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Abstract 9 

Laser surface modification can be used to enhance the mechanical properties of a material, 10 

such as hardness, toughness, fatigue strength, and corrosion resistance. Surface nitriding is a 11 

widely used thermochemical method of surface modification, in which nitrogen is introduced 12 

into a metal or other material at an elevated temperature within a furnace. It is used on parts 13 

where there is a need for increased wear resistance, corrosion resistance, fatigue life, and 14 

hardness. Laser nitriding is a novel method of nitriding where the surface is heated locally by 15 

a laser, either in an atmosphere of nitrogen or with a jet of nitrogen delivered to the laser 16 

heated site. It combines the benefits of laser modification with those of nitriding. Recent 17 

work on high toughness tool steel samples has shown promising results due to the increased 18 

nitrogen gas impingement onto the laser heated region. Increased surface activity and 19 

nitrogen adsorption was achieved which resulted in a deeper and harder surface compared to 20 

conventional hardening methods. In this work, the effects of the laser power, pulse repetition 21 

frequency, and overlap percentage on laser surface treatment of 316L SST steel samples with 22 

an argon-nitrogen jet will be presented. Resulting microstructure, phase type, microhardness, 23 

and wear resistance are presented. 24 
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1  INTRODUCTION 25 

Laser surface modification is a beneficial processing method that can be used to enhance the 26 

mechanical properties of a material, such as hardness [1], wear resistance [2], fatigue strength 27 

[3], and corrosion resistance [4]. Surface nitriding is a thermochemical method of surface 28 

modification, in which nitrogen is incorporated into a metal or other material, at an elevated 29 

temperature. It can increase wear resistance, corrosion resistance, fatigue life, and hardness of 30 

parts [5]. In its most basic form, gas nitriding, it is performed by heat-treating the material in 31 

a pure nitrogen, or often ammonia [5], atmosphere. The process requires a long exposure 32 

time, up to 75 hr. The advantages of conventional furnace gas nitriding include the improved 33 

hardness, sliding wear resistance, and corrosion resistance, that it can be performed below the 34 

phase transformation temperature, that it requires no further processing such as quenching 35 

(which could introduce warping or cracks), and that the modified layer does not alter the 36 

dimensions of the part. The main disadvantage of conventional furnace gas nitriding is its 37 

processing time. Other common types of nitriding are plasma nitriding and ion-beam 38 

nitriding, which can decrease the time and temperature needed compared to gas nitriding [6]. 39 

Laser nitriding is a novel method which combines laser surface modification with nitriding. 40 

In laser nitriding, a laser is used as the heat source, focused on the surface of the material to 41 

locally heat the surface, either in an atmosphere of nitrogen or with a jet of nitrogen delivered 42 

to the laser heated site. The technique was first reported by Katayama et. al. in 1983 [7], and 43 

has been successfully applied to many different materials and alloys, such as iron, carbon 44 

steel, stainless steel, aluminium, and titanium [5][8][9][10]. Laser nitriding compares 45 

favourably to other nitriding methods, achieving comparable hardnesses and treatment depths 46 

to gas nitriding in the shortest treatment time compared to gas, plasma, or ion-beam methods 47 

[6]. 48 
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Laser surface modification alone can improve the hardness and wear resistance of metal 49 

surfaces. Aqida et. al. improved the surface hardness of AISI H13 tool steel from ~300 HV to 50 

up to 1017 HV using a 1.5 kW CO2 laser at powers of 825-1050 W, with a jet of argon 51 

delivered in line with the beam [4]. Majumdar et. al. compared the results obtained using a jet 52 

of argon, nitrogen, or a 50/50 mix of the two gases, with a 2 kW CO2 laser on the surface of 53 

SAE 52100 tool steel [1]. The authors found increases of microhardness ranging from ~100-54 

