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Abstract
The rapid development of mobile devices capable of sensing our interaction with the envi-
ronment has make it possible to assist humans in daily living such as helping patients with
cognitive impairment or providing customized food intake plan for patients with obesity, etc.
All of this can be achieved through the passive gathering of detailed records of everyday be-
haviour which is termed as lifelogging. For example, the widely adopted smart mobiles and
newly-emerging consumer wearable devices like Google glass, Baidu eye, Narrative clip, etc.
are usually embedded with rich sensing capabilities including camera, accelerometer, GPS,
digital compass, etc. which can help to capture daily activity unobtrusively. Among such
heterogeneous sensor readings, visual media contain more semantics to assist in character-
izing everyday activities and visual lifelogging is a class of personal sensing which employs
wearable cameras to capture image or video sequences of everyday activities. This chapter
will focus on the most recent research methods in understanding visual lifelogs, including
semantic annotations of visual concepts, utilization of contextual semantics, recognition of
activities, visualization of activities, etc. We also discuss some research challenges which
indicates potential directions for future research. This chapter is intended to support readers
in the area of assistive living using wearable sensing, computer vision for lifelogging, human
behaviour researchers aiming at behavioural analysis based on visual understanding.

Chapter points
• Comprehensive description of lifelogging and visual lifelogging in assistive living.
• State-of-the-art computer vision processing for visual understanding everyday con-

texts.
• A fully understanding of everyday activities from static to dynamic point of views.
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• Practical experience and guidance in visual lifelogging interpretation.

1. Introduction and Background

The proliferation of modern sensing devices have opened the possibility for techni-
cally assisted living which benefits the well-being of dependents such as the elderly,
patients in need of special care, and independently healthy people. In order to do so,
it is imperative to understand everyday activities of the individual in order to provide
customized services or treatments. For example, the accurate sensing of the Activities
of Daily Living (ADL) has many benefits, such as in analyzing human lifestyle, diet
monitoring, occupational therapy, aiding human memory, active rehabilitation, etc.
This derives the phenomenon of lifelogging, which is used to describe the process of
automatically, and ambiently, digitally recording our own day-to-day activities for our
own personal purposes, using a variety of sensor types.

1.1. Lifelogging in General
Lifelogging is a very broad topic both in terms of the technologies that can be used,
as well the applications for lifelogged data. Compared to traditional digital monitor-
ing through which users are monitored by others, lifelogging introduces a new form
of sousveillance, i.e., capturing data about oneself for use by oneself [1, 2]. This is
opposed to having somebody else record what we are doing and using the logged data
for some public or shared purpose [3]. Among various applications of lifelogging,
assistive living accounts for an important part of lifelogging research aiming at im-
proving the health and well-being of human both mentally (such as memory recall)
and physically (such as anomaly detection), thanks to the advantages of lifelogging in
measuring activities longitudinally in fine granularity.

1.1.1. Context Sensing for Lifelogging
As an integrated part of our lives, our context is changing dynamically and if we can
capture some parts of this context then these can be used as cues for reflecting our
activities. By “context” we mean the features of where we are, who we are with, what
we are doing and when we are doing it. Since the context includes various aspects of
the environment in which the user interacts with digital devices, the plurality of con-
text can be applied intelligently to detect meaningful changes in the environment for
assistive living for example. The increasing adoption of sensors makes it possible to
gather more context information on mobiles or wearable devices which is an important
data source for activity recognition and understanding . This kind of applications of
heterogeneous sensors in context sensing is named as multimodel context-awareness.
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Based on the collection of low-level sensor information we can infer cues about the
host and the environment.

The earliest motivation behind automatic context recording and generation of per-
sonal digital archives can be traced back to 1945 when Bush expressed his vision [4]
that our lives can be recorded with the help of the technology and the access can be
made easier to these ‘digital memories’. This idea is unprecedentedly acceptable in
the era of mobile sensor network when the cost of integrated sensors, storage and
computational power is much lower. However, there is still a lack of consensus for a
definition of lifelogging. In this chapter, we borrow the definition from [5] as:

BOX 1.1 Definition of Lifelogging
Lifelogging is the process of passively gathering, processing, and reflecting on life ex-
perience data collected by a variety of sensors, and is carried out by an individual, the
lifelogger. The corresponding data gathered in lifelogging is termed as lifelog, which could
be in heterogenous formats such as videos, pictures, sensor streams (like GPS locations
or accelerometer traces).

