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Abstract—This work explores attention models to weight the
contribution of local convolutional representations for the in-
stance search task. We present a retrieval framework based on
bags of local convolutional features (BLCF) that benefits from
saliency weighting to build an efficient image representation. The
use of human visual attention models (saliency) allows significant
improvements in retrieval performance without the need to
conduct region analysis or spatial verification, and without
requiring any feature fine tuning. We investigate the impact of
different saliency models, finding that higher performance on
saliency benchmarks does not necessarily equate to improved
performance when used in instance search tasks. The proposed
approach outperforms the state-of-the-art on the challenging
INSTRE benchmark by a large margin, and provides similar
performance on the Oxford and Paris benchmarks compared
to more complex methods that use off-the-shelf representations.
Source code is publicly available at https://github.com/imatge-
upc/salbow.

Index Terms—Instance Retrieval, Convolutional Neural Net-
works, Bag of Words, Saliency weighting

I. INTRODUCTION

Retrieval methods based on convolutional neural networks
(CNN) have become increasingly popular in recent years.
Off-the-shelf CNN representations extracted from convolution
layers can be directly aggregated via spatial max/sum-pooling
generating a global image representation that achieves a good
precision and recall performance for a reasonable footprint [1],
[2]. Moreover, when suitable training data is available, CNN
models can be trained for similarity learning to adapt the
learned representations to the end task of retrieval as well
as to the target image domain (e.g. landmarks as in [3],
[4]). However, the fine-tuning process involves the collection,
annotation, and cleaning of a suitable training dataset, which
is not always feasible. Furthermore, in generic instance search
scenarios the target instances are unknown, which potentially
makes off-the-shelf CNN representations more adequate for
the task.

In this work we propose using state-of-the-art saliency
models to weight the contribution of local convolutional fea-
tures prior to aggregation. The notion of saliency in recent
CNN-based image retrieval works has referred to the most
active regions obtained from a specific filter within a CNN
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Fig. 1. Top 5 retrieved images for a query in INSTRE dataset using different

spatial weighting schemes with BLCF. Correct results are highlighted in green,
irrelevant images in red.

such as in [5], [6], or to a 2D feature saliency map derived
from the convolutional layers [7]-[9]. In these cases, salient
regions are detected with the same CNN from which image
representations are extracted. On the other hand, human-based
saliency models, such as those derived from the popular
Itti and Koch model [10], have been applied only in image
retrieval pipelines based in local handcrafted features [11]. To
the best of our knowledge, it has not yet been explored how
the most recent CNN-based retrieval pipelines can benefit from
modern saliency models, and how different models affect the
retrieval performance.

The contributions of this paper are the following:

« We propose a novel approach to instance search combin-
ing saliency weighting over off-the-shelf convolutional
features which are aggregated using a large vocabulary
with a bag of words model (BLCF).

o We demonstrate that this weighting scheme outperforms
all other state of the art on the challenging INSTRE
benchmark, without requiring any feature fine-tuning.
Furthermore, it also offers comparable or better perfor-
mance to more complicated encoding schemes for off-
the-shelf features on Oxford and Paris benchmarks.

« We investigate the impact of the specific visual attention
model used, and show that, perhaps surprisingly, higher



performance on saliency benchmarks does not necessary
equate to improved performance when used in the in-
stance search task.

The remainder of the paper is organized as follows: Sec-
tion II presents recent CNN-based retrieval methods, Sec-
tion III introduces the different saliency models evaluated,
Section IV describes the proposed retrieval pipeline, and
finally, Section V presents the datasets and retrieval results
obtained.

II. RELATED WORK

While early approaches using CNN for retrieval were
mainly focused in the usage of fully connected layers as global
image representations [12], [13], most of the recent work
is focused in exploring convolutional layers to derive those
representations. Babenko [1] shown that a simple spatial sum
pooling on a convolutional layer outperformed fully connected
layers using pre-trained CNN models for retrieval for a reason-
able footprint of 512D. Furthermore, the performance of this
representations was enhanced by applying a simple Gaussian
center prior scheme prior to aggregation on retrieval buildings
dataset. Following a similar line, Kalantidis [8] proposed a
cross dimensional weighting scheme (CroW) that consisted
of the channel sparsity of a convolutional layer and a spatial
weighting based in the L2-norm of the local convolutional
features. The proposed convolutional weighting was shown to
outperform the centre prior scheme since the approach was
able to better focus in the relevant instances.

