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Abstract 

In-situ fabrication of metal matrix nano composites has various advantages such as the 

formation of clean particle-metal interface with strong bonding. In this study, three types of 

metal oxides powders (commercial TiO2, commercial ZnO, and recycled Pyrex) were used to 

inject into the pure aluminium melt to fabricate in-situ aluminium matrix nano composites via 

liquid-state stir casting at 850 °C followed by a hot rolling process. SEM and FESEM 

microstructural characterizations, as well as EDAX analysis, were used to show if in-situ 

reactions occurred between molten aluminium and metal oxides to form nano alumina 

particles as the reinforcement. Tensile and microhardness tests were also applied on the rolled 

nano composites to identify the effect of metal oxide type and amount on the mechanical 

properties. It was found that using recycled Pyrex crushed powders led to the formation of a 

uniform distribution of alumina nanoparticles, while fine-micron ZnO and especially TiO2 

powders could not be uniformly distributed into the melt for complete reaction occurrence.  

Keywords: Aluminium nano composite; In-situ method; Liquid-state stirring; Mechanical 

properties.  
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1. Introduction 

Recently, metal matrix composites (MMCs) have drawn a great attention for their incomparable 

properties and structures [1-3]. MMCs play a crucial role in the automotive, aerospace, and 

other industries because of the typically low cost of their reinforcements and the well-

developed production methods [4]. Aluminium alloys have been gaining greater attention as 

the matrix of MMCs due to their unique physical and mechanical properties [5-9]. Much 

research has been conducted to improve the structural and mechanical properties of the 

aluminium matrix nano composites (AMNCs) by the addition of submicron and nano-sized 

particles as reinforcement [10-16].  

Traditionally, reinforcements are added to a metallic matrix by an ex-situ method [17] which 

provides a lower limit on the size of the reinforcing particles because of poor wettability 

between the reinforcement and the matrix due to increased surface area and the presence of 

surface contamination on the reinforcements [18, 19]. To overcome these drawbacks, a 

method has been developed, in which reinforcements are established in the matrix by one or 

more chemical reactions, termed in-situ method [20]. In-situ synthesizing can be obtained by 

many approaches such as reactive hot pressing (RHP), combustion synthesis or direct 

metal/metal oxidation (DIMOX) [18, 21-23]. DIMOX process is based on a reaction between the 

pure metal and metal oxides, which is the most promising route for fabricating in-situ 

reinforcements because of its simplicity, high-productivity and ease of control of the composite 

structure. Alumina, in particular, can be formed as reinforcement of the matrix during this 

method [24-27]. The general reaction of in-situ AMNCs can be represented as [28]: 

2xAl + 3MyOx → 3yM + xAl2O3                                                                                                                  (1) 
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Various metal oxides can be used to produce in-situ AMNCs, such as zinc oxide [20]. Kobashi 

and Choh [29] added zinc oxide powder to the molten aluminium. Subsequent work was 

accomplished by Chen and Sun [28], Yu et al. [30], Durai et al. [31], and Tavoosi et al. [32] in 

which zinc oxide was used to produce in-situ AMNCs. Their results showed low reactivity 

between zinc oxide and molten aluminium due to the zinc oxide fine particle size and its poor 

wettability by aluminium. Maleki et al. [20] overcame this problem by developing a new 

method named activated powder injection (API), in which Al and ZnO powders were mixed and 

milled in a ball mill to activate the ZnO powders to react with the melt in a shorter time and at a 

lower temperature. Other advantages of this method are deagglomeration of the metal oxide 

particles during milling in a matrix of aluminium and increased wettability during injection into 

the melt due to the presence of an aluminium layer. Many other metal oxides have also been 

used as the source of oxygen to react with Al and form fine Al2O3 reinforcing particles in the 

aluminium matrix such as NiO, TiO2, Fe2O3, CuO, and ZnO [33-38].  

In this study, three types of oxide powders were used to study the fabrication of in-situ AMNCs. 

