
Elastic-substitution decoding for Hierarchical
SMT: efficiency, richer search and double labels

Gideon Maillette de Buy Wenniger1 gemdbw AT gmail.com
Khalil Sima’an2 k.simaan AT uva.nl
Andy Way1 andy.way AT adaptcentre.ie

1ADAPT Centre, School of Computing, Dublin City University, Dublin, Ireland
2Institute for Logic Language and Computation (ILLC), Faculty of Science,
University of Amsterdam, Amsterdam, The Netherlands

Abstract
Elastic-substitution decoding (ESD), first introduced by Chiang (2010), can be important
for obtaining good results when applying labels to enrich hierarchical statistical machine
translation (SMT). However, an efficient implementation is essential for scalable application.
We describe how to achieve this, contributing essential details that were missing in the original
exposition. We compare ESD to strict matching and show its superiority for both reordering
and syntactic labels. To overcome the sub-optimal performance due to the late evaluation
of features marking label substitution types, we increase the diversity of the rules explored
during cube pruning initialization with respect to labels their labels. This approach gives
significant improvements over basic ESD and performs favorably compared to extending the
search by increasing the cube pruning pop-limit. Finally, we look at combining multiple
labels. The combination of reordering labels and target-side boundary-tags yields a significant
improvement in terms of the word-order sensitive metrics Kendall reordering score and
METEOR. This confirms our intuition that the combination of reordering labels and syntactic
labels can yield improvements over either label by itself, despite increased sparsity.

1 Introduction

Elastic-substitution decoding (ESD) – also known as soft label matching or soft-constraint
decoding – is an effective method to gain maximal benefit from the use of labels to enrich
hierarchical phrase-based statistical machine translation (SMT), and was first introduced by
Chiang (2010). This method removes many of the disadvantages of working with labeled
grammars when labels are strictly enforced. We discuss the requirements and details of an
efficient implementation in the first part of this paper, to benefit other researchers that want to
apply ESD. In the second part of the paper we further strengthen the empirical evidence for the
success of ESD. This is done by comparing strict and soft-labeled (ESD) systems for Chinese–
English translation, using four different types of labels. Next, we describe how the results
of ESD can be further improved for small label sets by diversifying the search, exploring all
alternatively labeled versions of each rule source-side type during cube pruning initialization
instead of only the single best one. This is compared against the more crude approach of just
increasing the search space by increasing the cube pruning pop-limit. Finally, we explore the
effect of combining multiple labels, either the two types of reordering labels or a reordering

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 201



label with a syntactic label. All source code for both ESD and labeled grammar extraction is
made publicly available with this publication.1

2 Background and Related Work

Hierarchical phrase-based SMT (or hierarchical SMT for short) (Chiang, 2005) is the
hierarchical generalization of phrase-based SMT (Koehn et al., 2003). It generalizes phrase-
pairs into synchronous context-free grammar (SCFG) rules by adding variables to them. This
yields a weighted SCFG (Aho and Ullman, 1969). The particular form of SCFGs used in this
paper is called HIERO (Chiang, 2005), and allows only up to two nonterminals (variables) in
the right-hand-side of rules. This gives the following four HIERO rule types:

X → 〈α, δ〉 (1)

X → 〈α X1 γ, δ X1 η〉 (2)
X → 〈α X1 β X2 γ , δ X1 ζ X2 η 〉 (3)
X → 〈α X1 β X2 γ , δ X2 ζ X1 η 〉 (4)

Here α, β, γ, δ, ζ, η are terminal sequences that can be empty, except for β, since HIERO
prohibits rules with nonterminals that are adjacent on the source side. HIERO additionally
requires all rules to have at least one pair of aligned words. These extra constraints are intended
to reduce the amount of spurious ambiguity. Equation (1) corresponds to a normal phrase pair,
(2) to a rule with one gap and (3) and (4) to the monotone and inverting rules, respectively.

In addition, HIERO has a special glue rule: (g1) GOAL → 〈GOAL1 X2 , GOAL1 X2〉
as well as two special start/end rules: (g2) GOAL → 〈GOAL1 </s> , GOAL1 </s >〉
and (g3) GOAL → 〈< s >,< s >〉, with < s > and < /s > being the dedicated start/end
symbols.

HIERO makes very strong independence assumptions, since it uses only one label “X”
apart from the glue symbol GOAL, allowing any HIERO rule to substitute to any other rule.
A lot of work has been done on relaxing these assumptions by labeling HIERO with labels
derived from syntax (Zollmann and Venugopal, 2006; Almaghout et al., 2011), dependency
information (Li et al., 2012), word classes such as POS-tags (Zollmann and Vogel, 2011),
reordering information (Maillette de Buy Wenniger and Sima’an, 2014) and other types of
information.

However, labeling with strict matching of labels splits the rules of HIERO into many
alternatively labeled variants, increasing spurious ambiguity. Venugopal et al. (2009) introduced
preference grammars as a way to avoid this increase and to relax the assumptions of decoding
with strict matching. Every rule is equipped with label distributions instead of single labels, for
both the left- and right-hand-side rule nonterminals. Using a dynamic programming approach,
these label distributions are then multiplied during decoding, to approximate the probability
over the full set of alternatively labeled derivations. Unlike preference grammars, ESD does
not approximate selection of the most likely unlabeled derivation. However, in contrast it can
learn to treat different substitutions such as NP→NPP differently from others such as NP→VP
which the formalism of preference grammars cannot, as it lacks a learning component. This is
a clear advantage for heuristically created labels such as syntax-augmented machine translation
(SAMT) and others used in this paper.

