
ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Computerized Decision Support for Beneficial Home-based Exercise 

Rehabilitation in Patients with Cardiovascular Disease 

 

Andreas Triantafyllidis
a,b

, Dimitris Filos
a,b

, Roselien Buys
c,d

, Jomme Claes
c
, Véronique 

Cornelissen
d
, Evangelia Kouidi

e
, Anargyros Chatzitofis

f
, Dimitris Zarpalas

f
, Petros Daras

f
, 

Deirdre Walsh
g
, Catherine Woods

h
, Kieran Moran

g
, Nicos Maglaveras

a,b
, and

 
Ioanna 

Chouvarda
a,b  

 

a
 Institute of Applied Biosciences, Centre for Research and Technology Hellas, Greece 

b
 Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of 

Medicine, Aristotle University of Thessaloniki, Greece 

c
 Department of Cardiovascular Sciences, KU Leuven, Belgium 

d
 Department of Rehabilitation Sciences, KU Leuven, Belgium 

e
 Lab of Sports Medicine, Department of Physical Education and Sport Science, Aristotle 

University of Thessaloniki, Greece 

f
 Information Technologies Institute, Centre for Research and Technology Hellas, Greece 

g
 Insight Centre for Data Analytics, Dublin City University, Ireland 

h
 Health Research Institute, Department of Physical Education and Sport Sciences, University of 

Limerick, Ireland 

Address for Correspondence: 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Dr Andreas Triantafyllidis 

Lab of Computing, Medical Informatics and Biomedical Imaging Technologies 

School of Medicine 

Aristotle University of Thessaloniki 

Thessaloniki 54124, GR.  

Tel.: +30 2310 999922 

E-mail: atriand@auth.gr



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

Abstract 

Background: Exercise-based rehabilitation plays a key role in improving the health and quality 

of life of patients with Cardiovascular Disease (CVD). Home-based computer-assisted 

rehabilitation programs have the potential to facilitate and support physical activity interventions 

and improve health outcomes. 

Objectives: We present the development and evaluation of a computerized Decision Support 

System (DSS) for unsupervised exercise rehabilitation at home, aiming to show the feasibility 

and potential of such systems toward maximizing the benefits of rehabilitation programs. 

Methods: The development of the DSS was based on rules encapsulating the logic according to 

which an exercise program can be executed beneficially according to international guidelines and 

expert knowledge. The DSS considered data from a prescribed exercise program, heart rate from 

a wristband device, and motion accuracy from a depth camera, and subsequently generated 

personalized, performance-driven adaptations to the exercise program. Communication 

interfaces in the form of RESTful web service operations were developed enabling interoperation 

with other computer systems.  

Results: The DSS was deployed in a computer-assisted platform for exercise-based cardiac 

rehabilitation at home, and it was evaluated in simulation and real-world studies with CVD 

patients. The simulation study based on data provided from 10 CVD patients performing 45 

exercise sessions in total, showed that patients can be trained within or above their beneficial HR 

zones for 67.1±22.1% of the exercise duration in the main phase, when they are guided with the 

DSS. The real-world study with 3 CVD patients performing 43 exercise sessions through the 
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computer-assisted platform, showed that patients can be trained within or above their beneficial 

heart rate zones for 87.9±8.0% of the exercise duration in the main phase, with DSS guidance. 

Conclusions: Computerized decision support systems can guide patients to the beneficial 

execution of their exercise-based rehabilitation program, and they are feasible. 

Keywords: Computerized decision support, physical activity, cardiovascular disease, exercise, 

cardiac rehabilitation. 

1 Introduction 

Substantial evidence suggests that regular physical activity helps to improve the health 

and well-being of both healthy and chronically ill individuals [1]. Exercise-based rehabilitation 

in patients with Cardiovascular Disease (CVD) is widely recommended by the medical 

community in order to reduce their mortality and improve their quality of life [2,3]. Today, 

exercise-based Cardiac Rehabilitation (CR) is mainly performed by patient groups in a controlled 

environment (e.g., a specialized rehabilitation center), under the supervision of physiotherapists 

or cardiac nurses. However, low uptake and poor adherence to exercise-based CR is a major 

problem which is caused by several barriers, including transport, cost, dislike of group sessions, 

and self-efficacy issues [4]. 

A potential solution to the issue of patient adherence to exercise therapy, is the uptake of 

computerized interventions which can be utilised within the home environment [5]. 