TiO2 and ZnO oxides were purchased as commercial powders. In addition, in order to show if 

recycled oxides can be used as a promising source for fabrication of low-cost in-situ AMNCs, 

Pyrex crushed powders were also used as the third type of oxide particles. In order to 

deagglomerate the metal oxide powders from their initial condition, they were ball-milled with 

pure aluminium powders before casting. Microstructural and mechanical properties of the final 

composites were compared to develop the DIMOX method for preparation of valuable in-situ 

AMNCs materials.  
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2. Materials and Methods 

An aluminium bar with purity of 99.8% (from Iralco Co., Iran) was used as the matrix. Also, 

aluminium powder (purity of 99.8%, from Khorasan Powder Metallurgy Co., Iran) with an 

average particle size below 20 µm, TiO2, and ZnO oxide powders (both from Millennium Co., 

China) were also used in the present study. Recycled Pyrex powders (sodium borosilicate glass) 

with the chemical composition as shown in Table 1 [39] were obtained by ball milling (using a 

Sepahan 84D planetary ball mill) of useless Pyrex materials. Figs. 1a and 1b show the 

morphology of crushed Pyrex powders after 5 and 30 min ball milling, respectively. In addition, 

Fig. 1c showed the as-received TiO2 and ZnO powders. Fig. 1a shows that large sized Pyrex 

powders with sharp edges were still present after 5 min milling, requiring a higher milling time 

for crushing. Fig. 1b shows that ball milling from 5 to 30 min with four 20 mm-alumina-balls 

with the rotation speed of 550 rpm under air atmosphere can highly reduce the average 

particle size of crushed powders with a higher sphericity in respect to 5 min milled Pyrex 

powders without considerable agglomeration. In should be noted that before ball milling, a 

hammer was used for crashing of large sized Pyrex parts. Considerable agglomeration can also 

be seen for both the TiO2 and ZnO as-received powders (see Fig. 1c).  
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Fig. 1.The SEM morphology of crushed Pyrex powders after, (a) 5 min, (b) 30 min and (c) illustration of 

as received TiO2, and ZnO powders. 

Table 1: Chemical composition of Pyrex 7740 glass (Mol%) 

SiO2 B2O3 Na2O Al2O3 K2O MgO CaO 

80.8 12 4.2 2 0.6 0.2 0.2 

 

In order to deagglomerate the fine oxide particles, 15 g of each oxide powders (ZnO, TiO2, and 

30-min crushed Pyrex) were separately added to 15 g of pure Al powder for ball milling process 

for 2 hours at a constant milling speed of 250 rpm under argon (99.99 % purity) atmosphere. 

The ball to powder weight ratio of 3:1 and the alumina balls (with 20 and 10 mm diameters) 

were used. To prevent the occurrence of severing adhesion of the mixture powder particles to 

balls and mill walls, stearic acid at 1 wt.% was used as a process control agent (PCA). After 

milling process, to remove impurities, surface contaminations, and absorbed water molecules 

on the surface of the particles, as-milled powders were pre-heated under argon atmosphere for 

2 hours at 400 ˚C using ATBIN heat treatment furnace just before liquid-state stir casting 

process.  
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Four samples were prepared according to the Table 2. A bottom-pouring stir casting system was 

used for the casting process [39-41]. For this purpose, 500 g of the pure aluminium bar was 

placed and heated to 850˚C. The mixture of aluminium melt and the milled powders was stirred 

for 5 minutes, after 1-min completion of powder particles addition (total 6 min), to obtain 

better contact between oxide powders and aluminium melt. This resulted in the formation of a 

uniform distribution of alumina-reinforcing nanoparticles. These alumina nanoparticles can be 

obtained due to the following chemical reactions with molten aluminium at 850 °C: 

Pyrex 7740 glass: 

 4Al(l)+ 3SiO2(s) → 3Si(s) + 2Al2O3(s),         ∆H°298 K = -681.4 kJ/mol                                      (2) 

 2Al(l) + B2O3(s) → 2B(s) + Al2O3(s),            ∆H°298 K = -421.7 kJ/mol                                       (3) 

 2Al(l) + 3Na2O(s) → 6Na(l) + Al2O3(s),       ∆H°298 K = -427.7 kJ/mol                                       (4) 

 2Al(l)+ 3K2O(s) → 6K(l) + Al2O3(s),             ∆H°298 K = -586.19 kJ/mol                                     (5) 

 2Al(l) + 3MgO(s) → 3Mg(l) + Al2O3(s),      ∆H°298 K = 129.7 kJ/mol                                         (6) 

 2Al(l) + 3CaO(s) → 3Ca(l) + Al2O3(s),         ∆H°298 K = 229.3 kJ/mol                                         (7) 

                                                                                     ∆H°298 K (total)= -621.61 kJ/mol                           (8) 

ZnO:        2Al(l) + 3ZnO(s) → 3Zn(s) + Al2O3(s),     ∆H°298 K = -631.7 kJ/mol                                        (9) 

TiO2:        4Al(l) + 3TiO2(s0 → 3Ti(s) + 2Al2O3(s),  ∆H°298 K = -516.4 kJ/mol                                      (10) 

Our previous studies have indicated that metal oxide particles, which are brittle in nature, are 

covered by ductile aluminium powders [42-44]. Aluminium powders cover the metal oxide 

particles and aid the balls collisions to make the oxide powders more deagglomerated. The 

presence of aluminium powders can also lead to a better distribution of activated oxide 

particles in the melt, resulting in their gradual reaction with the molten aluminium. The other 

details of casting equipment and process were reported elsewhere [45].  
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Table 2: The composition of prepared samples. 

