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Energy-Efficient Resource Allocation for Edge Computing
based on Models of Power Consumption

Pengcheng Liu

Abstract

Computing services, when provided by Edge Networks rather than centralized clouds, are
delivered close to the geographically extreme user edge. Edge computing enables functional
offloading and improved scalability but suboptimal design of edge networks can result
in needlessly high energy consumption and mismanagement of resources. Thus, how to
effectively minimize the power dissipation of network resources at the edge is a significant
problem as networks evolve.

This thesis investigates a complete suite of energy efficient solution for the edge network.
A frequency scalable router architecture, based on the Software Defined Network (SDN)
concept, has been proposed. Two new control policies have been integrated with the proposed
green architecture and their performance has been analysed to evaluate the trade-offs between
energy efficiency and performance in frequency-scaled Network Devices. A Network Device
Power Model (NDPM) has been formulated to explore the power dissipation characteristics
of frequency scalable CMOS devices (as measured using a NetFPGA testbed). An Online
Energy-efficient Resource Allocation model (OERA) has been designed based on this model.
This allocation model can map the resource requests onto a substrate network in the edge,
with concurrent consideration of multiple factors including geographical location, resource
availability and network-level energy cost, etc. The model features better support of virtual
resource requests and lower power consumption than existing solutions.



Chapter 1

Introduction

Edge computing extends cloud computing to the network edge to form a decentralized

infrastructure with application intelligence and storage closer to the clients. Edge computing

shares some characteristics with volunteer computing [1], fog computing [2] and mobile

cloud [3], which also provide resources to the end-users. However, edge computing differs in

the resources’ geographical location and their deployment resulting in improved response

time for end users [4]. The trend of offloading services and applications from user devices to

the cloud has increased, reducing the resource burden on the local device but increasing it in

the cloud. Delivering these services from the edge network should be more energy efficient

than using a centralized cloud.

1.1 Motivation

On recent years innovative Internet services and applications, such as cloud computing,

social networking and e-commerce, etc., are experiencing prodigious development. For

cost and environmental concerns, such as the requirement to reduce global Greenhouse Gas

(GHG) emissions, energy efficient networks have become a vital research topic and attracted

considerable attention from both academia and industry. The network devices (NDs) among
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1.1 Motivation

the networks have an efficiency trade-off between energy consumption and performance, this

is because,

1. performing computationally intensive tasks on mobile devices increases power con-

sumption;

2. sending data to and receiving from the edge increases bandwidth utilisation as well as

network energy consumption.

Recently published statistical data shows an alarming trend of rising energy consumption

because of new developments in network technologies. The Global e-Sustainability Initiative

(GeSI) [5] predicted that without any further countermeasures, ICT will generate a 2.3%

increase in global carbon footprint by 2020. Alcatel-Lucent has reported that the transport

and core networks alone account for 30% of the overall network power dissipation [6].

In [7], the authors’ assessment is that the relative share of the worldwide total electricity

consumption of communication networks, personal computers, and data centres products and

services has increased from about 3.9% in 2007 to 4.6% in 2012, and estimate that the yearly

growth of all three individual ICT categories (10%, 5%, and 4%, respectively) is higher than

the growth of worldwide electricity consumption in the same time frame (3%).

Nevertheless, a substantial part of this power consumption can be saved; for example,

40% of the network power dissipation can be reduced if the energy is in proportion to its

carried traffic load [8]. Therefore the edge networks must:

• apply and adapt more power efficient techniques to the NDs, especially at the network

edge;

• allocate NDs which are capable of actively or passively adjusting their power utilisation

according to multi-factorial impacts such as traffic load, rate of packet loss etc.;

• deploy services and applications with energy efficient resource allocation schemes;

2



1.2 Objectives

• apply and adapt multi-factorial power, bandwidth and placement cost minimisation

techniques for NDs without compromising the user demands.

This thesis achieves these goals by carefully formulating a Network Device Power

Model (NDPM) to represent the power dissipation characteristics of CMOS devices (as

measured using NetFPGA platforms) and considers a suite of multi-factorial algorithms for

power-aware resource allocation, which show better support of virtual resource requests but

lower power consumption compared with other existing solutions.

1.2 Objectives

The contributions of the research presented in this thesis are as follows:

• to design and implement a frequency scaled ND to reduce overall energy consumption.

Two approaches to providing multiple clocks, namely Dynamic Clock Generation

(DCG) and Dynamic Clock Selection (DCS), are proposed. The performance im-

pacts of using frequency scaling in a CMOS ND are explored through numerical and

simulation studies.

• to derive a concise Network Device Power Model (NDPM) of a CMOS ND. Following

careful measurement of the power consumption of a real CMOS ND, an NDPM has

been developed for use in all later work presented in this thesis. The NDPM, developed

from empirical measurements, will be a more realistic and accurate basis for modelling

the actual hardware than theoretical, software and utilisation models.

• to design two energy control policies, namely the Escalator and the Hysteresis policies,

and implement their algorithmic models for the frequency scaled ND.

• to develop an Online Energy-efficient Resource Allocation (OERA) scheme, which

supports online virtual network requests (VNRs) for resource allocation in a substrate

network. OERA maps the virtual network requests (VNRs) onto a substrate edge

3



1.3 Summary

network with concurrent consideration of dynamic requests, computation and link

bandwidth availability, and node distances.

• to formulate and solve this multi-level requirement problem using linear programming

(LP) solvers for solving resource mapping problems. This thesis considers high

numbers of network requests, traffic flows and resources to formulate a realistic

performance study. The performance of OERA is benchmarked against two existing

well-known algorithms (R-ViNE and D-ViNE [9]).

1.3 Summary

The reminder of this thesis is organized as follows.

Chapter 2 provides background information about network virtualisation. It first

gives the motivation for using virtual networks in the future Internet. An overview of

current research progress in this field is then presented. The prevalent approaches to virtual

network resource allocation are described next, followed by the evaluation metrics used in

the following chapters. The concept of Software Defined Networking and existing power

management techniques for increasing network flexibility are also presented in this chapter.

Chapter 3 describes the power consumption in CMOS circuits, giving detailed descrip-

tions of the frequency scaling technique used to build a power adaptive network device. The

evaluation testbed used for investigating frequency scaling switching schemes is introduced

in this chapter. The existing reference design of an SDN switch based on NetFPGA platforms

is described.

Chapter 4 contains an explanation of the multiple clock generation architecture. Multi-

ple clocks are needed to support frequency scaling. This is followed by a detailed description

of a new design of power efficient SDN switches, and its performance on both the NetFPGA-

1Gbps and 10Gbps platforms is measured. This chapter also contains an explanation of

4



1.3 Summary

the power consumption model used and its evaluation. The proposed power management

mechanism is then described.