From this definition, we can find that the accurate quantification of human activities
using lifelogging can help to measure our diets, entertainments, leisures and sports,
etc., more effectively. The longitudinal profiles in terms of digital media can provide
better ways to record, analyze, understanding and further improve ourselves. Such
digitally recorded contexts usually compensates the subjectivity of human feelings
which tends to be limited by human intuition. For example, subjects with obesity
often underreport their intakes and this significantly limits the food recording method
[6, 7].

Context metadata like date, time and location may be sufficient for many lifelog-
ging applications but there are others which require searching through lifelogs based
on visual content, and for this to happen the automatic recording of visual inputs needs
to be introduced. When visual sensing devices such as digital cameras or camera-
enabled mobile devices are involved in the recording, we refer to such lifelogging as
visual lifelogging, as defined in Box 1.2. Because visual information contains more
semantics of events which can be used to infer other contextual information like ‘who,
what, where and when’, visual lifelogging can usually act as the prosthesis of the lifel-
oger’s experience and this forms a stream of lifelogging research and assistive living.

BOX 1.2 Visual Lifelogging
Visual lifelogging represents a branch of lifelogging research in which digital cameras or
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camera-enabled mobile devices are employed as sensors to gather visual media to reflect
the interaction of the lifelogger and his/her environment.

As the enabler for visual lifelogging, camera-enabled sensors are used in wearable
devices to record still images [40] or video [3,13,32] taken from a first-person view, i.e.
representing the subject’s view of everyday activities. Visual lifelogging has already
been widely applied in assistive living applications including aiding human memory
recall, diet monitoring, chronic disease diagnosis, recording activities of daily living
and so on. Example visual lifelogging projects include Steve Manns WearCam [31,32]
, the DietSense project at UCLA [38] , the WayMarkr project at New York University
[4] , the InSense system at MIT [3] , and the IMMED system [33] . Microsoft Research
catalysed research in this area with the development of the SenseCam [12,40] which
was made available to other research groups in the late 2000s.

1.1.2. Visual Lifelogging Categories
In terms of sensing devices, assistive viusal lifelogging can be categorized roughly
into in-situ and wearable lifelogging.

In-Situ Visual Lifelogging
In-situ lifelogging can be described simply as sensing in instrumented environments
such as homes or workplaces. This means that human activities can be captured
through sensors such as video cameras installed in the local infrastructure, therefore
the recording is highly dependent on instrumented environments, such as PlaceLab
(MIT) [8]. Typical use of video sensors for in-situ sensing also includes works as
reported in [9, 10, 11, 12] and [13] . Jalal et al. [11] proposed a depth video-based ac-
tivity recognition system for smart spaces based on feature transformation and HMM
recognition. Similar technologies are applied in other work by the same authors in [9]
which can recognize human activities from body depth silhouettes. In related work by
Song et al. [12], depth data is utilized to represent the external surface of the human
body. By proposing the body surface context features, human action recognition is ro-
bust to translations and rotations. As with Jalal’s work in [10], Song’s work [12] still
depends on static scenes with an embedded sensing infrastructure. Current activity
recognitions in such lifelogging settings usually assume there is only one actor in the
scene and how these solutions can scale up to more realistic and challenging settings
such as outdoors are difficult.

Wearable Visual Lifelogging
Because frequent in-situ observations for activity measuring are are limited in the in-
strumented environments, the scaling up to more realistic and challenging settings
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such as outdoors are difficult. The wildly adoption of mobile or wearable devices
makes it feasible to measure everyday activities digitally with their built-in sensing
and computational capabilities, which helps to alleviate the challenges of in-situ sens-
ing. Meanwhile, activity recognition within such non-instrumented environments us-
ing wearable visual sensing is also a focus of assitive sensing and independent living.
In wearable assistive living, the sensing devices are portable and worn directly by the
subjects and can include head-mounted cameras in works by Hori and Aizawa [14]
and Mann et al. [15] or cameras mounted on the front of chests in works by Blum et
al. [16] and by Sellen et al. [17]. These literatures all reflect a common phenomena of
continuous recording of everyday activity details based on wearable sensing. In this
chapter, without explicit specification, we refer wearable lifelogging to lifelogging for
simplicity purpose.

