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ABSTRACT

An Investigation into the Characteristics of Equity Volatility and its

Implications for Derivative Strategies

John F. Garvey

The development of an effective mechanism for pricing options has inspired a
large volume of academic research and has ultimately changed the landscape
of the financial markets. Since the publication of Black and Scholes’ (1973)
seminal paper on option pricing, the finance literature has explored and at
least partially resolved many of the limitations associated with the origi-
nal model. The reality of stochastic volatility contradicts a key assumption
of the Black-Scholes model and addressing this has motivated the develop-
ment of more appropriate volatility models. The improved specification and
forecasting of asset price volatility has been influenced by the demands of
risk management and portfolio functions. The increased use of quantita-
tive methods in portfolio management is due, in part at least, to successful

academic research into asset volatility.
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Existing research is extended in this thesis by first examining the forecast-
ing power of implied volatilities from traded UK equity options. Composite
implied volatilities are created using weighting techniques that efficiently
capture the predictive information in traded options. These implied volatil-
ities are benchmarked against subsequently realized stock price volatility
estimated from high-frequency stock price data. The predictive informa-
tion provided by the options market is compared against that available from
sophisticated statistical models such as the generalized autoregressive con-
ditional heteroskedastic (GARCH) model and the exponential-GARCH (E-
GARCH) model. Comparison of implied and statistical forecasts is carried
out over a number of forecasting horizons using regression analysis as well

as robust pairwise tests.

The second part of this thesis uses semi-parametric techniques to exam-
ine the long-run dynamics of UK equity volatility. The nature of volatil-
ity persistence found in both the implied and realized volatility series of a
number of companies is carefully examined. Testing the time-domain prop-
erties of the volatility series identifies the extent to which structural breaks
in volatility contribute to observed levels of persistence in our sample of
companies. The nature of the long-run relationship between implied and
realized volatility is also examined. The relevance of these empirically ob-

served volatility characteristics is examined in the final part of this thesis.
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Using dynamic programming techniques together with Monte Carlo simu-
lation, optimal portfolio weights are determined for a derivative strategy
implemented in discrete time. The derivative strategy is activated across
a six-month investment horizon and rebalancing occurs at the beginning of
each month. The creation of a series of variance grid points at each time step
makes the dynamic programming approach computationally feasible. Pro-
gressing backwards from the end of the investment horizon, optimal portfolio
weights are found for each of the variance grid points. The optimisation pro-
cedure assumes that volatility is driven by a short-memory affine process.
The economic cost associated with omitting long-memory effects is isolated
by simulating a fractionally integrated process across the same investment
horizon and applying the previously assigned weights at each time step. The
relevance of omitting possible regime shifts in the volatility process are eval-
uated in the same manner. Portfolio outcomes are derived for the optimal
case, that is, when actual volatility follows a short memory process. Out-
comes are also derived for the alternative conditions, that is, a ‘true’ long
memory, fractionally integrated process as well as the ‘spurious’ long mem-
ory or regime-switching case. The impact of volatility mis-specification is

captured in the characteristics of the portfolio’s terminal wealth distribution.
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CHAPTER 1

Introduction

1.1. Introduction

The fund management industry has been the venue for significant research
and innovation over the past fifty years. The wider application of risk-
adjusted performance measures has meant that stock selection and asset
allocation decisions are increasingly sensitive to volatility effects over short-
and medium-term horizons. In a survey carried out by The Intertek Group,
the management of equity portfolios has shown a greater reliance on quan-
titative modeling in recent years'. This trend in the fund management in-
dustry is a product of the development of a number of volatility forecasting
models in the academic literature. Increasingly sophisticated time series
forecasting models have been produced by Engle (1982), Bollerslev (1986),
Nelson (1991) and Glosten, Jagannathan and Runkle (1993) among oth-
ers. Although these models have become progressively more attuned to
empirically observed volatility characteristics, their relative complexity has

limited their appeal for market participants. The academic literature has

IThe 2006 Survey by the Intertek Group and Frank J. Fabozzi notes that 84% of respon-
dents reported that the percentage of equity assets under quantitative management had
increased over the previous two years.

10



1.2. RESEARCH MOTIVATION 11

also extensively examined the capacity of the options market to provide
forward-looking information on asset volatility [Bates (1991), Christensen
and Prabhala (1998), Poteshman (2000)]. This thesis compares implied
volatility forecasts against popular time series methods and the relationship
between the equity options market and the underlying assets is explored
within the context of the implied-realized volatility relationship. The thesis
also investigates how long-run volatility dynamics impact on the construc-

tion of optimal investment strategies.

1.2. Research Motivation

The initial motivation for this thesis emerged from an interest in the be-
haviour of financial market participants around the time of the collapse in
telecom, media and technology stocks at the beginning of this decade. The
predominance of investor sentiment as an influencing factor on asset values
led to some preliminary investigations into how measures of sentiment could
be used to inform decision making in the financial markets. The function
fulfilled by financial options, that of hedging against and speculating on fu-
ture risk presented a potentially valuable line of enquiry. The early part of
this research focused on the volatility forecasting literature and in particular
on the advances made in the class of statistical forecasting methodologies
such as ARCH and GARCH. The ability of these models to predict volatil-

ity over short forecast horizons has been well documented in the existing
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literature [Poon and Granger (2003)]. The forecasting performance of im-
plied volatilities backed out of the market prices of traded options provides
an alternative forecasting method and a possible indicator of investor sen-
timent. This thesis focuses on individual equity options which have been
relatively neglected in the existing literature, in principle due to limitations
with data availability. Generating a composite implied volatility estimate
using close-to-the-money options efficiently utilises the forward-looking in-
formation contained in option prices [Mayhew (1995), Ederington and Guan
(2002)]. A comparison of this forecast against statistical GARCH forecasts
generated from historical patterns in the volatility of the underlying asset is
also carried out. The comparison between both forecasting methodologies
provides an insight into the relationship between the market for individual

equity options and the underlying equities.

Empirical research into the volatility dynamics of foreign-exchange markets
and equity indices has identified levels of persistence that can be modeled
as fractional integration in the autocorrelation structure of volatility. These
findings have been challenged by more recent research showing that struc-
tural breaks in volatility can induce similar levels of persistence [Granger
and Hyung (2004)]. Budek, Schotman and Tschering (2006) note that cor-
rectly modeling long-run volatility dynamics is critical for the development

of effective criteria for risk management procedures.
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In the financial markets there has been an increased flow of capital towards
investment strategies other than the traditional ‘long-only’ strategy. Eval-
uating the optimal portfolio outcomes of investment strategies that allow
for positions in derivatives has been facilitated by developments in dynamic
programming techniques. Improvements in computing speeds has also made
dynamic programming within a realistic framework possible. This thesis
uses dynamic programming techniques to examine the relevance of long-
memory effects for market practitioners engaged in discrete time derivative

strategies.

1.3. Objectives of the Research Study

This thesis achieves a number of objectives that enhance the current un-
derstanding of volatility dynamics and the relevance of these dynamics in
portfolio applications. The following specific research objectives are pro-

posed.

e To evaluate the ability of implied volatilities to forecast subse-
quently realized volatility for a set of individual companies traded
on the FTSE-100 index.

e To test for the presence of fractional integration in the realized
volatility of individual equities.

e To test for the presence of structural breaks in the volatility process

(spurious long memory).
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e To model the long-run relationship between implied and realised
volatility, testing whether the relationship is a fractionally cointe-
grating one.

e To employ dynamic programming techniques and Monte Carlo sim-
ulation in the investigation of long memory effects, produced as a
result of fractional integration or induced through structural breaks
in the mean level of volatility can impact on the performance of a

derivative strategy.

1.4. Structure of the Thesis

Chapter Two - The Forecasting Performance of Implied Volatil-
ities on Individual Equity Options compares the forecasts produced
by implied volatilities from individual equity options to statistical forecasts
produced by GARCH models. There are three datasets employed in the
study. Daily end-of-day data on individual equity options for the period
1997-2003 is provided by LIFFE and daily stock price data for the same
period is obtained from Datastream. Forecasts produced by the class of
GARCH models are generated using the daily stock price data. An accurate
estimate of realized volatility is calculated using a third dataset of high-
frequency tick-price data provided by the London Stock Exchange (LSE).
The raw dataset obtained from the LSE contained some incorrect and non-

unique prices, which had to be removed before the dataset could be used
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in the construction of a daily realized volatility time series. The results of
this research show that traded prices on individual equity options contain
information on future idiosyncratic or stock-specific risk that is not available
in GARCH or E-GARCH models. The results also show that individual UK
equity options are the optimal forecasting method particularly over 10-day
forecasting horizons. These findings provide some insight into the short-run
relationship between the options and stock market and the results confirm
the important signal function of individual equity options. Therefore, this
research has potential relevance for risk managers who actively manage eq-

uity portfolios and are engaged in an ad-hoc rebalancing strategy.

Chapter Three - Modeling the Implied and Realized Volatility Re-
lationship in Individual Equities extends the analysis in Chapter 2 by
looking at the long-run dynamics of realized volatility for a sample of FTSE-
100 stocks. Semiparametric techniques used in this case are the Geweke
Porter-Hudak (1983) estimator and the feasible exact local Whittle estima-
tor. Both estimates provide evidence that stock specific shocks observed in
realized volatility decay at a very slow, hyperbolic rate. Recent research has
shown that similar levels of persistence can be induced by occasional breaks
in the volatility process. It is therefore important that the contribution of
structural breaks to observed levels of persistence are measured. This chap-
ter includes a series of time-domain tests that identify structural breaks in

both realized and implied volatility series. Fractional integration is shown to
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be present in a number of volatility series. The similar levels of persistence
observed in the implied and realized volatility series of a number of com-
panies indicates that both volatility series may be fractionally cointegrated.
Using recently developed techniques we formally tests for the presence of
fractional cointegration between implied and realized volatility. The more
complete understanding of the long-run dynamics provided by this analysis
leads to a re-assessment of the relationship between implied and realized

volatility.

Chapter Four - Long Memory Effects in Portfolio Planning applies
the insights of previous chapters to a realistic portfolio planning problem.
The research examines a derivative strategy under specific volatility con-
ditions. Simulations are used to show how the distribution properties of
terminal wealth are influenced by long-memory effects. This chapter also
examines whether modelling for long memory effects in asset volatility has
an economic value when constructing an optimal derivative strategy in dis-
crete time. The impact of long memory effects on the terminal wealth dis-
tribution is specifically identified. A clear distinction is made between long
memory effects that arise from a fractionally integrated process and those
induced by regime shifts in the volatility structure. The optimal investment
strategy in discrete time is found using backward induction combined with
a numerical optimization and Monte Carlo simulation. The optimization

procedure assumes that asset volatility follows a short memory process and
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using this portfolio policy the outcomes from actual volatility following a
fractionally integrated or regime-shifting model are examined. In the con-
text of a covered call strategy, portfolio performance is found to deteriorate
if the underlying data generating process is fractionally integrated and these
effects are not included in the optimisation process. If fractional integration
is not considered in a discrete-time rebalancing decision, the investor is more

likely to include non-optimal derivatives within the portfolio.

Chapter Five - Summary Discussion and Conclusions involves a sum-
mary discussion of the research carried out. The limitations of the research

are also flagged as are suggestions for further research.



CHAPTER 2

The Forecasting Performance of Implied Volatilities

on Individual Equity Options

2.1. Introduction

The volatility forecasting literature includes a large number of studies that
examine the volatility implied in the market prices of index options'. The
increased use of index options by equity fund managers as part of a hedging
strategy has meant that implied volatilities backed out of the traded market
prices of index options are now a generally accepted indicator of investor
sentiment. These instruments are useful for those funds whose performance
is closely correlated with a specific equity index. However in recent years,
greater amounts of capital have been devoted to active investment strategies
that rely less on index-wide diversification. At the beginning of this decade
actively managed equity funds incurred additional expenditure of $20 bil-
lion per year measured as the expense ratio between active and passive funds
[Wermers (2000)]. Cai and Zhang (2004) show that over the sample period,
1981 to 1996, the average institutional traders trades in approximately 75%

LA partial list of these studies includes Bates (2000), Canina and Figlewski (1993), Chris-
tensen and Prabhala (1998), Jackwerth and Rubinstein (1996).

18
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of stocks in each quarter. Fund performance is dependent on the fund man-
ager’s stock-picking ability and as part of this process the expected volatility
pattern of individual stock returns over a number of horizons are an impor-
tant input. This chapter explores whether implied volatility from individual
equity options can contribute to effective decisions, in this regard, by pro-

viding appropriate estimates of expected volatility.

Individual equity options are driven by a set of factors that are in many cases
distinct from those that influence index option prices. New ‘firm-specific’ in-
formation, such as quarterly reports or product releases lead to a temporary
increase in trading and influence short-term volatility patterns. The period
immediately prior to these announcements is often characterised by a decline
in trading volume and volatility as traders await the arrival of new informa-
tion [Ederington and Lee (1996), Malz (2003)]. These short-term variations
have been attributed to feedback trading and it has been observed in stock
index returns by Koutmos (1998) and Venetis and Peel (2003). If the mar-
ket in individual equity options is efficient, the timing of expected company
announcements and the associated short-run volatility patterns should be
reflected in the pricing of individual equity options. Dubinsky and Johannes
(2005) show how equity options capture stock specific uncertainty around

earnings announcements dates in a sample of 20 U.S. stocks. This feature
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distinguishes these instruments from index options where stock specific an-
nouncements impact market wide volatility only in exceptional cases. Fur-
ther evidence of the differences between index and individual equity options
is the existence of commonly used analytical strategies such as dispersion

trading?®.

This chapter examines the ability of implied volatility estimates from indi-
vidual equity options to forecast subsequently realized volatility over the life
of the option. Estimates of stock volatility over extended horizons are impor-
tant considerations for risk managers seeking to control and measure their
risk exposure and minimise rebalancing costs. The increased use of risk-
adjusted portfolio performance coupled with the practice of ad-hoc rebal-
ancing decisions at the end of each trading month increases the importance
of accurate volatility estimates between rebalancing dates. Research into
the predictive ability of equity options has been hampered by the relatively
low levels of liquidity in these markets compared to index options. Testing
procedures were also constrained by the reliance on daily returns data when
benchmarking implied volatility forecasts. In this research the availability
of extensive options data and high frequency price data on the underly-
ing stocks contribute to the robust results. Options data was obtained on

all constituent companies making up the FTSE-100 as at December 2003.

Dispersion trading exploits the fact that index volatility has traded at a premium (due
to hedging demand from fund managers), while individual stock volatility has been fairly
priced. The strategy can be operationlised by combining a short position on Index options
with a long position on options on its constituent stocks.
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Those companies with short trading histories and low option trading volume
were not considered, so that, the research presented here uses options data
on fifteen FTSE-100 companies. The options considered are those contracts
for which data is continuously available over a seven year period. Estima-
tion of the composite implied volatility forecast uses a weighted average
of implied volatilities drawn from a few close-to-the-money equity options.
Benchmarking of the predictive ability of these estimates is then carried out
against realized volatility estimated from intraday tick-by-tick price data
on individual stocks. This research also ranks implied volatility forecasts
against multi-step ahead forecasts produced by popular time-series models

such as GARCH [Bollerslev(1986)] and E-GARCH [Nelson(1991)].

The following section discusses the relevant literature in the area. The sub-
sequent section details the process for estimating realized volatility and the
methods used to generate each of the forecasting models. This section also
describes the testing methodology. Empirical results and conclusion then

follow.

2.2. Volatility Forecasting

The development of an effective option pricing framework by Black and
Scholes (1973) and Merton (1973) contributed to the rapid expansion of ex-
change traded options on an increasingly broad range of assets. Traditional

option pricing models such as the standard Black-Scholes model for pricing



2.2. VOLATILITY FORECASTING 22

European options as well as the binomial approach developed by Cox, Ross
and Rubinstein (1979) for American-style options rely on the assumption of
constant volatility over the life of the option contract. Subsequent models
have incorporated greater realism by modeling the dynamics of stochastic
volatility observed in empirical studies, however despite the obvious limita-
tions of traditional option models they remain widely used among market
participants. The volatility estimate implied by the market price of the
option is generally obtained using this traditional framework and is consid-
ered an efficient forward-looking estimate of the expected volatility of the

underlying asset.

Unsurprisingly a significant amount of research has focused on the predic-
tive ability of implied volatility forecasts from equity index options which are
traded in relatively large volumes. Canina and Figlewski (1993) examined
implied volatility from S&P index options and found that it is a weak pre-
dictor of subsequently realised volatility. Option market inefficiency and the
assumptions underlying the Black and Scholes (1973) option-pricing model
are identified as key factors in this result. Figlewski (1997) shows that non-
continuous trading in the options market and the inability to observe the
‘true’ equilibrium option price due to bid-ask spreads are key reasons for
the weak results found in those early studies. Inaccuracies that are caused

by market frictions are exacerbated when using deep in-the-money (ITM)
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and deep out—of-the-money (OTM) options so that even a narrow bid-ask

spread has a significant impact on the implied volatility estimate 3.

Despite these findings, commercially available implied volatility indices such
as the Chicago Board of Trade Volatility Index (VIX) have been available
since 1993. The VIX is a synthetic implied volatility measure produced as
a weighted average of 8 OEX (S&P 100 Index) put and call options. Aca-
demic research has more recently provided greater support for the use of
these indices as forward-looking indicators of market sentiment. An impor-
tant contribution to the literature was made by Christensen and Prabhala
(1998) who looked at the relationship between implied and realized volatility
on S&P 500 Index options over a sample period of 11% years. Christensen
and Prabhala’s (1998) use of a non-overlapping dataset allows for more ro-
bust regression results and implied volatility is found to have a much higher
explanatory power than past volatility. In addition, this approach reduces
the positive implied volatility bias that is suggested in Jorion’s (1995) study.
This bias is found consistently in the literature and is generally attributed
to the unrealistic assumption of constant volatility in standard option pric-
ing models. Penttinen (2001) notes that studies testing implied volatility

forecasts have been entirely based on a period of historically low volatility.

3Bates’ (1991) study of S&P 500 options for the period 1985-1987 looked at relative prices
of OTM put options and OTM call options with a view that "unusually" expensive OTM
puts could indicate the market’s assessment of an imminent downturn. In the case of the
October 1987 stock market crash expectations of a market downturn were reflected in
options prices in the year before the crash, however in the period immediately preceding
the crash downside risk was not very pronounced.
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Penttinen (2001) argues that the bias between ex-ante implied and ex-post
realized volatility should be attributed to the rational but unrealised expec-

tations of infrequently occurring jumps in volatility.

Although notably less research has examined the market in individual equity
options, an extensive review of the volatility forecasting literature by Poon
and Granger (2003) identifies some relevant studies. Chiras and Manaster
(1978), Beckers (1981) and Gemmill (1986) do not show consistent support
for forecasts provided by implied volatility backed out of individual equity
options. The use of narrow sample periods and limited options data in these
studies is likely to have an impact on the findings produced. Lamoureux and
Lastrapes (1993) and Vasilellis and Meade (1996) backed implied volatility
estimates out of a single equity option price and tested its predictive abil-
ity over a limited number of forecast horizons. Lamoureux and Lastrapes
(1993) tested the forecast performance of implied volatilities drawn from
ten European-style individual equity options traded on the Chicago Board
of Exchange over a two-year period (April 1982 - March 1984). Due to limi-
tations of the options data, one-step-ahead implied volatility forecasts were
obtained from options with maturities of 129 trading days in some cases.
These forecasts were found to contain information above that available in

historical prices. Vasilellis and Meade (1996) examined implied volatilities
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on the options of twelve FTSE-100 companies using weekly data. The im-
plied volatilities were shown to contain information not available from his-
torical data. Implied volatility forecasts, generated both from single option
prices as well as using weighting schemes provide forecasts that are superior
to forecasts produced by the GARCH model. In this chapter the use of high
frequency data for both stock and option prices, facilitates a robust analy-
sis that updates and extends the study carried out by Vasilellis and Meade

(1996).
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2.2.1. Data Description

The task of evaluating the accuracy of volatility forecasts is difficult since
‘true’ volatility cannot be observed. The use of high-frequency data (HFD)
confers a number of benefits on this research and distinguishes the analysis
carried out here to similar studies by Day and Lewis (1992) and Lamoureux
and Lastrapes (1993) that use weekly and daily data respectively in their es-
timation of ‘true’ volatility. Andersen and Bollerslev (1998) studied the con-
ditional variance estimates provided by forecasting models against squared
returns (r?) , calculated from end of day stock prices. Returns are calculated
as, ry = In(S;) — In(S;_1), where the return at time ¢, r; is the natural log
difference of the stock price (S;) at time t. Daily squared returns are shown
to be a noisy estimate of volatility and in all cases a regression of the volatil-
ity forecast against squared returns would indicate weak explanatory power.
Awartani and Corradi (2004) show that even if ‘true’ unobservable volatility,
012 , is replaced with squared returns, 72, then the correct ranking of models
based on any quadratic loss function will be maintained. A detailed analysis

of the predictive ability of volatility forecasts benefits from the use of HFD

which contains significantly more information than daily price data.

For each of the companies included in the study, tick-by-tick data was ob-
tained from the London Stock Exchange (LSE) for the period 1997 to 2003.

In order to calculate an accurate measure of realized volatility it is important
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that market microstructure effects are mitigated where possible. Microstruc-
ture effects such as bid-ask spreads are shown by Meddahi (2002) and Oomen
(2006) to contribute to less robust estimates of realized volatility. Volatility
estimates become increasingly biase over finer sampling intervals. The prob-
lems associated with bid-ask spreads are overcome in this research by using
the series of best prices available at the times each of the trades occurred.
The best price series provided by the LSE is a raw dataset that presents a
number of exchange-related issues that require preliminary manipulation of
the dataset. The best price dataset is obtained for each of the sample com-
panies and it includes all trades published on a given day, irrespective of the
time of trade execution or reporting. Furthermore, cancellation trades and
late trade corrections are included on the day the correction is published.
Late and overnight trades are also included on the day these trades are pub-
lished, that is, within the trading hours of the following trading day. The
reporting of cancellation trades as well as late and overnight trades present
a number of issues in relation to the recording and sequencing of prices that
must be addressed before the series could be used. The timing and type
of trading that is carried out means that the large tick datasets is are very
often characterised by incorrect, simultaneous and consecutive non-unique
price reports that if left unadjusted severely affect the estimation of realized

volatility.
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In a study of microstructure effects in the US stock market, Brownlees and
Gallo (2006) address the not insignificant matter of how best to manage
unwieldy financial data. This research produced a set of useful algorithms
that were amended and used here to filter and manage the LSE data®. The
initial step was to remove incorrect price reports including zero prices and
suspiciously large price observations. Consecutive non-unique prices that
are the result of late or overnight trades also affect the correct calculation
of realized volatility and are excluded. This process resulted in a time series
of intra-day prices with irregular intervals between each reported price. Re-
cently a number of studies have addressed how HFD can be optimally used
in the estimation of realized volatility. Although the estimation of realized
volatility should approximate ‘true’ volatility as the sampling frequency in-
creases, Jacod and Shiryaev (2003) show that realized volatility estimates
become biased and inconsistent as the sampling frequency increases. To
overcome these effects a simple nonparametric measure of realized volatility
can be produced that first converts the irregular series of tick prices to a
lower frequency, equally-spaced time series. In this instance, a time series
of 30-minute prices is created using an aggregation function that finds the
last price before the end of each interval. If InS;¢ = 1,...,T is a series of
daily stock prices and let In Sy ke, k = 1,...,m and £ = 1/m denote a series
of 30-minute observations, then a daily estimate of realized variance can be

constructed as RV}, = ;”:_Ol(ln Sit(k+1)e — In St+(k)§)2. This approach is

4Brownlees and Gallo’s (2006) Matlab computer code is publicly available.
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evidenced in studies by Andersen, Bollerslev, Diebold and Labys (2001) and

Barndorff-Nielsen and Shephard (2002).

More recently, studies have observed that neglecting more finely sampled
data in this manner excludes a large proportion of available information.
Zhang, Myland and Ait-Sahalia (2006) consider the method of ad-hoc sparse
sampling along with a number of alternative realized volatility estimators.
The approach is ranked as the fourth best estimator of the five considered
and is shown to be less effective than sampling sparsely at an optimally
determined frequency. Sparse sampling, either by ad-hoc or optimal meth-
ods, excludes data and is thus inferior to approaches that use subsampling
and averaging. The use of subsampling incorporates a greater amount of
the available information and avoids the process of discarding data that is
necessarily part of sparse sampling. Zhang, Mykland and Ait-Sahalia (2006)
identify the optimal estimator as one that uses subsampling and averaging
and also corrects for bias. The two-scales realized volatility (TSRV) estima-
tor combines two estimators, one that utilises all tick prices and a second
that averages estimates of realized volatility across regular intervals. In this
instance realized volatility is estimated in a number of stages over slow and
fast time scales that correct for biases produced by microstructure effects.
An examination into multi-scale realized volatility (MSRV) by Zhang (2006)

shows that the estimator converges to ‘true’ volatility at a faster rate than
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alternative methods. In this research, the estimation of daily realized volatil-
ity using either the TSRV or the MSRV estimator imposes a considerable
computational burden when applied to the large number of tick observa-
tions for FTSE-100 stocks over the sample period 1997 to 2003. In light of
more recent evidence, sparse sampling produces a relatively crude estima-
tor of realized volatility. The relative simplicity of this approach means it
is computationally feasible when applied to sizeable datasets examined in
this research. The properties of the daily realized volatility series for each
company, summarised in Table 2.1, show a wide variation in the descriptive

statistics among the cross-section of companies.

Deriving Implied Volatilities from Individual Equity Options

American-style equity options trade on the London International Financial
Futures Exchange (LIFFE) and prices are quoted for all companies on the
FTSE-100 exchange. The dataset procured from LIFFE contains details
such as the trade and expiry dates, the volume traded on each option, as
well as an annualized implied volatility backed out of the market price of the
option. Implied volatility estimates for each option are produced by LIFFE
Euronext using the Cox, Ross and Rubinstein (1979) binomial option pricing
method that incorporates dividends and early exercise. The exact procedure

for constructing the binomial tree is proprietary and the details are retained
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by LIFFE Euronext. The LIFFE Euronext data includes options contracts
that were priced but were not traded. A preliminary filtering process care-
fully removed options data on quoted contracts that were not traded. For
each company considered in this study a number of daily options contracts
were traded on each day with a range of maturities and strike prices. The
moneyness of an option refers to the distance between the price at which
the option can be exercised, that is, the strike price and the current price on
the underlying asset. A number of studies have examined how best to use
implied volatilities on traded options. The majority of studies specifically
examined the sensitivity of implied volatility from index options to contract

specifications such as maturity and moneyness.