1Source code URLs: ESD: https://github.com/gwenniger/joshua/commits/gideon/cubePruningFixForFuzzyMatching
Grammar extraction: https://bitbucket.org/gwenniger/labeled-translation https://bitbucket.org/teamwildtreechase/hatparsing

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 202



The work by Chiang (2010) on ESD, the foundation of the work in this paper, is discussed
next.

3 Elastic-substitution decoding

ESD was introduced by Chiang (2010), who describes it as follows: “ . . . we allow any rule to
substitute into any site, but let the model learn which substitutions are better than others.”

With respect to decoding it is remarked that: “The decoding algorithm then operates as in
hierarchical phrase-based translation. The decoder has to store in each hypothesis the source and target
root labels of the partial derivation, but these labels are used for calculating feature vectors only and not
for checking well-formedness of derivations.”

In summary ESD entails:

(A) Adapting the decoder to support soft-matching of labels, which means finding all matching
rules while ignoring the labels.

(B) Adding label-substitution features that mark different types of substitutions: (i) matching
and mismatching substitutions, and (ii) substitutions of particular types of labels to
particular gaps to enable learning what type of substitutions are preferable.

To enable computing the label-substitution features (B), the labels must be left present in the
hypergraph (the packed hypotheses) computed by the decoder.

3.1 ESD: a naive implementation
With strict matching, the inner loop of the decoder finds all matching rules rmatch for an input
word span s<i,j> = wi . . . wj . For the rule right-hand-side rhs = RHS(rmatch), given the
ordered words wk ∈ rhs and nonterminals ntl ∈ rhs, wk must match the corresponding
word in s<i,j> and ntl must match the label of a corresponding chart span that was previously
covered by the decoder (so-called "rule gap"); both must be matched in accordance with the
input order. Adding ESD to this process, a naive implementation explicitly matches all best
alternatively labeled rule variants for an (unlabeled) source-rule type, to all alternatively labeled
gaps. This naive implementation is, however, computationally expensive. For rules with up to
two gaps the number of source rule variants can increase quadratically with the size of the label
set N , and analogously the same holds for the two substituted-to gaps of these rules. Hence this
naive approach gives an increase in computational complexity of O(N4).

3.2 How is ESD implemented efficiently?
During normal (strict) decoding, matching rules are found through lookup in a dedicated rule
indexing data-structure called a trie (De La Briandais, 1959). An efficient ESD implementation
requires adaptation of this trie, rather than explicitly generating all types of label matches.
Figure 1 shows rule tries used by the decoder to find matching rules during decoding, for three
cases: (a) HIERO, (b) labeled system with strict matching, and (c) labeled system with ESD.
Note that for (a) there are no labels except the default label “X” and the glue rule label “GOAL”.
In (b), labels are present both in the internal nodes and also in the leaf nodes containing the
complete rules. Note that the rules “S→ 〈NP1 marche lentement, NP1 walks slowly〉” and “S
→ 〈N1 marche lentement, N1 walks calmly〉” which are identical on the source-side except for
their right-hand side nonterminal label (NP versusN ), have distinct paths in the trie. For ESD,
labels are not used as constraints and therefore need to be removed. This allows the decoder
to quickly find all matching rules for a sequence of nonterminals and lexical items, without
unnecessarily splitting the trie into many paths for different labelings. However, when during
cube-pruning complete rules are added to the chart, the labels should still be obtainable from

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 203



ROOT

· · ·

le · · ·

[GOAL,1] · · ·

[X,2] · · ·

[X,1]

· · ·

marche

vite · · ·

lentement

X → 〈 [X,1] marche lentement
, [X,1] walks calmly 〉

X → 〈 [X,1] marche
lentement , [X,1] strolls 〉

X → 〈 [X,1] marche lentement
, [X,1] walks slowly 〉

[X,2]

joue · · ·

(a) Rule trie for HIERO.

ROOT

· · ·

le · · ·

[GOAL,1] · · ·

[VP,2] · · ·

[N,1]
· · ·

marche
· · ·

lentement
S → 〈 [N,1] marche lentement

, [N,1] walks calmly〉

[NP,1]

· · ·

marche

vite · · ·

lentement
S → 〈 [NP,1] marche

lentement , [NP,1] strolls 〉

S → 〈 [NP,1] marche lentement
, [NP,1] walks slowly 〉

[ADJ,2]

joue · · ·

(b) Rule trie for a labeled system with strict label matching.

ROOT

· · ·

le · · ·

[GOAL,1] · · ·

[X,2] · · ·

[X,1]

· · ·

marche

vite · · ·

lentement

S → 〈 [N,1] marche lentement
, [N,1] walks calmly 〉

S → 〈 [NP,1] marche
lentement , [NP,1] strolls 〉

S → 〈 [NP,1] marche lentement
, [NP,1] walks slowly 〉

[X,2]

joue · · ·

(c) Rule trie for a labeled system with soft label matching (ESD).

