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Abstract: In this paper, we propose a deep learning based system for food recognition from personal life archive im-
ages. The system first identifies the eating moments based on multi-modal information, then tries to focus
and enhance the food images available in these moments, and finally, exploits GoogleNet as the core of the
learning process to recognise the food category of the images. Preliminary results, experimenting on the food
recognition module of the proposed system, show that the proposed system achieves 95.97% classification
accuracy on the food images taken from the personal life archive from several lifeloggers, which potentially
can be extended and applied in broader scenarios and for different types of food categories.

1 INTRODUCTION

Lifelogging is the process whereby individuals
gather personal data about different aspects of their
normal life activities for different purposes (Gurrin
et al., 2014b), such as capturing photos of important
daily events, logging sleep patterns, recording work-
outs, keeping records of food consumption or even
mood changes. This collection of personal data about
the individual’s life is typically called a lifelog or per-
sonal life archive. As digital storage is becoming
cheaper and sensing technology is improving contin-
uously, continuous and passive photo capture devices
are now more popular and affordable. These devices
can help us to maintain digital records about our daily
life much efficiently.

In the domain of health care, lifelogging can play
an important role in providing historical information
about the person. It can be seen as a tool that monitors
and tracks the quality of our life; our lifelog records
have the potential to tell us if we are sleeping well or
not based on our sleeping patterns, if we have a proper
diet based on our eating behaviour or how well we are
benefiting from our workouts via the analysis of calo-
ries burned and heart rate. In addition to automati-
cally keeping a valuable diary of important moments
and events of our life through the use of photos via
wearable lifelogging cameras and/or traditional cam-
eras, visual lifelogs can contain detailed information
about our daily activities. A wearable camera, such as
a SenseCam, can capture around one million images

per year (Dang-Nguyen et al., 2017a), recording a
huge amount of visual information about the wearer’s
life including food consumption details. Such food
photos can be leveraged to track nutritional intake of
the individual on a personal level, which can pro-
vide important insights into the individual’s dietary
habits and can also lead to many interesting applica-
tions such as automatic calculator of food consump-
tion or personalised food recommendation systems.
Monitoring the nutrition habits of a person is an es-
tablished mechanism typically used in the health do-
main for several medical conditions such as obesity,
hypertension and diabetes (A., 1992). Utilising the
visual food information available in one’s lifelog can
effectively replace traditional methods of food con-
sumption analysis that currently depend mainly on
subjective questionnaires, manual surveys and inter-
views (Liu et al., 2012). This can both make the pro-
cess easier to the user, as well as providing objective
results with fewer errors when compared to conven-
tional manual food monitoring methods.

Considering the food recognition problem, it has
been broadly investigated for many years and there
have been several systems as well as datasets related
to this problem. In FoodAI1, authors study a Singa-
porean food recognition and health care system by
using a deep learning approach. Similarly, CLAR-
IFAI2 is constructed for recognizing Western foods.

1http://foodai.org
2http://blog.clarifai.com
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Figure 1: The proposed schema of the food recognition system.

Lukas Bossard (Lukas et al., 2014) and colleagues
proposed a novel approach by using Bag Of Words,
Improved Fisher Vector and Random Forests Dis-
criminative Component Mining for building a food
detection system. In addition, they also contribute
a large dataset of 101,000 images in 101 food cate-
gories, namely Food-101. Related to Japanese food
recognition, Yoshiyuki Kawano and his team built
a Japanese food recognition system (Yoshiyuki and
Keiji, 2014) and introduced a dataset of 100 differ-
ent popular foods in Japan (UEC-100) by leveraging
Convolutional Neural Networks (CNNs). The authors
later improved their performance on a new dataset of
256 types of food in different countries (UEC-256)
by constructing a real-time system that can recognize
foods on a smart-phone or multimedia tools (Kawano
and Yanai, 2015) which could achieve around 92%
in top-five accuracy. Their approach performed well
also when it is applied later on other datasets: PAS-
CAL VOC 20073, FOOD101/256 and Caltech-1014.
Ge and his co-workers (Ge et al., 2015) using a local
deep convolutional neural network to improve Fine-
Grained Image Classification on both Fish species
classification and UEC Food-100 dataset.