Tolias et al. [14] focused in performing a region analysis
in a convolutional layer prior the sum-pooling aggregation.
Particularly, they proposed the regional of maximum activation
(R-MAC) descriptor where different region vectors where
extracted from a CNN layer (by max-pooling the activation
of a particular area) following a multi-scale sliding window
approach. The method has the advantage of roughly locating
the instance of interest within an image. Jimenez et al. [6]
explored the Class Activation Maps (CAMs) to improve over
the fix region sampling strategy of R-MAC. CAMs generates
a set of spatial maps highlighting the contribution of the areas
within an image that are most relevant to classify an image
as a particular class. In their approach, each of the maps
is used to weight the convolutional features and generate a
set class vectors, which are post-processed and aggregated as
the region vectors in R-MAC. Some other recent works [7],
[9] propose using a saliency maps which are derived directly
from convolutional features. Lanskar and Kannala [7] use the
saliency measure to weight the contribution of each R-MAC
region prior to aggregation, while Simeoni et al [9] propose
a method to detect a set of rectangular regions based on the
derived saliency maps.

The current state-of-the-art retrieval approaches [3], [4] use
models fine-tuned with a ranking loss. In particular, Gordo et
al. [3] improves over the original R-MAC encoding by learn-
ing a region proposal network [15] for the task of landmark
retrieval. Region proposal and feature learning are optimized
end-to-end achieving excellent performance in the popular

Paris, Oxford, and Holidays datasets. This approach, however,
requires the construction of a suitable training dataset, which
is usually domain specific, time consuming to construct and
it is unclear how those models generalize in more generic
scenarios such as the INSTRE dataset.

Intuitively, one can see that pooling descriptors from differ-
ent regions and then subsequently pooling all of the resulting
together is similar to applying a weighting scheme to the
original convolutional features since region descriptors and
globally pooled descriptors are built from the same set of
local features. In this work, we propose a method to directly
aggregate features from a convolutional layer by exploring a
saliency weighting scheme as alternative to perform region
analysis. Specifically, we utilize human-based saliency models
as they were shown in the literature to be an effective weight-
ing scheme on traditional SIFT-based BoW [16]-[18] and to
the best of our knowledge they have not yet been investigated
in combination with CNN representations in an instance search
retrieval scenario. We demonstrate the generalization of our
approach across different retrieval domains, resulting in a
scalable retrieval system that does not require any additional
feature fine-tuning.

III. SALIENCY MODELS

Visual attention models detect regions that stand out from
their surroundings, producing saliency maps that highlight
the most prominent regions within an image. Saliency has
been shown beneficial in content-based image retrieval when
using traditional the Bag of Words model and SIFT fea-
tures [11]. Some works have investigated the usage of saliency
as a mechanism to reduce the number of local features and
reduce the computational complexity of SIFT-based BoW
frameworks [16]-[18]. Other works, rather than completely
discard the background information, have used saliency to
weight the contribution of the foreground and the background
simultaneously [11], [19]. However, the usage of saliency
models in the task of image retrieval has thus far been re-
stricted to handcrafted CBIR features and handcrafted saliency
models [10].

With the emergence of challenges such as the MIT saliency
benchmark [20] and the Large-Scale Scene Understanding
Challenge [21] (LSUN), and the appearance of large-scale
public annotated datasets such as iSUN [22], SALICON [23],
MIT300 [20], or CAT2000 [24], data-driven approaches based
on CNN models trained end-to-end have become dominant,
generating more accurate models each year. Having access to
large datasets has not only allowed the development of deep
learning based saliency models, but has also enabled a better
comparison of the performance between models.

Our goals are to first evaluate whether saliency is useful
in a CNN-based retrieval system, and second, to examine
how the performance of different saliency models on saliency
benchmarks relates to performance of instance search. To
this end, we select two handcrafted models and four deep
learning based models. The handcrafted models selected are
the classic approach proposed by Itti and Koch [10], and the



Boolean Map based saliency (BMS) [25], which represents the
best performing non-deep learning algorithm on the MIT300
benchmark. The four deep learning based models differ in
CNN architecture, the loss functions used in training, and
the training strategy [26]-[28], providing a reasonable cross
section of the current state-of-the-art.

IV. BAGS OF LOCAL CONVOLUTIONAL FEATURES

Our pipeline extends the work proposed in [29], that consists
of using the traditional bag of visual words encoding on
local pre-trained convolutional features. The bags of local
convolutional features (BLCF) has the advantage of gener-
ating high-dimensional and sparse representations. The high-
dimensionality makes the aggregated local information more
likely to be linearly separable, while relatively few non-zero
elements means that they are efficient in terms of storage
and computation. A maximum of 300 non-zero elements are
required per image (174, 163 and 289 average words per
image in practice in the Oxford, Paris, and INSTRE dataset
respectively).

