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ABSTRACT

An Investigation into the Characteristics of Equity Volatility and its

Implications for Derivative Strategies

John F. Garvey

The development of an e¤ective mechanism for pricing options has inspired a

large volume of academic research and has ultimately changed the landscape

of the �nancial markets. Since the publication of Black and Scholes�(1973)

seminal paper on option pricing, the �nance literature has explored and at

least partially resolved many of the limitations associated with the origi-

nal model. The reality of stochastic volatility contradicts a key assumption

of the Black-Scholes model and addressing this has motivated the develop-

ment of more appropriate volatility models. The improved speci�cation and

forecasting of asset price volatility has been in�uenced by the demands of

risk management and portfolio functions. The increased use of quantita-

tive methods in portfolio management is due, in part at least, to successful

academic research into asset volatility.
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ABSTRACT 4

Existing research is extended in this thesis by �rst examining the forecast-

ing power of implied volatilities from traded UK equity options. Composite

implied volatilities are created using weighting techniques that e¢ ciently

capture the predictive information in traded options. These implied volatil-

ities are benchmarked against subsequently realized stock price volatility

estimated from high-frequency stock price data. The predictive informa-

tion provided by the options market is compared against that available from

sophisticated statistical models such as the generalized autoregressive con-

ditional heteroskedastic (GARCH) model and the exponential-GARCH (E-

GARCH) model. Comparison of implied and statistical forecasts is carried

out over a number of forecasting horizons using regression analysis as well

as robust pairwise tests.

The second part of this thesis uses semi-parametric techniques to exam-

ine the long-run dynamics of UK equity volatility. The nature of volatil-

ity persistence found in both the implied and realized volatility series of a

number of companies is carefully examined. Testing the time-domain prop-

erties of the volatility series identi�es the extent to which structural breaks

in volatility contribute to observed levels of persistence in our sample of

companies. The nature of the long-run relationship between implied and

realized volatility is also examined. The relevance of these empirically ob-

served volatility characteristics is examined in the �nal part of this thesis.
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Using dynamic programming techniques together with Monte Carlo simu-

lation, optimal portfolio weights are determined for a derivative strategy

implemented in discrete time. The derivative strategy is activated across

a six-month investment horizon and rebalancing occurs at the beginning of

each month. The creation of a series of variance grid points at each time step

makes the dynamic programming approach computationally feasible. Pro-

gressing backwards from the end of the investment horizon, optimal portfolio

weights are found for each of the variance grid points. The optimisation pro-

cedure assumes that volatility is driven by a short-memory a¢ ne process.

The economic cost associated with omitting long-memory e¤ects is isolated

by simulating a fractionally integrated process across the same investment

horizon and applying the previously assigned weights at each time step. The

relevance of omitting possible regime shifts in the volatility process are eval-

uated in the same manner. Portfolio outcomes are derived for the optimal

case, that is, when actual volatility follows a short memory process. Out-

comes are also derived for the alternative conditions, that is, a �true�long

memory, fractionally integrated process as well as the �spurious�long mem-

ory or regime-switching case. The impact of volatility mis-speci�cation is

captured in the characteristics of the portfolio�s terminal wealth distribution.
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CHAPTER 1

Introduction

1.1. Introduction

The fund management industry has been the venue for signi�cant research

and innovation over the past �fty years. The wider application of risk-

adjusted performance measures has meant that stock selection and asset

allocation decisions are increasingly sensitive to volatility e¤ects over short-

and medium-term horizons. In a survey carried out by The Intertek Group,

the management of equity portfolios has shown a greater reliance on quan-

titative modeling in recent years1. This trend in the fund management in-

dustry is a product of the development of a number of volatility forecasting

models in the academic literature. Increasingly sophisticated time series

forecasting models have been produced by Engle (1982), Bollerslev (1986),

Nelson (1991) and Glosten, Jagannathan and Runkle (1993) among oth-

ers. Although these models have become progressively more attuned to

empirically observed volatility characteristics, their relative complexity has

limited their appeal for market participants. The academic literature has

1The 2006 Survey by the Intertek Group and Frank J. Fabozzi notes that 84% of respon-
dents reported that the percentage of equity assets under quantitative management had
increased over the previous two years.
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1.2. RESEARCH MOTIVATION 11

also extensively examined the capacity of the options market to provide

forward-looking information on asset volatility [Bates (1991), Christensen

and Prabhala (1998), Poteshman (2000)]. This thesis compares implied

volatility forecasts against popular time series methods and the relationship

between the equity options market and the underlying assets is explored

within the context of the implied-realized volatility relationship. The thesis

also investigates how long-run volatility dynamics impact on the construc-

tion of optimal investment strategies.

1.2. Research Motivation

The initial motivation for this thesis emerged from an interest in the be-

haviour of �nancial market participants around the time of the collapse in

telecom, media and technology stocks at the beginning of this decade. The

predominance of investor sentiment as an in�uencing factor on asset values

led to some preliminary investigations into how measures of sentiment could

be used to inform decision making in the �nancial markets. The function

ful�lled by �nancial options, that of hedging against and speculating on fu-

ture risk presented a potentially valuable line of enquiry. The early part of

this research focused on the volatility forecasting literature and in particular

on the advances made in the class of statistical forecasting methodologies

such as ARCH and GARCH. The ability of these models to predict volatil-

ity over short forecast horizons has been well documented in the existing
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literature [Poon and Granger (2003)]. The forecasting performance of im-

plied volatilities backed out of the market prices of traded options provides

an alternative forecasting method and a possible indicator of investor sen-

timent. This thesis focuses on individual equity options which have been

relatively neglected in the existing literature, in principle due to limitations

with data availability. Generating a composite implied volatility estimate

using close-to-the-money options e¢ ciently utilises the forward-looking in-

formation contained in option prices [Mayhew (1995), Ederington and Guan

(2002)]. A comparison of this forecast against statistical GARCH forecasts

generated from historical patterns in the volatility of the underlying asset is

also carried out. The comparison between both forecasting methodologies

provides an insight into the relationship between the market for individual

equity options and the underlying equities.

Empirical research into the volatility dynamics of foreign-exchange markets

and equity indices has identi�ed levels of persistence that can be modeled

as fractional integration in the autocorrelation structure of volatility. These

�ndings have been challenged by more recent research showing that struc-

tural breaks in volatility can induce similar levels of persistence [Granger

and Hyung (2004)]. Budek, Schotman and Tschering (2006) note that cor-

rectly modeling long-run volatility dynamics is critical for the development

of e¤ective criteria for risk management procedures.
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In the �nancial markets there has been an increased �ow of capital towards

investment strategies other than the traditional �long-only�strategy. Eval-

uating the optimal portfolio outcomes of investment strategies that allow

for positions in derivatives has been facilitated by developments in dynamic

programming techniques. Improvements in computing speeds has also made

dynamic programming within a realistic framework possible. This thesis

uses dynamic programming techniques to examine the relevance of long-

memory e¤ects for market practitioners engaged in discrete time derivative

strategies.

1.3. Objectives of the Research Study

This thesis achieves a number of objectives that enhance the current un-

derstanding of volatility dynamics and the relevance of these dynamics in

portfolio applications. The following speci�c research objectives are pro-

posed.

� To evaluate the ability of implied volatilities to forecast subse-

quently realized volatility for a set of individual companies traded

on the FTSE-100 index.

� To test for the presence of fractional integration in the realized

volatility of individual equities.

� To test for the presence of structural breaks in the volatility process

(spurious long memory).
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� To model the long-run relationship between implied and realised

volatility, testing whether the relationship is a fractionally cointe-

grating one.

� To employ dynamic programming techniques and Monte Carlo sim-

ulation in the investigation of long memory e¤ects, produced as a

result of fractional integration or induced through structural breaks

in the mean level of volatility can impact on the performance of a

derivative strategy.

1.4. Structure of the Thesis

Chapter Two - The Forecasting Performance of Implied Volatil-

ities on Individual Equity Options compares the forecasts produced

by implied volatilities from individual equity options to statistical forecasts

produced by GARCH models. There are three datasets employed in the

study. Daily end-of-day data on individual equity options for the period

1997-2003 is provided by LIFFE and daily stock price data for the same

period is obtained from Datastream. Forecasts produced by the class of

GARCH models are generated using the daily stock price data. An accurate

estimate of realized volatility is calculated using a third dataset of high-

frequency tick-price data provided by the London Stock Exchange (LSE).

The raw dataset obtained from the LSE contained some incorrect and non-

unique prices, which had to be removed before the dataset could be used
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in the construction of a daily realized volatility time series. The results of

this research show that traded prices on individual equity options contain

information on future idiosyncratic or stock-speci�c risk that is not available

in GARCH or E-GARCH models. The results also show that individual UK

equity options are the optimal forecasting method particularly over 10-day

forecasting horizons. These �ndings provide some insight into the short-run

relationship between the options and stock market and the results con�rm

the important signal function of individual equity options. Therefore, this

research has potential relevance for risk managers who actively manage eq-

uity portfolios and are engaged in an ad-hoc rebalancing strategy.

Chapter Three - Modeling the Implied and Realized Volatility Re-

lationship in Individual Equities extends the analysis in Chapter 2 by

looking at the long-run dynamics of realized volatility for a sample of FTSE-

100 stocks. Semiparametric techniques used in this case are the Geweke

Porter-Hudak (1983) estimator and the feasible exact local Whittle estima-

tor. Both estimates provide evidence that stock speci�c shocks observed in

realized volatility decay at a very slow, hyperbolic rate. Recent research has

shown that similar levels of persistence can be induced by occasional breaks

in the volatility process. It is therefore important that the contribution of

structural breaks to observed levels of persistence are measured. This chap-

ter includes a series of time-domain tests that identify structural breaks in

both realized and implied volatility series. Fractional integration is shown to



1.4. STRUCTURE OF THE THESIS 16

be present in a number of volatility series. The similar levels of persistence

observed in the implied and realized volatility series of a number of com-

panies indicates that both volatility series may be fractionally cointegrated.

Using recently developed techniques we formally tests for the presence of

fractional cointegration between implied and realized volatility. The more

complete understanding of the long-run dynamics provided by this analysis

leads to a re-assessment of the relationship between implied and realized

volatility.

Chapter Four - Long Memory E¤ects in Portfolio Planning applies

the insights of previous chapters to a realistic portfolio planning problem.

The research examines a derivative strategy under speci�c volatility con-

ditions. Simulations are used to show how the distribution properties of

terminal wealth are in�uenced by long-memory e¤ects. This chapter also

examines whether modelling for long memory e¤ects in asset volatility has

an economic value when constructing an optimal derivative strategy in dis-

crete time. The impact of long memory e¤ects on the terminal wealth dis-

tribution is speci�cally identi�ed. A clear distinction is made between long

memory e¤ects that arise from a fractionally integrated process and those

induced by regime shifts in the volatility structure. The optimal investment

strategy in discrete time is found using backward induction combined with

a numerical optimization and Monte Carlo simulation. The optimization

procedure assumes that asset volatility follows a short memory process and
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using this portfolio policy the outcomes from actual volatility following a

fractionally integrated or regime-shifting model are examined. In the con-

text of a covered call strategy, portfolio performance is found to deteriorate

if the underlying data generating process is fractionally integrated and these

e¤ects are not included in the optimisation process. If fractional integration

is not considered in a discrete-time rebalancing decision, the investor is more

likely to include non-optimal derivatives within the portfolio.

Chapter Five - Summary Discussion and Conclusions involves a sum-

mary discussion of the research carried out. The limitations of the research

are also �agged as are suggestions for further research.



CHAPTER 2

The Forecasting Performance of Implied Volatilities

on Individual Equity Options

2.1. Introduction

The volatility forecasting literature includes a large number of studies that

examine the volatility implied in the market prices of index options1. The

increased use of index options by equity fund managers as part of a hedging

strategy has meant that implied volatilities backed out of the traded market

prices of index options are now a generally accepted indicator of investor

sentiment. These instruments are useful for those funds whose performance

is closely correlated with a speci�c equity index. However in recent years,

greater amounts of capital have been devoted to active investment strategies

that rely less on index-wide diversi�cation. At the beginning of this decade

actively managed equity funds incurred additional expenditure of $20 bil-

lion per year measured as the expense ratio between active and passive funds

[Wermers (2000)]. Cai and Zhang (2004) show that over the sample period,

1981 to 1996, the average institutional traders trades in approximately 75%

1A partial list of these studies includes Bates (2000), Canina and Figlewski (1993), Chris-
tensen and Prabhala (1998), Jackwerth and Rubinstein (1996).
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2.1. INTRODUCTION 19

of stocks in each quarter. Fund performance is dependent on the fund man-

ager�s stock-picking ability and as part of this process the expected volatility

pattern of individual stock returns over a number of horizons are an impor-

tant input. This chapter explores whether implied volatility from individual

equity options can contribute to e¤ective decisions, in this regard, by pro-

viding appropriate estimates of expected volatility.

Individual equity options are driven by a set of factors that are in many cases

distinct from those that in�uence index option prices. New ��rm-speci�c�in-

formation, such as quarterly reports or product releases lead to a temporary

increase in trading and in�uence short-term volatility patterns. The period

immediately prior to these announcements is often characterised by a decline

in trading volume and volatility as traders await the arrival of new informa-

tion [Ederington and Lee (1996), Malz (2003)]. These short-term variations

have been attributed to feedback trading and it has been observed in stock

index returns by Koutmos (1998) and Venetis and Peel (2003). If the mar-

ket in individual equity options is e¢ cient, the timing of expected company

announcements and the associated short-run volatility patterns should be

re�ected in the pricing of individual equity options. Dubinsky and Johannes

(2005) show how equity options capture stock speci�c uncertainty around

earnings announcements dates in a sample of 20 U.S. stocks. This feature
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distinguishes these instruments from index options where stock speci�c an-

nouncements impact market wide volatility only in exceptional cases. Fur-

ther evidence of the di¤erences between index and individual equity options

is the existence of commonly used analytical strategies such as dispersion

trading2.

This chapter examines the ability of implied volatility estimates from indi-

vidual equity options to forecast subsequently realized volatility over the life

of the option. Estimates of stock volatility over extended horizons are impor-

tant considerations for risk managers seeking to control and measure their

risk exposure and minimise rebalancing costs. The increased use of risk-

adjusted portfolio performance coupled with the practice of ad-hoc rebal-

ancing decisions at the end of each trading month increases the importance

of accurate volatility estimates between rebalancing dates. Research into

the predictive ability of equity options has been hampered by the relatively

low levels of liquidity in these markets compared to index options. Testing

procedures were also constrained by the reliance on daily returns data when

benchmarking implied volatility forecasts. In this research the availability

of extensive options data and high frequency price data on the underly-

ing stocks contribute to the robust results. Options data was obtained on

all constituent companies making up the FTSE-100 as at December 2003.

2Dispersion trading exploits the fact that index volatility has traded at a premium (due
to hedging demand from fund managers), while individual stock volatility has been fairly
priced. The strategy can be operationlised by combining a short position on Index options
with a long position on options on its constituent stocks.
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Those companies with short trading histories and low option trading volume

were not considered, so that, the research presented here uses options data

on �fteen FTSE-100 companies. The options considered are those contracts

for which data is continuously available over a seven year period. Estima-

tion of the composite implied volatility forecast uses a weighted average

of implied volatilities drawn from a few close-to-the-money equity options.

Benchmarking of the predictive ability of these estimates is then carried out

against realized volatility estimated from intraday tick-by-tick price data

on individual stocks. This research also ranks implied volatility forecasts

against multi-step ahead forecasts produced by popular time-series models

such as GARCH [Bollerslev(1986)] and E-GARCH [Nelson(1991)].

The following section discusses the relevant literature in the area. The sub-

sequent section details the process for estimating realized volatility and the

methods used to generate each of the forecasting models. This section also

describes the testing methodology. Empirical results and conclusion then

follow.

2.2. Volatility Forecasting

The development of an e¤ective option pricing framework by Black and

Scholes (1973) and Merton (1973) contributed to the rapid expansion of ex-

change traded options on an increasingly broad range of assets. Traditional

option pricing models such as the standard Black-Scholes model for pricing
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European options as well as the binomial approach developed by Cox, Ross

and Rubinstein (1979) for American-style options rely on the assumption of

constant volatility over the life of the option contract. Subsequent models

have incorporated greater realism by modeling the dynamics of stochastic

volatility observed in empirical studies, however despite the obvious limita-

tions of traditional option models they remain widely used among market

participants. The volatility estimate implied by the market price of the

option is generally obtained using this traditional framework and is consid-

ered an e¢ cient forward-looking estimate of the expected volatility of the

underlying asset.

Unsurprisingly a signi�cant amount of research has focused on the predic-

tive ability of implied volatility forecasts from equity index options which are

traded in relatively large volumes. Canina and Figlewski (1993) examined

implied volatility from S&P index options and found that it is a weak pre-

dictor of subsequently realised volatility. Option market ine¢ ciency and the

assumptions underlying the Black and Scholes (1973) option-pricing model

are identi�ed as key factors in this result. Figlewski (1997) shows that non-

continuous trading in the options market and the inability to observe the

�true�equilibrium option price due to bid-ask spreads are key reasons for

the weak results found in those early studies. Inaccuracies that are caused

by market frictions are exacerbated when using deep in-the-money (ITM)



2.2. VOLATILITY FORECASTING 23

and deep out�of-the-money (OTM) options so that even a narrow bid-ask

spread has a signi�cant impact on the implied volatility estimate 3.

Despite these �ndings, commercially available implied volatility indices such

as the Chicago Board of Trade Volatility Index (VIX) have been available

since 1993. The VIX is a synthetic implied volatility measure produced as

a weighted average of 8 OEX (S&P 100 Index) put and call options. Aca-

demic research has more recently provided greater support for the use of

these indices as forward-looking indicators of market sentiment. An impor-

tant contribution to the literature was made by Christensen and Prabhala

(1998) who looked at the relationship between implied and realized volatility

on S&P 500 Index options over a sample period of 111
2
years. Christensen

and Prabhala�s (1998) use of a non-overlapping dataset allows for more ro-

bust regression results and implied volatility is found to have a much higher

explanatory power than past volatility. In addition, this approach reduces

the positive implied volatility bias that is suggested in Jorion�s (1995) study.

This bias is found consistently in the literature and is generally attributed

to the unrealistic assumption of constant volatility in standard option pric-

ing models. Penttinen (2001) notes that studies testing implied volatility

forecasts have been entirely based on a period of historically low volatility.

3Bates�(1991) study of S&P 500 options for the period 1985-1987 looked at relative prices
of OTM put options and OTM call options with a view that "unusually" expensive OTM
puts could indicate the market�s assessment of an imminent downturn. In the case of the
October 1987 stock market crash expectations of a market downturn were re�ected in
options prices in the year before the crash, however in the period immediately preceding
the crash downside risk was not very pronounced.
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Penttinen (2001) argues that the bias between ex-ante implied and ex-post

realized volatility should be attributed to the rational but unrealised expec-

tations of infrequently occurring jumps in volatility.

Although notably less research has examined the market in individual equity

options, an extensive review of the volatility forecasting literature by Poon

and Granger (2003) identi�es some relevant studies. Chiras and Manaster

(1978), Beckers (1981) and Gemmill (1986) do not show consistent support

for forecasts provided by implied volatility backed out of individual equity

options. The use of narrow sample periods and limited options data in these

studies is likely to have an impact on the �ndings produced. Lamoureux and

Lastrapes (1993) and Vasilellis and Meade (1996) backed implied volatility

estimates out of a single equity option price and tested its predictive abil-

ity over a limited number of forecast horizons. Lamoureux and Lastrapes

(1993) tested the forecast performance of implied volatilities drawn from

ten European-style individual equity options traded on the Chicago Board

of Exchange over a two-year period (April 1982 - March 1984). Due to limi-

tations of the options data, one-step-ahead implied volatility forecasts were

obtained from options with maturities of 129 trading days in some cases.

These forecasts were found to contain information above that available in

historical prices. Vasilellis and Meade (1996) examined implied volatilities
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on the options of twelve FTSE-100 companies using weekly data. The im-

plied volatilities were shown to contain information not available from his-

torical data. Implied volatility forecasts, generated both from single option

prices as well as using weighting schemes provide forecasts that are superior

to forecasts produced by the GARCH model. In this chapter the use of high

frequency data for both stock and option prices, facilitates a robust analy-

sis that updates and extends the study carried out by Vasilellis and Meade

(1996).
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2.2.1. Data Description

The task of evaluating the accuracy of volatility forecasts is di¢ cult since

�true�volatility cannot be observed. The use of high-frequency data (HFD)

confers a number of bene�ts on this research and distinguishes the analysis

carried out here to similar studies by Day and Lewis (1992) and Lamoureux

and Lastrapes (1993) that use weekly and daily data respectively in their es-

timation of �true�volatility. Andersen and Bollerslev (1998) studied the con-

ditional variance estimates provided by forecasting models against squared

returns (r2t ) ; calculated from end of day stock prices. Returns are calculated

as, rt = ln(St) � ln(St�1); where the return at time t; rt is the natural log

di¤erence of the stock price (St) at time t: Daily squared returns are shown

to be a noisy estimate of volatility and in all cases a regression of the volatil-

ity forecast against squared returns would indicate weak explanatory power.

Awartani and Corradi (2004) show that even if �true�unobservable volatility,

�y2t , is replaced with squared returns, r
2
t ; then the correct ranking of models

based on any quadratic loss function will be maintained. A detailed analysis

of the predictive ability of volatility forecasts bene�ts from the use of HFD

which contains signi�cantly more information than daily price data.

For each of the companies included in the study, tick-by-tick data was ob-

tained from the London Stock Exchange (LSE) for the period 1997 to 2003.

In order to calculate an accurate measure of realized volatility it is important
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that market microstructure e¤ects are mitigated where possible. Microstruc-

ture e¤ects such as bid-ask spreads are shown by Meddahi (2002) and Oomen

(2006) to contribute to less robust estimates of realized volatility. Volatility

estimates become increasingly biase over �ner sampling intervals. The prob-

lems associated with bid-ask spreads are overcome in this research by using

the series of best prices available at the times each of the trades occurred.

The best price series provided by the LSE is a raw dataset that presents a

number of exchange-related issues that require preliminary manipulation of

the dataset. The best price dataset is obtained for each of the sample com-

panies and it includes all trades published on a given day, irrespective of the

time of trade execution or reporting. Furthermore, cancellation trades and

late trade corrections are included on the day the correction is published.

Late and overnight trades are also included on the day these trades are pub-

lished, that is, within the trading hours of the following trading day. The

reporting of cancellation trades as well as late and overnight trades present

a number of issues in relation to the recording and sequencing of prices that

must be addressed before the series could be used. The timing and type

of trading that is carried out means that the large tick datasets is are very

often characterised by incorrect, simultaneous and consecutive non-unique

price reports that if left unadjusted severely a¤ect the estimation of realized

volatility.
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In a study of microstructure e¤ects in the US stock market, Brownlees and

Gallo (2006) address the not insigni�cant matter of how best to manage

unwieldy �nancial data. This research produced a set of useful algorithms

that were amended and used here to �lter and manage the LSE data4. The

initial step was to remove incorrect price reports including zero prices and

suspiciously large price observations. Consecutive non-unique prices that

are the result of late or overnight trades also a¤ect the correct calculation

of realized volatility and are excluded. This process resulted in a time series

of intra-day prices with irregular intervals between each reported price. Re-

cently a number of studies have addressed how HFD can be optimally used

in the estimation of realized volatility. Although the estimation of realized

volatility should approximate �true�volatility as the sampling frequency in-

creases, Jacod and Shiryaev (2003) show that realized volatility estimates

become biased and inconsistent as the sampling frequency increases. To

overcome these e¤ects a simple nonparametric measure of realized volatility

can be produced that �rst converts the irregular series of tick prices to a

lower frequency, equally-spaced time series. In this instance, a time series

of 30-minute prices is created using an aggregation function that �nds the

last price before the end of each interval. If lnSt;t = 1; :::; T is a series of

daily stock prices and let lnSt+k�; k = 1; :::;m and � = 1=m denote a series

of 30-minute observations, then a daily estimate of realized variance can be

constructed as RVt;m =
Pm�1

k=0 (lnSt+(k+1)� � lnSt+(k)�)2: This approach is

4Brownlees and Gallo�s (2006) Matlab computer code is publicly available.
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evidenced in studies by Andersen, Bollerslev, Diebold and Labys (2001) and

Barndor¤-Nielsen and Shephard (2002).

More recently, studies have observed that neglecting more �nely sampled

data in this manner excludes a large proportion of available information.

Zhang, Myland and Ait-Sahalia (2006) consider the method of ad-hoc sparse

sampling along with a number of alternative realized volatility estimators.

The approach is ranked as the fourth best estimator of the �ve considered

and is shown to be less e¤ective than sampling sparsely at an optimally

determined frequency. Sparse sampling, either by ad-hoc or optimal meth-

ods, excludes data and is thus inferior to approaches that use subsampling

and averaging. The use of subsampling incorporates a greater amount of

the available information and avoids the process of discarding data that is

necessarily part of sparse sampling. Zhang, Mykland and Ait-Sahalia (2006)

identify the optimal estimator as one that uses subsampling and averaging

and also corrects for bias. The two-scales realized volatility (TSRV) estima-

tor combines two estimators, one that utilises all tick prices and a second

that averages estimates of realized volatility across regular intervals. In this

instance realized volatility is estimated in a number of stages over slow and

fast time scales that correct for biases produced by microstructure e¤ects.

An examination into multi-scale realized volatility (MSRV) by Zhang (2006)

shows that the estimator converges to �true�volatility at a faster rate than
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alternative methods. In this research, the estimation of daily realized volatil-

ity using either the TSRV or the MSRV estimator imposes a considerable

computational burden when applied to the large number of tick observa-

tions for FTSE-100 stocks over the sample period 1997 to 2003. In light of

more recent evidence, sparse sampling produces a relatively crude estima-

tor of realized volatility. The relative simplicity of this approach means it

is computationally feasible when applied to sizeable datasets examined in

this research. The properties of the daily realized volatility series for each

company, summarised in Table 2.1, show a wide variation in the descriptive

statistics among the cross-section of companies.

Deriving Implied Volatilities from Individual Equity Options

American-style equity options trade on the London International Financial

Futures Exchange (LIFFE) and prices are quoted for all companies on the

FTSE-100 exchange. The dataset procured from LIFFE contains details

such as the trade and expiry dates, the volume traded on each option, as

well as an annualized implied volatility backed out of the market price of the

option. Implied volatility estimates for each option are produced by LIFFE

Euronext using the Cox, Ross and Rubinstein (1979) binomial option pricing

method that incorporates dividends and early exercise. The exact procedure

for constructing the binomial tree is proprietary and the details are retained



2.2. VOLATILITY FORECASTING 31

by LIFFE Euronext. The LIFFE Euronext data includes options contracts

that were priced but were not traded. A preliminary �ltering process care-

fully removed options data on quoted contracts that were not traded. For

each company considered in this study a number of daily options contracts

were traded on each day with a range of maturities and strike prices. The

moneyness of an option refers to the distance between the price at which

the option can be exercised, that is, the strike price and the current price on

the underlying asset. A number of studies have examined how best to use

implied volatilities on traded options. The majority of studies speci�cally

examined the sensitivity of implied volatility from index options to contract

speci�cations such as maturity and moneyness.

Over the past decade there has been greater agreement among academics

and practitioners on how to optimally use implied volatility data. Edering-

ton and Guan (1999) show that at-the-money options demonstrate greater

sensitivity to the volatility of the underlying asset than far-from-the-money

options. Furthermore, the positive bias found empirically in implied volatil-

ity forecasts is minimized by using options trading close to the money. These

�ndings are con�rmed by Bodie and Merton (1995) who show that the

bias associated with implied volatility forecasts can be mitigated by us-

ing short-dated options that are close-to or at-the-money. Ederington and

Guan (2002) estimate a composite implied volatility forecasts using four or
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eight option contracts trading close-to-the-money. This method produces es-

timates that are superior to estimates generated using all available options,

including those that are far-from-the-money. Although simple averaging of

implied volatilities has been applied by Jorion (1995) and Weber (1996) in

studies on forecasting, Mayhew (1995) and Ederington and Guan (2002)

show that weighting implied volatilities according to the moneyness of the

contract minimises the variance of the implied volatility estimate and is thus

more e¢ cient than simple averages. These �ndings are re�ected in the in-

vestment industry where commercially available implied volatility indices are

estimated using only a few at-the-money or near-the-money options and are

weighted according to contract moneyness. One commercial example is the

implied volatility index (VIX) produced by the CBOE that is constructed

as a weighted average of the four call options and four put options that are

trading nearest the money5. In this paper, composite implied volatilities

are created using a moneyness weighted scheme similar to that applied by

commercial vendors such as the CBOE.

Forecasts are examined across short-, medium- and long-term horizons of

10-days, 30-days and 60-days respectively. A prerequisite to estimating an

implied volatility forecast is that su¢ cient contracts are available at each

forecast date to enable calculation of the synthetic implied volatility esti-

mate. To satisfy this condition options are grouped according to the length

5Details on the construction of the The VIX Index are contained in the CBOE technical
document "The New CBOE Volatility Index - VIX", available on www.cboe.com.
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of contract maturity. Three subgroups of options are created and each group

aligned to a speci�c forecast horizon. Short-term implied volatility fore-

casts are generated from contracts with maturities between 10 and 30 days.

