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Abstract

In this study, the interaction of edge dislocations with nano-scale voids was

investigated for the face centered cubic (FCC) structure of pure aluminum and

Al-Mg alloy. The effect of Mg solute atoms on the Peierls stress (required for

dislocation motion) at different temperatures, and the critical resolved shear

stress (CRSS) for dislocation-void interaction was investigated in this study. In

addition, the influences of void diameter(1, 2 and 3 nm), inter-void distance

(7.5 and 15 nm) in a void array, and of temperature ( 300◦K) on resolved

shear stress were determined. It was found that substitutional Mg atoms was

highly effective on improving the mechanical behavior of the Al lattice and

on the type of dislocation-void interaction (simultaneous or separate passing of

partial dislocations). In addition, it was obtained that no void-induced climbing

occurred during the interactions for these systems. Higher void diameter and in

particular lower inter-void spacing led to a considerable increase in the CRSS,

while the latter changed the type of dislocation-void interaction. Finally, it

was shown that Peierls stress was decreased for pure aluminum from 0◦K to

10◦K, while different results were obtained for Al-Mg alloy that were discussed

in detail.
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interactions, Voids

1. Introduction

Interaction of dislocations with defects such as nano-voids affects the me-

chanical properties of metals and their alloys. Therefore, improving the mechan-

ical behavior requires a fundamental understanding of the deformation mech-

anisms at different length scales, from the atomic structure to the continuum5

level. There have been many studies [1–7] on mechanical behavior of mate-

rials at the atomistic level using molecular dynamics simulations. Studies at

the atomistic level can help to elucidate important aspects of dislocation mo-

tion and dislocation-defect interaction. Atomistic simulations can describe the

dislocation core structure and its interaction with solute atoms and structural10

defects [8].

Molecular static (MS) simulation can be performed at zero temperature

(0◦K) where the system is relaxed by potential energy minimization to analyze

the unpinning of the dislocation. On the other hand, molecular dynamics (MD)

simulation can be carried out at finite temperature to understand the thermal15

escape of dislocation from the energy barriers due to solutes [9]. There have

been some atomistic studies [8–43] on dislocation motion and its interaction with

defects for various metallic materials and alloys. For face centered cubic crystals,

the interaction of dislocation with void was investigated by MD calculations for

Aluminum [10, 11], Nickel [12, 13] and Copper[14–16]. For body centered cubic20

crystals, this interaction was investigated by MD calculations for iron [17–24],

for molybdenum [25] and for binary alloys such as Fe/Cu, Fe/Ni, Ni/Al and

Al/Mg [38, 39, 41, 43–45].

It is well known that dislocations are pinned by the solute atoms and by

comparing with the pure crystal, higher stresses for movement through solute25

fields are required [9]. There have been some atomistic studies on dislocation

motion and its interaction with solute atoms in Al/Mg alloys [38, 39, 41, 43]

Olmsted et al.[39] studied dislocation velocities and mobilities for edge and
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screw dislocations in Al-2.5 at% Mg and Al-5.0 at% Mg random substitutional

alloys. Curtin et al. [38] studied on mechanisms of dynamic strain ageing in30

aluminum-magnesium alloys. In an important study, solute strengthening in

Al/Mg alloys was investigated by Olmsted et al.[41]. Depending on the stress

and temperature, a range of behaviors were observed for steady motion, pin-

ning, and unpinning of edge and screw dislocations. The effect of magnesium

configuration on the stress required for dislocation de-pin was precisely studied,35

and also the effect of applied stress on the energy barrier for motion of disloca-

tions was investigated. More recently, Ma et al.[55] have reported computation-

ally efficient and quantitatively accurate multiscale simulation of solid-solution

strengthening by ab initio calculation for Al-Mg and Al-Li alloys. The volu-

metric misfit interaction energy and slip misfit interaction energy values were40

explained and calculated based on the ab initio method for both the alloys.

More importantly, the relationship between required stress for dislocation mo-

tion values with temperature was shown in their study for Al-1.1 at.% Mg and

Al-3.3 at.% Mg alloys.