200 HV for the argon jet, up to 650 HV for the nitrogen jet, and up to 700 HV for the 50/50 55 

mixture. The wear resistance was found to improve with the hardness.  56 

Using 100% N2 gas may result in surface cracks and brittleness. Sun et. al. and Mridha et. al. 57 

found the formation of the surface macro/micro-cracks in a Ti-6Al-4V alloy laser nitrided 58 

with 100% N2, due to the high cooling rates [11,12]. Sun et. al. reported that optimising the 59 

main laser processing parameters could reduce the residual stresses in the altered layer, and 60 

thus reduce the occurrence of surface cracks [11]. Alternatively, the application of diluted 61 

nitrogen, typically diluted with argon, can reduce cracks. However, this may also reduce the 62 

hardness achieved. Several researchers have used different ratios of argon-nitrogen gas 63 

mixtures [1,12–18]. Argon gas is typically chosen as the diluting gas because it decreases the 64 

surface tension of the molten material melted by the laser, allowing deeper penetration of the 65 

nitrogen in the mixture [19].   66 

Nitriding to improve the properties of steel has possible applications in making rolling fatigue 67 

resistant gears [20], cut blades [21], bipolar plates in proton exchange membrane fuel cells 68 

[22], and biomedical applications such as surgical instruments [23]. In this work, the effect of 69 

laser processing 316L stainless steel using an argon-nitrogen mix jet, with varied laser 70 

powers (P), pulse repetition frequencies (PRF), and percentage overlap (OV%) was 71 

investigated. The resulting samples were characterised in terms of their microstructure, phase 72 

types, microhardness, and wear. 73 



4 
 

2  Materials and methods 74 

In this work, a computerised numerical control (CNC) CO2 laser machine Rofin DC-015 of 75 

1.5 kW maximum average power and a laser beam focus diameter of 0.2 mm was used. Gas 76 

could be delivered in line with the beam, using either pure argon or a mixture of 20% argon 77 

and 80% nitrogen at 0.3 mPa. A higher pressure jet may cause spreading and loss of molten 78 

material, the pressure of 0.3 mPa was found to give good results in terms of hardness with 79 

acceptably low physical material impingement. The materials used were 316L stainless steel 80 

cylindrical pins of 10 mm diameter. The cylindrical samples were processed by rotating the 81 

pin while scanning the laser linearly, to scan the laser spot over the surface of the pin in a 82 

spiral. The rotational and linear speeds could be controlled to adjust the overlap of 83 

subsequent laser spots, as well as the overlap of each line of the spiral with the previous line 84 

[24].  85 

The laser parameters were applied according to the Box-Behnken experiment design shown 86 

in Table 1, varying the laser power (P), pulse repetition frequency (PRF), and percentage 87 

overlap (OV%) to produce 17 samples. In each case, the percentage overlap value was 88 

applied both for the overlap between consecutive laser spots and the overlap between 89 

consecutive laser tracks. Negative values of overlap correspond to the laser spots and tracks 90 

being spaced apart by a given percentage of the spotsize. The energy density threshold for 91 

melting for 316L SST is in the range of 22-25 J/mm2. The parameters in the DoE were 92 

chosen to be slightly above the melting threshold, to give minimal material loss via ablation. 93 

The laser pulse durations corresponding to the PRF values used are 5, 2.5, and 1.67 ms for 94 

100, 200, and 300 Hz, respectively. One parameter set was reproduced on flat stainless steel, 95 

converting the rotational speed to linear speed and rastering back and forth in lines, using 96 

argon or nitrogen, to allow for pin-on-disc wear testing. 97 
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Table 1 Parameters and levels used for the Box-Behnken design of experiment. 98 

  Level 1 Level 2 Level 3 

Power (W) 300 400 500 

PRF (Hz) 100 200 300 

Overlap (%) -20 0 20 

 99 

Table 2 Mass percentages for the chemical composition of the  100 

cylindrical 316L stainless steel samples. 101 

C Mn Cr Ni Si P S Mo N Cu Co Fe 

0.018 1.77 17 11.1 0.34 0.033 0.029 2.06 0.029 0.34 0.15 Bal 

 102 

After processing, the microhardness, microstructure, and wear resistance were characterised. 103 

To observe the microstructure, samples were cross-sectioned, then ground and polished using 104 

a Buehler Motopol 2000. Successive grades of SiC paper of 400, 600, 800, and 1200 were 105 

applied under water flow. Final polishing was then performed using a Textmet cloth with 106 

succesive diamond and alumina suspensions of 9, 6, 3, and 0.05 μm particle size. The 107 

polished surfaces were then etched with a 5% nital etchant, made up of 95% nitric acid and 108 

5% ethanol, by applying to the surface for 3-5 seconds with a cotton swab before rinsing. The 109 

etched surfaces were then observed by Carl Zeiss LS15 scanning electron microscope. The 110 

microhardness was measured in terms of the Vickers microhardness using a Leitz mini-load 111 

tester. The hardness indents were taken according to ASTM E18-15 with the average of five 112 

indents at specified distances from the surface recorded. A distance of five times the indent 113 

surface displacement was also used between indents in order to ensure no interference from 114 

possible strain hardening effects from previous indents. The wear was tested by the ASTM 115 