Samples Composite slurry mixture 

S1 Al-4wt% Pyrex  

S2 Al-6wt% Pyrex 

S3 Al-6wt% TiO2 

S4 Al-6wt% ZnO 

After the casting process, hot rolling as previously detailed [46, 47]. Microstructural 

characterizations of composite samples were performed using a scanning electron microscopy 

(SEM, Cam Scan MV2300) and a field emission scanning electron microscopy (FESEM-Mira 

Tescan) equipped with EDAX analysis.The phase composition of the samples after ball milling 

were characterized using X-ray diffraction (XRD, Bruker’s D8 advance system, Germany) with Cu 

Kα (λ=0.15405 nm) radiation source. To investigate the mechanical properties, tensile test 

(three times) and micro-hardness tests (on ten points) were carried out by DY-26 model 

tensile/pressure system with a compressing capacity of 10 tones according ASTM E384 

standard (The standard of micro-hardness test). Dimensions of the tensile test sample were 

also reported in our previous studies [45].  

3- Results and Discussion 

As mentioned, in order to fabricate an in-situ AMNC reinforced by alumina nanoparticles, 

Pyrex, TiO2, and ZnO powders were ball-milled with the aluminium powders and then injected 

into the aluminium melt at 850 °C for the occurrence of exothermic reactions during 6 min 

stirring. Fig. 2 shows the results of the XRD analysis of the samples. As can be seen in Fig. 2a, 

Pyrex has completely reacted with aluminium and there is no evidence of remained unreacted 

oxides. It can be seen that incorporation of 6 wt. % of Pyrex powders resulted in the formation 

of alumina phase via reactions (2-7). According to the Eq. (10), a complete reaction between 



9 
 

aluminium and TiO2 was supposed to take place with the formation of alumina. Nevertheless, 

uncompleted reaction occurred and remains of unreacted TiO2 can be observed in Fig. 2b, while 

ZnO had further involved in exothermic reactions and a higher rate of alumina was created (Fig. 

2c). Previous literature [47] has indicated that this temperature is high enough for completion 

of the exothermic reactions for these three metal oxide powders in the molten aluminium 

Hence, it can be concluded that in spite of high temperature and six-minute mixing, 

considerable amount of agglomeration can result in occurrence of uncompleted reactions. Figs. 

(3-6) show the SEM/EDAX analysis results of as-cast composites before the rolling process. Fig. 

3 is related to FESEM microstructure of sample S1 after casting and solidification, in which 4 wt. 

% Pyrex crushed powders were entered with the aid of ball milling with aluminium powders. In 

the low-magnification image of Fig. 3 (left-hand side), the grain-boundaries are evident. This 

occurrence indicated that Eq. 2 took place at 850 °C because of the reaction between molten 

aluminium with Pyrex powders to form fresh residual silicon during stirring, and due to the very 

low solubility of silicon in molten aluminium [48], eutectic silicon phase forms at the grain 

boundaries after solidification. This low-magnification image (Fig. 3) also shows the presence of 

some particles mostly below 5 µm. In order to find out the results of reaction between Pyrex 

powders with molten aluminium, high-magnification FESEM image was shown on the right-

hand side of Fig. 3. It can be seen that AMNC reinforced by a semi-ideal distribution of nano 

alumina particles with the particle size even lower than 30 nm was fabricated as the product of 

Eqs. (2-7). However, it can be seen that agglomeration also occurred by adhesion of 

nanoparticles to each other during stirring or by being pushed during solidification. It is very 

difficult to distribute as-received nano ceramic particles by an ex-situ casting method in a 



10 
 

similar manner to what shown in Fig. 3 for the in-situ method applied in this work. This 

highlights the beneficial effects of the in-situ methodology. Instead of expensive nano alumina 

particles, low-cost recycled Pyrex originated powders were capable of providing this.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

  

 

Fig. 2. XRD pattern of the samples (a) S1 and S2, (b) S3 and (c) S4 after casting process. 