A convolutional layer generates a tensor of activations
X € REXWXD "where (H, W) is the spatial dimension of the
feature maps and D the total number of feature maps. X;x
refers to an activation located in the spatial location (i, j) in the
feature map k. The volume of activations can be re-interpreted
as N = H x W local descriptors f(i,j) € R” arranged in a
2D space. A visual vocabulary is learned using k-means on
the local CNN features, so each local feature can be mapped
into an assignment map.

One of the main advantages of this representation is to
preserve the spatial layout of the image, so it is possible to
apply a spatial weighting scheme prior to constructing the final
BoW representation. In particular, a saliency map is computed
at the original image resolution, down-sampled to match the
spatial resolution of the assignment map, and normalized to
have values between 0 and 1. The final representation consists
of an histogram fgow = (h, ..., hk ), where each component
is the sum of the spatial weight assigned to a particular visual
word hy = S0, Zle w;jk, being:

ali,j) if k = argmin || £(i, j) — pum || "

Wijk = )
0 otherwise

the spatial weight associated to a particular assignment, where
a(i,j) € R is the normalized saliency map, and p.,, €
RP m = {1...K} is one of the centroids of the visual
vocabulary.

We use descriptors from conv5_1 from a pre-trained VGG16
without fully connected layers. The VGG16 network was
chosen following Jimenez et al. [6], where it was found
that the features from this network outperform those from
ResNet50 using the CAM approach. We confirmed this result
in our own experiments, finding a similar result for BCLF
encoding when using the local search scheme: there was a
consistent reduction (> 10 points) in mAP when compared

with VGG16 regardless of the weighting scheme used. Images
are resized to have its maximum size of 340 pixels (1/3 of the
original resolution) before performing mean subtraction prior
to being forwarded through the network. This resolution is
also used to extract the different saliency maps. Local features
are post-processed with L2-normalization, followed by a PCA
whitening (512D), and L2-normalized again prior to being
clustered. Clustering is performed using approximate k-means
with £ = 25,000 words. The visual vocabulary and PCA
models are fit on the target dataset. The obtained saliency
maps are down-sampled by computing the maximum across
16 x 16 non-overlapped blocks.

For the query images, we interpolate the volume of activa-
tions to (2H, 2W), as this interpolation of the feature maps has
been shown to improve performance [29]. However, we only
apply this strategy to the query images, and not to the entire
dataset, so as not to increase dataset memory consumption.
The bounding box of the queries is mapped to the assignment
maps, and only the information relevant to the instance is used
to create fgow. This procedure is similar to the one used in [4],
where a bounding box is mapped to the convolutional feature
maps instead of cropping the original image, which was shown
to provide better results.

V. EXPERIMENTS

We experiment with three different datasets: the challenging
INSTRE dataset for object retrieval [30], and two well-known
landmark-related benchmarks, the Oxford [31] and Paris [32]
datasets. The former dataset was specifically designed to
evaluate instance retrieval approaches. It consists in 23,070
manually annotated images, including 200 different instances
from diverse domains, including logos, 3D objects, buildings,
and sculptures. Performance is evaluated using mean average
precision (mAP) following the same standard protocols as in
Oxford and Paris benchmarks, and evaluating mAP over 1,200
images as described in [33].

A. Weighting schemes

In this section we evaluate different spatial weighting
schemes with the BLCF framework. We find that saliency
weighting schemes (BMS, SalNet, and SalGAN) improve re-
trieval performance across the evaluated datasets with respect

TABLE I
PERFORMANCE (MAP) OF DIFFERENT SPATIAL WEIGHTING SCHEMES
USING THE BLCF APPROACH.

Weighting INSTRE  Oxford Paris
None 0.636 0.722 0.798
Gaussian 0.656 0.728 0.809
L2-norm 0.674 0.740 0.817
Itti-Koch [10] 0.633 0.693 0.785
BMS [25] 0.688 0.729 0.806
SalNet [26] 0.688 0.746 0.814
SalGAN [27] 0.698 0.746 0.812
SAM-VGG [28] 0.688 0.686 0.785
SAM-ResNet [28] 0.688 0.673 0.780
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Fig. 2. Effect on performance for five examples from the INSTRE dataset after applying saliency weighting (SalGAN). The first column depicts the query
with its associated average precision (AP). On the left, AP when performing unweighted BLCF, and on the right when performing saliency weighted BLCF.
Retrieved images are ranked in decreasing order of ranking difference between unweighted BLCF and saliency weighted BLCF. For each image, precision at

the position where each image is reported for unweighted BLCF (left) and saliency weighted BLCF (right).

to the unweighted assignment maps. Figure 2 shows some of
the cases where saliency (SalGAN model) is most beneficial,
allowing the efficient localisation of the target instances in
most of the cases, despite of the high variability of the
backgrounds and relative positions within the images in the
INSTRE dataset.