G-99 pin-on-disc standard, using a 2.5 kg load, a rotational speed of 200 RPM, a track radius 116 

of 4 mm, and a testing time of 120 minutes. The pins used were tungsten carbide punch pins 117 

from LinkTooling, with a hardness of 775-834 HV. 118 
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3  Results and discussion 119 

3.1  Altered surface hardness 120 

The average hardness of the untreated stainless steel cylindrical samples was found to be 250-121 

280 HV. The hardness after laser processing with the argon-nitrogen gas mixture was found 122 

to have increased significantly for a number of samples. The hardness recorded for the Box-123 

Behnken samples laser processed with 20%Ar-80%Ni or with 100% Ar can be seen in Table 124 

3. The highest value, of 590 HV found for sample 6 treated with the argon-nitrogen mix, is 125 

over double the untreated hardness. The average hardness for the five replicates at 400 W, 126 

200 Hz, and 0% overlap with 20%Ar-80%Ni is 333 HV, with a 95% confidence interval of 127 

16 HV. The improvement in the hardness had depths of up to 900 μm. In Figure 1, a plot of 128 

hardness vs depth for sample 1 and sample 6 of the set processed with 20%Ar-80%Ni, the 129 

samples with the highest hardness at the surface, is shown. The hardness decreases with 130 

depth, with sample 6 reaching the initial bulk hardness at ~900 μm below the surface, and 131 

remaining >500 HV for over 400 μm. These depths are significantly above those noted for 132 

plasma nitriding of 316L SST, where Biehler et. al. for example measured nitriding depths of 133 

≤ 7.2 μm for plasma nitriding with 300 Pa pressure [25]. However, these authors achieved 134 

surface hardness of up to 1,662 HV. 135 

 136 

 137 

 138 

 139 

 140 
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 141 

 142 

Table 3 Laser parameters and resulting microhardness for the laser processed SST pin samples. 143 

Sample Power (W) PRF (Hz) OV% 

20%Ar-80%Ni 

Microhardness (HV) 

100%Ar 

Microhardness (HV) 

1 300 200 -20 549 342 

2 400 200 0 301 304 

3 400 300 -20 446 338 

4 400 200 0 342 304 

5 500 200 -20 363 324 

6 400 300 20 590 347 

7 500 300 0 331 346 

8 400 200 0 339 304 

9 400 200 0 345 304 

10 400 100 20 307 313 

11 400 100 -20 462 313 

12 300 300 0 300 344 

13 300 200 20 326 343 

14 500 100 0 315 343 

15 500 200 20 286 243 

16 300 100 0 310 313 

17 400 200 0 338 304 

 144 
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 145 

Figure 1 Plot of surface microhardness vs. depth from the surface for sample 1 and sample 6. 146 

The data from Table 3 is shown as response surface graphs in Figure 2 to illustrate the effect 147 

of the laser processing parameters on the resulting micro-hardness of the 316L stainless steel 148 

cylindrical samples. Figure Figure 2 (b) indicates a strong direct proportionality between the 149 

PRF and the resulting hardness at the surface. This agrees with trends reported in the 150 

literature [5]. This relationship can be explained by the higher PRF leading to a shorter 151 

residence time and therefore faster solidification which is known to result in a harder surface 152 

material. Achieving the same overlap with a higher PRF requires using higher linear and 153 

rotational speeds, and at higher speeds the laser will be resident on a given area for less time. 154 

This shorter residence will lead to higher cooling rates, and higher cooling rates are known to 155 

give increased hardnesses [26].  The hardness is highest at the middle power level. The 156 

increased heating at higher powers produces more melting, and slower cooling and re-157 
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solidification, of the metal at the surface. The heating can act as annealing and allow 158 

relaxation of the grains, giving lower hardness. Conversely, low power may lead to 159 

insufficient heating/melting. 160 

However, Figure Figure 2 (a), in which the laser tracks are spaced apart did not show a strong 161 

proportionality with PRF. For this negative overlap, the power is the significant factor, with 162 

an inverse proportionality with the hardness. Again, high power may lead to slower re-163 

solidification of the molten material, leading to lower harnesses. 164 

 165 

Figure 2 3D RSM plots of the hardness response for the stainless steel  166 
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pins processed with 20%Ar-80%Ni with (a) -20% and (b) +20% overlap. 167 

