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Abstract 
Background 
Analysis of lower limb exercises is traditionally completed with four distinct methods (i) 3D motion capture; (ii) 
depth-camera based systems (iii) visual analysis from a qualified exercise professional; (iv) self-assessment. 
Each method is associated with a number of limitations. 

Objective 
The aim of this systematic review is to synthesize and evaluate studies which have investigated the capacity for 
inertial measurement unit (IMU) technologies to assess movement quality in lower limb exercises. 

Data Sources 
A systematic review of PubMed, ScienceDirect and Scopus was conducted. 

Study Eligibility Criteria 
Articles written in English and published in the last 10 years which contained an IMU system for the analysis of 
repetition-based targeted lower limb exercises were included. 

Study Appraisal and Synthesis Methods 
The quality of included studies was measured using an adapted version of the STROBE assessment criteria for 
cross-sectional studies.  The studies were categorised in to three groupings: exercise detection,  movement 
classification or measurement validation. Each study was then qualitatively summarised. 

Results 
From the 2452 articles that were identified with the search strategies, 47 papers are included in this review.  

Conclusions 
Wearable inertial sensor systems for analysing lower limb exercises are a rapidly growing technology.  Research 
over the past ten years has predominantly focused on validating measurements that the systems produce and 
classifying users’ exercise quality. There have been very few user evaluation studies and no clinical trials in this 
field to date. 

 

Key Points 
Inertial measurement unit (IMU) systems have been extensively validated to successfully measure joint angle 
and temporal features during lower limb exercises. 

It is less understood if IMU systems can validly compute kinetic measures pertaining to lower limb exercises. 

IMU systems, which incorporate machine learning in to their data analysis pathways, have also been found to be 
effective in automated exercise detection and in classifying movement quality across a range of lower limb 
exercises. 
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1. Introduction 
Lower limb exercises are used in rehabilitation, performance assessment, injury screening and strength and 

conditioning (S&C) contexts [1–3]. Movement is deemed ‘optimal’ during these exercises when injury-risk is 

minimised and performance is maximised [4]. There are currently 4 distinct methods of assessing movement 

during lower limb exercise: (i) 3D motion capture; (ii) depth-camera based systems (iii) visual analysis from a 

qualified exercise professional; (iv) self-assessment. Each method is associated with a number of limitations. For 

instance,  3-D motion capture systems are expensive (> €100,000) and the application of skin-mounted markers 

may hinder normal movement [5,6]. Furthermore, data processing can be time intensive and specific expertise is 

often required to interpret the processed data and to make recommendations on the observed results. Therefore, 

these systems are not frequently used to assess exercise technique beyond the research laboratory [7]. A cheaper 

and more accessible alternative (< €500) is the use of depth-camera systems such as the Microsoft Kinect. In 

recent times, such systems have been increasingly leveraged for both research and commercial purposes due to 

their low cost and ease of setup. However, such systems have several key limitations. Depth-camera systems 

often lack accuracy when compared to gold-standard marker-based systems. Such systems operate by tracking 

specific body locations and re-creating body segments based on these locations. As such, confusion and resultant 

poor accuracy is often caused by crossing over of body segments, unsuitable lighting (outdoors), movement of 

clothing and movement of other people [8]. As a result, users often must engage in time intensive manual re-

labelling of body segments to ensure an accurate system. Secondly, while these systems are relatively 

unobtrusive, they do require the user to set up a camera in an empty 2m2  area. However, depending on the 

application space (clinic or gym), this may not be possible due to the presence of other people and equipment 

(squat rack/ weight bench) that may confuse the system, resulting in poor accuracy.  In clinical and gym-based 

settings, visual assessment is typically used to assess lower limb exercises. Visual assessment of human 

biomechanics is subjective and unreliable amongst novices and experts alike, as the need to visually assess 

numerous constituent components simultaneously is challenging [9]. This issue is compounded by the fact that 

athletes/clients may not be able to afford the supervision of a qualified professional (such as a physiotherapist, 

athletic therapist or personal trainer) in many instances. For this reason, individuals largely rely on self-

assessment of their exercise technique in gym-based settings. The obvious limitation with this approach is that 

the individual may lack the knowledge required to assess their movement patterns, while simultaneously 

completing an exertive movement and assessing it without bias can be difficult [10].  

Due to these limitations, in the past 15 years there has been an increase in interest in the automated assessment of 

lower limb exercises with wearable inertial measurement units (IMUs). Wearable IMUs are small, inexpensive 

sensing units (≈ €50-1,000) that consist of accelerometers, gyroscopes and/or magnetometers. They are able to 

acquire data pertaining to the inertial motion and 3D orientation of individual limb segments [11,12]. Self-

contained, wireless IMU devices are easy to set up, and allow for the acquisition of human movement data in 

unconstrained environments [13]. IMU systems can robustly track a variety of postures in the complex 

environment associated with training in the ‘real-world’, unlike camera-based systems, which are hampered by 

location, occlusion and lighting issues [14]. IMUs have also been shown to be as effective as marker-based 
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systems at measuring joint angles [7,15,16]. Therefore, IMUs have been recently employed for analysing a range 

of components of lower limb exercises. This includes detecting and quantifying the number of repetitions that 

are completed of a given exercise [17,18] , computing the range of motion (ROM) at key joints during these 

repetitions [19,20], temporal analysis of exercises [21,22], classifying one’s performance of an exercise as 

acceptable or as a specific deviation from acceptable [3,23], or extracting exercise performance measures such as 

jump height and reactive strength index [24]. 

In the past decade a number of reviews have assessed the literature pertaining to exercise analysis with wearable 

sensors. Fong and Chan reviewed the use of wearable IMUs in lower limb biomechanics studies, however the 

focus of this work was broad, and predominantly reviewed gait based papers [25]. Another early review covered 

the broad scope of health and wellness, rehabilitation, and injury prevention with both wearable and ambient 

sensor systems [26]. The field has expanded considerably since then. Recently, a systematic review was 

published by Wang et al. which classified studies involving upper limb wearable systems for rehabilitation [27]. 

The ‘wearability’ of such systems and evidence supporting the systems’ effectiveness were also reviewed. Prior 

to this, this group published a review of studies on upper limb rehabilitation systems from 2008 to 2013 [28]. A 

variety of works have given an in depth summary of movement measurement and analysis technologies, 

however these do not focus on exercise analysis or the lower limb [29–31].  Cuesta-Vargas et al. reviewed the 

use of inertial sensors in human motion analysis and showed their capability for task-specific analysis [32]. 

Other studies have investigated how feedback affects therapy outcomes, however these systems did not 

necessarily involve wearable IMUs and focused predominantly on the upper extremity [33–35]. To date, a 

contemporary systematic review investigating the capacity for IMU technologies to quantify movement quality 

during lower limb exercises is not available. Therefore, the aim of this systematic review is to synthesize and 

evaluate studies which have investigated the capacity for IMU technologies to assess movement quality in lower 

limb exercises such as straight-leg raises, squats and countermovement jumps. In particular, we aim to describe 

the sensing set-ups used, inclusive of type (accelerometer and/or gyroscope and/or magnetometer), number and 

position of the sensing units. We also aim to describe the measurements each system extracted from the sensing 

units (e.g. ROM, power) and how they were validated. We will also establish which exercises were analysed by 

such systems. This review serves to summarise a rapidly growing field which has not been specifically reviewed 

in over 7 years [25]. It will identify clear gaps in the literature which are of interest to the research community 

and can be used as a resource for sports-medicine practitioners to build an understanding of the capabilities of 

IMU systems in assessing lower limb exercises. We hypothesise that IMU systems may be an effective and 

affordable tool to analyse components of lower limb exercises objectively and efficiently.  

 

2. Methods 

2.1. Literature Search Strategy and Study Selection Process 
The protocol for this review was performed in accordance with the PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) statement [36]. A literature search was completed within the following 

3 databases: PubMed, Scopus and ScienceDirect. Papers regarding the following were selected: exercise, lower 

body, movement monitoring and IMUs. MeSh (Medical Subject Heading) terms or title/abstract keywords and 
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their synonyms and spelling variations were used in several combinations and modified for every database. 

Articles published from January 2007 to May 2017 were reviewed. The 2007 start date was chosen, to minimise 

irrelevant search results, as it represents the first known paper published in the field [17]. The general search 

strategy including the search terms used, are listed in Table 1. This search includes refereed journal papers and 

peer-reviewed articles published in conference proceedings. Only articles written in the English language were 

included. The article selection process consisted of the following steps using the PRISMA [36] guidelines 

(Figure  1): 1) A computerized search strategy was performed for the period January 2007 until September 2017; 

2) After removal of duplicates, titles and abstracts of the remaining articles were screened; 3) The reviewer read 

the full texts and selected articles based on the inclusion/exclusion criteria (Table 2). In cases where a journal 

paper covered the contents reported in the earlier conference publications, the journal paper was preferred over 

the conference paper. In cases where the overlap was only partial, multiple publications were used as sources. 