Over the past decade there has been greater agreement among academics
and practitioners on how to optimally use implied volatility data. Edering-
ton and Guan (1999) show that at-the-money options demonstrate greater
sensitivity to the volatility of the underlying asset than far-from-the-money
options. Furthermore, the positive bias found empirically in implied volatil-
ity forecasts is minimized by using options trading close to the money. These
findings are confirmed by Bodie and Merton (1995) who show that the
bias associated with implied volatility forecasts can be mitigated by us-
ing short-dated options that are close-to or at-the-money. Ederington and

Guan (2002) estimate a composite implied volatility forecasts using four or
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eight option contracts trading close-to-the-money. This method produces es-
timates that are superior to estimates generated using all available options,
including those that are far-from-the-money. Although simple averaging of
implied volatilities has been applied by Jorion (1995) and Weber (1996) in
studies on forecasting, Mayhew (1995) and Ederington and Guan (2002)
show that weighting implied volatilities according to the moneyness of the
contract minimises the variance of the implied volatility estimate and is thus
more efficient than simple averages. These findings are reflected in the in-
vestment industry where commercially available implied volatility indices are
estimated using only a few at-the-money or near-the-money options and are
weighted according to contract moneyness. One commercial example is the
implied volatility index (VIX) produced by the CBOE that is constructed
as a weighted average of the four call options and four put options that are
trading nearest the money®. In this paper, composite implied volatilities
are created using a moneyness weighted scheme similar to that applied by

commercial vendors such as the CBOE.

Forecasts are examined across short-, medium- and long-term horizons of
10-days, 30-days and 60-days respectively. A prerequisite to estimating an
implied volatility forecast is that sufficient contracts are available at each
forecast date to enable calculation of the synthetic implied volatility esti-

mate. To satisfy this condition options are grouped according to the length

"Details on the construction of the The VIX Index are contained in the CBOE technical
document "The New CBOE Volatility Index - VIX", available on www.cboe.com.
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of contract maturity. Three subgroups of options are created and each group
aligned to a specific forecast horizon. Short-term implied volatility fore-
casts are generated from contracts with maturities between 10 and 30 days.
Medium-term forecasts are generated from option contracts with maturities
between 30-60 days and contracts with 60 to 90 days maturity are used in
long-term forecasts. Once the contracts are bundled, the annualized implied
volatility estimate provided by LIFFE Euronext is adjusted to the appro-
priate forecast horizon using the square root of time rule. Assuming 252
working days in the year, the h-day-ahead implied volatility forecasts are
estimated as, %I V, as per Giot and Laurent (2007). For example, an
implied volatility produced by an option contract in the short-maturity (10-
day) bundle may have 25 days to expiry. The implied volatility from this
contract is adjusted to a ten-day horizon as follows, %[ Va5 _day- The op-
timal method for constructing a composite implied volatility estimate has
been examined in a number of studies [Mayhew (1995), Ederington and Guan
(2002)]. The weighting scheme used in this chapter is guided by the results
produced by Ederington and Guan (2002) that recommend methodologies
used by commercial vendors such as the CBOE-VIX. The scheme approxi-
mates the commercial approach as closely as possible. It differs only in the
use of four rather than eight options (a reflection of the greater trade vol-

ume in Index options compared to equity options). The composite implied
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volatility forecast incorporates the implied volatilities of the four nearest-
to-the-money options traded on each day in a manner similar to that ap-
plied by commercial vendors. This procedure uses the time-adjusted implied
volatilities from the two call options (IV,; and IV.3) and the two put op-
tions (IV,; and IV,») that are trading nearest the money. The weighting
method used to estimate the composite implied volatility takes account of

the respective option’s moneyness as follows,

Xc - F XC - F
IV,r = 050 (2—> IV, 4 0.50 (1 - 2—) AV,
1

Xc2 — Xc Xc2 - Xcl
X — F Xpp — F
2.1 +0.50 p—) AVp1 +0.50 (1 — p—) AV,
( ) (XPZ — Xp1 - Xp2 = Xp1 v

where F' is the underlying stock price (face value), X4 and X9 (X,1and X))
are the strike prices of the nearest-the-money call (put) options and IV,; and
IV,y (IV,y and IV,3) are the corresponding implied volatilities. This ap-
proach focuses the analysis on those options trading near the money which
are most sensitive to volatility in the underlying asset, therefore minimiz-
ing measurement errors and clientele effects that affect out-of-the-money
options. A daily composite implied volatility times series is produced for
each forecast horizon, that is, the 10-day, 30-day and 60-day horizon. These
forecasts are benchmarked against realized volatility estimated as the sum
of daily realized volatility across the forecast horizon from the day after the
trade date, as follows, RV;; = > (RVii1,..., RViys), where RV is realized

volatility estimated from 30-minute intraday returns, ¢ is the option trade
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date and h is the forecast horizon. The procedure results in paired implied
and realized volatility series at 10-day, 30-day and 60-day overlapping fore-
cast horizons. The use of overlapping horizons in regression analysis has
been shown by Christensen and Prabhala (1998) to produce results that are
not robust since residuals based on regressions across overlapping horizons

are likely to be correlated.

Christensen and Prabhala (1998) show that by constructing a series of non-
overlapping forecasts, correlation in the residual series is mitigated and more
robust results are produced. This procedure has a disadvantage in that it
diminshes the sample size used in the analysis. The creation of a series of
10-day forecasts across non-overlapping horizons allows us to compare our
results with those produced by Christensen and Prabhala (1998). The non-
overlapping series selects option contracts trading at 10-day intervals. The
problem of shallow trading in 10-day contracts is overcome by including all
options with a contract maturity between 10 and 60 days. Where the con-
tract maturity extends beyond ten days, annualized implied volatility from
these contracts is adjusted to the 10-day horizon using the square root of
time rule. The composite implied volatility forecast is then estimated from
the four closest-to-the-money options using the moneyness weighing scheme.

Realized volatility is estimated for the ten days from the option trade date
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using HEFD. Implied volatility forecasts are also compared to forecasts pro-
duced by statistical methods, namely, the generalized autoregressive con-
ditional heteroskedastic (GARCH) model as well as exponential GARCH

(E-GARCH) model.

Statistical Approaches to Modeling Volatility

The performance of implied volatility estimates are ranked against statistical
forecasting models. We apply the generalised ARCH or GARCH model

proposed by Bollerslev (1986) to daily stock price returns,

(2.2) o}, =w+ae; + o}

where o2 is the variance at time ¢, @ is the mean variance, o and [ are

constant parameters and €2 | is squared innovation from the previous time
period. The daily stock price return is estimated as the log difference be-
tween the end-of-day closing stock price S; and the previous day’s closing
price S;_1, as follows, r, = In(S;) — In(S;_1). The parsimonious use of para-
meters in the GARCH (1,1) model have contributed to its relative popularity
among practitioners in the financial markets. Within the academic litera-
ture, the GARCH (1,1) model represents only one of a myriad of GARCH-
type models. Despite its relative simplicity, Hansen and Lunde (2005) show

that GARCH (1,1) produces robust volatility forecasts. Hansen and Lunde
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(2005) implement the test for superior predictive ability (SPA) in order to
compare one-day forecasts from 330 GARCH-type models. The SPA test
allows comparison of multiple models and is based on the pairwise method-
ology developed by Diebold and Mariano (1995). The Hansen and Lunde
(2005) study show that GARCH (1,1) predicts out-of-sample forecast of
conditional variance on the DM-$ exchange rate that is equivalent to more
sophisticated models. A similar analysis of GARCH models is carried out
on IBM returns. Hansen and Lunde (2005) show that GARCH models that

capture volatility asymmetry outperform GARCH (1,1) in this context.

The GARCH (1,1) model uses the absolute values of the innovations not
their sign, therefore, both postive and negative price movements are modeled
identically. The asymmetric nature of asset volatility is captured by alter-
native specifications that take account of the fact that negative and positive
price shocks have different effects on future volatility. Nelson’s (1991) ex-
ponential GARCH or EGARCH model introduces a leverage term into the

conditional variance equation, and is expressed as:

(2.3) logo; =w + B logor | +7 + o —,

Et—1 ’5t71‘
Ot—1 Ot—1

where «, 5 and v are constant parameters. The use of logged conditional
variance, log o2 ;, relaxes the positiveness constraints. Furthermore, asym-

metry in volatility effects is included through e, ;/0, 1 as long as v # 0.



2.2. VOLATILITY FORECASTING 38

When v < 0, positive shocks generate less volatility than negative shocks

(‘bad news’) reflecting conditions observed empirically.

The GARCH and E-GARCH models are applied to daily returns on each
FTSE-100 company included in the sample. A rolling estimation procedure
is used to generate parameter estimates, so that, the first rolling prediction,,
Gin+1 (BZ r), uses model parameter estimates Bm estimated using data obser-
vations 1 to n, the second prediction gi7n+2(3i,n +1), is created using model
parameter estimates Bm 41 estimated from observation 2 to n + 1 and so
on. Overlapping GARCH and E-GARCH forecasts are generated for 10-
day, 30-day and 60-day horizons and ranked against implied volatility fore-
casts. Furthermore, non-overlapping GARCH and E-GARCH forecasts are
co-ordinated with 10-day non-overlapping implied volatility forecasts. The

three forecast methodologies are examined directly using regression analysis

and are also ranked using pairwise test statistics.

2.2.2. Testing Methodology

Two approaches are used to test volatility forecast accuracy: in-sample tests
based on Mincer-Zarnowitz regressions and out-of-sample predictive tests. A

standard Mincer-Zarnowitz (1969) regression of forecasts is set up as follows,

(2.4) Rvkh = By + 51fl?m + €k,
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where RV} is the volatility experienced from day following the option trade
date to the end of the forecast horizon, f,ﬁm is the forecast is provided by one
of the selected models, m. The encompassing regression includes intraday
realized volatility observed on the day prior to the forecast date, RV)_1, as
an additional explanatory variable. The efficiency of forecast models with

respect to observed realized volatility is thus examined,

(2.5) Rvkh = [y + 51f1? + By RVi—1 + ey,

An examination of regression output from an unbiased forecast model will
produce 3, = 0 and 5, = 1 and 3, = 0, if the forecast captures all the in-
formation contained in the observed volatility. The downward bias observed
in the slope coefficient when implied volatility is regressed on subsequently
realized volatility has been attributed in part to errors in estimating the
implied volatility forecast. Christensen and Prabhala (1998) address the
errors-in-variables (EIV) problem in the context of examining the implied
and realized volatility relationship. The EIV problem is caused by a num-
ber of market and model related issues in the estimation of implied volatility
forecasts. Christensen and Prabhala (1998) point to the use of the Black-

Scholes model as one of a number of contributory factors since it does not
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allow for dividends and early exercise. This problem is overcome in this re-
search by the use of the Cox-Ross-Rubinstein (CRR) model that allows for
dividends and early exercise. The procedure used to estimate the composite
implied volatility excludes deep out-of-the-money options as well as con-
tracts with less than ten days to maturity, thus reducing the EIV problem
associated with bid-ask spreads in option prices. Christensen and Prabhala’s
(1998) study into index implied volatilities observes that non-synchronous
measurement of option prices and index levels contributed to the EIV prob-
lem. This is not a concern in the examination of the implied and realized
volatility relationship at the level of individual assets. In addition to carrying
out a regression-based analysis, a pairwise comparison of the performance
of two forecast models can be examined using the test statistic developed
by Diebold and Mariano (1995). The Diebold-Mariano (DM) test examines
the differential loss from using model 1 g (€2;) versus model 2 g (e3;) in any
period 4, where the loss is typically given by the mean square error (e?).
The differential loss in period ¢ from using model 1 versus model 2 is then
d; = g (€2,) — g (%) and the mean loss is,
- 1
26) i= L3 [9() -9 (3)
i=1

If the predictive ability of both forecast models is equal then d = 0. The DM
test is robust over one-step ahead forecasts but is shown to be inconsistent

over longer forecast horizons. An encompassing test developed by Harvey,
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Leybourne and Newbold (HLN) (1998) adjusts the DM test statistic for use
over forecast horizons longer than 1-step ahead. If ~, is the i-th autocovari-
ance of the d; sequence and if the first ¢ values of v, are non-zero, then the
variance of d can be approximated by var(d) = [y, + 27, + ... + 27,] (H —
1)~1. The Harvey, Leybourne and Newbold (HLN) (1998) test statistic is

given as,

(2.7) HLN = d/y/ [y + 27 + .. +27,) /(H — 1),

The sample HLN statistic is compared to a t—statistic with H — 1 degrees
of freedom. In this research, the HLN statistic is an appropriate measure
since forecasts are evaluated across multi-step horizons. Results for the DM

test statistic are included for comparison.

2.3. Empirical Results

The sample period runs from 1% October 1997 to 315" December 2003 and
analysis was carried out on fifteen companies listed on the FTSE-100. The
companies used in this chapter are those for which options were contin-
uously traded over the entire sample period and daily contract volumes
were sufficient to enable estimation of the composite implied volatility fore-
cast. Analysing the regression coefficients allows us to make inferences about

the quality of implied volatility forecasts as well as forecasts produced by

GARCH and E-GARCH models. Table 2.2 provides a summary of the key
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regression results for the series of overlapping forecasts. The complete set
of regression results are contained in Tables 2.2.1 to 2.2.15. The dependent
variable in each case is realized volatility observed across the 10-day, 30-day
and 60-day forecast horizon. The cross-section of results show wide variabil-
ity in the proportion of realized volatility explained by implied volatility.
The shortest maturity options (10-30 days) produce implied volatility fore-
casts with relatively strong predictive ability as measured by R? in the case
of GlaxoSmithKline (21.32%), Hilton (21.92%), Hanson (42.11%), HSBC
(45.51%), Kingfisher (61.97%), Prudential (31.25%) and Reuters (27.16%).
Across the same forecast horizon, implied volatility has weak predictive abil-
ity in the case of Aviva, British Aerospace, British Airways, Cadburys, Di-
ageo, Dixons, Marks and Spencers and Royal Sun Alliance. This variation
in R? is consistent with the findings reported in early studies by Chiras
and Manaster (1978) and Beckers (1981) on US equity stock options. The
explanatory power of equity options is not consistent across the companies
sampled. Furthermore, the proportion of realized volatility predicted using
equity options is in many cases lower than the predicted volatility associ-
ated with index options [Blair, Poon and Taylor (2001), Poteshman (2001)].
GARCH and E-GARCH forecasts demonstrate good explanatory power over
short horizons for a number of companies and this deteriorates markedly as

the forecast horizon is extended.
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The implied volatility bias observed in index options is not as prominent in
the results for equity options. The relatively neutral intercept term, 3, in the
majority of cases suggests that individual equity options are generally fairly
priced. Although implied volatility forecasts from short maturity options
over-estimate realized volatility in the case of Kingfisher, Prudential and
Reuters, this bias becomes negligble over longer forecast horizon. The low
forecast bias supports the idea that implied volatility is appropriately priced
for infrequently occurring jumps in volatility [Penttinen (2001)]. The use of
a composite implied volatility forecast based on options that are approxi-
mately ATM is likely to be a factor that minimizes the forecast bias. This
finding contrasts with studies on index options, such as those by Christensen
and Prabhala (1998) on the S&P 100 and Ederington and Guan (2002) on
the S&P 500 that show a consistent positive bias for equity index options.
The results on UK equity options contained here are also inconsistent with
Gemmill’s (1986) study of UK equity options. The use of high frequency
intra-day returns to calculate actual volatility has been shown by Poteshman
(2000) to significantly reduce the bias and this is a feature that distinguishes

the research here and the earlier study by Gemmill (1986).

The encompassing regression includes the realized volatility observed on the
day prior to the option trade date as an additional explanatory variable and
an examination of its coefficient, f3,, indicates the extent to which informa-

tion provided by observed intra-day volatility is incorporated into forecasts.
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Forecast efficiency is supported by 3, = 0 and implied volatility forecasts
from short-maturity options produce estimates of 3, approximately close
to zero in the case of Cadburys (0.02), GlaxoSmithKline (-0.09), Hilton
(0.033), HSBC (0.051), Hanson (-0.099), Prudential (0.002) and Reuters
(-0.003). This finding appears consistent across forecast horizons and rel-
atively low 3, coefficients are also observable for GARCH and E-GARCH
forecasts. Although there has been no recent research into the information
content of equity options, some comparison can be made with encompassing
regressions carried out by Giot and Laurent (2007) in their study of S&P
100 and S&P 500 index options. Rather than use lagged realized volatil-
ity in the encompassing regression Giot and Laurent (2007) instead use the
continuous/jump decomposition of historical realized volatility. Index op-
tions exhibit a high information content with little additional information
produced by the switch from using solely implied volatility to using a model
that contains implied volatility and the full decomposition of realized volatil-
ity. The results reported in this chapter show that the precision of implied
volatility forecasts produced by equity indices is similarly produced in the

market for individual equity options.

Test statistics developed by Diebold and Mariano (DM) (1995) and Har-
vey, Leybourne and Newbold (HLN) (1998) facilitate a direct comparison
of implied volatility forecasts against the statistical techniques of GARCH

and E-GARCH. A summary of results for the HLN statistic across the long
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forecast horizon using overlapping samples is provided in Table 2.3. The en-
tire set of results for both the DM and HLN statistic are included in Tables
2.3.1-2.3.15. A comparison of implied volatility forecasts against GARCH
and E-GARCH forecasts across overlapping 10-day horizons supports the
use of GARCH and E-GARCH approaches in the majority of companies
sampled. Over the longest forecast horizon (60 days) implied volatility is
superior to statistical forecast methods in all but six companies, as measured
by the HLN statistic. The Durbin-Watson statistic indicates correlations in

the residual series resulting from the use of overlapping forecast horizons.

Christensen and Prabhala (1998) demonstrate that more robust results are
available by testing predictive ability across non-overlapping forecast hori-
zons. Forecasts are tested against the sum of daily squared returns experi-
enced over the ten-day period following the option trade date so that results
can be compared to the analysis of index options produced by Christensen
and Prabhala (1998). Results are also produced for a second series of re-
gressions that calculate the dependent variable from realized volatility over
the ten-day period following the option trade date, estimated using intra-
day data. Figures 1 to 5 illustrate the respective times series used in these
regressions. The upper panel plots implied volatility derived from options
with maturities between 10 and 60 days, scaled to a 10-step-ahead forecast
horizon. This panel also includes 10-step-ahead GARCH and E-GARCH

forecasts as well as realized volatility calculated using daily squared returns
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over that horizon. The centre panel compares realized volatility calculated
from intra-day returns against implied volatility over similar horizons. The
pattern of the two time series suggests that the positive bias of implied
volatility forecasts is justified by occasional jumps in volatility in keeping
with Penttinen’s (2001) findings. From the lower panel, a wide variation
in the volume of option contracts traded on each day is observed. Table
2.4 reports the mean squared error (MSE) and mean absolute error (MAE)
produced by each of the forecast models across the non-overlapping ten-day
forecast horizon. The error measures show wide-variation in error terms for
the cross section of companies and evaluation across multi-step horizons pro-
duces large forecast errors in some cases, particularly Diageo, Hansen and

Reuters.

Tables 2.5 provides a summary of the results for the Mincer-Zarnowitz and
encompassing regressions across non-overlapping horizons. In the more de-
tailed results produced in Tables 2.5.1-2.5.14, it is clear from the Durbin-
Watson (DW) statistic reported for the series of MZ and encompassing re-
gressions demonstrates that the use of non-overlapping forecast horizons sig-
nificantly reduces correlation in the error terms. In almost all cases implied
volatility explains a significant proportion of daily squared returns experi-
enced over the following 10-day period. The results from the MZ regression
show that, with the exception of British Airways and Dixons, implied volatil-

ity explains between 16% and 45% of daily squared returns. GARCH and
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E-GARCH forecasts also exhibit strong explanatory power for a number of
the companies sampled. Of the two statistical models considered a dominant
forecasting approach is not indicated by the MZ regression results, although,
E-GARCH forecasts provide greater explanatory power than GARCH in nine
of the fifteen companies sampled. Both statistical methods produce low R?
statistics for British Airways, Cadburys and Marks and Spencers. When re-
alized volatility is calculated from intraday data, the explanatory power of all
of the forecasting models considered shows a marked decline. Composite im-
plied volatility has an explanatory power greater than the time series models
in nine of the fifteen companies studied. Overall, implied volatility forecasts
explain more than 15% of subsequently realized volatility in only four stocks,
Aviva (15.84%), British Aerospace (16.14%), British Airways (15.64%) and
Dixons (18.60%). Furthermore, implied volatility forecasts produce a nega-
tive intercept term for the majority of companies, indicating that implied
volatility overestimates subsequently realized volatility. Interestingly the
signficant increase in explanatory power produced by the encompassing re-
gression suggests that implied volatility doesn’t fully incorporate informa-
tion available in intraday historical data in all cases. The use of implied
volatility and historical volatility as explanatory variables explains a signif-
icant proportion of realized volatility in the case of Aviva (20.40%), British
Aerospace (37.11%), British Airways (16.69%), Dixons (48.78%), Marks
and Spencers (30.89%), Prudential (47.30%) and Reuters (19.30%). When

examined across 10—day non-overlapping forecast horizons, the predictive
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ability of GARCH and E-GARCH forecasts is similarly inconsistent across
the sample of companies. The superiority of implied volatility forecasts

over GARCH-type forecasting methods supports the findings of Vasilellis

and Meade (1996).

Table 2.6 reports the results from pairwise tests of forecast accuracy across
the sample of non-overlapping horizons. The interested reader is directed
to Tables 2.6.1-2.6.14 for the entire set of results for both the HLN and
DM tests. Forecast accuracy is benchmarked against both daily squared re-
turns and realized volatility. Implied volatility is shown to provide superior
forecasts when ranked against either GARCH or E-GARCH models. The
HLN statistic for GlaxoSmithKline (-0.325) comparing implied volatility to
E-GARCH is the only instance where a time series model significantly out-
performs implied volatility. Using the HLN test, the superiority of implied
volatility forecasts when ranked against GARCH forecasts is statistically sig-
nificant for Aviva, Cadburys, GlaxoSmithKline, HSBC, Kingfisher, Marks
and Spencers and Prudential when ‘true’ volatility is approximated using
daily squared returns. Implied volatility significantly outperforms GARCH
in the case of British Aerospace, British Airways, Diageo, Dixons and HSBC
when forecasts are benchmarked against realized volatility. The generally
positive HLN statistic for implied volatility compared to E-GARCH suggests
a marginal difference in favour of implied volatility but the results are not

found to be statistically significant in any of the companies sampled.
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2.4. Conclusion

UK equity options contain predictive information on stock volatility across
a range of forecast horizons. The results show that a composite implied
volatility produces forecasts that are significantly better than sophisticated
time series methods in many cases. This finding is consistent irrespective of
whether forecasts are benchmarked against daily squared returns or realized
volatility. The information content yielded by traded equity options has

applications in practical investment and risk management functions.

Risk-adjusted performance measures such as the Sharpe ratio and Jensen’s
alpha are now widely used to measure and rank fund performance. The re-
sults produced here suggest that the implied volatility is the optimal metric
of volatility across medium-term horizons and should be incorporated in the
allocation of asset weights. Relying solely on statistical forecasting methods
even over relatively short forecast horizons may omit important information
on volatility effects caused by expected company announcements. Further-
more, equity options contain predictive information unavailable in historical
price patterns in the underlying asset. In the context of portfolios bench-
marked against an equity index, commercially available implied volatility
indices provide a useful signal. The construction of a composite implied

volatility estimate is shown here to provide information that is potentially
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useful for the management of active equity funds that are partially diversi-
fied. In this context managers who engage in ad hoc rebalancing strategies
over short and medium intervals are likely to benefit significantly from the

predictive information contained in equity options data.
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Table 2.1: Descriptive statistics for daily realized volatility.

Stock Name Mean Std Dev  Kurt. Skew.
Diageo (dge) 1.668  2.846 18.683  3.289
Hanson (hns) 1.368  2.955 44.265  5.316
RoyalSunAlliance (rsa) 1.111  2.369 34.654 4.917
Hilton (hg) 1073 2136 34797  4.883
Aviva (av) 0.966  3.067 50.571 6.549
BritishAirways (ba) 0.901  1.577 26.440  4.170
Kingfisher (kgf) 0.850  1.671 29.371  4.376
Prudential (pru) 0.592 1.642 148.230  10.245
BritishAerospace (bae) 0.559  1.217  214.590 11.170
Cadburys (cbry) 0472  1.397  250.451  13.480
Reuters (rtr) 0.422  0.873 105.57  8.397
Marks&Spencers (mks) 0.325  1.060  558.429  20.298
Dixons (dxn) 0.300 0.830  261.545 13.837
GlaxoSmithKline (gsk) 0.244  1.401  188.171 12.917
HSBC (hsbc) 0.238  0.941 150.089  11.008
Average 0.739 1.732 141.057 8.990

Mean, standard deviation, skewness and kurtosis for daily
realized volatility for FTSE-100 firms from October 1997 to
December 2003 (1233 observations). The skewness and

kurtosis are computed as —5 > ¢ and —= 3 g, respectively,
after studentizing the relevant quantity, 6, say, as ty =
where o(f) is the standard deviation of 6.

(6:—0)
a(0)
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Table 2.3: Summary results for the Harvey-Leybourne
Newbold (HLN) statistic comparing implied volatility (IV)
forecasts against GARCH and E-GARCH forecasts.
Statistic reported is for overlapping long-horizon (60-90
days) forecasts, dependent variable is daily squared returns.

Stock Name IV-GARCH IV-E-GARCH
Diageo (dge) 0.673 0.259
Marks&Spencers (mks) 0.639 0.297
HSBC (hsbe) 0.463 0.393
GlaxoSmithKline (gsk) 0.432 0.181
Cadburys (cbry) 0.283 -0.109
RoyalSunAlliance (rsa) 0.248 0.361
Prudential (pru) 0.210 -0.100
Kingfisher (kgf) 0.074 0.377
Hilton (hg) 0.033 0.114
BritishAerospace (bae) 0.026 0.147
BritishAirways (ba) 0.010 -0.004
Dixons (dxn) -0.008 -0.047
Aviva (av) -0.032 -0.124
Reuters (rtr) -0.039 -0.068

Hanson -0.069 0.278
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Table 2.4: Forecast errors measures for composite implied volatility (IV), GARCH
and E-GARCH forecasts across 10-day non-overlapping horizons. Forecast errors
are given by mean square error (MSE) and mean absolute error (MAE).