1.2. Typical Applications in Assistive Living
As we introduced previously, the development of sensors and low-cost data storage
have make the continuous or long-term lifelogging possible. However, this is only
the prerequisite of lifelogging because the necessary condition of lifelogging includes
various applications which motivate the lifeloggers to do so. Gordon Bell, a scientist
in Microsoft, is a senior lifelogger and attempted to digitalize the lifetime archives
including articles, letters, photos, medical recordsin MyLifeBits project [18]. In his
coauthored book Total Recall [19], he envisioned the roles of lifelogging in chang-
ing human daily life from various aspects like study, work, domesticity, etc. In this
book, he also mentioned Cathal Gurrin, one author of this chapter, started to wear a
SenseCam from mid-2006 to gather an extensive visual archive of everyday activities.
According to Gurrin’s experience, the passively captured visual lifelogs constructed
a surrogate memory to re-experience his episodes of interest [19], such as when and
where he met with an important person for the first time.

These overseen or experienced superiority of visual lifelogging all benefits from its
detailed sensing, high storage, and multimedia presentation capabilities. Due to these
advantages, visual lifelogging can be embraced in assistive living to satisfy the needs
of different groups. The typical applications can be summarized as memory aid, diet
monitoring, for ADL analysis, or disease diagnosis, and so on, though new application
areas are emerging.

Memory aid: Memory aid is a potential medical benefit which can be supported
by lifelogging technologies. By recording various aspects about our recent daily ac-
tivities, visual lifelogging will offer an approach for wearers to re-experience, recall
or look back through recent past events. In [20], a user study with a patient suffering
from amnesia is conducted with SenseCam images and highlights the usefulness of
these images in reminiscing about recent events by the patient. In [17], evidence is
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found that SenseCam images do facilitate people’s ability to connect to their recent
past. Similar applications of turning lifelogging into a short-term memory aid can also
be found in [21], and [22]. Another good example of this is the work by Browne et al.
[23] who used the visual lifelog from a SenseCam to stimulate autobiographical recol-
lection, promoting consolidation and retrieval of memories for significant events. All
these clinical explorations seem to agree that visual lifelogging provides a “powerful
boost to autobiographical recall, with secondary benefits for quality of life” [23, 3].

Diet monitoring: Diet monitoring is another application of visual lifelogging for
medical purposes. Though dietary patterns have been proved as a critical contributing
factor to many chronic diseases [24], traditional strategies based on self-reported in-
formation do not fulfill the task of accurate diet reporting. More usable and accurate
ways to analyze dietary information about an individual’s daily food intake are badly
needed. Visual media like images and videos provide hugely increased sources of sen-
sory observations about human activities among which food intake can be monitored
for diet analysis. The application of visual lifelogging in diet monitoring can support
both patients with obesity and health care professionals analysing diets. DietSense
[24] is an example of such a lifelogging software system using mobile devices to sup-
port automatic multimedia documentation of dietary choices. The captured images
can be post facto audited by users and researchers with easy authoring and dissemi-
nation of data collection protocols [24]. Professional researchers can also benefit in
performing diet intake studies with the help of lifelog browsing and annotation tools.
Both audio recorders and cameras are combined in [25]. According to [26], individu-
als self-reported energy intake frequently and substantially underestimates true energy
intake, while Microsoft SenseCam wearable camera can help more accurately report
dietary intake within various sporting populations.