Due to the relative novelty of IMU technologies, the grey literature was not searched; only peer-reviewed 

scientific articles were eligible for inclusion. We deemed this appropriate due to the non-interventional nature of 

studies in this field. 

 

*Table 1 about here* 

*Table 2 about here* 

 
 

2.2. Data Extraction Process 
Data extraction was completed by two authors (MOR and CD). Where discrepancies occurred, these were 

discussed and the associated papers were reassessed. A standardised data extraction form was utilised. Details 

about the study design, the exercises investigated, the sensor systems (e.g. accelerometer-only vs accelerometer 

+ gyroscope) and the set-ups (e.g. multi-site vs single-site) used were ascertained. The studies were divided into 

three categories based on the aims/objectives of this review: exercise detection (ED); movement classification 

(MC); measurement validation (MV). Each study was then qualitatively summarised (aims, findings and 

conclusions based on these findings).   

2.3. Assessment of Study Quality 
Two authors (MOR and CD) evaluated the quality of the studies deemed eligible for inclusion using an adapted 

version of the STROBE assessment criteria for cross-sectional studies [37], which was devised by author 

consensus. Specifically, each study was rated on 10 specific criteria which were derived from items 1, 3, 6, 8, 11, 

14, 18, 19, 20 and 22 of the original checklist. In cases where the authors completing paper rating (MOR or CD) 

were an author of a paper included in this review, the paper was instead rated by a different author of this paper 

(WJ) to minimise the risk of bias.  Final study ratings for each reviewer were collated and examined for 

discrepancies. Any inter-rater disagreement was resolved by consensus decision. Once consensus was reached 

for all study ratings, overall quality scores were collated by summing those criteria, providing a score out of 10. 

Studies were considered to be of high quality when >7 domains were scored as high (1). If >3 domains were 

scored as low (0), the study was considered of low quality.  
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3. Results 

3.1. Database Search and Paper Lists 
An overview of the results in the different stages of the article selection process is shown in Figure 1. From the 

2452 articles that were identified with the search strategies, 47 papers are included in this review following the 

selection process.  

The quality of the included reviews is displayed in Table 3. Based on our pre-defined criteria, 26 of the 47 

included studies were deemed as being of high quality. Briefly, most studies adequately reported the methods of 

data acquisition (42/47), the outcome variables of interest and the method of statistical analysis employed 

(43/47). In contrast, many authors did not adequately discuss the limitations of the study (24/47), detail the 

eligibility criteria of the included sample (19/47) or cite relevant literature when discussing their results (27/47).  

 

 

*Table 3 about here* 
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Figure 1: Prisma flowchart of the results from the literature search. 

Figure legend:  IMU = inertial measurement unit, HAR = human activity recognition 

 

3.2. Sensor Set-ups 
Table 4 categorizes the included articles based on whether the systems they adopted used multiple/single sensor 

units, compared sensor units at a variety of anatomical locations, and/or compared multiple sensor set-ups to 

single sensor set-ups for each application. 

There was a large degree of heterogeneity in the included studies’ sensor set-ups. In particular, the types of 

sensors on board each sensing unit (accelerometer and/or gyroscope and/or magnetometer) and the number of 

sensing units required to be worn by system users varied. Table 5 demonstrates the distribution of sensors used 

in the included studies. 
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*Table 4 and 5 about here* 

3.3. Exercises Investigated Versus Study design 
In the included studies, a total of fifty-three exercises were evaluated using a wearable inertial sensor system 

(Table 6). The most commonly investigated single-joint, uni-planar exercise was the lying straight leg-raise. 

There were three single-joint multi-planar exercises investigated. There were also two multi-joint, uni-planar 

exercises and twenty-six multi-joint, multi-planar exercises investigated. The most investigated of these were the 

sit-to-stand and squat exercises.  

*Table 6 about here* 

3.4. Qualitative Review 

3.4.1. Measurement Validation 
Twenty-eight studies identified for inclusion in this review attempted to validate wearable motion sensor systems 

[7,20–22,24,38–61]. These twenty-eight studies were categorised as evaluating either concurrent validity (Table 

7) or construct validity (Table 8). For the purposes of this review, concurrent validity was defined as when a 

newly developed tool such as a wearable sensor system is compared to another test which is considered to be the 

“gold standard” to measure the construct in question [62]. Construct validity compares a new wearable system’s 

output to another test that measures a similar construct but that is not a “gold standard” (convergent validity), or 

evaluates the system’s capacity to discriminate between known-groups in a cross sectional (discriminative 

validity; known groups) or longitudinal (discriminative validity; responsiveness) manner  [62]. 

Concurrent Validity 
Seventeen of the studies included in this review sought to compare a wearable sensor system’s output to a tool 

used in current clinical practice (e.g. goniometer for joint angle measurement) or gold standard biomechanical 

measurement tools (e.g. optoelectronic motion capture systems and force plates) [7,20,21,24,38–50]. These 

studies are summarised in Table 7. 

*Table 7 about here* 

Construct validity 
Eleven studies investigated the construct validity of wearable motion systems for specific applications in 

tracking lower limb exercises. Of these, four assessed convergent validity [51–54]. Five studies pertained to 

known-groups validity [22,55–58]. Two studies evaluated the longitudinal validity of a lower limb wearable 

sensor system in assessing joint ROM throughout a rehabilitation programme [60,61]. All eleven studies which 

predominantly evaluated construct validity are summarised in Table 8. 

*Table 8 about here* 

 

3.4.2. Exercise Detection 
Ten studies were identified for which automated detection of the exercise being completed was a key objective 

[14,17–19,63–68]. These studies are summarised in Table 9. It is difficult to directly compare the exercise 
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detection sensitivity, specificity and accuracy across different studies. This is due to the vastly different data sets 

and cross-validation method used to compute system accuracy.  

*Table 9 about here* 

3.4.3. Movement Classification 
Eleven studies investigated the utilisation of wearable IMU systems for quantifying exercise technique 

[3,19,23,64,69–75]. Table 10 summarises the sensing set-ups, movement measure which was classified, 

methodology and performance metrics for each system identified in this area.  

*Table 10 about here* 

 
 

4. Discussion 

4.1. Sensor Set-ups 
Various approaches have been employed when considering sensor set-ups for analysing lower limb exercises. As 

shown in Table 6, some studies opted solely for using one sensor type (accelerometer, gyroscope or 

magnetometer) whereas others opted for combinations of these in IMUs. The use of additional on-board sensors 

will reduce a sensing unit’s battery life, but allows for a greater variety of motion data to be captured from a user 

[12]. Combining accelerometer, gyroscope and magnetometer data also allows for improved accuracy in 

computing each unit’s 3D orientation [11]. The authors of this review believe that collecting data with all three 

inertial sensor types and then comparing system quality (i.e. accuracy or agreement with gold standard 

measurement) with individual sensor types or reduced combinations is the best approach. This enables a 

systematic approach to assess the cost-benefit of using additional sensors on board each IMU.  

Similarly, the cost-benefit of using wearable sensing set-ups which use multiple sensing units can be compared 

to reduced sensor sets or single sensing unit set-ups by initially completing data collection with comprehensive 

set-ups. System efficacy can then be assessed when using data from multiple sensing units and each reduced 

combination of sensing units. This approach has been applied in movement classification and has shown 

promising results for single sensor systems in analysing early stage and late stage, lower limb rehabilitation 

exercises [3,70,71].  Using reduced sensing set-ups potentially reduces the total cost of systems and increases 

their practicality for end users. 

A criticism of the approach to sensor set-up employed by all the included studies in this review is that none 

reported evidence of engaging target end-users when selecting their set-up. As previously mentioned, sensor set-

up can influence a system’s cost, usability, battery-life, accuracy and functionality. It is likely that the 

importance of each of these factors would vary across differing types of end-users. For instance, a recreational 

gym goer may prioritise cost, usability and battery life which may favour a minimal sensor set-up whereas an 

elite sports team may prioritise accuracy and functionality which could favour a comprehensive set-up. It is the 

authors’ contention that completing relevant qualitative research regarding sensor set-up with the target end-
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users of a system, in advance of its development, could be of great benefit. It could also streamline the process of 

transferring systems from a research environment in to a real-world offering. 

4.2. Measurement Validation Studies 
The concurrent validity of wearable motion sensor based systems to extract useful measures in lower limb 

exercises has been well investigated. The articles included in this review demonstrate these systems’ validity in 

measuring joint angle and ROM, in a broad variety of exercises ranging from sit-to-stands [48,49] to lunges [42]. 

It is of note that a large proportion of these studies have high paper quality ratings (Table 3). They also used 

optoelectronic motion capture, a biomechanical research gold-standard measurement tool [20,39,50] or 

goniometry, a clinical gold-standard [41–43] as the measurement comparator, which adds to the strength of this 

literature. Therefore, the evidence that IMU systems can validly measure joint angle and ROM is strong. 