To the best knowledge of authors, no detailed atomistic simulation of the45

dislocation-void interaction in the Al-Mg alloys has been completed. In this

work, MS/MD simulations were used to elucidate the effect of random Mg so-

lute additions on dislocation motion and its interaction with nanometer scales

voids in Al-0.5 % wt. Mg alloy. In addition, the effect of void diameter and dis-

tance between void arrays on CRSS in pure Al was discussed. Edge dislocation50

structure in the slip plane (111) of pure Al and Al-Mg alloy was investigated

using MS at zero temperature and MD at finite temperature.

2. Numerical Methods

The edge dislocation motion and its interaction with voids were studied using

MS and MD simulations based on the work of Osetsky and Bacon [17]that set55

up their simulation model to allow the analysis of edge dislocation in an infinite

period glide plane. MD code LAMMPS [46] was used in either static or dynamic
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Figure 1: Sketch of the simulation cell containing edge dislocation and cavity.

loading conditions with Finnis and Sinclair type of Embedded Atom Method

(EAM) to describe Al-Al, Mg-Mg and Al-Mg inter-atomic interaction with the

potential model parameter provided from the work of Mendelev et al. [47].60

The material examined was pure Al with FCC atomic structure and ran-

domly inserted Mg atoms in its crystal structure. The study was focused on

(i) analyzing the core structure of edge dislocation on its slip system, (ii) cal-

culating the Peierls stress on its slip system, (iii) investigation of the effect of

void diameter and void array distance on the CRSS of the slip plane, and (iv)65

determining the effect of temperature on the CRSS of the slip plane, at finite

temperature in both Al and the Al-Mg alloy.

The computational simulation cell is a three-dimensional box with x, y, and

z coordinates as shown in Fig. 1. In region B, the atoms were set to follow

Newtonian behaviour and were mobile. The atoms in regions A and C were set70

as boundary zones, while atoms in region C were constrained to remain static

and incrementally displaced in the x direction to simulate a shear loading. The

atoms in region A were static to anchor the sample to avoid drift. The periodic

boundary condition was applied along the x and y directions and free surfaces

were set along the z direction. In this case, the system can be represented75
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as an infinite dislocation, infinite periodic glide, and as an array of voids that

periodically repeating in space.

2.1. Creation of edge dislocation

To create an edge dislocation, an ideal crystal (simulation cell) divided into

the upper and lower-half regions in z direction and in the lower half region80

two adjacent atomic half-planes [11̄0] were then removed from the ideal crystal.

After that, atoms in the upper half region were compressed, while the atoms in

the lower region were elongated so the distance between the two adjacent half-

planes would be the same while their y and z coordinates were kept identical.

Finally, by freezing atoms in the regions A and C, and relaxing the atoms in85

region B to the minimum potential energy of the entire simulation system, the

pure edge dislocation dissociated into two Shockley partial with stacking fault

between them according to Eq. 1 [48].

a

2
[11̄0]→ a

6
[2̄11] +

a

6
[1̄21̄] (1)

The centro-symmetry deviation (CSD) method [49] was used to visualize

the dislocation core atoms and cavity. The atoms with CSD parameters falling90

in the range of 0.5A◦2 < CSD < 20A◦2, corresponded to the core of partial

dislocations, stacking fault region, and cavity. The dissociation of an edge dis-

location into two Shockley partials with a stacking fault region between them,

cavity location, and free surfaces in Al-Mg alloy are shown in Fig 2.

2.2. Molecular static simulation95

MS calculation was used to extract the value of Peierls stress at 0◦K for edge

dislocation lying on the slip plane. In this calculation, a strain increment was

applied on the atoms in region C for each step, and the system was then allowed

to take minimum potential energy. For this purpose, the conjugate gradient

relaxation algorithm was used by assuming that the minimum potential energy100

is reached when the change in total energy is lower than 10−14 or the maximum

force of x, y and z components of any atoms is 10−14 ev
A◦ .
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Figure 2: Dissociation of edge dislocation into two Shockley partials with stacking fault region

between them, cavity location, and free surfaces in Al-Mg alloy.