Chapter 5 presents two frequency control policies. It gives details of how the frequency

scaled ND system can be modelled, followed by an analysis of the state-dependent transition

rate. Details of the simulation results are then given and discussed.

Chapter 6 presents a novel algorithm to address energy-aware resource allocation in

edge networks. The energy minimisation problem is established as a linear programming

one and the presented solutions show better support of virtual resource requests and lower

power consumption than existing solutions.

Chapter 7 summarises the key achievements of the thesis and their significance. It also

presents directions for future research.

5



Chapter 2

Issues in Designing Flexible Networks

2.1 The Internet is Ossified

The Internet is one of the most widely used technologies of our known world. It

plays the most essential and critical roles in social development, economic growth and

technology innovation. The Internet helps people in acquiring and updating their knowledge

in unprecedented ways and its scope has been spread beyond people’s expectation and

imagination at the time of its invention over 40 years ago.

However, with soaring dependencies on the Internet, various novel applications have oc-

curred to meet these growing expectations. Distinctive applications have been introduced for

multifarious requirements of security, mobility and flexibility etc. None of these challenges

were conceived when the Internet was invented, but have motivated the next generation

evolution of the Internet. Focusing on the infrastructure of the present Internet, the cardinal

reasons for its current ossification status are as follows [10]:

1. Heavy Dependency on Hardware

Today’s Internet consists of miscellaneous network devices, which are dedicated to the

execution of network functionalities (such as Layer 2 switching or Layer 3 routing).

Various "network boxes" need to be embedded into the infrastructure to perform a

6



2.1 The Internet is Ossified

certain service (like Deep Packet Inspection etc.). If the network topology needs to

be adjusted, these hardware systems have to be physically rearranged to satisfy the

dynamic requirements.

2. Multi-Provider Nature

Multiple network providers have their dedicated policies to establish and maintain their

exclusive network infrastructure. The Internet is maintained by disparate autonomous

systems. Autonomous system providers focus on the quality of service and robustness

of their operational domain only. This divide-and-conquer approach limits the scope

for optimisation of the global network and hinders the introduction of new protocols

and techniques into the global infrastructure [11].

3. Hourglass Internet Protocols

The particular hourglass shape of the current Internet stack occurs because of the

evolution of upper and lower layers being much faster than the layers in the middle.

The top and bottom layer accommodate multiple protocols leaving the waist of the

hourglass feebler. With the growing demands of the Internet along with huge amounts

of data involved, the only operational protocol in the middle layer is IP (Internet

Protocol); this leads to an urgent need to accommodate this layer with, for example,

support of cross-layer features.

To fend off this ossification of the modern day Internet, several new concepts have

been proposed and some have been deeply investigated, such as Cloud Computing, Software

Defined Networking (SDN), Virtual Network (VN), and Edge Computing etc. This thesis

will focus on network virtualisation.
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2.2 Cloud Computing

Cloud Computing has achieved enormous popularity due to the low start-up costs for

users, pay-as-you-use billing, and flexibility of resource virtualisation and automation, etc. A

critical ongoing challenge is interfacing billions of devices (i.e. Internet of Everything (IoE)

and Industrial Internet of Things (IIoT) concepts) with cloud services. While the cloud can

offer high processing capabilities and storage capacity [12], rapid increases in the number of

supported network devices (NDs) and supported cloud applications may degrade real-time

services delivered from centralized data centres. The factors adversely affecting a quality of

experience (QoE) include high bandwidth utilisation and network latency. One measure to

mitigate these effects is to use edge computing and edge networks.

The original design goal of the Internet was to connect the dispersed computers together

and share the information along with the resources. However, with the rapid development

of the Internet, especially the occurrence of later enterprise networks, the Internet Data

Centre (IDC) concept arose to address the difficulties in the management of Internet devices,

including network equipment and servers. The industry began a process of moving all

Internet services to the data centre, and the resulting centralized control and management

have reduced both capital and operating costs.

The growth of new Internet services and particularly mobile device based Internet

technologies has greatly increased the number and scale of the data centre. However, in

contrast to the fast development of computing capacity (Moore’s law), the utilisation of

computing resources in data centres was often poor [12]. Virtualisation technology addresses

this inefficiency and then naturally took centre stage in today’s storage, computing and

management infrastructures. The concept of virtualisation is to provide an abstraction of

virtualised multiple logical computing units in a single physical device and enables full

utilisation of the available resources in the device. Security and reliability are maintained
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because different computing units work separately without interfering with others’ contexts.

Amazon took a step further and developed the well-known Amazon Web Service (AWS) to

rent out the surplus resources to retail users. This successful model greatly promoted the

development of Cloud Computing.

2.3 Software Defined Networking

Software Defined Networking (SDN) is intended to enable flexibility and innovation in

the network and thus to improve the efficiency of network operation and service quality as

well as the reduction of CAPEX and OPEX. This is facilitated by the removal of the network

control plane from the distributed network devices to a logically-centralized control entity,

which enables the introduction of new open interfaces between the application, the data plane,

and the control plane [13]. With these interfaces, the network control plane can be realised

as a freely programmable software, essentially an operating system for the network.

When a packet reaches an SDN-enabled node, it is buffered and the packet header, or

other sub protocol information, is matched against some pre-defined rules which trigger

switching decisions, additional processing activity, or other actions. In the case of a successful

match, the action(s) specified in the rule are executed. If there is no matching rule, the packet

is either dropped or a "packet-in" message containing the packet header is sent to the

controller for further processing. The controller determines the action the network element

should take and communicates its decision to the network element. This may involve the

insertion of a new rule for subsequent packets belonging to the same flow. The management

of these rules, and the task of enacting them as appropriate, is standardised in the OpenFlow

protocol [14].

As stated by its first designers [15], the OpenFlow model was conceived to abstract the

main functionalities provided by heterogeneous hardware platforms for network nodes, and

9
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Table 2.1 Related Research

Project
Description

Research
Domain

Network
Techniques

Virtualisation
Level

Reference

X-Bone
dynamically deploy and
manage Internet overlays.

IP Application [16]

PlanetLab deploy and manage testbeds. IP Application [17]

NetScript
program intermediate
network node functions.

IP Network [18]

UCLP
dynamic allocation of
optical network resources.

SONET Physical [19]

Tempest
adaptive management in
ATM control architectures.

ATM Data Link [20]

Emulab deploy and manage testbeds. IP Network [21]
4WARD deploy and manage VN. IP Network [22]

for this reason, it is much closer to the internal hardware organization of nodes than legacy

network protocols.