Computerized interventions enhanced with new and widely available sensing technologies, such 

as smart watches and depth cameras, can enable physical activity self-tracking on a daily basis 

without constant supervision by health professionals [6]. In this context, a major challenge is to 

identify robust ways of assisting patients in unsupervised exercise-based rehabilitation programs 
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to reach their goals, through the processing and evaluation of sensed physical activity data along 

with potentially available other clinical and behavioural information.  

The aim of this paper is to present the design, development and evaluation of a 

computerized decision support system (DSS), targeting at the personalized and beneficial 

execution of exercise-based CR programs by CVD patients at their home. The system uses a 

rule-based approach in order to: a) Process clinical data, as well as data from sensors such as a 

smart watch and a depth camera, and b) generate actions in terms of adapting the CR program 

according to the patient‟s performance. Communication interfaces in the form of web service 

operations were adopted toward developing an interoperable and extensible system which can be 

integrated in future home-based exercise platforms. The system has been successfully deployed 

in PATHway (Physical Activity Towards Health) [7], a computer-assisted platform employing a 

virtual coach for exercise-based CR at home. Results from the evaluation of the DSS are 

presented, in terms of performance and guidance of individuals to exercise within or above their 

beneficial HR zones, as obtained from both simulation and real-world studies. 

To the best of our knowledge, this is one of the first studies illustrating the development 

and evaluation outcomes of a technical infrastructure dedicated for computerized decision 

support in unsupervised exercise-based CR. Other studies employing rule-based systems have 

focused on conditions other than CVD. The systems described by Lim et al. [8], for tailored 

message generation, and Song et al.  [9], for autonomous bicycle ergometer training, focus on 

diabetes and COPD, while Salvi et al. focused on educational and motivational aspects of 

exercise-based CR [10]. Long-term physical activity outcomes of interventions utilizing 

computerized decision support have been widely reported [11,12], however it is less known how 

decision support components should be developed to contribute to the effectiveness of those 
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interventions. To this end, our system is the first-of-its-kind which uniquely processes and 

evaluates sensed data, e.g., heart rate (HR) and motion accuracy, along with other clinical and 

behavioural information (e.g., exercise prescription, self-reports on exertion, patient performance 

history) during unsupervised exercise, toward the beneficial execution of exercise-based 

rehabilitation programs. 

2 Methodology 

2.1 Background 

According to international guidelines, an optimal personalized exercise prescription for 

rehabilitation includes a detailed description of four exercise characteristics, namely Frequency, 

Intensity, Type, and Time (FITT) [13]. One of the biggest challenges around exercise 

prescription is making the patients train at the right intensity, i.e., within their beneficial HR 

zones, which is key for effectiveness [1]. Beneficial HR zones are ideally formulated based on 

the results of a cardiopulmonary exercise test (CPET). The types of exercises are chosen by the 

supervisor taking into account basic demographic characteristics of the patients, co-morbidities, 

and the fitness level of the average participants, as well as the execution during previous 

sessions. Optimally, the trainer proposes a variety of aerobic and resistance exercises targeting 

all body parts (legs, arms, trunk, etc.), with different levels of difficulty. Perceived exertion and 

enjoyment should also be considered when structuring exercise programs [14,15]. 

2.2 DSS Development 

We followed an iterative approach for developing the DSS, in which engineers and 

experts in medical informatics (authors AT, DF, AC, DZ, PD, KM, IC, NM) as well as experts in 

CR, exercise physiology and health and exercise psychology (authors JC, RB, VC, DW, CW) 
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collaborated to identify the functional requirements of the system. In this context, during the 

initial stage of the development, a review of the clinical guidelines and recommendations [13], 

was combined with expert knowledge, in order to determine the response of the system 

according to specific input data (e.g., sensed data, exercise prescription, etc.). The clinical 

knowledge was coded into deterministic rules in the format of condition-action (IF-THEN), and 

subsequently the communication interfaces of the system were developed. We chose a rule-based 

approach mainly because we expected that domain-specific rules would be easily co-designed 

and understood by experts in CR, exercise physiology and health and exercise psychology, and 

require limited development effort. Furthermore, rule-based approaches have been used for 

exercise-based rehabilitation and they have shown their feasibility [16]. To this end, rules were 

identified by the domain experts toward the safe, beneficial (in terms of patient guidance toward 

exercising within their optimal HR zones), and personalized (in terms of long-term adaptation of 

the exercise program) execution of the exercise program. 