Medium-term forecasts are generated from option contracts with maturities

between 30-60 days and contracts with 60 to 90 days maturity are used in

long-term forecasts. Once the contracts are bundled, the annualized implied

volatility estimate provided by LIFFE Euronext is adjusted to the appro-

priate forecast horizon using the square root of time rule. Assuming 252

working days in the year, the h-day-ahead implied volatility forecasts are

estimated as,
q

h
252
IV; as per Giot and Laurent (2007). For example, an

implied volatility produced by an option contract in the short-maturity (10-

day) bundle may have 25 days to expiry. The implied volatility from this

contract is adjusted to a ten-day horizon as follows,
q

10
252
IV25�day: The op-

timal method for constructing a composite implied volatility estimate has

been examined in a number of studies [Mayhew (1995), Ederington and Guan

(2002)]. The weighting scheme used in this chapter is guided by the results

produced by Ederington and Guan (2002) that recommend methodologies

used by commercial vendors such as the CBOE-VIX. The scheme approxi-

mates the commercial approach as closely as possible. It di¤ers only in the

use of four rather than eight options (a re�ection of the greater trade vol-

ume in Index options compared to equity options). The composite implied
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volatility forecast incorporates the implied volatilities of the four nearest-

to-the-money options traded on each day in a manner similar to that ap-

plied by commercial vendors. This procedure uses the time-adjusted implied

volatilities from the two call options (IVc1 and IVc2) and the two put op-

tions (IVp1 and IVp2) that are trading nearest the money. The weighting

method used to estimate the composite implied volatility takes account of

the respective option�s moneyness as follows,

IVt;T = 0:50

�
Xc2 � F

Xc2 �Xc1

�
:IVc1 + 0:50

�
1� Xc2 � F

Xc2 �Xc1

�
:IVc2

+0:50

�
Xp2 � F

Xp2 �Xp1

�
:IVp1 + 0:50

�
1� Xp2 � F

Xp2 �Xp1

�
:IVp2(2.1)

where F is the underlying stock price (face value), Xc1 andXc2 (Xp1andXp2)

are the strike prices of the nearest-the-money call (put) options and IVc1 and

IVc2 (IVp1 and IVp2) are the corresponding implied volatilities. This ap-

proach focuses the analysis on those options trading near the money which

are most sensitive to volatility in the underlying asset, therefore minimiz-

ing measurement errors and clientele e¤ects that a¤ect out-of-the-money

options. A daily composite implied volatility times series is produced for

each forecast horizon, that is, the 10-day, 30-day and 60-day horizon. These

forecasts are benchmarked against realized volatility estimated as the sum

of daily realized volatility across the forecast horizon from the day after the

trade date, as follows, RVt;h =
P
(RVt+1; :::; RVt+h), where RV is realized

volatility estimated from 30-minute intraday returns, t is the option trade
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date and h is the forecast horizon. The procedure results in paired implied

and realized volatility series at 10-day, 30-day and 60-day overlapping fore-

cast horizons. The use of overlapping horizons in regression analysis has

been shown by Christensen and Prabhala (1998) to produce results that are

not robust since residuals based on regressions across overlapping horizons

are likely to be correlated.

Christensen and Prabhala (1998) show that by constructing a series of non-

overlapping forecasts, correlation in the residual series is mitigated and more

robust results are produced. This procedure has a disadvantage in that it

diminshes the sample size used in the analysis. The creation of a series of

10-day forecasts across non-overlapping horizons allows us to compare our

results with those produced by Christensen and Prabhala (1998). The non-

overlapping series selects option contracts trading at 10-day intervals. The

problem of shallow trading in 10-day contracts is overcome by including all

options with a contract maturity between 10 and 60 days. Where the con-

tract maturity extends beyond ten days, annualized implied volatility from

these contracts is adjusted to the 10-day horizon using the square root of

time rule. The composite implied volatility forecast is then estimated from

the four closest-to-the-money options using the moneyness weighing scheme.

Realized volatility is estimated for the ten days from the option trade date
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using HFD. Implied volatility forecasts are also compared to forecasts pro-

duced by statistical methods, namely, the generalized autoregressive con-

ditional heteroskedastic (GARCH) model as well as exponential GARCH

(E-GARCH) model.

Statistical Approaches to Modeling Volatility

The performance of implied volatility estimates are ranked against statistical

forecasting models. We apply the generalised ARCH or GARCH model

proposed by Bollerslev (1986) to daily stock price returns,

(2.2) �2t+h = $ + �"2t + ��2t

where �2t is the variance at time t, $ is the mean variance, � and � are

constant parameters and "2t�1 is squared innovation from the previous time

period. The daily stock price return is estimated as the log di¤erence be-

tween the end-of-day closing stock price St and the previous day�s closing

price St�1; as follows, rt = ln(St)� ln(St�1). The parsimonious use of para-

meters in the GARCH (1,1) model have contributed to its relative popularity

among practitioners in the �nancial markets. Within the academic litera-

ture, the GARCH (1,1) model represents only one of a myriad of GARCH-

type models. Despite its relative simplicity, Hansen and Lunde (2005) show

that GARCH (1,1) produces robust volatility forecasts. Hansen and Lunde



2.2. VOLATILITY FORECASTING 37

(2005) implement the test for superior predictive ability (SPA) in order to

compare one-day forecasts from 330 GARCH-type models. The SPA test

allows comparison of multiple models and is based on the pairwise method-

ology developed by Diebold and Mariano (1995). The Hansen and Lunde

(2005) study show that GARCH (1,1) predicts out-of-sample forecast of

conditional variance on the DM-$ exchange rate that is equivalent to more

sophisticated models. A similar analysis of GARCH models is carried out

on IBM returns. Hansen and Lunde (2005) show that GARCH models that

capture volatility asymmetry outperform GARCH (1,1) in this context.

The GARCH (1,1) model uses the absolute values of the innovations not

their sign, therefore, both postive and negative price movements are modeled

identically. The asymmetric nature of asset volatility is captured by alter-

native speci�cations that take account of the fact that negative and positive

price shocks have di¤erent e¤ects on future volatility. Nelson�s (1991) ex-

ponential GARCH or EGARCH model introduces a leverage term into the

conditional variance equation, and is expressed as:

(2.3) log �2t = $ + �1 log �
2
t�1 + 


"t�1
�t�1

+ �1
j"t�1j
�t�1

;

where �; � and 
 are constant parameters. The use of logged conditional

variance, log �2t�1; relaxes the positiveness constraints. Furthermore, asym-

metry in volatility e¤ects is included through "t�1=�t�1 as long as 
 6= 0:
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When 
 < 0; positive shocks generate less volatility than negative shocks

(�bad news�) re�ecting conditions observed empirically.

The GARCH and E-GARCH models are applied to daily returns on each

FTSE-100 company included in the sample. A rolling estimation procedure

is used to generate parameter estimates, so that, the �rst rolling prediction�

gi;n+1(b�i;R); uses model parameter estimates b�i;n estimated using data obser-
vations 1 to n; the second prediction gi;n+2(b�i;n+1); is created using model
parameter estimates b�i;n+1 estimated from observation 2 to n + 1 and so

on. Overlapping GARCH and E-GARCH forecasts are generated for 10-

day, 30-day and 60-day horizons and ranked against implied volatility fore-

casts. Furthermore, non-overlapping GARCH and E-GARCH forecasts are

co-ordinated with 10�day non-overlapping implied volatility forecasts. The

three forecast methodologies are examined directly using regression analysis

and are also ranked using pairwise test statistics.

2.2.2. Testing Methodology

Two approaches are used to test volatility forecast accuracy: in-sample tests

based on Mincer-Zarnowitz regressions and out-of-sample predictive tests. A

standard Mincer-Zarnowitz (1969) regression of forecasts is set up as follows,

(2.4) RV h
k = �0 + �1f

h
k;m + ek;
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where RV h
k is the volatility experienced from day following the option trade

date to the end of the forecast horizon, fhk;m is the forecast is provided by one

of the selected models, m. The encompassing regression includes intraday

realized volatility observed on the day prior to the forecast date, RVk�1; as

an additional explanatory variable. The e¢ ciency of forecast models with

respect to observed realized volatility is thus examined,

(2.5) RV h
k = �0 + �1f

h
k + �2RVk�1 + ek;

An examination of regression output from an unbiased forecast model will

produce �0 = 0 and �1 = 1 and �2 = 0; if the forecast captures all the in-

formation contained in the observed volatility. The downward bias observed

in the slope coe¢ cient when implied volatility is regressed on subsequently

realized volatility has been attributed in part to errors in estimating the

implied volatility forecast. Christensen and Prabhala (1998) address the

errors-in-variables (EIV) problem in the context of examining the implied

and realized volatility relationship. The EIV problem is caused by a num-

ber of market and model related issues in the estimation of implied volatility

forecasts. Christensen and Prabhala (1998) point to the use of the Black-

Scholes model as one of a number of contributory factors since it does not
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allow for dividends and early exercise. This problem is overcome in this re-

search by the use of the Cox-Ross-Rubinstein (CRR) model that allows for

dividends and early exercise. The procedure used to estimate the composite

implied volatility excludes deep out-of-the-money options as well as con-

tracts with less than ten days to maturity, thus reducing the EIV problem

associated with bid-ask spreads in option prices. Christensen and Prabhala�s

(1998) study into index implied volatilities observes that non-synchronous

measurement of option prices and index levels contributed to the EIV prob-

lem. This is not a concern in the examination of the implied and realized

volatility relationship at the level of individual assets. In addition to carrying

out a regression-based analysis, a pairwise comparison of the performance

of two forecast models can be examined using the test statistic developed

by Diebold and Mariano (1995). The Diebold-Mariano (DM) test examines

the di¤erential loss from using model 1 g (e21i) versus model 2 g (e
2
2i) in any

period i, where the loss is typically given by the mean square error (e2i ).

The di¤erential loss in period i from using model 1 versus model 2 is then

di = g (e21i)� g (e22i) and the mean loss is,

(2.6) d =
1

H

HX
i=1

�
g
�
e21i
�
� g

�
e22i
��

If the predictive ability of both forecast models is equal then d = 0: The DM

test is robust over one-step ahead forecasts but is shown to be inconsistent

over longer forecast horizons. An encompassing test developed by Harvey,
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Leybourne and Newbold (HLN) (1998) adjusts the DM test statistic for use

over forecast horizons longer than 1-step ahead. If 
i is the i-th autocovari-

ance of the dt sequence and if the �rst q values of 
i are non-zero, then the

variance of d can be approximated by var(d) =
�

0 + 2
1 + :::+ 2
q

�
(H �

1)�1: The Harvey, Leybourne and Newbold (HLN) (1998) test statistic is

given as,

(2.7) HLN = d=
q�


0 + 2
1 + :::+ 2
q
�
=(H � 1):

The sample HLN statistic is compared to a t�statistic with H � 1 degrees

of freedom. In this research, the HLN statistic is an appropriate measure

since forecasts are evaluated across multi-step horizons. Results for the DM

test statistic are included for comparison.

2.3. Empirical Results

The sample period runs from 1st October 1997 to 31st December 2003 and

analysis was carried out on �fteen companies listed on the FTSE-100. The

companies used in this chapter are those for which options were contin-

uously traded over the entire sample period and daily contract volumes

were su¢ cient to enable estimation of the composite implied volatility fore-

cast. Analysing the regression coe¢ cients allows us to make inferences about

the quality of implied volatility forecasts as well as forecasts produced by

GARCH and E-GARCH models. Table 2.2 provides a summary of the key
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regression results for the series of overlapping forecasts. The complete set

of regression results are contained in Tables 2.2.1 to 2.2.15. The dependent

variable in each case is realized volatility observed across the 10-day, 30-day

and 60-day forecast horizon. The cross-section of results show wide variabil-

ity in the proportion of realized volatility explained by implied volatility.

The shortest maturity options (10-30 days) produce implied volatility fore-

casts with relatively strong predictive ability as measured by R2 in the case

of GlaxoSmithKline (21.32%), Hilton (21.92%), Hanson (42.11%), HSBC

(45.51%), King�sher (61.97%), Prudential (31.25%) and Reuters (27.16%).

Across the same forecast horizon, implied volatility has weak predictive abil-

ity in the case of Aviva, British Aerospace, British Airways, Cadburys, Di-

ageo, Dixons, Marks and Spencers and Royal Sun Alliance. This variation

in R2 is consistent with the �ndings reported in early studies by Chiras

and Manaster (1978) and Beckers (1981) on US equity stock options. The

explanatory power of equity options is not consistent across the companies

sampled. Furthermore, the proportion of realized volatility predicted using

equity options is in many cases lower than the predicted volatility associ-

ated with index options [Blair, Poon and Taylor (2001), Poteshman (2001)].

GARCH and E-GARCH forecasts demonstrate good explanatory power over

short horizons for a number of companies and this deteriorates markedly as

the forecast horizon is extended.
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The implied volatility bias observed in index options is not as prominent in

the results for equity options. The relatively neutral intercept term, �0 in the

majority of cases suggests that individual equity options are generally fairly

priced. Although implied volatility forecasts from short maturity options

over-estimate realized volatility in the case of King�sher, Prudential and

Reuters, this bias becomes negligble over longer forecast horizon. The low

forecast bias supports the idea that implied volatility is appropriately priced

for infrequently occurring jumps in volatility [Penttinen (2001)]. The use of

a composite implied volatility forecast based on options that are approxi-

mately ATM is likely to be a factor that minimizes the forecast bias. This

�nding contrasts with studies on index options, such as those by Christensen

and Prabhala (1998) on the S&P 100 and Ederington and Guan (2002) on

the S&P 500 that show a consistent positive bias for equity index options.

The results on UK equity options contained here are also inconsistent with

Gemmill�s (1986) study of UK equity options. The use of high frequency

intra-day returns to calculate actual volatility has been shown by Poteshman

(2000) to signi�cantly reduce the bias and this is a feature that distinguishes

the research here and the earlier study by Gemmill (1986).

The encompassing regression includes the realized volatility observed on the

day prior to the option trade date as an additional explanatory variable and

an examination of its coe¢ cient, �2; indicates the extent to which informa-

tion provided by observed intra-day volatility is incorporated into forecasts.
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Forecast e¢ ciency is supported by �2 = 0 and implied volatility forecasts

from short-maturity options produce estimates of �2 approximately close

to zero in the case of Cadburys (0.02), GlaxoSmithKline (-0.09), Hilton

(0.033), HSBC (0.051), Hanson (-0.099), Prudential (0.002) and Reuters

(-0.003). This �nding appears consistent across forecast horizons and rel-

atively low �2 coe¢ cients are also observable for GARCH and E-GARCH

forecasts. Although there has been no recent research into the information

content of equity options, some comparison can be made with encompassing

regressions carried out by Giot and Laurent (2007) in their study of S&P

100 and S&P 500 index options. Rather than use lagged realized volatil-

ity in the encompassing regression Giot and Laurent (2007) instead use the

continuous/jump decomposition of historical realized volatility. Index op-

tions exhibit a high information content with little additional information

produced by the switch from using solely implied volatility to using a model

that contains implied volatility and the full decomposition of realized volatil-

ity. The results reported in this chapter show that the precision of implied

volatility forecasts produced by equity indices is similarly produced in the

market for individual equity options.

Test statistics developed by Diebold and Mariano (DM) (1995) and Har-

vey, Leybourne and Newbold (HLN) (1998) facilitate a direct comparison

of implied volatility forecasts against the statistical techniques of GARCH

and E-GARCH. A summary of results for the HLN statistic across the long
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forecast horizon using overlapping samples is provided in Table 2.3. The en-

tire set of results for both the DM and HLN statistic are included in Tables

2.3.1-2.3.15. A comparison of implied volatility forecasts against GARCH

and E-GARCH forecasts across overlapping 10-day horizons supports the

use of GARCH and E-GARCH approaches in the majority of companies

sampled. Over the longest forecast horizon (60 days) implied volatility is

superior to statistical forecast methods in all but six companies, as measured

by the HLN statistic. The Durbin-Watson statistic indicates correlations in

the residual series resulting from the use of overlapping forecast horizons.

Christensen and Prabhala (1998) demonstrate that more robust results are

available by testing predictive ability across non-overlapping forecast hori-

zons. Forecasts are tested against the sum of daily squared returns experi-

enced over the ten-day period following the option trade date so that results

can be compared to the analysis of index options produced by Christensen

and Prabhala (1998). Results are also produced for a second series of re-

gressions that calculate the dependent variable from realized volatility over

the ten-day period following the option trade date, estimated using intra-

day data. Figures 1 to 5 illustrate the respective times series used in these

regressions. The upper panel plots implied volatility derived from options

with maturities between 10 and 60 days, scaled to a 10-step-ahead forecast

horizon. This panel also includes 10-step-ahead GARCH and E-GARCH

forecasts as well as realized volatility calculated using daily squared returns
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over that horizon. The centre panel compares realized volatility calculated

from intra-day returns against implied volatility over similar horizons. The

pattern of the two time series suggests that the positive bias of implied

volatility forecasts is justi�ed by occasional jumps in volatility in keeping

with Penttinen�s (2001) �ndings. From the lower panel, a wide variation

in the volume of option contracts traded on each day is observed. Table

2.4 reports the mean squared error (MSE) and mean absolute error (MAE)

produced by each of the forecast models across the non-overlapping ten-day

forecast horizon. The error measures show wide-variation in error terms for

the cross section of companies and evaluation across multi-step horizons pro-

duces large forecast errors in some cases, particularly Diageo, Hansen and

Reuters.

Tables 2.5 provides a summary of the results for the Mincer-Zarnowitz and

encompassing regressions across non-overlapping horizons. In the more de-

tailed results produced in Tables 2.5.1-2.5.14, it is clear from the Durbin-

Watson (DW) statistic reported for the series of MZ and encompassing re-

gressions demonstrates that the use of non-overlapping forecast horizons sig-

ni�cantly reduces correlation in the error terms. In almost all cases implied

volatility explains a signi�cant proportion of daily squared returns experi-

enced over the following 10-day period. The results from the MZ regression

show that, with the exception of British Airways and Dixons, implied volatil-

ity explains between 16% and 45% of daily squared returns. GARCH and
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E-GARCH forecasts also exhibit strong explanatory power for a number of

the companies sampled. Of the two statistical models considered a dominant

forecasting approach is not indicated by the MZ regression results, although,

E-GARCH forecasts provide greater explanatory power than GARCH in nine

of the �fteen companies sampled. Both statistical methods produce low R2

statistics for British Airways, Cadburys and Marks and Spencers. When re-

alized volatility is calculated from intraday data, the explanatory power of all

of the forecasting models considered shows a marked decline. Composite im-

plied volatility has an explanatory power greater than the time series models

in nine of the �fteen companies studied. Overall, implied volatility forecasts

explain more than 15% of subsequently realized volatility in only four stocks,

Aviva (15.84%), British Aerospace (16.14%), British Airways (15.64%) and

Dixons (18.60%). Furthermore, implied volatility forecasts produce a nega-

tive intercept term for the majority of companies, indicating that implied

volatility overestimates subsequently realized volatility. Interestingly the

sign�cant increase in explanatory power produced by the encompassing re-

gression suggests that implied volatility doesn�t fully incorporate informa-

tion available in intraday historical data in all cases. The use of implied

volatility and historical volatility as explanatory variables explains a signif-

icant proportion of realized volatility in the case of Aviva (20.40%), British

Aerospace (37.11%), British Airways (16.69%), Dixons (48.78%), Marks

and Spencers (30.89%), Prudential (47.30%) and Reuters (19.30%). When

examined across 10�day non-overlapping forecast horizons, the predictive
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ability of GARCH and E-GARCH forecasts is similarly inconsistent across

the sample of companies. The superiority of implied volatility forecasts

over GARCH-type forecasting methods supports the �ndings of Vasilellis

and Meade (1996).

Table 2.6 reports the results from pairwise tests of forecast accuracy across

the sample of non-overlapping horizons. The interested reader is directed

to Tables 2.6.1-2.6.14 for the entire set of results for both the HLN and

DM tests. Forecast accuracy is benchmarked against both daily squared re-

turns and realized volatility. Implied volatility is shown to provide superior

forecasts when ranked against either GARCH or E-GARCH models. The

HLN statistic for GlaxoSmithKline (-0.325) comparing implied volatility to

E-GARCH is the only instance where a time series model signi�cantly out-

performs implied volatility. Using the HLN test, the superiority of implied

volatility forecasts when ranked against GARCH forecasts is statistically sig-

ni�cant for Aviva, Cadburys, GlaxoSmithKline, HSBC, King�sher, Marks

and Spencers and Prudential when �true�volatility is approximated using

daily squared returns. Implied volatility signi�cantly outperforms GARCH

in the case of British Aerospace, British Airways, Diageo, Dixons and HSBC

when forecasts are benchmarked against realized volatility. The generally

positive HLN statistic for implied volatility compared to E-GARCH suggests

a marginal di¤erence in favour of implied volatility but the results are not

found to be statistically signi�cant in any of the companies sampled.
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2.4. Conclusion

UK equity options contain predictive information on stock volatility across

a range of forecast horizons. The results show that a composite implied

volatility produces forecasts that are signi�cantly better than sophisticated

time series methods in many cases. This �nding is consistent irrespective of

whether forecasts are benchmarked against daily squared returns or realized

volatility. The information content yielded by traded equity options has

applications in practical investment and risk management functions.

Risk-adjusted performance measures such as the Sharpe ratio and Jensen�s

alpha are now widely used to measure and rank fund performance. The re-

sults produced here suggest that the implied volatility is the optimal metric

of volatility across medium-term horizons and should be incorporated in the

allocation of asset weights. Relying solely on statistical forecasting methods

even over relatively short forecast horizons may omit important information

on volatility e¤ects caused by expected company announcements. Further-

more, equity options contain predictive information unavailable in historical

price patterns in the underlying asset. In the context of portfolios bench-

marked against an equity index, commercially available implied volatility

indices provide a useful signal. The construction of a composite implied

volatility estimate is shown here to provide information that is potentially
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useful for the management of active equity funds that are partially diversi-

�ed. In this context managers who engage in ad hoc rebalancing strategies

over short and medium intervals are likely to bene�t signi�cantly from the

predictive information contained in equity options data.
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2.5. Appendix A: Supporting Material for Chapter 2

Table 2.1: Descriptive statistics for daily realized volatility.
Stock Name Mean Std Dev Kurt. Skew.

Diageo (dge) 1.668 2.846 18.683 3.289
Hanson (hns) 1.368 2.955 44.265 5.316
RoyalSunAlliance (rsa) 1.111 2.369 34.654 4.917
Hilton (hg) 1.073 2.136 34.797 4.883
Aviva (av) 0.966 3.067 50.571 6.549
BritishAirways (ba) 0.901 1.577 26.440 4.170
King�sher (kgf) 0.850 1.671 29.371 4.376
Prudential (pru) 0.592 1.642 148.230 10.245
BritishAerospace (bae) 0.559 1.217 214.590 11.170
Cadburys (cbry) 0.472 1.397 250.451 13.480
Reuters (rtr) 0.422 0.873 105.57 8.397
Marks&Spencers (mks) 0.325 1.060 558.429 20.298
Dixons (dxn) 0.300 0.830 261.545 13.837
GlaxoSmithKline (gsk) 0.244 1.401 188.171 12.917
HSBC (hsbc) 0.238 0.941 150.089 11.008
Average 0.739 1.732 141.057 8.990
Mean, standard deviation, skewness and kurtosis for daily
realized volatility for FTSE-100 �rms from October 1997 to
December 2003 (1233 observations). The skewness and
kurtosis are computed as 1

n�1
P
t3� and

1
n�1

P
t4�, respectively,

after studentizing the relevant quantity, �, say, as t� =
(�t��)
�(�)

;

where �(�) is the standard deviation of �:
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Table 2.3: Summary results for the Harvey-Leybourne
Newbold (HLN) statistic comparing implied volatility (IV)
forecasts against GARCH and E-GARCH forecasts.
Statistic reported is for overlapping long-horizon (60-90
days) forecasts, dependent variable is daily squared returns.

Stock Name IV-GARCH IV-E-GARCH
Diageo (dge) 0.673 0.259
Marks&Spencers (mks) 0.639 0.297
HSBC (hsbc) 0.463 0.393
GlaxoSmithKline (gsk) 0.432 0.181
Cadburys (cbry) 0.283 -0.109
RoyalSunAlliance (rsa) 0.248 0.361
Prudential (pru) 0.210 -0.100
King�sher (kgf) 0.074 0.377
Hilton (hg) 0.033 0.114
BritishAerospace (bae) 0.026 0.147
BritishAirways (ba) 0.010 -0.004
Dixons (dxn) -0.008 -0.047
Aviva (av) -0.032 �0.124
Reuters (rtr) -0.039 -0.068
Hanson -0.069 0.278
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Table 2.4: Forecast errors measures for composite implied volatility (IV), GARCH
and E-GARCH forecasts across 10-day non-overlapping horizons. Forecast errors
are given by mean square error (MSE) and mean absolute error (MAE).

MSE MAE
Stock Name IV GARCH E-GARCH IV GARCH E-GARCH
Reuters (rtr) 156.00 157.52 160.98 7.57 7.57 7.81
Hanson (hns) 135.66 138.99 136.63 8.04 7.63 7.49
Diageo (dge) 130.06 149.33 153.31 7.90 8.09 7.91
RoyalSunAlliance (rsa) 84.91 85.25 85.81 5.43 5.45 5.40
Cadburys (cbry) 56.50 57.62 57.26 3.56 3.58 3.58
Prudential (pru) 27.98 28.55 28.34 3.40 3.45 3.48
King�sher (kgf) 24.87 24.15 24.31 3.65 3.59 3.62
Hilton (hg) 16.72 15.30 16.06 2.70 2.79 2.83
BritishAirways (ba) 15.52 16.96 18.37 2.51 2.78 2.92
Aviva (av) 15.46 15.22 14.93 2.22 2.22 2.24
BritishAerospace (bae) 12.10 13.75 13.86 2.43 2.55 2.56
GlaxoSmithKline (gsk) 11.74 11.74 11.72 1.47 1.47 1.48
Marks&Spencers (mks) 8.48 8.70 8.68 1.60 1.59 1.56
HSBC (hsbc) 3.91 4.00 4.01 1.17 1.27 1.26
Dixons (dxn) 3.54 3.90 3.85 1.15 1.28 1.25

The mean square error (MSE) is 1
H

HP
i=1

e2i and the mean absolute error (MAE) is

1
H

HP
i=1

jeij :
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Table 2.6: Summary results for the Harvey-Leybourne
Newbold (HLN) statistic comparing implied volatility (IV)
forecasts against GARCH and E-GARCH forecasts.
Statistic reported is for non-overlapping 10-Day horizon.
Dependent variable is realized volatility.

Stock Name IV-GARCH IV-E-GARCH
BritishAirways (ba) 0.355 -0.032
Dixons (dxn) 0.303 -0.044
HSBC (hsbc) 0.253 -0.007
BritishAerospace (bae) 0.246 -0.016
Diageo (dge) 0.217 0.135
Cadburys (cbry) 0.145 0.109
Marks&Spencers (mks) 0.137 0.097
Prudential (pru) 0.127 0.093
Reuters (rtr) 0.127 -0.046
Aviva (av) 0.123 0.144
RoyalSunAlliance (rsa) 0.108 -0.031
GlaxoSmithKline (gsk) -0.001 -0.325
King�sher (kgf) -0.001 -0.071
Hilton (hg) -0.010 -0.061
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Table 2.5.1: Aviva. Information content of implied volatility, GARCH and E-GARCH
over 10-day-ahead non-overlapping horizons. Realized volatility is the dependent
variable estimated from intraday tick data.

Number of Observations = 68 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 21.09% 16.46% 21.54% 15.84% 17.12% 18.71%

�0 -3.712 -3.591 -9.156 -1.715 -2.601 -4.964
(2.777) (3.170) (3.981) (1.606) (1.768) (2.268)

�1 1.598 2.260 3.460 0.775 1.290 1.805
(0.380) (0.626) (0.812) (0.220) (0.349) (0.463)

DW 0.841 0.927 0.860 2.130 2.290 2.326
Encompassing Regression

R-Square 22.39% 17.24% 22.62% 20.40% 20.28% 22.72%
�0 -3.671 -3.304 -8.857 -1.672 -2.276 -4.642

(2.776) (3.201) (3.996) (1.574) (1.759) (2.236)
�1 1.538 2.139 3.324 0.712 1.154 1.660

(0.384) (0.647) (0.825) (0.218) (0.355) (0.462)
�2 0.495 0.388 0.452 0.319 0.439 0.487

(0.474) (0.498) (0.475) (0.268) (0.273) (0.265)
DW 0.936 0.978 0.931 2.176 2.287 2.336

Table 2.6.1: Aviva. Pairwise comparison of implied volatility (IV) to GARCH /
E-GARCH forecasts, across 10�day-ahead non-overlapping horizons.