Some studies have shown that the shear modulus and the value of the Peierls

stress were not affected by the change in strain increment, and also these values

were not significantly affected by the simulation cell size [8, 17]. These stud-105

ies used one unit cell in the y direction due to the applied periodic boundary

condition. This is useful for pure Al crystal since it is reasonable to assume

that this unit cell will repeat in the y direction, but for Al-Mg alloy to make

sure that the Mg atoms are randomly distributed in each direction, it is im-

portant to have several unit cells in the y direction. To extract the values of110

Peierls stress, static simulation were performed with simulation cell dimensions

of 100b× 3b× 40b for pure Al and 100b× 30b× 40b for Al-Mg alloy, where the

magnitude of b is
√
2
2 a,

√
6
2 a and

√
3
2 a in the x, y, and z direction, respectively,

under strain increment of 2× 10−5.

2.3. Molecular dynamics simulation115

To simulate edge dislocation motion at finite temperature and its interaction

with voids, MD was utilized. After dissociating of edge dislocation into two
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Shockley partial and cavity creation, atoms in boundary zone were fixed and the

system was equilibrated in Canonical ensemble (NVT) for 4ps (4× 10−12s) for

temperature stabilization. As temperature maintained constant, a Nose/hoover120

temperature thermostat was used [50]. MD simulations were performed using

simulation cell with dimensions of 100b × 30b × 40b given by 29 × 15 × 14nm3

that contains 360000 atoms. The time step was 2 fs (2 × 10−15s). To apply

shear strain (3 × 10−8fs−1), a constant velocity in the x-direction was then

applied on region C while the atoms in region A were being fixed. During this125

process, the temperature of the system was kept constant using Nose/Hoover

thermostat after excluding the x-component of the atom velocity. To study the

dislocation-void interaction for both the Al and Al-Mg alloy, the box size in y

direction was changed to keep constant the inter-void spacing in the direction

of the dislocation line due to the periodic boundary condition. In addition, to130

investigate the effect of inter-void spacing, the box length in y-dimension was

halved.

3. Results and discussion

3.1. Effect of used potential and simulation cell size on Peierls stress

The Mendelev et al. potential [51] was used for pure Al and its modifica-135

tion was utilized for Al/Mg alloy [47]. For these potentials lattice parameter

a = 4.04527A◦, burgers vector b = 2.8673A◦ and the zero temperature elastic

modulus C11= 110 GPa, C12=61 GPa and C44= 33 GPa. To evaluate the dif-

ferences of dislocation core structure obtained by these potentials with other

potentials, dislocation core structure was extracted using Liu et al. potential140

[52] which was corrected by Liu et al. [53] for Al/Mg alloys. For Liu et al.

potential, lattice parameter a = 4.032A◦, burgers vector b = 2.851A◦ and the

zero temperature elastic modulus C11= 118 GPa, C12=62 GPa and C44= 32

GPa. To extract the effect of used potentials, image forces and boundary condi-

tions on measured Peierls stress, simulations were performed with different cell145

dimentions, 100b×40b, 100b×100b, 120b×120b, 140b×140b along the displace-
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Figure 3: Stress-strain curve obtained by MS simulation of dislocation motion in Al using (a)

Mendelev et al. potential and (b) Liu et al. potential in different simulation cell size along

the displacement and normal direction of dislocation.

ment and normal direction using Mendelev et al. and Liu et al. potentials. As

can be seen in the Fig. 3, the value of Peierls stress in pure Al was not sig-

nificantly affected by simulation cell size. However, Olmsted et al.[40] reported

that, image forces and boundary conditions can affect Peierls stress values, and150

the size of 100b×40b is big enough to evaluate the Peierls stress (as shown in the

Fig. 3 (a)). Also, dissociated distance of Al edge dislocation between Shockley

partials was evaluated. Table 1 shows the results of this study and previous

studies for comparison. As can be seen, the results are in good agreement with

the previous studies. Finally, the simulation cell size of 100b × 40b along the155

displacement and normal direction and Mendelev et al. potential were used for

subsequent simulations.

3.2. Effect of Mg solute atoms on Peierls stress

Fig. 4 (a) shows a stress-strain behavior of pure Al crystal and Al/Mg

at different Mg concentration. As can be seen, a linearly increasing trend for160

stress was initially obtained for the pure Al crystal by increasing the strain

with a shear modulus similar to that obtained for a perfect crystal. When the

stress reached a critical value, the dislocation moved continuously, leading to
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Table 1: comparing the values of dissociated distance and Peierls stress obtained in this study

with previous studies for Al.