The DSS development was underpinned by health psychology theory, namely the 

Behaviour Change Wheel (BCW) [17]. At the core of the BCW,  lies a theoretical model 

describing the catalysts for behaviour, based on “Capability”, i.e., the individual‟s ability (either 

physical or psychological) to enact a behaviour, “Opportunity”, i.e., the physical (e.g., 

opportunity afforded by the environment) and social environment (e.g., cultural norms) that 

enables the behaviour, and “Motivation”, i.e., the reflective (e.g., intention and choice) and 

automatic mechanisms (e.g., habit), that activate or inhibit Behaviour (COM-B) [18]. This model 

has been used across several studies to aid intervention design and has demonstrated reliability 

[19]. The BCW has also been used in other studies in the area of decision support for healthcare 
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[20,21]. Further information about the adoption of the BCW and COM-B in PATHway can be 

found in [22]. 

2.3 DSS Architecture 

The target was to develop an intelligent middleware which monitors performance and 

progress of a patient who uses computerized exercise-based CR, and personalizes the weekly 

exercise program (Figure 1) [23]. There are three key rule-based components which are working 

towards these objectives:  

a) Prescreening component: Triggered before the beginning of an exercise session, the 

prescreening component aims to ensure patient safety. To this end, HR along with blood pressure 

measurements are obtained through a blood pressure device, and in case of detected abnormal 

values according to clinical recommendations [13,24], the patient is instructed to rest and take 

 

Figure 1 DSS architecture. 
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the blood pressure again at a later time. When blood pressure readings are high at multiple, 

consequent readings, the patient is instructed to communicate with a health professional. Self-

reports for medication compliance (patient should take his/her prescribed medicines on the day 

of exercise) and food intake (patient should eat in the last 4 hours before starting exercise), are 

also obtained 

to increase the safety while exercising. 

b) Real-time component: Triggered during an exercise session, the real-time component 

targets at guiding patients toward exercising within their optimal HR zones, according to the 

patient‟s exercise prescription (e.g., 150 minutes of moderate intensity exercise weekly). The 

real-time component uses computerized exercise selection to dynamically adjust an exercise 

Table 1 Example rules within the prescreening and off-line DSS components (BP: Blood Pressure, MA: 

Threshold for acceptable motion accuracy set e.g., to 0.4 in the scale 0-1). 

 Rule Description Condition DSS action 

P
r
e
sc

r
ee

n
in

g
 Check if the patient had a high 

BP/HR AND answer to question 
about today‟s medication 

compliance is NO more than once 

during last 3 sessions within 14 days 

If answer to question about taking medication, is NO AND 

answer to question about medication is NO for >= 2 times 
during last 14 days AND systolic BP>=180 OR resting HR 

>=75% peak HR AND (systolic BP>=180 OR resting HR 

>=75% peak HR) has been triggered >= 2 times during last 
14 days 

Instruct patient not to 

start exercise 

O
ff

-l
in

e
 D

S
S

 

 

Consider session acceptable 

 

 

If total patient mean accuracy during session >= MA AND 

exercise session duration>50% of expected session duration 
AND time spent within or above beneficial HR zones during 

main phase >50% of total main phase duration 

 

 

Assign this exercise 

session as acceptable 
(otherwise the session 

is assigned as 

unacceptable and the 
patient must re 

perform the exercise 

session) 
 

Exclude specific exercise when 

accuracy is low for more than 3 
consecutive appearances of the 

exercise 

 

If exercise consecutive appearances >= 3 AND mean 

accuracy<MA for the sessions 
 

 

Assign this exercise 

id as excluded for all 
the next exercise 

sessions for this 

patient for 3 weeks. 
 

 

Motivate patient when he/she is on 

track to meet the weekly goal near 

week‟s end 

 

If (time is end of day 5 of the weekly exercise 

program) AND SUM (session_durations) > 50% 

of weekly physical activity goal 

 

Trigger message: 

“You have nearly 

reached your 

physical activity 

goal for this week. 

There are just two 

days left! You can 

do it!” 
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session based on a pool of available short-duration  (e.g., 1-minute) exercises, with different 

intensities (e.g., high-knee running versus walking on the spot), difficulty (in terms of different 

required levels of balance and coordination), type (aerobic, strength, stretch), and involved body 

parts (legs, arms, trunk). For example, an exercise of high intensity (e.g., high-knee running) will 

be dynamically selected in real-time, if the patient is below the beneficial HR zones, while an 

exercise of low intensity (e.g., walking on the spot) will be selected, if the patient is above the 

beneficial HR zones.  