MSE MAE
Stock Name IV. GARCH E-GARCH IV GARCH E-GARCH
Reuters (rtr) 156.00 157.52 160.98 7.57 7.57 7.81
Hanson (hns) 135.66  138.99 136.63 8.04 7.63 7.49
Diageo (dge) 130.06  149.33 153.31 7.90 8.09 7.91
RoyalSunAlliance (rsa) 84.91  85.25 85.81 543 545 5.40
Cadburys (cbry) 56.50  57.62 57.26 3.56  3.58 3.58
Prudential (pru) 27.98  28.55 28.34 3.40  3.45 3.48
Kingfisher (kgf) 24.87 24.15 24.31 3.65 3.99 3.62
Hilton (hg) 1672 15.30 1606 270 2.79 2.83
BritishAirways (ba) 15.52 16.96 18.37 2.51 2.78 2.92
Aviva (av) 15.46 15.22 14.93 2.22 2.22 2.24
BritishAerospace (bae) 12.10  13.75 13.86 243 255 2.56
GlaxoSmithKline (gsk) 11.74 11.74 11.72 1.47 1.47 1.48
Marks&Spencers (mks)  8.48 8.70 8.68 1.60  1.59 1.56
HSBC (hsbc) 3.91 4.00 4.01 1.17 1.27 1.26
Dixons (dxn) 354 3.0 385 115 1.8 1.25

H
The mean square error (MSE) is - e? and the mean absolute error (MAE) is

=1
L H
7o el
i=1
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Table 2.6: Summary results for the Harvey-Leybourne
Newbold (HLN) statistic comparing implied volatility (IV)
forecasts against GARCH and E-GARCH forecasts.
Statistic reported is for non-overlapping 10-Day horizon.
Dependent variable is realized volatility.

Stock Name IV-GARCH IV-E-GARCH
BritishAirways (ba) 0.355 -0.032
Dixons (dxn) 0.303 -0.044
HSBC (hsbe) 0.253 -0.007
BritishAerospace (bae) 0.246 -0.016
Diageo (dge) 0.217 0.135
Cadburys (cbry) 0.145 0.109
Marks&Spencers (mks) 0.137 0.097
Prudential (pru) 0.127 0.093
Reuters (rtr) 0.127 -0.046
Aviva (av) 0.123 0.144
RoyalSunAlliance (rsa) 0.108 -0.031
GlaxoSmithKline (gsk) -0.001 -0.325
Kingfisher (kgf) -0.001 -0.071

Hilton (hg) -0.010 -0.061
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Table 2.5.1: Aviva. Information content of implied volatility, GARCH and E-GARCH
over 10-day-ahead non-overlapping horizons. Realized volatility is the dependent
variable estimated from intraday tick data.

Number of Observations = 68  Daily Squared Returns Realized Volatility

MZ Regression v GCH E-GCH| 1V GCH E-GCH
R-Square 21.09% 16.46% 21.54% | 15.84% 17.12% 18.71%

Bo -3.712  -3.591 -9.156 | -1.715 -2.601  -4.964

(2.777) (3.170) (3.981) | (1.606) (1.768) (2.268)

B4 1.598 2260  3.460 | 0.775  1.290 1.805

(0.380) (0.626) (0.812) | (0.220) (0.349) (0.463)

DW 0.841 0.927 0.860 2.130 2.290 2.326

Encompassing Regression

R-Square 22.39% 17.24% 22.62% | 20.40% 20.28% 22.72%

Bo -3.671  -3.304 -8.857 | -1.672 -2.276  -4.642

(2.776) (3.201) (3.996) | (1.574) (1.759) (2.236)

B4 1.538 2139 3324 | 0.712 1.154 1.660

(0.384) (0.647) (0.825) | (0.218) (0.355) (0.462)

By 0495 0.388  0.452 | 0.319  0.439 0.487

(0.474) (0.498) (0.475) | (0.268) (0.273) (0.265)

DW 0936 0978 0931 | 2.176  2.287 2.336

Table 2.6.1: Aviva. Pairwise comparison of implied volatility (IV) to GARCH /
E-GARCH forecasts, across 10—day-ahead non-overlapping horizons.

Daily Squared Returns Realized Volatility

IV-GCH IV -E-GCH|IV-GCH 1V -E-GCH

Diebold Mariano 0.104 0.129 -0.026 0.073
(0.201) (0.201) (0.201) (0.201)
Harvey-Leybourne Newbold 0.269 0.175 0.123 0.144

(0.201) (0.201) (0.201) (0.201)
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Table 2.5.2
British Aerospace (Details on Table 2.5.1)

Number of observations = 56  Daily Squared Returns Realized Volatility

MZ Regression IAY GCH E-GCH| 1V GCH E-GCH
R-Square 16.04% 63.86% 66.59% | 16.14% 4.70% 3.92%

Bo -2.156  -5.977 -11.100 | -3.221  1.003 0.518

(3.622) (1.606) (2.021) | (2.096) (1.531) (1.984)

B4 1.558  2.641  3.744 | 0.903 0.411 0.526

(0.484) (0.264) (0.360) | (0.280) (0.252) (0.354)

DW 1.024  1.671 1.327 | 0.940 0.915 0.881

Encompassing Regression

R-~Square 16.37% 64.85% 67.02% |37.11% 34.20%  34.55%

Bo -1.713  -5.969 -11.671 | -1.124  1.222 0.662

(3.782) (1.622) (2.027) | (1.898) (1.285) (1.653)

B4 1.461  2.632  3.689 | 0.456  0.146 0.257

(0.531) (0.275) (0.367) | (0.266) (0.218) (0.300)

By 0.638 0.113  0.696 | 3.018 3.391 3.402

(1.430) (0.878) (0.837) | (0.718) (0.695) (0.683)

DW 1.034  1.664 1.291 1.478  1.545 1.533

See Table 2.2.1. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.2
British Aerospace (Details on Table 2.6.1)

IV-GCH 1V - E-GCH |1V - GCH IV - E-GCH

Diebold Mariano -0.239 0.036 0.130 -0.040
(0.222) (0.222) (0.222) (0.222)

Harvey-Leybourne Newbold  0.039 0.150 0.246 -0.016
(0.222) (0.222) (0.222) (0.222)

See Table 2.3.1. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.3
British Airways (Details on Table 2.5.1)

Number of observations = 58  Daily Squared Returns Realized Volatility

MZ Regression v GCH E-GCH| 1V GCH E-GCH
R-Square 0.05% 0.95% 2.35% | 15.64% 7.83% 0.19%

Bo 8.219 6.063  3.213 | -0.871 0.431 3.623

(3.725) (3.934) (4.965) | (1.728) (1.915)  (2.534)

B4 0.072  0.407  0.807 | 0.620  0.588 0.117

(0.414) (0.554) (0.694) | (0.192) (0.269)  (0.254)

DW 0.866 0.963 1.024 | 1.775  1.608 1.388

Encompassing Regression

R-~Square 0.23% 1.13% 2.65% |16.69% 13.72% 6.96%

Bo 8.475 5.892 2819 | -0.557 -0.060 2.681

(3.843) (4.002) (5.092) | (1.773) (1.887)  (2.513)

B4 0.012 0.397 0.819 | 0.546  0.560 0.147

(0.459) (0.559) (0.700) | (0.212) (0.263)  (0.345)

By 0.424 0.390 0.500 | 0.519  1.117 1.196

(1.348) (1.222) (1.212) | (0.622) (0.576)  (0.598)

DW 0.853  0.947  1.012 1.849  1.812 1.642

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.3
British Airways (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility
IV-GCH IV - E-GCH | IV-GCH IV-E-GCH
Diebold Mariano -0.062 0.075 0.130 -0.157
(0.218) (0.218) (0.218) (0.218)
Harvey-Leybourne Newbold | -0.002 0.114 0.355 -0.032
(0.218) (0.218) (0.218) (0.218)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.4
Cadburys (Details on Table 2.5.1)

Number of observations = 51  Daily Squared Returns Realized Volatility

MZ Regression IAY GCH E-GCH| 1V GCH E-GCH
R-Square 21.37% 8.38%  5.06% | 1.99% 0.045% 0.66%

Bo -0.960 0.448  0.628 | -1.887 4.221 7.442

(1.318) (1.577) (1.944) | (5.452) (5.983)  (7.225)

B4 0.882 0.983 0.889 | 0.981 -0.262 -1.173

(0.242) (0.464) (0.550) | (0.983) (1.760)  (2.045)

DW 0.955 0.828 0.805 | 2.101  2.078 2.093

Encompassing Regression

R-~Square 24.82% 11.64% 9.50% | 4.47%  3.88% 5.00%

Bo -0.809  0.964 1.236 | -1.429  6.255 9.623

(1.305) (1.612) (1.959) | (5.344) (6.107)  (7.290)

B4 0.821  0.777  0.659 | 0.796 -1.074 -2.000

(0.242) (0.485) (0.563) | (0.994) (1.839)  (2.096)

By 0.403 0.399 0459 | 1.219 1.576 1.648

(0.266) (0.300) (0.299) | (1.091) (1.138)  (1.113)

DW 1.009 0.834 0.805 | 2.131 2.136 2.145

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.4
Cadburys (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV-GCH IV - E-GCH | IV -GCH IV - E-GCH

Diebold Mariano 0.225 -0.218 0.066 0.067
(0.233) (0.233) (0.233) (0.233)

Harvey-Leybourne Newbold 0.392 -0.135 0.145 0.109
(0.233) (0.233) (0.233) (0.233)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.5
Diageo (Details on Table 2.5.1)

Number of observations =62  Daily Squared Returns Realized Volatility

MZ Regression v GCH E-GCH IV GCH E-GCH
R-Square 17.52% 40.39% 48.32% 9.72%  0.35% 1.63%

Bo -0.692 -3.781 -6.402 -0.395  1.407 0.904

(2.686) (2.029) (2.077) (0.885) (0.826) (0.902)

B4 1.698  2.060 2.370  0.398  0.060 0.137

(0.475) (0.323) (0.316) (0.156) (0.131) (0.137)

DW 0.981 1.264  1.250 1.931 1.714 1.73-

Encompassing Regression

R-~Square 20.97% 40.86% 48.33% 10.25% 2.79% 3.12%

Bo -0.167 -3.547 -6.471 -0.331 1.576 1.143

(2.670) (2.067) (2.173) (0.896) (0.835) (0.937)

B 1.448  1.968  2.390  0.367  0.050 0.070

(0.494) (0.351) (0.358) (0.166) (0.142) (0.154)

By 3.5664 1.352  -0.228  0.439  0.970 0.787

(2.221) (1.976) (1.916) (0.745) (0.798) (0.827)

DW 1.312  1.372 1.331 1.940  1.790 1.777

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.5
Diageo (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV-GCH IV -E-GCH |IV - GCH IV - E-GCH

Diebold Mariano -0.160 0.116 0.114 0.098
(0.211) (0.211) (0.211) (0.211)

Harvey-Leybourne Newbold 0.202 0.198 0.217 0.135
(0.211) (0.211) (0.211) (0.211)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.6
Dixons (Details on Table 2.5.1)
Number of observations = 50  Daily Squared Returns Realized Volatility
MZ Regression v GCH E-GCH| 1V GCH  E-GCH
R-Square 1.88% 29.76% 14.24% | 18.60% 6.54% 4.05%
Bo 1.703 -4.963 -0.961 |-20.618 -5.007 -0.229
(3.189) (2.198) (2.078) | (9.191) (8.022)  (6.955)
B4 0.388  2.379 1.291 3.859  3.557 2.179
(0.404) (0.531) (0.457) | (1.165) (1.940)  (1.530)
DW 0.643  1.161 1.016 1.045 0974 0.955
Encompassing Regression
R-~Square 4.93% 32.87™% 16.77% | 48.718% 43.92%  42.20%
Bo 1.247  -4.814 -0.758 |-16.077 -6.646 -2.720
(3.194) (2.174) (2.076) | (7.418) (6.286)  (5.473)
B4 0.490 2444  1.314 | 2.836  3.042 1.892
(0.410) (0.526) (0.455) | (0.095) (1.521)  (1.201)
By -0.233  -0.231 -0.208 | 2.325  2.538 2.561
(0.190) (0.156) (0.174) | (0.441) (0.453)  (0.459)
DW 0.698  1.208 1.061 1.591  1.547 1.479

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.6
Dixons (Details on Table 2.6.1)
Daily Squared Returns Realized Volatility
IV-GCH IV - E-GCH | IV-GCH IV-E-GCH
Diebold Mariano -0.283 -0.214 0.145 -0.086
(0.235) (0.235) (0.235) (0.235)
Harvey-Leybourne Newbold | -0.029 -0.142 0.303 -0.044
(0.235) (0.235) (0.235) (0.235)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.7
GlaxoSmithKline (Details on Table 2.5.1)

Number of observations: 52  Daily Squared Returns Realized Volatility

MZ Regression v GCH E-GCH v GCH E-GCH
R-Square 31.54% 21.31% 31.06% | 0% 0.02% 0.19%

Bo -2.017  -5.088 -6.314 | 1.359  1.025 2.521

(1.107) (2.108) (1.862) | (1.752) (3.110) (2.933)

B4 1.071 2338  2.549 | 0.012 0.103 -0.263

(0.186) (0.529) (0.447) | (0.294) (0.781) (0.704)

DW 1.006  0.834  0.928 | 2.119 2.117 2.125

Encompassing Regression

R-Square 32.78% 22.10% 31.85% | 2.49% 1.89% 2.41%

Bo -2.589 -4.703 -6.091 | 2.419 1.700 3.013

(1.212) (2.148) (1.881) | (1.911) (3.156) (2.946)

oH 1.206  2.216  2.460 | -0.237 -0.142 -0.460

(0.219) (0.549) (0.458) | (0.346) (0.807) (0.718)

By -1.574  1.098 1.083 | 2.917 2.211 2.381

(1.373) (1.294) (1.196) | (2.165) (1.900) (1.873)

DW 1.021  0.873 0.966 | 2.132 2.124 2.130

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.7
GlaxoSmithKline (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV-GCH 1V - E-GCH |1V - GCH IV - E-GCH
Diebold Mariano 0.129 0.167 -0.007 0.010
(0.193) (0.193) (0.193) (0.193)
Harvey-Leybourne Newbold 0.366 0.294 -0.001 -0.325
(0.193) (0.193) (0.193) (0.193)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.8
Hilton Group (Details on Table 2.5.1)

Number of observations = 46  Daily Squared Returns Realized Volatility

MZ Regression IAY GCH E-GCH| 1V GCH  E-GCH
R-Square 23.53% 19.59% 32.32% | 5.32% 13.36% 9.02%

Bo -5.009  -5.063 -8.381 | 1.168 -1.660 -0.334

(3.694) (4.148) (3.709) | (2.493) (2.611)  (2.608)

B4 1.894  2.461 2.839 | 0.546  1.233 0.910

(0.514) (0.751) (0.619) | (0.347) (0.473)  (0.435)

DW 0.587 0.875  0.887 | 2.050  1.994 2.029

Encompassing Regression

R-~Square 23.77% 21.40% 33.70% | 14.03% 17.68% = 15.84%

Bo -4.990 -6.057 -8.697 | 1.099 -0.798 0.091

(3.731) (4.242) (3.729) | (2.405) (2.637)  (2.547)

B4 1.924  2.781 2989 | 0435 0.956 0.707

(0.526) (0.807) (0.640) | (0.339) (0.501)  (0.437)

By -0.239 -0.755 -0.586 | 0.875  0.654 0.789

(0.651) (0.701) (0.619) | (0.419) (0.436)  (0.423)

DW 0.574 0.925 0903 | 2.103 2.014 2.058

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.8
Hilton Group (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV-GCH IV -E-GCH IV - GCH IV - E-GCH
Diebold Mariano 0.059 0.401 -0.080 -0.114
(0.246) (0.246) (0.246) (0.246)
Harvey-Leybourne Newbold 0.237 0.537 -0.010 -0.061
(0.246) (0.246) (0.246) (0.246)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.9
HSBC (Details on Table 2.5.1)

Number of observations = 73  Daily Squared Returns Realized Volatility
MZ Regression IAY GCH E-GCH| 1V GCH E-GCH
R-Square 45.27% 40.71% 42.45% | 2.57% 0.13% 0%

Bo -2.736  -3.417  -4973 | 0.384 1.705 1.479

(0.898) (1.075) (1.248) | (0.798) (0.930)  (1.096)

B4 1.192 1.815  2.153 | 0.189 -0.068 -0.011

(0.155) (0.260) (0.297) | (0.138) (0.224)  (0.261)

DW 1.083  1.180 1.147 | 1.200  1.227 1.230

Encompassing Regression

R-~Square 45.61% 42.46% 44.14% | 2.711%  0.90% 0.68)

Bo -2.653  3.328 -4.835 | 0.419 1.744 1.537

(0.910) (1.069) (1.242) | (0.811) (0.935)  (1.104)

B4 1.162  1.747  2.076 | 0.176  -0.098 -0.044

(0.162) (0.262) (0.299) | (0.144) (0.229)  (0.266)

By 0.466  1.032 1.012 | 0.197  0.456 0.428

(0.704) (0.706) (0.696) | (0.627) (0.618)  (0.619)

DW 1.061  1.190 1.012 | 1.207 1.246 1.247

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.9
HSBC (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV-GCH IV -E-GCH |IV - GCH IV - E-GCH

Diebold Mariano 0.077 0.076 0.105 -0.030
(0.194) (0.194) (0.194) (0.194)

Harvey-Leybourne Newbold 0.405 0.156 0.253 -0.007
(0.194) (0.194) (0.194) (0.194)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.10
Kingfisher (Details on Table 2.5.1)

Number of observations = 71  Daily Squared Returns Realized Volatility

MZ Regression IAY GCH E-GCH| 1V GCH  E-GCH
R-Square 17.54% 15.39% 15.98% 0% 2.89% 2.25%

Bo -0.130 -0.618 -1.553 | 4.701  7.675 7.680

(1.725) (1.987) (2.193) | (3.024) (2.510)  (2.838)

B4 1.618  1.488 1.662 | -0.006 -0.614 -0.607

(0.298) (0.414) (0.452) | (0.437) (0.492)  (0.554)

DW 0.905  1.112 1.094 1.440  1.429 1.426

Encompassing Regression

R-~Square 17.85% 15.74% 16.15% | 14.26% 17.18%  16.19%

Bo -0.171  -0.643 -1.527 | 5.655  7.107 7.032

(1.736) (1.998) (2.207) | (2.846) (2.348)  (2.663)

B4 1.416  1.458 1.631 | -0.299 -0.701 -0.674

(0.303) (0.419) (0.461) | (0.421) (0.460)  (0.518)

By 0.183 0.193  0.138 1.087  1.058 1.044

(0.357) (0.361) (0.363) | (0.019) (0.012)  (0.014)

DW 0.926  1.122 1.100 1.448  1.402 1.419

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.10
Kingfisher (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV-GCH IV -E-GCH |IV - GCH IV - E-GCH

Diebold Mariano 0.040 0.030 -0.092 -0.097
(0.194) (0.194) (0.226) (0.226)

Harvey-Leybourne Newbold 0.379 0.088 -0.001 -0.071
(0.194) (0.194) (0.226) (0.226)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.11
Marks and Spencers (Details on Table 2.5.1)

Number of observations = 59  Daily Squared Returns Realized Volatility

MZ Regression IAY GCH E-GCH| IV GCH E-GCH
R-Square 25.51% 6.46% 5.32% | 10.19% 7.90% 8.14%

Bo -0.132  3.120 2.898 | -1.458 -0.794 -1.367

(1.419) (1.467) (1.732) | (1.403) (1.310)  (1.536)

B4 0.956 0.582  0.609 | 0.544  0.579 0.677

(0.216) (0.293) (0339) | (0.213) (0.262)  (0.301)

DW 1.206  1.189 1.158 1.816  1.653 1.662

Encompassing Regression

R-~Square 28.58% 12.00% 11.10% | 30.89% 31.85%  32.64%

Bo -0.123  2.798  2.511 | -1.437 -1.397 -2.084

(1.402) (1.445) (1.705) | (1.241) (1.145)  (1.336)

B4 0914 0.578 0.616 | 0.445  0.570 0.690

(0.215) (0.287) (0.332) | (0.190) (0.227)  (0.260)

By 0.745  0.994 1.014 1.744  1.861 1.882

(0.481) (0.529) (0.532) | (0.425) (0.419)  (0.417)

DW 1.176  1.134 1.093 | 2.095 1.853 1.857

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.11
Marks and Spencers (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV-GCH 1V - E-GCH |1V - GCH IV - E-GCH
Diebold Mariano 0.299 -0.084 0.049 0.034
(0.216) (0.216) (0.216) (0.216)
Harvey-Leybourne Newbold 0.342 -0.053 0.137 0.097
(0.216) (0.216) (0.216) (0.216)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.12
Prudential (Details on Table 2.5.1)

Number of observations = 68  Daily Squared Returns Realized Volatility

MZ Regression IAY GCH E-GCH| 1V GCH  E-GCH
R-Square 36.53% 26.53% 23.54% | 5.79%  3.86% 4.58%

Bo -4.339  -2.448 -5.212 | -0.551  0.356 -1.417

(1.879) (1.973) (2.722) | (2.296) (2.263)  (3.049)

B4 1.545 1956  2.621 | 0.617  0.749 1.160

(0.250) (0.400) (0.581) | (0.306) (0.459)  (0.651)

DW 1.034  0.993  0.866 1.390  1.426 1.294

Encompassing Regression

R-~Square 41.42% 30.62% 27.30% | 47.30% 44.91%  44.92%

Bo -4.536  -2.448 -4.916 | -1.128  0.357 -0.447

(1.821) (1.932) (2.679) | (1.732) (1.726)  (2.339)

B4 1.503  1.858  2.460 | 0.494  0.439 0.630

(0.243) (0.395) (0.578) | (0.231) (0.353)  (0.504)

By 0.997 0916 0.881 2912 2911 2.896

(0.427) (0.468) (0.480) | (0.407) (0.418)  (0.419)

DW 1.100  0.981  0.847 | 1.540  1.540 1.503

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.12
Prudential (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV-GCH IV -E-GCH |IV - GCH IV - E-GCH

Diebold Mariano 0.132 -0.092 0.064 0.058
(0.201) (0.201) (0.201) (0.201)

Harvey-Leybourne Newbold 0.270 -0.008 0.127 0.093
(0.201) (0.201) (0.201) (0.201)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.13
Royal Sun Alliance (Details on Table 2.5.1)

Number of observations = 58  Daily Squared Returns Realized Volatility

MZ Regression IAY GCH E-GCH| 1V GCH E-GCH
R-Square 22.54% 22.64% 31.44% | 2.57% 2.18% 1.54%

Bo -2.966 -5.063 -8.944 | 2.518  2.222 2.772

(3.474) (3.961) (3.943) | (4.195) (4.796)  (5.088)

B4 1.661  2.823  3.349 | 0.604  0.943 0.799

(0.411) (0.697) (0.660) | (0.496) (0.844)  (0.852)

DW 0.727 0918  0.961 1.703  1.697 1.689

Encompassing Regression

R-~Square 24.06% 23.88% 32.58% | 7.89%  7.49% 7.13%

Bo -3.081 -4.984 -8917 | 2.287  2.376 2.838

(3.472) (3.966) (3.946) | (4.117) (4.707)  (4.986)

B4 1.589  2.695  3.239 | 0459  0.658 0.539

(0.416) (0.711) (0.670) | (0.494) (0.844)  (0.847)

By 0.600 0.545 0.520 | 1.210 1.213 1.241

(0.572) (0.576) (0.540) | (0.679) (0.683)  (0.682)

DW 0.751  0.929 0975 | 1.841 1.830 1.827

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.13
Royal Sun Alliance (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV-GCH IV -E-GCH |IV - GCH IV - E-GCH

Diebold Mariano -0.002 0.265 0.041 -0.063
(0.218) (0.218) (0.218) (0.218)

Harvey-Leybourne Newbold 0.151 0.334 0.108 -0.031
(0.218) (0.218) (0.218) (0.218)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.14
Reuters (Details on Table 2.5.1)

Number of observations = 60  Daily Squared Returns Realized Volatility

MZ Regression IAY GCH E-GCH| IV GCH E-GCH
R-Square 17.76% 18.41% 12.99% | 9.85% 8.97% 6.97%

Bo -6.024 1.303  3.454 | -6.274  2.448 4.093

(5.735) (3.646) (3.722) | (8.664) (5.557)  (5.554)

B4 2.328  1.823 1.425 | 2.502  1.837 1.507

(0.657) (0.504) (0.484) | (0.993) (0.768)  (0.722)

DW 0.977  1.092  0.965 1.217  1.214 1.228

Encompassing Regression

R-~Square 18.07% 18.44% 13.02% | 19.30% 17.07%  15.00%

Bo -6.306  1.241  3.405 | -8.553  1.036 2971

(5.807) (3.700) (3.769) | (8.316) (5.384)  (5.377)

B4 2.315  1.813 1.414 | 2.395 1.610 1.255

(0.663) (0.512) (0.494) | (0.949) (0.745)  (0.705)

By 0974 0324 0318 | 7.841 7.341 7.338

(2.127) (2.138) (2.216) | (3.046) (3.111)  (3.161)

DW 0.980  1.092  0.968 1.296  1.279 1.281

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.14
Reuters (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV-GCH IV - E-GCH | IV- GCH IV - E-GCH

Diebold Mariano -0.015 -0.185 0.027 -0.083
(0.214) (0.214) (0.214) (0.214)

Harvey-Leybourne Newbold 0.134 -0.119 0.127 -0.046
(0.214) (0.214) (0.214) (0.214)

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.
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CHAPTER 3

An Investigation into Fractional Dynamics in UK

Equity Volatility

3.1. Introduction

Successful modeling and forecasting of financial asset volatility relies on
accurate measures of how shocks persist in the autocorrelation function. In
an I(0) process, shocks decay at an exponential rate while no mean reversion
occurs in an I(1) process. A fractionally integrated long memory process is
defined as I(d), that is, fractionally integrated of order d if its d’th difference
is 1(0), where d can be any real number. This is based on McLeod and Hipel’s
(1978) definition of a fractionally integrated long memory process y;, that is

integrated of order d, or I(d) if

(3.1) (1= L)% = uy

where L is the lag operator, —0.5 < d < 0.5 and w, is stationary. In a
fractionally integrated long memory process shocks decay at a slow rate
and cannot be modelled using a finite number of autoregressive and moving

average terms. Baillie and King (1996) originate the concept of fractionally
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integrated processes and long memory processes with studies in hydrology by
Hurst (1951, 1957) and Mandelbrot and Wallis (1968). The introduction of
I(d) models into economics and finance however didn’t occur until the 1980s
with the development of the autoregressive fractionally integrated moving
average (ARFIMA) process by Granger (1980), Granger and Joyeux (1980)
and Hosking (1981) and Geweke and Porter-Hudak’s (1983) development of

an effective technique for measuring the d parameter.