Figure 1: Rule tries for three different system types.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 204



them because they are required for computing label-substitution features. This is achieved by
keeping the labels outside the trie nodes but retaining them inside the rules that are stored in
lists at each leaf node in the trie. This is exactly what is done in the trie for ESD (Figure 1 (c)).
As an illustration, note how in (c) the rules “S→ 〈NP1 marche lentement, NP1 walks slowly〉”
and “S→ 〈N1 marche lentement, N1 walks slowly〉” share the same unlabeled path in the trie
as in (a), but their labels are still retained in the complete rules stored at the leaf node.

During decoding, ESD extends hypotheses with all rules matching the source input, while
ignoring labels. This is done by substituting the actual labels from the hypergraph with surrogate
“X” labels and using those labels to retrieve matching rules from the rule trie. There is, however,
an important exception to this that requires special treatment, namely the nonterminal label
occurring in glue rules. Glue rules of the form

GOAL→ 〈GOAL1 X2 , GOAL1 X2〉

contain two types of labels. The “X” symbol in the rule is the symbol that will be substituted
to HIERO (non-glue) rules. The GOAL label, occurring on the left-hand side of the rule and
as the first nonterminal on the right-hand side, is also known as the start symbol. It serves to
start the gluing extension and allows for the glue rule to be used repeatedly. This GOAL label
needs to be strictly matched, to prevent the left-hand side of glue rules from softly matching
other nonterminals and hence substituting for HIERO rules. The strict matching of the GOAL
label is achieved in the grammar by retaining it as a label in the trie used by ESD (see the
“GOAL” labeled internal node in Figure 1 (c), the third child of ROOT), and requiring the
GOAL symbols observed in the hypergraph to be strictly matched against the symbols in the
trie. Furthermore, labels inside HIERO rules should not be allowed to match the GOAL label
but only the surrogate label X that represents the rest of the labels, when retrieving matching
rules from the trie. This implementation ensures correct and efficient rule matching given either
GOAL labels (strict-matching) or other labels (ESD).

One other important detail enabling efficient ESD decoding is that the used labeled ESD
grammars are identical in size to HIERO. Let the HIERO-rule-signature of a labeled rule be
that rule with the labels removed. Given a rule labeling scheme, grammars used with ESD are
formed by labeling every HIERO rule with a single canonical labeling: the most frequent labeled
version across extracted rules that share the HIERO-rule-signature of that rule. These grammars
also use the same feature set as HIERO, only adding label-substitution features. In contrast,
because strict matching systems combine all differently labeled extracted rule versions, they
use grammars that are much bigger than HIERO grammars.

4 Experiments

We evaluate our models on Chinese–English, since it facilitates the best comparison with
experiments in earlier work. All data is lowercased as a last pre-processing step. The training
data for our experiments is formed by combining the full sentence-aligned MultiUN (Eisele
and Chen, 2010; Tiedemann, 2012)2 parallel corpus with the full sentence-aligned Hong Kong
Parallel Text parallel corpus from the Linguistic Data Consortium.3 We used a maximum
sentence length of 40 for filtering the training data. The combined dataset has 7,340,000
sentence pairs. For the development and test sets we use the Multiple-Translation Chinese
datasets from LDC, parts 1–4,4 which contain sentences from the News domain. We combined
parts 2 and 3 to form the development set (1,813 sentence pairs) and parts 1 and 4 to form the

2Freely available from http://opus.lingfil.uu.se/
3The LDC catalog number of this dataset is LDC2004T08.
4LDC catalog numbers: LDC2002T01, DC2003T17, LDC2004T07 and LDC2004T07.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 205



test set (1,912 sentence pairs). For both development and testing we use 4 references. For these
experiments both the baseline and our method use a 4-gram language model with Kneser-Ney
smoothing (Kneser and Ney, 1995) trained on 5,427,696 sentences of domain-specific5 news
data taken from the “Xinhua” subcorpus of LDC’s English Gigaword corpus.6

4.1 Training and decoding details

Our experiments use Joshua (Ganitkevitch et al., 2012) with Viterbi best derivation. Baseline ex-
periments use normal decoding, whereas ESD experiments relax the label-matching constraints
while adding label-substitution features to facilitate learning of label-substitution preferences.

For training we use standard HIERO grammar extraction constraints (Chiang, 2007) (phrase
pairs with source spans up to 10 words; abstract rules are forbidden). During decoding a
maximum span of 10 words on the source side is maintained. In our experiments, for HIERO we
use a standard feature set that is comparable to that of Chiang (2005). We follow Chiang (2010)
in using, except for the label-substitution features, exactly the same features for ESD as for
HIERO. This includes the usage of phrase-weights taken from the HIERO (label-stripped) rules
as opposed to the labeled rules. For the labeled systems with strict matching (-Str), we follow
Zollmann (2011) in using phrase weights for the labeled versions of the rules, but also adding
smoothed versions of these features, including the HIERO (unlabeled) phrase weights. We
train our systems using (batch k-best) MIRA (Cherry and Foster, 2012) as borrowed by Joshua
from the Moses codebase, allowing up to 30 tuning iterations. Following standard practice,
we tune on BLEU (Papineni et al., 2002), and after tuning we use the configuration with the
highest scores on the development set with actual (corpus-level) BLEU evaluation. We report
lowercase BLEU, METEOR (Denkowski and Lavie, 2011), BEER (Stanojević and Sima’an,
2014) and TER (Snover et al., 2006) scores for the test set. We also report average translation
length as a percentage of the reference length for all systems.