However, for applications requiring maximal accuracy in these measures, an interesting area of further research 

may be identifying the sensing-unit placement position, for various body segments and exercises, which 

optimally agrees with an optoelectronic motion capture system. With the exception of Faber et al. [40], this is a 

widely under investigated field. Research has also demonstrated the concurrent validity of wearable motion 

sensor based system measures, with force plate and optoelectronic motion capture data, to compute temporal 

features of exercises. A number of these studies have high quality ratings (Table 3) and analyse exercises 

ranging from five time sit-to-stand tests [48], to deadlifts [21] to drop jumps [24,44]. It is less understood if 

wearable motion sensor systems are useful in estimating kinetic measures such as peak vertical force and power 

during exercises. With the exception of  Zijlstra et al.’s study on vertical power during the sit to stand exercise 

[49] the ‘high’ quality work to date, in this area,  has shown these measures have a lower agreement with gold-

standard biomechanical measurement systems than joint angle or temporal features [44,46,48]. Further research 

is required to investigate if the results are unique to different types of exercises or if they can be improved 

through employing different signal processing techniques. 

The construct validity of wearable motion systems for a range of applications has also been well demonstrated at 

this point. Longitudinal validity has been shown via progress tracking in ROM through a rehabilitation 

programme [59,60]. Known-groups validity has been demonstrated through capturing different movement 

profiles in specific exercises between injured and non-injured individuals [56,57]. However, it should be noted 

these studies involved very small samples. Fitzgerald et al. [56] compared just a single injured and non-injured 

participant and Ai et al. [57] compared 3 non-injured participants with 1 participant with polymyositis and 1 

participant with lower back pain. Both papers also received a low paper quality rating (Table 3).  Therefore, it is 

currently difficult to conclude that IMU systems can differentiate movement profiles from injured and non-

injured groups and that the presented results are not just due to chance. Future validation studies of this fashion 

would benefit from employing larger participant groups of both injured and non-injured individuals. This would 

allow for statistical analyses comparing the groups. The results could be further strengthened by demonstrating 

concurrent validity of the reported measurements with an existing gold-standard measurement tool. 

Whilst measurement validation studies are the most researched category in this field, there is still scope for more 

investigation. It is the authors’ contention that studies which validate temporal feature, joint angle and ROM 

measurements, computed from multiple sensing units, in lower limb exercises are likely to produce favourable 

results, but produce little new knowledge for the field. However, creating predictive algorithms for kinetic 
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measurements, such as that in Setuain et al. [46] and Zijlstra et al. [49], or joint angle estimations with a single 

IMU in [7,43] are still widely under-investigated areas with much room for advancement. Research which 

employs larger samples and assesses known-groups validity between injured and non-injured participants could 

also progress this area of the field. 

4.3. Exercise Detection Systems 
Ten studies included in this survey have demonstrated the efficacy of wearable inertial sensor systems to 

automatically identify the exercises being completed by users [14,17–19,63–68]. Exercise classification may 

serve as a useful input to an automated exercise tracking system or automated exercise logbook system. All 

studies demonstrated that a machine learning based classification approach is an effective data analysis approach 

for this task. With this in mind, it is interesting to note that only four studies in this area involved more than 

twenty participants [18,66–68]. As with many classification problems, exercise detection results may be 

improved by collecting larger data sets from more participants [76]. Future work in this area could also consider 

the practicality of the system for end users. Utilising a single IMU system for exercise detection [14,18,66–68], 

may be most desirable for end users. This will also reduce the cost of the exercise detection system. A potential 

methodological flaw in some of the reviewed studies is the inclusion of repetitions of exercises from the same 

participant in both training and test data. This can produce unrealistically high accuracy scores following cross-

validation on a data set. This may have happened in a number of studies which used cross-validation methods 

such as leave-one-out-cross-validation (LOOCV), repeated random sub-sampling (RRSS) and K-fold cross-

validation where each fold did not represent all of one participant’s data [14,19,63,64]. Future work may also 

benefit from utilising deep learning techniques for classification such as the convolutional neural networks 

approach demonstrated by Veiga et al. [68]. Such classification methodologies have recently been shown to have 

many benefits when compared to traditional machine learning classification techniques when analysing time-

series data, including reducing the risk of overfitting and improving system accuracy [77,78]. The method of 

Veiga et al. which uses a machine vision approach within a deep learning context also has the advantage of 

allowing interpretability of classification based on the visual appearance of the time series.  

4.4. Movement Classification Systems 
Despite having first being investigated in 2010 [23], lower limb, wearable, movement classification systems are 

still a relatively under investigated area. Five of the eleven published papers are relatively small-scale, with ten 

or fewer participants [19,23,64,69,75]. Movement classification systems have the potential to augment current 

clinical practice, providing users with feedback relating to their exercise technique in an unsupervised setting 

[79]. Most of the published work on movement classification pertains to a limited number of rehabilitation and 

S&C exercises (Table 10) [3,19,23,64,70–72,74]. There is therefore potential to investigate movement 

classification with larger data sets and across a range of other exercises. This work could also compare binary 

and multi-label classification techniques and comprehensive and minimal sensing set-ups for such exercises, as 

in the work conducted by Giggins and colleagues [3]. Such work could also compare a variety of classification 

strategies (e.g. random forests  [80], support vector machines [81] , k nearest neighbours [82]) and should use 

appropriate cross validation techniques to estimate system efficacy (accuracy, sensitivity and specificity). The 

studies which used leave-one-subject-out-cross-validation (LOSOCV) to validate their global movement 

classification system report that this is the most appropriate cross validation method to estimate the efficacy of 

the system for a new user who is not included in the classifier’s training data [3,23]. They also warn that 
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including exercise repetitions from the same participant in both training and test data, as in Yurtman and Barshan 

[19] and Whelan et al. [70], can produce artificially high efficacy scores which do not transfer to real-world 

systems. Only one study experimentally evaluated the real-world accuracy of a movement classification system 

[75], which is recommended for future studies where possible as it negates the limitations of cross-validation 

techniques in assessing system efficacy.  The efficacy scores presented by authors included accuracy, 

sensitivity/precision/true positive rate and specificity/recall/true negative rate. It is best to provide as many 

metrics as possible to allow a reader to understand a classification system’s strengths and weaknesses.  

The general data analysis approach for all studies appears to be first completing signal pre-processing, signal 

segmentation, computing features from the signals and placing them in feature vectors which will be used to 

train and evaluate different classification algorithms [79]. Some recent studies also compare the effectiveness of 

global and personalised classification systems [73,74], whereby a personalised classification system is one which 

is trained from data from an individual and developed specifically for this individual and a global classification 

system is trained with data from many individuals and can be used by individuals not included in the training 

data. Analysis has shown that the personalised systems are more computationally efficient and accurate than 

global ones [73–75], which has enabled movement classification systems to be developed with single sensing 

unit rather than multiple sensing units. However, the time required to collect data from and train a classification 

system for every individual who requires a movement classification system is a significant practical limitation 

which may hinder the uptake of movement classification systems in clinical practice. Creating tools which 

streamline this process, as in O’Reilly et al. [75], could be an important avenue of research. 

4.5. Review Limitations 
Despite the strengths of this systematic review, it is important to consider several limitations when interpreting 

the results. Studies were not included if they were not published in the English language, which may influence 

the outcomes of our analyses, despite the probability that authors of high quality surveys would aim for 

publication in high-impact journals published in the English language in the pursuit of superior dissemination of 

output data. Additionally, while the data extraction and paper rating were both completed by two authors (MOR 

and CD), the initial search, title and abstract screening was only completed by one author (MOR). Therefore, the 

possibility of erroneous exclusion of a valid study from this review exists. Finally, the protocol for this review 

was not registered prior to its completion. We deemed pre-registration inappropriate due to the expected 

heterogeneity in the evidence base. The scientific field of movement detection, classification and feedback using 

IMU is a burgeoning area that spans a multitude of disciplines, making systematic review and curation using a 

predefined protocol difficult.  

4.6. Practical Implications 
The practical implications of these findings deserve consideration. For members of the public or sports-medicine 

practitioners considering purchase of a commercially available sensing system to support lower-limb exercise 

completion for themselves or their patient/client, we would recommend a three-step appraisal process to 

determine the utility of the system under consideration: First, for what purpose is the system designed? Whether 

the system in question is for exercise detection (e.g. repetition (rep) counting during a deadlift) or classification 

(e.g. aberrant form during a squat) should be determined. Second, the system’s validity for the stated purpose in 

the same population should be confirmed. A system that is valid for detection is not commensurate with a system 
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that is valid for classification. Similarly, the validity of a system tested on a healthy population does not 

necessarily extend to a pathological population. Finally, at what cost does the feature-set come? More expensive 

systems which incorporate a greater number of sensing units are likely to be more accurate, but the benefit of 

this increased accuracy should be identified. For instance, sports-medicine practitioners may seek higher 

accuracies for a system they plan to deploy in a cohort who are at a higher risk of injury to detect aberrant 

exercise technique than for a cohort in whom they are seeking to quantify exercise load through rep-counting. As 

such, it may be more appropriate to leverage a more accurate and expensive multi-sensor system in the aberrant 

exercise cohort than in the rep counting cohort.  