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV - GCH IV - E-GCH
Diebold Mariano 0.104 0.129 -0.026 0.073

(0.201) (0.201) (0.201) (0.201)
Harvey-Leybourne Newbold 0.269 0.175 0.123 0.144

(0.201) (0.201) (0.201) (0.201)
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Table 2.5.2
British Aerospace (Details on Table 2.5.1)

Number of observations = 56 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 16.04% 63.86% 66.59% 16.14% 4.70% 3.92%

�0 -2.156 -5.977 -11.100 -3.221 1.003 0.518
(3.622) (1.606) (2.021) (2.096) (1.531) (1.984)

�1 1.558 2.641 3.744 0.903 0.411 0.526
(0.484) (0.264) (0.360) (0.280) (0.252) (0.354)

DW 1.024 1.671 1.327 0.940 0.915 0.881
Encompassing Regression

R-Square 16.37% 64.85% 67.02% 37.11% 34.20% 34.55%
�0 -1.713 -5.969 -11.671 -1.124 1.222 0.662

(3.782) (1.622) (2.027) (1.898) (1.285) (1.653)
�1 1.461 2.632 3.689 0.456 0.146 0.257

(0.531) (0.275) (0.367) (0.266) (0.218) (0.300)
�2 0.638 0.113 0.696 3.018 3.391 3.402

(1.430) (0.878) (0.837) (0.718) (0.695) (0.683)
DW 1.034 1.664 1.291 1.478 1.545 1.533

See Table 2.2.1. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.2
British Aerospace (Details on Table 2.6.1)

IV-GCH IV - E-GCH IV - GCH IV - E-GCH
Diebold Mariano -0.239 0.036 0.130 -0.040

(0.222) (0.222) (0.222) (0.222)
Harvey-Leybourne Newbold 0.039 0.150 0.246 -0.016

(0.222) (0.222) (0.222) (0.222)

See Table 2.3.1. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.3
British Airways (Details on Table 2.5.1)

Number of observations = 58 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 0.05% 0.95% 2.35% 15.64% 7.83% 0.19%

�0 8.219 6.063 3.213 -0.871 0.431 3.623
(3.725) (3.934) (4.965) (1.728) (1.915) (2.534)

�1 0.072 0.407 0.807 0.620 0.588 0.117
(0.414) (0.554) (0.694) (0.192) (0.269) (0.254)

DW 0.866 0.963 1.024 1.775 1.608 1.388
Encompassing Regression

R-Square 0.23% 1.13% 2.65% 16.69% 13.72% 6.96%
�0 8.475 5.892 2.819 -0.557 -0.060 2.681

(3.843) (4.002) (5.092) (1.773) (1.887) (2.513)
�1 0.012 0.397 0.819 0.546 0.560 0.147

(0.459) (0.559) (0.700) (0.212) (0.263) (0.345)
�2 0.424 0.390 0.500 0.519 1.117 1.196

(1.348) (1.222) (1.212) (0.622) (0.576) (0.598)
DW 0.853 0.947 1.012 1.849 1.812 1.642

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.3
British Airways (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV-GCH IV-E-GCH
Diebold Mariano -0.062 0.075 0.130 -0.157

(0.218) (0.218) (0.218) (0.218)
Harvey-Leybourne Newbold -0.002 0.114 0.355 -0.032

(0.218) (0.218) (0.218) (0.218)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.4
Cadburys (Details on Table 2.5.1)

Number of observations = 51 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 21.37% 8.38% 5.06% 1.99% 0.045% 0.66%

�0 �0.960 0.448 0.628 -1.887 4.221 7.442
(1.318) (1.577) (1.944) (5.452) (5.983) (7.225)

�1 0.882 0.983 0.889 0.981 -0.262 -1.173
(0.242) (0.464) (0.550) (0.983) (1.760) (2.045)

DW 0.955 0.828 0.805 2.101 2.078 2.093
Encompassing Regression

R-Square 24.82% 11.64% 9.50% 4.47% 3.88% 5.00%
�0 -0.809 0.964 1.236 -1.429 6.255 9.623

(1.305) (1.612) (1.959) (5.344) (6.107) (7.290)
�1 0.821 0.777 0.659 0.796 -1.074 -2.000

(0.242) (0.485) (0.563) (0.994) (1.839) (2.096)
�2 0.403 0.399 0.459 1.219 1.576 1.648

(0.266) (0.300) (0.299) (1.091) (1.138) (1.113)
DW 1.009 0.834 0.805 2.131 2.136 2.145

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.4
Cadburys (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV -GCH IV - E-GCH
Diebold Mariano 0.225 -0.218 0.066 0.067

(0.233) (0.233) (0.233) (0.233)
Harvey-Leybourne Newbold 0.392 -0.135 0.145 0.109

(0.233) (0.233) (0.233) (0.233)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.5
Diageo (Details on Table 2.5.1)

Number of observations =62 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 17.52% 40.39% 48.32% 9.72% 0.35% 1.63%

�0 -0.692 -3.781 -6.402 -0.395 1.407 0.904
(2.686) (2.029) (2.077) (0.885) (0.826) (0.902)

�1 1.698 2.060 2.370 0.398 0.060 0.137
(0.475) (0.323) (0.316) (0.156) (0.131) (0.137)

DW 0.981 1.264 1.250 1.931 1.714 1.73-
Encompassing Regression

R-Square 20.97% 40.86% 48.33% 10.25% 2.79% 3.12%
�0 -0.167 -3.547 -6.471 -0.331 1.576 1.143

(2.670) (2.067) (2.173) (0.896) (0.835) (0.937)
�1 1.448 1.968 2.390 0.367 0.050 0.070

(0.494) (0.351) (0.358) (0.166) (0.142) (0.154)
�2 3.5664 1.352 -0.228 0.439 0.970 0.787

(2.221) (1.976) (1.916) (0.745) (0.798) (0.827)
DW 1.312 1.372 1.331 1.940 1.790 1.777

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.5
Diageo (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV - GCH IV - E-GCH
Diebold Mariano -0.160 0.116 0.114 0.098

(0.211) (0.211) (0.211) (0.211)
Harvey-Leybourne Newbold 0.202 0.198 0.217 0.135

(0.211) (0.211) (0.211) (0.211)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.6
Dixons (Details on Table 2.5.1)

Number of observations = 50 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 1.88% 29.76% 14.24% 18.60% 6.54% 4.05%

�0 1.703 -4.963 -0.961 -20.618 -5.007 -0.229
(3.189) (2.198) (2.078) (9.191) (8.022) (6.955)

�1 0.388 2.379 1.291 3.859 3.557 2.179
(0.404) (0.531) (0.457) (1.165) (1.940) (1.530)

DW 0.643 1.161 1.016 1.045 0.974 0.955
Encompassing Regression

R-Square 4.93% 32.87% 16.77% 48.78% 43.92% 42.20%
�0 1.247 -4.814 -0.758 -16.077 -6.646 -2.720

(3.194) (2.174) (2.076) (7.418) (6.286) (5.473)
�1 0.490 2.444 1.314 2.836 3.042 1.892

(0.410) (0.526) (0.455) (0.095) (1.521) (1.201)
�2 -0.233 -0.231 -0.208 2.325 2.538 2.561

(0.190) (0.156) (0.174) (0.441) (0.453) (0.459)
DW 0.698 1.208 1.061 1.591 1.547 1.479

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.6
Dixons (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV-GCH IV-E-GCH
Diebold Mariano -0.283 -0.214 0.145 -0.086

(0.235) (0.235) (0.235) (0.235)
Harvey-Leybourne Newbold -0.029 -0.142 0.303 -0.044

(0.235) (0.235) (0.235) (0.235)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.7
GlaxoSmithKline (Details on Table 2.5.1)

Number of observations: 52 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 31.54% 21.31% 31.06% 0% 0.02% 0.19%

�0 -2.017 -5.088 -6.314 1.359 1.025 2.521
(1.107) (2.108) (1.862) (1.752) (3.110) (2.933)

�1 1.071 2.338 2.549 0.012 0.103 -0.263
(0.186) (0.529) (0.447) (0.294) (0.781) (0.704)

DW 1.006 0.834 0.928 2.119 2.117 2.125
Encompassing Regression

R-Square 32.78% 22.10% 31.85% 2.49% 1.89% 2.41%
�0 -2.589 -4.703 -6.091 2.419 1.700 3.013

(1.212) (2.148) (1.881) (1.911) (3.156) (2.946)
�1 1.206 2.216 2.460 -0.237 -0.142 -0.460

(0.219) (0.549) (0.458) (0.346) (0.807) (0.718)
�2 -1.574 1.098 1.083 2.917 2.211 2.381

(1.373) (1.294) (1.196) (2.165) (1.900) (1.873)
DW 1.021 0.873 0.966 2.132 2.124 2.130

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.7
GlaxoSmithKline (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV - GCH IV - E-GCH
Diebold Mariano 0.129 0.167 -0.007 0.010

(0.193) (0.193) (0.193) (0.193)
Harvey-Leybourne Newbold 0.366 0.294 -0.001 -0.325

(0.193) (0.193) (0.193) (0.193)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.8
Hilton Group (Details on Table 2.5.1)

Number of observations = 46 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 23.53% 19.59% 32.32% 5.32% 13.36% 9.02%

�0 -5.009 -5.063 -8.381 1.168 -1.660 -0.334
(3.694) (4.148) (3.709) (2.493) (2.611) (2.608)

�1 1.894 2.461 2.839 0.546 1.233 0.910
(0.514) (0.751) (0.619) (0.347) (0.473) (0.435)

DW 0.587 0.875 0.887 2.050 1.994 2.029
Encompassing Regression

R-Square 23.77% 21.40% 33.70% 14.03% 17.68% 15.84%
�0 -4.990 -6.057 -8.697 1.099 -0.798 0.091

(3.731) (4.242) (3.729) (2.405) (2.637) (2.547)
�1 1.924 2.781 2.989 0.435 0.956 0.707

(0.526) (0.807) (0.640) (0.339) (0.501) (0.437)
�2 -0.239 -0.755 -0.586 0.875 0.654 0.789

(0.651) (0.701) (0.619) (0.419) (0.436) (0.423)
DW 0.574 0.925 0.903 2.103 2.014 2.058

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.8
Hilton Group (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV - GCH IV - E-GCH
Diebold Mariano 0.059 0.401 -0.080 -0.114

(0.246) (0.246) (0.246) (0.246)
Harvey-Leybourne Newbold 0.237 0.537 -0.010 -0.061

(0.246) (0.246) (0.246) (0.246)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.9
HSBC (Details on Table 2.5.1)

Number of observations = 73 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 45.27% 40.71% 42.45% 2.57% 0.13% 0%

�0 -2.736 -3.417 -4.973 0.384 1.705 1.479
(0.898) (1.075) (1.248) (0.798) (0.930) (1.096)

�1 1.192 1.815 2.153 0.189 -0.068 -0.011
(0.155) (0.260) (0.297) (0.138) (0.224) (0.261)

DW 1.083 1.180 1.147 1.200 1.227 1.230
Encompassing Regression

R-Square 45.61% 42.46% 44.14% 2.71% 0.90% 0.68)
�0 -2.653 3.328 -4.835 0.419 1.744 1.537

(0.910) (1.069) (1.242) (0.811) (0.935) (1.104)
�1 1.162 1.747 2.076 0.176 -0.098 -0.044

(0.162) (0.262) (0.299) (0.144) (0.229) (0.266)
�2 0.466 1.032 1.012 0.197 0.456 0.428

(0.704) (0.706) (0.696) (0.627) (0.618) (0.619)
DW 1.061 1.190 1.012 1.207 1.246 1.247

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.9
HSBC (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV - GCH IV - E-GCH
Diebold Mariano 0.077 0.076 0.105 -0.030

(0.194) (0.194) (0.194) (0.194)
Harvey-Leybourne Newbold 0.405 0.156 0.253 -0.007

(0.194) (0.194) (0.194) (0.194)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.10
King�sher (Details on Table 2.5.1)

Number of observations = 71 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 17.54% 15.39% 15.98% 0% 2.89% 2.25%

�0 -0.130 -0.618 -1.553 4.701 7.675 7.680
(1.725) (1.987) (2.193) (3.024) (2.510) (2.838)

�1 1.618 1.488 1.662 -0.006 -0.614 -0.607
(0.298) (0.414) (0.452) (0.437) (0.492) (0.554)

DW 0.905 1.112 1.094 1.440 1.429 1.426
Encompassing Regression

R-Square 17.85% 15.74% 16.15% 14.26% 17.18% 16.19%
�0 -0.171 -0.643 -1.527 5.655 7.107 7.032

(1.736) (1.998) (2.207) (2.846) (2.348) (2.663)
�1 1.416 1.458 1.631 -0.299 -0.701 -0.674

(0.303) (0.419) (0.461) (0.421) (0.460) (0.518)
�2 0.183 0.193 0.138 1.087 1.058 1.044

(0.357) (0.361) (0.363) (0.019) (0.012) (0.014)
DW 0.926 1.122 1.100 1.448 1.402 1.419

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.10
King�sher (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV - GCH IV - E-GCH
Diebold Mariano 0.040 0.030 -0.092 -0.097

(0.194) (0.194) (0.226) (0.226)
Harvey-Leybourne Newbold 0.379 0.088 -0.001 -0.071

(0.194) (0.194) (0.226) (0.226)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.11
Marks and Spencers (Details on Table 2.5.1)

Number of observations = 59 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 25.51% 6.46% 5.32% 10.19% 7.90% 8.14%

�0 -0.132 3.120 2.898 -1.458 -0.794 -1.367
(1.419) (1.467) (1.732) (1.403) (1.310) (1.536)

�1 0.956 0.582 0.609 0.544 0.579 0.677
(0.216) (0.293) (0339) (0.213) (0.262) (0.301)

DW 1.206 1.189 1.158 1.816 1.653 1.662
Encompassing Regression

R-Square 28.58% 12.00% 11.10% 30.89% 31.85% 32.64%
�0 -0.123 2.798 2.511 -1.437 -1.397 -2.084

(1.402) (1.445) (1.705) (1.241) (1.145) (1.336)
�1 0.914 0.578 0.616 0.445 0.570 0.690

(0.215) (0.287) (0.332) (0.190) (0.227) (0.260)
�2 0.745 0.994 1.014 1.744 1.861 1.882

(0.481) (0.529) (0.532) (0.425) (0.419) (0.417)
DW 1.176 1.134 1.093 2.095 1.853 1.857

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.11
Marks and Spencers (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV - GCH IV - E-GCH
Diebold Mariano 0.299 -0.084 0.049 0.034

(0.216) (0.216) (0.216) (0.216)
Harvey-Leybourne Newbold 0.342 -0.053 0.137 0.097

(0.216) (0.216) (0.216) (0.216)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.12
Prudential (Details on Table 2.5.1)

Number of observations = 68 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 36.53% 26.53% 23.54% 5.79% 3.86% 4.58%

�0 -4.339 -2.448 -5.212 -0.551 0.356 -1.417
(1.879) (1.973) (2.722) (2.296) (2.263) (3.049)

�1 1.545 1.956 2.621 0.617 0.749 1.160
(0.250) (0.400) (0.581) (0.306) (0.459) (0.651)

DW 1.034 0.993 0.866 1.390 1.426 1.294
Encompassing Regression

R-Square 41.42% 30.62% 27.30% 47.30% 44.91% 44.92%
�0 -4.536 -2.448 -4.916 -1.128 0.357 -0.447

(1.821) (1.932) (2.679) (1.732) (1.726) (2.339)
�1 1.503 1.858 2.460 0.494 0.439 0.630

(0.243) (0.395) (0.578) (0.231) (0.353) (0.504)
�2 0.997 0.916 0.881 2.912 2.911 2.896

(0.427) (0.468) (0.480) (0.407) (0.418) (0.419)
DW 1.100 0.981 0.847 1.540 1.540 1.503

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.12
Prudential (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV - GCH IV - E-GCH
Diebold Mariano 0.132 -0.092 0.064 0.058

(0.201) (0.201) (0.201) (0.201)
Harvey-Leybourne Newbold 0.270 -0.008 0.127 0.093

(0.201) (0.201) (0.201) (0.201)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.13
Royal Sun Alliance (Details on Table 2.5.1)

Number of observations = 58 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 22.54% 22.64% 31.44% 2.57% 2.18% 1.54%

�0 -2.966 -5.053 -8.944 2.518 2.222 2.772
(3.474) (3.961) (3.943) (4.195) (4.796) (5.088)

�1 1.661 2.823 3.349 0.604 0.943 0.799
(0.411) (0.697) (0.660) (0.496) (0.844) (0.852)

DW 0.727 0.918 0.961 1.703 1.697 1.689
Encompassing Regression

R-Square 24.06% 23.88% 32.58% 7.89% 7.49% 7.13%
�0 -3.081 -4.984 -8.917 2.287 2.376 2.838

(3.472) (3.966) (3.946) (4.117) (4.707) (4.986)
�1 1.589 2.695 3.239 0.459 0.658 0.539

(0.416) (0.711) (0.670) (0.494) (0.844) (0.847)
�2 0.600 0.545 0.520 1.210 1.213 1.241

(0.572) (0.576) (0.540) (0.679) (0.683) (0.682)
DW 0.751 0.929 0.975 1.841 1.830 1.827

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.13
Royal Sun Alliance (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV - GCH IV - E-GCH
Diebold Mariano -0.002 0.265 0.041 -0.063

(0.218) (0.218) (0.218) (0.218)
Harvey-Leybourne Newbold 0.151 0.334 0.108 -0.031

(0.218) (0.218) (0.218) (0.218)

See Table 2.2b. Note: Results contained here are for non-overlapping forecast horizons.
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Table 2.5.14
Reuters (Details on Table 2.5.1)

Number of observations = 60 Daily Squared Returns Realized Volatility

MZ Regression IV GCH E-GCH IV GCH E-GCH
R-Square 17.76% 18.41% 12.99% 9.85% 8.97% 6.97%

�0 -6.024 1.303 3.454 -6.274 2.448 4.093
(5.735) (3.646) (3.722) (8.664) (5.557) (5.554)

�1 2.328 1.823 1.425 2.502 1.837 1.507
(0.657) (0.504) (0.484) (0.993) (0.768) (0.722)

DW 0.977 1.092 0.965 1.217 1.214 1.228
Encompassing Regression

R-Square 18.07% 18.44% 13.02% 19.30% 17.07% 15.00%
�0 -6.306 1.241 3.405 -8.553 1.036 2.971

(5.807) (3.700) (3.769) (8.316) (5.384) (5.377)
�1 2.315 1.813 1.414 2.395 1.610 1.255

(0.663) (0.512) (0.494) (0.949) (0.745) (0.705)
�2 0.974 0.324 0.318 7.841 7.341 7.338

(2.127) (2.138) (2.216) (3.046) (3.111) (3.161)
DW 0.980 1.092 0.968 1.296 1.279 1.281

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.

Table 2.6.14
Reuters (Details on Table 2.6.1)

Daily Squared Returns Realized Volatility

IV - GCH IV - E-GCH IV- GCH IV - E-GCH
Diebold Mariano -0.015 -0.185 0.027 -0.083

(0.214) (0.214) (0.214) (0.214)
Harvey-Leybourne Newbold 0.134 -0.119 0.127 -0.046

(0.214) (0.214) (0.214) (0.214)

See Table 2.2a. Note: Results contained here are for non-overlapping forecast horizons.
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CHAPTER 3

An Investigation into Fractional Dynamics in UK

Equity Volatility

3.1. Introduction

Successful modeling and forecasting of �nancial asset volatility relies on

accurate measures of how shocks persist in the autocorrelation function. In

an I(0) process, shocks decay at an exponential rate while no mean reversion

occurs in an I(1) process. A fractionally integrated long memory process is

de�ned as I(d); that is, fractionally integrated of order d if its d�th di¤erence

is I(0); where d can be any real number. This is based onMcLeod and Hipel�s

(1978) de�nition of a fractionally integrated long memory process yt; that is

integrated of order d, or I(d) if

(3.1) (1� L)dyt = ut

where L is the lag operator, �0:5 < d < 0:5 and ut is stationary. In a

fractionally integrated long memory process shocks decay at a slow rate

and cannot be modelled using a �nite number of autoregressive and moving

average terms. Baillie and King (1996) originate the concept of fractionally

92
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integrated processes and long memory processes with studies in hydrology by

Hurst (1951, 1957) and Mandelbrot and Wallis (1968). The introduction of

I(d) models into economics and �nance however didn�t occur until the 1980s

with the development of the autoregressive fractionally integrated moving

average (ARFIMA) process by Granger (1980), Granger and Joyeux (1980)

and Hosking (1981) and Geweke and Porter-Hudak�s (1983) development of

an e¤ective technique for measuring the d parameter.

Over the past twenty years, studies in economics and �nance have mapped

long memory e¤ects in a range of data sets. The nonlinear Exponential

Smooth Autoregressive model (ESTAR) allows for long-range persistence

in low level shocks and it has been used by Taylor, Peel and Sarno (2001)

and Kilian and Taylor (2003) to describe the dynamics of purchasing power

parity (PPP) deviations. Paya and Peel (2006) use simulation and bootstrap

methods to show that estimates of the speed of adjustment to shocks are

upwardly biased in the ESTAR model and must be adjusted for. In a review,

Baillie (1996) notes that evidence of long memory has been found in forward

premums, interest rate di¤erentials and rates of in�ation as well as in the

volatility of �nancial asset returns. Empirical analysis of spot exchange rates

by Baillie and Bollerslev (1994) and Diebold, Husted and Rush (1991) and

S&P 500 volatility by Bollerslev and Mikkelsen (1996) have identi�ed a level

of persistence in the autocorrelation function that is consistent with an I(d)

process with 0 < d < 1.



3.1. INTRODUCTION 94

Granger (1998) challenges the evidence supporting long memory and makes

the distinction between �true�long memory arising out of fractional integra-

tion and �spurious�long memory produced by structural breaks in volatility.

Granger and Hyung�s (2004) analysis of S&P 500 data shows that struc-

tural breaks in volatility can reproduce a hyperbolic rate of decay in auto-

correlations. Motivated by the renewed debate on long memory e¤ects in

asset volatility, this chapter tests for the presence of fractional integration

in the realized volatility series of sixteen FTSE-100 companies, where re-

alized volatility is constructed from intraday tick data. Implied volatility

backed out of the market prices of traded equity options are similarly tested

for the presence of long memory and the results for fractional integration

are checked for false positives that could be induced by structural breaks.

A second objective is to examine whether fractional integration in realized

volatility informs our understanding of the long-run relationship between

realized volatility and option implied volatility. Using testing procedures de-

veloped by Robinson and Yajima (2002) and Nielsen and Shimotsu (2007),

the implied and realized volatility series of individual equities are jointly

tested for fractional cointegration and the cointegrating rank of these series

is determined.

This chapter shows that the realized and implied volatility series for a num-

ber of FTSE-100 companies are fractionally integrated. The results also

reveal a signi�cant degree of variation in the levels of long-run dependence
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among the cross-section of companies sampled. The validity of this �nding

is tested by examining the time domain properties of each series using tests

developed by Shimotsu (2006). These tests consider the presence of �spuri-

ous�long memory induced by structural breaks and the results show that

although there is evidence of structural breaks it is not su¢ cient to explain

the level of persistence found in our sample. This robust examination and

con�rmation of fractional integration in both realized volatility and implied

volatility extends similar �ndings on equity indices produced by Bandi and

Perron (2006). The results highlight the weakness of traditional volatility

modelling approaches to fully capture the dynamics of equity volatility. This

chapter also shows that the realized and implied volatility of individual eq-

uities can be fractionally cointegrated. An examination of the cointegrating

rank of the two series shows that a maximum of one cointegrating relation-

ship exists between the implied and realised volatility series of a number of

FTSE-100 companies. The evidence of a long-run equilibrium relationship

has potential implications for both the signal function of options markets

and the optimal implementation of derivative strategies that use both op-

tions and the underlying asset. In this chapter, implied and realized volatil-

ity series on FTSE-100 companies are robustly tested for the presence of

long memory in this manner. Los (2005) shows that long memory e¤ects are

relevant in the construction of appropriateValue-at-Risk (VAR) estimates,

while Taylor (2001) and others demonstrate its non-negligible e¤ects on op-

tions pricing. Thus, the results found here have important consequences for
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the development of e¤ective risk management and asset allocation strategies

involving UK equities.

The remainder of this chapter proceeds as follows. Section 3.2 comprises

a review of the current research on long memory e¤ects in �nancial data.

Section 3.3 describes the construction of the realized and implied volatility

time series used in this paper. It also describes the methods used to measure

long memory and how the long-run relationship between implied and realised

volatility is modeled. Section 3.4 discusses our empirical �ndings and Section

3.5 concludes.

3.2. Implied Volatility and Long Memory

Lo (1991) points out that long-term forecasting, optimal consumption /sav-

ings decisions, portfolio optimisation and the pricing of derivatives are all

sensitive to the investment horizon. Given the evidence of long memory ef-

fects in �nancial and economic time series, both Lo (1991) and Sowell (1992)

note that long term forecasts should allow for greater �exibility in the order

of integration. Similarly, Engle and Patton (2001) recommend the inclusion

of volatility characteristics such as mean-reversion, asymmetric e¤ects and

persistence if a volatility forecast is to be used e¤ectively in portfolio and
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risk management applications. The requirement to allow for long-run persis-

tence in volatility encouraged the development of fractionally integrated vari-

ants of the autoregressive integrated moving average (ARIMA) and gener-

alized autoregressive conditional heteroskedasticity (GARCH) class of mod-

els. The ARFIMA (p,d,q) model introduced by Granger and Joyeux (1980)

and Granger (1980, 1981) and the fractionally integrated GARCH (p,d,q)

(FIGARCH) model of Baillie, Bollerslev and Mikkelsen (1996) allow d to as-

sume values between 0 and 1, thus producing forecasts that allow the e¤ect

of shocks to dissipate hyperbolically over time. The application of the latter

model by Bollerslev and Mikkelsen (1996) shows that it e¢ ciently captures

the mean-reversion properties of S&P 500 volatility. This evidence support-

ing fractional integration in �nancial data was reinforced by Breidt, deCrato

and Lima (1998) who used semiparametric techniques to identify long mem-

ory e¤ects in both the squared returns and the logarithms of squared returns

estimated from daily data on several market indices. An important obser-

vation was made by both Robinson (1978) and Granger (1980) who found

that long memory e¤ects can emerge in equity index volatility as a result of

aggregation even though the individual series do not exhibit this character-

istic.

There are however a number of studies that have looked at individual �-

nancial time series data. Barkoulas and Baum (1997) examine daily returns

data on thirty companies quoted on the Dow Jones Industrial Average Index
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(DJIA). Evidence supporting long memory e¤ects is sparse, with no frac-

tal structure identi�ed in the returns series of twenty-two of the companies

sampled. Ray and Tsay (2000) randomly select 100 S&P 500 companies

and �nd strong evidence of long range dependence in the volatility structure

of the majority of companies sampled. Levels of persistence were similar

among �rms from the same industry implying that, if �rms are categorised

by industry, �rm volatilities are driven by common components and are thus

tied together in the long run. The greater availability of high-frequency data

on �nancial assets has encouraged research into the relationship between in-

traday periodicity and long memory e¤ects. Andersen and Bollerslev (1997)

attempt to resolve the short-run decay associated with news arrivals in in-

traday data and long memory e¤ects observed in daily returns. In a sample

of 5-minute returns on the DM-$ exhange rate, they found that this con�ict

could be resolved by adjusting for the U-shape observed in the intra-day

periodic structure, i.e. volatility is high at the open and close of trading.

An examination of 5-minute return volatility in US Treasury bond futures

by Bollerslev, Cai and Song (2000) also shows that long memory e¤ects be-

come more prominent once adjustments were made to account for repetitive

intra-day trading patterns.

Evidence of long-run dependence in asset volatility has been used to ex-

plain a number of empirical anomalies in option pricing. Using simulations

to generate prices for hypothetical long-term equity anticipation securities
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(LEAPS) on the S&P 500 index, Bollerslev and Mikkelsen (1996) show the

importance of modeling long memory e¤ects in option pricing. The results

produced by Bollerslev and Mikkelsen (1996) indicate that the S&P 500 In-

dex is e¢ ciently modeled by a fractionally integrated process. Sundaresan

(2000) suggests that long memory can explain some of the empirical anom-

alies that arise using standard option pricing models. The more pronounced

smile e¤ect observed in short-maturity options compared to long-term op-

tions is identi�ed as a possible consequence of long memory e¤ects being

omitted from the modeling procedure.

The evidence supporting fractional integration in �nancial data has encour-

aged research into the nature of the long-run relationship between fractional

series. While cointegration traditionally examines nonstationary I(1) series

for the presence of stationary I(0) linear relations, fractional cointegration

facilitates greater �exibility when modelling the relationship between series.

The concept of fractional cointegration has applied in a number of contexts

within econometrics. For example, Davidson, Peel and Byers (2006) use

a fractionally cointegrating error correction model (FVECM) to describe

patterns in UK political poll results and Cheung and Lai (1993) as well as

Robinson and Marinucci (2001) have examined the presence of fractional

cointegration in �nancial data. Given the documented existence of frac-

tional integration in �nancial asset volatility, Robinson and Yajima (2002)

and Nielsen and Shimotsu (2007) have developed more rigorous techniques
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that facilitate investigation into potential long-run equilibrium relationships

between series that are not strictly I(1): An examination of the long-run

relationship between realized volatility and implied volatility on the S&P

100 by Bandi and Perron (2006) has shown some evidence of fractional coin-

tegration. Their �ndings are closely related to the forecasting literature

which shows that although implied volatility contains predictive informa-

tion it consistently overestimates subsequently realized volatility. This has

been demonstrated in the case of equity indices by Christensen and Prab-

hala (1998) and for individual equities by Garvey and Gallagher (2007).

The positive bias has been partially attributed to the use of overlapping

data, errors-in-variables and missing variables which can compromise the

results produced by the classical regression approach used in previous stud-

ies [Christensen and Prabhala (1998)]. Pan (2002) has shown that a jump-

risk premium can be observed in option prices and that this premium has

a positive relationship with volatility levels in the underlying market. This

�nding is clearly an important factor when attempting to understand the

dynamics of the implied-realized volatility relationship and it has motivated

the addition of a volatility risk premium to the implied-realised volatility

regression described in (3.14) below [Poteshman (2000), Chernov (2007)].