Surprisingly, none of these systems were applied
to continuous personal lifelog images. In our opin-
ion, this is due to two main reasons: (1) lacking of
training data and (2) the need for huge computational
power and large-scale computer storage (the personal
life archive of an individual becomes very large af-
ter just a few years). The former reason is due to the
personal nature of the lifelogging data and the asso-
ciated privacy concerns (Dang-Nguyen et al., 2017a),
(Gurrin et al., 2014a), while the latter represents the
main barriers that held deep machine learning tech-
niques for years from being used widely as they are
now (thanks to the current advances of technologies
that made that possible).

3http://host.robots.ox.ac.uk/pascal/VOC/
voc2007/

4http://www.vision.caltech.edu/Image_
Datasets/Caltech101/

Inspired by the previous general-purpose food
recognition methods, in this work, we propose a sys-
tem for food recognition specifically developed for
lifelog images. Our contributions can be summarised
as follows:

• To the best of our knowledge, by ultilising lifelog
searching and deep learning-based food recognis-
ing methods, this is the first system that aims to
recognize food from lifelog images.

• We contribute a dataset of food from lifelog im-
ages and more specifically, this is the first Viet-
namese lifelog food images dataset.

The proposed system is described in the next sec-
tion. In section 3, some preliminary results are pre-
sented. Section 4 is used for discussions and finally,
conclusions are provided in section 5.

2 The Proposed System

The proposed system is summarized in Figure 1,
which consists of three steps. First, the eating mo-
ments are detected by applying the method in (Zhou
et al., 2017), which exploits multi-modal information
from time, location, and concepts with ad-hoc pre-
designed rules. Then, in the second step, the sys-
tem tries to enhance the images detected from the
eating moments. In this study, we simply apply
the contrast limited adaptive histogram equalization
(CLAHE) (Pizer et al., 1987). Finally, in the last
step, food recognition, the core module of the pro-
posed system as well as the main focus of this pa-
per is applied to recognise the food category. Two
approaches for lifelog food category recognition are
evaluated. The first is by using hand-crafted features
(HOG (Dalal and Triggs, 2005), SIFT (Lowe, 2004),
SURF (Bay et al., 2006)) with two traditional ma-
chine learning models (SVM+XGBoost). The second
approach is by using convolutional neural networks.
We will present the experiments and results of each
approach later in this paper.



Figure 2: Feature selection. From the left to the right, the
top to the bottom: the original image, SURF features, SIFT
features and HOG features.

2.1 Hand-crafted Features

Recently, there have been many traditional features
that can be used in the object recognition problem.
Among those, people usually use Scale Invariant Fea-
ture Transform (SIFT) (Lowe, 2004), Speeded Up
Robust Features (SURF) (Bay et al., 2006), and His-
tograms of Oriented Gradients (HOG) (Dalal and
Triggs, 2005). All of these features are designed
to capture the characteristics of colors, textures and
shapes inside each object, which are then used for
classification. However, each of these features has
its own pros and cons, and depending on the object
recognition problem, one has to choose the most ap-
propriate ones. Figure 2 illustrates an example of
these features.

SIFT, proposed by Lowe and colleagues, can ex-
tract a set of important key points in a given image.
It is interesting to emphasize that these key points
are mostly invariant with translation, scaling and ro-
tation. Normally, for computing SIFT features in an
image, one can do four following steps: scale-space
extrema detection by using the Difference of Gaussian
(DOG) matrix, key-point localizations, orientation as-
signment, and calculating key-point descriptors.

SURF, on the other hand, can be considered as a
fast version of the SIFT features. Instead of choosing
the DOG matrix to detect scale-space extrema, it cal-
culates an approximation of Laplacian of Gaussian by
Box Filters. Then, one can easily calculate each im-

age or all integral images for different scales by lever-
aging convolutions in box filters, wavelet responses in
orientation assignment and feature descriptors.

Additionally, HOG features are one of the most
well-known features for object recognition in the last
decade. To extract this feature from an image, one
needs to first compute the gradient images by using
some filter kernels like 3× 3 Sobel or diagonal fil-
ters, and then calculates orientation binning by cell
histograms (Bay et al., 2006). Finally, one can ex-
tract descriptor blocks from the left to the right and
from the top to the bottom, do block normalization,
and concatenate features in each block to create the
corresponding HOG features for the initial image.