The number of commercially available sensing systems for exercise detection, classification and feedback will 

likely increase in the coming years, and the methods underlying these systems will evolve as the field of research 

progresses. We believe the appraisal process outlined above will accommodate new developments in the field. 

This systematic review has also led to a number of recommendations for researchers developing wearable 

motion sensor systems for analysing lower limb exercises. A summary of such recommendations can be found in 

Table 11.  

 

5. Conclusion 
Wearable inertial sensor systems for analysing lower limb exercises is a rapidly growing technology.  Research 

over the past ten years has involved both the development and evaluation of such systems. The research to date 

has predominantly focused on validating measurements that the systems produce and classifying technique 

quality in the exercises (Tables 7, 8 and 10). A smaller number of studies have evaluated the ability of the 

systems to detect exercise type. Table 6 shows the fifty-three exercises which have currently been incorporated 

into such systems and highlights gaps in the literature which warrant further research. One such gap is that there 

are a limited number of studies which classify movement quality in jumping exercises. There exist a vast amount 

of considerations for future research in this field as outlined in Table 11. Moreover, there have been very few 

user evaluation studies and no clinical trials evaluating wearable inertial sensor systems for lower limb exercises. 

Such studies will be essential in producing knowledge which will catalyse the movement of these systems from 

laboratory based studies in to real world applications for sports-medicine practitioners and people completing 

lower limb exercises. 
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Tables 
Table 1: Literature search strategy. 

Exercise 
 

“exercise” OR ”rehab*” OR “weight training” OR ”motor activity” OR ”personal” OR 
“strength” OR “conditioning” OR “hypertrophy” OR “gym” OR “weight lifting” OR 
“resistance” OR “training” 

 AND 
Lower body 
 

“lower body” OR “lower extremity” OR “leg” OR “thigh” OR “shank” OR “ankle” OR “foot” 
OR “joint” 

 AND 
Movement 
monitoring 

“monitor” OR “motion” OR “classif*” OR “recogn*” OR  “evaluat*” OR “posture” OR 
“sensing” OR “assess*” OR “quantification” OR “biomech*” OR “tracking” OR “quality” OR 
“kinematics” OR “biofeedback” 

 AND 
Inertial 
measurement 
units 

 “inertial sensor” OR“gyroscop*”  OR “IMU” OR “inertial measurement units” OR “wearable” 
OR “acceleromet*” OR  “ sensor system” OR “sensor network” OR “magnetometer” OR 
“MEMS” OR “smartphone” OR “mobile” OR “wireless”  

 AND NOT 
 “robot” OR “exoskeleton”  
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Table 2: Inclusion and exclusion criteria for studies. 

Inclusion criteria Exclusion criteria 
The articles contain a system for exercise 
analysis using IMUs. 
 
The system is intended for monitoring 
repetition-based targeted exercises for the 
lower limb (e.g. squats, deadlifts, single leg 
squats, lunges, straight leg raises, and jumps), 
or analysing rehabilitation, workplace or 
strength and conditioning exercises 
 
The system included detection of exercises 
and/or quantification of exercise volume 
and/or analysis of exercise technique or 
performance measures. 
 
Articles were published in the last 10 years. 
 
Articles were written in the English language. 

 

Systematic reviews and literature reviews. 
Books and other non-peer reviewed literature. 
Studies evaluating robotic systems or 
exoskeletons. 
 
Studies investigating human activity 
recognition in non-rehabilitative or strength 
and conditioning settings (i.e. in the ‘real-
world’). 
 
Studies evaluating pathological groups only. 
Sensing modality used was not a wearable 
accelerometer, gyroscope, magnetometer or 
combination of those (IMU). 
 
Study only concerns non-repetition based 
targeted exercises e.g. running, walking, gait, 
balance. 
 
Study concerns non-human, animal subjects. 
 
Study only evaluates ‘user experience’ with 
the system or the effect of the system’s 
feedback on users. 

IMU = inertial measurement unit 
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Table 3. Risk of bias assessment of the included studies based on the modified STROBE criteria [37]. 

Study 1 2 3 4 5 6 7 8 9 10 Quality 
Ahmadi et al. 2014 [65] 1 1 0 1 1 0 0 0 0 1 Low 
Ai et al. 2014 [57] 0 0 0 1 1 1 0 0 0 1 Low 
Arai et al. 2012 [54] 1 0 1 1 1 1 0 0 1 1 Low 
Bo et al. 2011 [51] 0 0 0 1 1 0 1 0 0 0 Low 
Bolink et al. 2016 [39] 1 1 1 1 1 1 1 1 1 1 High 
Bonnet et al. 2011 [7] 1 1 0 1 1 1 0 0 0 1 Low 
Bonnet et al. 2013 [43] 1 1 1 1 1 1 1 1 1 1 High 
Chakraborty et al. 2013 [55] 0 0 0 0 0 0 0 0 0 0 Low 
Chang et al. 2007 [17] 1 0 0 0 1 0 1 0 0 0 Low 
Charlton et al. 2015 [50] 1 1 1 1 1 1 1 1 1 1 High 
Chen et al. 2013 [64] 1 0 0 1 1 0 1 0 0 0 Low 
Chen et al. 2015 [61] 0 0 0 0 0 0 0 0 0 0 Low 
Conger et al. 2016 [66] 1 1 1 1 1 1 1 1 1 1 High 
Dominguez-Veiga et al. 2017 [68] 1 1 0 1 1 1 1 1 1 1 High 
Faber et al. 2015 [40] 1 1 0 1 1 1 1 1 1 1 High 
Fitzgerald et al. 2007 [56] 0 0 0 0 0 0 0 0 0 1 Low 
Giggins et al. 2013 [18] 0 1 1 1 1 1 1 0 0 1 Low 
Giggins et al. 2014 [3] 1 1 1 1 1 1 1 1 1 1 High 
Giggins et al. 2014 [58] 1 1 1 1 1 1 1 1 1 0 High 
Gleadhill et al. 2016 [21] 1 1 1 1 1 1 1 0 1 1 High 
Gordon et al. 2012 [45] 0 1 0 1 1 0 1 0 0 0 Low 
Haladjian et al. 2015 [38] 0 0 0 0 0 1 0 0 0 1 Low 
Houmanfar et al. 2016 [60] 1 1 0 1 1 1 1 0 1 0 Low 
Kianifir et al. 2016 [69] 1 1 1 1 1 1 1 0 0 0 Low 
Lin and Kulic 2012 [20] 1 1 1 1 1 1 1 0 1 0 High 
Mehta et al. 2016 [41] 1 1 1 1 1 1 1 1 1 0 High 
Morales et al. 2017 [42] 1 1 1 1 1 1 1 1 1 1 High 
Morris et al. 2014 [14] 1 1 0 1 1 1 1 1 0 0 Low 
O’Reilly et al. 2017 [67] 1 1 0 1 1 1 1 1 1 1 High 
O’Reilly et al. 2017 [71] 1 1 0 1 1 1 1 1 1 1 High 
O’Reilly et al. 2017 [72] 1 1 0 1 1 1 1 1 1 1 High 
O’Reilly et al. 2017 [73] 1 1 1 1 1 1 1 1 1 0 High 
O’Reilly et al. 2017 [74] 0 1 0 1 1 1 1 1 1 1 High 
O’Reilly et al. 2017 [75] 1 1 1 1 1 1 1 1 1 1 High 
Omkar et al. 2011 [53] 1 1 0 1 1 1 1 0 0 1 Low 
Papi et al. 2015 [48] 1 1 0 1 1 1 1 1 1 1 High 
Patterson and Caulfield 2010 [24] 1 1 0 1 1 1 1 1 0 1 High 
Pernek et al. 2012 [52] 1 1 0 1 1 1 1 0 0 1 Low 
Quaglierella et al. 2010 [44] 1 1 1 1 1 1 1 1 0 1 High 
Rawson and Walsh 2010 [47] 1 1 1 1 1 1 1 0 0 1 High 
Setuain et al. 2015 [46] 1 1 1 1 1 1 1 0 1 0 High 
Setuain et al. 2015 [22] 1 1 0 1 1 1 1 1 1 1 High 
Taylor et al. 2010 [23] 0 1 0 1 1 0 1 1 0 0 Low 
Tunçel et al. 2009 [63] 0 1 0 1 1 0 1 0 1 1 Low 
Whelan et al. 2016 [70] 1 1 0 1 1 1 1 1 1 1 High 
Yurtman and Barshan 2014 [19] 1 1 0 1 1 1 0 1 1 0 Low 
Zijlstra et al. 2010 [49] 1 1 1 1 1 1 1 0 1 0 High 