Dissociated Distance(A◦) Peierls Stress(MPa)

This study(Mendelev et al.) 10.1 7

This study(Liu et al.) 15.68 2.13

Srinivasan et al.[54] 16 , 5-15

Kuksin et al.[48] 15

Wang and Fang[42] 2.65

Olmsted et al.[40] 2

Dong[43] 14.4 2.4

an increase in the strain. The maximum stress where corresponds to the Peierls

stress (σxz ∼ 7MPa) occurred at a strain equal to εxz ∼ 0.32 × 10−3. As can165

be seen from Fig. 4 (b), the values of Peierls stress were increased (from 7 MPa

to 55 MPa) with an increase in Mg solute concentration (from 0.0 %wt to 2.0

%wt). Also, this figure shows that the dependence of the Peierls stress on the

Mg concentration is linear. Such linear dependency was reported in the study

of Ma et al.[55] for Al/Mg binary system, while in other studies [41, 43], c
2
3 (c170

is solute concentration) dependence were reported.

Mg solute atoms are oversized and cause dilatation field that interact with

dislocation. This interaction energy is approximated by the interaction energy

due to volume misfit of the Mg atoms against the pressure field of dislocation and

the interaction energy due to the slip misfit (these misfit parameters are obtained175

by ab-intio calculation). Such dislocation-solute interaction energy is used to

evaluate energy barrier against the dislocation motion in randomly distributed

Mg solute atoms, and finally the shear stress to overcome this energy barrier.

Mg solutes introduce large and positive extra volume that causes higher energy

barrier and higher stress required for dislocation motion. (for more details see180
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Figure 4: (a) Stress-strain curve obtained by MS simulation of dislocation motion in Al and

Al-Mg at different concentration of Mg solute atoms. (b) linear dependence of Peierls stress

on the Mg concentration.

[55, 56])

3.3. Effect of Mg solute atoms on edge dislocation-void interaction

In order to study the effect of Mg concentration on CRSS of slip plane,

edge dislocation and its interaction with nanometer voids at finite temperature,

the pure Al and Al-Mg systems were subjected to a shear loading in the MD185

simulation. Fig. 6 shows the stress-strain curve of edge dislocation interaction

with 1 nm void in Al crystal and Al-0.5% wt. Mg alloy at 10◦K. As can be

seen in stage A, the stress required to move edge dislocation at 10◦K in Al-Mg

system was larger than Al crystal due to the pinning effect of solute atoms, and

the Peierls stress at 10◦K obtained by MD simulations in both systems were190

closed to the corresponding Peierls stress at 0◦K obtained by MS simulations

(see Table 2). As can be seen in Table 2, the value of Peierls stress in Pure Al

was decreased with increasing temperature to 10◦K, but in the Al-0.5% wt. Mg

alloy, this value showed a little increase. For better understanding of this effect,

stress required for dislocation motion at 100◦K and 300◦K were also extracted.195

The results were shown in the Fig. 5. As can be seen in this figure, the value of

critical stress for dislocation motion in Al-0.5% wt. Mg at 10◦K and 100◦K are
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Figure 5: Stress-strain curve obtained by MS and MD simulation for extracting the stress

required to dislocation motion in Al-0.5% wt. Mg at different temperature.

closed to the value for 0◦K, however, with a slight increase, whereas the value at

300◦K shows a significant reduction. Phonon friction and solute atmosphere can

justify these results. At a very low temperature, phonon friction is not as much200

as higher temperatures, and dislocation can pass through an array of solute

atoms with the help of inertia, however, dislocation motion is controlled by the

solute atmosphere. At a higher temperature, phonon friction becomes higher,

and dislocations can pass the solutes with the aid of thermal activation, leading

to a decrease in the stress. Therefore, it can be seen that due to consideralbe205

thermal activation dislocation motion at 300◦K, a lower stress was obtained,

while before 100◦K, the solute atoms act a stronger obstacle as they have a

higher mobility in respect to zero temperature. Although, the mobility of solute

atoms becomes considerble at 300◦K, however, thermal activation dislocation

motion seems to be dominent at 300◦K. [55]210

In Fig. 6, four stages of an edge dislocation interaction with 1nm void can

be observed. A, the glide of dislocation towards the void before interaction.
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Table 2: values of Peierls stress at T=0◦K and T=10◦K in Al and Al-0.5% wt. Mg obtained

by MS and MD calculation.