For building a food recognition system, one can
use these local features to extract a feature vector for
each food image and then, with the corresponding la-
bels from training images, one can find an appropriate
machine learning model for the system. This is the
traditional way for solving a classification problem.

2.2 Convolutional Neural Networks

Convolutional neural networks are getting more
widely deployed for applications in computer vision
including object detection, object recognition and
video understanding. For a given input (an image) as
a 2D matrix of size N×N, all parameters of a CNN
are 2D filters of size m×m (m < N) which can be
convolved with all m×m sub-regions inside the im-
age followed by a nonlinearity to produce a tensor
output. By taking this advantage, each of these fil-
ters only looks at one specific region of the input at a
time. For this reason, it can reduce the computational
cost of the traditional fully-connected networks where
each neuron connects to all of its inputs. Furthermore,
that makes CNNs suitable for any data such as images
where the spatial information is intrinsically local:
pixels at the top-left corner of an image may not be
related to the concept presented in the right-bottom.
Moreover, one can stack up multiple layers of con-
volutional filters followed by nonlinearities to make a
deep CNN architecture, where the first layer extracts
features from the original image and the deeper layers
extract features from the shallower ones.

Recent experimental results (Zeiler and Fergus,
2014) have shown that shallow filters usually help
in the extraction of low-level shapes (edges) while
deeper filters can extract higher and more abstract fea-
tures (faces or more complicated shapes). It turns out
that a deep CNN can be considered as a hierarchy of
filters which are learned to extract low to high level
features that are important to distinguish between dif-
ferent types of visual concepts. An illustration for



Figure 3: A proposed design of convolutional neural networks for food recognition from personal life archive images.

CNNs can be shown in Figure 3.
In this paper, we choose a transfer learning ap-

proach for classifying several types of foods from a
personal life archive of a lifelogger by choosing sev-
eral well-known architectures of CNNs and training
them on our own dataset. The first architecture we
use is Alexnet (Alex et al., 2012), the winner of the
ILSVRC5 in 2012. This CNN contains five convolu-
tional layers, some of which are followed by max-
pooling layers and the classifier is a 3 fully con-
nected layers with the ReLU activation function in
the first two layers and the soft-max activation func-
tion in the final one. The second model we choose
is GoogleNet (Christian et al., 2015), the winner of
ILSVRC 2014. GoogleNet is an improved version of
Alexnet by replacing the large size filters in Alexnet
by inception module, a composition of submodules
including filters of different sizes as well as average
pooling. It is important to note that outputs of all sub-
modules are concatenated to create the final output of
the whole module.

3 Preliminary Results

3.1 Dataset

As a preliminary experiment, we only test the last
module in the system: food recognition. To do so,
we exploit image collections from several lifeloggers,
and extract only food images (as many as possible)
from their personal life archives. Eventually, we built
a lifelogging food dataset that contains 14,760 images
of eight different foods: Vietnamese Roll Cake, Siz-
zling Cake, Broken Rice, Fried Chicken, Beef Noo-
dle, Bread, Salad, and Pizza. Each label has a number
of images varied from 2,000 to 3,000. These images
are manually annotated and labeled through an appli-

5www.image-net.org/challenges/LSVRC/

cation written in Matlab. Some examples of the im-
ages are shown in Figure 4.

To perform experiments, we split the current
dataset into three sets: training set, validation set, and
testing set. For each food category, we randomly se-
lect 80% of images for training, 10% for validation,
and then use the remaining 10% of images for test-
ing. For each setting in the experiments, we create
an appropriate model from the training set and evalu-
ate the performance on the validation set. After that,
we choose the best snapshot which achieves the low-
est validation loss to evaluate the model on the test-
ing set. In our experiments, we have a brief compar-
ison among various hand-crafted features and archi-
tectures for CNNs.

3.2 Hand-crafted features

One of important parts in our experiments is compar-
ing the performance of the proposed approach and the
collected dataset among different local features by us-
ing SIFT, SURF, and HOG. For each image, we re-
size it into a chosen size 200×200 pixels and extract
the corresponding features. For SIFT and SURF, we
compute all existent key-points and a descriptor ma-
trix with the default size N × 128 in which N is the
total key-points. It is important to mention that two
different images can have different numbers of key-
points (SIFT or SURF). However, the final features
should have the same length. As a consequence, we
use Bag of Words to extract K words from the descrip-
tor matrix. It turns out that the final feature vectors of
SIFT and SURF has the same length, K. For HOG, we
use the corresponding HOG extractors which are built
in our system and obtain the final feature of length M.