Bandi and Perron (2006) point out that explicitly accounting for a time-

varying risk premium in this manner can be misleading. Their study shows

that an examination of the long run implied-realised relationship using semi-

parametric techniques avoids the issues associated with a classical regression
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approach by focusing on very low (harmonic) frequencies and ignoring short-

run dynamics.

The primary objective of this chapter is to establish the presence of frac-

tional integration in the implied and realized volatility series of individual

equities. Establishing a robust estimate of the long memory parameter is

complicated by the existence of structural breaks which have been shown to

induce persistence in asset volatility. Hamilton and Susmel (1994), Granger

and Marmol (1997), Mikosch and Starica (1999) and Granger and Hyung

(2004) all show that regime-switching or occasional break models can pro-

duce the long memory property in a �nite sample. Using the semi-parametric

GPH estimator described later in this paper, Granger and Hyung (2004)

show that extracting the long memory properties in the autocorrelation of

a break model becomes more di¢ cult as the number of breaks increases.

Results from an investigation into the macroeconomic determinants of stock

market volatility by Morana and Beltratti (2004) suggests that volatility

of the S&P 500 is characterised by both structural changes and long mem-

ory. They also show that breaks in the volatility of macroeconomic factors

such as interest rates and money growth, produces breaks in stock market

volatility. Shimotsu (2006) shows how sample splitting and d�th di¤erencing

can be used to distinguish between true long memory and a spurious long

memory process that is produced by structural breaks. Empirical analysis

of realized volatility on the S&P 500 Index by Shimotsu (2006) as well as
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Morana and Beltratti (2004) shows that persistence is likely to be explained

both by regime shifts and long memory e¤ects.

Ohanissian, Russell and Tsay (2008) examine the relevance of distinguish-

ing between �true�long memory or fractional integration and �spurious�long

memory that is produced by regime-shifts in the volatility process. Under

the assumptions that the true volatility model is known and can be esti-

mated, the omission or mispeci�cation of the long memory parameter leads

to signi�cant option mispricing. If actual volatility follows a �spurious�long

memory process and it is modelled as a short memory or �true�long memory

process then the resulting call options will be underpriced. Furthermore,

when volatility follows a �true�fractionally integrated process, then the use

of either a short-memory model or a �spurious� long memory model leads

to an overpricing of call options. These �ndings by Ohanissian, Russell and

Tsay (2008) clearly illustrate the importance of correct speci�cation of the

persistence parameter for market participants.

3.3. Modeling Volatility

Data on both individual FTSE-100 stocks and their related options for the

period 1st October 1997 to 31st December 2003 are obtained from the Lon-

don Stock Exchange (LSE) and the London International Financial Futures

Exchange (LIFFE) respectively. I select the maximum number of FTSE-100

stocks (sixteen) for which options data is continuously available over that
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time period. Implied volatility estimates are backed out of traded prices

of American-style individual equity options traded on the London Interna-

tional Financial Futures Exchange. Tick-by-tick price data obtained from

the London Stock Exchange is used to construct a time series of realised

volatility for each FTSE-100 stock included in the study.

Volatility is estimated nonparametrically using this high-frequency data,

however the raw price series must be adjusted for the presence of noise due

to imperfections of the trading and recording process. Each price series used

in our sample �rst undergoes a �ltering process that removes non-unique and

incorrect observations. Once these so-called market microstructure e¤ects

are corrected for, the irregular tick-by-tick price series is then converted to

regular series of thirty-minute intervals. Research by Oomen (2006) dis-

tinguishes between sampling schemes based on transaction time, business

time, and calendar time. Based on IBM transaction data over the period

2000-2004, Oomen (2006) shows that the mean square error (MSE) of re-

alised volatility can be reduced by sampling returns on a transaction time

scale rather than the more common sampling approach using calendar time.

However, if market microstructure noise is dominant then the simplicity

of calendar time sampling may produce superior estimates. Oomen (2006)

results show that the optimal sampling frequency of about 3 minutes was

strongly dependent on variations related to market liquidity.
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In this chapter, calendar time sampling is used by selecting the mid-price

recorded closest to the end of each thirty-minute interval between 8.30am

and 4.30pm each day. Given the range of stocks included in our sample

the interval length is arbitrarily selected as a tradeo¤ between market mi-

crostructure e¤ects and the accuracy associated with approximations at

higher frequencies. The approximation of �true� volatility from high fre-

quency data has become increasingly sophisticated. Empirical evidence from

foreign exchange and equity markets has pointed to a daily U-shaped pattern

in return volatility [Andersen and Bollerslev (2003)]. Calendar time sam-

pling does not take account of this repetitive intraday trading pattern. The

creation of a regularly spaced time series using calendar time sampling also

excludes a signi�cant amount of intraday data [Zhang and Mykland (2006)].

Despite this valid criticism, Andersen, Bollerslev, Diebold and Labys (2003),

Barndor¤-Nielsen and Shephard (2004) and Meddahi (2002) show that sam-

pling intraday tick prices in this manner produces accurate estimates of

integrated variance. Shimotsu�s (2006) study on identifying long memory

e¤ects also uses this approach to estimate daily realized volatility of the

S&P 500 index. The use of calendar time sampling as a preliminary step

in estimating realized volatility on UK equities facilitates later comparison

against Shimotsu�s (2006) results. Daily realized volatility is calculated as

the sum of thirty-minute squared returns. Annualized realized volatility is

calculated as follows
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(3.2) �Rt =

vuut 1

n

ntX
j=1

r2j � 252;

where rj is the sum of the 30-minute squared returns calculated on day

j; and n is the number of days from option trade date to option expiry,

assuming 252 working days in the year.

The implied volatility series is calculated as a weighted average of implied

volatility from the four closest-to-the-money options traded on each day.

This follows the approach used by commercial providers of implied volatil-

ity indices and has been shown by Ederington and Guan (2002) to provide

stronger forecasts than approaches that include away-from-the-money op-

tions data. To mitigate correlation in the residuals a nonoverlapping se-

ries is created by selecting options traded on the �rst business day of each

month with a maturity between 15-22 days. The weighted implied volatility

backed out of those options are used to contruct our implied volatility series.

The matching realized volatility series is calculated as the average realized

volatility of the underlying asset experienced over the life of the option.

Preliminary statistics for the implied and realized volatility series are con-

tained in Table 3.1. For the cross-section of companies considered in this

paper, the sample average implied volatility (38.6%) exceeds subsequently

realized volatility (33.9%). This somewhat supports the empirical evidence

of a positive bias in option implied volatilities. Average levels of kurtosis are
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also similar for both implied and realized volatility while both series display

similar levels of positive skewness. This suggests that stock price volatility

and option prices are driven by broadly similar dynamics.

Testing for Long Memory

There are a number of methods used to test for long memory in time series,

with some of the earlier approaches such as the rescaled range (R/S) statistic

developed by Hurst (1951, 1957) discussed in Baillie (1996). However, Lo

(1991) shows that the R/S statistic is not robust to short memory and

heteroskedasticity and proposes a modi�ed version,

(3.3) QT = RT=�T (q);

where R is the range,

(3.4) RT = max
06j6T

(
TX
j=1

(yj � jy)

)
� min
06j6T

(
TX
j=1

(yj � jy)

)
;

and the sample standard deviation, �T (q); is available from

(3.5) �2T (q) = c0 + 2

qX
j=1

wj(q)cj;

where y is the series under consideration, T is the number of observations

available and y is the sample mean. In (3.5) above, cj is the jth-order sample



3.3. MODELING VOLATILITY 107

autocovariance of yt and wj(q) are the Bartlett window weights of,

(3.6) wj(q) = 1� [j=(q + 1)] for q < T:

Baillie (1996) notes that no criteria exists for the optimal choice of q and its

use is not supported by simulation tests.

The use of semi-parametric methods does not require us to make any as-

sumptions about the short-run dynamics of the series under consideration.

Two semi-parametric estimators that provide relatively consistent estimates

of the persistence parameter d are applied. Speci�cally, the memory pa-

rameter d is estimated using the log-periodogram approach proposed by

Geweke and Porter-Hudak (1983) and the feasible exact local Whittle esti-

mator developed by Shimotsu and Phillips (2005). Both approaches assume

the spectral density, f(�) of the process Xt satis�es

f(�) � G��2d; as �! 0+;

where d 2 (�1
2
; 1
2
) and G 2 (0;1): Robinson (1995) de�nes a long memory,

fractionally integrated process as follows

(3.7) (1� L)dXt = ut;
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where L is the lag operator and ut is a covariance stationary process whose

spectral density is bounded and bounded away from zero at the zero fre-

quency � = 0: The approach developed by Geweke and Porter-Hudak (GPH)

(1983) is based on the following log-periodogram (LP) regression,

(3.8) lnP (�s) = c� d ln(4(sin2(
�s
2
))) + "(�s);

where the periodogram of the data is Px(�s) = jwx(�s)j2 and is computed at

the following Fourier frequencies close to zero, �s = 2�s
n
(s = 1; :::;m < n

2
),

c is a constant and " denotes the regression residual. The discrete Fourier

transform is de�ned as

(3.9) wx(�s) = (2�n)
�1=2

nX
t=1

Xte
it�s

and the estimator is semi parametric in that it only employs local assump-

tions (near the zero frequency) and treats the spectral density away from

the origin nonparametrically. The distribution of the long memory para-

meter, d will be asymptotically normal with the variance �2=6n: The GPH

approach is relatively simple to apply, although Geweke and Porter-Hudak

(1983) show that it is biased and ine¢ cient when the regression residuals

are substantially autocorrelated.

An alternative estimation procedure is the local Whittle (LW) estimator

originally developed by Kunsch (1987) and Robinson (1995). LW estimation
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uses the following Gaussian objective function,

(3.10) Qm(G; d) =
1

m

mX
s=1

�
log(G��2ds ) +

�2ds
G
Px(�j):

�

�s =
2�s
n
; s = 1; :::; n and estimation takes place over the bandwidth, m;

which is some integer less than n: The LW estimator minimizes Qm(G; d)

and Robinson (1995) shows that the asymptotic standard errors for this

estimator are,
p
m(bdn;m� d) =) N(0; 1

4
). It is more e¢ cient than the GPH

estimator in the stationary case (jdj < 1
2
), however both the LW and LP

estimators are inconsistent in the non-stationary case, when jdj > 1
2
[Kim

and Phillips (1999)]. The exact local Whittle (ELW) estimator proposed by

Phillips and Shimotsu (2004) is given as

(3.11) ed = argmin
d2[�1;�2]

R(d);

where d is bounded by �1 and �2 and

(3.12) R(d)� log bG(d)� 2d 1
m

mX
j=1

log �j;

(3.13) bG(d) = 1

m

mX
j=1

I�dx(�j):

Assuming that the mean of the time series Xt in (3.7) is known, Phillips

and Shimotsu (2004) show that the ELW is consistent and asymptotically

normally distributed when the true value of d 2 (�1;�2) if �2 ��1 � 9
2
:
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The feasible exact local Whittle (FELW) estimator set out by Shimotsu

and Phillips (2005) allows estimation of the d parameter when the mean

is unknown. Its development was motivated by simulation results which

indicated that in �nite data sets the estimated ELW estimator is inconsistent

if the error in estimating the mean is not controlled. The FELW estimator

provides consistent estimates of d for d > �1
2
by assigning an appropriate

weighting scheme for ELW estimates of d using the unadjusted data series for

estimates of �0 when d is small and the demeaned data series when d is large.

The FELW estimator is appropriate in this context as a general purpose

estimator is required that can allow for a substantial range of stationary

and nonstationary regions of d:

The implied
�
�IVt

�
and realized volatility

�
�RV

�
series for each of the compa-

nies included in our sample are plotted in Figures 3.1a and 3.1b. Both series

consist of 75 non-overlapping monthly observations for the sample period

from the 1st October 1997 to 31st December 2003 and a visual examination

reveals an expected similarity in the behaviour of both series across time.

The long memory parameter, d for the implied and realized volatility series is

estimated using both the GPH and FELW approach across a range of seven

bandwidths, m between [n0:4] and [n0:7]. The GPH and FELW estimates of

d are also found for the residual series produced by the OLS regression

(3.14) �RV = �+ ��IVt + "t
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GPH and FELW estimates are also found for the di¤erences �RV ��IVt which

is essentially constraining the d estimate of implied and realized volatility

to be the same. The results of our estimation procedure as well as the 95%

con�dence bands are plotted in Figures 3.2a-3.2g. The plots show that both

estimation procedures demonstrate an upward trend in the d estimate as

the size of the bandwidth increases. It is also seen that the FELW provides

lower estimates of d than the GPH method. Long-memory estimates are

shown to be reasonably consistent across bandwidths (with the exception

of the FELW estimate for Dixons (realised volatility) and Hilton (implied

volatility)). For each company included in the sample, Tables 3.2a-3.2d

provide a summary of parameter estimates for the entire sample period over

three bandwidths m = n0:50;m = n0:60 and m = n0:70 as well as their

associate standard errors. At the lower frequencies the GPH estimation of d

for both the implied and realized series is in the stationary region (bd < 1
2
) for

Aviva, GlaxoSmithKline, King�sher, Lonmin, Prudential and Reuters. The

parameter estimates produced by the FELW estimate con�rm these results

for the implied and realized series of Prudential and Reuters and suggest it

may additionally be the case for Cadburys and Hanson. For the majority

of companies in the sample the estimate of d moves into the nonstationary

region (bd > 1
2
) once the bandwidth increases to n0:60 prompting attention to

the results for the FELW estimator since the GPH estimator has been shown

to be inconsistent in this region. The cross-sectional variation in the long

memory parameter is similar to previous �ndings by Barkoulas and Baum
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(1997). Using the local Whittle estimator proposed by Robinson (1995),

Barkoulas and Baum (1997) reported wide variability in the estimates for

the persistence parameter estimated from the daily prices of thirty DJIA

companies. These results can also be compared to those of Ray and Tsay

(2000) who test the fractional properties of daily volatilities of individual

companies quoted on the S&P 500 using the GPH estimator. Ray and Tsay�s

(2000) estimates are markedly lower than those produced by the FTSE-100

companies sampled here. Daily volatilities for the 100 randomly sampled

S&P 500 companies produce mean estimates estimates for the persistence

parameter of 0.3768 with a standard deviation of 0.0875. Ray and Tsay

(2000) note that theoretical results produced by Deo and Hurvich (1998) as

well further simulation tests suggest that the level of persistence is likely to

be higher and much closer to our results for FTSE-100 companies.

The results are tested for spurious e¤ects induced by structural breaks or

regime shifts in the volatility process. Shimotsu (2006) shows that estimates

of the long memory parameter from subsamples should be similar to those

produced by the full sample if the series is a �true�long memory fraction-

ally integrated process. Di¤erences in the long memory parameter among

subsamples suggests that the long memory e¤ect is a product of structural

breaks in volatility. Under the sample-splitting approach, if a series Xt is an

I(d) process then the average of bd(1); :::; bd(b)estimates from the b subsamples
should approximate the bd estimate of the full sample. A visual examination
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of average d estimates when we split the sample into two subsamples (b = 2)

should demonstrate some consistency while a more formal test for parameter

constancy is the Wald statistic (W ). The number of subsamples used in the

testing procedure is constrained by the size of the data set which consists of

75 nonoverlapping observations. Shimotsu (2006) de�nes the Wald statistic

for testing the null hypothesis of parameter constancy among subsamples,

as follows;

(3.15) W = 4mAbdb(A
A0)+(Abdb)0;
where b is the number of subsamples used and bdb and A are given as

bdb =
0BBBBBBBB@

bd� d0bd(1) � d0

bd(b) � d0

1CCCCCCCCA
and A =

0BBBBBBBB@

1 �1 ::: 0

:: : :

:: : :

1 0 ::: �1

1CCCCCCCCA
;

and (A
A0)+ is the generalized inverse of A
A0: Hurvich and Chen (2000)

found that the Wald test overrejects long memory. This is overcome by

using the modi�ed version (Wc) that selects the number of periodogram

ordinates equal to m=b so that the subsample estimation uses the same

width of frequency band as used to estimate the full sample, as follows,

(3.16) Wc = 4m(cm=b=(m=b))Abdb(A
A0)+(Abdb)0:
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Simulation results provided by Shimotsu (2006) show that the modi�edWald

statistic performs well despite the bias in semiparametric estimates that arise

from the short-run dynamics in the data. The Wald statistic is compared to

a Chi-squared distribution at the 95% level. Shimotsu (2006) proposes a sec-

ond test that identi�es the accuracy of the long memory parameter estimate

(d). The process involves d0th di¤erencing of the series under consideration

and the resulting series should be I(0): Despite the relative simplicity of both

approaches, Shimotsu (2006) demonstrates that they can be e¤ectively used

to identify spurious long memory in both the stationary and nonstation-

ary case. The di¤erenced series is tested for stationarity using the Zt unit

root test [Phillips-Perron (1988)] and the KPSS test [Kwiatkowski, Phillips,

Schmidt and Shin (1992)]1.

Table 3.3a and 3.3b summarise the test results for true long memory in im-

plied and realized volatility respectively. Long memory is validated using

both the split sample and d�th di¤erencing approaches. An examination of

the realized volatility series for each company rejects the null hypothesis of

true long memory using the modi�ed Wald statistic in the case of Aviva and

Royal Sun Alliance. True long memory is rejected in the implied volatility

series of Cadburys. The modi�ed Wald statistic does not reject parameter

1The KPSS test was designed to test the null hypothesis of I(0) against the alternative
hypothesis of I(1). First, it involves taking the residuals et from the regression of a
process yt on an intercept and time trend and forming the partial sum ST of the residuals

as follows, ST =
TP
t=T

yt: The KPSS test for stationarity is then, �t = T�2
P
S2T =�

2
T (q)

where �2T (q) is de�ned in (5) above.
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constancy among subsamples for all other companies included in the sample.

Our estimation of the long memory parameter is based on a bandwidth of

m = n0:60 and because of the size of the options dataset under consider-

ation the number of subsamples (b) used are limited to 2: Some variation

in estimates of d among subperiods means that we cannot exclude struc-

tural breaks within the sample period. The level of variation in d is unlikely

to explain the observed level of the persistence in the log realized volatility.

The results provided by d0th di¤erencing tests in particular suggest that true

long memory e¤ects are present in the realized volatility of individual stocks.

The values for the Phillips-Perron (Zt) and the KPSS (��) statistic applied

to the d0th di¤erenced series are shown in tables 3.3a and 3.3b respectively.

Comparing both test statistics against their critical values at the 5% level

supports the null hypothesis that the di¤erenced series is I(0) cannot be

rejected in any instance for either the realized or implied volatility series.

The generation of non-overlapping observations reduces the size of the sam-

ple and the persistence parameters that are estimated are characterised by

large standard errors. These limitations are mitigated by the application of

rigourous tests for �true�long memory. Both the split sample and d0th dif-

ferencing tests provide support for parameter constancy in both the implied

and realized series. Estimates of the long memory parameter are shown to

be consistent and these estimates support long memory fractional integra-

tion in the volatility of individual stocks, particularly when estimation is

carried out at lower frequencies.
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The �ndings in this research are similar to the results found in other �nan-

cial time series. Choi and Zivot (2007) show that stationary long memory

is found in the forward discount series even after allowing for structural

breaks. Shimotsu (2006) tests for �true�long memory in the S&P 500 re-

alized volatility series by splitting the sample of 5,000 observations into

subperiods of 1,000 observations. �True�long memory is supported by the

Phillips-Perron and KPSS test although variation in subsample estimates of

d is partly attributed to sampling error. Although the presence of jumps

and/or structural breaks is accepted they cannot explain the level of perisis-

tence found in the S&P 500. The studies by Shimotsu (2006) and Choi and

Zivot (2007) and the results presented in this chapter indicate that �true�

long memory is a condition of a number of �nancial time series and that

it can be successfully distinguished from spurious long memory induced by

structural breaks. The following section extends the investigation into im-

plied and realized volatility by examining the existence and rank of fractional

cointegration between these series.
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Specifying the rank of fractional cointegration in the implied-realized

volatility relationship

Engle and Granger (1987) identify the p � 1 vector variate Xt as cointe-

grated CI(d; b) if it has I(d) elements, and for some, b > 0, there ex-

ists � such that �0Xt is I(d � b): Although the original de�nition restricts

d = b = 1; the evidence supporting fractional integration in �nancial data

requires some �exibility to be built in to this de�nition. Fractional coin-

tegration between two series is suggested if they exhibit similar levels of

long-run dependence and long-memory estimates produced by the residual

series are lower. Based on this criteria a comparison the FELW estimates

indicates some level of fractional cointegration between implied and realized

volatility in a number of companies sampled. Fractional cointegration is

suggested between the implied and realized volatility series of the following

companies; Aviva (FELW av
IV = 0.509, FELW

av
RV = 0.543), British Aerospace�

FELW bae
IV = 0:940, FELW bae

RV = 0:941
�
, British Airways (FELW ba

IV = 0.620,

FELW ba
RV = 0.428), Cadburys (FELW cbry

IV = 0:721, FELW cbry
RV = 0:762),

Hilton (FELW hg
IV = 0:583, FELW hg

RV = 0:570), (Prudential FELW pru
IV =

0.637, FELW pru
RV = 0.523) and Reuters (FELW rtr

IV = 0:939, FELW rtr
RV =

1:063). The relevant GPH and FELW estimates of d and their associated

standard errors are summarised in Tables 3.4a and 3.4b respectively.
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Figure 3.1: Scatterplot of feasible exact local Whittle (FELW) estimates for
implied and realised volatility series of FTSE-100 companies. The proximity
of the FELW estimate for both the IV and RV series is suggestive of some
level of fractional cointegration.

The summary of GPH and FELW estimates contained in Tables 3.6a and

3.6b shows that the implied and realized volatility series for FTSE-100 com-

panies exhibit properties associated with fractional cointegration. It can be

seen from the full set of results (Tables 3.2a-3.2d) that parameter estimates

are sensitive to the estimation procedure employed as well as the choice

of bandwidth. Although the analysis uses the longest continuously avail-

able dataset for individual UK equities (1997 - 2003), cointegration analysis
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bene�ts from the use of even longer sample periods where possible. The

�ndings justify a more rigorous investigation into fractional cointegration.

Fractional cointegration is more formally tested using the methodology de-

veloped by Nielsen and Shimotsu (2007). The approach is an extension of

the cointegration rank determination procedure proposed by Robinson and

Yajima (2002). The use of FELW estimation means that the approach is

su¢ ciently �exible to model both (asymptotically) stationary and nonsta-

tionary processes and it assumes that the mean value of the series, Xt is

unknown. The consistency of FELW estimation over both the stationary

and nonstationary regions of d is important as our earlier results show that

both implied and realized volatility of many FTSE-100 companies lie in the

nonstationary region. The analysis in this section is focused on the implied

and realized volatility series of the seven companies identi�ed in Table 3.4b,

namely, Aviva, British Aerospace, British Airways, Cadburys, Hilton, Pru-

dential and Reuters. The volatility series of these companies produce close

FELW d estimates that indicate cointegration and warrant a more formal

investigation.

The presence of fractional cointegration is examined by �rst testing the hy-

pothesis of pairwise equality of the persistence parameters, where a and b are

the two series under consideration. Following Nielsen and Shimotsu (2007),

a t-type test proposed by Robinson and Yajima (2002) is used to tests for

parameter equivalence in the implied and realized volatility series. Robinson
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and Yajima (2002) note that although fractional cointegration requires that

the persistence parameters are equivalent for both series, the sensitivity of d

estimation suggests greater variability in d should be facilitated. Robinson

and Yajima (2002) proceed by rede�ning d as the p�1 vector d = (d1; :::; dp)0

where dp is the long memory parameter estimated for series p using FELW

estimation. Also bd = (bd1; :::; bdp)0 and D = diagfG11; :::; Gppg where G is

de�ned previously in equation (3.14) and Gab is the (a,b)th element of G:

They propose a consistent multivariate version of the FELW estimator

(3.17) bG = 1

m1

m1X
j=1

Re
�
�(�j)

�1Ij�(�j)
�1�	

where m is the bandwidth used, Ij = I(�j) and I(�) = w(�)w(�)�; w(�) =

(w1(�); :::; wp(�)))
0 where wp(�) is the discrete fourier transform of series p

de�ned in (3.13) above. Robinson and Yajima (2002) show that Xat and Xbt

are cointegrated ifG2ab = GaaGbb , while there is no cointegrating relationship

between the series when G2ab < GaaGbb: This can be expressed in the form

of a test statistic as follows,

(3.18) bTab = m1=2(bda � bdb)
f1
2
(1� bGab=( bGab

bGbb))g1=2 + h(n)
;

where h(n) > 0 and

(3.19) h(n) +
(log m)m1=2+�=n� + (log m)2m�1=6

h(n)
�! 0 as n �!1:
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If Xat and Xbt are fractionally cointegrated bTab �!d 0 while if no cointegra-

tion exists bTab �!d N(0; 1):We see that parameter equivalence is supported

at bandwidth m = 13 and from Table 6, the proximity of the bTIV�RV statis-
tic to zero indicates cointegration between the implied and realised volatility

series of the companies under consideration.

Determination of the cointegration rank consists of �nding estimates of G

and its eigenvalues and then determining their limit distribution. From

(3.17) above,

(3.20) G(d�) =
1

m

mX
j=1

�2d�j Re(Ij)

where d� is the common value of d1; :::; dp; and in this paper p = 2. In

both the multivariate log periodogram method [Robinson (1995)] and the

multivariate local Whittle method [Lobato (1995)], G is given as bG(bd�):
Robinson and Yajima (2002) note that these approaches are only consistent

under narrow conditions and the assumption of full rank for G means they

are not valid if Xt is cointegrated. The solution proposed by Robinson and

Yajima (2002) and applied in this chapter is to pool estimates of d� based on

the individual elements of Xt; using a bandwidth m1 that increases faster

than m: This provides an estimate of da; eda that uses the bandwidth m1

instead of m, that gives,

d� =
1

p

pX
a=1

eda
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so that as n �!1 the limit distribution is,

(3.21) m1=2vec( bG(d�)�G) �!d N(0;
1

2
(G
G+ (G
G1; :::; G
Gp))):

Results are provided for bG(d�) as well as the correlation matrix bP (d�) =bD(d�)�1=2 bG(d�) bD(d�)�1=2; where bD(d�) is a scale-invariant version of thebG(d�) and has the same rank as bG(d�): Tables 3.6a to 3.12a present the
eigenvalues of bG(d�) and bP (d�) estimated for bandwidth parameters at
m1 = [n0:55] = 24; m = 32 and m1 = [n0:45] = 13;m = 18: The proxim-

ity of at least some of the eigenvalues of G to zero suggests cointegration.

The results of the rank determination analysis for the seven companies un-

der consideration are contained in Tables 3.6b to 3.12b. The results support

fractional cointegration at m1 = [n
0:45] = 13; m = 18 with weaker support

evident across bandwidths, m1 = [n0:55] = 24; m = 32: Overall there is

evidence of only at most only one cointegrating relationship between im-

plied and realized volatility. The existence of a fractionally cointegrating

relationship between implied and realized volatility is consistent with sim-

ilar results for stock indices [Bandi and Perron (2006)]. Kellard, Dunis

and Sarantis (2007) tested for fractional cointegration between implied and

realized volatilities on a number of foreign exchange rate over the period

January 1991 to September 2005. Traded implied volatility obtained from

brokers and foreign exchange realized volatility over 172 non-overlapping ob-

servations are shown to be fractionally cointegrated. Los (2005) and Budek,
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Schotman and Tschering (2006) have examined the implications of fractional

integration for risk management and long-term portfolio choice. Los (2005)

observes that the Value-at-Risk (VAR) measure omits long memory com-

ponents that are evident in dynamic market pricing. The fractal dynamics

observed in the return series of many �nancial assets means that these assets

thus possess an unde�ned or �in�nite�variance. Los (2005) argues that VaR

incorrectly and from the perspective of risk managers, dangerously, relies on

a computed standard deviation that has been shown not to converge over

time. Budek, Schotman and Tschering (2006) examine the practical im-

plications of persistence in asset returns for long-term choice in a portfolio

composed of US equities, Treasury bonds and cash. Using a multi-variate

fractionally integrated process, Budek, Schotman and Tschering (2006) show

that long-term portfolio weights and as a consequence long-term portfolio

risk are highly dependent on the estimation of the long memory parameter.

The results produced in this chapter identify the presence of fractionally

integrated long memory in UK equity volatility. Long-memory e¤ects in

asset volatility as well as the identi�cation of the implied-realized volatility

relationship in UK equities as a fractionally cointegrated one also has im-

plications for the practical implementation of derivative strategies not yet

considered in the existing literature.
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3.4. Summary and Conclusion

This chapter presents a careful examination of the fractional properties of

volatility on individual FTSE-100 equities. The results from a univariate

analysis of the implied and realized volatility series of sixteen FTSE-100

companies over a number of bandwidths show little evidence of a consistent

long memory parameter among the stocks selected. The apparent absence

of a strong common factor driving volatility indicated by this �nding is in

contrast to the results of Ray and Tsay (2000) who found similar levels of

volatility persistence among related stocks. Fractional integration in the

implied and realized volatility series was tested for possible �spurious� re-

sults induced by structural breaks in volatility. Variation in the persistence

parameter was evident among subsamples suggesting that breaks did occur

in volatility across the sample period. The Wald statistic which checked

for parameter consistency showed that fractional integration could only be

rejected in the realized volatility series of Aviva, Hanson and Royal Sun

Alliance. Tests for incorrect estimation of the persistence parameter (d)

were also carried out using d�th di¤erencing. Application of the Phillips-

Perron test (Zt) also suggested spurious long memory e¤ects in the realized

volatility series of British Aerospace, Diageo and Hilton. Although the re-

sults indicate the presence of structural breaks in implied and realized equity

volatility, the presence of fractional integration could not be rejected.
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The �nal part of this chapter formally examines whether implied and real-

ized volatility on individual equities are fractionally cointegrated processes.