 

Fig. 3. The FESEM morphology of sample S1(Al-4wt% Pyrex) after casting and solidification. 

Fig. 4 shows the microstructure of sample S2, in which 6 wt.% Pyrex powders were injected into 

the melt by the aid of milling with aluminium powders. From the low-magnification image, no 
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considerable difference can be seen between the samples S1 and S2. However, from the high-

magnification image, it seems that the number of reinforcing phases is considerably higher than 

that of sample S1. A great number of nanoparticles can be observed in the microstructure as a 

higher value of oxide powders was injected to form a higher value of nano alumina particles. 

Although, the number of nanoparticles for sample S2 was higher than that of sample S1, 

however, it can be seen that no extra agglomeration occurred with respect to the sample S1. 

EDAX analysis on the area marked by red colored X indicated the presence of a very low 

amount of silicon and a considerable amount of aluminium and oxygen, indicating the 

transferring of oxygen from SiO2 to Al and formation of alumina.  
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Fig. 4. The FESEM morphology of sample S2 (Al-6 wt.% Pyrex) after casting and solidification. 

Fig. 5 shows the as-cast microstructure of sample S3, in which fine TiO2 powders that had been 

milled by aluminium powders were injected into the melt of pure aluminium. It can be seen 

that very large-sized agglomerated TiO2 milled powders were remained after stirring. These 

powders were unbraided after stirring. Lower enthalpy of reaction 10, compared with that of 

reaction 8, and severe agglomeration of TiO2 powders (see Fig. 1c) were the two possible 

causes of TiO2 powders for being unbraided. In addition, many other unbraided TiO2 particles 

between 5-20 µm can be seen in the as-cast microstructure of sample S3. The trace of Ti and O 
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elements can be seen in EDAX analysis of Fig. 5, indicating that the red-colored marked area 

shows the presence of TiO2 powders. It is important to note that high-magnification FESEM 

microstructure of Fig. 5 showed the distribution of nano alumina particles even in the range of 

30 nm, indicating that reaction (10) took place when fine single TiO2 powders were exposed to 

the melt for the preparation of nano alumina particles.  

 

Fig. 5. The FESEM morphology of sample S3 (Al-6wt% TiO2) after casting and solidification. 
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The last as-cast microstructure is shown in Fig. 6 that is related to the sample S4. For this 

sample, ZnO powders were used as a metal oxide for exothermic reaction with molten 

aluminium. Similar to the previous samples, many submicron particles as well as large-sized 

unbraided ZnO enriched clusters (shown by red-colored rectangles) were revealed on the low-

magnification structure. On the other hand, the high-magnification image also showed the 

reaction occurrence that led to the fabrication of alumina nanoparticles that were distributed 

uniformly in some zones, while extreme agglomeration also occurred. EDAX analysis shows the 

trace of oxygen and aluminium enriched zones on the red-colored marked area. Therefore, it 

can be concluded that these agglomerated nano alumina particles adhered to each other during 

stirring at 850 °C after reaction occurrence and/or after solidification by pushing ahead of 

solidification front.  
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Fig. 6. The FESEM morphology of sample S4 (Al-6wt% ZnO) after casting and solidification. 

As-cast in-situ composites cannot be used in industry due to the presence of various kinds of 

porosities and solidification shrinkages as well as the occurrence of fine particle agglomeration. 

In order to increase their mechanical properties to become applicable, secondary 

thermomechanical processes can be used to overcome the mentioned drawbacks. The hot-

rolling process was applied on the fabricated as-cast composites and Fig. 7 shows the SEM 

microstructures of the rolled samples. Figs. 7a and 7b are related to the samples S1 and S2, 
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respectively. It can be seen that many submicron-sized alumina particles were distributed in the 

matrix, indicating that reaction (8) did not completely lead to the formation of nanoparticles. 

Fig. 1b indicated that the average particle size of Pyrex crushed powders after 30-min ball 

milling was about 800 nm, and therefore, the formation of submicron-sized alumina particles 

after reaction occurrence is also expected. Therefore, multi-modal sized alumina particles were 

prepared and distributed in the matrix of aluminium alloy. No porosity was also revealed for 

these two samples and just the number of alumina particles for the sample S2 was considerably 

higher than that of sample S1.  

Figs. 7c and 7d showed unexpected results after the rolling process. Some cracks were 

revealed, in particular for the sample S3, indicating that severe agglomeration of metal oxide 

particles and possible formation of brittle intermetallic compounds in Al-Ti and Al-Zn alloys 

might lead to local fracture and crack formation during the rolling process.  
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Fig. 7. The SEM morphology of rolled samples, (a) S1, (b) S2, (c) S3, and (d) S4. 