For SIFT and SURF, we do a number of exper-
iments by choosing the total key-points varied from
100 to 300 and the number of words, K, between 10
and 40. For HOG, we select the cell size between
32× 32 and 64× 64, the block size from 2 to 6, and
the bin size between 9 and 18.



Figure 4: The lifelog food dataset with 8 different types of cuisines.

After computing the corresponding features
(SIFT, SURF, and HOG) in each image, we choose
appropriate classifiers by comparing two traditional
classification approaches, SVM and XGBoost. Us-
ing the training/validation/testing dataset, we find the
best parameters for each classifier. More detailed, by
choosing various values for different parameters, we
train the corresponding models from the training data
and evaluate them on the validation set. Next, we se-
lect the best parameters having the best performance
on the validation set and check again on the testing
data.

In the experiments, we train SVM models by us-
ing different types of kernels, including linear, poly-
nomial, and RBF kernels. Detailedly, we choose γ

from 0 to 10, C from 0 to 10 and the degree of poly-
nomials from 2 to 5. For XGBoost, the number of

trees can be selected from 2 to 10 while the learning
rates are varied from 0.1 to 1 and the maximum depth
is chosen from 3 to 12. Finally, for implementation,
we use OpenCV libraries (version 2.4) for preprocess-
ing images and do computations for SIFT, SURF, and
HOG. For training and evaluating models, we utilize
all open libraries for SVM and XGBoost for building
the proposed system.

3.3 Convolutional Neural Networks

In this approach, we do a transfer learning step by
using architectures of two well-known convolutional
neural networks, AlexNet (Alex et al., 2012) and
GoogleNet (Christian et al., 2015), on our dataset.
One of main reasons we choose this approach is we
would like to see how these models work on our lifel-



ogging dataset. If they do not perform really well, we
will find another architecture for CNNs.

To evaluate the performance of AlexNet and
GoogleNet, we first resize an image into the size
227× 227 for AlexNet (Alex et al., 2012) and 224×
224 for GoogleNet (Christian et al., 2015). For train-
ing these two CNNs, we use data augmentation and
dropout (Nitish et al., 2014) with 80% probability to
reduce overfitting. For each batch of images, we gen-
erate new samples by randomly flipping, rotation or
shifting on images with predefined angles and dis-
tances. It is worth noting that we need to modify
the last fully connected layer in each model since the
number of categories in our problem is 8, completely
different from the total classes on the ImageNet data.

We aim at training two different versions for each
CNN: training-from-scratch (randomly initialized)
versus fine-tuning (initialized with weights learned
from ImageNet). For training-from-scratch approach,
we normalize the input data by subtracting each im-
age with the mean RGB values which are computed
among the collected dataset, while for fine-tuning ap-
proach, we use another mean RGB which are cal-
culated from ImageNet dataset. After normalization
step, we scale all data such that their standard devia-
tions are equal to 1. For training Alexnet and Google
Net, we choose the standard SGD optimizer with Nes-
terov accelerated gradient (Botev et al., 2016) and
momentum of 0.9. In addition, the batch size can
be selected as 64 for Alexnet and 32 for Google Net.
The learning rates can be selected in the following set
[0.0003,0.001,0.003,0.01,0.03]

3.4 Results

Table 1, Table 2, and Table 3 show the results ob-
tained by using hand-crafted features and CNNs, re-
spectively. In Table 1 and 2, we illustrate the perfor-
mance of using hand-crafted features (SIFT, SURF,
and HOG) and two different classifiers (SVM vs. XG-
Boost). There are five different features used in these
two tables: SIFT, SURF, HOG, and the combination
between two different features (HOG + SURF, HOG
+ SIFT). One can easily see that using SVM model,
HOG feature can achieve a better performance than
SIFT or SURF features. However, when one com-
bines HOG and SURF features to create a new fea-
ture, one can get the best accuracy (increasing the
accuracy from 51.28% to 60.08%). One can get the
same behavior when using XGBoost model. Finally,
using SVM models seems to achieve a better result
than XGBoost for these local features.