Over the past twenty years, studies in economics and finance have mapped
long memory effects in a range of data sets. The nonlinear Exponential
Smooth Autoregressive model (ESTAR) allows for long-range persistence
in low level shocks and it has been used by Taylor, Peel and Sarno (2001)
and Kilian and Taylor (2003) to describe the dynamics of purchasing power
parity (PPP) deviations. Paya and Peel (2006) use simulation and bootstrap
methods to show that estimates of the speed of adjustment to shocks are
upwardly biased in the ESTAR model and must be adjusted for. In a review,
Baillie (1996) notes that evidence of long memory has been found in forward
premums, interest rate differentials and rates of inflation as well as in the
volatility of financial asset returns. Empirical analysis of spot exchange rates
by Baillie and Bollerslev (1994) and Diebold, Husted and Rush (1991) and
S&P 500 volatility by Bollerslev and Mikkelsen (1996) have identified a level
of persistence in the autocorrelation function that is consistent with an I(d)

process with 0 < d < 1.
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Granger (1998) challenges the evidence supporting long memory and makes
the distinction between ‘true’ long memory arising out of fractional integra-
tion and ‘spurious’ long memory produced by structural breaks in volatility.
Granger and Hyung’s (2004) analysis of S&P 500 data shows that struc-
tural breaks in volatility can reproduce a hyperbolic rate of decay in auto-
correlations. Motivated by the renewed debate on long memory effects in
asset volatility, this chapter tests for the presence of fractional integration
in the realized volatility series of sixteen FTSE-100 companies, where re-
alized volatility is constructed from intraday tick data. Implied volatility
backed out of the market prices of traded equity options are similarly tested
for the presence of long memory and the results for fractional integration
are checked for false positives that could be induced by structural breaks.
A second objective is to examine whether fractional integration in realized
volatility informs our understanding of the long-run relationship between
realized volatility and option implied volatility. Using testing procedures de-
veloped by Robinson and Yajima (2002) and Nielsen and Shimotsu (2007),
the implied and realized volatility series of individual equities are jointly
tested for fractional cointegration and the cointegrating rank of these series

is determined.

This chapter shows that the realized and implied volatility series for a num-
ber of FTSE-100 companies are fractionally integrated. The results also

reveal a significant degree of variation in the levels of long-run dependence
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among the cross-section of companies sampled. The validity of this finding
is tested by examining the time domain properties of each series using tests
developed by Shimotsu (2006). These tests consider the presence of ‘spuri-
ous’ long memory induced by structural breaks and the results show that
although there is evidence of structural breaks it is not sufficient to explain
the level of persistence found in our sample. This robust examination and
confirmation of fractional integration in both realized volatility and implied
volatility extends similar findings on equity indices produced by Bandi and
Perron (2006). The results highlight the weakness of traditional volatility
modelling approaches to fully capture the dynamics of equity volatility. This
chapter also shows that the realized and implied volatility of individual eq-
uities can be fractionally cointegrated. An examination of the cointegrating
rank of the two series shows that a maximum of one cointegrating relation-
ship exists between the implied and realised volatility series of a number of
FTSE-100 companies. The evidence of a long-run equilibrium relationship
has potential implications for both the signal function of options markets
and the optimal implementation of derivative strategies that use both op-
tions and the underlying asset. In this chapter, implied and realized volatil-
ity series on FTSE-100 companies are robustly tested for the presence of
long memory in this manner. Los (2005) shows that long memory effects are
relevant in the construction of appropriateValue-at-Risk (VAR) estimates,
while Taylor (2001) and others demonstrate its non-negligible effects on op-

tions pricing. Thus, the results found here have important consequences for
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the development of effective risk management and asset allocation strategies

involving UK equities.

The remainder of this chapter proceeds as follows. Section 3.2 comprises
a review of the current research on long memory effects in financial data.
Section 3.3 describes the construction of the realized and implied volatility
time series used in this paper. It also describes the methods used to measure
long memory and how the long-run relationship between implied and realised
volatility is modeled. Section 3.4 discusses our empirical findings and Section

3.5 concludes.

3.2. Implied Volatility and Long Memory

Lo (1991) points out that long-term forecasting, optimal consumption /sav-
ings decisions, portfolio optimisation and the pricing of derivatives are all
sensitive to the investment horizon. Given the evidence of long memory ef-
fects in financial and economic time series, both Lo (1991) and Sowell (1992)
note that long term forecasts should allow for greater flexibility in the order
of integration. Similarly, Engle and Patton (2001) recommend the inclusion
of volatility characteristics such as mean-reversion, asymmetric effects and

persistence if a volatility forecast is to be used effectively in portfolio and
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risk management applications. The requirement to allow for long-run persis-
tence in volatility encouraged the development of fractionally integrated vari-
ants of the autoregressive integrated moving average (ARIMA) and gener-
alized autoregressive conditional heteroskedasticity (GARCH) class of mod-
els. The ARFIMA (p,d,q) model introduced by Granger and Joyeux (1980)
and Granger (1980, 1981) and the fractionally integrated GARCH (p,d,q)
(FIGARCH) model of Baillie, Bollerslev and Mikkelsen (1996) allow d to as-
sume values between () and 1, thus producing forecasts that allow the effect
of shocks to dissipate hyperbolically over time. The application of the latter
model by Bollerslev and Mikkelsen (1996) shows that it efficiently captures
the mean-reversion properties of S&P 500 volatility. This evidence support-
ing fractional integration in financial data was reinforced by Breidt, deCrato
and Lima (1998) who used semiparametric techniques to identify long mem-
ory effects in both the squared returns and the logarithms of squared returns
estimated from daily data on several market indices. An important obser-
vation was made by both Robinson (1978) and Granger (1980) who found
that long memory effects can emerge in equity index volatility as a result of
aggregation even though the individual series do not exhibit this character-

istic.

There are however a number of studies that have looked at individual fi-
nancial time series data. Barkoulas and Baum (1997) examine daily returns

data on thirty companies quoted on the Dow Jones Industrial Average Index
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(DJIA). Evidence supporting long memory effects is sparse, with no frac-
tal structure identified in the returns series of twenty-two of the companies
sampled. Ray and Tsay (2000) randomly select 100 S&P 500 companies
and find strong evidence of long range dependence in the volatility structure
of the majority of companies sampled. Levels of persistence were similar
among firms from the same industry implying that, if firms are categorised
by industry, firm volatilities are driven by common components and are thus
tied together in the long run. The greater availability of high-frequency data
on financial assets has encouraged research into the relationship between in-
traday periodicity and long memory effects. Andersen and Bollerslev (1997)
attempt to resolve the short-run decay associated with news arrivals in in-
traday data and long memory effects observed in daily returns. In a sample
of 5-minute returns on the DM-$ exhange rate, they found that this conflict
could be resolved by adjusting for the U-shape observed in the intra-day
periodic structure, i.e. volatility is high at the open and close of trading.
An examination of 5-minute return volatility in US Treasury bond futures
by Bollerslev, Cai and Song (2000) also shows that long memory effects be-
come more prominent once adjustments were made to account for repetitive

intra-day trading patterns.

Evidence of long-run dependence in asset volatility has been used to ex-
plain a number of empirical anomalies in option pricing. Using simulations

to generate prices for hypothetical long-term equity anticipation securities
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(LEAPS) on the S&P 500 index, Bollerslev and Mikkelsen (1996) show the
importance of modeling long memory effects in option pricing. The results
produced by Bollerslev and Mikkelsen (1996) indicate that the S&P 500 In-
dex is efficiently modeled by a fractionally integrated process. Sundaresan
(2000) suggests that long memory can explain some of the empirical anom-
alies that arise using standard option pricing models. The more pronounced
smile effect observed in short-maturity options compared to long-term op-
tions is identified as a possible consequence of long memory effects being

omitted from the modeling procedure.

The evidence supporting fractional integration in financial data has encour-
aged research into the nature of the long-run relationship between fractional
series. While cointegration traditionally examines nonstationary I(1) series
for the presence of stationary I(0) linear relations, fractional cointegration
facilitates greater flexibility when modelling the relationship between series.
The concept of fractional cointegration has applied in a number of contexts
within econometrics. For example, Davidson, Peel and Byers (2006) use
a fractionally cointegrating error correction model (FVECM) to describe
patterns in UK political poll results and Cheung and Lai (1993) as well as
Robinson and Marinucci (2001) have examined the presence of fractional
cointegration in financial data. Given the documented existence of frac-
tional integration in financial asset volatility, Robinson and Yajima (2002)

and Nielsen and Shimotsu (2007) have developed more rigorous techniques
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that facilitate investigation into potential long-run equilibrium relationships
between series that are not strictly 7(1). An examination of the long-run
relationship between realized volatility and implied volatility on the S&P
100 by Bandi and Perron (2006) has shown some evidence of fractional coin-
tegration. Their findings are closely related to the forecasting literature
which shows that although implied volatility contains predictive informa-
tion it consistently overestimates subsequently realized volatility. This has
been demonstrated in the case of equity indices by Christensen and Prab-
hala (1998) and for individual equities by Garvey and Gallagher (2007).
The positive bias has been partially attributed to the use of overlapping
data, errors-in-variables and missing variables which can compromise the
results produced by the classical regression approach used in previous stud-
ies [Christensen and Prabhala (1998)]. Pan (2002) has shown that a jump-
risk premium can be observed in option prices and that this premium has
a positive relationship with volatility levels in the underlying market. This
finding is clearly an important factor when attempting to understand the
dynamics of the implied-realized volatility relationship and it has motivated
the addition of a volatility risk premium to the implied-realised volatility
regression described in (3.14) below [Poteshman (2000), Chernov (2007)].
Bandi and Perron (2006) point out that explicitly accounting for a time-
varying risk premium in this manner can be misleading. Their study shows
that an examination of the long run implied-realised relationship using semi-

parametric techniques avoids the issues associated with a classical regression
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approach by focusing on very low (harmonic) frequencies and ignoring short-

run dynamics.

The primary objective of this chapter is to establish the presence of frac-
tional integration in the implied and realized volatility series of individual
equities. Establishing a robust estimate of the long memory parameter is
complicated by the existence of structural breaks which have been shown to
induce persistence in asset volatility. Hamilton and Susmel (1994), Granger
and Marmol (1997), Mikosch and Starica (1999) and Granger and Hyung
(2004) all show that regime-switching or occasional break models can pro-
duce the long memory property in a finite sample. Using the semi-parametric
GPH estimator described later in this paper, Granger and Hyung (2004)
show that extracting the long memory properties in the autocorrelation of
a break model becomes more difficult as the number of breaks increases.
Results from an investigation into the macroeconomic determinants of stock
market volatility by Morana and Beltratti (2004) suggests that volatility
of the S&P 500 is characterised by both structural changes and long mem-
ory. They also show that breaks in the volatility of macroeconomic factors
such as interest rates and money growth, produces breaks in stock market
volatility. Shimotsu (2006) shows how sample splitting and d’th differencing
can be used to distinguish between true long memory and a spurious long
memory process that is produced by structural breaks. Empirical analysis

of realized volatility on the S&P 500 Index by Shimotsu (2006) as well as
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Morana and Beltratti (2004) shows that persistence is likely to be explained

both by regime shifts and long memory effects.

Ohanissian, Russell and Tsay (2008) examine the relevance of distinguish-
ing between ‘true’ long memory or fractional integration and ‘spurious’ long
memory that is produced by regime-shifts in the volatility process. Under
the assumptions that the true volatility model is known and can be esti-
mated, the omission or mispecification of the long memory parameter leads
to significant option mispricing. If actual volatility follows a ‘spurious’ long
memory process and it is modelled as a short memory or ‘true’ long memory
process then the resulting call options will be underpriced. Furthermore,
when volatility follows a ‘true’ fractionally integrated process, then the use
of either a short-memory model or a ‘spurious’ long memory model leads
to an overpricing of call options. These findings by Ohanissian, Russell and
Tsay (2008) clearly illustrate the importance of correct specification of the

persistence parameter for market participants.

3.3. Modeling Volatility

Data on both individual FTSE-100 stocks and their related options for the
period 1%* October 1997 to 31% December 2003 are obtained from the Lon-
don Stock Exchange (LSE) and the London International Financial Futures
Exchange (LIFFE) respectively. I select the maximum number of FTSE-100

stocks (sixteen) for which options data is continuously available over that
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time period. Implied volatility estimates are backed out of traded prices
of American-style individual equity options traded on the London Interna-
tional Financial Futures Exchange. Tick-by-tick price data obtained from
the London Stock Exchange is used to construct a time series of realised

volatility for each FTSE-100 stock included in the study.

Volatility is estimated nonparametrically using this high-frequency data,
however the raw price series must be adjusted for the presence of noise due
to imperfections of the trading and recording process. Each price series used
in our sample first undergoes a filtering process that removes non-unique and
incorrect observations. Once these so-called market microstructure effects
are corrected for, the irregular tick-by-tick price series is then converted to
regular series of thirty-minute intervals. Research by Oomen (2006) dis-
tinguishes between sampling schemes based on transaction time, business
time, and calendar time. Based on IBM transaction data over the period
2000-2004, Oomen (2006) shows that the mean square error (MSE) of re-
alised volatility can be reduced by sampling returns on a transaction time
scale rather than the more common sampling approach using calendar time.
However, if market microstructure noise is dominant then the simplicity
of calendar time sampling may produce superior estimates. Oomen (2006)
results show that the optimal sampling frequency of about 3 minutes was

strongly dependent on variations related to market liquidity.
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In this chapter, calendar time sampling is used by selecting the mid-price
recorded closest to the end of each thirty-minute interval between 8.30am
and 4.30pm each day. Given the range of stocks included in our sample
the interval length is arbitrarily selected as a tradeoff between market mi-
crostructure effects and the accuracy associated with approximations at
higher frequencies. The approximation of ‘true’ volatility from high fre-
quency data has become increasingly sophisticated. Empirical evidence from
foreign exchange and equity markets has pointed to a daily U-shaped pattern
in return volatility [Andersen and Bollerslev (2003)]. Calendar time sam-
pling does not take account of this repetitive intraday trading pattern. The
creation of a regularly spaced time series using calendar time sampling also
excludes a significant amount of intraday data [Zhang and Mykland (2006)].
Despite this valid criticism, Andersen, Bollerslev, Diebold and Labys (2003),
Barndorff-Nielsen and Shephard (2004) and Meddahi (2002) show that sam-
pling intraday tick prices in this manner produces accurate estimates of
integrated variance. Shimotsu’s (2006) study on identifying long memory
effects also uses this approach to estimate daily realized volatility of the
S&P 500 index. The use of calendar time sampling as a preliminary step
in estimating realized volatility on UK equities facilitates later comparison
against Shimotsu’s (2006) results. Daily realized volatility is calculated as
the sum of thirty-minute squared returns. Annualized realized volatility is

calculated as follows
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R
(3.2) off = Ezrf. X 252,
j=1

where 7; is the sum of the 30-minute squared returns calculated on day
j, and n is the number of days from option trade date to option expiry,

assuming 252 working days in the year.

The implied volatility series is calculated as a weighted average of implied
volatility from the four closest-to-the-money options traded on each day.
This follows the approach used by commercial providers of implied volatil-
ity indices and has been shown by Ederington and Guan (2002) to provide
stronger forecasts than approaches that include away-from-the-money op-
tions data. To mitigate correlation in the residuals a nonoverlapping se-
ries is created by selecting options traded on the first business day of each
month with a maturity between 15-22 days. The weighted implied volatility
backed out of those options are used to contruct our implied volatility series.
The matching realized volatility series is calculated as the average realized

volatility of the underlying asset experienced over the life of the option.

Preliminary statistics for the implied and realized volatility series are con-
tained in Table 3.1. For the cross-section of companies considered in this
paper, the sample average implied volatility (38.6%) exceeds subsequently
realized volatility (33.9%). This somewhat supports the empirical evidence

of a positive bias in option implied volatilities. Average levels of kurtosis are
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also similar for both implied and realized volatility while both series display
similar levels of positive skewness. This suggests that stock price volatility

and option prices are driven by broadly similar dynamics.

Testing for Long Memory

There are a number of methods used to test for long memory in time series,
with some of the earlier approaches such as the rescaled range (R/S) statistic
developed by Hurst (1951, 1957) discussed in Baillie (1996). However, Lo
(1991) shows that the R/S statistic is not robust to short memory and

heteroskedasticity and proposes a modified version,

(3.3) Qr = Rr/or(q),

where R is the range,

(3.4) Rr = max {Z(yj - j@)} — min {Z(yj - j?)} ,

j=1 j=1

and the sample standard deviation, or(q), is available from

(3.5) o2(q) = co + 2ij(q)cj,

where y is the series under consideration, 7" is the number of observations

available and 7 is the sample mean. In (3.5) above, ¢; is the jth-order sample
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autocovariance of y; and w;(q) are the Bartlett window weights of,
(3.6) wy() =1 - [j/(q+1)] for g < T.

Baillie (1996) notes that no criteria exists for the optimal choice of ¢ and its

use is not supported by simulation tests.

The use of semi-parametric methods does not require us to make any as-
sumptions about the short-run dynamics of the series under consideration.
Two semi-parametric estimators that provide relatively consistent estimates
of the persistence parameter d are applied. Specifically, the memory pa-
rameter d is estimated using the log-periodogram approach proposed by
Geweke and Porter-Hudak (1983) and the feasible exact local Whittle esti-
mator developed by Shimotsu and Phillips (2005). Both approaches assume

the spectral density, f(A) of the process X, satisfies
FO) ~ GA2 as X — 0+,

where d € (—1,1) and G € (0, 00). Robinson (1995) defines a long memory,

fractionally integrated process as follows

(3.7) (1— L)X, = uy,
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where L is the lag operator and u; is a covariance stationary process whose
spectral density is bounded and bounded away from zero at the zero fre-
quency A = 0. The approach developed by Geweke and Porter-Hudak (GPH)

(1983) is based on the following log-periodogram (LP) regression,
.92 /\s
(3.8) In P(Xs) = ¢ — dIn(4(sin (7))) +e(As),

where the periodogram of the data is P,(\,) = |w,(A)|* and is computed at
the following Fourier frequencies close to zero, A, = 222 (s = 1,...,m < %),
c is a constant and ¢ denotes the regression residual. The discrete Fourier

transform is defined as

(3.9) we(As) = (ZWn)_l/QiXteitAs

t=1
and the estimator is semi parametric in that it only employs local assump-
tions (near the zero frequency) and treats the spectral density away from
the origin nonparametrically. The distribution of the long memory para-
meter, d will be asymptotically normal with the variance 72/6n. The GPH
approach is relatively simple to apply, although Geweke and Porter-Hudak
(1983) show that it is biased and inefficient when the regression residuals

are substantially autocorrelated.

An alternative estimation procedure is the local Whittle (LW) estimator

originally developed by Kunsch (1987) and Robinson (1995). LW estimation
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uses the following Gaussian objective function,

m 2d
310 Qu(Gad)= 23 lop(ON ) + P,
s=1

\s = 2 s = 1,....,n and estimation takes place over the bandwidth, m,

n
which is some integer less than n. The LW estimator minimizes Q,,(G, d)

and Robinson (1995) shows that the asymptotic standard errors for this

estimator are, \/m(dp.m — d) = N(0, 7). It is more efficient than the GPH

estimator in the stationary case (|d| < 1), however both the LW and LP

estimators are inconsistent in the non-stationary case, when |d| > % [Kim

and Phillips (1999)]. The exact local Whittle (ELW) estimator proposed by

Phillips and Shimotsu (2004) is given as

(3.11) d = argmin R(d),
de[A1,As]

where d is bounded by A; and A, and

(3.12) R(d) —log G(d) — Zd%ilog A,
(3.13 Gld) = -3 a0,

Assuming that the mean of the time series X; in (3.7) is known, Phillips
and Shimotsu (2004) show that the ELW is consistent and asymptotically

normally distributed when the true value of d € (A, Ay) if Ay — Ay < %.
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The feasible exact local Whittle (FELW) estimator set out by Shimotsu
and Phillips (2005) allows estimation of the d parameter when the mean
is unknown. Its development was motivated by simulation results which
indicated that in finite data sets the estimated ELW estimator is inconsistent
if the error in estimating the mean is not controlled. The FELW estimator
provides consistent estimates of d for d > —% by assigning an appropriate
weighting scheme for ELW estimates of d using the unadjusted data series for
estimates of 4, when d is small and the demeaned data series when d is large.
The FELW estimator is appropriate in this context as a general purpose
estimator is required that can allow for a substantial range of stationary

and nonstationary regions of d.

The implied (o7")and realized volatility (o)

series for each of the compa-
nies included in our sample are plotted in Figures 3.1a and 3.1b. Both series
consist of 75 non-overlapping monthly observations for the sample period
from the 1st October 1997 to 31st December 2003 and a visual examination
reveals an expected similarity in the behaviour of both series across time.
The long memory parameter, d for the implied and realized volatility series is
estimated using both the GPH and FELW approach across a range of seven
bandwidths, m between [n%4] and [n®7]. The GPH and FELW estimates of

d are also found for the residual series produced by the OLS regression

(3.14) o = a4+ BtV 4 ¢
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GPH and FELW estimates are also found for the differences o/ —o!" which
is essentially constraining the d estimate of implied and realized volatility
to be the same. The results of our estimation procedure as well as the 95%
confidence bands are plotted in Figures 3.2a-3.2g. The plots show that both
estimation procedures demonstrate an upward trend in the d estimate as
the size of the bandwidth increases. It is also seen that the FELW provides
lower estimates of d than the GPH method. Long-memory estimates are
shown to be reasonably consistent across bandwidths (with the exception
of the FELW estimate for Dixons (realised volatility) and Hilton (implied
volatility)). For each company included in the sample, Tables 3.2a-3.2d

provide a summary of parameter estimates for the entire sample period over

0.6 0.70

three bandwidths m = n%%% m = n%%% and m = n®™ as well as their
associate standard errors. At the lower frequencies the GPH estimation of d
for both the implied and realized series is in the stationary region (c/i\ < %) for
Aviva, GlaxoSmithKline, Kingfisher, Lonmin, Prudential and Reuters. The
parameter estimates produced by the FELW estimate confirm these results
for the implied and realized series of Prudential and Reuters and suggest it
may additionally be the case for Cadburys and Hanson. For the majority
of companies in the sample the estimate of d moves into the nonstationary
region (d > £) once the bandwidth increases to n®° prompting attention to
the results for the FELW estimator since the GPH estimator has been shown

to be inconsistent in this region. The cross-sectional variation in the long

memory parameter is similar to previous findings by Barkoulas and Baum
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(1997). Using the local Whittle estimator proposed by Robinson (1995),
Barkoulas and Baum (1997) reported wide variability in the estimates for
the persistence parameter estimated from the daily prices of thirty DJIA
companies. These results can also be compared to those of Ray and Tsay
(2000) who test the fractional properties of daily volatilities of individual
companies quoted on the S&P 500 using the GPH estimator. Ray and Tsay’s
(2000) estimates are markedly lower than those produced by the FTSE-100
companies sampled here. Daily volatilities for the 100 randomly sampled
S&P 500 companies produce mean estimates estimates for the persistence
parameter of 0.3768 with a standard deviation of 0.0875. Ray and Tsay
(2000) note that theoretical results produced by Deo and Hurvich (1998) as
well further simulation tests suggest that the level of persistence is likely to

be higher and much closer to our results for FTSE-100 companies.

The results are tested for spurious effects induced by structural breaks or
regime shifts in the volatility process. Shimotsu (2006) shows that estimates
of the long memory parameter from subsamples should be similar to those
produced by the full sample if the series is a ‘true’ long memory fraction-
ally integrated process. Differences in the long memory parameter among
subsamples suggests that the long memory effect is a product of structural
breaks in volatility. Under the sample-splitting approach, if a series X; is an
I(d) process then the average of dW, ..., d®estimates from the b subsamples

should approximate the d estimate of the full sample. A visual examination
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of average d estimates when we split the sample into two subsamples (b = 2)
should demonstrate some consistency while a more formal test for parameter
constancy is the Wald statistic (). The number of subsamples used in the
testing procedure is constrained by the size of the data set which consists of
75 nonoverlapping observations. Shimotsu (2006) defines the Wald statistic
for testing the null hypothesis of parameter constancy among subsamples,

as follows;
(3.15) W = 4mAd,(AQA")* (Ady)',

where b is the number of subsamples used and dy and A are given as

~

d— dy 1 -1 .. 0

- dM — d, L .

dy = and A = :
d® — d, 1 0 .. -1

and (AQA’)" is the generalized inverse of AQA’. Hurvich and Chen (2000)
found that the Wald test overrejects long memory. This is overcome by
using the modified version (W.) that selects the number of periodogram
ordinates equal to m/b so that the subsample estimation uses the same

width of frequency band as used to estimate the full sample, as follows,

(3.16) W = dm(cnpn/ (m/b) Ady(AQA) F(Ad,)'
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Simulation results provided by Shimotsu (2006) show that the modified Wald
statistic performs well despite the bias in semiparametric estimates that arise
from the short-run dynamics in the data. The Wald statistic is compared to
a Chi-squared distribution at the 95% level. Shimotsu (2006) proposes a sec-
ond test that identifies the accuracy of the long memory parameter estimate
(d). The process involves d'th differencing of the series under consideration
and the resulting series should be I(0). Despite the relative simplicity of both
approaches, Shimotsu (2006) demonstrates that they can be effectively used
to identify spurious long memory in both the stationary and nonstation-
ary case. The differenced series is tested for stationarity using the Z; unit
root test [Phillips-Perron (1988)] and the KPSS test [Kwiatkowski, Phillips,

Schmidt and Shin (1992)]".