Disease diagnosis: Project IMMED [27] is a typical application of lifelogging to
ADL, the goal of which is assessing the cognitive decline caused by dementia. Audio
and video data of the instrumented activities of a patient are both recorded in [27] and
indexed for medical specialists’ later analysis. In [28], a wearable camera is used to
capture videos of patients’ activities of daily living. A method for indexing human
activities is presented for studies of progression of the dementia diseases. The indexes
can then be used for doctors to navigate throughout the individual video recordings
in order to find early signs of the dementia in everyday activities. The same rationale
is also reported in [29]. Most recently, by combining biosensor information with fre-
quent medical measurements, wearable devices proved to be useful in identification of
early signs of Lyme disease and inflammatory responses [30].

ADL analysis: More concerns is now being shown in modern society about the
individual health and well-being of everyday life. However, any long-term investiga-
tion into daily life comes across lots of difficulties in both research and the medical
treatment area. Occupational therapy aims to analyze the correlation between time
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spent and our actual health, and there is a growing body of evidence indicating the
relationship [31, 32]. Observational assessment tools are needed to correctly estab-
lish care needs and identify potential risks. Long-term daily routines and activity en-
gagement assessments are necessary to evaluate the impact on activities of daily living
caused by diseases or old age, hence to provide a proper programme towards the needs
of each patient. While traditional self-reporting or observational measures are time-
consuming and have limited granularity, lifelogging can provide an efficient approach
to providing broader insights into activity engagement. [33] has shown that wearable
cameras represent the best objective method currently available to categorise the social
and environmental context of accelerometer-defined episodes of activity in free-living
conditions. In [34], the feasibility of using visual wearable cameras to reconstruct time
use through image prompted interview is demonstrated.

2. Semantic Indexing of Visual Lifelogs: a Static View

While this chapter focuses on computer vision for lifelogging applications, this takes
place within the context of a huge growth in the amount, and use, of generated mul-
timedia content. Nowadays we are not just consumers of multimedia through the
traditional channels of broadcast TV, movies, etc., we are also generators of multime-
dia, especially visual multimedia, though the widespread availability of smartphones
and the strong support for sharing of our images and vidoes through our online social
networks like Facebook and Twitter. While the ubiquitous mobile smartphone device
has provided access to technology for creating and sharing of visual media and has
catalysed the growth in such media creation so that we can easily create permanent
memory records of our lives, this then creates the huge challenges to analyse, index,
and retrieve from this visual media.

Perhaps the easiest way in which we provide access to visual media, from whatever
source, is to use automatically created metadata. In fact this is true of all retrievable
artifacts, whether analog, digitised or born digital, and to support that there is a legacy
of decades of work in developing standards for metadata creation and access. This
varies from Dublin Core [35] which is general purpose, to EXIF metadata for images
taken with almost all cameras. From such simple metadata as date, time and location
we can actually go quite far and support access to images based on grouping images
from the same, or different, users into “events”, and we can then augment the descrip-
tion of images and videos for these events using external data. For the specific case of
lifelogging, there is past work which showcases such lifelog event augmentation [36]
using tags from similar images taken at the same location and the same, or different
times.

While this is inventive and satisfies some information seeking needs, and is com-
pletely automated, by adding even a small amount of content processing we can go
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much further. Consider the image shown in Figure 1.1. Knowing the date, time and
GPS coordinates from EXIF metadata, resolving this using a gazeteer, drawing some
further linked data from Wikipedia or another open source, analysing the content to
perform face detection and recognition against a database of friends’ faces and resolv-
ing who the person is as well as detecting some simple setting characteristics, we can
tag this image with the following . . . 1 person, date = “22 Feb 2007”, time = “ 2pm”,
setting = “outdoors, daylight”, location = “ Auron, Southern France”, weather =
“sunny”, setting = “ski resort”, altitude = “ 1,622m”, setting = “snow”, setting =
“manmade environment”.

Figure 1.1 Using metadata and lightweight content analysis to tag an image.