Additionally, applying motion analysis algorithms in real-time motion capture data 

acquired with skeleton tracking techniques and depth-sensing devices, results in exercise 

performance accuracy (motion accuracy) evaluation. The accuracy is estimated and acquired per 

exercise repetition and cumulatively (repetition set), based on the detection of a priori known 

Table 2 Example rules with assigned system identifiers within the real-time DSS during exercise main phase (A: 

resting HR, C: Threshold for lower HR beneficial zone based on Heart Rate Reserve, E: Threshold for upper HR 

beneficial zone, D: (C+E)/2, G: Peak HR, B: C-0.3*(C-A), F: G-0.3*(G-E), W1: Decreasing HR trend slope 

threshold (-30°), W2: Increasing HR trend slope threshold (+30°)). 

 Rule Conditions Actions (for next exercise) 

ID Accuracy Heart Rate Intensity Difficulty 

#1 Medium/high 

 (HRmean<C AND HRmean>B AND  slope>W2) OR (HRmean > C 
AND HRmean <D AND slope>W2 ) OR (HRmean >D AND 

HRmean <E AND slope<W1) OR (HRmean>E AND HRmean<F 

AND slope<W1) 
− ↑/− 

#2 Medium/high 
(HRmean<B) OR (HRmean>B AND HRmean<C AND slope<W1) 
OR (HRmean>C AND HRmean<D AND slope<W1) ↑ − 

#3 Medium/high 
(HRmean>D AND HRmean<E AND slope>W2) OR (HRmean>E 

AND HRmean<F AND slope>W2) OR (HRmean>F) ↓ − 

#4 Low (HRmean>E AND slope>W2) OR HRmean>F ↓ ↓ 

#5 Low (HRmean<F AND HRmean>E) AND slope<W2 − ↓ 

#6 Low (HRmean<C AND slope<W2) OR HRmean>B ↑ ↓ 

#7 Low (HRmean>B AND HRmean<C) AND slope>W1 − ↓ 

#8 If none of rules 1-7 applies  − − 
 

−: Same, ↑: Increase, ↓: Decrease 
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physical exercise repetition instances within a sequence of motion data using machine learning 

techniques (e.g., Adaptive Boosting and Random Forest Regression). Subsequently, the motion 

data of the detected exercise repetition is being analyzed and evaluated, providing numerical and 

semantic feedback regarding the exercise performance accuracy.  Detailed description of the 

exercise detection algorithms has been given in [25]. The exercise performance evaluation is 

used in order to evaluate the degree of adherence to the exercise form [26], as well as for 

motivating the patients toward good execution of the exercise through semantic feedback. In this 

regard, an exercise of low difficulty will be selected in real-time for execution (e.g., jumping), if 

the detected cumulative motion accuracy (i.e., the average accuracy of the performed exercise 

repetitions) during a previous exercise is very low. Finally, the duration of each exercise type 

and exercised body part is considered (“Time” characteristic in FITT), to ensure variety and 

balance in exercise selection [1]. 

c) Off-line DSS: The off-line DSS is triggered after the completion of an exercise session 

and targets at long-term adaptions of the exercise program, based on the performance and 

behaviour of the user (“capability” component of the BCW). As such, the off-line DSS adapts 

the frequency and duration of required exercise sessions in a week, based on achieved 

performance according to the exercise prescription goal. Furthermore, the off-line DSS excludes 

specific exercises from the program when detected motion accuracy is low repeatedly for 

specific exercises (i.e., user faces difficulty in executing these exercises with the correct form). 

Based on the acquisition of self-reports for perceived exertion (Borg scale 0-10 [15]) and 

enjoyment (scale 0-4) at the end of the exercise session, in case of recurring extremely high 

exertion or extremely low enjoyment,  patients are recommended to perform a different type of 

physical activity, e.g., outdoors (“opportunity” component of the BCW). Motivational feedback 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is also triggered for the users when they are close or not to reach their physical activity goals 

(e.g., on a weekly basis according to their exercise prescription), or when they reach higher goals 

than the previous week, in order to encourage them accordingly (“motivation” component of the 

BCW). Finally, if the patient is consistently non-compliant in reaching his/her weekly goals (e.g., 

4 weeks in a row), a reduction of 10% in the weekly goal (in terms of required minutes of 

physical activity), is initiated, thus assigning a „graded task‟ which seems feasible to achieve for 

participants who may otherwise disengage. 

2.4 Technical Infrastructure for Exercise Program Adaptation 

All rules in the DSS were coded as condition-action in the format IF-THEN in the Python 

programming language, and they were assigned an identifier. Python was selected because of the 

useful characteristics it provides, such as dynamic and efficient memory management, cross-

platform availability, and excellent code readability, all contributing to rapid prototyping. 