2.4 Virtual Network Overview

2.4.1 Related Research

There are many incarnations that are closely related to the concept of network virtualisa-

tion, such as Virtual Private Network (VPN), Overlay Network (ON), Active Programmable

Network (APN), Network Function Virtualisation (NFV) etc. Table 2.1 lists several well-

known network virtualisation projects.

2.4.2 Network Virtualisation Architecture

Any virtual network has a provider of service and a user of service. The service providers

are generally categorized with three different roles, which are Infrastructure Provider, Virtual

Network Provider and Service Provider. In general, the Infrastructure Provider (InP) organises

10



2.4 Virtual Network Overview

Fig. 2.1 A Typical Network Virtualisation Architecture

a certain number of physical resources needed to establish various virtual networks requested

by the Service Provider (SP) and maintained by the Virtual Network Provider (VNP). The

End User is always associated with the SP to receive the end service [23]. A typical network

virtualisation architecture is shown in Fig. 2.1.

• Infrastructure Provider (InP)

An Infrastructure Provider (InP) is responsible for the deployment, management and

maintenance of the physical network resources. InP uses different virtualisation

techniques to partition the resources into isolated slices and allocates these slices to

the customers according to their requirements. The InP has knowledge of the allocated
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2.4 Virtual Network Overview

resources but not of the inner protocols controlling the network. InPs can communicate

with each other to provide inter-operative services.

• Virtual Network Provider (VNP)

The Virtual Network Provider (VNP) is situated between the Service Provider and the

Infrastructure Provider. It gathers virtual resources from one or more InPs according

to the virtual network operators’ request. VNP basically co-ordinates and sets up the

infrastructure in which the operator can build the virtual network to satisfy network

and end-user dynamic requirements.

• Service Provider (SP)

The Service Provider (SP) is in charge of creating, operating and managing the virtual

networks. SP provides end-to-end services to the end users by building and imple-

menting VNs. It uses the resources leased from different InPs and then combines

them to form single or multiple VNs. An SP can create VNs and act as a virtual InP

to provide service to other SPs as well. Reacting to the different characteristics (e.g.

delay, jitter, packet loss etc.) of the different network services and the requirements

of particular applications (e.g. CPU, storage, bandwidth etc.), the SP generates the

appropriate virtual network requests (VNR) which consist of resource requirements,

topology, renting time (e.g. lifetime of the particular VN), and sends them to the VNP,

which will establish the required infrastructure for the SP to build the required VNs.

The virtual network could cross more than one VNP but it will present a single global

view to the SP.

• End User (EU)

End Users (EU) in a virtual network architecture are similar to those in the current

Internet architecture. The EU is the terminal user who is allowed to access the services.

From the viewpoint of the EU the ultimate advantage is the liberty to choose different
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2.4 Virtual Network Overview

services provided by different SPs through multiple VNs, according to its interests,

preferences, and service QoS requirements etc.

In summary, InP provides the physical layer, or more precisely the physical network

infrastructure. The Service Providers (SP) receive the requirements from the User Equipment

(UE) and generate resource requests. These resource requests are then sent to the Virtual

Network Provider (VNP). VNP eventually does the mapping of the physical resource to the

final user according to these resource requests from SP.

Chapter 4 and Chapter 5 have an explicit focus on InP and on the improvement of the

power efficacy at the network device level, and Chapter 6 includes a discussion of VNP along

with how to effectively allocate the network resources to the users in an optimized manner to

minimize the entire network power consumption.

2.4.3 Advantages and Benefits

The advantages of network virtualisation include:

• Flexibility: The devices on the physical substrate layer are generalised as the resource

pool. The SP can request resources according to their requirements and they will be

allocated on demand, rather than being provisioned statically.

• Decoupling: In role of Internet service provider is decoupled into the interacting team

of infrastructure provider, service provider and virtual network provider, decoupling

service provision to end users from the maintenance of physical resources. The idea

of decoupled network allows vendor independent infrastructure, which supports the

deployment of various technologies and protocols within a single framework whether

in the access or the core part of the network.

• Isolation: The virtual network concept allows multiple isometric virtual networks to

run parallel to each other on top of the shared physical substrate infrastructure. The
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owners of different virtual networks can deploy their own customized protocols and

services by programming the shared resources.

• Customization: The fundamental design objective of virtualisation is to establish a

customized networking stack. Network virtualisation masks the disparate nature of

the substrate infrastructure and provides uniform programmable interfaces. The upper

entities can independently deploy their own protocols running on their designated

virtual networks without any interference from other virtual networks running in

parallel.

The network virtualisation has the capacity to promote innovations for the network, and

has immense potential challenges to be investigated. Hence, the network virtualisation has

been widely recognised as one of the most critical trends for the future Internet technology.

2.4.4 Research Challenges

Several challenges related to network virtualisation still need to be explored and stud-

ied [23].

• Interfacing. As network virtualisation shares the common physical substrate infras-

tructure which is organised and maintained by various InPs, every InP must provide a

standard interface to SPs for communicating with them to exchange their requirements.

Similarly, the interfaces between EU and SPs, among multiple InPs, as well as among

SPs must be identified and standardized.

• Admission Control. To provide guarantees of QoS and SLAs (service level agreements),

InPs must be able to execute accurate accounting, implement admission control and

perform distributed usage policing algorithms to ensure the physical resources allocated

to the SPs are not overextended. Admission control must be developed for entire VNs

rather than individual nodes or links.
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• Resource Allocation. Resource Allocation, also called Virtual Network Mapping

(VNM), or Virtual Network Embedding (VNE). Appropriate allocation and efficient

scheduling of physical resources are extremely critical so as to maximise the number

of coexisting VNs and thereby maximise revenue. At present, there are three different

approaches to research on virtual network mapping, namely VN mapping in one InP,

VN mapping across multiple InPs and VN mapping efficiency 1.

• Isolation. Isolation between coexisting VNs must be ensured to improve fault tolerance,

security and privacy. The impact of misconfiguration or resource depletion in one

particular VN must be contained within itself and not spread to other coexisting VNs.

• Security. Even though isolation between coexising VNs can provide a certain degree

of security and privacy, it does not obviate the prevalent attacks and intrusions to the

physical devices and VNs. Insecure programming models and interfaces can increase

the vulnerability of VNs.

2.5 Virtual Network Resource Allocation

2.5.1 Resource Allocation Model

This subsection briefly presents the network virtualisation model and demonstrates an

example afterwards. The concrete mathematical description of the resource allocation model

will be defined in Chapter 6.