To counter unreliable conclusions due to optimizer variance, we repeated all experiments
three times (tuning plus testing), and compute the scores as averages over these runs; using
Multeval Clark et al. (2011) version 0.5.1.7 We also use MultEval’s implementation of
statistical significance testing between systems, which is based on multiple optimizer runs and
approximate randomization. Differences that are statistically significant with respect to a HIERO
baseline and correspond to improvement/worsening are marked with 4H/OH at the p ≤ .05
level and NH/HH at the p ≤ .01 level. For average translation length, where either higher or
lower may be better, we use �H/�H to mark significant change with respect to the baseline at
the p ≤ .05 / p ≤ .01 level.

We also report the Kendall reordering score (KRS), which is the reordering-only variant of
the LR-score (Birch et al., 2010) (without the optional interpolation with BLEU) and which is
a sentence-level score. For the computation of statistical significance of this metric we use our
own implementation of the sign test (Dixon and Mood, 1946), described also by Koehn (2010).

Finally we report the average CPU time per translated sentence in the test set. These times
are obtained using special Java system methods, and aggregated over all decoder threads and
the main thread. These time statistics are robust to variations in the number of decoder threads
and the amount of other jobs running on the server, factors that can easily confound statistics
based on regular wall-clock time.

5The different domain of the training data (mainly parliament) and development/test data (news) requires usage of
a domain-specific language model to obtain optimal results.

6The LDC catalog number of this dataset is LDC2003T05.
7https://github.com/jhclark/multeval

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 206



System Name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length CPU time
HIERO 31.63 30.56 13.15 59.28 58.03 97.15 3.34
HIERO-0th-Str 31.90 NH 30.79 NH 13.45 60.11 HH 59.68 NH 98.65 �H 2.87
HIERO -0th 32.03NH 30.70NHHS 13.42NH 59.58HHNS 58.87NHHS 97.87�H�S 8.99
HIERO-1st-Str 31.77 30.62 13.20 60.13 HH 59.89 NH 98.47 �H 4.63
HIERO -1st 32.35NHNS 30.98NHNS 13.75NHNS 60.26HH 60.01NH 99.11�HNS 8.45
SAMT-Str 31.87 4H 30.61 13.38 59.97 HH 59.94 NH 98.46 �H 25.59
SAMT 32.40NHNS 31.20NHNS 14.01NHNS 60.19HHOS 60.38NH4S 99.37�H�H 8.09
BoundaryTag-Str 32.26NH 30.94NH 13.91NH 60.20HH 58.78NH 98.98NH 29.29
BoundaryTag 32.77NHNS 31.27NHNS 14.17NHNS 60.15HH 60.83NHNS 99.72�H�S 8.60

Table 1: Results for labeled systems with strict or soft label matching. Statistical significance is given
against the HIERO baseline (H) and pair-wise for every soft-matching system against its strict-matching
variant (-Str). Statistical significance for the latter comparison is marked with (S). For every experiment
we use boldface to accentuate the highest score across systems for all metrics, with for TER, an error
metric, the lowest score instead. For length we boldface the value that is closest to 100, in absolute terms.

4.2 Is soft label matching always superior to strict matching?

In Table 1 we compare four labeled systems for decoding with strict matching and decoding
with soft label matching. This extends the earlier comparison by Maillette de Buy Wenniger and
Sima’an (2014, 2016), attempting to give a more general answer to the question as to whether
soft label matching is always superior to strict matching. The first two systems are reordering
labeled systems (Maillette de Buy Wenniger and Sima’an, 2013, 2014, 2016), and the last two
systems are syntactically labeled systems, namely SAMT (Zollmann and Venugopal, 2006) and
a target-side boundary-tag labeled system (Zollmann, 2011; Zollmann and Vogel, 2011).

Label Types: Our reordering labels are heuristic labels, created using hierarchical
reordering information induced from word alignments. These labels come in two forms:1)
0th-order reordering labels (HIERO-0th) describe for each nonterminal the reordering that
happens at its child nonterminals, 2) 1st-order reordering labels (HIERO-1st) describe the
reordering of the nonterminal itself relative to an embedding parent nonterminal. SAMT is a
heuristic syntactic labeling scheme, similar in spirit to combinatory categorial grammar (CCG)
(Steedman, 1987, 2000). SAMT uses constituency-parse information and finds the simplest
syntactic label describing a (target) span. Similar to SAMT, target-side boundary-tags are
heuristic syntactic labels formed by combining the POS-tags of (target) words at the boundaries
of phrase pairs. Since limited space allows only a short description of the used labels and
systems, we refer the reader to the original papers for more details.

For three of the four label types tested, the soft-labeled system gives significantly better
scores for BLEU, METEOR and BEER. Only the HIERO-0th label type does not show
significantly better results for those metrics. However, later in this section we discuss how these
results too are improved by extending the search. Although it is not statistically significant,
HIERO-0th still shows improved BLEU for the soft-labeled version over the strict matching
system. For SAMT and the target-side boundary-tag labeled system, apart from the other
improvements, there are also significant improvements of KRS. The results show that soft
matching is typically, although not always significantly, better than strict matching.

