired by the boost in performance of the Gaussian center prior in sum-pooled
convolutional (SPoC) feature descriptors [1], we apply a weighting scheme on the
visual words of an image to provide more importance to those belonging to the
central part of the image. The weighting scheme w(i, j) is described as:

W) = - ! , (3)

(i—c1)?+ (J — c2)?

where (4, j) represents the position of a visual word within the assignment
map and (¢, ) correspond to the center coordinated of the assignment map.
w(i, ) min-max normalized to provide scores between 0 and 1. Table 3 shows the
mean average precision on Oxford 5k for the three different layers and image sizes.
All results are obtained using this weighting criteria; for conv5_1 in Oxford 5k,
increases mAP from 0.626 to 0.653.

6.2.2. Layer Combination

We explore combining different layers in Oxford dataset. For that, layers were
reshaped to have the same spatial dimensions by using bilinear interpolation.
For instance, the last convolutional layer from VGG16, generates feature maps
of dimensions (512,11, 8) for an input size of (336,256). When combining with
a lower layer such as conv5_1, pool5 maps have to be reshaped to double its
dimensions (21,16) in order to be able to concatenate all the local features
on a single volume of (1024, 21, 16). PCA-whitening reduces the dimensionality
of the new local descriptors to 512D. Table 4 shows the effect in performance
when combining different layers to convs_1. We found that layer combination is
potentially beneficial for our final representation (as found when combining con5_1
with pool5). Although since improvements found were marginally beneficial we
discarded this approach in our pipeline.

6.3. Query augmentation
Previous works [17,69] have demonstrated how simple data augmentation strategies

can improve the performance of an instance search system. Some of these apply
augmentation strategies at the database side, which can be prohibitively costly



Table 4. Experiments layer combination

convb_l conv5 2 convb.3 pool5 | mAP

X 0.653
X X 0.640
X X X 0.645
X X 0.671

Table 5. mAP on Oxford 5k for the two different types of query augmentation: the flip and the
zoomed central crop (ZCC). 2x interpolated conv5_1 features are used in all cases.

+ Flip
uer, + Fli + ZCC
Query P + ZCC
GS 0.653 0.662 0.695 0.697
WS 0.706 0.717 0.735 0.743

LS 0.738 0.746 0.758 0.758

Figure 9. The four query images after augmentation.

for large datasets. For this reason, we use data augmentation on the query side
only. We explore two different strategies to enrich the query before visual search:
a horizontal flip (or mirroring) and a zoomed central crop (ZCC) on an image
enlarged by 50%.

Figure 9 shows an example of the transformations, which give rise to 4 different
versions of the query image. The feature vectors they produce are added together
to form a single BoW descriptor. Table 5 shows the impact of incrementally
augmenting the query with each one of these transformations.

We find that all the studied types of query augmentation consistently improve
the results, for both global and local search. ZCC provides a higher gain in perfor-
mance compared to flipping alone. ZCC generates an image of the same resolution
as the original, which contains the center crop at a higher resolution. Objects
from the Oxford dataset tend to be centered, which explains the performance gain
when applying ZCC.

6.4. Reranking and query expansion

We apply the local reranking (R) stage on the top-100 images in the initial ranking,
using the sliding window approach described in Section 5. The presented aspect



Table 6. mAP on Oxford 5k and Paris 5k for the different stages in the pipeline introduced in
Section 5. The Qqug additional columns indicate the results when the query is augmented with
the transformations introduced in Section 6.3.

Oxford 5k Paris 6k

+Qaug +Qaug
GS 0.653 0.697 0.699 0.754
LS 0.738 0.758 0.820 0.832
GS+ R 0.701 0.713 0.719 0.752
LS+ R 0.734 0.760 0.815 0.828
GS + GQE 0.702 0.730 0.774 0.792
LS + GQE 0.773 0.780 0.814 0.832

GS +R + GQE 0.771 0.772 0.801 0.798
LS+ R+ GQE 0.769 0.793 0.807 0.828
GS+ R+ LQE  0.782 0.757 0.835 0.795
LS + R + LQE 0.788 0.786 0.848 0.833

ratio filtering is applied with a threshold th = 0.4, which was chosen based
on a visual inspection of results on a subset of Oxford 5k. Query expansion is
later applied considering the top-10 images of the resulting ranking. This section
evaluates the impact in the performance of both reranking and query expansion
stages. Table 6 contains the results for the different stages in the pipeline for both
simple and augmented queries (referred to as Quugy in the table).