Table 3 summarizes the mechanical properties of the rolled samples after tensile test for three 

times and microhardness measurements. In order to find the effect of in-situ composite 

fabrication, pure aluminium ingot after stir casting at 850 °C was exposed to the hot-rolling. 
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Afterward, the main samples were tested. Some important points can be drawn from this 

Table. Firstly, the most ductile reinforced sample was S1, in which 4 wt. % Pyrex powders were 

injected. For this sample, a 52 % improvement in the UTS and YS occurred with respect to the 

pure aluminium, which was expected as a suitable nanoparticle distribution was obtained (see 

Fig. 3). Secondly, sample S2 with an injection of 6 wt.% Pyrex powders showed the highest UTS 

and YS values, 59 and 66 % higher than that of pure aluminium, respectively, while its ductility 

is lower than that of sample S1. Thirdly, sample S3 has the minimum UTS, YS, and ductility with 

respect to all the composite samples. The formation of many cracks and the severe 

agglomeration and unbraided clusters were effective on the reducing the mechanical 

properties. Severe agglomeration of TiO2 powders is the main reason that even ball milling 

seems not to be completely effective for deagglomeration occurrence. Fourthly, the tensile 

properties of sample S4 was lower than that of sample S1, indicating that morphology of metal 

oxide powders (to be agglomerated or single) is more important than the amount of injected 

metal oxide and the reaction enthalpy between metal oxide and aluminium as reaction (9) has 

a higher enthalpy than reaction (8). Fifthly, composite fabrication, as expected, increased the 

hardness and the highest value of hardness was obtained for the sample S2, in which more than 

65 % increase was obtained.  
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Table 3: The mechanical properties of the samples after the rolling process. 

Sample UTS (MPa) Ductility (%) YS (MPa) Hardness 
(HV) 

Standard deviation 
for Hardness 

measurements (HV) 

Pure rolled 
aluminium 

   49 3 

S1 (Al-4 wt. % SiO2)    72 6 

S2 (Al-6 wt. % SiO2)    81 9 

S3 (Al-6 wt. % TiO2)    67 7 

S4 (Al- 6 wt. % ZnO)    74 8 

      

In order to have a better understanding of the mechanical properties and, in particular, 

ductility, SEM fracture surface is helpful. Figs. 8a and b show the ductile nature of samples S2 

and especially, sample S1, in which cup and cone morphologies were obtained. However, the 

trace of particle agglomeration was shown in Fig. 8b for the sample S2, which was expectable. In 

contrast, Figs. 8c and d showed the brittle nature of samples S3 and S4 due to the negative 

effect of large clusters for these samples.  
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Fig. 8. The SEM fracture surface of rolled samples, (a) S1, (b) S2, (c) S3, and (d) S4. 

4- Conclusions 

In this study, in-situ aluminium matrix nanocomposites were fabricated via the in-situ stir 

casting method followed by hot rolling. For improving the agglomerating condition of metal 

oxide powders, ball milling process was used to mill three types of metal oxide powders with 

aluminium particles. From the experimental results the following conclusions can be drawn: 

1: The morphology and condition of metal oxide powders for reaction with aluminium melt is 

the most important issue for obtaining a suitable distribution of alumina nanoparticles.  

2: By using submicron metal oxide powders, nano alumina particles can be obtained as a result 

of exothermic reactions. Incorporation of Pyrex, ZnO, and TiO2 powders led to formation of a 

higher amount of alumina phase, respectively, since the rate of agglomeration has a serious 

impact on occurrence of complete reactions, in spite of high temperature and mixing for 6 min.  
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3: By using ball milling process, waste Pyrex glass can be converted to amorphous powders with 

a varying size ranges from nano to fine micron ranges. It was observed that these powders with 

low agglomeration could be uniformly distributed in the matrix.  

4: Unbraided clusters of ZnO and especially TiO2were revealed in as-cast microstructures. ZnO 

and, in particular, TiO2 powders were present in an agglomerated form. These clusters were the 

main reason for the formation of cracks in the microstructure after hot-rolling.  

5: Mechanical properties of the composites indicated that higher injection of Pyrex powders 

from 4 to 6 wt. % will lead to an increase in the hardness, UTS, and YS, while ductility reduction 

was observed. It was finally shown that as-received ZnO and TiO2 powder injection did not 

provide as effective an improvement in mechanical properties with respect to the usage of 

lower cost Pyrex derived powders. 
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