Items legend: 1. Provide in the abstract an informative and balanced summary of what was done and what was 
found. 2. State specific objectives, including any prespecified hypotheses. 3. Give the eligibility criteria, and the 
sources and methods of selection of participants. 4.  For each variable of interest, give sources of data and details 
of methods of assessment (measurement). Describe comparability of assessment methods if there is more than 
one group. 5. Explain how quantitative variables were handled in the analyses. If applicable, describe which 
groupings were chosen and why. 6. Give characteristics of study participants (e.g. demographic, clinical, social) 
and information on exposures and potential confounders. 7. Summarise key results with reference to study 
objectives. 8. Discuss limitations of the study, considering sources of potential bias or imprecision. Discuss both 
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direction and magnitude of any potential bias. 9. Give a cautious overall interpretation of results considering 
objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence. 10. 
Give the source of funding and the role of the funders for the present study and, if applicable, for the original 
study on which the present article is based. STROBE = STrengthening the Reporting of OBservational studies in 
Epidemiology. 
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Table 4: Sensing set-ups evaluated. 
Sensor set-up Studies 
Multiple sensor 
units 
(n=24) 

[17],[19],[63],[65],[44],[20],[45],[51],[55],[64],[61],[23],[40],[48],[38],[69],[60]  

Single sensor units 
(n=19) 

[14],[52],[58],[24],[53],[7],[43],[57],[39],[41],[46],[54],[42],[50],[22],[75],[68] 

Comparison of 
multiple and single 
sensor units 
(n=12) 

[18],[47],[3],[49],[21],[40],[67],[70],[71],[72],[73],[74] 
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Table 5: Sensors used in each study included in this review. 

Study Accelerometer Gyroscope Magnetometer Other 
Ahmadi et al. 2014 [65]         
Ai et al. 2014 [57]         
Arai et al. 2012 [54] 

 
      

Bo et al. 2011 [51]         
Bolink et al. 2016 [39]         
Bonnet et al. 2011 [7]         
Bonnet et al. 2013 [43]         
Chakraborty et al. 2013 [55]         
Chang et al. 2007 [17]         
Charlton et al. 2015 [50]         
Chen et al. 2013 [64]         
Chen et al. 2015 [61]         
Conger et al. 2016 [66]         
Dominguez-Veiga et al. 2017 [68]         
Faber et al. 2015 [40]         
Fitzgerald et al. 2007 [56]         
Giggins et al. 2013 [18]         
Giggins et al. 2014 [3]         
Giggins et al. 2014 [58]         
Gleadhill et al. 2016 [21]         
Gordon et al. 2012 [45]         
Haladjian et al. 2015 [38]         
Houmanfar et al. 2016 [60]         
Kianifir et al. 2016 [69]         
Lin and Kulic 2012 [20]         
Mehta et al. 2016 [41]         
Morales et al. 2017 [42]         
Morris et al. 2014 [14]         
O’Reilly et al. 2017 [67]         
O’Reilly et al. 2017 [71]         
O’Reilly et al. 2017 [72]         
O’Reilly et al. 2017 [73]         
O’Reilly et al. 2017 [74]         
O’Reilly et al. 2017 [75]         
Omkar et al. 2011 [53]         
Papi et al. 2015 [48]         
Patterson and Caulfield 2010 [24]         
Pernek et al. 2012 [52]         
Quaglierella et al. 2010 [44]         
Rawson and Walsh 2010 [47]         
Setuain et al. 2015 [46]         
Setuain et al. 2015 [22]         
Taylor et al. 2010 [23]         
Tunçel et al. 2009 [63]         
Whelan et al. 2016 [70]         
Yurtman and Barshan 2014 [19]         
Zijlstra et al. 2010 [49]         
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Table 6: Exercises which have been investigated during the studies included in this review and the study type which they were included in. 
 Exercise Measurement 

validation Exercise detection Movement 
classification 

SJ-UP 

Lying hip abduction [58], [50] [18], [19] [3], [19] 
Lying hip extension [58], [50] [18], [19]  [3], [19] 
Lying knee flexion (supine) [41]   
Inner range quads [58] [18], [59] [3], [59] 
Seated knee extension [58], [52], [54] [18], [63],  [3] 
Seated knee flexion [20]   
Lying straight leg raise [58], [20] [18], [19], [59] [3], [19],[59], [23] 
Standing calf raise [52] [17], [66]  
Seated straight leg raise [60] [19],  [19] 
Standing straight leg raise [20] [63]  
Standing knee flexion/extension [38] [63] [23] 
Standing hip extension  [63]  
Standing hip abduction  [63] [23] 
Standing leg curl [52]   
Seated calf raises [52]   
Lying leg curl [52], [47]   
Seated resisted knee extension [52], [47]   
Ankle dorsi/plantarflexion [57]   
Ankle internal/external rotation [57]   
Ankle inversion/eversion [57]   
Seated hip internal/external rotation [50]   
Supine hip internal/external rotation [50]   

SJ-MP 
Lying straight diagonal leg raise [20]   
Standing circle trace (hip) [20]   
Lying circle trace (hip) [20]   

MJ-
UP 

Heel slides [58], [61] [18] [3] 

Lying hip & knee flexion [58], [20], [60] [18] [3],  

BMJ-
MP 
 

Sit to stand [49], [20],  [51], [48], 
[39] 

  

Leg press [52]   
Lunge [56], [42] [66], [67], [68] [71], [75] 
Kicking  [65]  
Deadlift [21] [17] [75] 
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Mini-squats  [59] [59] 
Squats [52], [47], [7], [43], 

[20], [51], [38], [60] 
[14], [63], [66], [67], 
[68] 

[72], [73], [75] 

Barbell deadlifts  [67], [68] [74], [75] 
Overhead squats [55]   
Kettlebell swing  [14]  
Sun salutation [53]   
Hang clean [45]   
Block step up [39]   
Single leg squats  [67], [68] [69], [70] 
Box lift [40]   
Stoop box lift [40]   
Squat box lift [40]   
One leg hops [38]   
Side hops [38]   
Box jump  [65]  
Bilateral squat jumps [44]   
Bilateral Countermovement Jumps [45], [44]   
Drop jumps [24], [46], [22],    
Unilateral drop jump [44], [22]   
Unilateral countermovement jumps [44], [22]   
Tuck jumps  [67],[68]  

*Key: SJ-UP = Single-joint, uni-planar, SJ-MP = Single-joint, multi-plane, MJ-UP = Multi-joint, uni-planar, MJ-MP = Multi-joint, multi-plane 
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Table 7: Summary of studies assessing concurrent validity of wearable sensor based system to standard clinical measure or biomechanical gold standard. 

Study Sensor set-up and placement Sample Outcomes 
Gold standard/ 

comparator 
Findings 

Lin and Kulic 

2012 [20].  

3 x tri-axial accel + gyro (trunk, 
thigh, shank) 

20 (8 females, 12 

females), injury-free 

Joint angles during 9 

lower limb 

rehabilitation 

exercises 

Optoelectronic motion 

capture 

The average RMSE between a motion 

capture system and their wearable 

system was 6.5 o across all exercises. 

Haladjian et 

al. 2015 [38]. 

2 x tri-axial accel + gyro (thigh 

& shank) 

4 (2 females, 2 

males), following 

ACL surgery 

Sagittal plane knee 

joint angle 

Goniometer There was a 5 o difference in agreement 

between the ‘KneeHapp’ system and the 

goniometer. 

Bolink et al. 

2016 [39].  

1 x tri-axial accel + gyro + mag 

(lumbar) 

17 (8 females, 9 

males), injury-free 

Pelvic orientation 

angles during the sit 

to stand and block 

step up exercises 

Optoelectronic motion 

capture 

Frontal plane pelvic angle estimations 

achieved a RMSE in the range of 2.7° to 

4.5° and sagittal plane measurements 

achieved a RMSE in the range of 2.7° to 

8.9° when compared with optoelectronic 

motion capture 

Faber et al. 

2015 [40].  

1 x accel + gyro (multiple 

locations from C7-MPSIS) 

20 (10 females, 10 

males), injury-free 

Which location 

optimally agreed with 

an optoelectronic 

motion capture 

system’s calculation 

for trunk inclination? 

The data used was 

from a variety of box 

lifting exercises. 

Optoelectronic motion 

capture  

They concluded that regardless of 

participant’s sex or lifting style, the 

optimal sensing unit location for the 

measurement of trunk inclination is at 

about 25% of the distance from the 

sacrum to C7.  

 

Mehta et al. 1 x iPhone (tri-axial accel + 60 (sex not reported), Knee flexion and Standard goniometry They showed the mobile application 
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2016 [41]. gyro) following total knee 

replacement or with 

knee osteoarthiritis 

extension ROM allowed for a smaller minimal 

detectable change than goniometry. 