4.3 Challenges of soft label matching

In the previous section we saw that decoding with soft label matching typically outperforms
both unlabeled systems and systems that use labels with strict matching. Nevertheless, efficient
soft label matching faces two challenges: (i) increased search space, and (ii) label matching
blindness.

The addition of labels increases the search space dramatically, even with soft matching.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 207



During decoding, a rule is applied to extend an existing hypothesis. Since in practice decoding
proceeds bottom up, this means any right-hand-side nonterminal label(s) of the rule are matched
with the labels of the corresponding substituted to nonterminal gaps in the chart. WithN labels,
there are there are potentiallyN alternative versions per language model state in the chart entries
of each gap. For a rule with 2 gaps, this means a particular rule substitution only covers one of
up to N2 possible options arising from the splitting of the language model states by labeling.
Because soft matching keeps only one labeled version per HIERO-rule-signature, on the rule
side the number of options does not increase compared to HIERO.8

The second challenge, which we call label matching blindness, is that the type of applied
label substitutions (and whether or not these are matching) is only evaluated late in the search
process. During initialization, cube pruning explores the combination of the best rule with the
best leaf nodes for the matched-to rule gaps in the chart. However, the quality of the rule and
the leaf nodes is only computed based on local (stateless) features, such as lexical probabilities
and phrase weights. Features such as the language model cost cannot be computed because
they cross rule boundaries. They may still be approximated given the available information, but
this is generally inaccurate. In the case of label-substitution features, no meaningful stateless
computation is possible. These features are therefore simply ignored until the rule-nonterminal
to labeled-gap substitutions have already been decided during cube-pruning initialization.

4.4 Enriching the search
The challenges resulting from soft label matching mentioned in the last section motivate
enrichment of the search during soft label matching decoding. A crude approach is to just extend
the search space by increasing the value of the decoder parameter pop-limit, which controls
the number of hypotheses that are added to the stack by cube pruning during decoding. This
may improve the quality of the produced translations at the price of a higher computational
cost. However, this approach is computationally expensive and inefficient, since it does not
directly target an exploration of rule-to-gap substitutions with diverse labels. The initial label
substitution diversity is determined by the diversity of label pairs within the set of rule-
RHS-nonterminal to chart-gap substitutions explored during cube-pruning initialization. For
small label sets it is feasible to enrich the set of those initially explored substitutions, thereby
drastically increasing this diversity. Three ways to implement this are:

a) Exploring all alternatively labeled versions of a HIERO source rule type.9

b) Exploring all alternatively labeled gap substitutions, given the single best labeled version
of a HIERO source rule type.

c) Combining (a) and (b), i.e. exploring all labeled rule versions and for each of those all
alternatively labeled gap substitutions.

Why should this help? Assume that we explore all alternatively labeled rule versions for
a HIERO rule type (a), while keeping the gap labels fixed to those of the best language model
state. Then, a matching substitution will be explored if yielded by substituting the nonterminal
labels for any of these alternatively labeled rule versions to those fixed gap labels. Similarly for

8However, with larger label sets, the canonical labeled rule form represents a larger number of rules, and will
consequently be a more approximate representation of those.

9Note that whereas there is only one canonical labeled version per HIERO-rule-signature, there are potentially many
labeled versions of the source rule type, in which the target side is ignored. Furthermore, the LHS label of the rule is
ignored when collecting the best alternatively labeled versions given a HIERO rule source side, since it has no effect on
label matching in bottom-up decoding.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 208



Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 209



(a) Evaluation order and final order without
shuffling.

(b) Evaluation order and final order with
shuffling.

Figure 2: Example of the effect of shuffling on the decoding, translating the source phrase “Elle
marche lentement”.

(b), given a single fixed labeled rule version, a matching substitution is explored if achievable
in combination with the available gap labelings.

With respect to computational complexity, (a) and (b) potentially increase the number of
explored combinations by a factor of N2 with N being the size of the label set, whereas (c)
even increases it by N4. These increases are with respect to the number of applicable HIERO
rule types, since the increased exploration only concerns the cube pruning initialization and
not the whole cube pruning process. Consequently, if N is small, the empirical increase in
computational cost is limited. With larger N however, the increase in computational cost of the
initialization (quadratic for (a) and (b) and N4 for (c)), starts to dominate the total cost, so that
none of these approaches scale to large10 label sets, with (c) scaling up worst.

Ie what follows, we only explore (a), which is very similar to (b). We will refer to this
setting as diverse rule labeling exploration (DRLE) in the rest of the paper. We do not explore
(c) here, because of its very restricted scalability.

4.5 Shuffling
In cube-pruning initialization, applicable rules are substituted to particular gaps, and every
complete rule substitution leads to a total score that includes the label-substitution features and
language-model cost amongst other things. These complete rule substitutions are then added as
initial options to the cube-pruning queue.