Examples of rules for the prescreening and off-line DSS components are given in Table 1, and 

for the real-time component in Table 2. Specific zones were considered for motion accuracy 

(low, medium, high) for each exercise according to thresholds set by experts in the scale 0-1 (e.g. 

<0.4 can be low accuracy based on the virtual coach reference accuracy), and for HR as a 

percentage of the Heart Rate Reserve (calculated as: Peak HR – resting HR) based on the CPET. 

Thresholds for the least mean squares linear fit slope were used to denote a decreasing or 

increasing trend of the HR signal [27,28]. 

We adopted a service-oriented architecture, in which DSS communication interfaces were 

developed as RESTful web service operations, which can enable the interoperability and easy 

extension of communication systems [29]. In this direction, web service operations linked to the 

prescreening, real-time, and off-line components of the DSS (e.g., 
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getPreScreeningEvaluation(),getRealTimeEvaluation(), getAfterSessionExcludedExercises(), 

etc.) were developed, enabling their call by client applications or systems. The JSON format
1
 

was used to represent acquired input 

data (rule conditions) and generated response data (rule actions) of the DSS, mainly because it is 

lightweight for data interchange and easy to parse. We used the Postman tool
2
, an easy-to-use 

testing environment for web interfaces, in order to test the response of all DSS web service 

operations (Figure 2), and fix any input/output errors during the development process, prior to 

their deployment in the system‟s production server. The DSS runs in a Python 2.7 WSGI capable 

server and requires 16GB of memory as well as a 64-bit Windows 8/10 or Linux environment to 

ensure its smooth operation. System usage logs were implemented and used to capture the fired 

rules during user interaction with the system, enabling the automatic collection of all DSS 

                                                 
1
 JSON: https://www.json.org/, last accessed on 22

nd
 Mar 2018. 

2
 PostMan Tool: https://www.getpostman.com/, last accessed on 9

th
 Oct 2017. 

 

Figure 2 Example of tested DSS response (JSON syntax) in the real-time component for exercise selection, 

using Postman. An exercise with lower intensity is provided as output due to user‟s high heart rate according to 

rule 2. 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

responses for exercise program adaptation. The development of the RESTful communication 

interfaces enabled 

the integration of the DSS in the PATHway platform
3
 (Figure 3), in which communication was 

required with the system client (front-end) application to deliver the adaptations of the CR 

program, e.g., dynamic exercise selection in real-time. In PATHway, the Microsoft Xbox One 

Kinect sensor [30] (as depth-sensing device) and the Microsoft Band HR tracking device [31] (as 

smart watch) were used to meet requirements for valid motion capture and HR monitoring. Since 

we adopted a RESTful interoperable architecture, the selection of specific sensing devices does 

not affect the DSS operation, and therefore other devices can also be integrated in the future.  

                                                 
3
 Demonstration of the PATHway system: http://pathway2health.eu/demos/, last accessed on 9

th
 Oct. 2017. 

 

Figure 3 The PATHway client (front-end) application. The application communicates with the DSS via a 

RESTful interface and the virtual coach instructs different exercises according to DSS response (real-time 

component), in order to guide patients to exercise within their beneficial heart rate zones.  
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2.5 Methodology for System Evaluation in Simulation and Real-World 

Studies 

In the context of system evaluation, we firstly performed a simulation study to explore 

the feasibility of the system and the usefulness of the adopted rule-based approach, in terms of 

guiding CVD patients to exercise within their beneficial HR zones. To this end, we recruited 

CVD patients participating in a community exercise-based CR program (Thessaloniki, Greece), 

in order to capture their HR response during exercise, according to the instructions of a trainer. 

HR was tracked via a wristband device, Scosche Rhythm (Scosche Industries, Oxnard, 

California, USA), which has been found to be accurate [31]. A Kinect sensor was also used to 

capture the exercise execution and to annotate the exercises (i.e., their intensity and difficulty) 

retrospectively according to trainers‟ expertise. To this end, individual exercises were manually 

tagged with a low (A) or high (B) intensity label after watching the Kinect recordings. Ethical 

approval for the conduction of the study was granted by the research committee of the Aristotle 

University of Thessaloniki, Greece (Prot. No.: 39768/2016). After completing data collection 

and annotation, we followed a linear modelling approach based on the HR response for exercises 

of intensity A and B, reported in our previous work [28], to determine the percentage of time 

spent within or above the beneficial HR zones when the rules of the real-time component (Table 

2) are utilized. 