 168 

The correlation is also shown in the perturbation plot, see Figure 3, which is taken at 400 W, 169 

200 Hz, and 20% overlap. In a perturbation plot, a single parameter in the RSM model 170 

(shown in FigureFigure 2) is varied, while keeping the other parameters constant, to 171 

determine the effect of all factors at a given point in the DoE. The x-axis is given in coded 172 

units, where -1 indicates a level lower and 1 indicates a level higher. The plot shows that the 173 

percentage overlap also has a strong, direct proportionality on the micro-hardness, at this 174 

point. It can also be concluded that lower pulse energy and fluence gives higher surface 175 

hardness. This conclusion was also reached by Schaaf [5]. Figure 4 shows the measured 176 

values against the modelled values (with the equation for the model included), from the RSM 177 

model seen in Figure 2, for the box Behnken experimental design, with good agreement 178 

between the model and the experimental data. 179 

 180 

Figure 3 Perturbation plot of the processing parameters and resulting hardness  181 
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taken at 400 W, 200 Hz, and 20% overlap, using 20%Ar-80%Ni. 182 

 183 

Figure 4 Plot of predicted data vs the actual data for the box Behnken experiment design for the 184 

samples processed with 20%Ar-80%Ni, and the equation for the model, using the model shown in 185 

Figure 2. 186 

 187 

3.2  Microstructure 188 

Figure 5 shows a comparison of the microstructure of 316L stainless steel pin samples laser 189 

processed using argon and 20% argon-80% nitrogen, respectively, with the parameters 190 

corresponding to sample 1 and 11 in Table 3. The altered region is indicated by 1, and the 191 

bulk substrate material by 2. Martensite phase microstructure can be seen in the altered 192 

region, which is not present in the austenitic un-altered region. The composition was 193 

measured by EDX. The EDX data for sample 6, which exhibited the highest microhardness, 194 

is presented in Figure 6, and the composition found is presented in Table 4. The table gives a 195 

nitrogen weight percentage of 1.41%. However it can be seen on the inset image in Figure 6 196 

that there is no discernible nitrogen peak. Thus it can only be concluded that the nitrogen 197 



12 
 

content is below the limit of detection. Surface back-scatter electron images showing a top-198 

down view of the surface of samples processed with argon or the 20% argon 80% nitrogen 199 

mix can be seen in Figure 7. The bright material visible in the images is the hard martensite, 200 

and the dark material is the softer ferrite. The bright material was not visible for in the as-201 

received sample material, as 316L SST is only austenite in structure. The bright martensite 202 

structure is visible in the processed samples, due to the melting and resolidification of the 203 

surface material. More of the bright material is visible in the sample processed with 20%Ar-204 

80%Ni mixture than the sample processed with the pure argon. 205 

 206 

Figure 5 SEM cross-section micrographs of 316L samples (a) sample 1 processed with argon, (b) 207 

sample 1 processed with 20% argon 80% nitrogen, (c) sample 11 processed with argon, and (d) 208 

sample 11 processed with 20% argon 80% nitrogen. 209 

 210 

 211 
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 212 

Figure 6 EDX plot for DoE sample 6, with inset showing a close up on the expected location of the 213 
nitrogen peak. 214 

 215 

Table 4 Composition table from EDX plot shown in Figure 6. 216 

Element N O F Al Si S Ca Cr Mn Fe Ni Cu 

Weight % 1.41 0.14 0.68 0.00 0.41 0.24 0.13 17.01 1.61 70.97 7.01 0.40 

 217 

 218 

 219 

(a)                                                                      (b) 220 

Figure 7 Surface back-scatter electron images of the surface of stainless steel samples processed with 221 
(a) pure argon and (b) a 20% argon 80% nitrogen mix. 222 
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From the analysis of hardness test results, EDX, and the surface BSE images, it can be 223 

concluded that laser processing in nitrogen gas atmosphere boosts the formation of the hard 224 

martensite (the bright portion in the BSE image) compared to the soft ferrite (dark). The 225 

absorption of nitrogen by the metal surface is below the limits of detection in the EDX 226 

measurement. One factor affecting the nitrogen absorption is the low CO2 laser photon 227 