Table 3.3a and 3.3b summarise the test results for true long memory in im-
plied and realized volatility respectively. Long memory is validated using
both the split sample and d’th differencing approaches. An examination of
the realized volatility series for each company rejects the null hypothesis of
true long memory using the modified Wald statistic in the case of Aviva and
Royal Sun Alliance. True long memory is rejected in the implied volatility

series of Cadburys. The modified Wald statistic does not reject parameter

IThe KPSS test was designed to test the null hypothesis of I(0) against the alternative
hypothesis of I(1). First, it involves taking the residuals e; from the regression of a

process y; on an intercept and time trend and forming the partial sum St of the residuals
T
as follows, S = > y:. The KPSS test for stationarity is then, n, = T72 3" 52 /02(q)
t=T
where 02.(q) is defined in (5) above.
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constancy among subsamples for all other companies included in the sample.
Our estimation of the long memory parameter is based on a bandwidth of
m = n%% and because of the size of the options dataset under consider-
ation the number of subsamples (b) used are limited to 2. Some variation
in estimates of d among subperiods means that we cannot exclude struc-
tural breaks within the sample period. The level of variation in d is unlikely
to explain the observed level of the persistence in the log realized volatility.
The results provided by d'th differencing tests in particular suggest that true
long memory effects are present in the realized volatility of individual stocks.
The values for the Phillips-Perron (Z;) and the KPSS (n,,) statistic applied
to the d'th differenced series are shown in tables 3.3a and 3.3b respectively.
Comparing both test statistics against their critical values at the 5% level
supports the null hypothesis that the differenced series is I(0) cannot be
rejected in any instance for either the realized or implied volatility series.
The generation of non-overlapping observations reduces the size of the sam-
ple and the persistence parameters that are estimated are characterised by
large standard errors. These limitations are mitigated by the application of
rigourous tests for ‘true’ long memory. Both the split sample and d’'th dif-
ferencing tests provide support for parameter constancy in both the implied
and realized series. Estimates of the long memory parameter are shown to
be consistent and these estimates support long memory fractional integra-
tion in the volatility of individual stocks, particularly when estimation is

carried out at lower frequencies.
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The findings in this research are similar to the results found in other finan-
cial time series. Choi and Zivot (2007) show that stationary long memory
is found in the forward discount series even after allowing for structural
breaks. Shimotsu (2006) tests for ‘true’ long memory in the S&P 500 re-
alized volatility series by splitting the sample of 5,000 observations into
subperiods of 1,000 observations. ‘True’ long memory is supported by the
Phillips-Perron and KPSS test although variation in subsample estimates of
d is partly attributed to sampling error. Although the presence of jumps
and /or structural breaks is accepted they cannot explain the level of perisis-
tence found in the S&P 500. The studies by Shimotsu (2006) and Choi and
Zivot (2007) and the results presented in this chapter indicate that ‘true’
long memory is a condition of a number of financial time series and that
it can be successfully distinguished from spurious long memory induced by
structural breaks. The following section extends the investigation into im-
plied and realized volatility by examining the existence and rank of fractional

cointegration between these series.
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Specifying the rank of fractional cointegration in the implied-realized

volatility relationship

Engle and Granger (1987) identify the p x 1 vector variate X; as cointe-
grated CI(d,b) if it has I(d) elements, and for some, b > 0, there ex-
ists 3 such that 3'X; is I(d — b). Although the original definition restricts
d = b = 1, the evidence supporting fractional integration in financial data
requires some flexibility to be built in to this definition. Fractional coin-
tegration between two series is suggested if they exhibit similar levels of
long-run dependence and long-memory estimates produced by the residual
series are lower. Based on this criteria a comparison the FELW estimates
indicates some level of fractional cointegration between implied and realized
volatility in a number of companies sampled. Fractional cointegration is
suggested between the implied and realized volatility series of the following
companies; Aviva (FELW = 0.509, FELW, = 0.543), British Aerospace
(FELW = 0.940, FELW4¢ = 0.941), British Airways (FELW S = 0.620,
FELWY, = 0.428), Cadburys (FELW/Y = 0.721, FELWg Y = 0.762),
Hilton (FELW}¢ = 0.583, FELW ¥, = 0.570), (Prudential FELW&" =
0.637, FELWp! = 0.523) and Reuters (FELW[ = 0.939, FELW}, =
1.063). The relevant GPH and FELW estimates of d and their associated

standard errors are summarised in Tables 3.4a and 3.4b respectively.
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Figure 3.1: Scatterplot of feasible exact local Whittle (FELW) estimates for
implied and realised volatility series of FTSE-100 companies. The proximity
of the FELW estimate for both the IV and RV series is suggestive of some
level of fractional cointegration.

The summary of GPH and FELW estimates contained in Tables 3.6a and
3.6b shows that the implied and realized volatility series for FTSE-100 com-
panies exhibit properties associated with fractional cointegration. It can be
seen from the full set of results (Tables 3.2a-3.2d) that parameter estimates
are sensitive to the estimation procedure employed as well as the choice
of bandwidth. Although the analysis uses the longest continuously avail-

able dataset for individual UK equities (1997 - 2003), cointegration analysis
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benefits from the use of even longer sample periods where possible. The
findings justify a more rigorous investigation into fractional cointegration.
Fractional cointegration is more formally tested using the methodology de-
veloped by Nielsen and Shimotsu (2007). The approach is an extension of
the cointegration rank determination procedure proposed by Robinson and
Yajima (2002). The use of FELW estimation means that the approach is
sufficiently flexible to model both (asymptotically) stationary and nonsta-
tionary processes and it assumes that the mean value of the series, X; is
unknown. The consistency of FELW estimation over both the stationary
and nonstationary regions of d is important as our earlier results show that
both implied and realized volatility of many FTSE-100 companies lie in the
nonstationary region. The analysis in this section is focused on the implied
and realized volatility series of the seven companies identified in Table 3.4b,
namely, Aviva, British Aerospace, British Airways, Cadburys, Hilton, Pru-
dential and Reuters. The volatility series of these companies produce close
FELW d estimates that indicate cointegration and warrant a more formal

investigation.

The presence of fractional cointegration is examined by first testing the hy-
pothesis of pairwise equality of the persistence parameters, where a and b are
the two series under consideration. Following Nielsen and Shimotsu (2007),
a t-type test proposed by Robinson and Yajima (2002) is used to tests for

parameter equivalence in the implied and realized volatility series. Robinson
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and Yajima (2002) note that although fractional cointegration requires that
the persistence parameters are equivalent for both series, the sensitivity of d
estimation suggests greater variability in d should be facilitated. Robinson
and Yajima (2002) proceed by redefining d as the px 1 vector d = (dy, ..., d,)’
where d,, is the long memory parameter estimated for series p using FELW
estimation. Also d = (c/l\l, ...,a/l;)’ and D = diag{Gi1, ..., Gpp} where G is
defined previously in equation (3.14) and G, is the (a,b)th element of G.

They propose a consistent multivariate version of the FELW estimator

(3.17) :EZRe{)\ )HLAN) )

where m is the bandwidth used, I; = I(\;) and I(\) = w(A)w(N)*, w(\) =
(w1 (A), ..., wp(X)))" where w,(X) is the discrete fourier transform of series p
defined in (3.13) above. Robinson and Yajima (2002) show that X,; and X,
are cointegrated if G2, = G,,Gyp , while there is no cointegrating relationship
between the series when sz < GaaGry. This can be expressed in the form

of a test statistic as follows,

)

ml/Q(EZ\a _ C/Z\b)
(1 = G/ (CasGrp)) Y172 + h(n)

3.18 T
(3.18) ;

N =

where h(n) > 0 and

(log m)m/?+¢ /né + (log m)?m /6
h(n)

(3.19)  h(n)+

— 0 asn — oo.
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If X, and X, are fractionally cointegrated fab —4 0 while if no cointegra-
tion exists Ty —q N (0,1). We see that parameter equivalence is supported
at bandwidth m = 13 and from Table 6, the proximity of the T, v_ryv statis-
tic to zero indicates cointegration between the implied and realised volatility

series of the companies under consideration.

Determination of the cointegration rank consists of finding estimates of G
and its eigenvalues and then determining their limit distribution. From

(3.17) above,
1 m
(3.20) G(d,) = EZ)\?‘* Re(I;)
j=1

where d, is the common value of di,...,d,, and in this paper p = 2. In
both the multivariate log periodogram method [Robinson (1995)] and the
multivariate local Whittle method [Lobato (1995)], G is given as G(d,).
Robinson and Yajima (2002) note that these approaches are only consistent
under narrow conditions and the assumption of full rank for G means they
are not valid if X; is cointegrated. The solution proposed by Robinson and
Yajima (2002) and applied in this chapter is to pool estimates of d, based on
the individual elements of X;, using a bandwidth m; that increases faster

than m. This provides an estimate of d,,, Ja that uses the bandwidth m;y

instead of m, that gives,

_ 1<~
d*:];;da
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so that as n — oo the limit distribution is,
~ 1
(3.21) m'%vec(G(d,) — G) —q N(0, §(G QG+ (G®Gq,....GRGY))).

Results are provided for é(a*) as well as the correlation matrix ﬁ(c_l*) =

A~

D(d,)"V2G(d,)D(d,)"/2, where D(d,) is a scale-invariant version of the
G(d.) and has the same rank as G(d,). Tables 3.6a to 3.12a present the
eigenvalues of @(8*) and 13(3*) estimated for bandwidth parameters at

my = [n%%°] = 24, m = 32 and m; = [n%%]

= 13, m = 18. The proxim-
ity of at least some of the eigenvalues of G to zero suggests cointegration.
The results of the rank determination analysis for the seven companies un-
der consideration are contained in Tables 3.6b to 3.12b. The results support
fractional cointegration at m; = [n%%°] = 13, m = 18 with weaker support
evident across bandwidths, m; = [n%%] = 24, m = 32. Overall there is
evidence of only at most only one cointegrating relationship between im-
plied and realized volatility. The existence of a fractionally cointegrating
relationship between implied and realized volatility is consistent with sim-
ilar results for stock indices [Bandi and Perron (2006)]. Kellard, Dunis
and Sarantis (2007) tested for fractional cointegration between implied and
realized volatilities on a number of foreign exchange rate over the period
January 1991 to September 2005. Traded implied volatility obtained from

brokers and foreign exchange realized volatility over 172 non-overlapping ob-

servations are shown to be fractionally cointegrated. Los (2005) and Budek,
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Schotman and Tschering (2006) have examined the implications of fractional
integration for risk management and long-term portfolio choice. Los (2005)
observes that the Value-at-Risk (VAR) measure omits long memory com-
ponents that are evident in dynamic market pricing. The fractal dynamics
observed in the return series of many financial assets means that these assets
thus possess an undefined or ‘infinite’ variance. Los (2005) argues that VaR
incorrectly and from the perspective of risk managers, dangerously, relies on
a computed standard deviation that has been shown not to converge over
time. Budek, Schotman and Tschering (2006) examine the practical im-
plications of persistence in asset returns for long-term choice in a portfolio
composed of US equities, Treasury bonds and cash. Using a multi-variate
fractionally integrated process, Budek, Schotman and Tschering (2006) show
that long-term portfolio weights and as a consequence long-term portfolio
risk are highly dependent on the estimation of the long memory parameter.
The results produced in this chapter identify the presence of fractionally
integrated long memory in UK equity volatility. Long-memory effects in
asset volatility as well as the identification of the implied-realized volatility
relationship in UK equities as a fractionally cointegrated one also has im-
plications for the practical implementation of derivative strategies not yet

considered in the existing literature.
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3.4. Summary and Conclusion

This chapter presents a careful examination of the fractional properties of
volatility on individual FTSE-100 equities. The results from a univariate
analysis of the implied and realized volatility series of sixteen FTSE-100
companies over a number of bandwidths show little evidence of a consistent
long memory parameter among the stocks selected. The apparent absence
of a strong common factor driving volatility indicated by this finding is in
contrast to the results of Ray and Tsay (2000) who found similar levels of
volatility persistence among related stocks. Fractional integration in the
implied and realized volatility series was tested for possible ‘spurious’ re-
sults induced by structural breaks in volatility. Variation in the persistence
parameter was evident among subsamples suggesting that breaks did occur
in volatility across the sample period. The Wald statistic which checked
for parameter consistency showed that fractional integration could only be
rejected in the realized volatility series of Aviva, Hanson and Royal Sun
Alliance. Tests for incorrect estimation of the persistence parameter (d)
were also carried out using d’th differencing. Application of the Phillips-
Perron test (Z;) also suggested spurious long memory effects in the realized
volatility series of British Aerospace, Diageo and Hilton. Although the re-
sults indicate the presence of structural breaks in implied and realized equity

volatility, the presence of fractional integration could not be rejected.
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The final part of this chapter formally examines whether implied and real-
ized volatility on individual equities are fractionally cointegrated processes.
Univariate estimates of d on implied and realized volatility as well as the
residual series produced by an OLS regression suggest the presence of frac-
tional cointegration in a number of companies. A closer examination is
facilitated by applying Robinsons and Yajima'’s (2002) test statistic for para-
meter equivalence. The multivariate FELW estimation described by Nielsen
and Shimotsu (2007) shows that at least one cointegrating vector can be

identified even though the results are sensitive to the choice of bandwidth.

The results presented in this chapter are relevant for forecasting and risk
management since levels of persistence are shown to affect long-run predic-
tions of stock returns. The inclusion of long-run dependence can be achieved
through the application of appropriate fractionally integrated volatility spec-
ifications such as the process developed by Comte, Coutin and Renault
(2003). The long-run equilibrium relationship between individual equities
and their associate options is worthwhile exploring in greater detail with
more extensive datasets. Recent research has pointed to the profitability
of derivative strategies [Santa-Clara and Saretto (2006), Doran and Fodor
(2006), Branger, Breuer, Schlag (2006)]. Budek, Schotman and Tschering
(2006) have shown the importance of long-memory effects in selecting the op-

timal long-term portfolio. The evidence in this chapter supporting fractional
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integration is equity volatility compliments the recent research in portfolio

optimisation and derivative strategies.

3.5. Appendix B: Supporting Material for Chapter 3
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Figure 3.1a Implied (IV) and realized volatility (RV). Each time series consists of
75 non-overlapping observations generated using end-of-day equity options data
(implied) and intraday tick data (realized).



3.5. APPENDIX B: SUPPORTING MATERIAL FOR CHAPTER 3 129

Hanson HSBC
100 ; ; 100 . :
RV
\Y
2 80 2 80
3 k|
o o
> 60t >
° o
8 2
s K
2 40r 2
[= c
< <
201
1997 2000 2002 2005 2005
Kingfisher Lonmin
100 : ; 100 .
RV RV
v v
2 80 1 2 80
k| K|
o o
> 60r > 60f
o o
[} Q
N N
s s
2 40 2 40
c c
< <
201 20
1998 2000 2002 2004 1998 2000 2002 2004
Date Date
Marks and Spencers Prudential
100 : .
RV
\%
2z 801 ] 2z
= =
© ©
o )
> 60t >
o o
Q Q
B N
] s
2 40r 2
c c
< <
20
1997 2000 2002 2005 2005
Reuters
100
RV
v
2 2 80
8 E
o o
> > 60
o o
8 s
s S
2 2 401
c =4
< <
20
1997 2000 2002 2005 1998 2000 2002 2004
Date Date

Figure 3.1b Implied (IV) and realized volatility (RV). Each time series consists of
75 non-overlapping observations generated using end-of-day equity options data
(implied) and intraday tick data (realized).
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Figure 3.2a Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2b Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2c Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2d Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2e Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2f Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2g Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.



3.5. APPENDIX B: SUPPORTING MATERIAL FOR CHAPTER 3 137

GPH estimate for implied FELW estimate for implied

FO -] OO PPPPPPEPPUPTLEES L dehdehehuieheiet el it

[ S ———— e P XY PUPTER

d estimate
d estimate

15 1 1 1 1 1 15 1 1 1 1 1
8 10 13 16 20 25 31 8 10 13 16 20 25 31

GPH estimate for realised FELW estimate for realised

b ST e 15 . . . . .

g o5 T e T R £ 05 fremmerenaamear s e e
@ JUSURPPPELLY £ —
s Q ..
© =l
-1.5 L L L L L 15 ) ) ‘ ‘ ‘
8 10 13 16 20 25 31 8 10 13 16 20 25 31
GPH estimate for difference FELW estimate for difference
15 ‘ ; ; : 15 ‘ ‘ ‘
% 05 — — — — — B L LE Dbl % O T Ltk
g eseeeent g .....o.~o~~0~~~~~~......~~~~~o~~o.~.~.o~~0~0’”’
‘l;i 0~0000~0~0~000~~~~000~0~0~0.00 271 teeeeeecscacenseessenns
@ D T b 2
© =l

15 I I I I I 15 I I I I I
8 10 13 16 20 25 31 8 10 13 16 20 25 31

GPH estimate for OLS residuals FELW estimate for OLS residuals
15 T T T T 15 T T T

et L G

05 2o eeeeacanaesesaet e ettt et ettt etteitttatecanseneasassantet?tt

d estimate
d estimate

15 I I I I I 15 I I I I I
8 10 13 16 20 25 31 8 10 13 16 20 25 31

Number of frequencies in regression Number of frequencies in regression

Royal Sun Alliance

GPH estimate for implied FELW estimate forimplied

S e L SO T JUPPPPTP TR 15 T T T T T

g 0s———— — —— — — _ T.:N—N::N—.:“—,,.ﬁ.«u“—”ﬁ’—“i € o5 - —————————— 3 ;“—,.w»v’—”’—"" =TT et
£ [ £ JE T i ettt
2 RECTL @ reeeerent”
[ ] R
k-] k=] “.“.,....w
15 . . . . . 15 . . . . .
8 10 13 16 20 25 31 8 10 13 16 20 25 31
GPH estimate for realised FELW estimate for realised
15 T T T T veecsecccccceaad 15 ! ! ! ! ! cesees

g os e Lttty L 05| e e et T
2 [ = et
@ PRTTLeS (i) P
= = veenesnen

15 I I I I I 15 I I I I I
8 10 13 16 20 25 31 8 10 13 16 20 25 31

GPH estimate for difference FELW estimate for difference
15 T T T 15 T T T

LY R e ity 05 T e e s S s e e e e e e st st et e

d estimate
d estimate

15 I I I I I 15 I I I I I
8 10 13 16 20 25 31 8 10 13 16 20 25 31

GPH estimate for OLS residuals FELW estimate for OLS residuals
15 T T T T T 15 T T T T T

05 Peesseeeoeeceetiateartcersessoncaccscocenncnsanaears®® ? 05 [ e — — — — — reweesearesetettt

d estimate
d estimate

15 1 1 1 1 1 15 1 1 1 1 1
8 10 13 16 20 25 31 8 10 13 16 20 25 31

Number of frequencies in regression Number of frequencies in regression

Reuters

Figure 3.2h Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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m d (implied) d (realised) d (residuals) d (differences)
LP FELW LP FELW LP FELW LP FELW
Aviva

%% =9 0.308 -0.082 0.357 0.442 0.336 0.180 0.069  0.096
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
%€ =14 0.862 0.509 0.401 0.543 0.284 0.314 0.272  0.260
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
07 =23 1.209 0.943 0.651 0.884 0.535 0.639 0.575 0.634
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
British Aerospace
%% =9 0.699 0719 0.178 0396 0.212 0.259 0.255  0.387
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
060 =14 0947 0.940 0.595 0.941 0.525 0.544 0.548  0.489
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
07 =23 1.121 1.093 0.776 0.836 0.647 0.633 0.642  0.540
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
British Airways
%% =9 0.507 -0.1363 0.580 -0.032 0.117 0.202 -0.113 -0.066
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
%% =14 0.703 0.620 0.661 0.428 0.278 0.324 0.116  0.207
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
07 =23 0937 0.942 0.958 0.864 0.579 0.606 0.426  0.578
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
Cadburys
P =9 0.282 0.106 1.068 0.499 0.404 0.462 0.060 0.033
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
N0 =14 0.754 0.721 0.792 0.762 0.518 0.715  0.475  0.538
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
%] =23 0.889 1.030 0.683 0.884 0.570 0.788  0.671  0.797
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
Table 3.2a. Long memory parameter estimates for implied and realized volatility of Aviva,
British Aerospace, British Airways and Cadburys. Estimates are produced using the LP
and FELW Estimator across a number of frequencies.We also show estimates for the
residual series produced by the residual series from an OLS regression and for the
differences RV-IV. Standard errors are in parenthesis.
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m d (implied) d (realised) d (residuals) d (differences)
LP FELW LP FELW LP FELW LP FELW

Dixons
%% =9 0.482 -0.447 0.875 -5.322 0.850 0.785 0.474 0.494
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
%) =14 0814 0.736 1.150 1.027 1.112 1.094 0.887 0.814
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
%] =23 0954 0907 1.093 0.973 1.081 0.993 1.003 1.113
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Diageo
%% =9 0.546 -0.007 0.544 0.189 0.550 0.646 0.673  0.452
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
%) =14 0.687 0.465 1.129 0.864 1.144 0.963 0.802  0.601
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
07 =23 0.676 0.693 0.920 0.924 0.924 1.006 0.628 0.612
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

GlaxoSmithKline

%% =9 0.294 -0.162 0.403 0.554 0.306 0.314 -0.333 0.139
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
%) =14 0542 0.380 0.667 0.738 0.566 0.516 0.259  0.269
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
07 =23 0.777 0.664 0.827 0.874 0.705 0.777 0.444 0531
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Hilton
P =9 0.210 -6.661 0.441 0.126 0.242 0.232 0.123 0.116
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
n%%] =14 0653 0583 0.794 0570 0.722 0.585 0.825 0.434
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
%) =23 0.742 0.783  0.691 0.703 0.473 0475 0.424  0.360
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Table 3.2b. Long memory parameter estimates for implied and realized volatility of
Dixons, Diageo, GlaxoSmithKline and Hilton. Estimates are produced using the LP
and FELW Estimator across a number of frequencies.We also show estimates for the
residual series produced by the residual series from an OLS regression and for the

differences RV-IV. Standard errors are in parenthesis.
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m d (implied) d (realised) d (residuals) d (differences)
LP FELW LP FELW LP FELW LP FELW

Hanson
n%%=9 0.931 0500 0.359 0.261 0.101 0.079 0.081 -0.035
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
%% =14 0.810 0.519 0.643 0.836 0.458 0.363 0.363  0.287
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
%] =23 1.017 0998 1.065 1.164 0.917 0.989 0.844  0.870
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

HSBC
%% =9 -0.181 -0.210 0.463 0.066 0.371 0.428 0.250 0.341
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
%% =14 0.247 0.199 0.694 0511 0.694 0.664 0.741 0.534
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
%™ =23 0.651 0570 0.730 0.538 0.632 0.619 0.617 0.544
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Kingfisher
%% =9 0303 0.185 0.269 -0.233 0.288 0.216 0.372 0.346
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
% =14 0614 0.611 0.611 0.176 0.579 0.436 0.489  0.431
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
%M =23 0960 1.022 0.883 0.863 0.856 0.882 0.702  0.650
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Lonmin
%] =9 0.169 -0.628 0.152 0.134 0.129 0.079 0.223  0.084
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
%] =14 0330 0.013 0376 0.396 0.367 0.449 0.360 0.291
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
%™ =23 0528 0.716 0.737  0.726  0.755 0.735  0.537  0.542
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Table 3.2c. Long memory parameter estimates for implied and realized volatility of
Hanson, HSBC, Kingfisher and Lonmin. Estimates are produced using the LP

and FELW Estimator across a number of frequencies.We also show estimates for
the residual series produced by the residual series from an OLS regression and for
the differences RV-IV. Standard errors are in parenthesis.
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m d (implied) d (realised) d (residuals) d (differences)
LP FELW LP FELW LP FELW LP FELW
Marks and Spencers

n%% =9 0.351 0306 0.543 0.597 0.196 0.308 -0.012 0.163
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

%% =14 0.651 0593 1.065 0.941 0.531 0.561 0.283  0.378
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

%M =23 0.892 0.835 1.024 0.964 0.583 0.757 0.439 0.611
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Prudential

%% =9 0.402 0.104 0457 0226 0.135 0.229 -0.218 -0.039
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

%% =14 0.718 0.637 0.461 0523 0.198 0217 0.207 0.136
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

% =23 0.820 0.849 0.950 0.845 0.679 0.626 0.493  0.522
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Royal Sun Alliance

%% =9 0.750 0287 0.798 0.546 0.228 0.252  0.107  0.256
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

%% =14 0.653 0.391 0.731 0590 0.296 0.305 0.197  0.260
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

%M =23 0908 0.766 1.076 0.944 0.550 0.559  0.423  0.219
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Reuters

% =9 0.402 0.104 0.457 0226 0.135 0.229 -0.218 -0.039
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

n%60] =14 0.718 0.637 0461 0523 0.198 0.217 0.207 0.136
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

%M =23 1.052 0939 0934 1.063 0.536 0.527 0.527  0.463
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Table 3.2d. Long memory parameter estimates for implied and realized volatility of Marks

and Spencers, Prudential, RoyalSunAlliance and Reuters. Estimates are produced using
the LP and FELW Estimator across a number of frequencies.We also show estimates for
the residual series produced by the residual series from an OLS regression and for the
differences RV-IV. Standard errors are in parenthesis.
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Ticker d db=2) W.(b=2) Z, 7,

av 0.483 (0.271) 1.257 (0.271)  6.558  -1.932 (-2.841) 0.071 (0.435)
bae  0.870 (0.271) 1.170 (0.271) 2799  -3.177 (-2.850) 0.075 (0.462)
ba  0.569 (0.271) 0.860 (0.271)  0.001  -0.958 (-2.792) 0.143 (0.423)
chry  0.846 (0.271) 0.850 (0.271)  0.652  -2.087 (-2.852) 0.259 (0.462)
dxn 1130 (0.271) 1.546 (0.271)  0.882  -2.808 (-2.850) 0.075 (0.460)
dge  0.998 (0.271) 1.478 (0.271)  0.649  -3.021 (-2.849) 0.109 (0.460)
gsk  0.830 (0.271) 1.133 (0.271)  0.290  -2.575 (-2.853) 0.140 (0.462)
hg  0.765 (0.271) 1.044 (0.271)  3.769  -3.009 (-2.849) 0.151 (0.458)
hns  0.627 (0.271) 1.296 (0.271)  7.938  -2.186 (-2.788) 0.203 (0.428)
hsbec  0.643 (0.271) 0.845 (0.271)  0.820  -1.338 (-2.797) 0.254 (0.432)
kgf  0.411 (0.271) 0.758 (0.271)  2.048  -1.530 (-2.888) 0.161 (0.439)
Inr  0.459 (0.271) 1.081 (0.271)  1.489  -2.184 (-2.872) 0.055 (0.437)
mks  0.961 (0.271) 1.132 (0.271)  0.059  -2.326 (-2.849) 0.206 (0.460)
pru  0.417 (0.271) 0.715 (0.271)  0.325  -1.696 (-2.885) 0.108 (0.439)
rsa 0.640 (0.271) 1.525 (0.271) 10.094  -1.339 (-2.795) 0.076 (0.432)
rtr - 0.509 (0.271) 0.703 (0.271)  1.125  -1.600 (-2.841) 0.103 (0.433)

Table 3.3a. Implied Volatility (UK Equity). Test results for fractional dynamics.