The next obvious enhancement to describing image content is manual annotation.
Annotation is the process of generating high level semantic metadata to describe some-
thing and has become the de facto norm in applications like Twitter where we use
hashtags, in annotating the presence of our friends’ faces in Facebook images, and
there are many other cases where we use dedicated forms to collect structured data,
like completing a web form for a quotation for car insurance. This is both boring, and
not scalable, and even where we outsource a task like image annotation to a crowd as
in Amazon’s Mechanical Turk or microworkers, or even if we gamify the annotation
through micro-games for online players [37] or more sophisticated games with a pur-
pose [38],this still does not scale upwards to very large numbers plus there is a latency
between time of image capture and time of annotation which could be important if we
want to do anything in real time with a lifelog.

In reality, the only way to achieve real time analysis and content indexing of lifelog
imagery is to automate the process and initial efforts in this area were to leverage the
developments in semantic annotation of images, by pre-defined tags. Automatic an-
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notation of images has been a long-standing application of machine learning and for
many years researchers tried to use low-level image (and video) features as a basis for
building classifiers for individual content tags. These were based on extracting fea-
tures such as colour histograms, dominant colours, textures, and shapes from entire
images and also from localised areas within images. In recent years additional fea-
tures such as SIFT/SURF characteristics have been included and indeed the MPEG-7
standard which was explicitly defined to encode image and video metadata, supported
this. Extracting low level features form an image is computationally fast and can be
used to build a compact representation and hence a small feature space, for images.
Once a ground truth of images annotated to the presence, or absence, of a semantic
concept or tag is available, conventional machine learning tools can be used to learn
the differences between those that have, and do not have, the particular tag, all done
within the feature space of the low level features.

For many years, within the context of the TRECVid video benchmarking activ-
ity, researchers struggled to achieve high enough accuracy for the classifiers, as well
as large enough numbers of tags in order to be usable [39]. Then, in 2012, things
changed with the significant improvements in recognition accuracy obtainable when
deep learning networks were applied to this computer vision problem for classifying
and tagging images, all led by the work of Geoffrey Hinton’s team [40]. Suddenly
there was a perfect storm of conditions for effective and usable automatic image tag-
ging — accuracy levels improved almost to human levels of agreement, large data
repositories of tagged images became available through the manual annotation of user
generated content, and the large computational requirements needed to train (and run)
deep networks could be addressed by using relatively cheap GPUs.

The level of accuracy and the scale and size of these (independent) taggers is
plateauing and levelling off and there are now emerging cloud services which can au-
tomatically tag. The output of one of these, www.imagga.com is shown in Figure 1.2.
These services can easily be hosted on cloud services and we can expect them to be
built into consumer photography and social media image processing. Indeed Google
Photos and Facebook now tag uploaded images in this way, initially presented as an
assistance to those with visual impairment.

While these are extremely useful, there is still a long way to go with this technology
because, for example, semantic concepts are treated as independent of each other and
there’s no consolidation across the set of assigned tags (though as we show later in
Section 3 we are making progress in this area).

When we examine the developments in semantic image tagging through the lens of
lifelogging then for a lifelog, a simple set of semantic tags is not what we really want.
This has recently been highlighted in work on the Kids’Cam project which annotated
almost 1.5M images taken from wearable cameras by 169 pre-teen children in New
Zealand in a project to measure children’s exposure to fast food advertising [41]. Here
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Figure 1.2 Automatically tagging a lifelog image using www.imagga.com.

we found that where there are errors in the machine learning recognition of semantic
tags in a lifelog image, these need to be pruned in a much more dynamic manner from
the set of tags.

3. Utilizing Contextual Semantics: a Dynamic View

In Section 2, the automatic indexing of visual lifelogs is discussed based the detection
of concepts from low-level visual features. Though effectiveness have been shown us-
ing the state-of-the-art machine learning methods, current concept detectors are mostly
the one-per-class classifiers which ignore the contextual correlation between concepts.
However, the appearance of concepts is not independent with each other. Instead, the
co-occurrence and re-occurrence patterns of various concepts implies that concepts
interact during the evolution of everyday activity engagements. This section will elab-
orate the utilization of concept contextual semantics which benefits both the indexing
of visual lifelogs and the characterization of everyday activities.