The results indicate that the local reranking is only beneficial when applied
to a ranking obtained from a search using the global BoW descriptor of the query
image (GS). This is consistent with the work by Tolias et al. [5], who also apply a
spatial reranking followed by query expansion to a ranking obtained with a search
using descriptors of full images. They achieve a mAP of 0.66 in Oxford 5k, which
is increased to 0.77 after spatial reranking and query expansion, while we reach
similar results (e.g. from 0.652 to 0.769). However, our results indicate that a
ranking originating from a local search (LS) does not benefit from local reranking.
Since the BoW representation allows us to effectively perform a local search (LS)
in a database of fully indexed images, we find the local reranking stage applied to
LS to be redundant in terms of the achieved quality of the ranking. However, the
local reranking stage does provide with a rough localization of the object in the
images of the ranking, as depicted in Figure 1. We use this information to perform
query expansion based on local features (LQE).

Results indicate that query expansion stages greatly improve performance
in Oxford 5k. We do not observe significant gains after reranking and QE in the
Paris 6k dataset, although we achieve our best result with LS + R + LQE.

In the case of augmented queries (+Qqug), We find that this query expansion
is less helpful in all cases, which suggests that the information gained with query
augmentation and the one obtained by means of query expansion strategies are
not complementary.



Table 7. Comparison to state-of-the-art CNN representations (mAP). Results in the lower section
consider reranking and/or query expansion.

Oxford Paris

5k 105k 6k 106k
Ng et al. [25] 0.649 - 0.694 -
Razavian et al. [4] 0.844 - 0.853 -
SPoC [1] 0.657  0.642 - -
R-MAC [5] 0.668 0.616 0.830 0.757
CroW [24] 0.682 0.632 0.796 0.710
uCroW [24] 0.666 0.629 0.767 0.695
GS 0.652 0.510 0.698 0.421
LS 0.739 0.593 0.820 0.648
LS + Qaug 0.758 0.622 0.832 0.673
CroW + GQE [24] 0.722 0.678 0.855 0.797
R-MAC + R + GQE [5] 0.770 0.726  0.877  0.817
LS + GQE 0.773 0.602 0.814 0.632
LS + R + LQE 0.788 0.651 0.848 0.641

LS + R 4+ GQE + Qaug 0.793 0.666 0.828 0.683

6.5. Comparison with the State-of-the-art

We compare our approach with other CNN-based representations that make use
of features from convolutional layers on the Oxford and Paris datasets. Table 7
includes the best result for each approach in the literature. Our performance using
global search (GS) is comparable to that of Ng et al. [25], which is the one that
most resembles our approach. However, they achieve this result using raw Vector
of Locally Aggregated Descriptors (VLAD) features, which are more expensive to
compute and, being a dense high-dimensional representation, do not scale as well to
larger datasets. Similarly, Razavian et al. [4] achieve the highest performance of all
approaches in both the Oxford and Paris benchmarks by applying a spatial search
at different scales for all images in the database. Such approach is prohibitively
costly when dealing with larger datasets, especially for real-time search scenarios.
Our BoW-based representation is highly sparse, allowing for fast retrieval in large
datasets using inverted indices, and achieves consistently high mAP in all tested
datasets.

We find the usage of the query bounding box to be extremely beneficial in
our case for both datasets. The authors of SPoC [1] are the only ones who report
results using the query bounding box for search, finding a decrease in performance
from 0.589 to 0.531 using raw SPoC features (without center prior). This suggests
that sum pooled CNN features are less suitable for instance level search in datasets
where images are represented with global descriptors.

We also compare our local reranking and query expansion results with similar
approaches in the state-of-the-art. The authors of R-MAC [5] apply a spatial search
for reranking, followed by a query expansion stage, while the authors of CroW [24]
only apply query expansion after the initial search. Our proposed approach also
achieves competitive results in this section, achieving the best result for Oxford
5k.