We further explored the use and initial outcomes of computerized exercise selection in 

the real-time component of the DSS, in an ethically approved clinical trial with CVD patients 

performing unsupervised exercise-based CR at home through the PATHway system. The 

protocol of the clinical trial is reported in [7]. The results of the exercise response from 

participants in terms of heart rate and motion accuracy, as well as the fired rules, were acquired 
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from the system usage logs from August to October 2017. The systematic assessment of the off-

line DSS according to its capabilities in the long-term decision horizon described above, will be 

presented after the completion of the trial. 

3 Results 

3.1 Technical Evaluation 

The technical evaluation of the system focused on the performance of the DSS web 

service operations in terms of measuring their response time. We used the JMeter tool
4
 to 

perform concurrent testing with 10, 20, and 100 users for 10 tests each, using a ramp-up period 

of 1 second, for which the most-used operation of our system, i.e., the real-time selection of 

exercises which is triggered every minute (getRealTimeEvaluation()) had a max response time of 

164, 444, and 2842 milliseconds respectively on average. Other DSS operations linked to the 

pre-screening component  (getPrescreeningEvaluationResult()) and the off-line DSS (e.g., 

getAfterSessionExcludedExercises()), had max response times of 29, 31, and 331 milliseconds, 

and 43, 100, and 2244 milliseconds on average respectively,  yielding also acceptable results. 

3.2 Simulation Study 

The study was based on the exercise response of 10 (6 male, 4 female) CVD patients 

(70.3±6.5 years). In total, 45 half-hour exercise sessions were monitored, in which a trainer 

instructed different short-duration exercises (30.1±11.5 seconds for low intensity, 30.2±10.5 

seconds for high intensity exercises). CPET results were obtained from all participating patients 

(mean resting HR: 69±12, mean peak HR: 129±18) in order to specify the beneficial HR zones 

                                                 
4
 JMeter Tool: http://jmeter.apache.org/, last accessed on 9

th
 Oct. 2017. 
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according to the Karvonen‟s formula [13]. Based on trainers‟ feedback, the intensity of the 

program was moderate, while monitored patients did not face any difficulty in executing the 

instructed exercises. As such, a medium/high motion accuracy was assigned for all monitored 

participants when performing their exercise session. 

 

(a) 

 

(b) 

Figure 4 (a) Linear fit for a study participant to predict heart rate change in exercises of low (A) and high (B) 

intensity, (b) Simulated heart rate for a study participant after applying the DSS rules and Monte-Carlo.  
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expressing the linear change of HR based on the starting HR in each exercise and its intensity 

(R-squared=0.24±0.14; Root Mean Square Error (RMSE)=4.5±1.5 and R-squared=0.25±0.17; 

RMSE=4.7±2.5, for linear models of intensity A and B exercises, respectively) (Figure 4a). 

Then, we applied the Monte Carlo technique [32] for 10
3
 repetitions to explore how the model 

responds to randomly-generated inputs (Figure 4b). Finally, we computed the average percentage 

of time CVD patients were exercising within or above their beneficial HR zones, based on the 

simulated HR data with three options: Option 1: application of the DSS rules, option 2: 

Table 3 Time spent within or above beneficial HR zones (% of the main phase duration). 

 Option 1 

(rules) 

Option 2  

(2:1 pattern) 

Option 3 

(random) 

Real-life 

sessions 

Percentage of time 

within or above 

beneficial HR zones 

(%) 

67.1±22.1 61.4±26.9 56.6±28.7 48.9±31.5 

 

 

Figure 5 Participants‟ percentage of the exercise main phase duration, their heart rate remained within or above 

the beneficial zones in real-life sessions, and simulated sessions after applying the DSS rules and the Monte 

Carlo technique. 
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alternation of the exercises during the main phase in a 2:1 pattern (two exercises of intensity B 

followed by one exercise of intensity A, option 3: random sequence of exercises (Table 3). 

The average percentage of time CVD patients were exercising within or above their 

beneficial HR zones in the community rehabilitation programs supervised by a trainer (real-life 

sessions) was equal to 48.9±31.5% of the exercise main phase duration (i.e., excluding the 

duration of warm-up and cool-down phases). Based on the results we obtained after applying the 

simulation technique described above, CVD patients can be trained within or above their 

beneficial HR zones for 67.1±22.1% of the exercise duration in the main phase, when they are 

guided with the DSS rules during real-time. In Figure 5, the participants‟ percentage of the 

exercise main phase duration their heart rate remained within or above the beneficial zones in 

real-life sessions and simulated sessions after applying the DSS rules and the Monte Carlo 

technique, can be seen. The simulation performed particularly well in those patients whose 

performance in real-life sessions was low (participants 2, 6 and 7). In participant 4, the 

simulation yielded similar results with the real-life sessions, possibly because of a high RMSE 

detected in the linear models of low and high intensity for this particular participant. 