Morales et al. 

2017 [42]. 

1 x smartphone (accel + gyro + 

mag) 

33 (sex not reported), 

injury-free 

Inclination of the tibia 

during the weight 

bearing lunge 

exercise  

Tape measure test, 

goniometry and the leg 

motion system 

They found no significant differences 

between any of the measurement 

techniques. 

Bonnet et al. 

2011, 2013  

[7,43]. 

1 x tri-axial accel + gyro 

(lumbar) 

10 (4 females, 6 

males), injury free 

Sagittal hip, knee and 

joint angles during a 

bodyweight squat 

exercise 

Optoelectronic motion 

capture 

Their most recent predictive algorithm 

had a root mean square difference of 3.2 
o,, 2 o and 3.1  o  for ankle, knee and hip 

angles respectively when compared with 

both a robot model and with 8 healthy 

human participants [43]. 

Patterson and 
Caulfield 
2010 
[24]. 
 

1 x tri-axial accel (ankle) 20 (14 females, 6 

males), injury free 

Reactive strength 

index during the drop 

jump exercise 

Force plate data Pearson’s product correlation of 0.9816 
in computing reactive strength index 
during the drop jump exercise  
 

Quaglieralla 

et al. 2010 

[44]. 

2 x tri-axial accel (left and right 

ankle) 

51, (26 injury-free,  

25 following surgery 

for Achilles tendon 

rupture; 51 males) 

Flight time during 

countermovement 

jumps and squat 

jumps 

Force plate Spearman’s coefficient was found to be 

greater than 0.95 in this case. 

Gordon et al. 

2012 [45]. 

2 x tri-axial accel + gyro (trunk 

and barbell) 

1 (male), injury-free Mean percentage 

error for the following 

measurements:  Peak 

velocity, time to peak 

velocity, peak power, 

Optoelectronic motion 

capture system and force 

plates 

The temporal measures had the lowest 

mean percentage error with time to peak 

velocity and time to peak power having 

an error of just 0.034% and 1.01% 

respectively. The kinetic measures had a 
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time to peak power 

and force at peak 

power. 

larger error with peak power and peak 

force both resulting in a 12.5% error 

versus the force plates and motion 

capture system. 

Setuain et al. 

2015 [46]. 

1 x tri-axial accel + gyro + mag 

(lumbar) 

17 (8 females, 9 

males), injury-free 

Vertical force derived 

from IMU 

Force plates Several biomechanical variables such as 

the resultant force–time curve patterns 

in drop jumps, unilateral drop jumps and 

unilateral countermovement jumps can 

be reliably measured with a lumbar 

worn IMU 

Rawson and 

Walsh 2010 

[47]. 

3 x uni-axial accel (wrist, waist 

and ankle) 

30 (15 females, 15 

males), injury free 

Activity counts 

during the squat, leg 

extension and leg curl 

exercises 

Cosmed™ system 

(COSMED, Rome, Italy) 

Activity counts were correlated with 

energy expenditure as computed by a 

cosmed™ system (COSMED, Rome, 

Italy). Thirty healthy participants were 

recruited and a primary finding of the 

study was that a regression equation 

which inputs included sex, fat-free 

mass, and counts of activity from the 

waist accelerometer explained 90% (R2 

= 0.90) of the variance in energy 

expenditure as measured by the 

cosmed™ system.   

Papi et al. 

2015 [48]. 

1x tri-axial accel + gyro (waist), 

1x tri-axial accel (waist) + bend 

sensor also used (knee) 

14 (7 females, 7 

males), injury-free 

Total time taken to 

complete a five time 

sit to stand test 

Optoelectronic motion 

capture 

The waist worn sensing unit was found 

to have a 0.86 RMSE versus the 

measure from a motion capture system 

Ziljstra et al. 3 x tri-axial accel + gyro  + mag 17 (10 females, 7 Vertical power during Optoelectronic motion They used Pearson’s correlation to 
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2010 [49]. (sternum, pelvis, SIPS) males), injury free the sit to stand test capture + force plates compare each sensor position’s power 

output to force plate data and found an 

R2 of 0.984 at the body’s estimated 

centre of mass. 

Gleadhill et 

al. 2016 [21]. 

3 x tri-axial accel+gyro on spine 

(C7, T12 and S1) 

11 (1 female, 10 

males), injury free 

Temporal features 

from accelerometers 

during fifteen 

variations of the 

deadlift exercise.  

 

Optoelectronic motion 

capture 

The average Pearson’s correlation with 

a motion capture system was R2 = 

0.9997 for sagittal plane accelerometer 

peaks. 

 

Charlton et al. 

2015 [50]. 

1 x smartphone (accel + gyro + 

mag) 

20 (males), injury free Hip ROM (flexion, 

abduction, adduction, 

supine internal and 

external rotation and 

sitting internal and 

external rotation) 

Optoelectronic motion 

capture 

The Smartphone demonstrated good to 

excellent reliability (ICCs > 0.75) for 

four out of the seven movements, and 

moderate to good reliability for the 

remaining three movements (ICC = 

0.63–0.68) 

Accel = accelerometer, ACL = anterior cruciate ligament, C7 = Cervical vertebrae 7, gyro = gyroscope, ICC = intra-class correlation, IMU = inertial measurement unit, mag 
= magnetometer, MPSIS = midpoint between the posterior superior iliac spines, SIPS = posterior superior iliac spine, RMSE = root mean square error, ROM = range of 
motion. 
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Table 8: Summary of studies assessing construct validity of wearable sensor based systems. 

Study 
Sensor set-up and 

placement 
Sample Outcomes 

Construct 

validity type 
Comparator Findings 

Bo et al. 2011 

[51] 

2 x tri-axial accel 2 x dual-

axial gyro + Microsoft 

Kinect (thigh and shank) 

Not described Knee angles during 

sit to stand and 

squat. 

Convergent Microsoft Kinect High potential for fusion of Kinect and 
inertial sensors for more accurate joint 
angle measurement 
 

Pernek et al. 

2012 [52] 

1 x smartphone w/ tri-axial 

accel (on weights stack or 

ankle) 

10 (4 females, 6 

males), injury-

free 

Detection of 

exercise repetitions                           

and the start/end of 

repetitions. 

Convergent Manual extraction 

of repetitions by 

authors. 

99% accuracy in repetition detection, 
89% accuracy in detecting start and end 
points of repetitions. 
 

Omkar et al. 

2011 [53] 

1 x tri-axial accel + gyro 

(lumbar) 

11 (4 females, 7 

males), injury-

free 

Grace and 

consistency during 

rhythmic exercise 

Convergent Visual analysis of 

each participant’s 

sequence by yoga 

expert 

Found performance of 2 participants to 
be significantly worse than the others 
(more jerks and halts). 

Arai et al. 

2012 [54] 

1 x tri-axial gyro (shank) 105 (55 

females, 50 

males), elderly, 

injury-free 

Physical function 

and self-efficacy 

Convergent Functional 

performance 

measurements, a 

self-efficacy scale 

and  HRQOL. 

 

Gyroscope peaks correlated with some 
physical functions such as muscle 
strength (r = 0.304, p < 0.01), and 
walking velocity (r = 0.543, p < 0.001). 
In addition, the joint angular velocity 
was significantly correlated with self-
efficacy (r = 0.219–0.329, p < 0.01– 
0.05) and HRQOL (r = 0.207–0.359, p < 
0.01–0.05). 
 

Chakraborty et 

al. 2013 [55] 

Xsens™ moCap suit 6 (sex not 

reported), 

undergoing 

rehab of lower 

limb 

Body posture 

during overhead 

squat task 

Known-groups Individual’s 

measures pre & 

post injury 

Not described. 
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Fitzgerald et 

al. 2007 [56] 

Xsens™ moCap suit 2 (sex not 

reported), one 

injury-free, one 

15 weeks post 

MCL tear 

Body posture 

during straight line 

lunge 

Known-groups Comparison of 

injured and 

uninjured 

individual 

Greater range of trunk flexion/extension, 
thigh internal/external rotation and trunk 
flexion/extension for injured athlete. 

Ai et al. 2014 

[57] 

1 x tri-axial accel + gyro + 

mag (instep of foot OR 

shank) 

3 (males;1 

healthy, 1 

polymyotosis, 1 

chronic lower 

back pain) 

ROM, movement 
smoothness, 
trajectory error 
 

Known-groups Comparison of 

each group’s 

results 

Proof of concept for tracking ankle 
exercises with IMUs shown via each 
participant’s differing trajectories. 

Giggins et al. 

2014 [58] 

1 x tri-axial accel + gyro 

(shin) 

9 (5 females, 4 

males), injury-

free 

Signal features 
when exercises 
completed with 
correct technique 
and aberrant 
technique. 

Known-groups Comparison of 

features when 

exercises 

completed with 

acceptable and 

aberrant 

technique. 