Univariate estimates of d on implied and realized volatility as well as the

residual series produced by an OLS regression suggest the presence of frac-

tional cointegration in a number of companies. A closer examination is

facilitated by applying Robinsons and Yajima�s (2002) test statistic for para-

meter equivalence. The multivariate FELW estimation described by Nielsen

and Shimotsu (2007) shows that at least one cointegrating vector can be

identi�ed even though the results are sensitive to the choice of bandwidth.

The results presented in this chapter are relevant for forecasting and risk

management since levels of persistence are shown to a¤ect long-run predic-

tions of stock returns. The inclusion of long-run dependence can be achieved

through the application of appropriate fractionally integrated volatility spec-

i�cations such as the process developed by Comte, Coutin and Renault

(2003). The long-run equilibrium relationship between individual equities

and their associate options is worthwhile exploring in greater detail with

more extensive datasets. Recent research has pointed to the pro�tability

of derivative strategies [Santa-Clara and Saretto (2006), Doran and Fodor

(2006), Branger, Breuer, Schlag (2006)]. Budek, Schotman and Tschering

(2006) have shown the importance of long-memory e¤ects in selecting the op-

timal long-term portfolio. The evidence in this chapter supporting fractional
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integration is equity volatility compliments the recent research in portfolio

optimisation and derivative strategies.

3.5. Appendix B: Supporting Material for Chapter 3
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Figure 3.1a Implied (IV) and realized volatility (RV). Each time series consists of
75 non-overlapping observations generated using end-of-day equity options data
(implied) and intraday tick data (realized).
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Figure 3.1b Implied (IV) and realized volatility (RV). Each time series consists of
75 non-overlapping observations generated using end-of-day equity options data
(implied) and intraday tick data (realized).
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Figure 3.2a Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2b Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2c Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2d Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2e Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2f Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2g Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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Figure 3.2h Long memory parameter estimates and standard error bands as a
function of the number of frequencies. Parameter estimates produced by
log-periodogram (LP) and feasible exact local Whittle (FELW) approach.
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m bd (implied) bd (realised) bd (residuals) bd (di¤erences)
LP FELW LP FELW LP FELW LP FELW

Aviva
[n0:50] = 9 0.308 -0.082 0.357 0.442 0.336 0.180 0.069 0.096

(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
[n0:60] = 14 0.862 0.509 0.401 0.543 0.284 0.314 0.272 0.260

(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
[n0:70] = 23 1.209 0.943 0.651 0.884 0.535 0.639 0.575 0.634

(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
British Aerospace

[n0:50] = 9 0.699 0.719 0.178 0.396 0.212 0.259 0.255 0.387
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

[n0:60] = 14 0.947 0.940 0.595 0.941 0.525 0.544 0.548 0.489
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

[n0:70] = 23 1.121 1.093 0.776 0.836 0.647 0.633 0.642 0.540
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

British Airways
[n0:50] = 9 0.507 -0.1363 0.580 -0.032 0.117 0.202 -0.113 -0.066

(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
[n0:60] = 14 0.703 0.620 0.661 0.428 0.278 0.324 0.116 0.207

(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
[n0:70] = 23 0.937 0.942 0.958 0.864 0.579 0.606 0.426 0.578

(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
Cadburys

[n0:50] = 9 0.282 0.106 1.068 0.499 0.404 0.462 0.060 0.033
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

[n0:60] = 14 0.754 0.721 0.792 0.762 0.518 0.715 0.475 0.538
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

[n0:70] = 23 0.889 1.030 0.683 0.884 0.570 0.788 0.671 0.797
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Table 3.2a. Long memory parameter estimates for implied and realized volatility of Aviva,
British Aerospace, British Airways and Cadburys. Estimates are produced using the LP
and FELW Estimator across a number of frequencies.We also show estimates for the
residual series produced by the residual series from an OLS regression and for the
di¤erences RV-IV. Standard errors are in parenthesis.
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m bd (implied) bd (realised) bd (residuals) bd (di¤erences)
LP FELW LP FELW LP FELW LP FELW

Dixons
[n0:50] = 9 0.482 -0.447 0.875 -5.322 0.850 0.785 0.474 0.494

(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
[n0:60] = 14 0.814 0.736 1.150 1.027 1.112 1.094 0.887 0.814

(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
[n0:70] = 23 0.954 0.907 1.093 0.973 1.081 0.993 1.003 1.113

(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
Diageo

[n0:50] = 9 0.546 -0.007 0.544 0.189 0.550 0.646 0.673 0.452
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

[n0:60] = 14 0.687 0.465 1.129 0.864 1.144 0.963 0.802 0.601
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

[n0:70] = 23 0.676 0.693 0.920 0.924 0.924 1.006 0.628 0.612
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

GlaxoSmithKline
[n0:50] = 9 0.294 -0.162 0.403 0.554 0.306 0.314 -0.333 0.139

(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
[n0:60] = 14 0.542 0.380 0.667 0.738 0.566 0.516 0.259 0.269

(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
[n0:70] = 23 0.777 0.664 0.827 0.874 0.705 0.777 0.444 0.531

(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
Hilton

[n0:50] = 9 0.210 -6.661 0.441 0.126 0.242 0.232 0.123 0.116
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

[n0:60] = 14 0.653 0.583 0.794 0.570 0.722 0.585 0.825 0.434
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

[n0:70] = 23 0.742 0.783 0.691 0.703 0.473 0.475 0.424 0.360
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Table 3.2b. Long memory parameter estimates for implied and realized volatility of
Dixons, Diageo, GlaxoSmithKline and Hilton. Estimates are produced using the LP
and FELW Estimator across a number of frequencies.We also show estimates for the
residual series produced by the residual series from an OLS regression and for the
di¤erences RV-IV. Standard errors are in parenthesis.
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m bd (implied) bd (realised) bd (residuals) bd (di¤erences)
LP FELW LP FELW LP FELW LP FELW

Hanson
[n0:50] = 9 0.931 0.500 0.359 0.261 0.101 0.079 0.081 -0.035

(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
[n0:60] = 14 0.810 0.519 0.643 0.836 0.458 0.363 0.363 0.287

(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
[n0:70] = 23 1.017 0.998 1.065 1.164 0.917 0.989 0.844 0.870

(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
HSBC

[n0:50] = 9 -0.181 �0.210 0.463 0.066 0.371 0.428 0.250 0.341
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

[n0:60] = 14 0.247 0.199 0.694 0.511 0.694 0.664 0.741 0.534
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

[n0:70] = 23 0.651 0.570 0.730 0.538 0.632 0.619 0.617 0.544
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

King�sher
[n0:50] = 9 0.303 0.185 0.269 -0.233 0.288 0.216 0.372 0.346

(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
[n0:60] = 14 0.614 0.611 0.611 0.176 0.579 0.436 0.489 0.431

(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
[n0:70] = 23 0.960 1.022 0.883 0.863 0.856 0.882 0.702 0.650

(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
Lonmin

[n0:50] = 9 0.169 �0.628 0.152 0.134 0.129 0.079 0.223 0.084
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

[n0:60] = 14 0.330 0.013 0.376 0.396 0.367 0.449 0.360 0.291
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

[n0:70] = 23 0.528 0.716 0.737 0.726 0.755 0.735 0.537 0.542
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Table 3.2c. Long memory parameter estimates for implied and realized volatility of
Hanson, HSBC, King�sher and Lonmin. Estimates are produced using the LP
and FELW Estimator across a number of frequencies.We also show estimates for
the residual series produced by the residual series from an OLS regression and for
the di¤erences RV-IV. Standard errors are in parenthesis.
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m bd (implied) bd (realised) bd (residuals) bd (di¤erences)
LP FELW LP FELW LP FELW LP FELW

Marks and Spencers
[n0:50] = 9 0.351 0.306 0.543 0.597 0.196 0.308 -0.012 0.163

(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
[n0:60] = 14 0.651 0.593 1.065 0.941 0.531 0.561 0.283 0.378

(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
[n0:70] = 23 0.892 0.835 1.024 0.964 0.583 0.757 0.439 0.611

(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
Prudential

[n0:50] = 9 0.402 0.104 0.457 0.226 0.135 0.229 -0.218 -0.039
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

[n0:60] = 14 0.718 0.637 0.461 0.523 0.198 0.217 0.207 0.136
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

[n0:70] = 23 0.820 0.849 0.950 0.845 0.679 0.626 0.493 0.522
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Royal Sun Alliance
[n0:50] = 9 0.750 0.287 0.798 0.546 0.228 0.252 0.107 0.256

(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)
[n0:60] = 14 0.653 0.391 0.731 0.590 0.296 0.305 0.197 0.260

(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)
[n0:70] = 23 0.908 0.766 1.076 0.944 0.550 0.559 0.423 0.219

(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)
Reuters

[n0:50] = 9 0.402 0.104 0.457 0.226 0.135 0.229 -0.218 -0.039
(0.573) (0.346) (0.573) (0.346) (0.573) (0.346) (0.573) (0.346)

[n0:60] = 14 0.718 0.637 0.461 0.523 0.198 0.217 0.207 0.136
(0.406) (0.271) (0.406) (0.271) (0.406) (0.271) (0.406) (0.271)

[n0:70] = 23 1.052 0.939 0.934 1.063 0.536 0.527 0.527 0.463
(0.310) (0.219) (0.310) (0.219) (0.310) (0.219) (0.310) (0.219)

Table 3.2d. Long memory parameter estimates for implied and realized volatility of Marks
and Spencers, Prudential, RoyalSunAlliance and Reuters. Estimates are produced using
the LP and FELW Estimator across a number of frequencies.We also show estimates for
the residual series produced by the residual series from an OLS regression and for the
di¤erences RV-IV. Standard errors are in parenthesis.



3.5. APPENDIX B: SUPPORTING MATERIAL FOR CHAPTER 3 142

Ticker bd d(b = 2) Wc (b = 2) Zt b�t
av 0.483 (0.271) 1.257 (0.271) 6.558 -1.932 (-2.841) 0.071 (0.435)
bae 0.870 (0.271) 1.170 (0.271) 2.799 -3.177 (-2.850) 0.075 (0.462)
ba 0.569 (0.271) 0.860 (0.271) 0.001 -0.958 (-2.792) 0.143 (0.423)
cbry 0.846 (0.271) 0.850 (0.271) 0.652 -2.087 (-2.852) 0.259 (0.462)
dxn 1.130 (0.271) 1.546 (0.271) 0.882 -2.808 (-2.850) 0.075 (0.460)
dge 0.998 (0.271) 1.478 (0.271) 0.649 -3.021 (-2.849) 0.109 (0.460)
gsk 0.830 (0.271) 1.133 (0.271) 0.290 -2.575 (-2.853) 0.140 (0.462)
hg 0.765 (0.271) 1.044 (0.271) 3.769 -3.009 (-2.849) 0.151 (0.458)
hns 0.627 (0.271) 1.296 (0.271) 7.938 -2.186 (-2.788) 0.203 (0.428)
hsbc 0.643 (0.271) 0.845 (0.271) 0.820 -1.338 (-2.797) 0.254 (0.432)
kgf 0.411 (0.271) 0.758 (0.271) 2.048 -1.530 (-2.888) 0.161 (0.439)
lnr 0.459 (0.271) 1.081 (0.271) 1.489 -2.184 (-2.872) 0.055 (0.437)
mks 0.961 (0.271) 1.132 (0.271) 0.059 -2.326 (-2.849) 0.206 (0.460)
pru 0.417 (0.271) 0.715 (0.271) 0.325 -1.696 (-2.885) 0.108 (0.439)
rsa 0.640 (0.271) 1.525 (0.271) 10.094 -1.339 (-2.795) 0.076 (0.432)
rtr 0.509 (0.271) 0.703 (0.271) 1.125 -1.600 (-2.841) 0.103 (0.433)
Table 3.3a. Implied Volatility (UK Equity). Test results for fractional dynamics.
Full sample estimates of d are denoted as bd: Estimates of d when the number of
subsample estimates, b = 2 are given by d. Estimation in both cases used a bandwidth
m = n0:60:Results are also provided for the Phillips-Perron test (Zt) and the KPSS test (b��)
with their associated critical values at the 5% level are given in parenthesis. The Wald
statistic is evaluated against the Chi distribution at 5% level (�20:95(1) = 3:84):
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Ticker bd d(b = 2) Wc (b = 2) Zt b�t
av 0.586 (0.271) 0.860 (0.271) 0.477 -1.751 (-2.777) 0.075 (0.421)
bae 0.913 (0.271) 1.060 (0.271) 2.207 -2.097 (-2.849) 0.053 (0.461)
ba 0.634 (0.271) 1.056 (0.271) 0.763 -1.339 (-2.791) 0.080 (0.430)
cbry 0.848 (0.271) 1.757 (0.271) 12.049 -2.219 (-2.853) 0.072 (0.462)
dxn 0.829 (0.271) 1.184(0.271) 0.667 -2.037 (-2.853) 0.129 (0.462)
dge 0.564 (0.271) 1.082 (0.271) 1.764 -1.241 (-2.795) 0.095 (0.424)
gsk 0.423 (0.271) 0.973 (0.271) 1.930 -1.970 (-2.881) 0.079 (0.438)
hg 0.708 (0.271) 1.487 (0.271) 0.002 -2.356 (-2.819) 0.094 (0.442)
hns 0.665 (0.271) 1.050 (0.271) 0.000 -2.335 (-2.813) 0.242 (0.440)
hsbc 0.400 (0.271) 0.786 (0.271) 0.819 -1.437 (-2.892) 0.208 (0.440)
kgf 0.618 (0.271) 1.375 (0.271) 0.066 -2.069 (-2.779) 0.066 (0.424)
lnr 0.283 (0.271) 0.696 (0.271) 2.960 -1.873 (-2.933) 0.169 (0.446)
mks 0.597 (0.271) 0.799 (0.271) 0.749 -1.687 (-2.769) 0.119 (0.419)
pru 0.631 (0.271) 1.039 (0.271) 0.801 -2.013 (-2.790) 0.061 (0.429)
rsa 0.573 (0.271) 0.796 (0.271) 0.721 -0.637 (-2.788) 0.223 (0.423)
rtr 0.577 (0.271) 0.695 (0.271) 0.023 -1.264 (-2.785) 0.089 (0.422)
Table 3.3b. Realized Volatility (UK Equity). Test results for fractional dynamics.
Full sample estimates of d are denoted as bd: Estimates of d when the number of
subsample estimates, b = 2 are given by d. Estimation in both cases used a bandwidth
m = n0:60:Results are also provided for the Phillips-Perron test (Zt) and the KPSS test (b��)
with their associated critical values at the 5% level are given in parenthesis. The Wald
statistic is evaluated against the Chi distribution at 5% level (�20:95(1) = 3:84):
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bd (implied) bd (realised) bd (residuals)
Lonmin (lnr) 0.169 0.152 0.129

(0.573) (0.573) (0.573)
Prudential (mks) 0.402 0.457 0.135

(0.573) (0.573) (0.573)
Reuters (rtr) 0.402 0.457 0.135

(0.573) (0.573) (0.573)
Table 3.4a Summary of GPH parameter estimates that
suggest fractional cointegration between implied
and realized volatility. Parameter values and standard
errors are estimated across a bandwidth m = [n0:50].

bd (implied) bd (realised) bd (residuals)
Aviva (av) 0.509 0.543 0.314

(0.271) (0.271) (0.271)
British Aerospace (bae) 0.940 0.941 0.544

(0.271) (0.271) (0.271)
British Airways (ba) 0.620 0.428 0.324

(0.573) (0.573) (0.573)
Cadburys (cbry) 0.721 0.762 0.715

(0.271) (0.271) (0.271)
Hilton (hg) 0.583 0.570 0.585

(0.271) (0.271) (0.271)
Prudential (pru) 0.637 0.523 0.217

(0.271) (0.271) (0.271)
Reuters (rtr) 0.637 0.523 0.217

(0.271) (0.271) (0.271)
Table 3.4b Summary of FELW parameter estimates that suggest fractional
cointegration between implied and realized volatility. Parameter values
and standard errors are estimated across a bandwidth m = [n0:50]:

bTIV�RV
Aviva (av) 0.2011
British Aerospace (bae) 0.0843
British Airways (ba) 0.1583
Cadburys (cbry) 0.0131
Hilton (hg) 0.1545
Prudential (pru) 0.8519
Reuters (rtr) 0.0987
Table 3.5. bTIV�RV (bTab) Estimates of parameter equivalence.
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CHAPTER 4

Long Memory E¤ects in Portfolio Planning

4.1. Introduction

Results from empirical studies on a range of �nancial assets have demon-

strated the presence of long memory e¤ects in asset volatility [Bollerslev

and Mikkelsen (1996), Baillie (1996)]. This pattern of persistence or long

memory was originally identi�ed as a hyperbolic rate of decay in an asset�s

autocorrelation structure. More recently, research has demonstrated that

these properties can be reproduced by a short-memory model with breaks.

This observation has led to a distinction between true long memory pro-

duced by fractional integration and spurious long memory that is induced

by structural breaks in volatility. Granger and Hyung (2004) show that em-

pirically distinguishing between a true and a spurious long memory process

is a di¢ cult task.

The complexity associated with modeling fractional dynamics has meant

that long memory is rarely considered in the practical implementation of

risk models or portfolio optimisation. Los (2005) and Budek, Schotman and

Tschering (2006) are recent studies on long memory e¤ects in risk man-

agement and long term asset allocation decisions. This chapter examines

153
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portfolio allocation under discrete time rebalancing, focusing on the e¤ect

of the underlying volatility process. It looks at portfolio performance when a

long memory process is incorrectly assumed to be short memory. A number

of recent studies have demonstrated that many �nancial assets exhibit levels

of fractional integration that is not induced by structural breaks [Granger

and Hyung (2004), Bandi and Perron (2006), Garvey and Gallagher (2007)].

The support for fractional dynamics found in the academic literature is not

as yet re�ected in practical implementation of mainstream decision-making

in the �nancial markets. The research in this chapter is motivated by the

requirement to bridge the gap between the academic observation of long

memory e¤ects and the practical requirements of market participants. This

research is part of a renewed interest in dynamic portfolio choice driven

by simulation-based methods that allow for more realistic conditions to be

considered when �nding portfolio solutions.

The theoretical underpinnings of portfolio optimization present a utility

maximizing investor who is required to rebalance his portfolio, either con-

tinuously or periodically within an investment period. Merton (1969) was

the �rst to note that time-varying investment opportunities produce a hedg-

ing demand for the multiperiod investor. The investor�s portfolio selection

should account for predictable changes in future investment opportunites.

Merton�s (1969, 1971) work is generally considered to be the starting point

for the literature on dynamic portfolio choice while Fama (1970) and later
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Dumas and Luciano (1991) and Pliska (1997) attempt to extend this frame-

work to solving multiperiod optimisation problems. The portfolio optimisa-

tion literature has developed by addressing the challenges associated with

more realistic conditions such as transaction costs and constraining the allo-

cation decision to discrete intervals. Estimating the optimal portfolio where

the selection of the current portfolio is dependent on asset returns beyond

the initial rebalancing period has proved particularly challenging1. Kim and

Omberg (1996) provide an analytic solution for a nonmyopic investor in con-

tinuous time under a set of restrictive assumptions that include, limiting the

investor to investing in one risk-free asset and a risky asset that follows a

simple mean-reverting di¤usion process. The investor is also restricted to

consuming wealth at the end of the investment horizon. Wachter (2002)

also generates a closed-form solution to the multiperiod portfolio problem,

however the solution provided is similarly restricted to tight parametriza-

tions of the asset return dynamics. The introduction of greater realism into

the portfolio choice problem has limited the availability of closed-form solu-

tions and increased the application of methods that provide numerical and

approximate solutions.

The numerical approach used by Balduzzi and Lynch (1999) facilitates the

inclusion of transaction costs and asset return dynamics similar to those

1Nonmyopic portfolio behaviour is observed when the current selection of assets weights
takes account of the distribution of asset returns over revision periods beyond the current
one.
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observed for the U.S. stock market. By discretizing the state space it is

possible to maximise the investor�s utility backwards from the end of the

investment horizon using the Bellman equation, thus providing an optimal

solution for a nonmyopic investor. The insights providing by this technique

have been similarly used in studies by Brandt (1999), Barberis (2000) and

Dammon, Spatt and Zhang (2001).

Studies by Merton, Scholes and Gladstein (1978, 1982) represent early at-

tempts to model the risk and return characteristics of portfolios that include

call and put options. More recently, a number of studies have explored dy-

namic asset allocation for portfolios that include derivative securities. Liu

and Pan (2003) directly include derivatives within the dynamic portfolio

choice framework set out by Merton (1981). The resulting portfolio provides

the investor with exposure to speci�c characteristics of volatility, such as dif-

fusion risk and jump risk. Asset allocation in a derivative portfolio requires

the investor to think in terms of volatility exposures and select options with

speci�c characteristics, such as the moneyness. This can be demonstrated

by the exposures available from using at-the-money call options which are

sensitive to market volatility and out-of-the-money put options which are

sensitive primarily to jump risk. Liu and Pan (2003) provide a closed-form

solution for an optimal derivative portfolio in continuous time under an

assumption that jumps can only occur in the stock price and their analy-

sis crucially demonstrates the superiority of derivative portfolios compared
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to portfolios excluding derivatives in terms of certainty equivalent wealth

outcomes. Branger, Schlag and Schneider (2008) use numerical techniques

combined with simulations to �nd the continuous-time portfolio solution

when jumps occur in both the stock price and in levels of volatility.

The pro�tability of derivative strategies in the presence of transaction costs

and margin calls has been established by Santa-Clara and Saretto (2005),

while Doran and Fodor (2006) has shown that combination strategies such as

writing covered calls or protective puts using S&P 100 and S&P 500 options

can provide positive abnormal performance. Using Jensen�s alpha, Doran

and Fodor (2006) shows that derivative strategies outperform the underly-

ing index in both bull (1996-2000) and bear (2000-2003) market conditions.

The limitation of implementing strategies in discrete time is addressed by

Branger, Breuer and Schlag (2006). Deriving optimal strategies in discrete

time is shown to provide superior outcomes when ranked against outcomes

from so-called naive strategies that are derived in continouous time and

implemented at discrete intervals. The numerical and approximation tech-

niques used by Branger, Breuer and Schlag (2006) provide an insight into

discrete time implementation of a derivative strategy and allow the exami-

nation of borrowing constraints and margin requirements that a¤ect prac-

titioners. The study shows that derivative strategies remain pro�table even

when rebalancing frequency is limited to monthly intervals.
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The numerical and simulation approaches used to provide insights into the

characteristics of derivative strategies can be usefully extended to include an

examination of the role of volatility persistence. A long memory, fractionally

integrated time series I(d) is de�ned as one where shocks decay hyperboli-

cally over time. It can be distinguished from an I(0) process where shocks

die out at an exponential rate and also from an I(1) process where no mean

reversion occurs. Using 5-minute returns on both the DM-$ exchange rate

and S&P 500 futures, Andersen and Bollerslev (1997) show that long mem-

ory is strongly present in realized volatility once repetitive intraday trading

patterns are adjusted for. Bollerslev and Mikkelsen (1999) also �nd evi-

dence of long memory in S&P 500 Index options with maturities between

nine months and three years (LEAPS). Evidence of long memory has been

challenged by studies which show how regime-shifts in volatility can pro-

duce levels of persistence in the autocorrelation structure similar to those

produced by true long memory processes. Analysing returns on the S&P

500 Index, Granger and Ding (1996) show that the sample level of d is likely

to be induced by structural breaks. Spurious long memory is suggested by

signi�cant variations in parameter estimates observed in subperiods. Using

similar data, Granger and Hyung (2004) show that a model incorporating

structural breaks provides forecasts that are only marginally less competi-

tive than those provided by an I(d) model. Monte Carlo methods employed

by Diebold and Inoue (2001) demonstrate that true long memory I(d) is

di¢ cult to distinguish from spurious long memory induced by regime shifts.
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More recently, a number of pre-existing tests have been adapted to distin-

guish between true and spurious long memory. Shimotsu (2006) shows that

a clear distinction between varieties of long memory can be made using two

tests: (i) parameter constancy among subperiods and (ii) stationarity after

d0th di¤erencing. Evidence supporting long memory even after accounting

for structural breaks has been subsequently found in returns produced by

the S&P 500 [Beltratti and Morana (2006)] and in the log realized volatility

of FTSE-100 �rms [Garvey and Gallagher (2008)].

This chapter explores the relevance of these �ndings in the context of �nd-

ing a solution to the dynamic portfolio choice problem. The presence of

long memory e¤ects highlights the weakness of conventional modelling ap-

proaches such as ARMA or GARCH, which fail to capture fractional orders

of integration where 0 < d < 1: This has motivated the development of

the class of fractionally integrated GARCH (FIGARCH) processes [Baillie,

Bollerslev and Mikkelsen (1996)]. FIGARCH allows d to assume a range

of values, thus allowing for greater �exibility when modelling temporal de-

pendencies in the volatility structure. Using an extension of the FIGARCH

model, Taylor (2001) examines whether there is an economic value associ-

ated with modelling long memory in the context of option pricing. Using

options data on the S&P 100 from 1984 to 1998 the study compared implied

volatilities obtained from short and long memory speci�cations. Impor-

tantly, it was found that prices on long maturity options continue to re�ect
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long memory e¤ects in the volatility structure and the application of a long

memory speci�cation for the data generating process caused implied volatil-

ities to di¤er by more than 1% when compared to short memory implied

volatilities. In a related study Ohanissian, Russell and Tsay (2004) used

simulation methods to show that serious option mispricing can result from

mis-specifying the long memory property in volatility. Black-Scholes implied

volatilities were generated using a short-memory, spurious long memory and

a true long memory speci�cation. Option prices produced by each alterna-

tive speci�cation were compared thus demonstrating ignoring long memory

results in an underpricing of call options with maturities between one month

and two years. Importantly, Ohanissian, Russell and Tsay (2008) showed

that options are underpriced if the data generating process follows a �true�

long memory but is mis-speci�ed using the �spurious�long memory process.

Mis-pricing is most acute for short maturity options and decreases as option

maturity becomes longer. This �nding supports similar results produced by

Taylor (2001).

Empirical studies on option prices have shown that volatility smile e¤ects

are stronger in short maturity options than in long maturity options. This

observation suggests that the randomness of volatility persists even over very

long horizons. Sundaresan (2000) notes that this pattern observed in the

term structure of volatility smiles presents a challenge for correctly modelling

volatility. The inclusion of jump components in the return process should
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be modelled if smile e¤ects for short maturity options are to be mitigated,

however model speci�cations that include jumps lead to unrealistic volatility

behaviour for long maturity options. Comte, Coutin and Renault (2003)

attempt to resolve this by developing a continuous time stochastic volatility

model with long memory and an associate option pricing model. Their

approach allows for persistence in the long run while persistence is negligble

in the short run.

The relevance of long memory e¤ects in a realistic discrete time setting is

examined here. In practice, asset allocation decisions are made with rela-

tive frequency and in many cases do not account for fractional behaviour

in the underlying volatility process. This chapter measures the impact of

omitting fractional dynamics in the portfolio optimization process and ex-

amines the e¤ects of this omission both in terms of portfolio allocation and

economic cost over the entire investment horizon. The methodology applied

here bene�ts from recent developments in portfolio optimisation and dy-

namic programming as well as the �ndings from a number of recent studies

on the performance of derivative strategies.

The analysis focuses on implementing a covered call strategy where the in-

vestor has access to a risky asset, a call option on that asset and the money

market account. The investment period T , covers six months and the port-

folio is rebalanced at the beginning of each month, with the �nal rebalancing

decision made a the beginning of the �nal period, T � 1. Optimisation at
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each interval assumes that the underlying process follows a short-memory

speci�cation. Actual volatility is then simulated across the entire investment

horizon when volatility follows a short-memory, spurious long memory and

a true long memory speci�cation, respectively. This methodology identi�es

whether portfolio policy and performance are in�uenced by the omission of

long memory e¤ects and it also examines the relative economic consequences

when long memory is a true fractionally integrated process or is induced by

shifts in the volatility regime.

The results show that the covered call strategy does provide positive wealth

outcomes when volatility is correctly speci�ed. Long memory e¤ects, pro-

duced either by fractional integration or structural breaks in volatility must

be included in the rebalancing criteria. If the underlying volatility is frac-

tionally integrated and the investor incorrectly assumes short memory then

the covered call strategy is likely to produce negative returns. Similarly, if

the investor ignores occasional structural breaks in volatility then portfolio

returns are negatively a¤ected.