In our initial implementation of DRLE (see Section 4.4), we consecutively evaluated all
alternative labeled versions for a specific HIERO source-rule type before moving on to the next
type. Independent of this evaluation order, rules are placed on the cube-pruning queue in the
order of their evaluation scores. Nevertheless, we discovered that it helps if we shuffle the order
of the rules before we evaluate them. This might seem odd, since this shuffling (-Sh) can only
affect the order of rules yielding the same score. However, that is exactly how we think shuffling
helps; without shuffling, all labeled versions of the same rule source-side with the same score
are lumped together in the cube pruning queue. Shuffling mixes them with other rules that tie
for the same score. This increases diversity when neither the labels nor the translation for a
rule source-side are discriminative, as is common for certain rules at the start of tuning when

10The approaches were still feasible for at least N = 25 labels, the highest number we have tested. We acknowledge
however, that once N increases significantly, problems will be encountered due to computational complexity.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 210



label-substitution feature weights are initialized to zero.
To better understand shuffling and how it effects the order of hypotheses in the cube-

pruning queue, it is helpful to look at an example. In Figure 2 we show the effect of shuffling
on the translation of the French source phase “Elle marche lentmentent”. Here, we assume that
the first source word (“Elle”) and last source word (“lentement”) have already been translated
before. Hence, a full translation can be formed by combining these previous translations with
HIERO rules that additionally translate the first two words (”Elle marche”) or last two words
(“marche lentement”) respectively, substituting the earlier translated last/first word as a gap. In
Figure 2a we show the evaluation order and final order of hypotheses without shuffling. As
mentioned before, without shuffling all rules that share the same source-side (ignoring labels) –
in this case rules A,B and C – are evaluated consecutively. Then in the next step the scored rules
are sorted by their score, which in this example does not further change the order. In Figure
2b in contrast, the rules are shuffled, randomly permuting their order before evaluation. In this
case the random order of rule evaluation is D,A,C,B. Then after scoring, rule A again comes
to the top, because it has the highest score. The relative order of D,C and B however remains
changed because rules B, C and D tie for the same score, so their relative order before scoring
determines their relative final order. Notice in particular how rule D (in boldface), which has a
different source side from rules A, B and C, now comes directly after rule A in the final order.

Note that shuffling only randomizes the relative order in which rules tying for the same
score are added to the cube-pruning queue, eliminating implementation-specific bias for the
order of such rules. This avoids different labeled versions of the same rule with the same score
all clinging together in the queue as an undesirable side-effect of the specifics of the DRLE
implementation. Because shuffling randomizes the order of rules with the same score in the
final queue, it also removes the opportunity for the tuner to lazily exploit partially deterministic
order in development set hypotheses which is of no use for translation of the test set. Possibly,
this by itself also has a positive effect in making tuning more robust and reducing the chance of
overfitting. We leave it for future work to further investigate this. Crucially, shuffling does not
specifically add additional search errors.

4.6 Effects of search extension strategies

Table 2 shows the effects of the different strategies described in the previous sections to expand
the search space. The table first repeats the results for the HIERO baseline and then lists
results for the HIERO 1st and HIERO 0th reordering labels. For each we then use either the
standard setting for rule exploration during cube-pruning initialization, or DRLE. We do this in
combination with shuffling, and also vary the pop-limit. This provides insight into the effect of
these factors when applied independently or combined.

In addition to the HIERO baseline, our second baseline (B0/B1) for each of the two separate
reordering labels is a basic ESD system without changes to the default pop-limit (1000) and
without DRLE. For each reordering label we then test the significance of improvements against
both HIERO and B0/B1. We see that both increasing the pop-limit and DRLE improves results
for both label types. However, when only the pop-limit is increased without DRLE, HIERO
0th improves significantly over the basic (B0) system, while HIERO 1st gives no significant
improvements over the basic (B1) system. In addition, for HIERO 1st, comparing the effect
of just using DRLE to just changing the pop-limit, the former outperforms the latter for all
metrics except KRS over all tested values of the pop-limit. Adding shuffling makes this trend
is even sharper. For both label types, shuffling has a positive effect on the results. Note too that
DRLE has the highest impact with larger label sets; probably the resulting larger search space
increases the chance of missing certain desirable label substitutions in the normal cube pruning
initialization.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 211



System Name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length CPU time
HIERO 31.63 30.56 13.15 59.28 58.03 97.15 3.34
HIERO 0th 32.50NH 30.88NH 13.68NH 59.66HH 59.30NH 98.40�H 29.50

Table 4: Analysis experiment: tuning with pop-limit 2000 and test-set decoding with pop-limit 4000.

Summarizing the results over both label types, we can conclude that DRLE is typically
better than just crudely increasing the pop-limit. Additionally, for small label sets it comes at a
lower computational cost.

4.7 Analysis: negative interaction DRLE with higher pop-limit explained.
Both DRLE and an increased pop limit by themselves have a positive effect on the translation
quality, but a surprising result is the sometimes relatively negative effect of using DRLE and
also maximally increasing the pop-limit. With HIERO 0th the results improve when increasing
the pop-limit to 2000, but then drop when further increasing it to 4000. For HIERO 1st, with
DRLE only BLEU benefits slightly from a pop-limit higher than 1000, whereas performance
decreases for the other metrics. Such negative interactions between DRLE and the increased
pop-limit could be caused by overfitting.11 To see if overfitting indeed occurs, we looked at
the evaluation scores for the development set, see Table 3. It can be seen that for HIERO 0th

with DRLE, the BLEU scores decrease when the pop-limit increases from 2000 and 4000, but
in particular the decrease in the development set BLEU score is less than the decrease in the
test set BLEU score, see Table 2. Furthermore, when looking at HIERO 1st with DRLE on
the development set, it can be seen that the BLEU score monotonically increases for increasing
pop-limit size. However, other metrics show a dip for a pop-limit of 2000, which was also seen
for the test set for all metrics except TER. To summarize, for certain increases in the pop-limit
in combination with DRLE, we made two observations that indicate overfitting:

• Loss of performance on the test set, for most metrics including BLEU, the tuning metric.
• Mostly retained or even increased performance for BLEU on the development set,

combined with performance loss for most other metrics.