3.3 Exercise Sessions by CVD Patients Interacting with PATHway 

In total, we were able to analyze 43 exercise sessions of at least 30 minutes duration 

Table 4 CVD patients‟ performance in unsupervised exercise during interaction with PATHway. 

Participant Resting HR 

(beats per 

minute) 

Peak HR 

(beats 

per 

minute) 

Number of 

monitored 

exercise 

sessions 

Average 

session 

duration 

(minutes) 

Average % time of 

main phase duration 

that participant is 

within or above 

beneficial HR zones 

1 45 108 21 39 (range 

31 - 64) 
99.2±1.1 

2 55 164 17 32 (range 

31 - 35) 
82.5±14.5 

3 54 179 5 31 (range 
31 - 32) 

81.9±9.0 
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(sessions were done on different days by each participant) by 3 CVD patients (1 male, 2 female), 

in which the median perceived exertion in the Borg Scale (0: nothing at all, 10: maximal) was 

equal to 4 (somewhat strong), and median enjoyment in a 0-4 scale (0: not at all enjoyable, 4: 

very enjoyable) was equal to 2 (quite enjoyable). The participants had a median resting HR of 54 

beats per minute (range 45 – 55) and median peak HR of 164 beats per minute (range 108 – 179) 

based on CPET results (Table 4). 

Patients achieved to be within or above their beneficial heart rate zones for 87.9±8.0% of 

the duration of the exercise main phase on average, which is considerably better than the 

threshold of 50% we have set in our rules for acceptable exercise sessions in terms of HR 

response (Table 1, row 2). Most fired rules were rule #1 (572 times) to increase/maintain 

difficulty and rule #3 (410 times) to lower intensity, while less fired rules were those for 

decreasing difficulty (72 times), and rule #2 for progressing to an exercise with higher intensity 

(21 times), which shows that patients had high accuracy in performing their exercises and they 

were constantly achieving to be within or above their beneficial HR zones. Interestingly, 

participant 1 seemed to be constantly above the beneficial HR zones, and as a result rule #3 was 

fired in 395 occasions. 

 In order to measure the effectiveness of the DSS in patient guidance, we introduced two 

metrics: a) Recovery from low HR events, which measures the percentage of occasions (number 

of exercises) in which the DSS guides the patient to exercise within the beneficial HR zones 

Table 5 Recovery from Low HR and Low Motion Accuracy Events. 

Participant Low HR events 

(Number of 

exercises that 

average HR is 

below beneficial 

HR zones) 

Recovery 

from low HR 

event – 1 

minute time 

window 

Recovery 

from low HR 

event – 2 

minutes time 

window 

Recovery 

from low 

HR event – 

3 minutes 

time 

window 

Low motion 

accuracy events 

(Number of 

exercises that 

average motion 

accuracy is 

below set 

threshold) 

Recovery 

from low 

motion 

accuracy 

event – 1 

minute 

time 

window 

Recovery 

from low 

motion 

accuracy 

event – 2 

minutes 

time 

window 

1 2 (100%) 2 (100%) - - 50 (100%) 44 (88%) 50 (100%) 

2 55 (100%) 25 (46%) 47 (86%) 52 (95%) 37 (100%) 29 (79%) 37 (100%) 
3 20 (100%) 10 (50%) 16 (80%) 18 (90%) 8 (100%) 7 (88%) 8 (100%) 

Average recovery percentage 65% 83% 93%  85% 100% 
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immediately after a low HR event, i.e., when the average HR is below the beneficial HR zones, 

and b) Recovery from low motion accuracy events, which measures the percentage of occasions 

in which the DSS guides the patient to exercise in a good form (as indicated by motion accuracy 

thresholds set by health professionals for every exercise), immediately after a low motion 

accuracy event. As illustrated in Table 5, the recovery from low HR events in a 2-minutes and 3-

minutes window reached to 83% and 93% respectively, while the recovery from low motion 

accuracy events in a 1-minute and 2-minutes time window reached to 85% and 100% 

respectively, which shows the value of the DSS in unsupervised exercise guidance.   