The remainder of the chapter is structured as follows. Section 4.2 describes

the portfolio choice problem and presents the three model speci�cations used

in this paper. Implementation and associated issues in Section 4.3, Section

4.4 presents the results and Section 4.5 concludes.
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4.2. Model Speci�cation and Portfolio Choice

This section �rst describes the three stochastic volatility speci�cations used

to model the short memory, spurious long memory and true long memory

process, respectively. Details of the portfolio choice problem are presented

and the dynamic programming techniques used to solve this problem is de-

scribed. Each of the three model speci�cations used here are variations on

the a¢ ne stochastic process used by Heston (1993). The use of this class

of volatility model in simulations allows one to isolate portfolio results that

arise from long memory e¤ects speci�cally. The standard a¢ ne model is it-

self a short-memory process and Ohanissian, Russell and Tsay (2008) show

how it can be adjusted to produce a volatility process that switches between

a high state and low state (spurious long memory). Additionally, Comte,

Coutin and Renault (2003) adapt the standard model to create a fractionally

integrated volatility structure. Each of the volatility speci�cations allows for

correlation between the price and volatility processes, where the correlation

in each case is represented by �:

Speci�cations

A short memory (or no long memory) model is simulated using the speci-

�cation provided by Heston (1993). It is represented in its objective form

as,
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(4.1) dSt = �Stdt+
p
VtStdW

(1)
t ;

(4.2) dVt = �(v � Vt)� �
p
Vt

�
�dW

(1)
t +

p
1� �2dW

(2)
t

�
;

where St is the price process, Vt is a square root variance process and W
(1)
t

and W (2)
t are two independent standard Wiener processes with correlation

�. The mean of the variance process is given by v, while � is the speed of

adjustment. An occasional break model is created by introducing a switching

mean in volatility to the standard Heston speci�cation as follows,

dSt = �Stdt+
p
VtStdW

(1)
t ;

dVt = �(vt � Vt)� �
p
Vt

�
�dW

(1)
t +

p
1� �2dW

(2)
t

�
;

dvt = [v
h + vl � 2vt]dq�t

In this model, the mean level of the variance process vt; switches between

a high
�
vh
�
and a low state

�
vl
�
where the switching behaviour is deter-

mined by a Poisson jump process q�t . Granger and Hyung (2004) show that

breaks in the volatility process can induce levels of persistence in the volatil-

ity structure similar to those observed for a fractionally integrated process.

The occasional break model provides an appropriate proxy for spurious long

memory process in this chapter.
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The third model considered here is a true long memory process that is simu-

lated through an adaption to the standard square root model. This speci�ca-

tion was developed by Comte, Coutin and Renault (2003) and used by them

to propose a long memory extension of the Heston (1993) option pricing

model. The square root process, eVt is adjusted using a fractional integration
operator

�
I(�)

�
as follows:

dSt = �Stdt+
p
VtStdW

(1)
t

Vt = v + I(�)(eVt � v)

deVt = �(v � Vt)� �
p
Vt

�
�dW

(1)
t +

p
1� �2dW

(2)
t

�
;

The fractional integration operator in a �nite sample is approximated as I(�)0

and results in the process,

I
(a)
0 (X)(t) =

Z t

0

(t� s)��1

�(�)
X(s)ds:

The discrete-time long memory process is then found by applying a recur-

sive discretization method to fractional integrals. Carmona, Coutin and

Montseny (2000) rewrite the fractional integrals using the Laplace inverse

transform to show that a function f; continuous on [0; T ] satis�es

I
(�)
0 (f)(t) =

1

�(�)�(1� �)

Z 1

0

x��	(x; t; f)dx;
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where,

	(x; t; f) =

Z t

0

e�x(t�s)f(s)ds

Comte, Coutin and Renault (2003) then apply a geometric subdivision of

R+; xi = ri; i = �n; �n + 1; :::; 0; 1; :::; n � 1, for some r 2 [1; 2] and n

going to in�nity. In this manner, a discretised volatility process with long

memory characteristics can be produced from the volatility process eV using
the following scheme

V r;n;�(ti) = v +
1

�(�)�(1� �)

n�1X
j=�n

cj	
�(�j; ti; eV � ev)

cj and �j are given by

cj =

�
r1�� � 1
1� �

�
r(1��)j

�j =

�
1� �

2� �

��
r2�� � 1
r1�� � 1

�
rj

and 	� is

	�(x; ti+1; f) = 	
�(x; ti; f)e

�x� + f(ti)
1� e�x�

x

	�(x; t0; f) = 0

The fractional integration operator is applied to the short memory volatility

process centered on its empirical mean rather than its theoretical mean which

cannot be observed and Comte, Coutin and Renault (2003) show that when
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the long memory parameter � is zero the standard square root model is

recovered exactly

Parameter values for each of the model speci�cations described have been

estimated by Ohanissian, Russell and Tsay (2008) from actual data on the

S&P 500 Index. The estimation procedure is an implied state-generalised

method of moments (IS-GMM) approach similar to that used by Pan (2002).

Ohanissian, Russell and Tsay (2008) consider a time series of realised volatil-

ity calculated from a 9-year sample of intra-day spot data (1990-1998) gath-

ered on the index as well as 1-year of option data (September 2, 1993 -

August 31, 1994) to generate the parameter estimates. The long memory

parameter, � is estimated using the log-periodogram regression framework

developed by Geweke and Porter-Hudak (1983). Ohanissian, Russell and

Tsay (2008) show that the long memory scheme is e¤ective for values r = 1:3;

n = 1000, and � = 0:10. In the case of the regime-switching model, the

mean of the process is found by calculating the �ltered probability of be-

ing in each state at each time using Hamilton�s (1990) EM algorithm. The

parameter values produced by the estimation procedure are listed in Table

4.1.
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Dynamic Portfolio Choice

This research considers an investor who engages in a covered call (also called

a �buy-write�) strategy. The investor writes a call contract while simultane-

ously owning an equivalent number of shares in the underlying stock. This

popular strategy is e¤ective in a sideways or slightly bullish market and is

employed by buy-and-hold type investors. McIntyre and Jackson (2007) ap-

ply a covered call strategy to a number of FTSE-100 stocks and �nd that

in many cases call writing strategies produce better returns than buy-and-

hold strategies. The principle of the strategy is that income received from

writing the call provides some protection against a decline in the stock value

while the upside potential of the strategy is limited because the payout on

the call will become non-zero as the stock price increases above the strike

price at maturity. The strategy is employed if the investor wishes to hedge

against any short-term pull back in the value of an asset while expecting

its long-term prospects to be good. Therefore, it can be viewed as a sort

of mean reversion play and provides a good platform from which to analyse

our three model speci�cations since they describe alternative behaviours of

volatility with respect to some long-run mean level.

The investor is faced with a six-month investment horizon and is limited to

rebalancing his portfolio at the beginning of each month. The investor has

access to 3-month, 6-month and 12-month options respectively. In each case,
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the investor takes action at the rebalancing date by closing out the written

call contract and avoiding the obligation to sell his stock at the call�s strike

price. At the rebalancing date, the investor then selects a weight in another

option with full maturity for the following investment interval. The investor

is thus never required to make a decision on an option at expiry and instead

relies on the price dynamics of the call option over the �rst month of its life

to earn a return from his position in the contract.

Starting with a wealth level, W0; for each rebalancing date t; 0 6 t 6 T ,

the investor places a fraction �t of wealth in an asset St and a fraction

 t in a derivative security Ct: He can also access a money market ac-

count which returns the risk-free rate, r: We assume that the investor be-

haves according to a constant relative risk aversion (CRRA) utility function,

U(W ) = W 1�
=(1� 
) with a coe¢ cient of risk aversion 
: Following from

Liu and Pan (2003), the portfolio choice problem requires us to maximise

the investor�s expected utility of terminal wealth WT

(4.3) max
f�t; t;06t6Tg

E

�
W 1�


1� 


�

where the dynamics of wealth in discrete time are as follows,

(4.4)

Wti = Wti�1

�
�ti�1

Sti
Sti�1

+  ti�1
Cti
Cti�1

+
�
1� �ti�1 �  ti�1

�
er(ti�ti�1)

�
:
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The investor in this instance uses one call option, however this approach can

be easily extended to include more than one option. Merton (1971) de�ned

the indirect utility function as,

Jt;w;v = max
f�t; t;06t6Tg

E

�
W 1�


1� 

jWt = w; Vt = v

�
;

and using the stochastic control principle we �nd the optimal portfolio by

backward induction from time T � 1 to t0: This can be rewritten as,

(4.5) J(t; w; v) = max
f�ti ; tig

Eti
�
J
�
Wti+1 ; Vti+1 ; ti+1

�
jWti = w; Vti = v

�
where wealth is given by Equation (4.4) and volatility (V ) follows the stan-

dard square root process described previously. This procedure thus �nds

the approximate optimal weights for a covered call strategy when the true

data generating process underlying stock volatility is short memory. It is

worth noting that the indirect utility function described above is separable

in that the current state of Wt+1 reached from Wt by applying Jt depends

only on Wt and Jt and not on the past history V0; :::; Vt�1: This Markov-

ian state property is a central requirement for implementing this procedure.

This requirement implies that the optimal policy cannot be similarly found

for a fractionally integrated process which is by de�nition non-Markovian

and depends on the history of volatility observations.



4.3. IMPLEMENTATION 171

4.3. Implementation

Since an analytical solution does not exist for this problem we are required

to solve the optimal portfolio policy numerically. The use of CRRA means

that the utility function is homothetic in wealth and we can thus without

loss of generality, normalizeWt = 1 so that the value function is a backward

functional equation that depends only on the horizon and state variables as

follows,

(4.6) J(w; v; t) = w1�
J(1; v; t):

Discretizing the state space has emerged as a popular method of solving

the dynamic portfolio choice problem [Balduzzi and Lynch (1999), Barberis

(2000) and Damon, Spatt and Zhang (2001), Branger, Breuer and Schlag

(2006)]. By discretizing the state space for each time period we are reducing

an in�nite set of optimisation problems in continuous state space to a �xed

number of possible states. The �rst step is to discretize the state variable

variance V into a grid of 10 equally spaced intervals between 0.002 and 0.10

and 10 equally spaced intervals between 0.10 and 0.60. The number of grid

points is limited since the speed of the solution is roughly proportionate

to the number of points used in approximating volatility. Another trick in

constructing the grid relates to the optimal interval size which is not neces-

sarily constant across volatility levels. The choice of intervals between grid

points is motivated in part by Carroll�s (2006) applications of this technique
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to solve microeconomic dynamic stochastic optimization problems. Carroll

(2006) demonstrates that by increasing the density of the variance grid at

lower variance levels the accuracy of the subsequent solution is improved.

The state variable time, t is also discretized, ti (i = n� 1; n� 2; :::; 1; 0), so

that in our case of an investor with a six-month investment horizon we have

a 5 � 19 time-variance grid.

The optimal portfolio policy and indirect utility function at each variance

gridpoint are then found beginning at time T-1. This is done by simulat-

ing a large number of paths, 100,000 in this case, from each variance grid

point. These simulations are carried out using the short memory model

speci�cation described earlier. The starting stock price is assumed to be one

and the starting price for the call option is valued using the Heston option

pricing model. For each path an end-of-period stock value and volatility

level is obtained and used to �nd the end-of-period call option price, thus a

3-month option will have a 2-month maturity at the end of the investment

period. For such a large number of simulations, pricing each path using the

Heston approach is unfeasible. The procedure is made more e¢ cient by cre-

ating a variance-moneyness grid, �nding the option price for each variance

grid point, and approximating the call price for each path by interpolation.

Branger, Breuer and Schlag (2008) examine derivative optimisation in a

similar manner.
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Once an expected stock price and call price are obtained, sequential qua-

dratic programming is used to �nd the optimal weight in each asset. The

algorithm used here is a generalised version of Newton�s method for un-

constrained optimisation that �nds a step away from the starting point by

minimizing a quadratic model of the problem. The optimisation is carried

out with a starting portfolio position of 1 in the stock and 0 in the call

option and the procedure is constrained in this instance by margin require-

ments on the stock and call option that are detailed below. Once the optimal

portfolio weights are selected at time T-1 we proceed backwards, repeating

the optimisation procedure across all variance grid points for each time step

to time 0. Most dynamic programming methods involve recursions on the

approximated value function. vanBinsbergen and Brandt (2007) show that

iterating on portfolio weights can be superior under some conditions, such as

short sales constraints. The dynamic portfolio choice problem presented in

this chapter is solved by recursing on the optimised portfolio weights rather

than on the utility function thus implementing the method put forward by

vanBinsbergen and Brandt (2007). This method of iteration provides an

insight into the portfolio choice problem and allows an extended comparison

of portfolio policy under di¤erent volatility model speci�cations.

Retaining the grid of optimal portfolio weights derived under the assumption

of short memory we can examine the distributional properties of terminal

wealth when actual volatility is either fractionally integrated or contains
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occasional breaks. A large number of paths (100,000) is simulated under the

two alternative volatility speci�cations and at each rebalancing period, for

every path portfolio weights are assigned based on the existing grid estimated

under the short memory condition. Portfolio weights are approximated by

interpolation using the pre-determined grid of optimal weights. As in the

short-memory case, this procedure is carried our recursively, beginning at

time T-1 and proceeding backwards to time 0.

Measuring Performance. The distributional characteristics of terminal

wealth are �rst observed when an investor in a derivatives portfolio ignores

long memory e¤ects during the rebalancing procedure. At each time step,

optimal portfolio weights for each variance grid point are derived under

the assumption that volatility follows a short memory speci�cation. This

grid is then used to approximate the optimal portfolio when volatility is

either a regime-switching or a fractionally interated process respectively.

The di¤erence in performance is a measure of the economic costs of not

accounting for long-run e¤ects when carrying out short run rebalancing.

The portfolios are compared using the annualized percentage di¤erence in

certainty equivalent wealth, an approach used previously in the context of

derivative strategies by Liu and Pan (2003).

The maximum utility achievable is when volatility follows a short memory

(no long memory) process and the associate certainty equivalent wealth is
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de�ned using the indirect utility function as

(4.7) JNLM(W0; V0; 0) =
W 1�

NLM;w

1� 


and the certainty wealth equivalent wealth for the spurious long memory

(SLM) and true long memory (TLM) are likewise de�ned as,

(4.8) JSLM(W0; V0; 0) =
W 1�

SLM;w

1� 


and,

(4.9) JTLM(W0; V0; 0) =
W 1�

TLM;w

1� 


respectively.

Margin Constraints. The inclusion of margin requirements introduces

greater realism into our portfolio problem. These margin requirements con-

strain the positions taken by the investor in stocks and derivatives. In com-

mon with Branger, Breuer and Schlag (2008), we use the margin require-

ments set out by Interactivebrokers.com and it is assumed that the margin

requirements are imposed only at rebalancing times. The margin require-

ments for a single call option are explained below. The calculation are easily

extended when there are two or more call options used. The margin is deter-

mined by the respective weight selected, which is denoted by � in the case
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of the stock and  for the call option. It is useful to note that the number

of options per unit of wealth is � 
C
; where C is the call option price.

For long and short stock positions the required margin MST , is 50% of the

stock price, so that Mst = 0:5� per unit of wealth. The margin requirement

for a long call position, MLC is equivalent to the price of the call, MLC =  :

For covered short positions, the margin requirement depends on the option�s

moneyness, as follows,

MSCc = minf
� 
C
; �g:C

where the number of covered calls is minf� 
C
; �g and they are trading in-

the-money (ITM), while the margin requirement is 0 if they are trading

at-the-money (ATM) or out-the-money (OTM). For short naked calls the

margin requirement is the market value of the option plus the maximum

of 15% of the underlying market value minus the out-of-the-money amount

and 10% of the underlying market value. The number of naked calls is,

� 
C
�minf� 

C
; �g = minf� 

C
� �; 0g

and the margin requirement is:

MSCN = minf
� 
C
� �; 0g[C +maxf0:15�max(Strike� 1:0; 0); 0:1g]:
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These margin requirements constrain the positions taken in each of the risky

assets as follows,

MST +MLC +MSCC +MSCN 6 1:

4.4. Results

The results are interpreted in three stages. First, the performance of the op-

timal portfolio devised under the assumption that volatility follows a short

memory process is examined. This represents our benchmark portfolio and

is used to illustrate the return characteristics of a covered call strategy.

The short memory process is generated using the model parameters con-

tained in Table 4.1. A series of optimal portfolio weights are found for every

variance gridpoint at each rebalancing interval using this optimisation pro-

cedure. The second part of the analysis starts by using this predetermined

grid of portfolio weights, which are only optimal under the short memory

condition. The optimality of these weights are examined under two alterna-

tive volatility speci�cations, namely a fractionally integrated process and a

regime switching process. These processes are simulated across the invest-

ment horizon, with portfolio weights at each time step allocated according

to the predetermined grid. In this way, the economic consequences of omit-

ting long memory e¤ects are identi�ed. The results also distinguish between
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outcomes produced by a fractionally integrated process (�true�long memory)

and those produced by a regime shifting process (�spurious�long memory).

Finally, the robustness of the results to variations in the persistence parame-

ter used in the true long memory model are explored. The model parame-

ters contained in Table 4.1 are adopted from Ohanissian, Russell and Tsay

(2008). The persistence parameter is estimated using the semi-parametric

technique developed by Geweke and Porter-Hudak (1983). This produces

estimates that are characterised by wide standard errors. To account for

estimation error, the portfolio wealth distribution is examined under a long

memory process with a higher level of persistence (� = 0:80).

The results are presented using a common vertical scale that allows com-

parison across model speci�cation and option maturity. The �rst column

of panels in Figure 4.1 illustrates the expected distributional properties of

terminal wealth for a portfolio using 3-month call options ranging from 10%

in-the-money (ITM) to 20% out-of-the-money (OTM). The upper plot shows

the portfolio results when underlying volatility is assumed to follow a short

memory model, called here a no long memory (NLM) process. It can be

observed that at-the-money (ATM) options provide the best mean wealth

across simulations. The sensitivity of ATM options to volatility results in

a greater number of negatively skewed outcomes and higher associated risk

as proxied by standard deviations. Although mean portfolio returns are
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slightly lower using out-of-the-money (OTM) options the upswing in posi-

tive skewness indicates a higher proportion of more positive returns coupled

with markedly lower standard deviation in portfolio returns. The results are

in keeping with previous �ndings on covered call strategies by McIntyre and

Jackson (2007) where OTM options provide good performance in practice,

while overall the strategy would appear to be attractive for an investor who

assumes the S&P 500 follows a short-memory process.

The middle and lower plots describe the distribution of terminal portfolio

wealth when the actual data generating process follows a spurious long mem-

ory (SLM) and true long memory (TLM) process respectively. The second

plot suggests that the investor�s decision to engage in the strategy would not

be in�uenced if the underlying asset followed an SLM model as simulated

portfolio wealth is almost identical to the NLM case across strikes. The lower

plot which illustrates portfolio outcomes when underlying volatility follows a

fractionally integrated (true long memory) process is noticeably compressed

by the strong variation in skewness for 15% and 20% OTM options. The

increased number of both positive (15% OTM strike) and negative (20%

OTM strike) outliers can be explained by the hyperbolic decay towards a

long-run mean that characterises a long memory process. It illustrates that

a higher proportion extreme positive or negative returns are possible on the

options side of the portfolio when OTM option positions are closed out at

each rebalancing period.



4.4. RESULTS 180

The implications of using longer maturity call options vary according to

the assumed underlying volatility process. The upper plot in the second

and third columns of plots in Figure 4.1 show that contract maturity is not

a sign�cant factor if volatility contains no long memory conditions. Port-

folio wealth distribution exhibits broadly similar characteristics for both a

3-month and a 6-month call option. If volatility is a SLM process the di¤er-

ences in wealth distribution become more accentuated for OTM options. An

examination of the wealth distribution of portfolios that use 20% OTM op-

tions shows that the use of 6-month rather than 3-month options leads to a

higher proportion of positively skewed portfolio returns with lower standard

deviations. A higher proportion of negatively skewed returns a produced

by a fractionally integrated process. Portfolio outcomes for a covered call

strategy using 12-month options are illustrated in the third column of pan-

els in Figure 4.1. Greater risk is induced by trading close-to-the-money

contracts, while trading OTM contracts leads to lower risk outcomes. This

pattern is common to all three volatility speci�cations. In general, the pat-

terns of terminal wealth illustrated in Figure 4.1 suggests that long-memory

e¤ects become less dominant if the investor�s strategy uses 12-month op-

tions compared to 3-month or 6-month options. The use of OTM options

is consistently the best strategy, providing stable, positively skewed returns

irrespective of the process driving volatility.
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The covered-call strategy that includes OTM call options appears to be

consistently superior from the simulations carried out here. This �nding

supports the empirical study carried out byMcIntyre and Jackson (2007) and

in simulation results in this chapter. Table 4.2 summarises the performance

of the covered call strategy in terms of certainty equivalent wealth focusing

on 20% OTM options. Assuming that true volatility is known and that

it follows a short memory process the optimal strategy that emerges is for

the investor to select 3-month options. The contained in Table 4.2 show

that positive portfolio performance is also achieved if underlying volatility

follows a regime-switching process. The same strategy produces negative

returns when volatility is fractionally integrated.

Table 4.2 shows that portfolio performance is signi�cantly a¤ected by the

choice of volatility model. The covered call strategy is clearly a worthwhile

strategy in certain market conditions but appears vulnerable in particular

to long memory e¤ects in underlying volatility. This is explored further by

focusing on outcomes from implementing a covered call strategy using 20%

OTM options. Kernel density estimates for portfolio wealth are generated

both when volatility contains no long memory, that is, alpha = 0, and when

the true long memory model produces an alpha = 0.30 and 0.80, respectively.

The kernel density estimates in Figure 4.2, illustrate a tight distribution of

returns when volatility follows a short memory process and demonstrate a

clustering of positive portfolio returns when 3-month call options are used in
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the covered call strategy. The returns from the covered call strategy decliness

as the level of persistence in the volatility of the underlying asset increases.

This distinction can be observed by comparing the distribution of returns

when alpha is 0.30, illustrated in the centre row of panels and when alpha is

0.80, shown in the lower row of panels. This �nding has clear implications

for the correct inclusion of long memory dynamics in the application of

investment strategies. The wide standard errors the accompany estimates

of long memory parameters are an important consideration in the decision

to include long memory dynamics if modelling volatility with a view to

implementing investment strategies in discrete time.

4.5. Conclusion

This chapter examines the relevance of long memory e¤ects in a realistic

portfolio setting. Long memory e¤ects in volatility have been attributed

to both fractional integration and regime switching in the data generating

process. We �rst estimate the numerical performance of a derivative strat-

egy implemented in discrete time under the assumption of no long memory

and we subsequently compare this against the performance of the derivative

strategy when volatility follows a true long memory or spurious long memory

process. Using a dynamic programming approach we �nd that covered call
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strategies provide positive, stable returns if it is assumed that the investor

knows the model speci�cation driving volatility.

The results can be related to the discussion in Liu and Pan (2003) that

describes derivative positions in terms of the exposure they o¤er to respective

aspects of volatility. The selection of an optimal weight in a derivative

security depends on the sensitivity of that derivative to volatility in the

underlying asset. They note, for example, that at-the-money options are

more sensitive to market volatility, thus providing exposure to volatility risk.

The results here show that the optimal covered call strategy requires the

selection of short maturity options that are trading 20% OTM. This result

is clearly sensitive to volatility parameters estimated under varying market

conditions. If the data generating process switches between a state of high

volatility or low volatility then this strategy may not be optimal. However

based on our simulation results, the economic loss from omitting the regime-

switching component is not signi�cant. If actual underlying volatility follows

a fractionally integrated process (true long memory) and the optimisation

procedure ignores this, then a higher proportion of negative returns are

observed. The results also show that ignoring fractional integration is less

consequential when longer maturity options are used in the covered call

strategy. Portfolio performance and the distribution properties of terminal

wealth begin to converge when 6-month and 12-month options are selected

in preference to 3-month options as part of the strategy.



4.6. APPENDIX C: SUPPORTING MATERIAL FOR CHAPTER 4 184

Long memory e¤ects are clearly important for investors rebalancing deriv-

ative portfolios in discrete time. Performance of the simple covered call

strategy is shown to be highly sensitive on the maturity and moneyness

characteristics of the selected options. The optimal strategy derived under

the assumption of short memory may result in sign�cant losses if actual

volatility is fractionally integrated.

4.6. Appendix C: Supporting Material for Chapter 4
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Table 4.2: Covered Call Strategy Using 20 Percent OTMOptions. Certainty
Equivalent Wealth and Portfolio Weights.

Call Option Time to maturity: 3-Months
CEw �0  0

NLM 0.0078 0.5136 -0.4826
SLM 0.0077 0.5146 -0.4835
TLM -0.1706 0.5149 -0.4838
Call Option Time to maturity: 6-Months
NLM -0.1703 0.5136 -0.4826
SLM -0.1705 0.5146 -0.4835
TLM -0.1707 0.5149 -0.4838
Call Option Time to maturity: 12-Months
NLM -0.1694 0.5137 -0.4826
SLM -0.1694 0.5147 -0.4834
TLM -0.1700 0.5149 -0.4838

Summary of portfolio performance measured using certainty equivalent
wealth. The optimal strategy is derived assuming volatility follows a short
memory process. Using simulations we examine the performance of this
strategy when actual volatility follows a short memory model (no long mem-
ory), a regime switching model (spurious long memory) and a fractionally
integrated model (true long memory).
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CHAPTER 5

Summary Discussion and Conclusions

5.1. Introduction

Modeling and forecasting asset volatility is an important and challenging

task both for academic researchers and professional risk managers. The

past twenty years has seen the development and expansion of a range of so-

phisticated forecasting models within the academic literature as well as an

increasing reliance on these models within the �nancial markets for a number

of risk management functions. Statistical forecasting methods that rely on

historical price return patterns produced by economic and �nancial assets

have become increasingly complex. Relatively simple, easily implemented

moving average approaches such as the exponentially weighted moving av-

erage (EWMA) models have been superceded in the academic literature by

the class of ARCH and GARCH models. These statistical methods are e¤ec-

tive over very short forecast horizons and all exhibit a declining predictive

ability as the forecast horizon extends beyond one-day. Research into the

forward-looking information provided by the options market has shown that

an e¤ective alternative is available for risk managers. Implied volatilities

are easily obtained and provide forecasts over multi-day horizons that are

189
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in many cases more robust that those provided by statistical methods. The

�rst part of this thesis belongs to the body of work testing and ranking

alternative volatility forecasting methods.

Improvements in computing power and the adoption of techniques originally

developed in the physical sciences have facilitated analysis of long-run per-

sistence in asset volatility. These subtle long-run e¤ects can be identi�ed

using semi-parametric techniques and more recently, academic research in

�nance has shown the importance of long-memory e¤ects in risk manage-

ment and option pricing. This thesis contributes to the �nance literature

by developing a greater understanding of both UK equity volatility and the

equity options market. The characteristics of stock speci�c volatility are

carefully de�ned and the distinct role of volatility e¤ects in discrete time

derivative strategies are observed. The research speci�cally contributes to

the existing �nance literature as follows.

� Analysis of composite implied volatility forecasts in the context of

individual UK equities.

� A comparative analysis of forecasts produced composite implied

volatilities obtained from individual equity options and GARCH

and E-GARCH forecasts.

� An examination of the long-run dynamics of realized and implied

volatility of UK equities using semi-parametric techniques.
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� An investigation into the presence of structural breaks in UK equity

volatility.

� The application of dynamic programming techniques to establish

the relevance of long-memory e¤ects in constructing optimal deriv-

ative strategies in discrete time.

5.2. Research Findings

The research �ndings can be separated into a number of distinct strands.

The results presented in Chapter 2 show that implied volatility contains

predictive information on subsequently realised asset volatility and that this

forward-looking information is superior to that available in GARCH-type

forecasts. This is an extension of the existing research into index options

carried out elsewhere and it demonstrates that equity options can provide a

useful signal function for stock speci�c risk. A composite implied volatility

estimate is constructed as a weighted average of implied volatilities drawn

from close-to-the-money options. Tests were carried out across ten-day fore-

cast horizons using non-overlapping UK stock data. Furthermore, predic-

tive information available from implied volatilities is shown to be superior

to that available from both GARCH and E-GARCH models. The superior

performance of implied volatilities is shown by both Mincer-Zarnowitz and

encompassing regression results. Direct comparison of implied volatilities
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against statistical methods using Diebold-Mariano and Harvey Leybourne

Newbold pairwise tests con�rm the superiority of implied volatility forecasts.

The existence of long memory e¤ects in stock price volatility is examined in

Chapter 3. Semi-parametric techniques are used to identify volatility persis-

tence in the volatility series of a number of FTSE-100 companies. Spurious

long memory, induced by structural breaks in volatility is tested for by ex-

amining the time-domain properties of stock volatility using subsampling

and di¤erencing techniques. Variations in persistence parameter estimates

are observed among subsamples indicating the presence of structural breaks

in a number of volatility series. Fractional integration in the autocorrela-

tion structure is shown to be the primary cause of long memory e¤ects for

both the implied and realized volatility. Further examination shows that

structural breaks do not explain the levels of persistence observed in many

volatility series. For the �rst time, this research also models the long-run re-

lationship between implied and realized volatility for individual stocks using

recently developed semi-parametric techniques. For a number of companies,

both volatility series are shown to be linked by a fractionally cointegrating

relationship.

Chapter 4 examines the implications of long memory e¤ects in a portfo-

lio selection problem. The analysis is carried out within a realistic frame-

work, where an investor with a six-month investment horizon, engages in

a covered-call strategy and is constrained to rebalancing his portfolio at
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monthly intervals. The asset allocation decision is also constrained by mar-

gin requirements. An optimal derivative strategy is constructed under the

assumption that asset volatility follows a short memory process. Dynamic

programming techniques are used to estimate optimal portfolio weights for

each time step beginning at the last investment period. Optimal portfo-

lio weights are then determined for a series of predetermined variance grid

points at each time step. The performance of these optimal portfolio weights

is examined by simulating long memory volatility processes across the in-

vestment horizon. The results show that the omission of long-memory e¤ects

in asset volatility in the context of this derivative strategy substantially al-

ters the distribution of terminal wealth. Portfolio performance is negative if

the assets under consideration follow a long memory, fractionally integrated

process and this is not included in the optimisation procedure. This result

implies that fractional integration or true long memory must be considered

in the construction of optimal derivative strategies.