1. Substrate Network: The substrate network is modelled as a undirected connected graph

G with specific weights, denoted by GS = (NS,ES,AS
N ,A

S
E), where NS and ES represent

a set of substrate nodes and a set of substrate links respectively. AS
N and AS

E describe the

1Since the VNE problem is NP-hard, finding an optimal solution is computationally complex. For that
reason, most existing researches focused on relaxing the original model and finding the sub-optimal solutions.
However, even these heuristic approaches do not scale well for large networks [2].
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attribute sets of the substrate nodes and links (for example; CPU capacity is a attribute

of a node and bandwidth is of a link). PS(s,d) denotes the set of all loop-free paths

in the substrate network from a source node s to a destination node d, ∀s,d ∈ NS and

s ̸= d.

2. Virtual Network Request: The VNR is an undirected connected graph denoted as

GV = (NV ,EV ,CV
N ,C

V
E ), where NV is the set of requested nodes, and EV is the set

of requested links. CV
N and CV

E describe the constraints of the requested nodes and

requested links. Pv denotes the set of all loop-free paths in the virtual network request

graph.

3. Virtual Network Request Mapping: The mechanism of mapping virtual network

requests to a subset of the substrate network, is modelled as M : GV 7→ (N′,P′,RN ,RE),

where N′ ∈ Ns and P′ ∈ Ps. RN and RE represent the resources allocated to virtual

nodes and virtual links.

An illustration of mapping two online requests VNR1 and VNR2 to a shared substrate

network for resource allocation is presented in Fig. 2.2. Request VNR1 has the node mapping

{a 7→ E,b 7→C,c 7→ D} and VNR2 has the mapping {d 7→ A,e 7→C, f 7→ E,g 7→ D}. Note

that two virtual nodes from the same request cannot be mapped to the same substrate node (to

enable fault tolerance), but two virtual nodes from two different VNRs can be mapped to the

same substrate node (to maximise the resource utilisation). For example, in Fig. 2.2, {a, f},

{b,e} and {c,g} are mapped to the same substrate nodes as every pair of virtual nodes come

from different VNRs.

2.5.2 Optimisation Objectives and Performance Evaluation Metrics

The objective of the virtual resource allocation is to maximise the revenue or min-

imise the cost. Several criteria have been defined in this section, which will be used as

16



2.5 Virtual Network Resource Allocation

Fig. 2.2 VNR Mapping over a Substrate Network

the optimisation objectives or to evaluate the performance of different resource mapping

algorithms.

1. Cost

Cost represents the total amount of substrate resources used, comprising both CPU

and bandwidth. There are different types of resources which can be considered and

appropriately weighted, e.g. power consumption. Cost is defined as follows:

C(GV ) = αc ∑
eV∈EV

∑
eS∈ES

f eV

eS +βc ∑
nV∈NV

c(nV ) (2.1)

where f eV

eS is the total amount of allocated bandwidth on the substrate link eS. If a

virtual link is mapped into a substrate path which consists of multiple physical links,

the forwarding costs of the intermediate nodes are not considered. αc and βc denote

the unit cost of the network resource (bandwidth) and the computing resource (CPU

capacity).

17



2.5 Virtual Network Resource Allocation

2. Revenue

The sum of virtual resources requested by the virtual entities is generally referred to

as revenue. The computation scheme of revenue is similar to the scheme applied to

determine the cost. Evaluation of the benefit generated using an VNM algorithm can

be performed by calculating revenue. Similar to [24] and [25], the Revenue of a VN

request is defined as:

R(GV ) = αr ∑
eV∈EV

b(eV )+βr ∑
nV∈NV

c(nV ) (2.2)

where b(eV ) is defined as the requested bandwidth of a virtual link eV and c(nV ) is the

requested CPU capacity of a virtual node nV . αr and βr are weights and defined by

the service provider to reflect their respective cost of bandwidth and CPU. In [24] and

[25], αr = βr = 1.

3. Acceptance Ratio

Acceptance Ratio is the ratio of the successful requests to total requests of the virtual

network. It is defined as follows:

Acceptance Ration =
Number of accepted requests

Number of all requests
(2.3)

4. Stress Balance

Each substrate node can be mapped onto several virtual nodes. Similarly, a substrate

link can also incorporate multiple virtual links. The stress level describes the number

of virtual entities that are mapped onto a substrate entity. The stress ratio at time t, for

node (RN) and link (RL), have been defined as the ratio of the maximum stress and the

average stress [25].

RN(t) =
max
n∈NS

SN(t,n)

[ ∑
n∈NS

SN(t,n)]/|SN |
(2.4)
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RL(t) =
max
e∈ES

SL(t,e)

[ ∑
e∈ES

SL(t,e)]/|ES|
(2.5)

where SN(t,n) and SL(t,e) express the stress level of the substrate node n and the

substrate e at time t. |SN | and |ES| represent the number of the substrate nodes and the

number of substrate links respectively.

Various existing mapping approach have been proposed to equally distribute resource

load across the substrate network by minimizing the stress, as shown in Appendix A.

2.5.3 Algorithm Taxonomy

The virtual network resource allocation algorithms can be categorized, as follows.

• Offline vs. Online

The VNE algorithms initially can be classified into two forms: offline algorithms

and online algorithms. Offline algorithms assume that all VNRs are already known

before they are processed. These algorithms do not consider the dynamic arrival VNRs,

in other words, the offline algorithms ignore the distributed arrival time of different

VNRs. Online algrithms assume that the VN requests are not known in advance. A

VNR may arrive dynamically and stay in the network for an arbitrary period of time

before departing. Online algorithms have higher computing complexity and are seen

as NP-hard [26].

• Static vs. Dynamic

This taxonomy depends on whether the mapped resources can be reconfigured in

order to optimize the substrate resource utilisation and allocation. Every VNR is

associated with an arrival time and an expiry time. The resources allocated to a VNR

will be withdrawn after the specific expiry time has passed. Dynamic algorithms

try to reconfigure the mapped resources over time to accommodate new VNRs. For
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example, dynamic algorithms will re-compute the optimal solution to reallocate the

resources once a VNR has expired and releases its resources. For the purpose of

improving the global performance of embedding in the substrate network, the resources

for successfully mapped VNRs may or may not undergo re-mapping. Static VNE

algorithms do not attempt remapping of existing VNRs to optimize the performance of

the embedding in the substrate network.

• One Stage vs. Two Stages

Virtual network embedding algorithms deal with the dual allocation of virtual resources

onto the nodes and links associated with the VNR. A one-stage algorithm implements

the mapping of virtual nodes and virtual links to the substrate infrastructure simulta-

neously. In two-stages algorithms, the node mapping and link mapping are separated

from each other. Generally, node mapping will be executed before link mapping in

two-stages algorithms.