4 Discussion 

Patients‟ adherence to exercise therapy is considered to be a key factor in improving their 

health and well-being. Computer-assisted physical activity interventions deployed at home or 

other environments [8,33] have been found to facilitate patient engagement with regular physical 

activity and bring benefits in everyday patient monitoring and coaching. The capability to use 

such interventions conveniently, anytime and without supervision, adds significant value to their 

usefulness and facilitates patient independent living [34]. In this direction, computer systems for 

exercise-based rehabilitation are required to be smart, personalized, robust and adaptive, to 

correspond to changing patient requirements and bring expected health outcomes. 

DSSs have traditionally focused on assisting health professionals in clinical decision 

making [35,36]. The shift of focus to the patient [37], in conjunction with the advent of pervasive 

computing technology [38] – mobile devices, smart sensors, smart watches, etc. – has enabled 

the development of DSSs for patients [39,40], which can be used to assist them in daily self-

management of their condition. The current work contributed in the development of such 
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systems by presenting a rule-based DSS for patient guidance in unsupervised exercise-based 

rehabilitation. 

 A multi-component, interoperable and performance-driven DSS toward enhancing 

computerized exercise-based rehabilitation programs at home, was presented. The development 

framework of our system, e.g., formulation of simple rules, communication interfaces to 

interoperate with other systems, and system usage logs to capture the way the system is adapted, 

was shown, to increase the understanding about the development of robust DSSs. An additional 

advantage of the proposed system is that this is not tightly coupled to specific sensing devices, 

and therefore it can be sustainable as technology evolves. Besides presenting the generic 

capabilities of the system, we focused on achieving a beneficial response during exercise through 

dynamic program adaptations. In this context, both simulation and real-world studies were 

conducted to evaluate the DSS. The simulation study provided a proof-of-concept for the 

usefulness of the DSS rules in guiding patients to exercise within their beneficial heart rate 

zones. The real-world pilot study with CVD patients provided evidence on the effectiveness of 

our rule-based approach for unsupervised exercise-based CR, by showing the use and outcomes 

of computerized exercise selection based on user‟s heart rate and motion accuracy. 

 Our work is limited in terms of the number of subjects participating in the described 

studies and their duration. Therefore, longitudinal studies with a larger number of participants 

are needed to further explore the effectiveness of our system especially on the long-term decision 

horizon. Given that sufficient amount of data is collected in such studies, specific personal 

models of exercise which benefit specific individuals the most can be identified. Machine 

learning algorithms can be applied to predict patient performance on the short-term (within an 

exercise session) and outcomes on the long-term (e.g., improvement of cardiovascular fitness as 
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identified in CPET results), and feed their results to the DSS operation by enabling the 

formulation of new rules. Upon the availability of high heart rate events by several patients, i.e., 

occasions in which the heart rate trends toward reaching the peak heart rate, we would be able to 

examine whether the DSS rules contribute in patient safety. Finally, the association of 

motivational messages and behavioural information such as exertion and enjoyment, with patient 

adherence and clinical outcomes in the long-term, will facilitate additional insights on the 

usefulness of DSSs in personalized exercise-based rehabilitation.  

 In conclusion, the aim of this paper was to present a computerized system capable of 

collecting, processing and evaluating diversified data, and generating personalized, performance-

driven adaptations to unsupervised exercise-based rehabilitation programs, which can be shared 

with other systems or components. Experimental results showed the effectiveness of the system 

in beneficial home-based exercise therapy. The operation of such systems and their real-life 

evaluation can contribute in increasing our understanding on the way optimal benefits from the 

use of physical activity interventions can be achieved. In this direction, researchers and designers 

of computer-assisted exercise-based rehabilitation systems can leverage the described approach, 

in order to achieve improved rehabilitation outcomes. 
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Summary Points 

What was already known on the topic? 

 Exercise-based cardiac rehabilitation improves health and quality of life. Computer-

assisted rehabilitation programs delivered at home have the potential to increase 

effectiveness of as well as adherence to regular exercise. 

What this study added to our knowledge? 

 To the best of our knowledge, there has been no systematic approach to the design, 

development and evaluation of dedicated computerized systems in tailoring exercise-

based cardiac rehabilitation programs for the home environment. 

 A computerized decision support system was developed, adopting a rule-based 

approach to evaluate sensed data such as heart rate and motion accuracy, along with 

other clinical and behavioural information, in order to deliver a safe, personalized and 

beneficial execution of an exercise program. 

 Simulation and real-world experimental studies with patients with cardiovascular 
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disease showed the feasibility and effectiveness of the computerized decision support 

system.  

 Computerized decision support systems can guide patients to the beneficial execution 

of their exercise-based rehabilitation program, and they are feasible. 
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