Could it still be that a higher pop-limit is by itself harmful, independent of its role in the
assumed overfitting? We hypothesize that it is only harmful in as far as it facilitates overfitting
in combination with DRLE during the tuning process. To test this hypothesis we ran another
analysis experiment, whereby we use the final feature weights obtained from tuning with DRLE
with a pop-limit of 2000 and only increase the pop-limit to 4000 during the decoding of the test
set. The results are shown in Table 4. As can be seen, in this setting the results are highly similar
to the results obtained with DRLE and a pop-limit of 2000 used for both tuning and testing.
This confirms our hypothesis that a higher pop-limit (more search) is not generally harmful, but
can be harmful in the tuning stage because it facilitates more overfitting.

4.8 Combining Labels
In this section we look at the effect of combining multiple labels. The first successful
combination we explore is 0th-order and 1st-order reordering labels. Since both labels
individually give good results, and encode somewhat different information about word order,
their combination could work even better. The other two combinations we test are 1th-order
reordering labels combined with SAMT or target-side boundary-tags. These combinations are

11DRLE groups the translations of the source side by their labels and uses the best translation for each distinct
labeling, as opposed to only a single best translation. This may cause also more suboptimal source rule-side translations
to be added to the initial cube-pruning queue; and with a higher pop-limit there is a higher chance of those being retained
and causing problems such as overfitting.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 212



System
Name BLEU ↑ METEOR ↑ BEER ↑ TER ↓ KRS ↑ Length CPU

time
HIERO 31.63 30.56 13.15 59.28 58.03 97.15 3.34
HIERO 0th

+ HIERO 1st
32.30NHNH0 30.95NHNH0 13.75NHNH0 60.16HHHH0 60.13NHNH0 99.07NH�H0 7.18

SAMT+
HIERO 1st 32.57NH4H1 31.07NHHSNH1 13.84NHOS 59.94HHNH1 60.18NH 99.13�H�S 11.63

Bnd.Tags+
HIERO 1st 32.65NHNH1 31.36NHNBNH1 14.16NHNH1 60.21HH 61.46NHNBNH1 99.86�H�H1 10.32

Table 5: Double-labeled systems with soft matching. Result are for exploring only the best rule labeling
and label substitution during cube pruning initialization. Statistical significance is given against the HIERO

baseline (H) and for every double-labeled system against the single-labeled systems from which the double
label is composed: HIERO 0th (H0), HIERO 1st (H1), SAMT (S) and target-side boundary-tags (B).

intuitively promising since reordering labels and syntactic labels are expected to give at least
partially different information that may be expected to be complementary.

When combined labels are directly applied to form label-substitution features, this yields
a quadratic increase in the number of these features, causing extreme sparsity and hence
overfitting problems. We thus take another approach; during feature generation, we split
every combined label into its two constituent parts and compute individual label-substitution
features for each. Table 5 shows the results of the label-combination experiments. Most
of the double-labeled systems come to the level of the best of the two constituent labels, but
do not improve beyond it. However, the system that combines target-side boundary-tags and
1th-order reordering labels significantly improves over both these labels individually for both
METEOR and KRS. These metrics are particularly concerned with assessing the quality of the
word order, which receives less or no attention in the other metrics. Since reordering labels are
particularly expected to improve word order, it is positive that they help to further improve it
for the best-performing single label in our experiments.

5 Conclusion

In this work, we examined key aspects of effective and efficient ESD. We first gave a detailed
description of how this method can be efficiently implemented, and then examined three
empirical questions. First, based on experiments for four different label types, we demonstrated
that ESD is empirically at least equal but typically superior to strict matching. Next, we
demonstrated that ESD can benefit from richer search. Our experiments show that it is
more effective to specifically target the search effort towards the exploration of more diverse
label substitutions instead of crudely increasing search in general by using a higher pop-limit.
Finally, we explored the effect of double labels, and showed that while these are not successful
in general, the specific combination of target-side boundary-tags and reordering labels does
significantly improve word order as measured by METEOR and KRS, without significantly
changing the other metrics.

Acknowledgements

This research is supported by the ADAPT Centre for Digital Content Technology, funded under
the SFI Research Centres Programme (Grant 13/RC/2106). This project has received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Marie Skłodowska-Curie grant agreement No 713567. The investigations were supported by
The Netherlands Organization for Scientific Research (NWO) under grant nr. 612.066.929 and
VICI grant nr. 277-89-002 and Stichting voor de Technische Wetenschappen (STW) grant nr.
12271. We would like to thank the anonymous reviewers for their helpful comments.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 213



References

Aho, A. V. and Ullman, J. D. (1969). Syntax directed translations and the pushdown assembler. Journal
of Computer and System Sciences, 3(1):37–56.