In Table 3, we describe the performance of top
3 settings above which achieve the highest accuracy

Table 1: Performance of different local features with SVM
models.

Method Train Set Val Set Test Set

HOG 92.87% 56.79% 51.28%

SIFT 58.33% 48.23% 45.77%

SURF 58.42% 51.77% 45.63%

HOG+SIFT 94.01% 64.20% 60.08%

HOG+SURF 93.65% 66.23% 59.47%

Table 2: Performance of different local features with XG-
Boost models.

Method Train Set Val Set Test Set

HOG 99.93% 46.81% 41.33%

SIFT 73.42% 45.58% 42.54%

SURF 76.94% 48.91% 44.49%

HOG+SIFT 89.18% 57.61% 49.66%

HOG+SURF 85.05% 54.07% 47.24%

on the validation set for each CNN model. The
experiments show that the fine-tuning approach can
achieve a better convergence and performance than
the training-from-scratch approach. One possible rea-
son is all filters of CNNs can be pretty good for de-
tecting useful shapes for the object recognition prob-
lem when the dataset is large enough. In our work,
the number of images is 14,760, enough for building
a CNN. The performance of using GoogleNet is bet-
ter than the performance of Alexnet which is quite
expected.

According to these results, deep learning tech-
niques with the performance of 95.97% clearly out-
perform traditional hand-crafted features with the best
performance of 60.08%. Furthermore, we can ob-
serve an improvement of using GoogleNet instead
of AlexNet, by increasing the best accuracy from
91.67% to 95.97%. It is worth noting that these re-
sults are comparable to the results of the study in
(Kawano and Yanai, 2015) in which they obtained
92% classification accuracy on the top-five on normal
food images.

4 Discussion

The preliminary experiments were performed on
the assumption that the previous two steps of the pro-
posed system provide error-free results in detection of
food images from personal life archive. However, in
practice, that can be challenging as typical lifelogging
images do not only contain food images but rather



Table 3: Performance of GoogleNet and AlexNet

Models lr Train Set Val Set Test Set

GoogleNet

fine-tuning
0.0003 98.46% 95.38% 94.29%
0.001 99.93% 97.03% 95.97%
0.003 97.65% 93.71% 92.61%

training-from-scratch
0.0003 72.34% 73.73% 68.15%
0.001 78.82% 74.57% 72.72%
0.003 81.88% 77.88% 74.13%

AlexNet

fine-tuning
0.0003 97.04% 93.01% 91.67%
0.001 96.21% 92.46% 91.53%
0.003 97.51% 89.74% 91.40%

training-from-scratch
0.0003 61.57% 62.23% 57.33%
0.001 63.21% 60.94% 57.93%
0.003 70.11% 70.11% 62.97%

they can reflect different objects and activities from
the lifelogger’s personal world. Thus, in the extended
version, the machine learning process must carefully
consider the outliers which are images that might con-
tain no food.

Further analysis in different scenarios should be
done, for example different light conditions or/and
different environments. Future work can also con-
sider utilising the system for other types of food, for
instance: the western food categories in NTCIR-12
- Lifelog dataset (Gurrin et al., 2016) and Image-
CLEFlifelog 2017 (Dang-Nguyen et al., 2017b) in
(Ionescu et al., 2017).

5 Conclusion

In this paper, we have introduced the first sys-
tem for recognizing food category of images from
personal life archive. We have compared different
approaches by using both hand-crafted features and
CNNs. For hand-crafted features, we have analyzed
SIFT, SURF, HOG, and the combination between
SIFT + HOG and SURF + HOG. After computing
these local features, we train appropriate models by
using SVMs and XGBoost. The experiments show
that using HOG + SIFT with SVM models can help
us to achieve the best performance with the accuracy
60.08% for the first approach. For the second ap-
proach, we have used a transfer learning approach by
utilizing AlexNet and GoogleNet’s architectures for
building a suitable CNN model for lifelogging im-
age dataset. The final experiments show that using
GoogleNet architecture but modifying the last fully-
connected layer can help us to achieve the best model
for this problem with the highest accuracy 95.97%
for 8-label classification. Future work should evaluate

the system on bigger datasets and in more challenging
scenarios.
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