Table I contains the performance of different weighting
schemes on the BLCF approach. The simple Gaussian weight-
ing achieves a boost in performance with respect to the
baseline, which indicates a natural tendency of the instances
to appear in the center of the images in all the datasets. The
saliency measure derived from the convolutional features (-
norm weighting) allows to roughly localize the most relevant
parts of the image, which represents a boost in performance
with respect the Gaussian center prior weighting. However,
the L? weighting appears in general to be much more noisy
than the human attention-based saliency models.

Saliency models achieve the best performing results in the
INSTRE dataset, with the exception of the Itti-Koch model,
which decreases performance with respect the baseline in
all datasets. This result is consistent with the quality of
the saliency prediction achieved in the MIT300 benchmark,
where it is rated in the second lowest rank of the evaluated
models. The more accurate saliency models (BMS, SalNet,
SalGAN, SAM-VGG, and SAM-ResNet), however, achieve
almost equivalent performance on the INSTRE dataset. The
relatively small size of the instances within this dataset and

the high variance in their relative position within the images
makes saliency a very efficient spatial weighting strategy
for instance search, with no substantial difference between
saliency models. This contrasts with results for the Oxford and
Paris datasets, where a coarser saliency prediction (i.e the one
provided by the SalNet model) achieves better results than the
one obtained with the more accurate models of SAM-VGG and
SAM-ResNet. Figure 3 illustrates this effect on three different
instances of the Notre Dame cathedral from the Paris dataset.
The most accurate saliency models (i.e. SAM-VGG and SAM-
ResNet) detect saliency regions “within” the building, instead
of detecting the full building as relevant. Also, SAM-VGG,
SAM-ResNet, and SalGAN appear to be more sensitive to
detecting people, omitting any other salient region of the image
and thus decreasing the overall retrieval performance.

B. Aggregation methods

We also tested saliency weighting in combination with
classic sum pooling over the spatial dimension to compare
with the BCLF weighting. Here we report the best performing
saliency models (SalNet and SalGAN) compared with a no
weighting baseline using the VGG-16 network pool5 layer at
full image resolution. Although combining sum pooling with
saliency weighting did give a performance improvement on
the INSTRE dataset (mAP 0.527 for SalGAN vs 0.405 for
no pooling), saliency weighting combined with BLCF gives
substantially better mAP (see Table II). Furthermore, sum
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Fig. 3. Sample of saliency predictions for three examples of Notre
Dame cathedral in the Paris dataset. Average precision (AP) for
this query is 0.868, which is improved by BMS and SalNet models
(achieving 0.880 and 0.874 AP respectively). More accurate saliency
models decrease performance with respect the baseline, achieving an
AP of 0.862 in the case of SalGAN, 0.857 SAM-VGG, 0.856 SAM-
ResNet and 0.853 Itti-Koch models.
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TABLE I
PERFORMANCE (MAP) OF DIFFERENT SPATIAL WEIGHTING SCHEMES
USING THE SUM POOLING AGGREGATION ON (SUM) AND THE BLCF

APPROACH.
Method INSTRE Oxford Paris
Weighting SUM BLCF SUM BLCF SUM BLCF
None 0.405 0.636 0.686 0.722 0.765 0.798
SalNet 0.519 0.688 0.681 0.746 0.766  0.814
SalGAN 0.527 0.698 0.612 0.746 0.749  0.812

pooling with saliency weighting gave little or no improvement
on the Oxford and Paris datasets (mAP Oxford: 0.681 for
SalNet vs 0.686 for no weighting, and Paris: 0.766 for SalNet
vs 0.765 for no weighting). This result is perhaps unsurprising.
Weighting the feature assignments prior to pooling in the
BCLF framework can be interpreted as a simple importance
weighting on each discrete feature. However, the interpretation
for sum pooling is less clear, since the feature vectors at each
spatial location usually have multiple activations of varying
magnitude, and weighting alters the potentially semantically
meaningful magnitudes of the activations. The BCLF-saliency
approach also has the advantage of having two to three
times fewer non-zero elements in the representation, giving
substantially improved query times.