6.6. Experiments on TRECVid INS

In this section, we compare the BLCF with the sum pooled convolutional features
proposed in several works in the literature. We use our own implementation of the
uCroW descriptor from [24] and compare it with BLCF for the TRECVid INS
subset. For the sake of comparison, we test our implementation of sum pooling
using both our chosen CNN layer and input size (conv5_-1 and 1/3 image size),
and the ones reported in [24] (pool5 and full image resolution). For the BoW
representation, we train a visual codebook of 25,000 centroids using 3M local CNN
features chosen randomly from the INS subset. Since the nature of the TRECVid
INS dataset significantly differs from that of the other ones used so far (see
Figure 8), we do not apply center prior to the features in any case, to avoid down
weighting local features from image areas where the objects might appear. Table 8
compares sum pooling with BoW in Oxford, Paris, and TRECVid subset datasets.
As stated in earlier sections, sum pooling and BoW have similar performance
in Oxford and Paris datasets. For the TRECVid INS subset, however, Bag of
Words significantly outperforms sum pooling, which demonstrates its suitability
for challenging instance search datasets, in which queries are not centered and
have variable size and appearance. We also observe a different behavior when using
the provided query object locations (LS) to search, which was highly beneficial
in Oxford and Paris datasets, but does not provide any gain in TRECVid INS.
We hypothesize that the fact that the size of the instances is much smaller in
TRECVid than in Paris and Oxford datasets causes this drop in performance.
Global search (GS) achieves better results on TRECVid INS, which suggests
that query instances are in many cases correctly retrieved due to their context.
Figure 12 shows the mean average precision of the different stages of the pipeline
for all TRECVid queries separately. The global search significantly outperforms
local search for most queries in the database. Figure 11 shows examples of the
queries for which the local search outperforms the global search. Interestingly, we
find these particular objects to appear in different contexts in the database. In
these cases, the usage of the local information is crucial to find the query instance
in unseen environments. For this reason, we compute the distance map of the
binary mask of the query, and assign a weight to each position of the assignment
map with inverse proportion to its value in the distance map. This way, higher
weights are assigned to the visual words of local CNN features near the object. We
find this scheme, referred to as weighted search (WS), to be beneficial for most of
the queries, suggesting that, although context is necessary, emphasizing the object
information in the BoW descriptor is beneficial.

We finally apply the local reranking and query expansion stages introduced
in Section 5 to the baseline rankings obtained for the TRECVid INS subset. Since
we are dealing with objects whose appearance can significantly change in different
keyframes, we decided not to filter out windows based on aspect ratio similarity.
Additionally, we do not apply the spatial pyramid matching, since some of the
query instances are too small to be divided in sub regions. After reranking, we
apply the distance map weighting scheme to the locations obtained for the top 10
images of the ranking and use them to do weighted query expansion (WQE).

Results are consistent with those obtained in the experiments in Oxford
and Paris datasets: although the local reranking does not provide significant



Figure 10. Appearances of the same object in different frames of TRECVid Instance Search.

Figure 11. Top 5 rankings for queries 9072 (top) and 9081 (bottom) of the TRECVid INS 2013
dataset.
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Figure 12. Average precision of TRECVid INS queries.

improvements (WS: 0.350, WS + R: 0.348 mAP), the query expansion stage
is beneficial when applied after WS (WS + GQE: 0.391 mAP), and provides
significant gains in performance after local reranking (WS + R + GQE: 0.442
mAP) and after local reranking using the obtained localizations (WS + R + WQE:
0.452 mAP).



Table 8. mAP of sum pooling and BoW aggregation techniques in Oxford, Paris and TRECVid
INS subset.

Oxford 5k  Paris 6k INS 23k

GS 0.650 0.698 0.323
BoW WS 0.693 0.742 0.350
LS 0.739 0.819 0.295
. GS 0.606 0.712 0.156

Sum pooling
WS 0.638 0.745 0.150

(as ours)

LS 0.583 0.742 0.097
. GS 0.672 0.774 0.139

Sum pooling
. WS 0.707 0.789 0.146

(as in [24])

LS 0.683 0.763 0.120

7. Conclusion

We proposed an aggregation strategy based on Bag of Words to encode features
from convolutional neural networks into sparse representations for instance search.
We demonstrated the suitability of these bags of local convolutional features,
achieving competitive performance with respect to other CNN-based represen-
tations in Oxford and Paris benchmarks, while being more scalable in terms of
index size, cost of indexing, and search time. We also compared our BoW encoding
scheme with sum pooling of CNN features for instance search in the far more
complex and challenging TRECVid instance search task, and demonstrated that
our method consistently and significantly performs better. This encouraging result
suggests that the BoW encoding, as a virtue of being high dimensional and sparse,
is more robust to scenarios where only a small number of features in the target
images are relevant to the query. Our method does, however, appear to be more
sensitive to large numbers of distractor images than methods based on sum and
max pooling (SPoC, R-MAC, and CroW). We speculate that this may be because
the distractor images are drawn from a different distribution to the original dataset,
and may therefore require a larger codebook to represent the diversity in the
visual words better. Future work will investigate this issue.
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