3.1. Modeling Global and Local Occurrence Patterns
One day’s continuous visual lifelogs such as image streams can usually be segmented
such as using the technique introduced in [42], into dozens of events which eases
the representation and interpretation of everyday engagements. A lifelog event corre-
sponds to a single activity in the wearer’s day such as watching TV, commuting, or
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eating a meal, and the durations vary a lot due to the engagement natures of various
activities.

After applying automatic image indexing methods as introduced in Section 2, we
can characterize each lifelog event as a series of concept detection results performed on
each of the images representing it. Assume that event Ei consists of successive images
I(i) = {Im(i)

1 ; Im
(i)
2 ; :::; Im

(i)
k } and we obtained M automatic concept annotators in Section

2. By representing Im(i)
j with a vector of concept appearance C(i)

j = {c(i)
j1; c

(i)
j2:::c

(i)
jM}, the

total event set can be described as a confidence matrix CN×M, where N =
Pn

i=1 ki and
ki is the number of images in each event Ei.

Compared to low-level features like color, shape or texture features, the results of
concept detection provides a more natural way to describe and index vision content
which is close to human expectations. However, the initial detection results such as
CN×M is still noisy because the current machine learning methods are far from be-
ing perfect due to the dependence on the large volume of training corpora. Though
breakthroughs have been achieved using deep learning [40], the effective transferring
of learned models to different application domains such as visual lifelogs is still ques-
tionable.

Detection refinement or adjustment methods [43, 44, 45, 46, 47] represent a stream
of post-processing method which can enhance detection scores obtained from indi-
vidual detectors, allowing independent and specialized classification techniques to be
leveraged for each concept. In this section, we introduce an approach which can ex-
ploit the inter-concept relationships implicity from concept detection results of CN×M

in order to provide better quality semantic indexing. This is in contrast to current
refinement methods which learn inter-concept relationships explicitly from training
corpora and then apply these to test sets. Because acceptable detection results can be
obtained for concept with enough training samples, as witnessed by TRECVid bench-
mark [39] and ImageNet competition [48], it is feasible to utilise detections with high
accuracies to enhance overall multi-concept detections since the concepts are highly
correlated.

3.1.1. Factorizing Indexing Results
The framework of result factorization is to exploit the global pattern in concept occur-
rence context. The intuition behind the factorization method is that, the high-probable
correct detection results are selected to construct an incomplete but more reliable ma-
trix which can then be completed by a factorization method. Depending on the orga-
nization of concept detection result C, we can apply different forms of factorizations
such as matrix or tensor factorizations in order to to overlay a consistency on the un-
derlying contextual pattern of concept occurrences. Co-occurrence and re-occurrence
patterns for concepts are a reflection of the contextual semantics of concepts since
everyday concepts usually co-occur within images rather than in isolation. In some
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potentially long-duration activities like “using computer”, “driving”, etc., the indicat-
ing concepts may appear frequently and repeatedly in the first-person view.

Figure 1.3 NTF-based concept detection enhancement framework.

As we can see from Fig. 1.3, the concept detection result C can be further repre-
sented as a 3-way tensor T . The rationale behind this is to avoid information loss from
event segmentation and utilise the temporal features reflected in different events. As
illustrated in Fig. 1.3, a tensor is advantageous in representing the structure of multi-
dimensional data more naturally. The procedure for concept tensor construction and
factorization is shown in Fig. 1.3. As illustrated, each slice is a segmented part of an
event and is represented by a confidence matrix. The slices are then stacked one below
another to construct a three-dimensional tensor which preserves the two-dimensional
characters of each segment while keeping temporal features along the event dimension
and avoids significant loss of contextual information.

In tensor factorization, the Canonical Decomposition (CD) [49] model simplifies
the approximation of tensor C as a sum of 3-fold outer-products with rank-K decompo-
sition T̂ =

PK
f =1 U(1)

· f ⊗ U(2)
· f ⊗ U(3)

· f , which means each element T̂i jk =
PK

f =1 U(1)
i f U(2)

j f U(3)
k f .

This form of factorization constrains that each factor matrix has the same number of
columns, i.e., the length of latent features has the fixed value of K. When n = 2, T
is simply a 2-mode tensor which is indeed the initial matrix C and the factorization
degenerates as T̂ =

PK
f =1 U(1)

· f ⊗ U(2)
· f = U(1)U(2)T .