Full sample estimates of d are denoted as d. Estimates of d when the number of

subsample estimates, b = 2 are given by d. Estimation in both cases used a bandwidth

m = n"% Results are also provided for the Phillips-Perron test (Z;) and the KPSS test (7,)
with their associated critical values at the 5% level are given in parenthesis. The Wald
statistic is evaluated against the Chi distribution at 5% level (xZq5(1) = 3.84).
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Ticker d db=2) W.(b=2) Z, 7,

av 0.586 (0.271) 0.860 (0.271)  0.477  -1.751 (-2.777) 0.075 (0.421)
bae  0.913 (0.271) 1.060 (0.271) 2207  -2.097 (-2.849) 0.053 (0.461)
ba  0.634 (0.271) 1.056 (0.271)  0.763  -1.339 (-2.791) 0.080 (0.430)
chry  0.848 (0.271) 1.757 (0.271)  12.049  -2.219 (-2.853) 0.072 (0.462)
dxn  0.829 (0.271) 1.184(0.271)  0.667  -2.037 (-2.853) 0.129 (0.462)
dge  0.564 (0.271) 1.082 (0.271)  1.764  -1.241 (-2.795) 0.095 (0.424)
gsk 0423 (0.271) 0.973 (0.271)  1.930  -1.970 (-2.881) 0.079 (0.438)
hg  0.708 (0.271) 1.487 (0.271)  0.002  -2.356 (-2.819) 0.094 (0.442)
hns  0.665 (0.271) 1.050 (0.271)  0.000  -2.335 (-2.813) 0.242 (0.440)
hsbe  0.400 (0.271) 0.786 (0.271)  0.819  -1.437 (-2.892) 0.208 (0.440)
kgf  0.618 (0.271) 1.375 (0.271)  0.066  -2.069 (-2.779) 0.066 (0.424)
Inr  0.283 (0.271) 0.696 (0.271)  2.960  -1.873 (-2.933) 0.169 (0.446)
mks  0.597 (0.271) 0.799 (0.271)  0.749  -1.687 (-2.769) 0.119 (0.419)
pru  0.631 (0.271) 1.039 (0.271)  0.801  -2.013 (-2.790) 0.061 (0.429)
rsa 0.573 (0.271) 0.796 (0.271)  0.721  -0.637 (-2.788) 0.223 (0.423)
rtr  0.577 (0.271) 0.695 (0.271)  0.023  -1.264 (-2.785) 0.089 (0.422)

Table 3.3b. Realized Volatility (UK Equity). Test results for fractional dynamics.

Full sample estimates of d are denoted as d. Estimates of d when the number of

subsample estimates, b = 2 are given by d. Estimation in both cases used a bandwidth

m = n"% Results are also provided for the Phillips-Perron test (Z;) and the KPSS test (7,)
with their associated critical values at the 5% level are given in parenthesis. The Wald
statistic is evaluated against the Chi distribution at 5% level (xZq5(1) = 3.84).
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d (implied) d (realised) d (residuals)

Lonmin (Inr) 0.169 0.152 0.129
(0.573) (0.573) (0.573)

Prudential (mks) 0.402 0.457 0.135
(0.573) (0.573) (0.573)

Reuters (rtr) 0.402 0.457 0.135
(0.573)  (0.573) (0.573)

Table 3.4a Summary of GPH parameter estimates that
suggest fractional cointegration between implied

and realized volatility. Parameter values and standard
errors are estimated across a bandwidth m = [n%].

d (implied) d (realised) d (residuals)
Aviva (av) 0.509 0.543 0.314
(0.271) (0.271) (0.271)
British Aerospace (bae) 0.940 0.941 0.544
(0.271)  (0.271) (0.271)
British Airways (ba) 0.620 0.428 0.324
(0.573)  (0.573) (0.573)
Cadburys (cbry) 0.721 0.762 0.715
(0.271) (0.271) (0.271)
Hilton (hg) 0.583 0.570 0.585
(0.271) (0.271) (0.271)
Prudential (pru) 0.637 0.523 0.217
(0.271) (0.271) (0.271)
Reuters (rtr) 0.637 0.523 0.217
(0.271) (0.271) (0.271)

Table 3.4b Summary of FELW parameter estimates that suggest fractional
cointegration between implied and realized volatility. Parameter values
and standard errors are estimated across a bandwidth m = [n%%°].

Trv_rv
Aviva (av) 0.2011
British Aerospace (bae) 0.0843
British Airways (ba) 0.1583
Cadburys (cbry) 0.0131
Hilton (hg) 0.1545
Prudential (pru) 0.8519
Reuters (rtr) 0.0987

Table 3.5. Try_ryv(Ty,) Estimates of parameter equivalence.
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CHAPTER 4

Long Memory Effects in Portfolio Planning

4.1. Introduction

Results from empirical studies on a range of financial assets have demon-
strated the presence of long memory effects in asset volatility [Bollerslev
and Mikkelsen (1996), Baillie (1996)]. This pattern of persistence or long
memory was originally identified as a hyperbolic rate of decay in an asset’s
autocorrelation structure. More recently, research has demonstrated that
these properties can be reproduced by a short-memory model with breaks.
This observation has led to a distinction between true long memory pro-
duced by fractional integration and spurious long memory that is induced
by structural breaks in volatility. Granger and Hyung (2004) show that em-
pirically distinguishing between a true and a spurious long memory process

is a difficult task.

The complexity associated with modeling fractional dynamics has meant
that long memory is rarely considered in the practical implementation of
risk models or portfolio optimisation. Los (2005) and Budek, Schotman and
Tschering (2006) are recent studies on long memory effects in risk man-

agement and long term asset allocation decisions. This chapter examines
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portfolio allocation under discrete time rebalancing, focusing on the effect
of the underlying volatility process. It looks at portfolio performance when a
long memory process is incorrectly assumed to be short memory. A number
of recent studies have demonstrated that many financial assets exhibit levels
of fractional integration that is not induced by structural breaks [Granger
and Hyung (2004), Bandi and Perron (2006), Garvey and Gallagher (2007)].
The support for fractional dynamics found in the academic literature is not
as yet reflected in practical implementation of mainstream decision-making
in the financial markets. The research in this chapter is motivated by the
requirement to bridge the gap between the academic observation of long
memory effects and the practical requirements of market participants. This
research is part of a renewed interest in dynamic portfolio choice driven
by simulation-based methods that allow for more realistic conditions to be

considered when finding portfolio solutions.

The theoretical underpinnings of portfolio optimization present a utility
maximizing investor who is required to rebalance his portfolio, either con-
tinuously or periodically within an investment period. Merton (1969) was
the first to note that time-varying investment opportunities produce a hedg-
ing demand for the multiperiod investor. The investor’s portfolio selection
should account for predictable changes in future investment opportunites.
Merton’s (1969, 1971) work is generally considered to be the starting point

for the literature on dynamic portfolio choice while Fama (1970) and later
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Dumas and Luciano (1991) and Pliska (1997) attempt to extend this frame-
work to solving multiperiod optimisation problems. The portfolio optimisa-
tion literature has developed by addressing the challenges associated with
more realistic conditions such as transaction costs and constraining the allo-
cation decision to discrete intervals. Estimating the optimal portfolio where
the selection of the current portfolio is dependent on asset returns beyond
the initial rebalancing period has proved particularly challenging!. Kim and
Omberg (1996) provide an analytic solution for a nonmyopic investor in con-
tinuous time under a set of restrictive assumptions that include, limiting the
investor to investing in one risk-free asset and a risky asset that follows a
simple mean-reverting diffusion process. The investor is also restricted to
consuming wealth at the end of the investment horizon. Wachter (2002)
also generates a closed-form solution to the multiperiod portfolio problem,
however the solution provided is similarly restricted to tight parametriza-
tions of the asset return dynamics. The introduction of greater realism into
the portfolio choice problem has limited the availability of closed-form solu-
tions and increased the application of methods that provide numerical and

approximate solutions.

The numerical approach used by Balduzzi and Lynch (1999) facilitates the

inclusion of transaction costs and asset return dynamics similar to those

I'Nonmyopic portfolio behaviour is observed when the current selection of assets weights
takes account of the distribution of asset returns over revision periods beyond the current
one.
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observed for the U.S. stock market. By discretizing the state space it is
possible to maximise the investor’s utility backwards from the end of the
investment horizon using the Bellman equation, thus providing an optimal
solution for a nonmyopic investor. The insights providing by this technique
have been similarly used in studies by Brandt (1999), Barberis (2000) and

Dammon, Spatt and Zhang (2001).

Studies by Merton, Scholes and Gladstein (1978, 1982) represent early at-
tempts to model the risk and return characteristics of portfolios that include
call and put options. More recently, a number of studies have explored dy-
namic asset allocation for portfolios that include derivative securities. Liu
and Pan (2003) directly include derivatives within the dynamic portfolio
choice framework set out by Merton (1981). The resulting portfolio provides
the investor with exposure to specific characteristics of volatility, such as dif-
fusion risk and jump risk. Asset allocation in a derivative portfolio requires
the investor to think in terms of volatility exposures and select options with
specific characteristics, such as the moneyness. This can be demonstrated
by the exposures available from using at-the-money call options which are
sensitive to market volatility and out-of-the-money put options which are
sensitive primarily to jump risk. Liu and Pan (2003) provide a closed-form
solution for an optimal derivative portfolio in continuous time under an
assumption that jumps can only occur in the stock price and their analy-

sis crucially demonstrates the superiority of derivative portfolios compared
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to portfolios excluding derivatives in terms of certainty equivalent wealth
outcomes. Branger, Schlag and Schneider (2008) use numerical techniques
combined with simulations to find the continuous-time portfolio solution

when jumps occur in both the stock price and in levels of volatility.

The profitability of derivative strategies in the presence of transaction costs
and margin calls has been established by Santa-Clara and Saretto (2005),
while Doran and Fodor (2006) has shown that combination strategies such as
writing covered calls or protective puts using S&P 100 and S&P 500 options
can provide positive abnormal performance. Using Jensen’s alpha, Doran
and Fodor (2006) shows that derivative strategies outperform the underly-
ing index in both bull (1996-2000) and bear (2000-2003) market conditions.
The limitation of implementing strategies in discrete time is addressed by
Branger, Breuer and Schlag (2006). Deriving optimal strategies in discrete
time is shown to provide superior outcomes when ranked against outcomes
from so-called naive strategies that are derived in continouous time and
implemented at discrete intervals. The numerical and approximation tech-
niques used by Branger, Breuer and Schlag (2006) provide an insight into
discrete time implementation of a derivative strategy and allow the exami-
nation of borrowing constraints and margin requirements that affect prac-
titioners. The study shows that derivative strategies remain profitable even

when rebalancing frequency is limited to monthly intervals.



4.1. INTRODUCTION 158

The numerical and simulation approaches used to provide insights into the
characteristics of derivative strategies can be usefully extended to include an
examination of the role of volatility persistence. A long memory, fractionally
integrated time series I(d) is defined as one where shocks decay hyperboli-
cally over time. It can be distinguished from an 7(0) process where shocks
die out at an exponential rate and also from an /(1) process where no mean
reversion occurs. Using 5-minute returns on both the DM-$ exchange rate
and S&P 500 futures, Andersen and Bollerslev (1997) show that long mem-
ory is strongly present in realized volatility once repetitive intraday trading
patterns are adjusted for. Bollerslev and Mikkelsen (1999) also find evi-
dence of long memory in S&P 500 Index options with maturities between
nine months and three years (LEAPS). Evidence of long memory has been
challenged by studies which show how regime-shifts in volatility can pro-
duce levels of persistence in the autocorrelation structure similar to those
produced by true long memory processes. Analysing returns on the S&P
500 Index, Granger and Ding (1996) show that the sample level of d is likely
to be induced by structural breaks. Spurious long memory is suggested by
significant variations in parameter estimates observed in subperiods. Using
similar data, Granger and Hyung (2004) show that a model incorporating
structural breaks provides forecasts that are only marginally less competi-
tive than those provided by an I(d) model. Monte Carlo methods employed
by Diebold and Inoue (2001) demonstrate that true long memory I(d) is

difficult to distinguish from spurious long memory induced by regime shifts.
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More recently, a number of pre-existing tests have been adapted to distin-
guish between true and spurious long memory. Shimotsu (2006) shows that
a clear distinction between varieties of long memory can be made using two
tests: (i) parameter constancy among subperiods and (ii) stationarity after
d'th differencing. Evidence supporting long memory even after accounting
for structural breaks has been subsequently found in returns produced by
the S&P 500 [Beltratti and Morana (2006)] and in the log realized volatility

of FTSE-100 firms [Garvey and Gallagher (2008)].

This chapter explores the relevance of these findings in the context of find-
ing a solution to the dynamic portfolio choice problem. The presence of
long memory effects highlights the weakness of conventional modelling ap-
proaches such as ARMA or GARCH, which fail to capture fractional orders
of integration where 0 < d < 1. This has motivated the development of
the class of fractionally integrated GARCH (FIGARCH) processes [Baillie,
Bollerslev and Mikkelsen (1996)]. FIGARCH allows d to assume a range
of values, thus allowing for greater flexibility when modelling temporal de-
pendencies in the volatility structure. Using an extension of the FIGARCH
model, Taylor (2001) examines whether there is an economic value associ-
ated with modelling long memory in the context of option pricing. Using
options data on the S&P 100 from 1984 to 1998 the study compared implied
volatilities obtained from short and long memory specifications. Impor-

tantly, it was found that prices on long maturity options continue to reflect
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long memory effects in the volatility structure and the application of a long
memory specification for the data generating process caused implied volatil-
ities to differ by more than 1% when compared to short memory implied
volatilities. In a related study Ohanissian, Russell and Tsay (2004) used
simulation methods to show that serious option mispricing can result from
mis-specifying the long memory property in volatility. Black-Scholes implied
volatilities were generated using a short-memory, spurious long memory and
a true long memory specification. Option prices produced by each alterna-
tive specification were compared thus demonstrating ignoring long memory
results in an underpricing of call options with maturities between one month
and two years. Importantly, Ohanissian, Russell and Tsay (2008) showed
that options are underpriced if the data generating process follows a ‘true’
long memory but is mis-specified using the ‘spurious’ long memory process.
Mis-pricing is most acute for short maturity options and decreases as option
maturity becomes longer. This finding supports similar results produced by

Taylor (2001).

Empirical studies on option prices have shown that volatility smile effects
are stronger in short maturity options than in long maturity options. This
observation suggests that the randomness of volatility persists even over very
long horizons. Sundaresan (2000) notes that this pattern observed in the
term structure of volatility smiles presents a challenge for correctly modelling

volatility. The inclusion of jump components in the return process should
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be modelled if smile effects for short maturity options are to be mitigated,
however model specifications that include jumps lead to unrealistic volatility
behaviour for long maturity options. Comte, Coutin and Renault (2003)
attempt to resolve this by developing a continuous time stochastic volatility
model with long memory and an associate option pricing model. Their
approach allows for persistence in the long run while persistence is negligble

in the short run.

The relevance of long memory effects in a realistic discrete time setting is
examined here. In practice, asset allocation decisions are made with rela-
tive frequency and in many cases do not account for fractional behaviour
in the underlying volatility process. This chapter measures the impact of
omitting fractional dynamics in the portfolio optimization process and ex-
amines the effects of this omission both in terms of portfolio allocation and
economic cost over the entire investment horizon. The methodology applied
here benefits from recent developments in portfolio optimisation and dy-
namic programming as well as the findings from a number of recent studies

on the performance of derivative strategies.

The analysis focuses on implementing a covered call strategy where the in-
vestor has access to a risky asset, a call option on that asset and the money
market account. The investment period 7', covers six months and the port-
folio is rebalanced at the beginning of each month, with the final rebalancing

decision made a the beginning of the final period, 7" — 1. Optimisation at
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each interval assumes that the underlying process follows a short-memory
specification. Actual volatility is then simulated across the entire investment
horizon when volatility follows a short-memory, spurious long memory and
a true long memory specification, respectively. This methodology identifies
whether portfolio policy and performance are influenced by the omission of
long memory effects and it also examines the relative economic consequences
when long memory is a true fractionally integrated process or is induced by

shifts in the volatility regime.

The results show that the covered call strategy does provide positive wealth
outcomes when volatility is correctly specified. Long memory effects, pro-
duced either by fractional integration or structural breaks in volatility must
be included in the rebalancing criteria. If the underlying volatility is frac-
tionally integrated and the investor incorrectly assumes short memory then
the covered call strategy is likely to produce negative returns. Similarly, if
the investor ignores occasional structural breaks in volatility then portfolio

returns are negatively affected.

The remainder of the chapter is structured as follows. Section 4.2 describes
the portfolio choice problem and presents the three model specifications used
in this paper. Implementation and associated issues in Section 4.3, Section

4.4 presents the results and Section 4.5 concludes.
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4.2. Model Specification and Portfolio Choice

This section first describes the three stochastic volatility specifications used
to model the short memory, spurious long memory and true long memory
process, respectively. Details of the portfolio choice problem are presented
and the dynamic programming techniques used to solve this problem is de-
scribed. Each of the three model specifications used here are variations on
the affine stochastic process used by Heston (1993). The use of this class
of volatility model in simulations allows one to isolate portfolio results that
arise from long memory effects specifically. The standard affine model is it-
self a short-memory process and Ohanissian, Russell and Tsay (2008) show
how it can be adjusted to produce a volatility process that switches between
a high state and low state (spurious long memory). Additionally, Comte,
Coutin and Renault (2003) adapt the standard model to create a fractionally
integrated volatility structure. Each of the volatility specifications allows for
correlation between the price and volatility processes, where the correlation

in each case is represented by p.

Specifications

A short memory (or no long memory) model is simulated using the speci-
fication provided by Heston (1993). It is represented in its objective form

as,
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(4.1) S, = pSydt + /V, S, dW
(4.2) AV, = k(0 — V;) — o/V, (degl) V12 pdet@)) 7

where S} is the price process, V; is a square root variance process and VVt(l)
and Wt(2) are two independent standard Wiener processes with correlation
p. The mean of the variance process is given by v, while « is the speed of
adjustment. An occasional break model is created by introducing a switching

mean in volatility to the standard Heston specification as follows,

S, = pSidt + /ViSydw D,

dV; = k(v — Vi) — a\/V, (det(l) + /1 ,OQth(Q)) ,

dvy = " + o' — 20]dg}
In this model, the mean level of the variance process v;, switches between
a high (vh) and a low state (vl) where the switching behaviour is deter-
mined by a Poisson jump process ¢;. Granger and Hyung (2004) show that
breaks in the volatility process can induce levels of persistence in the volatil-
ity structure similar to those observed for a fractionally integrated process.
The occasional break model provides an appropriate proxy for spurious long

memory process in this chapter.
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The third model considered here is a true long memory process that is simu-
lated through an adaption to the standard square root model. This specifica-
tion was developed by Comte, Coutin and Renault (2003) and used by them
to propose a long memory extension of the Heston (1993) option pricing
model. The square root process, V, is adjusted using a fractional integration

operator (I (a)) as follows:

dSt = /JJStdt + \/VtStth(l)
V, =7+ IV, — 1)

AV = k(T - Vi) — o /W, (det(l) /1o deWF)) ,
The fractional integration operator in a finite sample is approximated as I, éa)
and results in the process,

(a) _[Tt=s) $ds
100 = [ X (s

The discrete-time long memory process is then found by applying a recur-
sive discretization method to fractional integrals. Carmona, Coutin and
Montseny (2000) rewrite the fractional integrals using the Laplace inverse

transform to show that a function f, continuous on [0, 7| satisfies

() - Oox*a x x
IO (f)<t> - F(O&)P(l—&)/o \Ij( 7t7f)d )
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where,
t
Wt )= [ (s
0

Comte, Coutin and Renault (2003) then apply a geometric subdivision of
R, z;, =7 i=-n, —n+1,.,0,1,...n—1, for some r € [1,2] and n
going to infinity. In this manner, a discretised volatility process with long
memory characteristics can be produced from the volatility process 1% using

the following scheme
1 -
VrnA () =7+ L)1 —a) DGRtV =)

¢j and &; are given by

1—a e | i
.= T
J 2 —« rl-a 1

and U2 is

1— e—xA

\DA(xati+17f) = @A<x7ti>f)eixA+f(ti) T

T2 (x,to, f) =0

The fractional integration operator is applied to the short memory volatility
process centered on its empirical mean rather than its theoretical mean which

cannot be observed and Comte, Coutin and Renault (2003) show that when
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the long memory parameter « is zero the standard square root model is

recovered exactly

Parameter values for each of the model specifications described have been
estimated by Ohanissian, Russell and Tsay (2008) from actual data on the
S&P 500 Index. The estimation procedure is an implied state-generalised
method of moments (IS-GMM) approach similar to that used by Pan (2002).
Ohanissian, Russell and Tsay (2008) consider a time series of realised volatil-
ity calculated from a 9-year sample of intra-day spot data (1990-1998) gath-
ered on the index as well as l-year of option data (September 2, 1993 -
August 31, 1994) to generate the parameter estimates. The long memory
parameter, « is estimated using the log-periodogram regression framework
developed by Geweke and Porter-Hudak (1983). Ohanissian, Russell and
Tsay (2008) show that the long memory scheme is effective for values r = 1.3,
n = 1000, and A = 0.10. In the case of the regime-switching model, the
mean of the process is found by calculating the filtered probability of be-
ing in each state at each time using Hamilton’s (1990) EM algorithm. The
parameter values produced by the estimation procedure are listed in Table

4.1.
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Dynamic Portfolio Choice

This research considers an investor who engages in a covered call (also called
a ‘buy-write’) strategy. The investor writes a call contract while simultane-
ously owning an equivalent number of shares in the underlying stock. This
popular strategy is effective in a sideways or slightly bullish market and is
employed by buy-and-hold type investors. McIntyre and Jackson (2007) ap-
ply a covered call strategy to a number of FTSE-100 stocks and find that
in many cases call writing strategies produce better returns than buy-and-
hold strategies. The principle of the strategy is that income received from
writing the call provides some protection against a decline in the stock value
while the upside potential of the strategy is limited because the payout on
the call will become non-zero as the stock price increases above the strike
price at maturity. The strategy is employed if the investor wishes to hedge
against any short-term pull back in the value of an asset while expecting
its long-term prospects to be good. Therefore, it can be viewed as a sort
of mean reversion play and provides a good platform from which to analyse
our three model specifications since they describe alternative behaviours of

volatility with respect to some long-run mean level.

The investor is faced with a six-month investment horizon and is limited to
rebalancing his portfolio at the beginning of each month. The investor has

access to 3-month, 6-month and 12-month options respectively. In each case,
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the investor takes action at the rebalancing date by closing out the written
call contract and avoiding the obligation to sell his stock at the call’s strike
price. At the rebalancing date, the investor then selects a weight in another
option with full maturity for the following investment interval. The investor
is thus never required to make a decision on an option at expiry and instead
relies on the price dynamics of the call option over the first month of its life

to earn a return from his position in the contract.

Starting with a wealth level, Wy, for each rebalancing date ¢, 0 < t < T,
the investor places a fraction ¢, of wealth in an asset S; and a fraction
¥, in a derivative security C;. He can also access a money market ac-
count which returns the risk-free rate, r. We assume that the investor be-
haves according to a constant relative risk aversion (CRRA) utility function,
UMW) =W'"7/(1 —~) with a coefficient of risk aversion ~. Following from
Liu and Pan (2003), the portfolio choice problem requires us to maximise

the investor’s expected utility of terminal wealth Wp

(4.3) max E (Wl_’y)

{010, 0<t<T} 1—7

where the dynamics of wealth in discrete time are as follows,

(4.4)
S, o

Wti = Wti—l ¢tz 1 i— 1C’t

(1 - ¢ti71 - ¢ti71) er(ti_tifl)
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The investor in this instance uses one call option, however this approach can
be easily extended to include more than one option. Merton (1971) defined

the indirect utility function as,

Wi
taw,w —

= max E( |m:w,‘/t:’l])7
{4, 0<t<T} 1—7

and using the stochastic control principle we find the optimal portfolio by
backward induction from time 7" — 1 to ty. This can be rewritten as,

(45) J(ta w, 'U) = {;niiLX }Etz (J (Wti+17 ‘/;/iJrl? tiJrl) ‘Wtz = w, ‘/tz = U)

where wealth is given by Equation (4.4) and volatility (V') follows the stan-
dard square root process described previously. This procedure thus finds
the approximate optimal weights for a covered call strategy when the true
data generating process underlying stock volatility is short memory. It is
worth noting that the indirect utility function described above is separable
in that the current state of W, ; reached from W; by applying J; depends
only on W; and J; and not on the past history Vg, ..., V;_;. This Markov-
ian state property is a central requirement for implementing this procedure.
This requirement implies that the optimal policy cannot be similarly found
for a fractionally integrated process which is by definition non-Markovian

and depends on the history of volatility observations.
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4.3. Implementation

Since an analytical solution does not exist for this problem we are required
to solve the optimal portfolio policy numerically. The use of CRRA means
that the utility function is homothetic in wealth and we can thus without
loss of generality, normalize W; = 1 so that the value function is a backward
functional equation that depends only on the horizon and state variables as

follows,

(4.6) J(w,v,t) = w7 J(1,v,1).

Discretizing the state space has emerged as a popular method of solving
the dynamic portfolio choice problem [Balduzzi and Lynch (1999), Barberis
(2000) and Damon, Spatt and Zhang (2001), Branger, Breuer and Schlag
(2006)]. By discretizing the state space for each time period we are reducing
an infinite set of optimisation problems in continuous state space to a fixed
number of possible states. The first step is to discretize the state variable
variance V into a grid of 10 equally spaced intervals between 0.002 and 0.10
and 10 equally spaced intervals between 0.10 and 0.60. The number of grid
points is limited since the speed of the solution is roughly proportionate
to the number of points used in approximating volatility. Another trick in
constructing the grid relates to the optimal interval size which is not neces-
sarily constant across volatility levels. The choice of intervals between grid

points is motivated in part by Carroll’s (2006) applications of this technique
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to solve microeconomic dynamic stochastic optimization problems. Carroll
(2006) demonstrates that by increasing the density of the variance grid at
lower variance levels the accuracy of the subsequent solution is improved.
The state variable time, ¢ is also discretized, t; (i =n—1,n—2,...,1,0), so
that in our case of an investor with a six-month investment horizon we have

a b x 19 time-variance grid.