energy of 0.12 eV, which is below the 15.6 eV required to ionise the nitrogen gas and the 9.8 228 

eV required for the dissociation. The power density applied in this experiment was 1.2x106 229 

kW/cm2 which is also small compared to the irradiation of 3x1010 kW/cm2 needed for the gas 230 

breakdown. As such, this lowers the amount of nitrogen that can be absorbed into the molten 231 

metal, compared to methods using ionised nitrogen such as plasma nitriding or ion-beam 232 

nitriding. The difference in microstructure and hardness could be influenced by incorporation 233 

of nitrogen in amounts below the threshold for detection by EDX, however it seems more 234 

likely that the main mechanism is the increased cooling rates for nitrogen, compared to argon, 235 

leading to increased martensite formation. 236 

 237 

3.3 Wear testing 238 

Flat 316L stainless steel samples were laser processed to create a flat equivalent for sample 239 

11 in Table 3, for pin-on-disc wear testing, using either argon or a 20%Ar-80%Ni mix. The 240 

results of the wear testing can be seen in Table 5. There was some improvement in the wear 241 

resistance by processing with argon, and a greater improvement processing with the argon 242 

nitrogen mixture. 243 

 244 

 245 
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Table 5 Wear behavior of 316L stainless steel without laser processing, and after laser processing 246 

with either only argon or the argon-nitrogen mixture. 247 

Process gas Mass Loss (g) Reduction in Wear (%) 

As-received 0.0203 - 

 

Laser process with argon gas 0.0089 56.15 

 

Laser process with 20%Ar-80%Ni mix 0.0007 96.55 

 

 248 

The improvement can be explained by the increase in surface hardness, due to the harder 249 

martensite in the modified layer. The argon-nitrogen mixture performs better due to 250 

nitrogen's suppression of the formation of softer ferrite microstructure. Nitrogen is known to 251 

have higher thermal conductivity than argon [27], which allows it to achieve higher cooling 252 

rates during processing. Martensite microstructure is formed under rapid quenching [26], so 253 

laser processing with nitrogen will encourage the formation of hard martensite over the other 254 

softer microstructures. Figure 8 shows SEM images of the worn and un-worn surface for the 255 

samples processed with pure argon or an argon-nitrogen mixture. The wear track suggests an 256 

abrasive and adhesive wear mechanism that is the removed material smears the sample 257 

surface. The bright material visible in the images is the hard martensite, and the dark material 258 

is the softer ferrite. The bright material is not visible for the as-received sample material, and 259 

more of the bright material is visible in the sample processed with 20%Ar-80%Ni mixture 260 

than the sample processed with the pure argon. This supports this interpretation that the 261 

higher hardness and wear resistance is due to the harder microstructure. 262 

 263 
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 264 

Figure 8 Surface of 316L SST flat samples (a) & (b) as received; (c) & (d) laser processed in argon; 265 

and (e) & (f) laser processed in argon-nitrogen mix. 266 

 267 

4  Conclusion 268 

In this work, laser surface treatment of 316L stainless steel, under a jet of either pure argon or 269 

a 20% argon 80% nitrogen mixture, was investigated. For the samples, which had an initial 270 

hardness of 250-280 HV, the highest hardness of 590 HV was achieved with the parameters 271 
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of 400 W, 300 Hz, and 20% overlap using the 20%Ar-80%Ni mix. A strong direct 272 

proportionality between the pulse repetition frequency and the hardness was observed for the 273 

positive overlap. The material's hardness decreased with depth into the sample, but was 274 

significantly raised for (>500 HV) for over 400 μm. While plasma nitriding has previously 275 

been shown to achieved higher hardness results at the surface for 316L [25], the depth 276 

reported, ~7 μm, was significantly lower than the depths found in this work. For applications 277 

where parts are subject to wear eroding the surface, the depth of the treatment may be a more 278 

important factor than the highest hardness at the surface. The wear resistance of flat SST 279 

samples was seen to improve with processing, with greater improvement found from using 280 

the 20%Ar-80%Ni mix. The microstructure examination showed that a martensite phase had 281 

been created in an altered layer at the surface by the laser processing, with more present for 282 

the samples treated with the 20%Ar-80%Ni mix than the pure argon. 283 

These results indicate that laser processing improves the hardness by creating a harder 284 

martensite microstructure in a layer at the surface, with the nitrogen creating a more 285 

martensite microstructure leading to the greater improvement in mechanical properties. 286 
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