• Centralized vs. Distributed

These approaches consider the situation that the substrate network is being run by

multiple InPs. Centralized approach is based on using a single entity from the substrate

network to perform the embedding. The distributed approach will utilize multiple

substrate entities to compute the specific embedding. A significant advantage of the

distributed approach is that the VN mapping problem is subdivided across InPs. This

reduces the complexity of computing, at the cost of finding a suboptimal solution.

2.5.4 Existing Research on VNE

Several related works [9, 24, 25, 27, 28] address Virtual Network Embedding (VNE)

onto substrate networks. Yu et al. [24] developed a hybrid approach to consider computing

and link capacity abilities to measure the node rank. VNE mapping for nodes is achieved

using a greedy algorithm for a number of small virtual networks. Chowdhury et al. ([9],
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[27]) proposed an online algorithm to solve the VNE problem using a new node mapping

stage (introducing Metanodes and Metaedges). Such node mapping using an augmented

graph is also used in the new algorithms described in this thesis. Cheng et al. [28], inspired

by Google’s page ranking algorithm use a topology aware node ranking algorithm for virtual

network mapping. Zhu and Ammar [25] use a stress algorithm to develop and maintain a

balanced node and link stress for network resource allocation. A heuristic approach is used

for clustering of lightly stressed substrate nodes and links. Table 2.2 lists several published

algorithms for the allocation of virtual network resources.
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In future virtual network, using multiple resources within the same physical resources

can be an enabler for energy optimization. There are multiple strategies on which researchers

are working on; Chang and Wu [46] propose a heuristic approach that finds the minimization

of the computing and communications power of applications in cloud computing environ-

ments. A Green Power Management (GPM) method has been proposed by Yang et al. [47]

to find the optimized load balancing solution amongst virtual machines in a cloud substrate.

Chapter 6 will address a novel online energy-efficient resource allocation approach with the

objective of minimizing the edge network energy consumption.

2.6 Power Management in Networks

Depending on the hardware technologies of components, different power management

techniques can be applied at the silicon level (e.g., clock scaling [48], voltage scaling [49],

voltage gating [50], etc.), in order to reduce the resulting energy consumption in an effective

way. Power management techniques applied to network nodes include:

1. Adaptive Rate (AR): the operating speed of the hardware component is reduced in

response to load.

2. Low Power Idle (LPI): the hardware block or some of its components are turned off

during idle periods. When the block receives new work, a wake up time must elapse

before returning to a fully operate state.

3. Standby: this resembles LPI, but hardware blocks in standby mode require much longer

times to wake up. During Standby modes, the functionalities provided by the blocks

should be considered unavailable.

In systems compliant with the Advanced Configuration and Power Interface (ACPI) stan-

dard [51], the number of such configurations is limited to a few stable power management

configurations for each hardware block.
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2.6.1 Power Control Policies

The prevailing technologies to reduce network energy consumption can be placed in

two broad categories. The first approach is to put network elements into a sleep mode

during idle computational periods. [52] proposed green OSPF protocol which can detect

links with low traffic (which can comprise up to 60% of total links in an actual IP network)

and power them off to save energy. The second approach is so-called Rate Adaption which

is an effective way of achieving network energy proportionality by adaptively scaling the

link data rate in response to the link utilisation. [53] first described the ALR (Adaptive

Link Rate) and intended it primarily for use in edge links. Nedevschi et al. [54] studied

both forms of power management schemes and showed a substantial saving of network

energy when using even simple schemes for sleeping or rate-adaption. Policies and rules

to determine when to enter sleep mode or to change the link rate have been widely studied.

Gunaratne et al. [55] investigated queue length based policies to determine the appropriate

conditions to trigger link rate changes according to a dual-threshold policy. Researchers in

[56] proposed two state-setting policies which considered including queuing length, service

rate, rate adaption interval etc. and showed a deterministic bound on network delay. The

work in [57] introduced network stability into the scheduling algorithms and studied two

scenarios, namely temporary sessions and permanent sessions and showed how delay bounds

are affected by rate adaption.

Gunaratne et al. [55] considered only two hypothetical service rates (High and Low)

which may not be effective enough in practice considering the power saving. Although [58]

extended the dual-threshold policy to consider various service rates, their study did not

model rate transitions which will be of concern in practical systems. [59] proposed several

local control algorithms and demonstrated their experimental results on NetFPGA platforms,

but the authors did not provide its queuing policies or any performance model. A model

addressing these deficiencies will be developed in Chapter 5.
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2.6.2 Green Abstraction Layer

The Green Abstraction Layer or GAL is a novel interface/middleware architecture

that enables network nodes to exchange power consumption data and locally apply control

strategies for energy saving [60]. The European Telecommunications Standard Institute

(ETSI) approved GAL as an official standard (ETSI Standard 204-237) in March 2014 [61].

GAL was conceived with the purpose of exchanging information about capabilities and

parameter settings between energy-aware networking devices and their network management

primitives. At the same time, it defines a suitable hierarchical structure, in order to propagate

a similar abstract representation throughout the subsystems of devices (chassis, electronic

boards, etc.), at an appropriate level of detail and granularity. GAL also defines a standard

interface for exchanging energy consumption information among the network devices. GAL

consists of two segments: the Energy Aware States (EASes) and the Green Standard Interface

(GSI). EASes describe different power levels which are supported by the client devices;

GSI is a set of primitives which are used for controlling the power consumption of the

equipment by making transitions between different EASs. GAL had been successfully

applied in a number of middle and large-scale projects such as DROP (the Distributed

Router Open Platform) [62] [63] and is supported in commercial hardware such as Mellanox

routers [64]. In this thesis, GAL has been integrated with the power-aware network devices

as a power management standard in conjunction with the OpenFlow protocol which handles

the forwarding control information.

2.7 Summary

The constant evolution and expansion of the Internet and Internet-related technologies

has exposed the limitations of the current networking infrastructures, which exhibit unsus-

tainable power consumption and low level of scalability. In fact, these infrastructures are
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still based on the typical, ossified architecture of the TCP/IP paradigm. In order to cope with

the requirements of the Future Internet, recent contributions envisage an evolution towards

more programmable and efficient networks, such as cloud computing and SDN, which have

been described in the chapter. Network virtualisation is one new approach promising the

flexible and autonomic network management. This chapter gives detailed descriptions of

current research on network virtualisation. How to effectively map virtual resources to

physical resources is of great significant with this approach. The metrics used to evaluating

the network resource allocation algorithms and the notation used to represent them have also

been presented.
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Chapter 3

Hardware Considerations in

Energy-efficient Network Design

High performance switches and routers enabled the rapid growth of the next generation

networks. However, the power consumption and the resulting thermal effects become one of

the biggest challenges in modern network device designs [65]. The hardware designers can

no longer focus on creating the highest performance chips because the highest performance

circuit they can create is likely to dissipate too much power. Instead, researchers must now

pay more attention to power efficiency in order to achieve high performance while satisfying

power constraints considering the impact of critical factors raising the power consumption

problems.