5.3. Research Issues and Limitations

There are a number of issues and limitations associated with the research

undertaken that merit consideration. The LIFFE Euronext options dataset

obtained for this research provided data for every company quoted on the

FTSE-100. The relatively short trading history of many options series lim-

ited the analysis to sixteen FTSE-100 companies that traded continuously
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from 1997 to 2003. Composite implied volatility estimates were constructed

from the four closest-to-the-money options traded on a given day amd con-

tract maturities were matched as closely as possible to the forecast horizon

being considered. The creation of this estimate was however subject to liq-

uidity constraints since traded options on some days were limited to one

or two option contracts. To overcome this limitation and optimally use

the available data, the implied volatility estimate was constructed from the

closest to the money options which meant backing implied volatility out of

a single option in some cases. Similar limitations have applied to previous

studies into individual equity options carried out in the US market [Gemmill

(1986), Lamoureux and Lastrapes (1993)].

The analysis of long-memory e¤ects in Chapter 3 relies on the application of

semi-parametric techniques, namely the Geweke and Porter-Hudak estimate

and the exact local Whittle estimate. These techniques are widely used

in the literature to examine time series behaviour at very low, harmonic

frequencies. They are however, characterised by wide error bands which

weaken the inference that can be drawn from the results. The limitation

of this methodology is for the most part overcome by the additional time

domain tests used to show consistency in the persistence parameter among

subsamples. This analysis as well as the examination of fractional cointe-

gration carried out in Chapter 3 would bene�t from a more extended sample
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period. US data would possibly provide a longer sample period with which

to examine the long-run behaviour of asset volatility.

5.4. Areas for Further Research

The analysis of the implied-realized volatility relationship in Chapter 2

should be extended to include a wider sample of companies. This could be

achieved using LIFFE Euronext options data for equities quoted on other

European indices. A more liquid dataset may yield option contracts appro-

priate for the construction of shorter non-overlapping horizons, for example,

bi-weekly. The analysis of a long time series would provide stronger regres-

sion results. The univariate analysis carried out in this thesis could be use-

fully applied in a multivariate, portfolio context. The �ndings suggest that

the increased use of equity options data would provide a simple but e¤ective

tool in active equity fund management. Portfolio construction requires a

measure of correlation between the securities included in the portfolio. Ac-

curate measures of the dynamic correlation between assets are important

inputs for portfolio optimisation and risk management. Lopez and Walter

(2000) and Skintzi and Refenes (2006) examine the forward looking informa-

tion contained in index options on the Dow Jones Industrial Average (DJIA).

Skintzi and Refenes (2006) show that implied correlation has a high explana-

tory power and is a good forecast of realized correlation. Existing research

should be extended to consider the forward-looking information contained
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in equity options in the context of partially diversi�ed portfolios. Implied

correlations re�ected in options data could be compared against the perfor-

mance of multivariate statistical methods, such as the dynamic conditional

correlation multivariate GARCH (DCC- MV GARCH) model [Engle and

Sheppard (2001), Kearney and Poti (2006)]. Composite implied volatilities

from individual equity options are also an appropriate mechanism for the

analysis of strategic (long-term) and tactical (short-term) asset allocation

decisions. According to Rey (2004), tactical asset allocation is ostensibly

used to "realign the return and risk pro�le of a long-term strategic bench-

mark portfolio". Arnott and Fabozzi (1988) de�ne it more speci�cally as,

"shifting the asset mix of a portfolio in response to the changing patterns

of reward available in the capital markets". Tactical asset allocation is im-

plemented across di¤erent investment horizons and decisions are evaluated

according to a range of criteria. Philips, Rogers and Capaldi (1996) note

that the objective of the fund manager is to outperform benchmark returns

on a risk-adjusted basis. Implementing tactical asset allocation using the

information content of individual equity options across various investment

horizons has not been examined to date in the academic literature. Fu-

ture research should address the economic bene�ts of opportunistic asset

allocation decisions that exploit forward-looking, stock-speci�c information

contained in equity options.
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The calculation of realized volatility using high-frequency data is likely to

bene�t from the use of a longer sample period as well as the development of

more nuanced approaches such as those suggested by Andersen and Boller-

slev (1997) and Oomen (2006) that take account of the intra-day trading

patterns. The multi-scale realized volatility (MSRV) estimate proposed in

Zhang and Mykland (2005) and evaluated in Zhang�s (2006) study are likely

to produce more e¢ cient estimates of realized volatility. The research �nd-

ings from Chapter 4 which show the creation of optimal derivative portfolio

strategies using dynamic programming techniques should be further vali-

dated using empirical market data. The analysis could also be extended

beyond the simple covered call strategy to a range of derivative strategies.

One implication of this research is the potential development of trading

strategies that exploit derivative mispricing that arises from fractionally inte-

grated volatility. The relevance of volatility persistence should be examined

through alternative derivative strategies that optimally allocate weights to

option contracts expiring at di¤erent maturities. Using market data presents

challenges such as potential liquidity constraints and microstructure e¤ects

which must be overcome when estimating and implementing optimal strate-

gies in practice. Future research extending from the �ndings in Chapter 4

should address the role of margin constraints. A comparison of the solution

both with and without margin constraints should provide an insight into the

economic cost of such constraints.



References

Andersen, T.G., and Bollerslev, T., 1997, Intraday periodicity and volatility
persistence in �nancial markets, Journal of Empirical Finance 4, 115-158.

Andersen, T. and Bollerslev T., 1998, Answering the Skeptics: Yes, Standard
Volatility Models Do Provide Accurate Forecasts, International Economic
Review 39, 885-905.

Andersen, T. G., Bollerslev, T., Diebold, F.X., and Ebens, H., 2001, The
distribution of realized stock return volatility, Journal of Financial Econo-
metrics 61, 43-76.

Andersen, T. G., Bollerslev, T., Diebold, F.X., and Labys, P., 2003, Model-
ing and forecasting realised volatility, Econometrica 71, 579-625.

Andrews, D.W.K., and Guggenberger, P., 2003, A bias-reduced log-
periodogram regression estimator for the long memory parameter, Econo-
metrica , 675-712.

Arnott, R. and Fabozzi, F., 1988, Asset Allocation: A Handbook of Portfolio
Policies, Strategies and Tactics, Probus.

Awartani, B. M. A., and Corradi, V., 2004, Predicting the Volatility of
the S&P-500 Stock Index via GARCH Models: The Role of Asymmetries,
Journal of Forecasting 21, 167-183.

Baillie, R.T., 1996, Long memory processes and fractional integration in
econometrics, Journal of Econometrics 73, 5-59.

Baillie, R.T., and Bollerslev, T., 1994, Cointegration, fractional cointegra-
tion, and exchange rate dynamics, The Journal of Finance 49, 737-745.

198



REFERENCES 199

Baillie, R.T., Bollerslev, T., and Mikkelsen, H.O., 1996, Fractionally Inte-
grated Generalized Autoregressive Conditional Heteroskedasticity, Journal
of Econometrics 74, 3-30.

Baillie, R.T., and King, M., 1996, Editors�introduction: Fractional di¤er-
encing and long memory processes, Journal of Econometrics 73, 1-3.

Balduzzi, P., and Lynch, A., 1999, Transaction costs and predictability:
some utility cost calculations, Journal of Financial Economics 52, 47-78.

Bandi, F.M., and Perron, B., 2006, Long memory and the relation between
implied and realized volatility, Journal of Financial Econometrics 4, 636-
670.

Barberis, N., 2000, Investing for the long run when returns are predictable,
Journal of Finance 55, 225-264.

Barkoulas, J., and Baum, C., 1996, Long term dependence in stock returns,
Economics Letters 53, 253-259.

Barndor¤-Nielsen, O.E., and Shephard, N., 2004, Econometric analysis of
realised covariation: High frequency based covariance, regression and corre-
lation in �nancial economics, Econometrica 72, 885�925.

Bates, D. S., 1991, The Crash of �87: Was It Expected? The Evidence from
Options Markets, Journal of Finance 46, 1009-1044.

Bates, D. S., 2000, Post-�87 Crash Fears in the S&P 500 Futures Option
Market, Journal of Econometrics 94, 181-238.

Beltratti, A., and Morana, C., 2006, Breaks and persistency: macroeconomic
causes of stock market volatility, Journal of Econometrics 131, 151-177.

Beckers, S., 1981, Standard Deviations Implied in Option Prices as Predic-
tors of Future Stock Price Variability, Journal of Banking and Finance 5,
363-81.

Black, F. and Scholes, M., 1973, The Pricing of Options and Corporate
Liabilities, Journal of Political Economy 81, 637-654.

Bodie, Z., and Merton, R., 1995, The Information Role in Asset Prices: The
Case of Implied Volatility, in Crane D., Froot, K., Mason, S., Perold, A.,



REFERENCES 200

Merton., R., Bodie, Z., Sirri, E., and Tu¤ano, P. (eds), The Global Financial
System: A Functional Perspective, Boston Massachusetts: Harvard Business
School Press.

Bollerslev, T., 1986, Generalized Autoregressive Conditional Heteroskedas-
ticity, Journal of Econometrics, 31, 307-327.

Bollerslev, T., Cai, J., and Song, F.M., 2000, Intraday periodicity, long mem-
ory volatility, and macroeconomic announcement e¤ects in the US Treasury
bond market, Journal of Empirical Finance 7, 37055.

Bollerslev, T., and Mikkelsen, H.O., 1996, Modeling and pricing long mem-
ory in stock market volatility, Journal of Econometrics 73, 151-184.

Boyle, P.P., Byoun, S. and Park, H.Y., 2002, The Lead-Lag Relationship
Between Spot and Option Markets and Implied Volatility in Options Prices,
Research in Finance 19, 269-294.

Brandt, M., 1999, Estimating portfolio and consumption choice: A condi-
tional euler equations approach, Journal of Finance 54, 1609-1646.

Brandt, M.W., Goyal, A., Santa-Clara, P., and Stroud, J.R., 2005, A sim-
ulation approach to dynamic portfolio choice with application to learning
about return predictability, Review of Financial Studies 18, 831-873.

Branger, N., Breuer, B., and Schlag, C., 2006, Optimal derivative strate-
gies with discrete rebalancing, Working Paper, Westfalische Wilhelms-
Universitat Munster.

Branger, N., Schlag, C., and Schneider, E., 2008, Optimal portfolios when
volatility can jump, Journal of Banking and Finance 32, 1087-1097.

Breidt, F.J., Crato, N., and deLima, P., 1998, The detection and estimation
of long memory in stochastic volatility, Journal of Econometrics 83, 683-88.

Brownlees, C. T. and Gallo, G. M., 2006, Financial Econometric Analysis at
Ultra-High Frequency: Data Handling Concerns, Computational Statistics
and Data Analysis 51, 2232-2245.

Budek, J., Schotman, P., and Tschering, R., 2006, Long memory and the
term structure of risk, Working Paper, Maastricht University.



REFERENCES 201

Cai, F., and Zheng, L., 2004, Institutional trading and stock returns, Finance
Research Letters 1, 178-189.

Canina, L., and Figlewski, S., 1993, The Informational Content of Implied
Volatility, Review of Financial Studies 6, 659-681.

Carmona, P., Coutin, L., and Montseny, G., 2000, Approximation of some
Gaussian processes, Statistical Inference for Stochastic Processes 3, 161-171.

Carroll, C., 2006, Lecture notes on solution methods for microeconomic
dynamic stochastic optimization problems, Department of Economics, John
Hopkins University.

Chernov, M., 2007, On the role of risk premia in volatility forecasting, Jour-
nal of Business and Economic Statistics 25, 411-426.

Cheung, Y., and Lai, K., 1993, A fractional cointegration analysis of purchas-
ing power parity, Journal of Business and Economic Statistics 11, 103-112.

Chiras, D.P. and Manaster, S., 1978, The Information Content of Option
Prices and an Test of Market E¢ ciency, Journal of Financial Economics 6,
213-34.

Choi, K., and Zivot, E., 2007, Long memory and structural changes in
the forward discount: An empirical investigation, Journal of International
Money and Finance 26, 342-363.

Christensen, B.J., and Prabhala, N.R., 1998, The relation between implied
and realized volatility, Journal of Financial Economics 50, 125-150.

Clark, T.E. and McCracken, M.W., 2001, Tests of Equal Forecast Accuracy
and Encompassing for Nested Models, Journal of Econometrics 105, 85
-110.

Comte, F., Coutin, L., and Renault, E., 2003, A¢ ne fractional stochastic
volatility models with application to option pricing, Working Paper, Uni-
versite de Montreal.

Cox, J.C., Ross, R. and Rubinstein, M., 1979, Option Pricing: A Simpli�ed
Approach, Journal of Financial Economics 7, 229-263.



REFERENCES 202

Dammon, R., Spatt, C., and Zhang, H., 2001, Optimal consumption and
investment with capital gains taxes, Review of Financial Studies 14, 583-
616.

Davidson, J., Peel, D., and Byers, J., 2006, Support for governments and
leaders: Fractional cointegration analysis of poll evidence from the UK,
1960-2004, Studies in Nonlinear Dynamics and Econometrics 10, 1-21.

Deo, R., and Hurvich, C., 1998, On the log-periodogram regression estima-
tor of the memory parameter in long memory stochastic volatility models,
Technical Report SOR-98-04, New York University, Stern School of Business.

Diebold, F., Husted, S., and Rush, M., 1991, Real exchange rates under the
gold standard, Journal of Political Economy 99, 1252-1271.

Diebold, F.X., and Inoue, A, 2001, Long memory and regime switching,
Journal of Econometrics 105, 131-159.

Diebold, F.X. and Mariano, R.S., 1995, Comparing Predictive Accuracy,
Journal of Business and Economic Statistics 13, 253-63.

Ding, Z., Granger, C., and Engle, R., 1993, A long memory property of stock
market returns and a new model, Journal of Empirical Finance 1, 83-106.

Doran, J., and Fodor, A., 2006, Is there money to be made investing in
options? A historical perspective, Working Paper, Florida State University.

Dumas, B., and Luciano, E., 1991, An exact solution to a dynamic portfolio
choice problem under transactions costs, Journal of Finance 46, 577-595.

Dubinsky, A., and Johannes, M., 2005, Earnings announcements and equity
options, Working Paper, Columbia University.

Ederington, L. and Guan, W., 1999, The Information Frown in Option
Prices, Working Paper, University of Oklahoma.

Ederington, L. and Guan, W., 2002, Measuring Implied Volatility: Is an
average better?, Journal of Futures Markets 22, 811-837.

Ederington, L.H., and Lee, J.H., The creation and resolution of market
uncertainty: the impact of information releases on implied volatility, Journal
of Financial and Quantitative Analysis 31, 513-539.



REFERENCES 203

Engle, R. F., 1982, Autoregressive Conditional Heteroskedasticity with Es-
timates of the Variance of U.K. in�ation, Econometrica 50,987-1008.

Engle, R., and Granger, C., 1987, Co-integration and error correction: Rep-
resentation, estimation and testing, Econometrica 55, 251-276.

Engle, R., and Patton, A., 2001, What good is a volatility model?, Quanti-
tative Finance 1, 237-245.

Engle, R., and Sheppard, K., 2001, Theoretical and empirical properties
of dynamic conditional correlation multivariate GARCH, Working Paper,
University of California, San Diego.

Fama, E., 1970, Multiperiod consumption-investment decisions, American
Economic Review 60, 163-174.

Figlewski, S., 1997, Forecasting Volatility, Financial Markets, Institutions
and Instruments 6, 2-88.

Garvey, J., and Gallagher, L., 2007, The forecasting performance of im-
plied volatilities on individual equity options, Working Paper, Dublin City
University.

Garvey, J., and Gallagher, L., 2008, Modeling the implied and realized
volatility relationship of individual equities, Working Paper, Dublin City
University.

Gemmill, G., 1986, The forecasting performance of stock options on the
London traded options market, Journal of Business Finance & Accounting
13, 535�546.

Geweke, J., and Porter-Hudak, S., 1983, The estimation and application of
long memory time series models, Journal of Time Series Analysis 4, 221-
238.

Giot, P., and Laurent, S., 2007, The information content of implied volatility
in light of the jump/continuous decomposition of realized volatility, Journal
of Futures Markets 27, 337-359.

Glosten, L.R., Jagannathan, R., and Runkle, D.E., 1993, On the relation
between the expected value and the volatility of the nominal excess return
on stocks, Journal of Finance 48, 1779-801.



REFERENCES 204

Granger, C., 1980, Long memory relationships and the aggregation of dy-
namic models, Journal of Econometrics 14, 227-238.

Granger, C., 1981, Some properties of time series data and their use in
econometric model speci�cation, Journal of Econometrics 16, 121-130.

Granger, C., 1998, Real and spurious long-memory properties of stock mar-
ket data: comment, Journal of Business and Economic Statistics 16, 268-
269.

Granger, C., and Joyeux, R., 1980, An introduction to long memory time
series models and fractional di¤erencing, Journal of Time Series Analysis
1, 15-39.

Granger, C,. and Ding, Z., 1996, Varieties of long memory models, Journal
of Econometrics 73, 61-78.

Granger, C., and Hyung, N., 2004, Occasional structural breaks and long
memory with an application to the S&P 500 absolute stock returns, Journal
of Empirical Finance 11, 399-421.

Granger, C., and Marmol, F., 1997, The correlogram of a long mem-
ory process plus a simple noise, Discussion Paper 98, University College
SanDiego.

Hamilton, J., 1990, Analysis of time series subject to change in regime,
Journal of Econometrics 45, 39-70.

Hamilton, J.D., and Susmel, R., 1994, Autoregressive conditional het-
eroskedasticity and changes in regime, Journal of Econometrics 64, 307-333.

Hansen, P., and Lunde, A., 2005, A Forecast Comparison of Volatility Mod-
els: Does Anything Beat a GARCH (1,1)?, Journal of Applied Econometrics
20, 873-889.

Harvey, D. I., Leybourne, S. J. and Newbold, P., 1998, Tests for Forecast
Encompassing, Journal of Business and Economic Statistics 16, 254-59.

Heston, S., 1993, A closed-form solution for options with stochastic volatility
with applications to bond and currency options, Review of Financial Studies
6, 327-343.



REFERENCES 205

Hosking, J., 1981, Fractional di¤erencing, Biometrika 68, 165-176.

Hurst, H., 1951, Long term storage capacities of reservoirs, Transactions of
the American Society of Civil Engineers 116, 770-799.

Hurst, H., 1957, A suggested statistical model of some time series that occur
in nature, Nature 180, 494.

Hurvich, C., and Chen, W., 2000, An e¢ cient taper for potentially overdif-
ferenced long-memory time series, Journal of Time Series Analysis 21, 155-
180.

Hurvich, C., and Deo, R., 1999, Plug-in selection of the number of frequen-
cies in regression estimates of the memory parameter of a long-memory time
series, Journal of Time Series Analysis 20, 331-341.

Intertek Group, The, 2006, Surveys on Trends in Equity Portfolio Modeling,
September, ed. Fabozzi, F.J., Focardi, S., Jonas, C., Paris.

Jackwerth, J., and Rubinstein, M., 1996, Recovering Probability Distribu-
tions from Option Prices, Journal of Finance 51, 1611-1631.

Jacod, J., and Shiryaev, A.N., (2003), Limit theorems for stochastic
processes, 2nd edn., New York: Springer-Verlag.

Jorion, P., 1995, Predicting volatility in the foreign exchange market, Jour-
nal of Finance 50, 507-528.

Kearney, C., Poti, V., 2006, Correlation dynamics in European equity mar-
kets, Research in International Business and Finance 20, 305-321.

Kellard, N., Dunis, C., and Sarantis, N., 2007, Foreign exchange, fractional
cointegration and the implied-realized volatility relation, Working Paper,
University of Essex.

Kilian, L., and Taylor, M., 2003, Why is it so di¢ cult to beat the random
walk for exchange rates?, Journal of International Economics 74, 119-147.

Kim, T., and Omberg, E., 1996, Dynamic nonmyopic portfolio behaviour,
Review of Financial Studies 9, 141-161.



REFERENCES 206

Kim, C.S., and Phillips, P.C, 1999, Log periodogram regression: The non-
stationary case, Cowles Foundation Discussion Paper, Yale University.

Koutmos, G.,1998, Feedback trading and the autocorrelation pattern of
stock returns: further empirical evidence, Journal of Internation Money
and Finance 16, 625-636.

Kunsch, H.R., 1987, Statistical aspects of self-similar processes, In Y. Pro-
horov and V.V. Sazonov (eds.), Proceedings of the First World Congress of
the Bernouilli Society, Utrecht: VNU Science Press.

Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., and Shin, Y., 1992, Testing
the null hypothesis of staionarity against the alternative of a unit root:
How sure are we that economic time series have a unit root?, Journal of
Econometrics 54, 159-178.

Lamoureux, C.G., and Lastrapes, WD., 1993, Forecasting stock-return vari-
ance: Toward an understanding of stochastic implied volatilities, Review of
Financial Studies 6, 293-326.

Liu, J., and Pan, J., 2003, Dynamic derivative strategies, Journal of Finan-
cial Economics 69, 401-430.

Lo, A., 1991, Long term memory in stock market prices, Econometrica 59,
1279-1313.

Lopez, J., and Walter, C., 2000, Is implied correlation worth calculating?
Evidence from foreign exchange options and historical data, Journal of
Derivatives 7, 65-82.

Los, J., 2005, Why VAR fails: Long memory and extreme events in �nancial
markets, Journal of Financial Economics 3, 19-36.

Lobato, I., 1999, A semiparametric two-step estimator in a multivariate long
memory model, Journal of Econometrics 90, 129-153.

Malz, A., 2003, Do implied volatilities provide early warning of market
stress?, Riskmetrics Technical Document.

Mandlebrot, B., and Wallis, J., 1968, Noah, Joseph and operational hydrol-
ogy, Water Resources Research 4, 909-918.



REFERENCES 207

Mayhew, S., 1995, Implied volatility, Financial Analysts Journal 51, 8-13.

McIntyre, M., and Jackson, D., 2007, Great in practice, not in theory: An
empirical examination of covered call writing, Journal of Derivatives and
Hedge Funds 13, 66-79.

McLeod, A., and Hipel, K., 1978, Preservation of the rescaled adjusted
range, 1: A reassessment of the Hurst phenomenon, Water Resources Re-
search 14, 491-508.

Meddahi, N., 2002, A Theoretical Comparison Between Integrated and Re-
alized Volatility, Journal of Applied Econometrics 17, 479-508.

Merton, R.C., 1969, Lifetime portfolio seelection under uncertaintyL The
continuous-time case, Review of Economics and Statistics 51, 247-257.

Merton, R.C., 1971, Optimum consumption and portfolio rules in a
continuous-time model, Journal of Economic Theory 3, 373-413.

Merton, R.C., 1981, On estimating the expected returns on the market: An
exploratory investigation, Journal of Financial Economics 8, 323-361.

Merton, R., Scholes, M., and Gladstein, M., 1978, The returns and risk of
alternative call option portfolio investment strategies, Journal of Business
51, 183-242.

Merton, R., Scholes, M., and Gladstein, M., 1982, The returns and risk of
alternative put options portfolio investment strategies, Journal of Business
55, 1-55.

Mikosch, T., and Starica, C., 1999, Change of structure in �nancial time
series, long range dependence and the GARCH model, Working Paper, The
Wharton School, Chalmers University of Technology.

Mincer, J. and Zarnowitz, V., 1969, The Evaluation of Economic Forecasts
in J. Mincer(ed.), Economic Forecasts and Expectations, NBER, New York.

Morana, C., and Beltratti, A., 2004, Structural change and long range de-
pendence in volatility of exchange rates: either, neither or both?, Journal of
Empirical Finance 26, 2047-2064.



REFERENCES 208

Nelson, D.B., 1991, Conditional Heteroskedasticity in Asset Returns: A New
Approach, Econometrica 59, 347-370.

Nielsen, M., and Shimotsu, K., 2007, Determining the cointegrating rank
in nonstationary fractional systems by the exact local Whittle approach,
Journal of Econometrics 141, 574-596.

Ohanissian, A., Russell, J.R., and Tsay, R.S., 2008, True or spurious long
memory? A new test, Journal of Business and Economic Statistics 26,
161-175.

Oomen, R., 2006, Properties of realized volatility under alternative sampling
schemes, Journal of Business and Economic Statistics 12, 1019-1043.

Pan, J., 2002, The jump-risk premia implicit in options: Evidence from an
integrated time series study, Journal of Financial Economics 63, 3-50.

Paya, I., and Peel, D., 2006, On the speed of adjustment in ESTAR models
when allowance is made for bias in estimation, Economics Letters 90, 272-
277.

Penttinen, A., 2001, The Sensitivity of Implied Volatility to Expectations
of Jumps in Volatility: An Explanation for the Illusory Bias in Implied
Volatility as a Forecast, Working Paper, Swedish School of Economics and
Busines Administration.

Philips, T., Rogers, R., and Capaldi, R., 1996, Tactical Asset Allocation:
1977-1994, Journal of Portfolio Management 22, 57-64.

Phillips, P., and Perron, P., (1988), Testing for a unit root in time series
regression, Biometrika 75, 335-46.

Phillips, P., and Shimotsu, K., 2004, Local whittle estimation in nonstation-
ary and unit root cases, Annals of Statistics 32, 656-692.

Pliska, S., 1986, A stochastic calculus model of continuous trading: Optimal
portfolios, Mathematics of Operations Research 11, 239-246.

Poon, S.H. and Granger, C.W.J., 2003, Forecasting Volatility in Financial
Markets: A Review, Journal of Economic Literature 41, 478-539.



REFERENCES 209

Poteshman, A.M., 2000, Forecasting future volatility from option prices,
Working Paper, University of Illinois.

Ray, B., and Tsay, R., 2000, Long range dependence in daily stock volatili-
ties, Journal of Business and Economic Statistics 18, 254-262.

Rey, D., 2004, Tactical Asset Allocation: An Alternative De�nition,
WWZ/Department of Finance, Working Paper No. 3/04, University of
Basel.

Robinson, P.M., 1978, Statistical inference for a random coe¢ cient autore-
gressive model, Scandinavian Journal of Statistics 5, 163-168.

Robinson, P.M., 1995, Gaussian semiparametric estimation of long-range
dependence, Annals of Statistics 73, 1630-1661.

Robinson, P.M., and Marinucci, D., 2001, Semiparametric fractional cointe-
gration analysis, Journal of Econometrics 105, 225-247.

Robinson, P.M., and Yajima, Y., 2002, Determination of cointegrating rank
of fractional systems, Journal of Econometrics 106, 217-241.

Rogo¤, K., 1996, The purchasing power parity puzzle, Journal of Economic
Literature 34, 647-668.

Santa-Clara, P., and Saretto, A., 2006, Option Strategies: Good deals and
margin calls, Working Paper, UCLA.

Shimotsu, K., and Phillips, P., 2005, Exact local Whittle estimation of frac-
tional integration, Annals of Statistics 33, 1890-1933.

Shimotsu, K., 2006, Simple (but e¤ective) tests of long memory versus
structural breaks, Queen�s Economics Department Working Paper No. 1191,
Queen�s University.

Skintzi, V., and Refenes, A-P., 2006, Implied correlation index: A new mea-
sure of diversi�cation, Journal of Futures Markets 25, 171-197.

Sowell, F., 1992, Modelling long run behaviour with the fractional ARIMA
model, Journal of Monetary Economics 29, 277-302.



REFERENCES 210

Sundaresan, S, 2000, Continuous-time methods in �nance: A review and
assessment, Journal of Finance 55, 1569-1622.

Taylor, S.J., 2001, Consequences for option pricing of a long memory in
volatility, Working Paper 017, Lancaster University.

Taylor, M., Peel, D., and Sarno, L, 2001, Nonlinear mean-reversion in real
exchange rates: toward a solution to the purchasing power parity puzzles,
International Economic Review 42, 1015-1042.

vanBinsbergen, J. and Brandt, M., 2007, Solving dynamic portfolio choice
problems by recursing on optimized portfolio weights or on the value func-
tion?, Computational Economics 29, 335-367.

Vasilellis, G.A. and Meade, N., 1996, Forecasting Volatility for Portfolio
Selection, Journal of Business Finance Accounting 23, 125-143.

Venetis, I., and Peel, D., 2005, Non-linearity in stock index returns: the
volatility and serial correlation relationship, Economic Modelling 22, 1-19.

Wachter, J., 2002, Portfolio and consumption decisions with mean-reverting
returns: An exact solution for complete markets, Journal of Financial and
Quantitative Analysis 37, 63-91.

Wermers, R., 2000, Mutual fund performance: An empirical decomposition
into stock-picking talen, style, transactions costs and expenses, Journal of
Finance 55, 1655-1695.

Zhang, L., 2006, E¢ cient estimation of stochastic volatility using noisy ob-
servations: A multi-scale approach, Bernouilli 12, 1019-1043.

Zhang, L., Mykland, P.A., and Ait-Sahalia, Y., 2005, A tale of two time
scales: Determining integrated volatility with noisy high-frequency data,
Journal of American Statistical Association 100, 1394-1411.