The CD approximation factorization defined above can be solved by optimizing
the cost function defined to quantify the quality of the approximation. For an arbitrary
n-order tensor, the cumulative approximation error can be used to define the cost func-
tion, which has the form F = 1

2‖T − T̂‖2F = 1
2‖T −

PK
f =1 ⊗

n
i=1U(i)

· f ‖
2
F . In factorizing the

confidence tensor, the weighted measure is more suitable since detection performance
is different due to the characteristics of concepts and quality of the training set. Be-
cause each value ci j in C denotes the probability of the occurrence of concept v j in
sample si, the estimation of the existence of v j is more likely to be correct when ci j

is high, which is also adopted by [43, 50] under the same assumption that the initial
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detectors are reasonably reliable if the returned confidences are larger than a threshold.
To distinguish the contribution of different concept detectors to the cost function, the
weighted cost function is employed as

F =
1
2
‖T − T̂‖2W =

1
2
‖

2√
W ◦ (T − T̂ )‖2F

=
1
2

X
i1;i2;:::;in

wi1;i2;:::;in(Ti1;i2;:::;in −

KX
f =1

⊗n
i=1U(i)

· f )2

s.t. U(1);U(2); :::U(n) ≥ 0 (1.1)

where ◦ denotes element-wise multiplication, order-n (n-dimensional) tensor W and
T ∈ RI1×I2×:::×In (I1; I2; :::; In denotes the size of each of the tensor’s dimensions), W
denotes the weight tensor whose elements are larger for reliable and lower for less
reliable detections, and ‖ · ‖2F denotes the Frobenius norm, i.e., the sum of squares of
all entries in tensor. The nonnegative constraints guarantees each component described
by U(i) are additively combined. The discussion of the solution of the above formalized
problem is out of the scope of this chapter, we provide the iterative updating rule using
multiplicative method [51, 52], as:

U(t)
it f ← U(t)

it f

P
I−it (W ◦ T )it

Q
r,t U(r)

ir fP
I−it (W ◦ T̂ )it

Q
r,t U(r)

ir f

; 1 ≤ t ≤ n (1.2)

where I = i1; i2; :::; in is an n-tuple index whose value is in range of it ∈ [1; It]; 1 ≤
t ≤ n, I − it denotes the n − 1 subset with it removed from I and (·)it denotes the t-
th dimension is assigned with value it for a given tensor. Taking 3-way tensor as
an instance, the refinement can be expressed as a fusion of confidence tensors after
factorization:

T ′ = �T + (1 − �)T̂ = �T + (1 − �)
KX

f =1

U(1)
· f ⊗ U(2)

· f ⊗ U(3)
· f (1.3)

3.1.2. Temporal Neighbourhood-Based Propagation
For much of the visual media we use for assitive living purpose there is a temporal
aspect. For example the image streams captured continuously in visual lifelogging is
inherently temporal as it captures imagery over time and thus they may have related
content because they are taken from the same scene or have the same characters of
related activities. For such “connected” visual media it makes sense to try to exploit
any temporal relationships when post-processing initial concept detection, and to use
the “neighbourhood” aspect of visual media.

Following refinement based on global context using high-order tensor or the degen-
erated matrix factorization, detection results will have been adjusted in a way consis-
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tent with the latent factors modeled in the factorization. While this procedure exploits
general contextual patterns which are modeled globally by factorization, the similarity
propagation method can further refine the result by exploiting any local relationships
between samples.

A new confidence matrix C′ can be recovered from the refined tensor T ′ and C′

has the rows and columns representing image samples and concepts respectively. As
a refined result of CN×M, C′ can provide better measures to localize highly related
neighbours for similarity-based propagation. The similarity between samples si and s j

can be calculated by Pearson Correlation, formulized as:

Pi; j =

PM
k=1(c′ik − c̄′i)(c′jk − c̄′ j)qPM

k=1(c′ik − c̄′i)2
qPM

k=1(c′jk − c̄′ j)2

where c′i = (c′ik)1≤k≤M is the i-th row of C′, and c̄′i is the average weight for c′i . To
normalize the similarity, we employ the Gaussian formula and denote the similarity as
P′i; j = e−(1−Pi; j)2=2�2

, where � is a scaling parameter for sample-wise distance. Based on
this we can localize the k nearest neighbours of any target sample si.