C. Comparison with the state-of-the-art

Our approach compares favorably with other methods ex-
ploiting pre-trained convolutional features, as shown in Ta-
ble III. In particular, we achieve state-of-the-art performance
using pre-trained features in Oxford and INSTRE datasets,
when combining BLCF with saliency prediction from Sal-
GAN. CAMs [6], and R-MAC [14] slightly outperform our
approach in the Paris dataset, where they achieve 0.855, and
0.835 mAP respectively, whereas our method achieves 0.812
mAP. It is worth noting, however, that our system is much less
complex (we do not perform region analysis), and more scal-

TABLE III
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART.

Method Off-the-shelf  dim INSTRE  Oxford  Paris
CroW [8] yes 512 0.416 0.698 0.797
CAM [6]" yes 512 0.325 0.736 0.855
R-MAC [14] yes 512 0.523 0.691 0.835
R-MAC [4]} No 512 0.477 0.777 0.841
R-MAC-ResNet [3]F No 2048 0.626 0.839 0.938
(our) BLCF yes 336 0.636 0.722 0.798
(our) BLCF-Gaussian yes 336 0.656 0.728 0.809
(our) BLCF-SalGAN yes 336 0.698 0.746 0.812

Results marked with (*) are provided by the authors. Those marked with (})
are reported in Iscen et al. [33]. Otherwise they are based on our own
implementation.

TABLE IV
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART WITH
AVERAGE QUERY EXPANSION.

Method Off-the-shelf ~ dim INSTRE  Oxford  Paris
CroW [8] yes 512 0.613 0.741 0.855
CAM [6]" yes 512 0.760  0.873
69 R-MAC [14] yes 512 0.706 0.770 0.884
R-MAC [4]f No 512 0.573 0.854 0.884
R-MAC-ResNet [3] No 2048 0.705 0.896 0.953
(ours) BLCF yes 336 0.679 0.751 0.788
(ours) BLCF-Gaussian yes 336 0.731 0.778 0.838
(ours) BLCF-SalGAN yes 336 0.757 0.778 0.830

Results marked with (*) are provided by the original publications. Those
marked with (}) are reported in Iscen et al. [33]. Otherwise they are based
on our own implementation.

able, since the sparse representation only needs a maximum
of 336 non-zero elements out of the 25K dimensions.

Fine-tuned CNN models [3], [4] significantly outperform
our approach in Oxford and Paris. However, saliency weighted
BLCF achieves state-of-the art performance in the INSTRE
dataset with 0.698 mAP, outperforming the fined-tuned mod-
els. This is probably a consequence of restricting the training
domain to landmarks images in [3], [4], since R-MAC with
pre-trained features [14] (0.523 mAP) already achieves a
higher performance in INSTRE than the fine-tuned R-MAC [3]
(0.477 mAP). This provides evidence that similarity learning
is a strategy to greatly improve performance on CNN represen-
tations where the target instance domain is restricted. In more
generic scenarios, such as the INSTRE dataset, pre-trained
ImageNet models achieve more general image representations.

One common technique to improve retrieval results is the
average query expansion (AQE) [34]. Given a list of retrieved
images, a new query is generated by sum aggregating the
image representations of the top N images for a particular
query. We select the top 10 images, and L?-normalization on
the new query representation. Table IV With this simple post
processing we substantially improve the results in the INSTRE
dataset (mAP increased from 0.698 to 0.757), achieving the
best performance in comparison with other methods using the
same post-processing strategy.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a generic method for instance search
that relies on BoW encoding of local convolutional features



and attention models. We have demonstrated that saliency
models are useful for the instance search task using a recently
proposed CNN-based retrieval framework. Results indicate
that different state-of-the-art saliency prediction models are
equally beneficial for this task in the challenging INSTRE
dataset. In landmark related datasets such as Oxford an Paris,
however, a coarse saliency is more beneficial than highly
accurate saliency models such as SAM-VGG or SAM-ResNet.

Better query expansion strategies can be applied to fur-
ther improve results, such as the diffusion strategy proposed
in [33], where global diffusion using 2,048 dimensional
descriptors from fine tuned R-MAC [3] achieves 0.805 mAP
in INSTRE, and a regional diffusion 0.896 mAP. This strategy
can be also applied to the proposed saliency weighted BLCF
representation, potentially increasing retrieval performance of
the proposed saliency weighted BLCF representations.
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