Almaghout, H., Jiang, J., and Way, A. (2011). CCG contextual labels in hierarchical phrase-based smt.
In Proceedings of the 15th Annual Conference of the European Association for Machine Translation
(EAMT-2011), pages 281–288, Leuven, Belgium.

Birch, A., Osborne, M., and Blunsom, P. (2010). Metrics for MT evaluation: Evaluating reordering.
Machine Translation, 24(1):15–26.

Cherry, C. and Foster, G. (2012). Batch tuning strategies for statistical machine translation. In Proceedings
of the 2012 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 427–436, Montreal, Canada.

Chiang, D. (2005). A hierarchical phrase-based model for statistical machine translation. In Proceedings
of the 43rd Annual Meeting of the Association for Computational Linguistics, pages 263–270, Ann
Arbor, Michigan.

Chiang, D. (2007). Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228.

Chiang, D. (2010). Learning to translate with source and target syntax. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, ACL ’10, pages 1443–1452, Uppsala,
Sweden.

Clark, J. H., Dyer, C., Lavie, A., and Smith, N. A. (2011). Better hypothesis testing for statistical machine
translation: Controlling for optimizer instability. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies: Short Papers - Volume 2,
pages 176–181, Portland, Oregon.

De La Briandais, R. (1959). File searching using variable length keys. In Papers Presented at the the
March 3-5, 1959, Western Joint Computer Conference, IRE-AIEE-ACM ’59 (Western), pages 295–
298, San Francisco, California.

Denkowski, M. and Lavie, A. (2011). Meteor 1.3: Automatic metric for reliable optimization and
evaluation of machine translation systems. In Proceedings of the Sixth Workshop on Statistical Machine
Translation, pages 85–91, Edinburgh, Scotland.

Dixon, W. J. and Mood, A. M. (1946). The statistical sign test. Journal of the American Statistical
Association, 41(236):557–566.

Eisele, A. and Chen, Y. (2010). Multiun: A multilingual corpus from united nation documents. In
Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC 2010),
pages 2868–2872, La Valletta, Malta.

Ganitkevitch, J., Cao, Y., Weese, J., Post, M., and Callison-Burch, C. (2012). Joshua 4.0: Packing, pro,
and paraphrases. In Proceedings of the Seventh Workshop on Statistical Machine Translation, pages
283–291, Montréal, Canada.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language modeling. In IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 181–184,
Detroit, Michigan, USA.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 214



Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press, New York, NY, USA, 1st
edition.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In Proceedings of the
2003 Conference of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology, pages 48–54, Edmonton, Canada.

Li, J., Tu, Z., Zhou, G., and van Genabith, J. (2012). Using syntactic head information in hierarchical
phrase-based translation. In Proceedings of the Seventh Workshop on Statistical Machine Translation,
pages 232–242, Montréal, Canada.

Maillette de Buy Wenniger, G. and Sima’an, K. (2013). Hierarchical alignment decomposition labels for
hiero grammar rules. In Proceedings of the Seventh Workshop on Syntax, Semantics and Structure in
Statistical Translation, pages 19–28, Atlanta, Georgia, USA.

Maillette de Buy Wenniger, G. and Sima’an, K. (2014). Bilingual markov reordering labels for hierarchical
SMT. In Proceedings of the Eight Workshop on Syntax, Semantics and Structure in Statistical
Translation, pages 11–21, Doha, Quatar.

Maillette de Buy Wenniger, G. and Sima’an, K. (2016). Labeling hiero grammars without linguistic
resources. Machine Translation, pages 1–41.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: A method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylvania.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation edit
rate with targeted human annotation. In Proceedings of Association for Machine Translation in the
Americas, pages 223–231, Cambridge, Massachusetts, USA.

Stanojević, M. and Sima’an, K. (2014). BEER: BEtter evaluation as ranking. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages 414–419, Baltimore, Maryland, USA.

Steedman, M. (1987). Combinatory grammars and parasitic gaps. Natural Language and Linguistic
Theory, 5:403–439.

Steedman, M. (2000). The Syntactic Process. MIT Press, Cambridge, MA, USA.

Tiedemann, J. (2012). Parallel data, tools and interfaces in opus. In Proceedings of the 8th International
Conference on Language Resources and Evaluation (LREC 2012), pages 2868–2872, Istanbul, Turkey.

Venugopal, A., Zollmann, A., Smith, N. A., and Vogel, S. (2009). Preference grammars: softening
syntactic constraints to improve statistical machine translation. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, NAACL ’09, pages 236–244, Boulder, Colorado.

Zollmann, A. (2011). Learning Multiple-Nonterminal Synchronous Grammars for Statistical Machine
Translation. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA.

Zollmann, A. and Venugopal, A. (2006). Syntax augmented machine translation via chart parsing. In
NAACL 2006 - Workshop on statistical machine translation, pages 138–141, New York City, New
York, USA.

Zollmann, A. and Vogel, S. (2011). A word-class approach to labeling pscfg rules for machine translation.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 1–11, Portland, Oregon, USA.

Proceedings of MT Summit XVI, vol.1: Research Track Nagoya, Sep. 18-22, 2017 | p. 215


	36_PDF