The optimal portfolio policy and indirect utility function at each variance
gridpoint are then found beginning at time 7-1. This is done by simulat-
ing a large number of paths, 100,000 in this case, from each variance grid
point. These simulations are carried out using the short memory model
specification described earlier. The starting stock price is assumed to be one
and the starting price for the call option is valued using the Heston option
pricing model. For each path an end-of-period stock value and volatility
level is obtained and used to find the end-of-period call option price, thus a
3-month option will have a 2-month maturity at the end of the investment
period. For such a large number of simulations, pricing each path using the
Heston approach is unfeasible. The procedure is made more efficient by cre-
ating a variance-moneyness grid, finding the option price for each variance
grid point, and approximating the call price for each path by interpolation.
Branger, Breuer and Schlag (2008) examine derivative optimisation in a

similar manner.
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Once an expected stock price and call price are obtained, sequential qua-
dratic programming is used to find the optimal weight in each asset. The
algorithm used here is a generalised version of Newton’s method for un-
constrained optimisation that finds a step away from the starting point by
minimizing a quadratic model of the problem. The optimisation is carried
out with a starting portfolio position of 1 in the stock and 0 in the call
option and the procedure is constrained in this instance by margin require-
ments on the stock and call option that are detailed below. Once the optimal
portfolio weights are selected at time T-1 we proceed backwards, repeating
the optimisation procedure across all variance grid points for each time step
to time 0. Most dynamic programming methods involve recursions on the
approximated value function. vanBinsbergen and Brandt (2007) show that
iterating on portfolio weights can be superior under some conditions, such as
short sales constraints. The dynamic portfolio choice problem presented in
this chapter is solved by recursing on the optimised portfolio weights rather
than on the utility function thus implementing the method put forward by
vanBinsbergen and Brandt (2007). This method of iteration provides an
insight into the portfolio choice problem and allows an extended comparison

of portfolio policy under different volatility model specifications.

Retaining the grid of optimal portfolio weights derived under the assumption
of short memory we can examine the distributional properties of terminal

wealth when actual volatility is either fractionally integrated or contains
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occasional breaks. A large number of paths (100,000) is simulated under the
two alternative volatility specifications and at each rebalancing period, for
every path portfolio weights are assigned based on the existing grid estimated
under the short memory condition. Portfolio weights are approximated by
interpolation using the pre-determined grid of optimal weights. As in the
short-memory case, this procedure is carried our recursively, beginning at

time T-1 and proceeding backwards to time 0.

Measuring Performance. The distributional characteristics of terminal
wealth are first observed when an investor in a derivatives portfolio ignores
long memory effects during the rebalancing procedure. At each time step,
optimal portfolio weights for each variance grid point are derived under
the assumption that volatility follows a short memory specification. This
grid is then used to approximate the optimal portfolio when volatility is
either a regime-switching or a fractionally interated process respectively.
The difference in performance is a measure of the economic costs of not
accounting for long-run effects when carrying out short run rebalancing.
The portfolios are compared using the annualized percentage difference in
certainty equivalent wealth, an approach used previously in the context of

derivative strategies by Liu and Pan (2003).

The maximum utility achievable is when volatility follows a short memory

(no long memory) process and the associate certainty equivalent wealth is
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defined using the indirect utility function as

W Lhr
(4.7) Inear(Wo, Vo, 0) = 1o
and the certainty wealth equivalent wealth for the spurious long memory

(SLM) and true long memory (TLM) are likewise defined as,

1—y

W
(4.8) Jsra(Wo, Vo, 0) = %ﬂi/w
and,

Wi
(4.9) Jrin(Wo, Vo,0) = %Mvw
respectively.

Margin Constraints. The inclusion of margin requirements introduces
greater realism into our portfolio problem. These margin requirements con-
strain the positions taken by the investor in stocks and derivatives. In com-
mon with Branger, Breuer and Schlag (2008), we use the margin require-
ments set out by Interactivebrokers.com and it is assumed that the margin
requirements are imposed only at rebalancing times. The margin require-
ments for a single call option are explained below. The calculation are easily
extended when there are two or more call options used. The margin is deter-

mined by the respective weight selected, which is denoted by ¢ in the case
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of the stock and 1 for the call option. It is useful to note that the number

of options per unit of wealth is %", where C' is the call option price.

For long and short stock positions the required margin Mgz, is 50% of the
stock price, so that My = 0.5¢ per unit of wealth. The margin requirement
for a long call position, My is equivalent to the price of the call, Mo = 1.
For covered short positions, the margin requirement depends on the option’s

moneyness, as follows,
— ing —Y
MSC’C = mll’l{ﬁ, ¢}C

where the number of covered calls is min{%/’, ¢} and they are trading in-
the-money (ITM), while the margin requirement is 0 if they are trading
at-the-money (ATM) or out-the-money (OTM). For short naked calls the
margin requirement is the market value of the option plus the maximum
of 15% of the underlying market value minus the out-of-the-money amount

and 10% of the underlying market value. The number of naked calls is,

2 min{ 6y = min{ ¥~ 6,0)

and the margin requirement is:

Mse, = min{%w — ¢,0}[C + max{0.15 — max(Strike — 1.0,0),0.1}].
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These margin requirements constrain the positions taken in each of the risky

assets as follows,

Mg+ Mrc + Msc, + Msc, < 1.

4.4. Results

The results are interpreted in three stages. First, the performance of the op-
timal portfolio devised under the assumption that volatility follows a short
memory process is examined. This represents our benchmark portfolio and
is used to illustrate the return characteristics of a covered call strategy.
The short memory process is generated using the model parameters con-
tained in Table 4.1. A series of optimal portfolio weights are found for every
variance gridpoint at each rebalancing interval using this optimisation pro-
cedure. The second part of the analysis starts by using this predetermined
grid of portfolio weights, which are only optimal under the short memory
condition. The optimality of these weights are examined under two alterna-
tive volatility specifications, namely a fractionally integrated process and a
regime switching process. These processes are simulated across the invest-
ment horizon, with portfolio weights at each time step allocated according
to the predetermined grid. In this way, the economic consequences of omit-

ting long memory effects are identified. The results also distinguish between
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outcomes produced by a fractionally integrated process (‘true’ long memory)

and those produced by a regime shifting process (‘spurious’ long memory).

Finally, the robustness of the results to variations in the persistence parame-
ter used in the true long memory model are explored. The model parame-
ters contained in Table 4.1 are adopted from Ohanissian, Russell and Tsay
(2008). The persistence parameter is estimated using the semi-parametric
technique developed by Geweke and Porter-Hudak (1983). This produces
estimates that are characterised by wide standard errors. To account for
estimation error, the portfolio wealth distribution is examined under a long

memory process with a higher level of persistence (o = 0.80).

The results are presented using a common vertical scale that allows com-
parison across model specification and option maturity. The first column
of panels in Figure 4.1 illustrates the expected distributional properties of
terminal wealth for a portfolio using 3-month call options ranging from 10%
in-the-money (ITM) to 20% out-of-the-money (OTM). The upper plot shows
the portfolio results when underlying volatility is assumed to follow a short
memory model, called here a no long memory (NLM) process. It can be
observed that at-the-money (ATM) options provide the best mean wealth
across simulations. The sensitivity of ATM options to volatility results in
a greater number of negatively skewed outcomes and higher associated risk

as proxied by standard deviations. Although mean portfolio returns are
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slightly lower using out-of-the-money (OTM) options the upswing in posi-
tive skewness indicates a higher proportion of more positive returns coupled
with markedly lower standard deviation in portfolio returns. The results are
in keeping with previous findings on covered call strategies by McIntyre and
Jackson (2007) where OTM options provide good performance in practice,
while overall the strategy would appear to be attractive for an investor who

assumes the S&P 500 follows a short-memory process.

The middle and lower plots describe the distribution of terminal portfolio
wealth when the actual data generating process follows a spurious long mem-
ory (SLM) and true long memory (TLM) process respectively. The second
plot suggests that the investor’s decision to engage in the strategy would not
be influenced if the underlying asset followed an SLM model as simulated
portfolio wealth is almost identical to the NLM case across strikes. The lower
plot which illustrates portfolio outcomes when underlying volatility follows a
fractionally integrated (true long memory) process is noticeably compressed
by the strong variation in skewness for 15% and 20% OTM options. The
increased number of both positive (15% OTM strike) and negative (20%
OTM strike) outliers can be explained by the hyperbolic decay towards a
long-run mean that characterises a long memory process. It illustrates that
a higher proportion extreme positive or negative returns are possible on the
options side of the portfolio when OTM option positions are closed out at

each rebalancing period.
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The implications of using longer maturity call options vary according to
the assumed underlying volatility process. The upper plot in the second
and third columns of plots in Figure 4.1 show that contract maturity is not
a signficant factor if volatility contains no long memory conditions. Port-
folio wealth distribution exhibits broadly similar characteristics for both a
3-month and a 6-month call option. If volatility is a SLM process the differ-
ences in wealth distribution become more accentuated for OTM options. An
examination of the wealth distribution of portfolios that use 20% OTM op-
tions shows that the use of 6-month rather than 3-month options leads to a
higher proportion of positively skewed portfolio returns with lower standard
deviations. A higher proportion of negatively skewed returns a produced
by a fractionally integrated process. Portfolio outcomes for a covered call
strategy using 12-month options are illustrated in the third column of pan-
els in Figure 4.1. Greater risk is induced by trading close-to-the-money
contracts, while trading OTM contracts leads to lower risk outcomes. This
pattern is common to all three volatility specifications. In general, the pat-
terns of terminal wealth illustrated in Figure 4.1 suggests that long-memory
effects become less dominant if the investor’s strategy uses 12-month op-
tions compared to 3-month or 6-month options. The use of OTM options
is consistently the best strategy, providing stable, positively skewed returns

irrespective of the process driving volatility.



4.4. RESULTS 181

The covered-call strategy that includes OTM call options appears to be
consistently superior from the simulations carried out here. This finding
supports the empirical study carried out by McIntyre and Jackson (2007) and
in simulation results in this chapter. Table 4.2 summarises the performance
of the covered call strategy in terms of certainty equivalent wealth focusing
on 20% OTM options. Assuming that true volatility is known and that
it follows a short memory process the optimal strategy that emerges is for
the investor to select 3-month options. The contained in Table 4.2 show
that positive portfolio performance is also achieved if underlying volatility
follows a regime-switching process. The same strategy produces negative

returns when volatility is fractionally integrated.

Table 4.2 shows that portfolio performance is significantly affected by the
choice of volatility model. The covered call strategy is clearly a worthwhile
strategy in certain market conditions but appears vulnerable in particular
to long memory effects in underlying volatility. This is explored further by
focusing on outcomes from implementing a covered call strategy using 20%
OTM options. Kernel density estimates for portfolio wealth are generated
both when volatility contains no long memory, that is, alpha = 0, and when
the true long memory model produces an alpha = 0.30 and 0.80, respectively.
The kernel density estimates in Figure 4.2, illustrate a tight distribution of
returns when volatility follows a short memory process and demonstrate a

clustering of positive portfolio returns when 3-month call options are used in
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the covered call strategy. The returns from the covered call strategy decliness
as the level of persistence in the volatility of the underlying asset increases.
This distinction can be observed by comparing the distribution of returns
when alpha is 0.30, illustrated in the centre row of panels and when alpha is
0.80, shown in the lower row of panels. This finding has clear implications
for the correct inclusion of long memory dynamics in the application of
investment strategies. The wide standard errors the accompany estimates
of long memory parameters are an important consideration in the decision
to include long memory dynamics if modelling volatility with a view to

implementing investment strategies in discrete time.

4.5. Conclusion

This chapter examines the relevance of long memory effects in a realistic
portfolio setting. Long memory effects in volatility have been attributed
to both fractional integration and regime switching in the data generating
process. We first estimate the numerical performance of a derivative strat-
egy implemented in discrete time under the assumption of no long memory
and we subsequently compare this against the performance of the derivative
strategy when volatility follows a true long memory or spurious long memory

process. Using a dynamic programming approach we find that covered call
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strategies provide positive, stable returns if it is assumed that the investor

knows the model specification driving volatility.

The results can be related to the discussion in Liu and Pan (2003) that
describes derivative positions in terms of the exposure they offer to respective
aspects of volatility. The selection of an optimal weight in a derivative
security depends on the sensitivity of that derivative to volatility in the
underlying asset. They note, for example, that at-the-money options are
more sensitive to market volatility, thus providing exposure to volatility risk.
The results here show that the optimal covered call strategy requires the
selection of short maturity options that are trading 20% OTM. This result
is clearly sensitive to volatility parameters estimated under varying market
conditions. If the data generating process switches between a state of high
volatility or low volatility then this strategy may not be optimal. However
based on our simulation results, the economic loss from omitting the regime-
switching component is not significant. If actual underlying volatility follows
a fractionally integrated process (true long memory) and the optimisation
procedure ignores this, then a higher proportion of negative returns are
observed. The results also show that ignoring fractional integration is less
consequential when longer maturity options are used in the covered call
strategy. Portfolio performance and the distribution properties of terminal
wealth begin to converge when 6-month and 12-month options are selected

in preference to 3-month options as part of the strategy.
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Long memory effects are clearly important for investors rebalancing deriv-
ative portfolios in discrete time. Performance of the simple covered call
strategy is shown to be highly sensitive on the maturity and moneyness
characteristics of the selected options. The optimal strategy derived under
the assumption of short memory may result in signficant losses if actual

volatility is fractionally integrated.

4.6. Appendix C: Supporting Material for Chapter 4
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Table 4.2: Covered Call Strategy Using 20 Percent OTM Options. Certainty
Equivalent Wealth and Portfolio Weights.
Call Option Time to maturity: 3-Months

CE, o, %o
NLM 0.0078 0.5136 -0.4826
SLM 0.0077  0.5146 -0.4835
TLM -0.1706  0.5149 -0.4838
Call Option Time to maturity: 6-Months
NLM -0.1703  0.5136 -0.4826
SLM -0.1705  0.5146 -0.4835
TLM -0.1707  0.5149 -0.4838
Call Option Time to maturity: 12-Months
NLM -0.1694  0.5137 -0.4826
SLM -0.1694  0.5147 -0.4834
TLM -0.1700  0.5149 -0.4838

Summary of portfolio performance measured using certainty equivalent
wealth. The optimal strategy is derived assuming volatility follows a short
memory process. Using simulations we examine the performance of this
strategy when actual volatility follows a short memory model (no long mem-
ory), a regime switching model (spurious long memory) and a fractionally
integrated model (true long memory).
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CHAPTER 5

Summary Discussion and Conclusions

5.1. Introduction

Modeling and forecasting asset volatility is an important and challenging
task both for academic researchers and professional risk managers. The
past twenty years has seen the development and expansion of a range of so-
phisticated forecasting models within the academic literature as well as an
increasing reliance on these models within the financial markets for a number
of risk management functions. Statistical forecasting methods that rely on
historical price return patterns produced by economic and financial assets
have become increasingly complex. Relatively simple, easily implemented
moving average approaches such as the exponentially weighted moving av-
erage (EWMA) models have been superceded in the academic literature by
the class of ARCH and GARCH models. These statistical methods are effec-
tive over very short forecast horizons and all exhibit a declining predictive
ability as the forecast horizon extends beyond one-day. Research into the
forward-looking information provided by the options market has shown that
an effective alternative is available for risk managers. Implied volatilities

are easily obtained and provide forecasts over multi-day horizons that are

189
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in many cases more robust that those provided by statistical methods. The
first part of this thesis belongs to the body of work testing and ranking

alternative volatility forecasting methods.

Improvements in computing power and the adoption of techniques originally
developed in the physical sciences have facilitated analysis of long-run per-
sistence in asset volatility. These subtle long-run effects can be identified
using semi-parametric techniques and more recently, academic research in
finance has shown the importance of long-memory effects in risk manage-
ment and option pricing. This thesis contributes to the finance literature
by developing a greater understanding of both UK equity volatility and the
equity options market. The characteristics of stock specific volatility are
carefully defined and the distinct role of volatility effects in discrete time
derivative strategies are observed. The research specifically contributes to

the existing finance literature as follows.

e Analysis of composite implied volatility forecasts in the context of
individual UK equities.

e A comparative analysis of forecasts produced composite implied
volatilities obtained from individual equity options and GARCH
and E-GARCH forecasts.

e An examination of the long-run dynamics of realized and implied

volatility of UK equities using semi-parametric techniques.
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e An investigation into the presence of structural breaks in UK equity
volatility.

e The application of dynamic programming techniques to establish
the relevance of long-memory effects in constructing optimal deriv-

ative strategies in discrete time.

5.2. Research Findings

The research findings can be separated into a number of distinct strands.
The results presented in Chapter 2 show that implied volatility contains
predictive information on subsequently realised asset volatility and that this
forward-looking information is superior to that available in GARCH-type
forecasts. This is an extension of the existing research into index options
carried out elsewhere and it demonstrates that equity options can provide a
useful signal function for stock specific risk. A composite implied volatility
estimate is constructed as a weighted average of implied volatilities drawn
from close-to-the-money options. Tests were carried out across ten-day fore-
cast horizons using non-overlapping UK stock data. Furthermore, predic-
tive information available from implied volatilities is shown to be superior
to that available from both GARCH and E-GARCH models. The superior
performance of implied volatilities is shown by both Mincer-Zarnowitz and

encompassing regression results. Direct comparison of implied volatilities
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against statistical methods using Diebold-Mariano and Harvey Leybourne

Newbold pairwise tests confirm the superiority of implied volatility forecasts.

The existence of long memory effects in stock price volatility is examined in
Chapter 3. Semi-parametric techniques are used to identify volatility persis-
tence in the volatility series of a number of FTSE-100 companies. Spurious
long memory, induced by structural breaks in volatility is tested for by ex-
amining the time-domain properties of stock volatility using subsampling
and differencing techniques. Variations in persistence parameter estimates
are observed among subsamples indicating the presence of structural breaks
in a number of volatility series. Fractional integration in the autocorrela-
tion structure is shown to be the primary cause of long memory effects for
both the implied and realized volatility. Further examination shows that
structural breaks do not explain the levels of persistence observed in many
volatility series. For the first time, this research also models the long-run re-
lationship between implied and realized volatility for individual stocks using
recently developed semi-parametric techniques. For a number of companies,
both volatility series are shown to be linked by a fractionally cointegrating

relationship.

Chapter 4 examines the implications of long memory effects in a portfo-
lio selection problem. The analysis is carried out within a realistic frame-
work, where an investor with a six-month investment horizon, engages in

a covered-call strategy and is constrained to rebalancing his portfolio at
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monthly intervals. The asset allocation decision is also constrained by mar-
gin requirements. An optimal derivative strategy is constructed under the
assumption that asset volatility follows a short memory process. Dynamic
programming techniques are used to estimate optimal portfolio weights for
each time step beginning at the last investment period. Optimal portfo-
lio weights are then determined for a series of predetermined variance grid
points at each time step. The performance of these optimal portfolio weights
is examined by simulating long memory volatility processes across the in-
vestment horizon. The results show that the omission of long-memory effects
in asset volatility in the context of this derivative strategy substantially al-
ters the distribution of terminal wealth. Portfolio performance is negative if
the assets under consideration follow a long memory, fractionally integrated
process and this is not included in the optimisation procedure. This result
implies that fractional integration or true long memory must be considered

in the construction of optimal derivative strategies.

5.3. Research Issues and Limitations

There are a number of issues and limitations associated with the research
undertaken that merit consideration. The LIFFE Euronext options dataset
obtained for this research provided data for every company quoted on the
FTSE-100. The relatively short trading history of many options series lim-

ited the analysis to sixteen FTSE-100 companies that traded continuously
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from 1997 to 2003. Composite implied volatility estimates were constructed
from the four closest-to-the-money options traded on a given day amd con-
tract maturities were matched as closely as possible to the forecast horizon
being considered. The creation of this estimate was however subject to lig-
uidity constraints since traded options on some days were limited to one
or two option contracts. To overcome this limitation and optimally use
the available data, the implied volatility estimate was constructed from the
closest to the money options which meant backing implied volatility out of
a single option in some cases. Similar limitations have applied to previous
studies into individual equity options carried out in the US market [Gemmill

(1986), Lamoureux and Lastrapes (1993)].

The analysis of long-memory effects in Chapter 3 relies on the application of
semi-parametric techniques, namely the Geweke and Porter-Hudak estimate
and the exact local Whittle estimate. These techniques are widely used
in the literature to examine time series behaviour at very low, harmonic
frequencies. They are however, characterised by wide error bands which
weaken the inference that can be drawn from the results. The limitation
of this methodology is for the most part overcome by the additional time
domain tests used to show consistency in the persistence parameter among
subsamples. This analysis as well as the examination of fractional cointe-

gration carried out in Chapter 3 would benefit from a more extended sample
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period. US data would possibly provide a longer sample period with which

to examine the long-run behaviour of asset volatility.

5.4. Areas for Further Research

The analysis of the implied-realized volatility relationship in Chapter 2
should be extended to include a wider sample of companies. This could be
achieved using LIFFE Euronext options data for equities quoted on other
European indices. A more liquid dataset may yield option contracts appro-
priate for the construction of shorter non-overlapping horizons, for example,
bi-weekly. The analysis of a long time series would provide stronger regres-
sion results. The univariate analysis carried out in this thesis could be use-
fully applied in a multivariate, portfolio context. The findings suggest that
the increased use of equity options data would provide a simple but effective
tool in active equity fund management. Portfolio construction requires a
measure of correlation between the securities included in the portfolio. Ac-
curate measures of the dynamic correlation between assets are important
inputs for portfolio optimisation and risk management. Lopez and Walter
(2000) and Skintzi and Refenes (2006) examine the forward looking informa-
tion contained in index options on the Dow Jones Industrial Average (DJIA).
Skintzi and Refenes (2006) show that implied correlation has a high explana-
tory power and is a good forecast of realized correlation. Existing research

should be extended to consider the forward-looking information contained
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in equity options in the context of partially diversified portfolios. Implied
correlations reflected in options data could be compared against the perfor-
mance of multivariate statistical methods, such as the dynamic conditional
correlation multivariate GARCH (DCC- MV GARCH) model [Engle and
Sheppard (2001), Kearney and Poti (2006)]. Composite implied volatilities
from individual equity options are also an appropriate mechanism for the
analysis of strategic (long-term) and tactical (short-term) asset allocation
decisions. According to Rey (2004), tactical asset allocation is ostensibly
used to "realign the return and risk profile of a long-term strategic bench-
mark portfolio". Arnott and Fabozzi (1988) define it more specifically as,
"shifting the asset mix of a portfolio in response to the changing patterns
of reward available in the capital markets". Tactical asset allocation is im-
plemented across different investment horizons and decisions are evaluated
according to a range of criteria. Philips, Rogers and Capaldi (1996) note
that the objective of the fund manager is to outperform benchmark returns
on a risk-adjusted basis. Implementing tactical asset allocation using the
information content of individual equity options across various investment
horizons has not been examined to date in the academic literature. Fu-
ture research should address the economic benefits of opportunistic asset
allocation decisions that exploit forward-looking, stock-specific information

contained in equity options.
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The calculation of realized volatility using high-frequency data is likely to
benefit from the use of a longer sample period as well as the development of
more nuanced approaches such as those suggested by Andersen and Boller-
slev (1997) and Oomen (2006) that take account of the intra-day trading
patterns. The multi-scale realized volatility (MSRV) estimate proposed in
Zhang and Mykland (2005) and evaluated in Zhang’s (2006) study are likely
to produce more efficient estimates of realized volatility. The research find-
ings from Chapter 4 which show the creation of optimal derivative portfolio
strategies using dynamic programming techniques should be further vali-
dated using empirical market data. The analysis could also be extended
beyond the simple covered call strategy to a range of derivative strategies.
One implication of this research is the potential development of trading
strategies that exploit derivative mispricing that arises from fractionally inte-
grated volatility. The relevance of volatility persistence should be examined
through alternative derivative strategies that optimally allocate weights to
option contracts expiring at different maturities. Using market data presents
challenges such as potential liquidity constraints and microstructure effects
which must be overcome when estimating and implementing optimal strate-
gies in practice. Future research extending from the findings in Chapter 4
should address the role of margin constraints. A comparison of the solution
both with and without margin constraints should provide an insight into the

economic cost of such constraints.
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Appendix D: Sample Matlab Code

5.5. Matlab Programme 1: Importing and Formatting Data

% STEP 1: Import daily stock price data, used to generate GARCH/EGARCH
forecasts

[date, cua, ba,aws, cad, dix, gns, gxo, 1db, hsn, hsb, kgf, Inr, ms, pru, ryl,
rut] =

textread(’C:\Data\price _data.txt’,"%s %t %t %t %ot Yot %ot %ot %ot %ot %ot Yot Yot Yot Vot 7ot %ot
for i = 1:size(date,1)

dstr =date{i};

date 1(i) = datenum(dstr);

end

dates = date 1

dates(1)=[];

% Co-ordinate ticker symbols!!

av = cua; ba = ba; bay = aws; cbry = cad; dxn = dix; dge = gns; gsk =
gx0; hg = ldb; hns = hsn;

hsba = hsb; kgf = kgf; Imi=Inr; mks = ms; pru = pru; rsa = ryl; rtr = rut;
% returns: underlying asset returns (N x 16)

prices = [av, ba, bay, cbry, dge, dxn, gsk, hg, hns, hsba, kgf, Inr, mks, pru,
rsa, rtr];

returns = price2ret(prices);

% Previously, STEP1 OPTDATA LOAD.m
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% STEP 2: Import data.

fnamel = ['C:\Program Files\MATLAB\R2007a\work\screenoptdata\databank\hg.mat’l;
load (fnamel);

fname2 = ['C:\Program Files\MATLAB\R2007a\work\screentickdata\data\30min ts.mat’];
load (fname2);

RV = rvlday 8; % Realized Volatility

DR = [dates, returns(:,8)]; % Daily Returns

optdata = optdata_all;

% STEP 3: Create expiry dates and convert to numerical form -
expiries are third Friday of every month

expiry = optdatal(:,3);

for i=1:size(expiry,1)

dstr = num2str(expiry(i));

if length(dstr) ==

mm = ['0”,dstr(1)];

yy = dstr(2:5);

else

mm = dstr(1:2);

yy = dstr(3:6);

end

mth = str2num(mm);

yr = str2num(yy);
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calend = calendar(yr,mth);

if calend(1,1:6) == zeros(1,6) % if month begins on Sat, third Fri is in fourth
row of calendar month matrix

dy = calend(4,6);
else

dy = calend(3,6); % if month begins on Fri, or before this, third Fri is in
third row of calendar month matrix

end

expiry(i) = datenum(yr,mth,dy);

end

optdata(:,3) = expiry;

clear dstr mm yy mth yr calend dy i;

%% %% moneyness %% %%

ctm = abs(optdata(:,9)-optdata(:,4));

%% %% time-to-maturity %% %%
ttm=optdata(:,3)-optdata(:,1);

optdata = [optdata, ctm, ttm];

% exclude options with volume traded < 30
[B] = find (optdata(:,6)>= 30);

optdata = optdata(B,:);

clear B

% select options with a maturity between X1 and X2 days

[B] = find (10 < optdata(:,13)& optdata(:,13) < 30);
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optdata = optdata(B,:);

% % TEST: select only options traded after September 11th 2001 (731105).
% [B] = find (optdata(:,1)>731217);

% optdata = optdata(B,:);

% Calculate Realized Volatility from Trade Date to Expiry Date.
option_trade dates = unique(optdataf(:,1));

stock trade dates = RV(:,1);

common=zeros(1,1);

for j=1:length(stock trade dates)
[A]=find(option _trade dates==stock trade dates(j));
common=[common;A];

end

common(1)=[[;

option trade dates = option_trade dates(common);

clear j

submat=zeros(1,9);

for j=1:length(option trade dates)

% 1) Find trade date.
[A]=find(optdata(:,1)==option_trade dates(j));

% 2) Break option matrix into blocks (based on trade dates).
eval([’sub_optdata_’,num2str(j),’= optdata(A,:);’]);

% 3) Calculate realised volatility from trade date to expiry.
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% Function: RlzV.

eval([FCAST _’num2str(j),’= RlzV(sub_optdata_’num2str(j),",RV,DR);’]);
eval([’submat=[submat;FCAST ’num2str(j),’];’]);

end

submat(1,:)=[];

clear F*

FCastMatrix=submat;

% FcastMatrix: Cl=Dates, C2=Volume, C3=TTM, C4=Realised Vol., C5=EncompRV,
C6=DSR, C7=Implied Vol, C8/9=GARCH/EGARCH forecasts.