A number of significantly different 
features found across all exercises and 
all deviations/known groups. 
 

Setuain et al. 

2015 [22] 

1 x accel + gyro + mag 

(lumbar) 

22, (sex not 

reported; 6 ACL 

reconstructed 

and 16 injury-

free) 

Signal features 
during a battery of 
vertical jumping 
tests.  

Known-groups. Comparison of 

features when 

exercises 

completed by 

ACL 

reconstructed and 

injury-free group. 

The ACL-reconstructed male athletes 
did not show any significant (P <.05) 
residual jumping biomechanical deficits 
regarding the measured variables 
compared to players who had not 
suffered this knee injury. A dominance 
effect was observed among non-ACL 
reconstructed controls but not among 
their ACL-reconstructed counterparts (P 
<.05). 

Chen et al. 

2015  [59]  

2 x tri-axial accel + gyro 
(thigh and shank) 

10, (5 females, 
5 males; 5 
injury-free + 5, 

Knee ROM during 
heel slides tested 1 
day pre, 1 day post, 

Longitudinal Individual’s 

known 

Knee ROM return to baseline after 6 
weeks effectively measured with inertial 
sensors 
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 rehab after total 
knee 
arthroplasty) 
 

2 weeks post and 6 
weeks post total 
knee arthroplasty. 
 
 

improvement in 

ROM during 

rehab. 

Houmanfar et 

al. 2016 [60] 

2 x tri-axial accel + gyro + 
mag (thigh and shank) 
 

28, (sex not 
reported; 18, 
rehab following 
knee/hip 
replacement, 10, 
injury-free) 

Difference between 
patient's data (joint 
angle, velocity, 
acceleration) and 
healthy norms 
throughout 
rehabilitation. 

Longitudinal Individual’s 

known 

improvement in 

ROM during 

rehabilitation. 

The results show that the IMU measures 
are able to capture the trend of patient 
improvement over the course of 
rehabilitation.  
 

Accel = accelerometer, ACL = anterior cruciate ligament, gyro = gyroscope, HRQOL = Health related quality of life, IMU = inertial measurement unit, mag = magnetometer, 
rehab = rehabilitation, ROM = range of motion. 
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Table 9: Summary of wearable inertial sensor exercise detection systems for lower limb exercises. 
Study Sensing set-up Participants Relevant exercises Methods: 

classification 
Methods: 
cross-validation 

Results: 

Chen et al. 
2013 [64] 

3 x accel, 
(trunk, thigh, 
shank) 

10 (5 females, 5 
males), 
injury-free, 
10 reps per 
exercise 
 

Inner range quads 
Straight leg raise 
Quadriceps mini-squats 

Feature based 
classification. 
Decision tree. 

 10-CV 
 

 

10-CV acc = 99.29% 

Chang et al. 
2007 [17] 

2 x accel, 
(right hand 
glove and hip 
worn posture 
clip) 

10 (2 females, 8 
males), healthy, 
15 reps per 
exercise 

Deadlift 
Standing calf raise 
 

Feature based 
classification: Hidden 
Markov models, 
Naïve bayes. 

User specific CV and 
LOSOCV 

User specific: acc = 95% LOSOCV 
acc=85% 

Giggins et al. 
2014 [18] 

3 x tri-axial 
accel + gyro 
(foot, shank and 
thigh) 

58 (39 females, 
19 males), rehab, 
10 reps per 
exercise 

Heel slides 
Hip abduction 
Hip extension 
Hip flexion 
Inner range quads 
Knee extension 
Straight leg raise 

Feature based 
classification. 
Logistical regression. 

LOSOCV 
Multi and single sensor 
set-ups. 
 

LOSOCV all 3 sensors: acc = 94% 
shank sensor: acc = 95% 

Yurtman and 
Barshan. 2014 
[19] 

5 x tri-axial 
accel + gyro + 
mag (trunk, 
thighs, shanks 
OR thigh, upper 
arm, lower arm, 
trunk, shoulder) 

5 (2 females, 3 
males), rehab, 30 
reps per exercise 

Lying leg raise 
Lying hip abduction 
Lying hip extension 
Seated straight leg raise 

Dynamic time 
warping.  

LOEOCV LOEOCV: acc = 93% 
 
 
 
 

Morris et al. 
2014. 
[14] 

1 x tri-axial 
accel + gyro 
(wrist) 

20 (8 females, 12 
males), healthy, 
 20 reps per 
exercise 

Jumping jack 
Kettlebell Swing 
Squat 

Feature based 
classification. 
Support vector 
machine. 

LOOCV LOOCV: acc = 96% 

Tuncel et al. 
2009  [63] 

2 x uni-axial 
gyro (right thigh 
and shank) 

1 (male), healthy, 
8 repetitions per 
exercise 

Standing knee flexion 
Standing flexed leg raise 
Standing straight leg 
raise  
Standing R & L straight 
leg  

Feature based 
classification. 
Support vector 
machine 
Dynamic time 
warping 

RRSS 
P-fold -CV 
and LOOCV 

RRSS: BDM acc: 98%, 
 P-fold-CV: BDM acc: 99.1%, 
LOOCV: BDM acc: 99.1% 
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Hip extension 
Standing hip abduction 
Bodyweight exercises 
Seated knee extension 

Artificial neural 
network 
Radial basis function 
Bayesian decision 
making  
Least squares method 
K-nearest-neighbours 
 

Ahmadi et al. 
2015 [65] 

2 x tri-axial 
gyro (right thigh 
and shank) 

10 (sex not 
reported), 9 
healthy, 1 injured, 
30 s per exercise 

Box jump 
Kicking 

Feature based 
classification 
Random forests 

10-CV Average F1 score of 97% in 
detecting each exercise. 
 

Conger et al. 
2016 [66] 

1 x tri-axial 
accel (non-
dominant wrist) 

60 (sex not 
reported), healthy, 
10 reps per 
exercise 

Squats 
Lunges 
Calf Raises 

Cosine similarity and 
feature based 
classification 
Support vector 
machine 

LOSOCV SVM method detected the lower-
limb exercises with 81% acc. The 
cosine similarity method produced 
85% accuracy. 

O’Reilly et al. 
2016 
[67]  

5 x tri-axial 
accel + gyro + 
mag  (lumbar,  
thigh L&R, 
shank L&R) 

82 (23 females, 
59 males) healthy,  
10 reps per 
exercise 

Squats 
Lunges 
Single leg squats 
Deadlifts 
Tuck Jumps 

Feature based 
classification. 
Random forests. 

LOSOCV 
Multi and single sensor 
set-ups. 
 

The exercises were  
detected with 99% acc when using 
signals from all five IMUs, 98% 
when using  
signals from the thigh and lumbar 
IMUs and 98% with just a single 
IMU on the  
shank. 

Dominguez- 
Veiga et al. 
2017 [68] 

5 x tri-axial 
accel + gyro + 
mag (lumbar,  
thigh L&R, 
shank L&R) 

82 (23 females, 
59 males), 
healthy,  
10 reps per 
exercise 

Squats 
Lunges 
Single leg squats 
Deadlifts 
Tuck Jumps 

Feature free 
classification. 
Convolutional neural 
network 

Batch output training-
CV 

acc: 95.89% 

Acc = accuracy, accel = accelerometer, ACL = anterior cruciate ligament, gyro = gyroscope, IMU = inertial measurement unit, mag = magnetometer, rehab = rehabilitation, 
ROM = range of motion, L = left, R = right, reps = repetitions, CV = cross-validation, LOSOCV = leave-one-subject-out-cross-validation, LOOCV = leave-one-out-
cross-validation, LOEOCV = leave-one-exercise-out-cross-validation, RRSS = repeated random sub-sampling, SVM = support vector machine 
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Table 10: Summary of wearable inertial sensor movement classification systems for lower limb exercises. 
Study Sensing set-up Participants Relevant exercises Performance 

classified 
Methods: 
classification 

Methods: 
Cross-
validation 

Results: 

Taylor et al. 
2010 [23] 

5 x accel, 
(trunk,  
thigh L&R, 
shank L&R) 
 

9 (5 females, 4 
males), 
injury-free, 
60 reps per 
exercise 

Standing hamstring curls 
Reverse hip abduction 
Straight leg raise 

Multi-label 
technique 
classification 

Global feature 
based 
classification. 
Adaboost. 

 LOSOCV LOSOCV :mean sens 
for each deviation = 
44.9%, mean spec  for 
each deviation = 64.5% 

Chen et al. 
2013 [64] 

3 x accel, 
(trunk, thigh and 
shank) 
 

10 (5 females, 5 
males), 
injury-free, 
10 reps per 
exercise 
 

Inner range quads 
Straight leg raise 
Quadriceps mini-squats 

Binary technique 
classification 

Global feature 
based 
classification. 
Decision tree. 