Al Al-0.5% wt. Mg

T=0◦K (obtained by MS ) 7 MPa 15 MPa

T=10◦K(obtained by MD) 3 MPa 16.5 MPa

B, its attraction with the void. C, bowing out just before the release, and

D, releasing from the void and continuing to the glide. Figs. 7 and 8 show

the corresponding atomic configurations from different directions, indicating215

dislocation-void interaction in Al and Al-Mg systems with stages A to D as

marked on the stress-strain curve, see Fig. 6. As can be seen in these figures,

the dislocation in bowing pulls into two dislocation segments pinned by cross

cut of the void, since passage of edge dislocation sheared the void (see Fig.

9). Literature [15] reported that void-induced climb occurs for BCC metal.220

However, in the case of FCC metals, it has not been well understood if this type

of climbing occurs during dislocation-void interaction. Some authors [57, 58]

suggested that it might occur for FCC metals with a high value of SFE. The

simulation results presented in Fig. 10 show that this type of climbing for edge

dislocation did not occurred for both Al and Al-Mg systems at 10◦K.225

3.4. Effect of void dimension on the CRSS

Stress-strain curve corresponded to edge dislocation interaction with 1, 2

and, 3nm void diameters at 300◦K is shown in Fig. 8. As can be seen, the CRSS

was decreased by decreasing of the void size. In fact, an increase in the void size

has a strengthening influence on Al crystal by increasing the interaction area230

between the dislocation core and voids. Therefore, more atoms will be pinned,

leading to a request of a higher stress (see Fig. 11). However, it should be

noted that the increase rate of CRSS was decreased by the increasing the void

diameter from 2 to 3 nm with respect to that of 1 to 2 nm, indicating that there

might be an optimum value (see Fig. 12) of void diameter for strengthening235

[21].
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Figure 6: Stress-strain curve obtained by MD simulation of an edge dislocation interaction

with 1nm void in Al and Al-Mg at 10◦K [A, the glide of dislocation towards the void, before

interaction. B, its attraction to the void. C, bowing out just before the release, and D,

releasing from the void and continuing to the glide].

Figure 7: Atomic configuration associated with stages A to D, as marked on the stress strain

curve of Fig. 6 for Al crystal, (a) A, (b) B, (c) C, and (d) D.
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Figure 8: Atomic configuration associated with stages a through d, as marked on the stress

strain curve of Fig. 6 in Al-Mg alloy, (a) A, (b) B, (c) C, and (d) D.

Figure 9: Shape of the void a) before and b) after the passage of the dislocation.
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Figure 10: a: bowing out just before the release, b: releasing from the void, and c: this two

stages together in A for Al and B for Al-Mg alloy.

Figure 11: Stress-strain curve of edge dislocation interaction with different void diameter in

Al lattice at 300◦K with 15nm inter-void spacing.
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Figure 12: Critical resolved shear stress vs. void diameter in Al lattice at 300◦K with 15nm

inter-void spacing.

Another parameter that was investigated in this study was inter-void spac-

ing. To obtain the influence of the parameter on the CRSS, the simulation box

in the y dimension was halved and stress-strain curve was obtained as shown

in Fig.13. It can be seen that by decreasing the inter-void distance the CRSS240

increased.

To compare these results with the suggested strengthening equations in the

frame of the elasticity of the continuum, the following relation was used that

reported by Bacon and Scattergood [59, 60], for copper and iron [15, 16, 18, 19],

based on the dislocation self interaction stress:245

τc =
Gb

2πL
[Ln

(D−1 + L−1)−1

b
+ ∆] (2)

where G is the Aluminum shear modulus for the < 11̄0 > 111 system, which

is 24.4 GPa according to our calculations using Mendelev potential, b is Burgers

vector, L is the distance between void centers, D is the void diameter and ∆ is a

constant, which is 1.52 for a void [16]. Fig. 14 confirms that this equation could

not be used for aluminum. The reason that the result does not fit to the above250

equation might be related to the curvature and release angle of the dislocation
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Figure 13: Stress-strain curve of edge dislocation interaction with different inter-void spacing

at 300◦K obtained by MD calculation in Al.