In this respect, this chapter describes the basic issues, the technical approaches, and the

methodologies for the implementation of energy efficient network devices.

3.1 Power Consumption Analysis of CMOS Circuits

A wide range of computational approaches of modelling power consumption have been

introduced for CMOS based integrated circuits (ICs). These approaches are described by

27



3.1 Power Consumption Analysis of CMOS Circuits

Fig. 3.1 CMOS Inverter

different mathematical equations and considered various levels of granularity. For example,

the dissipation due to direct-path currents is considered as part of dynamic power consumption

in [66], but it is not taken into account in [67]. The calculation methods described in [67]

and [68] are comprehensively adopted in this thesis (with minor changes to the mathematical

notation) because the mathematical expressions are concise and a level of granularity is

considered.

The CMOS inverter is the basic component of all digital designs. The power consump-

tion properties and characteristics of an IC can be quite accurately derived by extrapolating

the investigation results obtained from the CMOS inverters. Fig. 3.1 depicts a static CMOS

inverter which has two different states. The total power consumed by a CMOS inverter

can be divided into three components, which are its dynamic consumption, short-circuit

consumption and static consumption, as defined by Eq. (3.1).

Ptot = Pdyn +Pd p +Pstat (3.1)
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1. Dynamic Power Consumption

The dynamic power consumption is caused by capacitor CL which is charged/discharged

through the PMOS/NMOS respectively. A measurement for one direction of dissipation

can be precisely derived, as follows (taking the charging procedure as an example),

Evdd =
∫

∞

0 iV DD(t) ·VDDdt =VDD
∫

∞

0 CL
dvout

dt dt =CLVDD
∫VDD

0 dvout =CLV 2
DD (3.2)

EC =
∫

∞

0 iV DD(t) · voutdt =
∫

∞

0 CL
dvout

dt voutdt =CL
∫VDD

0 voutdvout =
CLV 2

DD
2 (3.3)

where EV DD denotes the energy taken from the supply during the transition, and EC is

the energy stored on the capacitor at the end of the transition [67].

Eq. (3.2)-(3.3) show that during the low-to-high transition, the capacitor CL stores

energy equal to CLV 2
DD

2 , and another half of this energy has been consumed by the PMOS

transistor. During the discharging procedure, the energy of CL is dissipated in the

NMOS transistor. In summary, each switching cycle (consisting of an L→ H and an

H→ L transition) takes a fixed amount of energy, equal to CLV 2
DD. In order to obtain

the total power consumption, the switching frequency has to be taken into account. If

the gate is switched f0→1 times per second, the power consumption is given by

Pdyn =CLV 2
DD f0→1 (3.4)

2. Short-circuit Power Consumption

The short-circuit power consumption is caused by a direct current path existing between

VDD and GND for a short period of time during switching, while the NMOS and

the PMOS devices are conducting simultaneously. Similar to the capacitive power

dissipation, the short-circuit power dissipation is proportional to the switching activity.
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The short-circuit power consumption can be calculated as follows

Pd p = tscVDDIpeak f (3.5)

where tsc represents the time both devices are conducting and Ipeak is determined by

the sizes of the transistors[68].

3. Static Consumption

Ideally, there should be zero static current through the CMOS inverter in steady state.

This is because the PMOS and NMOS are never simultaneously on. However, a

leakage current always exists and flows through the reverse-biased diode junctions of

the transistors. The static consumption is composed of the P−N Junction Reverse-

Bias Current, the Subthreshold Leakage Current, and the Tunneling Current into and

through the Gate Oxide [69]. In [66], the static dissipation is simply given by

Pstat = IleakVDD (3.6)

and this formula will be used in this thesis.

4. Total Power Consumption

The total power consumption of a CMOS inverter can be expressed as the sum of the

three components above

Ptot = Pdyn +Pd p +Pstat = (CLV 2
DD +VDDIpeaktsc) f0→1 +VDDIleak (3.7)

Based on these formulas, and with parameter values typical of CMOS circuits, it may

be concluded that:

• the capacitive dissipation is the dominant factor in a typical CMOS circuit;
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• the supply voltage cannot be reduced without restriction; when VDD approaches twice

of voltage threshold that will lead to a serious performance penalty [66];

• the short-circuit power consumption can be kept within bounds by careful circuit

design, and this leakage can be ignored [66];

• voltage and frequency scaling is an effective approach to reducing the power consump-

tion;

• either a lower voltage or lower temperature can significantly reduce the lower leakage

current [70].

3.2 Hardware Level Power Saving Techniques

The energy efficiency of network devices can be improved using sleep mode and power

scaling [71]. Sleep mode refers to putting electronic devices into the lowest power status.

This mode significantly reduces the power consumption compared to leaving the device fully

operational continuously and constantly. In sleep mode, the devices stay in a minimum power

state by turning off unnecessary subsystems and the RAMs [72].

Power scaling is another energy saving technique. It refers to dynamically scaling the

power dissipation of the network devices by placing them into different processing states in

response to various external factors such as traffic load.

3.2.1 Sleep Mode

Sleep mode seeks to disable unused hardware, or parts of its components, such as ports

of a ND, putting them into a mode where they consume the lowest power, and waking them

up as needed. Significant power can be saved when the hardware stays in sleep mode.
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Sleep mode was first introduced in laptop computers for the purpose of extending battery

life for mobile users [73]. After a certain period of time with no application activity detected

by the operating system, a specific firmware, located between the operating system and the

hardware, will initiate power management and trigger a signal to the hardware (e.g., the

processor, hard drive, network card, etc.), so that the corresponding hardware components

can be placed into a low power sleeping mode. A wake-up interrupt will then lead such

sleeping hardware components to return to an active operating mode once the operating

system detects demand from applications. Similarly, a customized set of power management

primitives in green networking allows NDs to turn their functionalities almost completely off

and stay in a sleep mode.

There are challenges to introducing sleep mode in network devices as time and power

are needed to transition between sleep and active mode. How to predict the appropriate state

in advance is still a topic of ongoing research.

3.2.2 Power Scaling

Power scaling can also be used to improve the power efficiency of the network hardware.