The localized k nearest neighbours can be connected with the target sample using
an undirected graph for further propagation. For this purpose, the label propagation
algorithm [53] is derived to predict more accurate concept detection results based on
this fully connected graph whose edge weights are calculated by the similarity metric
as calculated by P′i j. Mathematically, this graph can be represented with a sample-
wise similarity matrix as G = (P′i; j)(k+1)×(k+1), where the first k rows and columns stand
for the k nearest neighbours of a target sample to be refined which is denoted as the
last row and column in the matrix. The propagation probability matrix G′ is then
constructed by normalizing G at each column as

g′i; j =
P′i; jPk+1

l=1 P′l; j

which guarantees the probability interpretation at columns of G′. By denoting the row
index of k nearest neighbours of a sample si to be refined as ni (1 ≤ i ≤ k) in C′ and
stacking the corresponding rows one below another, the neighbourhood confidence
matrix can be constructed as Cn = (c′n1

; c′n2
; :::; c′nk

; c′i). The propagation algorithm is
carried out iteratively by updating

Ct
n ← G′Ct−1

n (1.4)

where the first k rows in Cn stand for the k neighbourhood samples in C′ indexed by
subscript ni and the last row corresponds to the confidence vector of the target sample
si. Since Cn is a subset of C′, the graph G constructed on Cn is indeed a subgraph of
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the global graph constructed on C′. During each iteration, the neighbourhood concept
vector c′ni

needs to be clamped to avoid fading away. After a number of iterations, the
algorithm converges to a solution in which the last row of Cn is a prediction based on
similarity propagation. In this way, the local relationships between neighbours can be
used for a more comprehensive refinement.

3.2. Attribute-Based Everyday Activity Recognition
Though concept detection and refinement can provide a semantic representation for
visual assistive living, many assistive living applications require the capability to rec-
ognize semantic concepts which have a temporal aspect corresponding to activities or
events, i.e., characterizing the whole time series rather than merely interpreting single
images. While low-level feature-based methods have been shown to be ill-suited for
multimedia semantic indexing due to the lack of semantics for user interpretation, high
dimensionality, etc., high-level concept attributes are widely employed in the analysis
of complex semantics corresponding to things like events and activities. Since such
semantic structures can be represented as typical time series, the recognition of events
or activities can be regarded as dynamics-based recognition using concept detection
results. This is usually carried out by representing the time series as a sequence of
units such as video clips or image frames. After concatenating the results of concept
detectors on each unit, time series can then be represented by a temporally-ordered
sequence of vectors, as shown in Fig. 1.4.

Fig. 1.4 shows the paradigm of utilising concept temporal dynamics for high-level
activity detection, in which typical indoor activities like “cooking”, “watching TV”,
etc. are demonstrated, as well as the corresponding trajectories. The concept detec-
tion results temporally aligned with these activities are depicted as confidence bars
in the diagram, to represent the likelihood of the presence and absence of concepts,
respectively. It is important to note that the concept detection shown in Fig. 1.4 does
have errors and this can affect further analysis to various degrees. Therefore, in order
not to propagate these errors into the subsequent analysis for activity and behaviour
characterization, the original concept detections can be enhanced using the refinement
methods as introduced in Section 3.1.

As shown in Fig. 1.4, everyday activities can be regarded as stochastic temporal
processes consisting of various lengths of concept vectors. With this, the dynamic evo-
lution of concept vector occurrences can characterize a deeper meaning of underlying,
or derived, human activities if the evolution patterns can be modeled. Attribute-based
event and activity detection has attracted much research attention. More importantly,
it is found that although state-of-the-art concept detections are far from perfect, they
still provide useful clues for event classification [54]. [55] also revealed that this repre-
sentation outperforms – and is complementary to – other low-level visual descriptors