from void, which depend on temperature and inter-void spacing. While the

elastic calculation does not take into account temperature dependence, it is

interesting to consider the dislocation morphology temperature dependence, as

observed in the MD simulations, and its possible impact on the CRSS. [21]255

3.5. Effect of temperature on CRSS

Figs. 15 and 16 show the stress-strain curve of interaction of edge dislocation

with 1nm void at 10◦K and 300◦K in Al crystal and Al-Mg alloy, respectively.

Some important points could be understood from these figures. First, from Fig.

15, it can be seen that for pure Al, both the partial dislocations simultaneously260

passed through the void at 10K, while this occurrence did not happen at 300K.

It can be observed that no simultaneous passing of partial dislocations occurred

for the Al-Mg alloy (see Fig. 16) which is line with previously reported find-

ings [57] that a higher CRSS is required during simultaneous passing of partial

dislocations. Fig. 15 shows that higher than 92 MPa CRSS was required for265

dislocation-void interaction in pure Al at 10◦K. Therefore, irrespective of tem-

perature increment that reduced the required CRSS, this behavior of partial
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Figure 14: CRSS, scaled by Gb/L vs. harmonic mean of obstacle spacing and void diameter

at 300◦K in Al. In this figure a solid line plots the Eq. 2

dislocations during interaction with the voids seems to be very important. Sec-

ond, by comparing both the Figs. 15 and 16 at 300◦K (see Fig. 17), it can be

observed that Mg solute atoms showed their pinning effects when edge disloca-270

tion was passing through the voids. It was mentioned that leading and trailing

partial dislocations were separately passed through the void for both the sys-

tems at 300K. Third, in contrast with pure aluminum, the temperature effect

on CRSS could be clearly seen for Al-Mg alloy. It was reported in literature

[15, 16, 18, 19, 21, 22] that around 300K increment in temperature led to a need275

for a lower CRSS for dislocation-void interaction, due to the higher mobility of

dislocation segments.

4. Conclusions

In this study, the interaction of an edge dislocation with nano-scale voids

was investigated for pure Al and Al-Mg alloy. From the MD/MS simulation280

results, the following conclusions can be drawn:
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Figure 15: Stress strain curve of edge dislocation interaction with 1nm void at different

temperature in Al crystal.

Figure 16: Stress strain curve of edge dislocation interaction with 1nm void at different

temperature in Al-Mg alloy.
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Figure 17: Stress-strain curve obtained by MD simulation of an edge dislocation interaction

with 1nm void in Al and Al-Mg at 300◦K.

1. It was found that just 0.5% wt. Mg was highly effective on increasing the

Peierls stress and CRSS.

2. The type of dislocation-void interaction was changed by replacing of the

Mg solute atoms at 10◦K, in which separate passing of partial dislocations285

occurred in contrast with pure Al. This occurrence considerably reduced

the CRSS for Al-Mg alloy.

3. It was found that no void-induced climbing occurred at 10◦K during load-

ing for the systems investigated.

4. Higher void diameter and in particular lower inter-void spacing led to a290

considerable increase in the CRSS for the pure Al lattice, while the latter

changed the type of dislocation-void interaction, in which simultaneous

passing of partial dislocations occurred when the inter-void spacing was

7.5nm instead of 15nm.

5. An increase in the temperature from 10◦K to 300◦K, led to a lower re-295

quired CRSS for the pure Al and Al-Mg alloy, due to the higher mobility
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of dislocation segments.

6. It was shown that the stress required for dislocation motion was decreased

for pure aluminum from 0◦K to 10◦K, while, due to the presence of Mg

atoms, different results were obtained for Al-Mg alloy. Mobility of Mg so-300

lute atoms that increases by temperature can control the motion of edge

dislocation, and thermal activation at elevated temperature can cause eas-

ier motion of dislocation. These two factors led to the difference between

the results of pure Al and Al-Mg alloy.

7. The Peierls stress increased linearly with increasing Mg solute concentra-305

tion.
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