Various techniques of power scaling exist such as the following:

1. Dynamic Voltage and Frequency Scaling (DVFS)

Eq. (3.4) in Section 3.1 shows the quadratic relationship between the dynamic power

consumption and the supply voltage. Therefore, decreasing the voltage can significantly

reduce the dynamic power. However, reducing the supply voltage comes at the expense

of increasing circuit delay and results in decreasing the circuit performance. Dynamic

Voltage Scaling (DVS) refers to adjusting the voltage supply dynamically instead

of using a constant value to maintain circuit performance while reducing the power

consumption to its maximum possible extent. In [49], a novel logic delay measurement

circuit (LDMC) is used to adjust the supply voltage of an FPGA chip in a closed loop
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fashion based on the operating temperature. [49] reports a 4% to 54% power saving on

a Xilinx Virtex XCV300E FPGA by introducing LDMC. Dynamic frequency scaling

(DFS) [48] [74] is another power scaling technique that refers to dynamically scaling

the clock speed of the processor depending on the switching load.

2. Multi-level Voltage and Frequency Scaling (MVFS)

Use of dual−Vdd has been explored and already successfully applied in ASICs within

various fields (e.g. [75]). Li et al. has published a series of papers regarding this

technique [50, 76–78]. The concept of Vdd programmability for FPGA was first

introduced in [50], and [76] and [77] present analysis and experimental results based

on this concept. [78] shows that introducing the field-programmable dual−Vdd on a

100-nm FPGA platform can result in an overall power saving of more than 45%. [58]

proposed a multi-frequency scaling scheme where a clock adapter is designed to

dynamically scale the internal frequency by examining the buffer usage inside a

network device.

3. Glitch Removal

A glitch is an unexpected transition that dissipates undesired dynamic power in digital

circuits and may cause logic errors. The glitch is often a result of a fault or design

mistake that occurs where the input signals to logical cells have different arrival

times. [79] investigates the effect of glitches on power consumption and reports that

between 20% and 70% of total power dissipation in ASICs is due to glitches. [80]

proposes to reduce glitching power in FPGA circuits by using negative edge triggered

flip-flops. Lamoureux et al. [81] introduce a programmable delay element to the logic

blocks which aligns the arrival times of the input signals to prevent glitches and reports

removal of 87% of glitches and a reduction of up to 17% of overall power dissipation.
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4. Clock Gating and Power Gating

Safeen et al. [82] described a novel clock gating architecture, in which a network

switch is integrated inside the built-in clock tree. A customizable enabling pin is

used to control the switching so that partial logical blocks which are not used for a

function will be disabled to decrease the power consumption of the clock network.

The clock gating approach is used in a Xilinx Virtex-5 FPGA by Wang et al. [83] who

reported a 28% reduction in power consumption due to the reduced toggling on the

clock interconnect. Multiple mode power gating was proposed in [84]; it can achieve a

further reduction of 17% in power dissipation. The power gating technique is also an

effective approach to decreasing the static power consumption.

5. Partial Reconfiguration

Partial reconfiguration allows a portion of a circuit to be reconfigured while the

remain parts continue to work without any interference. The primary benefits of

using this technique lie in hardware reuse and flexibility [85]. It potentially allows

the implementation of a large-scale system using relatively small-scale hardware

logical resources. Partial reconfigration also has the advantage of reducing the power

consumption, as has been verified and investigated by Liu et al. [86]. The inactive

hardware modules inside an FPGA can be unloaded using partial reconfiguration while

the chip is operating, saving power consumed in the leakage and clock distribution

power.

3.3 FPGA as a Hardware Accelerator

The terminology of hardware acceleration commonly refers to the usage of specific

hardware platform, such as FPGA, GPU, DSP, etc., to perform some functions more effi-

ciently than is possible in software running on a more general-purpose CPU. A comparison
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between four different hardware accelerator platforms, say multi-core CPUs, GPUs, MPPAs

(Massively Parallel Processor Arrays) and FPGAs has been performed in [87]. The target

application is Random Number Generation and the results reveals that for getting the best

performance from each platform different implementation approaches to random number

generation should be devised. In other words, methods which are highly efficient in scalar

oriented CPUs may not work well neither in case of GPUs, nor in memory limited MPPAs.

Within the emergence of virtualisation approaches, the FPGA platforms as potential

virtual computation resources found a new role. In [88] a systematic solution, termed as

pvFPGA, for virtualising an FPGA-based hardware accelerator based on Xilinx Virtex-6

FPGA and the x86 platform has been proposed. The authors have shown that the time

overhead caused by the virtualisation in the proposed solution is very close to zero. To cope

with the intensive processing data mining tasks in genomic applications, an FPGA based

solution has been addressed in [89]. Due to the intrinsic computational intensiveness of Video

streaming applications, they are offered as suitable candidates for hardware acceleration

engines. A real time implementation of image analysis algorithms based on Xilinx Virtex 5

FPGA family was proposed in [90], where a test prototype for four video HD_SDI streams

has been also developed.

In [91] a fair comparison between the performance of GPUs and FPGAs, both as

accelerators, has been done. The paper evaluates the technology for both GPU and FPGA

devices, and performs a qualitative and quantitative comparison. The brief result is that

FPGAs are more power efficient while GPUs are more cost efficient. Because of their flexible

architecture and deep-down pipelining and parallelism capability, FPGAs have attracted both

research and industrial community’s interest to be customized as hardware accelerators [92].
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3.4 Evaluation Testbed

In order to perform experiments on energy efficiency in network devices, a suitable

testbed is required. The ideal testbed will allow hardware to be modified, and will support

recent advances in network software that increase network flexibility, such as SDN and

network virtualisation. The NetFPGA [93] architecture provides a suitable platform on which

to design such a testbed, and is described below.

The NetFPGA platform is a line-rate programmable and open platform for network

scientists and researchers. It is widely used both by academic institutions and industries

around the world. It provides a fast way to design and investigate power efficient mechanisms

with reconfiguration features.

3.4.1 The NetFPGA Platforms

The NetFPGA-1G [94], shown in Fig. 3.2a, is a low-cost reconfigurable networking

hardware platform with four Gigabit Ethernet ports attached. It contains a Xilinx Virtex-2 Pro

FPGA that is used for user-defined logic (UFPGA) and another Xilinx Spartan-2 FPGA used

as the PCI controller (CFPGA). The 1G platform has 4.5 Mbytes of SRAM and 64 Mbytes

of DRAM. It communicates with the host PC through a standard peripheral communication

interconnect (PCI) bus.