10-CV 10-CV acc = 90.14% 

Yurtman and 
Barshan. 
2014 [19] 

5 x IMUs, 
(trunk,  
thigh L&R, 
shank L&R) 
 

5 (2 females, 3 
males), 
rehab, 
30 reps per 
exercise 

Seated straight leg raise 
Lying leg raise 
Lying hip abduction 
Lying hip extension 

Speed of 
repetition 
ROM 

Dynamic time 
warping 

 LOECV LOECV acc = 89% 

Giggins et al. 
2014 [3] 

3 x accel + gyro, 
(thigh, shank, 
foot) 

58 (39 females, 
19 males), 
rehab, 
10 reps per 
exercise 

Heel slides 
Hip abduction 
Hip extension, 
Hip flexion 
Inner range quads 
Knee extension 
Straight leg raise 

 Binary technique 
classification              
Multi-label 
technique 
classification 
 
 

Global feature 
based 
classification. 
Logistic regression. 
Multi and single 
sensor set-ups. 
 

LOSOCV Binary LOSOCV all 3 
sensors: (acc = 81%, 
sens=79%, specificity = 
70%) LOSOCV thigh 
sensor: (acc=82%, 
sens=72%, spec=83%) 

Kianifir et al. 
2016 [69] 

3 x IMU, (trunk 
thigh, shank) 

7 (1 females, 6 
males), 
injury-free, 
5 reps per 
exercise 

Single leg squat Binary technique 
classification              
Multi-label 
technique 
classification 

Global feature 
based 
classification. 
Support vector 
machine, decision 
tree and logistic 
regression. 

LOSOCV 
10-CV 

Binary LOSOCV: SVM 
acc=98.6%, Multi-label 
LOSOCV: Decision tree 
acc=73% 

Whelan et al. 
2016 [70] 

3 x tri-axial 
accel + gyro + 
mag (lumbar,  
thigh L&R, 

83 (23 females 
60 males), 
injury-free, 
10 reps  

Single leg squat Binary technique 
classification  
Detection of 6 
deviations 

Global feature 
based 
classification. 
Random Forests. 

RRSS 3IMU system, binary 
RRSS: acc = 77%, 1 
IMU system (Shank L), 
binary RRSS: acc = 
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shank L&R) (parallel binary 
classifiers)             

Multi and single 
sensor set-ups. 
 

76%. 
Deviation detection, 1 
IMU system (Shank L), 
binary RRSS: acc = 66-
75%. 

O’Reilly et al. 
2017. [71] 

5 x tri-axial 
accel + gyro + 
mag (lumbar,  
thigh L&R, 
shank L&R) 

80, (23 females, 
57 males), 
injury-free, 10 
reps of 
‘acceptable 
form’ + 3 reps 
per exercise 
deviation 

Lunges Binary technique 
classification              
Multi-label 
technique 
classification 

Global feature 
based 
classification. 
Random forests. 
Multi and single 
sensor set-ups. 

LOSOCV A single IMU system 
achieved 83% acc, 62% 
sens and 90% spec in 
binary classification and 
a five IMU system 
achieved 90% acc, 80% 
sens and 92% spec. A 
five IMU set-up can 
also detect specific 
deviations with 70% 
accuracy. 

O’Reilly et al. 
2017. [72] 

5 x tri-axial 
accel + gyro + 
mag(lumbar,  
thigh L&R, 
shank L&R) 

77, (22 females, 
55 males), 
injury-free, 10 
reps of 
‘acceptable 
form’ + 3 reps 
per exercise 
deviation 

Bodyweight squats Binary technique 
classification              
Multi-label 
technique 
classification 

Global feature 
based 
classification. 
Random forests. 
Multi and single 
sensor set-ups. 

LOSOCV Acceptable or aberrant 
BW squat technique can 
be detected with 98% 
accu, 96% sens and 
99% spec when using 
features derived from 
all 5 IMUs. Detecting 
exact deviations from 
acceptable BW 
squatting technique can 
be achieved with 80% 
acc using a 5 IMU 
system and 72% acc 
when using a single 
IMU positioned on the 
R shank. 

O’Reilly et al. 
2017. [73]  

5 x tri-axial 
accel + gyro + 
mag  
Lumbar  
Thigh L & R 
Shank L&R 

55, (18 females, 
37 males), 
injury-free,  
reps form a full 
3RM test. 

Barbell back squats Binary technique 
classification              
Multi-label 
technique 
classification 

Global and 
personalised feature 
based 
classification. 
Random forests. 
Multi and single 
sensor set-ups. 

Global: 
LOSOCV 
Personalised: 
LOOCV 

Global classification 
techniques produced 
poor acc, sens and spec 
scores in binary 
classification even with 
a 5 IMU set-up in both 
binary (acc: 64%, sens: 
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70%, spec: 28%) and 
multi-class 
classification (acc: 59%, 
sens: 24%, spec: 84%). 
Personalised 
classification techniques 
1 IMU system (L thigh) 
classification scores 
(acc: 81%, sens: 81%, 
spec: 84%) and multi-
class scores (acc: 69%, 
sens: 70%, spec: 89%). 

O’Reilly et al. 
2017. [74] 

5 x tri-axial 
accel + gyro + 
mag  
Lumbar  
Thigh L & R 
Shank L&R 

55, (18 females, 
37 males), 
injury-free,  
reps form a full 
3RM test & 10 
reps of 
‘acceptable 
form’ + 3 reps 
per exercise 
deviation 

Barbell deadlifts Binary technique 
classification              
Multi-label 
technique 
classification 

Global and 
personalised feature 
based 
classification. 
Random Forests. 
Multi and single 
sensor set-ups. 

Global: 
LOSOCV 
Personalised: 
LOOCV 

Binary classification 
with real deviations 
using personalised 
model (LOOCV): 5 
IMU – acc: 84%, 
lumbar IMU – acc: 
80%. 
Detection of exact real 
deviations using 
personalised model 
(LOOCV): 5 IMU – 
acc: 78%, lumbar IMU 
– acc: 75%. 

O’Reilly et al. 
2017. [75]  

1 x tri-axial 
accel + gyro + 
mag  
Thigh L 
 

15, (3 females, 
12 males), 
injury-free, 40 
reps per 
exercise. 

Squats 
Lunges 
Single leg squats 
Deadlifts 
 

Binary technique 
classification               

Personalised 
feature based 
classification. 
Random forests.  

Real world 
system 
evaluation 

The personalised 
systems achieved 
89.50% acc, with 
90.00% sens and 
89.00% spec 

Acc = accuracy, accel = accelerometer, ACL = anterior cruciate ligament, gyro = gyroscope, IMU = inertial measurement unit, mag = magnetometer, rehab = rehabilitation, 
ROM = range of motion, L = left, R = right, reps = repetitions, CV = cross-validation, LOSOCV = leave-one-subject-out-cross-validation, LOOCV = leave-one-out-
cross-validation, LOEOCV = leave-one-exercise-out-cross-validation, RRSS = repeated random sub-sampling, SVM = support vector machine, sens = sensitivity, 
spec = specificity, BW = bodyweight
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Table 11: Summary of recommendations for future studies. 

Area of consideration Recommendations 
Sensor set-up Study design will benefit from collecting data with comprehensive set-ups 

(multiple IMUs at a variety of relevant anatomical locations). Analysis can then 
compare system efficacy when employing all data from the comprehensive set-
up and a variety of subsets of these data. 
 
Engage target system users in advance of data collection to develop an 
understanding of their preferences regarding factors relating to sensor set-up e.g. 
cost, accuracy, usability and functionality. 

Measurement validation Studies assessing known groups validity e.g. to assess IMU systems’ capacity to 
differentiate injured and non-injured individuals should recruit larger samples to 
allow for formal statistical analyses. 
 
There exists a need for predictive algorithms from IMU data to estimate kinetic 
exercise parameters and to assess their concurrent validity with force plate and 
optoelectronic motion capture data. 
 
An under investigated field is using a single IMU set-up to predict lower limb 
joint angles. 

Exercise detection Exercise detection systems’ accuracies may be increased by collecting larger 
data sets from a greater number of participants. 
 
When assessing system efficacy via cross-validation techniques data from the 
same participant should not be included in both the training and test sets. 
 
Deep learning techniques such as convolutional neural networks and long-short-
term memory networks may improve exercise detection efficacy. 

Movement classification Larger data sets, collected from more participants and inclusive of more exercise 
types and their associated technique deviations are necessary to further develop 
this area. 
 
If developing a global classification system, when assessing system efficacy via 
cross-validation techniques data from the same participant should not be 
included in both the training and test sets. Experimentally evaluating a system’s 
real-world accuracy would also strengthen the literature. 
 
Deep learning techniques such as convolutional neural networks and long-short-
term memory networks may improve movement classification efficacy. 
 
Personalised classification systems accuracy and efficiency outperforms global 
classification systems but require time and expertise to develop. Tools which 
streamline this development process should be investigated. 

 
IMU = inertial measurement unit 

 