5.5. MATLAB PROGRAMME 1: IMPORTING AND FORMATTING DATA 211

Appendix D: Sample Matlab Code

5.5. Matlab Programme 1: Importing and Formatting Data

%STEP 1: Import daily stock price data, used to generate GARCH/EGARCH
forecasts

[date, cua, ba,aws, cad, dix, gns, gxo, ldb, hsn, hsb, kgf, lnr, ms, pru, ryl,
rut] =

textread(�C:nDatanprice_data.txt�,�%s %f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f�);

for i = 1:size(date,1)

dstr =date{i};

date_1(i) = datenum(dstr);

end

dates = date_1�;

dates(1)=[];

% Co-ordinate ticker symbols!!

av = cua; ba = ba; bay = aws; cbry = cad; dxn = dix; dge = gns; gsk =
gxo; hg = ldb; hns = hsn;

hsba = hsb; kgf = kgf; lmi=lnr; mks = ms; pru = pru; rsa = ryl; rtr = rut;

% returns: underlying asset returns (N x 16)

prices = [av, ba, bay, cbry, dge, dxn, gsk, hg, hns, hsba, kgf, lnr, mks, pru,
rsa, rtr];

returns = price2ret(prices);

% Previously, STEP1_OPTDATA_LOAD.m
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% STEP 2: Import data.

fname1 = [�C:nProgram FilesnMATLABnR2007anworknscreenoptdatandatabanknhg.mat�];

load (fname1);

fname2 = [�C:nProgram FilesnMATLABnR2007anworknscreentickdatandatan30min_ts.mat�];

load (fname2);

RV = rv1day_8; % Realized Volatility

DR = [dates, returns(:,8)]; % Daily Returns

optdata = optdata_all;

% STEP 3: Create expiry dates and convert to numerical form -
expiries are third Friday of every month

expiry = optdata(:,3);

for i=1:size(expiry,1)

dstr = num2str(expiry(i));

if length(dstr) == 5

mm = [�0�,dstr(1)];

yy = dstr(2:5);

else

mm = dstr(1:2);

yy = dstr(3:6);

end

mth = str2num(mm);

yr = str2num(yy);
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calend = calendar(yr,mth);

if calend(1,1:6) == zeros(1,6) % if month begins on Sat, third Fri is in fourth
row of calendar month matrix

dy = calend(4,6);

else

dy = calend(3,6); % if month begins on Fri, or before this, third Fri is in
third row of calendar month matrix

end

expiry(i) = datenum(yr,mth,dy);

end

optdata(:,3) = expiry;

clear dstr mm yy mth yr calend dy i;

%%%% moneyness %%%%

ctm = abs(optdata(:,9)-optdata(:,4));

%%%% time-to-maturity %%%%

ttm=optdata(:,3)-optdata(:,1);

optdata = [optdata, ctm, ttm];

% exclude options with volume traded < 30

[B] = �nd (optdata(:,6)>= 30);

optdata = optdata(B,:);

clear B

% select options with a maturity between X1 and X2 days

[B] = �nd (10 < optdata(:,13)& optdata(:,13) < 30);
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optdata = optdata(B,:);

% % TEST: select only options traded after September 11th 2001 (731105).

% [B] = �nd (optdata(:,1)>731217);

% optdata = optdata(B,:);

% Calculate Realized Volatility from Trade Date to Expiry Date.

option_trade_dates = unique(optdata(:,1));

stock_trade_dates = RV(:,1);

common=zeros(1,1);

for j=1:length(stock_trade_dates)

[A]=�nd(option_trade_dates==stock_trade_dates(j));

common=[common;A];

end

common(1)=[];

option_trade_dates = option_trade_dates(common);

clear j

submat=zeros(1,9);

for j=1:length(option_trade_dates)

% 1) Find trade date.

[A]=�nd(optdata(:,1)==option_trade_dates(j));

% 2) Break option matrix into blocks (based on trade dates).

eval([�sub_optdata_�,num2str(j),�= optdata(A,:);�]);

% 3) Calculate realised volatility from trade date to expiry.
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% Function: RlzV.

eval([�FCAST_�,num2str(j),�=RlzV(sub_optdata_�,num2str(j),�,RV,DR);�]);

eval([�submat=[submat;FCAST_�,num2str(j),�];�]);

end

submat(1,:)=[];

clear F*

FCastMatrix=submat;

% FcastMatrix: C1=Dates, C2=Volume, C3=TTM, C4=Realised Vol., C5=EncompRV,
C6=DSR, C7=Implied Vol, C8/9=GARCH/EGARCH forecasts.

FTS1 = �nts([FCastMatrix(:,1), FCastMatrix(:,6),FCastMatrix(:,7),FCastMatrix(:,8),FCastMatrix(:,9)]);

FTS2= �nts([FCastMatrix(:,1),FCastMatrix(:,4),FCastMatrix(:,7)]);

FTS3=�nts([FCastMatrix(:,1),FCastMatrix(:,2)]);

subplot(3,1,1); plot(FTS1); legend(�Sqd Returns�,�IV�,�GARCH�,�E-GARCH�);legend(�location�,
�NorthWest�);

subplot(3,1,2); plot(FTS2); legend(�Realised Volatility�,�Implied Volatility�);
legend(�location�, �NorthWest�);

subplot(3,1,3); plot(FTS3); legend (�Option Volume Traded�);legend(�location�,
�NorthWest�);

% Run MZ Regression.

[RSQ,BETA,DW,RESID] =MZReg3(FCastMatrix);

% Run MZ Regression.

[RSQrv,BETArv,DWrv,RESIDrv] =MZReg4(FCastMatrix);

% Run Encompassing Regression.

[EncRSQ,EncBETA,EncDW] =ENCReg3(FCastMatrix);
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% Run Encompassing Regression.

[EncRSQrv,EncBETArv,EncDWrv] =ENCReg4(FCastMatrix);

% Use RESID from MZReg3 to calculate DM statistic.

[DM,HLN]=DM_HLN_TEST(RESID);

% FcastMatrix: C1=Dates, C2=Volume, C3=TTM, C4=Realised Vol., C5=EncompRV,
C6=DSR, C7=Implied Vol, C8/9=GARCH/EGARCH forecasts.

save (�C:nProgram FilesnMATLABnR2007anworknscreenoptdatandatabankn�xedh2008_8.mat�)

5.6. Matlab Programme 2: Measuring and Testing Volatility
Persistence (Long Memory).

clear;

�le = [�C:nProgram FilesnMATLABnR2007anworknscreenoptdatandatabank2nall_tsa.mat�];

load (�le);

n = 16;

s=75;

dv=0.4:0.05:0.70;

m = �x(s.^dv); %m is the number of frequencies used in estimation.

l=length(m);

LPxall=zeros(1,3);

LPyall=zeros(1,3);

LPeall=zeros(1,3);

LPdi¤all=zeros(1,3);

% Estimates variations on the Exact Local Whittle Estimator over di¤erent

% bandwidths.
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whichstats = {�r�}; model = {�linear�};

for k = 1:n

eval([�x_�,num2str(k),�= novlp_tsa_�,num2str(k),�(:,2);�]);

eval([�y_�,num2str(k),�= novlp_tsa_�,num2str(k),�(:,3);�]);

eval([�di¤_�,num2str(k),�=x_�,num2str(k),�- y_�,num2str(k),�;�]);

% Regression

eval([�r_�,num2str(k),�= regstats(x_�,num2str(k),�,y_�,num2str(k),�);�]);

eval([�e_�,num2str(k),�= r_�,num2str(k),�.r;�]);

for f=1:l

eval([�LPx�,num2str(k),�= LP_calc(x_�,num2str(k),�,dv(�,num2str(f),�));�]);

eval([�LPy�,num2str(k),�= LP_calc(y_�,num2str(k),�,dv(�,num2str(f),�));�]);

eval([�LPe�,num2str(k),�= LP_calc(e_�,num2str(k),�,dv(�,num2str(f),�));�]);

eval([�LPdi¤�,num2str(k),�= LP_calc(di¤_�,num2str(k),�,dv(�,num2str(f),�));�]);

eval([�LPxall = [LPxall; LPx�,num2str(k),�,];�]);

eval([�LPyall = [LPyall; LPy�,num2str(k),�,];�]);

eval([�LPeall = [LPeall; LPe�,num2str(k),�,];�]);

eval([�LPdi¤all = [LPdi¤all; LPdi¤�,num2str(k),�,];�]);

end

eval([�LPxall�,num2str(k),�= LPxall(2:end,:);�]);

eval([�LPyall�,num2str(k),�= LPyall(2:end,:);�]);

eval([�LPeall�,num2str(k),�= LPeall(2:end,:);�]);

eval([�LPdi¤all�,num2str(k),�= LPdi¤all(2:end,:);�]);
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LPxall=zeros(1,3);

LPyall=zeros(1,3);

LPeall=zeros(1,3);

LPdi¤all=zeros(1,3);

end

status = �done�

save (�C:nProgram FilesnMATLABnR2007anworknP_2ncodenLongMemory_Mar08nDatanLPresults.mat�)

function [d, nobs, tasy, sigasy, tols, sigols] = gph (series, incl, excl)

% Available from: http://fmwww.bc.edu/repec/bocode/g/gph.m

%Copyright (c) 10 March 1998 by Ludwig Kanzler

% Department of Economics, University of Oxford

% Postal: Christ Church, Oxford OX1 1DP, U.K.

% E-mail: ludwig.kanzler@economics.oxford.ac.uk

% Homepage: http://users.ox.ac.uk/~econlrk

% $ Revision: 1.31 $$ Date: 15 September 1998 $

function [d] = felw2st(x,m,p,rep)

% function[d] = felw2st(x,m,p,rep)

% FELW2ST.M computes the 2-step feasible exact Whittle likeli-
hood

% estimator.

%Reference: Shimotsu and Phillips (2004), Shimotsu (2004)

% Code written by, Katsumi Shimotsu, July 2004
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%Depenency: this code requires fracdi¤.m and veltaper.m

%INPUT x: data (n*1 vector)

%m: truncation number

% p: the order of the taper, p = 2 or 3, 3 is preferable

%rep: number of steps

5.7. Matlab Programme 3: Testing for Long Memory versus

Structural Breaks.

% Test 1: Visual examination of d against avg(d1,...d4);

n =16;

stack2 = zeros(1,3); stack4 = zeros(1,3);

for j = 1:n

eval([�[dfs2_�,num2str(j),�,dhat2_�,num2str(j),�, W2_�,num2str(j),�] = lm_teststats(2,
LWfs_�,num2str(j),�, LW2_�,num2str(j),�);�]);

eval([�d2_�,num2str(j),�= [dfs2_�,num2str(j),�,dhat2_�,num2str(j),�,W2_�,num2str(j),�];�]);

eval([�stack2 = [stack2;d2_�,num2str(j),�];�]);

eval([�[dfs4_�,num2str(j),�,dhat4_�,num2str(j),�, W4_�,num2str(j),�] = lm_teststats(4,
LWfs_�,num2str(j),�, LW4_�,num2str(j),�);�]);

eval([�d4_�,num2str(j),�= [dfs4_�,num2str(j),�,dhat4_�,num2str(j),�, W4_�,num2str(j),�];�]);

eval([�stack4 = [stack4;d4_�,num2str(j),�];�]);

end

subsample_fs_2_4 = [stack2,stack4(:,2)];

subsample_fs_2_4(1,:)=[];
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Wstat = [stack2(:,3),stack4(:,3)];

Wstat(1,:)=[];

clear dfs* dhat* d2* d4* stack*

function [dfs, dhat,W] = lm_teststats(b,d_fs, d_sub)

% INPUT

% d_fs = LW d estimate for full sample

% d_sub = LW d estimates for subsamples

% b = number of subsamples

% n = length of full sample

% OUTPUT

% Wald statistic for testing H0

m = �oor (1343./b); % subsample size

d = zeros(1,1);

for g = 1:b

eval([�d�,num2str(g),�= d_sub.LW�,num2str(g),�(2).lw;�]);

eval([�d = [d;d�,num2str(g),�];�]);

end

d(1,:)=[];

dhat = mean (d);

dfs = d_fs(3).lw;

dhat_ts = [d;dfs];

dhat_ts = mean(dhat_ts);
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% Create b+1 vector, c Shimotsu (2006).

dhat_b =[dfs;d]-dhat_ts;

A = ones(b,1);

I_1 = -1.*eye(b);

A = [A,I_1];

iotab = ones(b,1);

bIb = b.*eye(b);

% A.*Omega.*Atranspose is as follows

AOAt = bIb-(iotab*iotab�);

invAOAt =pinv(AOAt); % generalised inverse

Adb = A*dhat_b;

% Wald Statistic

W = m*(Adb�*invAOAt*Adb);

% modi�ed Wald statistic

% Test for long-memory v structural breaks in volatility ts.

% Application of the Phillips-Perron (1988) test.

status = �start�

fname1 = [�C:nProgram FilesnMATLAB71nworknP_2nresultsn30minrv_test1.mat�];

load (fname1);

df = zeros(1,1);

n = 16;

for j = 1:n
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% Shimotsu,2006 (p18)

eval([�[adf�,num2str(j),�,adfresid�,num2str(j),�,df�,num2str(j),�,dfresid�,num2str(j),�,d�,num2str(j),�]
= unitroot_fxn(log(ts1day�,num2str(j),�.^0.5),LWfs_�,num2str(j),�);�]);

% Vector contains the PP stats from stocks 1-n.

eval([�df = [df;df�,num2str(j),�(2,1)];�]);

end

df(1)=[];

status = �done�

% reject a unit root if t_1 <= 0.10

5.8. Matlab Programme 4: Optimal Discrete-Time Covered Call
Strategy.

tic

a_setup_params;

global mcs

vol=zeros(TimeSteps,1);

mcs=zeros(NoRebal,NoSims);

d=linspace(200,1000,NoRebal);

for i = 1:NoSims %No. of simulations

st=s0;

vt=mu;

for j=1:TimeSteps % No of timesteps

[eigvecs,eigvals] = eig(corr_matrix);
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eigvals = diag(eigvals)�;

eps_vec = randn(2,1)�;

z1= sum(eigvecs(1,:).*sqrt(eigvals).*eps_vec);

z2= sum(eigvecs(2,:).*sqrt(eigvals).*eps_vec);

st=st+R*st*dt+sqrt(vt)*st*z1*sqrt(dt);

vt=vt+KappaQ*(v-vt)*dt+Sigv*sqrt(vt)*z2*sqrt(dt);

vt=abs(vt);

vol(j)=vt;

end

mcs(:,i)=vol(d);

end

toc

5.8.1.

a_setup_params;

global mcs

vol=zeros(NoTSteps,1);

mcs=zeros(NoRebal,NoSims);

d=linspace(200,1000,NoRebal);

for i = 1:NoSims %No. of simulations

st=s0;

vt=mu;
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for j=1:NoTSteps % No of timesteps

[eigvecs,eigvals] = eig(corr_matrix);

eigvals = diag(eigvals)�;

eps_vec = randn(2,1)�;

for k = 1:2

eval([�z�,num2str(k),�= sum(eigvecs(�,num2str(k),�,:).*sqrt(eigvals).*eps_vec);�]);

end

JprobL=ldl*vt*dt;

JumpL = binornd(1,JprobL);

JprobH=ldh*vt*dt;

JumpH=binornd(1,JprobH);

st=st+R*st*dt+sqrt(vt)*st*z1*sqrt(dt);

regimeSigvP=SigvP+(vh-vl)*JumpL+(vl-vh)*JumpH;

vt=vt+KappaP*(regimeSigvP-vt)*dt+Sigv*sqrt(vt)*z2*sqrt(dt);

vt=abs(vt);

vol(j)=vt;

stk(j)=st;

end

mcs(:,i)=vol(d);

end

a_setup_params;

global mcs
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TimeSteps=6;

vol=zeros(TimeSteps,1);

stk=zeros(TimeSteps,1);

vmat_nlm=zeros(TimeSteps,NoSims);

smat_nlm=zeros(TimeSteps,NoSims);

n=8; % length of sample

d = 3; % 3-dimensional CIR process

r = 1.04; %

tau =1;

for h = 1:NoSims %No. of simulations

N = n + (n-1);

m = 1./(gamma(alpha)*gamma(1-alpha));

% eta & c vectors from -N...N-1

eta = zeros(1,N);

c = zeros(1,N);

i = -n:n-1;

lg = length(i);

for t = 1:lg

eta(t)= ((1-alpha)./(2-alpha))*((r^(2-alpha)-1)./(r^(1-alpha)-1)).*(r^i(t));

c(t)= ((r^(1-alpha)-1)./(1-alpha)).*(r^((1-alpha)*i(t)));

end

e1 = exp(-eta*dt);
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e2 = (1-exp(-eta*dt))./eta;

psi = zeros(n+1,lg);

lmsr = zeros(n,1);

% Create short memory volatility process,

% Apply fractional integration operator to get lm version.

rho = 0.5; rho1 = 0.25; rho2 = -0.5; % Correlation coe¢ cient

lag = 1;

%sigv = 0.48;

corr_matrix = [1,rho,rho1;rho,1,rho2;rho1,rho2,1];

theta = d.*g^2./4;

vt(1,1:3)=mu; vt = [vt;zeros(n-lag,3)];

s(1) = 0; s =[s;zeros(n-lag,1)];

cir(1) = 0; cir = [cir;zeros(n-lag,1)];

std_sq(1) = 0; std_sq = [std_sq;zeros(n-lag,1)];

rtsm(1) = 0; rtsm = [rtsm;zeros(n-lag,1)];

rtlm(1) = 0; rtlm = [rtlm;zeros(n-lag,1)];

for j = 1:n-1

% generate correlated normal variates z1, z2 and z3

[eigvecs,eigvals] = eig(corr_matrix);

eigvals = diag(eigvals)�;

eps_vec = randn(3,1)�;

for k = 1:3
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eval([�z�,num2str(k),�= sum(eigvecs(�,num2str(k),�,:).*sqrt(eigvals).*eps_vec);�]);

end

% d-dimensional Ornstein-Uhlenbeck process (d=3)

vt(j-lag+2,:) = vt(j-lag+1,:) + (-(kappav./2).*vt(j-lag+1,:).*dt) + (1/2)*sqrt(dt)*g.*randn(1,3);

s(j-lag+1) = sum(vt(j-lag+1,:).^2);

cir(j-lag+2) = s(j-lag+1) + kappav*(theta-s(j-lag+1))*dt + g*sqrt(dt)*sqrt(s(j-
lag+1))*z2;

% psi: rows = 0,1,...,N , columns = -N...0...N-1

psi(j-lag+2,:) = psi(j-lag+1,:).*e1 + (cir(j-lag+1)-mean(cir(:))).*e2;

lmsr(j-lag+1) = theta + m.*sum(c.*psi(j-lag+2,:));

% construct sample paths of the log returns

rtsm(j-lag+2) = rtsm(j-lag+1) + sqrt(abs(cir(j-lag+1))).*z1.*sqrt(dt);

rtlm(j-lag+2) = rtlm(j-lag+1) + sqrt(lmsr(j-lag+1)).*z1.*sqrt(dt);

end

rtsm(1:2)=[];

rtlm(1:2)=[];

vmat_nlm(:,h)=rtsm;

smat_nlm(:,h)=rtlm;

clear rtsm rtlm

end

vmat=vmat_nlm;

smat=smat_nlm;

mcs=vmat;
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% setup_parameters.m

global mu KappaQ v Sigv Rho

global SigvP KappaP LambdaP

global s0 T dt NoSims NoTSteps corr_matrix

global d Gamma Beta R

% Volatility Parameters: OHT (2003, P10).

mu=0.12; % mu

KappaQ=2.10; % kappa

v=0.016; % vhat

Sigv=0.33; % sigma

Rho = -0.51; % rho

% Heston requires additional parameters.

SigvP=0.021721;

KappaP=5.3;

LambdaP=1.84156;

s0=1; % Initial Stock Price

T=1;

dt=0.10;

NoSims=500000; %Number of Simulations

TimeSteps=1000;

NoRebal=6;

corr_matrix = [1,Rho;Rho,1];
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d=0.34;

Gamma = 3; %(* Coe¢ cient of Relative Risk Aversion *)

Beta = 0.96; %(* Discount factor *)

R = 0.03; %(* Gross interest rate *)

%(* Construct the grid of possible values of MuVec (Variance Grid) and
TVec (Time Grid) *)

global MuVec

lowvariance = linspace(0.002,0.10,12);

highvariance=linspace(0.10,0.60,8);

variance=[lowvariance,highvariance];

MuVec=unique(variance);

% d_setup_options

global strikes mat_1 mat_2

% Moneyness vector

strikes=linspace(0.9,1.2,7);

mat_1 = (T/12)*3; % 3-month

mat_2 = (T/12)*2; % 2-month

a_setup_params;

b_setup_gridpts;

c_setup_options;

global KappaQ v Sigv Rho

global SigvP KappaP LambdaP
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global s0 T dt NoSims NoTSteps corr_matrix

global d Gamma Beta R

global mcs MuVec strikes

% Output:

% series of option prices associated with variance grid,

% atm1 (start) of period: 19 x 7: 19 variance grid points, 7 strike prices,

% atm2 (end) of period : same size matrix

grdpt_call1=zeros(length(MuVec),length(strikes));

grdpt_call2=zeros(length(MuVec),length(strikes));

for j=1:length(MuVec)

for s=1:length(strikes)

grdpt_call1(j,s)=hestonnlm(mat_1,s0,strikes(s),MuVec(j),SigvP,KappaP,Sigv,Rho,LambdaP,R);

grdpt_call2(j,s)=hestonnlm(mat_2,s0,strikes(s),MuVec(j),SigvP,KappaP,Sigv,Rho,LambdaP,R);

end

end

% Employ backwards recursion - HJB.

% Interpolation used to �nd optimal Wgts, Util. and Ret for each path.

Beta=1/(1+R);

DistETW=zeros(1,4); AvgHoldings=zeros(1,2);

KDE_Matrix=zeros(NoSims,1);

for s=1:length(strikes)

ETW=zeros(NoSims,1); % Expected Terminal Wealth
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EPW=zeros(NoSims,2); % Expected Portfolio Weights

eval([�Weights= WeightsX�,num2str(s),�;�]);

eval([�Returns=ReturnX�,num2str(s),�;�]);

% Based on optimal policy at variance grid points, �nd interpolated

% portfolio return (ir) and wealth.

% Proceed backwards from time, T-2 to start of intvestment period.

for j=NoTSteps-1:-1:1

[ir, iw]=intpol(mcs(j,:),MuVec,Weights,Returns);

TF = isnan(ir);

ir(TF)=0;

TF2 = isnan(iw);

iw(TF2)=0;

ETW=ETW+Beta.*(ir�);

EPW=EPW+iw(:,1:2);

end

KDE_Matrix=[KDE_Matrix,ETW];

% Statistics for Distribution of Terminal Wealth

meanETW=mean(ETW); stdETW=std(ETW); skewETW=skewness(ETW);
kurtETW=kurtosis(ETW);

DistETWX=[meanETW,stdETW,skewETW,kurtETW];

DistETW=[DistETW;DistETWX];

% Average Portfolio Holdings (by Strike)

meanEPW=mean(EPW);
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AvgHoldings=[AvgHoldings;meanEPW];

end

DistETW(1,:)=[];

AvgHoldings(1,:)=[];

meanDistETW=mean(DistETW);

for s=1:length(strikes)

DistETW(s,:)=DistETW(s,:)./meanDistETW;

end

tic

% Step 1: Import Parameters.

clear all;

setup_parameters;

setup_nlm;

setup_gridpts;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialisation %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X0=[1,0,0];

% Store Option Prices at Variance Grid Point.

for k =1:length(MuVec)

[call10(k)]=hestonnlm(((T/12)*6),s0,K,MuVec(k),SigvP,KappaP,Sigv,Rho,LambdaP,R);

[call20(k)]=hestonnlm(((T/12)*6),s0,K2,MuVec(k),SigvP,KappaP,Sigv,Rho,LambdaP,R);
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[path_returns]=NLMgenerate(MuVec(k),NoSims,call10(k),call20(k),K,K2,...

T,R,X0,s0,KappaP,KappaQ,MuX,MuY,v,Sigv,SigvP,Rho,EtaB2,EtaB1,...

LambdaP,LambdaQ,dt);

VGPT(k).pathreturns=path_returns;

VGPT(k).price=[s0,call10(k),call20(k)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Backwards recursion %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

EUUPA=zeros(1,1);

EPRET=zeros(1,1);

EWGT=zeros(NoTSteps-1,3);

VGPTpathweights=zeros(NoSims,3);

VGPTpathutility=zeros(NoSims,1);

VGPTpathreturn=zeros(NoSims,1);

VGPTweights=zeros(length(MuVec),3);

VGPTutility=zeros(length(MuVec),1);

VGPTportreturn=zeros(length(MuVec),1);

for t = NoTSteps-1:-1:1

for k =1:length(MuVec)

for j=1:NoSims

[VGPTpathweights(j,:),VGPTpathutility(j),VGPTpathreturn(j)]=sqpII(VGPT(k).pathreturns(j,:),VGPT(k).price,X0,R,K,K2);
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end

VGPTweights(k,:)=mean(VGPTpathweights);

VGPTutility(k)=mean(VGPTpathutility);

VGPTportreturn(k)=mean(VGPTpathreturn);

end

% Interpolation applied to cross section of simulated volatility

% at time T-1,T-2,..,1,0

[Uint,Rint,Wint]=interpolII(vmat(t,:),MuVec,VGPTutility,VGPTweights,VGPTportreturn);

Utility_at_t=mean(Uint);

Return_at_t=mean(Rint);

Weights_at_t=mean(Wint);

% Proceed recursively, iterating on the optimal portfolio weights from

% the previous time period

X0=Weights_at_t;

EUUPA=EUUPA+Utility_at_t;

EPRET=EPRET+Return_at_t;

EWGT(t,:)=Weights_at_t;

end

save (�C:nProgram FilesnMATLAB71nworknDSOP_codendatander2_�veper_itm.mat�)

toc

function [x,fval,Portfolio_Rt]=sqp(ret,price,X0,R,K,K2)
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options = optimset(�Display�, �o¤�, �LargeScale�,�o¤�);

% Optimisation

[x,fval]=fmincon(@objfun,X0,[],[],[],[],[],[],@constrfun,options);

Portfolio_Rt= x(1)*ret(1) + x(2)*ret(2) + x(3)*ret(3) + (1-x(1)-x(2)-x(3))*(1+R);

function f = objfun(x)

w_ti_1=1;%(1+R)^t;

w_ti= w_ti_1*(x(1)*ret(1)+x(2)*ret(2)+x(3)*ret(3)+(1-x(1)-x(2)-x(3))*exp(R));

obval=marg_ut(w_ti)*ut(1);

f=-obval;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constraints %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [c,ceq] = constrfun(x)

% Equality Constraint

ceq=[];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Margin Requirements (MR) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MR_S (50% x Stock Price x Weight Held)

if x(1)>= 0

MR_S=0.5*x(1);



5.8. MATLAB PROGRAMME 4: OPTIMAL DISCRETE-TIME COVERED CALL STRATEGY.236

elseif x(1) < 0

MR_S=1.5*x(1); % investopedia.com: 150% of the value of the short sale

end

% Long Call (LC), Covered Call (CC) and Naked Call (NC).

% In case of a short stock position -

% Equates to zero for the purposes of

% MR calculation.

if x(1)>=0

NumStocks=x(1)/price(1);

elseif x(1)<= 0

NumStocks=0;

end

MR_LC1=[]; MR_CC1=[]; MR_NC1=[];

if x(2)>=0;

MR_LC1=price(2);% Long Position: Weight x Der1Price

elseif x(2) < 0 & price(1) > 1; % Short, ITM-Call

NumShortCalls1=-x(2)/price(2);

Covered1=min(NumShortCalls1, NumStocks);

Naked1=max(abs(NumShortCalls1-NumStocks),0);

MR_CC1=Covered1*price(2);

MR_NC1=Naked1*(price(2)+max(0.15*price(1)-(max(K-price(1),0)),0.1*price(1)));

elseif x(2) < 0 & price(1) <= 1; % Covered OTM/ATM-Call
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MR_CC1==0;

NumShortCalls1=-x(2)/price(2);

Naked1=max(abs(NumShortCalls1-NumStocks),0);

MR_NC1=Naked1*(price(2)+max(0.15*price(1)-(max(K-price(1),0)),0.1*price(1)));

end

MR_LC2=[]; MR_CC2=[]; MR_NC2=[];

if x(3)>=0;

MR_LC2=price(3);% Long Position: Weight x Der2Price

elseif x(3) < 0 & price(1) > 0.95; % Short Position: Covered ITM-Call

NumShortCalls2=-x(3)/price(3);

Covered2=min(NumShortCalls2, NumStocks);

Naked2=max(abs(NumShortCalls2-NumStocks),0);

MR_CC2=Covered2*price(3);

MR_NC2=Naked2*(price(3)+max(0.15*price(1)-(max(K2-price(1),0)),0.1*price(1)));

elseif x(3) < 0 & price(1) <= 0.95; % Covered OTM/ATM-Call

MR_CC2=0;

NumShortCalls2=-x(3)/price(3);

Naked2=max(abs(NumShortCalls2-NumStocks),0);

MR_NC2=Naked2*(price(3)+max(0.15*price(1)-(max(K2-price(1),0)),0.1*price(1)));

end

c=[-1+(MR_S + (MR_LC1 + MR_CC1 + MR_NC1) + (MR_LC2 +
MR_CC2 + MR_NC2))];

end
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end