FTS1 = fints([FCastMatrix(:,1), FCastMatrix(:,6),FCastMatrix(:,7),FCastMatrix(:,8),FCastMatri
FTS2= fints([FCastMatrix(:,1),FCastMatrix(:,4),FCastMatrix(:,7)]);
FTS3=fints([FCastMatrix(:,1),FCastMatrix(:,2)]);

subplot(3,1,1); plot(FTS1); legend(’Sqd Returns’,’”TV’,’GARCH’,’E-GARCH’);legend("location’,
"NorthWest’);

subplot(3,1,2); plot(FTS2); legend(’Realised Volatility’, Implied Volatility’);
legend(’location’, 'NorthWest’);

subplot(3,1,3); plot(FTS3); legend ("Option Volume Traded’);legend('location’,
"NorthWest’);

% Run MZ Regression.

[RSQ,BETA ,DW,RESID] =MZReg3(FCastMatrix);

% Run MZ Regression.

[RSQrv,BETArv,DWrv,RESIDrv] =MZReg4(FCastMatrix);
% Run Encompassing Regression.

[EncRSQ,EncBETA EncDW] =ENCReg3(FCastMatrix);
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% Run Encompassing Regression.
[EncRSQrv,EncBETArv,EncDWrv] =ENCReg4(FCastMatrix);
% Use RESID from MZReg3 to calculate DM statistic.
[DM,HLN]=DM _ HLN TEST(RESID);

% FcastMatrix: Cl=Dates, C2=Volume, C3=TTM, C4=Realised Vol., C5=EncompRV,
C6=DSR, C7=Implied Vol, C8/9=GARCH/EGARCH forecasts.

save ("C:\Program Files\MATLAB\R2007a\ work\screenoptdata\databank\ fixedh2008 8.mat’)

5.6. Matlab Programme 2: Measuring and Testing Volatility
Persistence (Long Memory).

clear;

file = ['C:\Program Files\ MATLAB\R2007a\work\screenoptdata\databank2\all _tsa.mat’];
load (file);

n = 16;

s=75;

dv=0.4:0.05:0.70;

m = fix(s.”dv); % m is the number of frequencies used in estimation.
1=length(m);

LPxall=zeros(1,3);

LPyall=zeros(1,3);

LPeall=zeros(1,3);

LPdiffall=zeros(1,3);

% Estimates variations on the Exact Local Whittle Estimator over different

% bandwidths.



5.6. MATLAB PROGRAMME 2: MEASURING AND TESTING VOLATILITY PERSISTENCE (LONG MEMORMY

whichstats = {’r’}; model = {’linear’};

for k = 1in

eval([x_’num2str(k),” = novlp_tsa_’ num2str(k),’(:,2);’]);
eval(['y_’,num2str(k),” = novlp_tsa_’,num2str(k),’(:,3);’]);

eval(['diff ’num2str(k),’=x_’num2str(k),- y_’num2str(k),’;’]);

% Regression

eval(['r_’num2str(k),” = regstats(x_’num2str(k),’,y ’;num2str(k),’);’]);
eval([’e_’num2str(k),” = r_’,num2str(k),’.r;’]);

for f=1:1

eval([LPx’ num2str(k),” = LP_calc(x_’num2str(k),”,dv(’ num2str(f),’));’]);
eval(['LPy’ num2str(k),” = LP_calc(y ’mnum2str(k),”,dv(’ num2str(f),’));’]);
eval(['LPe’ num2str(k),” = LP _calc(e ’,num2str(k),’,dv(’,num2str(f),”));’]);
eval([LPdiff’,num2str(k),” = LP _calc(diff ’num2str(k),”,dv(’,;num2str(f),’));’]);
eval(['LPxall = [LPxall; LPx’,num2str(k),",];’]);

eval(['LPyall = [LPyall; LPy’ num2str(k),”,];’]);
eval(['LPeall = [LPeall; LPe’ num2str(k),”,];’]);
eval([LPdiffall = [LPdiffall; LPdiff’ num2str(k),”,];’]);
end

eval(['LPxall’,num2str(k),’= LPxall(2:end,:);’]);
eval([LPyall’ num2str(k),’= LPyall(2:end,:);]);
eval(['LPeall’,num2str(k),’= LPeall(2:end,:);’]);

eval(['LPdiffall’, num2str(k),’= LPdiffall(2:end,:);’]);
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LPxall=zeros(1,3);
LPyall=zeros(1,3);
LPeall=zeros(1,3);
LPdiffall=zeros(1,3);
end

status = ’done’

save ('C:\Program Files\MATLAB\R2007a\work\P 2\code\LongMemory Mar08\Data\LPresu

function [d, nobs, tasy, sigasy, tols, sigols| = gph (series, incl, excl)
% Available from: http://fmwww.bc.edu/repec/bocode/g/gph.m
%Copyright (¢) 10 March 1998 by Ludwig Kanzler

% Department of Economics, University of Oxford

% Postal: Christ Church, Oxford OX1 1DP, U.K.

% E-mail: ludwig.kanzler@economics.oxford.ac.uk

% Homepage: http://users.ox.ac.uk/~econlrk

% $ Revision: 1.31 $$ Date: 15 September 1998 $

function [d] = felw2st(x,m,p,rep)
% function[d] = felw2st(x,m,p,rep)

% FELW2ST.M computes the 2-step feasible exact Whittle likeli-
hood

% estimator.
%Reference: Shimotsu and Phillips (2004), Shimotsu (2004)

% Code written by, Katsumi Shimotsu, July 2004
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%Depenency: this code requires fracdiff.m and veltaper.m
%INPUT  x: data (n*1 vector)

%m: truncation number

% p: the order of the taper, p = 2 or 3, 3 is preferable

%rep: number of steps

5.7. Matlab Programme 3: Testing for Long Memory versus

Structural Breaks.

% Test 1: Visual examination of d against avg(dl,...d4);
n =16;

stack2 = zeros(1,3); stack4d = zeros(1,3);

forj=1m

eval([’[dst ", num?2str(j),’ ,dhat2 num2str(j),’, W2_ " num2str(j),”] =Im_ teststats(2,
LWfs_’num2str(j),”, LW2 ’ num2str(j),’);’]);

eval(['[d2_’mnum?2str(j),” = [dfs2 ’,num2str(j),’,dhat2 ’num2str(j),",W2_’num2str(j),’];’]);
eval([’stack2 = [stack2;d2 ' num2str(j),’];’]);

eva,l([’[dfs4 " num2str(j),’ ,dhat4 num2str(j),’, W4_ " num2str(j),”] =Im_ teststats(4,
LWfs ’num2str(j),’, LW4 ’num?2str(j),’);’]);
)

eval([’d4_’mnum2str(j),” = [dfs4_’num2str(j),”,dhat4 ’;num?2str(j),”, W4 _’num?2str(j),’];’]);
eval([’stack4 = [stack4;d4 ’num2str(j),’];’]);

end

subsample fs 2 4 = [stack2,stack4(:,2)];

subsample fs 2 4(1,:)=[];
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Wstat = [stack2(:,3),stack4(:,3)];
Wstat(1,:)=][];

clear dfs* dhat* d2* d4* stack*

function [dfs, dhat,W] = Im_teststats(b,d fs, d sub)
% INPUT

% d_fs = LW d estimate for full sample

% d_sub = LW d estimates for subsamples

% b = number of subsamples

% n = length of full sample

% OUTPUT

% Wald statistic for testing HO

m = floor (1343./b); % subsample size

d = zeros(1,1);

for g = 1:b

eval(['d’,num2str(g),’= d_ sub.LW’ num2str(g),’(2).1w;’]);
eval(['d = [dd’ num2ste(g), )

end

d(1,:)=[];

dhat = mean (d);

dfs = d_fs(3).lw;

dhat _ts = [d;dfs];

dhat _ts = mean(dhat_ts);
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% Create b+1 vector, ¢ Shimotsu (2006).

dhat b =[dfs;d]-dhat_ts;

A = ones(b,1);

I 1 =-1.%eye(b);

A=[AT 1];

iotab = ones(b,1);

blb = b.*eye(b);

% A.*Omega.*Atranspose is as follows

AOAt = blb-(iotab*iotab’);

invAOAt =pinv(AOAt); % generalised inverse

Adb = A*dhat_b;

% Wald Statistic

W = m*(Adb™*invAOAt*Adb);

% modified Wald statistic

% Test for long-memory v structural breaks in volatility ts.
% Application of the Phillips-Perron (1988) test.
status = ’start’

fnamel = ['C:\Program Files\MATLAB71\work\P _2\results\30minrv_testl.mat’];
load (fnamel);

df = zeros(1,1);

n = 16;

for j = 1mn
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% Shimotsu,2006 (p18)

eval([’[adf’, num2str(j),’,adfresid’,num2str(j),”,df’ num2str(j),’,dfresid’, num2str(j),’,d’,;num2str(j),’]
= unitroot_ fxn(log(tslday’ num2str(j),”.~0.5),LWfs _’num2str(j),’);’]);

% Vector contains the PP stats from stocks 1-n.
eval(['df = [df;df’,;num2str(j),’(2,1)];]);

end

df(1)=]};

status = ’done’

% reject a unit root if t 1 <= 0.10

5.8. Matlab Programme 4: Optimal Discrete-Time Covered Call
Strategy.

tic

a_setup params;

global mcs

vol=zeros(TimeSteps,1);
mcs=zeros(NoRebal,NoSims);
d=linspace(200,1000,NoRebal);

for i = 1:NoSims %No. of simulations
st=s0;

vt=mu;

for j=1:TimeSteps % No of timesteps

[eigvecs,eigvals] = eig(corr _matrix);
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eigvals = diag(eigvals)’;

eps_vec = randn(2,1)’;

z1= sum(eigvecs(1,:).*sqrt(eigvals).*eps_ vec);
z2= sum(eigvecs(2,:).*sqrt(eigvals).*eps_ vec);
st=st+R*st*dt+sqrt(vt)*st*z1*sqrt(dt);
vt=vt+KappaQ*(v-vt)*dt+Sigv*sqrt(vt)*z2*sqrt(dt);
vt=abs(vt);

vol(j)=vt;

end

mes(:,i)=vol(d);

end

toc

5.8.1.

a_setup params;

global mcs

vol=zeros(NoTSteps,1);
mcs=zeros(NoRebal,NoSims);
d=linspace(200,1000,NoRebal);

for i = 1:NoSims %No. of simulations
st=s0;

vt=mu;
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for j=1:NoTSteps % No of timesteps
[eigvecs,eigvals] = eig(corr matrix);
eigvals = diag(eigvals)’;

eps_vec = randn(2,1)’;

for k = 1:2
eval(['z’ num2str(k),” = sum(eigvecs(’,;num2str(k),’;:). *sqrt(eigvals). *eps_ vec);’]);
end

JprobL=IdI*vt*dt;

JumpL = binornd(1,JprobL);

JprobH=Idh*vt*dt;

JumpH=binornd(1,JprobH);
st=st+R*st*dt+sqrt(vt)*st*z1*sqrt(dt);
regimeSigvP=SigvP-+(vh-vl)*JumpL+(vl-vh)*JumpH;
vt=vt+KappaP*(regimeSigvP-vt)*dt+Sigv*sqrt(vt)*z2*sqrt(dt);
vt=abs(vt);

vol(j)=vt;

stk(j)=st;

end

mcs(:,i)=vol(d);

end

a_setup params;

global mcs
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TimeSteps=6;

vol=zeros(TimeSteps,1);
stk=zeros(TimeSteps,1);
vmat_nlm=zeros(TimeSteps,NoSims);
smat__nlm=zeros(TimeSteps,NoSims);
n=8; % length of sample

d = 3; % 3-dimensional CIR process
r=1.04; %

tau =1;

for h = 1:NoSims %No. of simulations

N =n + (n-1);

m = 1./(gamma(alpha)*gamma(1-alpha));
% eta & c vectors from -N...N-1

eta = zeros(1,N);

¢ = zeros(1,N);

i=-nn-1;

lg = length(i);

for t = 1:1g

eta(t)= ((1-alpha)./(2-alpha))*((r~(2-alpha)-1)./(r"~ (1-alpha)-1)).*(r"i(t));
c(t)= (" (1-alpha)-1)./(1-alpha)) *(r* ((1-alpha)*i(t)));
end

el = exp(-eta*dt);
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e2 = (l-exp(-eta*dt))./eta;

psi = zeros(n+1,lg);

lmsr = zeros(n,1);

% Create short memory volatility process,

% Apply fractional integration operator to get Im version.
rho = 0.5; thol = 0.25; rho2 = -0.5; % Correlation coefficient
lag = 1;

Yosigv = 0.48;

corr_matrix = [1,rho,rhol;rho,1,rho2;rhol,rho2,1];
theta = d.*g"2./4;

vt(1,1:3)=mu; vt = [vt;zeros(n-lag,3)];

s(1) = 0; s =[s;zeros(n-lag,1)];

cir(1) = 0; cir = [cir;zeros(n-lag,1)];

std_sq(1) = 0; std_sq = [std_sq;zeros(n-lag,1)];
rtsm(1) = 0; rtsm = [rtsm;zeros(n-lag,1)];

rtlm(1) = 0; rtlm = [rtlm;zeros(n-lag,1)];

for j = 1:n-1

% generate correlated normal variates z1, z2 and z3
[eigvecs,eigvals] = eig(corr  matrix);

eigvals = diag(eigvals)’;

eps_vec = randn(3,1)’;

for k = 1:3
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eval(['z’ num2str(k),” = sum(eigvecs(’,num2str(k),’,:). *sqrt(eigvals). *eps_ vec);’]);

end

% d-dimensional Ornstein-Uhlenbeck process (d=3)

vt(j-lag+2,:) = vt(j-lag+1,:) + (-(kappav./2).*vt(j-lag+1,:).*dt) + (1/2)*sqrt(dt)*g. *randn(1,3);
s(j-lag+1) = sum(vt(j-lag+1,:).72);

cir(j-lag+2) = s(j-lag+1) + kappav*(theta-s(j-lag+1))*dt + g*sqrt(dt)*sqrt(s(j-
lag+1))*z2;

% psi: rows = 0,1,...,N , columns = -N...0...N-1

psi(j-lag+2,:) = psi(j-lag+1,:).*el + (cir(j-lag+1)-mean(cir(:))).*e2;
Imsr(j-lag+1) = theta + m.*sum(c.*psi(j-lag+2,:));

% construct sample paths of the log returns

rtsm(j-lag+2) = rtsm(j-lag+1) + sqrt(abs(cir(j-lag+1))).*z1.*sqrt(dt);
rtlm(j-lag+2) = rtlm(j-lag+1) + sqrt(Ilmsr(j-lag+1)).*z1.*sqrt(dt);
end

rtsm(1:2)=[];

rtlm(1:2)=[];

vmat_nlm(:,h)=rtsm;

smat_nlm(:,h)=rtlm;

clear rtsm rtlm

end

vmat=vmat nlm;

smat=smat_nlm;

mcs=vimat;
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% setup__parameters.m

global mu KappaQ v Sigv Rho

global SigvP KappaP LambdaP

global sO T dt NoSims NoTSteps corr _matrix
global d Gamma Beta R

% Volatility Parameters: OHT (2003, P10).
mu=0.12; % mu

KappaQ=2.10; % kappa

v=0.016; % vhat

Sigv=0.33; % sigma

Rho = -0.51; % rho

% Heston requires additional parameters.
SigvP=0.021721;

KappaP=5.3;

LambdaP=1.84156;

s0=1; % Initial Stock Price

T=1;

dt=0.10;

NoSims=500000; %Number of Simulations
TimeSteps=1000;

NoRebal=6;

corr_matrix = [1,Rho;Rho,1];
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d=0.34;
Gamma = 3; %(* Coefficient of Relative Risk Aversion *)
Beta = 0.96; %(* Discount factor *)

R = 0.03; %(* Gross interest rate *)

%(* Construct the grid of possible values of MuVec (Variance Grid) and
TVec (Time Grid) *)

global MuVec

lowvariance = linspace(0.002,0.10,12);
highvariance=linspace(0.10,0.60,8);
variance=[lowvariance,highvariancel;

MuVec=unique(variance);

% d_setup options

global strikes mat 1 mat 2

% Moneyness vector
strikes=linspace(0.9,1.2,7);
mat_1 = (T/12)*3; % 3-month

mat 2 = (T/12)*2; % 2-month

a_setup params;
b_setup gridpts;
c_setup options;
global KappaQ v Sigv Rho

global SigvP KappaP LambdaP
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global sO T dt NoSims NoTSteps corr matrix

global d Gamma Beta R

global mcs MuVec strikes

% Output:

% series of option prices associated with variance grid,

% atml (start) of period: 19 x 7: 19 variance grid points, 7 strike prices,

% atm2 (end) of period : same size matrix

grdpt_calll=zeros(length(MuVec),length(strikes));
grdpt_call2=zeros(length(MuVec),length(strikes));

for j=1:length(MuVec)

for s=1:length(strikes)

grdpt _calll(j,s)=hestonnlm(mat_ 1,s0,strikes(s),MuVec(j),SigvP,KappaP,Sigv,Rho,LambdaP,R);
grdpt _call2(j,s)=hestonnlm(mat_ 2,s0,strikes(s),MuVec(j),SigvP,KappaP,Sigv,Rho,LambdaP,R);
end

end

% Employ backwards recursion - HJB.

% Interpolation used to find optimal Wgts, Util. and Ret for each path.
Beta=1/(14+R);

DistETW=zeros(1,4); AvgHoldings=zeros(1,2);

KDE Matrix=zeros(NoSims,1);

for s=1:length(strikes)

ETW=zeros(NoSims,1); % Expected Terminal Wealth



5.8. MATLAB PROGRAMME 4: OPTIMAL DISCRETE-TIME COVERED CALL STRATE@31

EPW=zeros(NoSims,2); % Expected Portfolio Weights
eval(["Weights= WeightsX’,num2str(s),’;’]);
eval(['Returns=ReturnX’,num2str(s),’;’]);

% Based on optimal policy at variance grid points, find interpolated
% portfolio return (ir) and wealth.

% Proceed backwards from time, T-2 to start of intvestment period.
for j=NoTSteps-1:-1:1

[ir, iw]=intpol(mcs(j,:),MuVec, Weights,Returns);

TF = isnan(ir);

ir(TF)=0;

TF2 = isnan(iw);

iw(TF2)=0;

ETW=ETW+Beta.*(ir");

EPW=EPW-+iw(:,1:2);

end

KDE Matrix=[KDE Matrix, ETW];

% Statistics for Distribution of Terminal Wealth

meanETW=mean(ETW); stdETW=std(ETW); skewETW=skewness(ETW);
kurtETW=kurtosis(ETW);

DistETWX=[meanETW stdETW skew ETW kurtETW];
DistETW=[DistETW;DistETWX];
% Average Portfolio Holdings (by Strike)

meanEPW=mean(EPW);
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AvgHoldings=[AvgHoldings;meanEPW];

end

DistETW(1,:)=[];

AvgHoldings(1,:)=[];
meanDistETW=mean(DistETW);

for s=1:length(strikes)
DistETW(s,:)=DistETW(s,:)./meanDist ETW;

end

tic

% Step 1: Import Parameters.

clear all;

setup parameters;

setup nlm;

setup _gridpts;

%% %%%% % % % % %% %% % % % % %0 %% %% % % % % % %
% Initialisation %

90%%%%% % %% % % %% %0 %0 %% % %0 %% % %0 % %0 %0 %0 %0 %o
X0=[1,0,0];

% Store Option Prices at Variance Grid Point.

for k =1:length(MuVec)
[calll0(k)|=hestonnlm(((T/12)*6),s0,K,MuVec(k),SigvP,KappaP,Sigv,Rho,LambdaP,R);

[call20(k)|=hestonnlm(((T/12)*6),s0,K2,MuVec(k),SigvP,KappaP,Sigv,Rho,LambdaP,R);
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[path returns|=NLMgenerate(MuVec(k),NoSims,call10(k),call20(k),K,K2,...
T,R,X0,s0,KappaP,KappaQ,MuX,MuY,v,Sigv,SigvP,Rho,EtaB2 EtaB1,...
LambdaP,LambdaQ,dt);

VGPT(k).pathreturns=path _returns;
VGPT(k).price=[s0,call10(k),call20(k)];

end

%% %0 %0 %0 %0 %0 %0 Y0 Y0 Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo
% Backwards recursion %

%% %% %0 %0 %0 %0 %0 %0 %o %0 Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo o Yo
EUUPA=zeros(1,1);

EPRET=zeros(1,1);

EWGT=zeros(NoTSteps-1,3);
VGPTpathweights=zeros(NoSims,3);
VGPTpathutility=zeros(NoSims, 1);
VGPTpathreturn=zeros(NoSims, 1);
VGPTweights=zeros(length(MuVec),3);
VGPTutility=zeros(length(MuVec),1);
VGPTportreturn=zeros(length(MuVec),1);

for t = NoTSteps-1:-1:1

for k =1:length(MuVec)

for j=1:NoSims

[VGPTpathweights(j,:), VGPTpathutility(j),VGPTpathreturn(j)|=sqpll(VGPT(k).pathreturns(j,:
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end

VGPTweights(k,:)=mean(VGPTpathweights);

VGPTutility (k)=mean(VGPTpathutility);
VGPTportreturn(k)=mean(VGPTpathreturn);

end

% Interpolation applied to cross section of simulated volatility
% at time T-1,T7-2,..,1,0

[Uint,Rint, Wint]=interpolll(vmat(t,:),MuVec,VGPTutility, VGPTweights, VGPTport

Utility at t=mean(Uint);

Return _at t=mean(Rint);

Weights _at _t=mean(Wint);

% Proceed recursively, iterating on the optimal portfolio weights from
% the previous time period

X0=Weights at_t;

EUUPA=EUUPA+Utility at t;

EPRET=EPRET+Return_at_t;

EWGT(t,:)=Weights _at_t;

end

save (’C:\Program Files\MATLAB71\work\DSOP _code\data\der2 fiveper itm.mat’)

toc

function [x,fval,Portfolio Rt]=sqp(ret,price,X0,R,K,K2)
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options = optimset('Display’, 'off’, "LargeScale’, off");

% Optimisation
[x,fval]=fmincon(@objfun,XO0,[},[],[], [, ], @constrfun,options);
Portfolio Rt=x(1)*ret(1) + x(2)*ret(2) + x(3)*ret(3) + (1-x(1)-x(2)-x(3))*(1+R);
function f = objfun(x)

w_ti 1=1L;%(1+R)"t;

woti=w ti o 1¥(x(1)*ret(1)-4x(2)*ret(2)+x(3) *ret(3)+(1-x(1)-x(2)-x(3) ) *exp(R));
obval=marg_ut(w_ti)*ut(1);

f=-obval;

end

%% %% %% % % % % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 o

% Constraints %

%% %% %% % % % % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 o
function [c,ceq] = constrfun(x)

% Equality Constraint

ceq=[];

%% %% %% % % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 Yo

% Margin Requirements (MR) %

%% %% %% % % % % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 % %6 o

% MR_S (50% x Stock Price x Weight Held)

if x(1)>=0

MR _S=0.5*x(1);
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elseif x(1) < 0

MR _S=1.5*x(1); % investopedia.com: 150% of the value of the short sale
end

% Long Call (LC), Covered Call (CC) and Naked Call (NC).
% In case of a short stock position -

% Equates to zero for the purposes of

% MR calculation.

if x(1)>=0

NumStocks=x(1)/price(1);

elseif x(1)<=0

NumStocks=0;

end

MR_LCl=[; MR_CCl=[]; MR_NC1=]J;

if x(2)>=0;

MR._ LCl=price(2);% Long Position: Weight x Der1Price
elseif x(2) < 0 & price(1) > 1; % Short, ITM-Call
NumShortCalls1=-x(2)/price(2);
Covered1=min(NumShortCalls1, NumStocks);
Naked1=max(abs(NumShortCalls1-NumStocks),0);

MR __CC1=Covered1*price(2);

MR _NC1=Naked1*(price(2)+ max(0.15*price(1)-(max(K-price(1),0)),0.1*price(1)));

elseif x(2) < 0 & price(1) <= 1; % Covered OTM/ATM-Call
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MR, CCl==0;

NumShortCalls1=-x(2)/price(2);

Naked1=max(abs(NumShortCalls1-NumStocks),0);

MR _NC1=Naked1*(price(2)+ max(0.15*price(1)-(max(K-price(1),0)),0.1*price(1)));
end

MR_LC2=[); MR_ CC2=[]; MR,_ NC2=[;

if x(3)>=0;

MR, LC2=price(3);% Long Position: Weight x Der2Price

elseif x(3) < 0 & price(1) > 0.95; % Short Position: Covered ITM-Call
NumShortCalls2=-x(3)/price(3);

Covered2=min(NumShortCalls2, NumStocks);
Naked2=max(abs(NumShortCalls2-NumStocks),0);

MR_ CC2=Covered2*price(3);

MR NC2=Naked2*(price(3)+ max(0.15*price(1)-(max(K2-price(1),0)),0.1*price(1)));
elseif x(3) < 0 & price(1) <= 0.95; % Covered OTM/ATM-Call

MR, CC2=0;

NumShortCalls2=-x(3) /price(3);

Naked2=max(abs(NumShortCalls2-NumStocks),0);

MR _NC2=Naked2*(price(3)-+max(0.15*price(1)-(max(K2-price(1),0)),0.1*price(1)));
end

c=[-14+(MR_S + (MR_LCI + MR_CC1 + MR_NC1) + (MR_LC2 +
MR_CC2 + MR_NC2))];

end
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end