The Ten Gigabit version of the NetFPGA (NetFPGA-10G) [95], shown in Fig. 3.2b,

was released in 2012. It is equipped with four 10G SFP+ interfaces and the FPGA has a

Xilinx Virtex-5 Tx240T in its core. The NetFPGA-10G contains up to 27 Mbytes of SRAM

and 288 Mbytes of DRAM as well as an eight channels of PCI Express interface supporting

5 GBPS/lane.

Table 3.1 compares the hardware configuration of the two boards.
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(a) NetFPGA-1G board

(b) NetFPGA-10G board

Fig. 3.2 NetFPGA Platforms

3.4.2 Reference Design of SDN Switch

The design of the NetFPGA reference SDN Switch [94] [95] is modular. New features,

such as the frequency scaling mechanisms discussed here, can be implemented by adding

new custom modules or by adjusting the existing ones. Fig. 3.3 shows the main blocks of an

SDN switch on a NetFPGA platform.

The entire reference system can be separated into two parts: the software portion and

the hardware portion. The software portion resides on an X86 based host, exchanging

OpenFlow Protocol messages with an external controller, collecting various statistical data,
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Table 3.1 NetFPGA Board Comparison

NetFPGA-1G NetFPGA-10G
Port 4 x 1Gbps Ethernet Ports 4 x 10Gbps SFP+

Memory
4.5 MB ZBT SRAM

64 MB DDR2 SDRAM
27 MB QDRII-SRAM
288 MB RLDRAM-II

Interface PCI PCI Express X8
FPGA Virtex II-Pro 50 Virtex 5 TX240T

Logic Cell 53,136 239,616
Block RAMs 4176kbits 11664kbits

as well as communicating with the hardware to set up flow entries etc. The main function

of the hardware portion is to switch packets between different physical ports according to

internal flow tables fabricated in the hardware. The hardware portion and the software portion

communicate with each other via a DMA/CPCI interface. The software portion generates a

software flow table after communicating with the controller, and this software flow table will

be copied into a hardware flow table which is stored in CAM (Content-Addressable Memory)

inside the hardware. The user traffic comes from one of the physical ports and its header

processing looks up the CAM to determine the output port. If there is no record on CAM,

these packets will be forwarded to the controller through the software portion. The controller

will decide a new flow rule for these packets, and this specific rule will be added into the

hardware for future reference. Hence recently used rules are cached in hardware.

The hardware implementation of the reference SDN switch on NetFPGA-10G platform

is demonstrated in Fig. 3.4. Packets from each external interface and packets from the host

interface go through a dedicated pipeline. Other substantial components of the switch are the

SDN Data Path, the Input Arbiter and the Output Queues.

1. OpenFlow Data Path

This is the core component of the OpenFlow switch. All activities in the data plane

associated with OpenFlow, including flow table lookup, action processing and packet

header handling have been implemented inside this module. After passing through

this module, packets will be switched to the appropriate port(s) by the Input Arbiter

38



3.4 Evaluation Testbed

Fig. 3.3 Block Diagram of NetFPGA SDN Switch

component in conjunction with the Output Queues component, unless the packet is to

be dropped.

2. Input Arbiter

This module is in charge of arbitrating five streams of data (one from each port and

one from the CPU) and producing a single multiplexed internal bus to feed the Output

Queues. The arbitration uses a round robin algorithm to schedule packets.

3. Output Queues

This module inserts each packet into the outgoing queue associated with its destination

port. After some format conversion, packets are transferred to output interfaces.

The SDN switch design on the NetFPGA reference 1G platform is somewhat different

and is shown in Fig. 3.5. Unlike NetFPGA-10G, NetFPGA-1G implementation has eight
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Fig. 3.4 NetFPGA Reference 10G SDN Switch, Internal Hardware Data Path

Fig. 3.5 NetFPGA Reference 1G SDN Switch, Internal Hardware Data Path

ports (four MAC ports and four corresponding host ports) and only one data path pipeline for

data from all the eight ports.

Two NetFPGA platforms are used because they have different line rates. This gives

more versatility to the experiments showing that the proposed NDPM is generic for any

CMOS based network devices. The power dissipation results for both platforms show an

excellent match to the model, as will be discussed in next chapter.
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3.5 Summary

This chapter describes the power consumption in CMOS circuits, giving detailed descrip-

tions of the frequency scaling technique used to build a power adaptive network device. The

evaluation testbed used for investigating frequency scaling switching schemes is introduced

in this chapter. The existing reference design of an SDN switch based on NetFPGA platforms

is described.
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Chapter 4

Energy Efficient Network Device Design

and Evaluation

Eq. (3.7) shows that the power dissipation on a CMOS device is proportional to the

switching frequency fclk
12 and has a quadratic relation with the supply voltage (V ): Ptotal ∝∼

fclkV 2. Appropriately modulating the system clock frequency is thus a way to reduce the

power consumption. In this chapter, a frequency scaling Software Defined Networking (SDN)

switch is designed and validated on both the NetFPGA-1G [94] and NetFPGA-10G [95]

platforms. This new frequency scaling SDN switch can be used to study and investigate

multiple factors impeding energy saving.

1It assumes that the device is designed on a synchronized circuit in which f0→1 can be expressed with
respect to the clock fclk.

2Switching activity, also called "toggle rate", is defined by Xilinx as "Toggle Rate is the rate at which a net
or logic element switches compared to its input(s). For synchronous elements, the Toggle Rate reflects how
often an output changes relative to a given clock input and can be modeled as percentage between 0-200%" [96].
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4.1 Multiple Frequency Clocks to Support Frequency Scal-

ing

To use frequency scaling, two novel approaches implementing multiple clock signals

are dynamic clock generation (DCG) and dynamic clock selection (DCS), and these are

described in this section.

4.1.1 Dynamic Clock Generation

Dynamic Clock Generation (DCG) uses frequency synthesis techniques [67] adopted

from radio systems to generate a system clock fOPS from a reference clock fREF such that

fOPS = M · fREF +φ0 (4.1)

where φ0 is a constant and M is a programmable integer. In a packet processing engine, the

value of M may be set in response to buffer occupancies, so that the processing is accelerated

when buffers start to fill. Frequency synthesis is achieved using a digital Phase Locked

Loop (PLL) or Delay Locked Loop (DLL) [67], as shown in Fig. 4.1, which also illustrates a

threshold mechanism used to select the value of M. When the value of M changes, the PLL

loses lock, and a period of time which depends on the loop dynamics [97] elapses before

lock is re-established.

The value of φ0 maybe changed after lock is re-established, and so DCG is not syn-

chronous. Numerous clock glitches will occur whilst lock is being established.
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Fig. 4.1 Dynamic Clock Generation (DCG)

4.1.2 Dynamic Clock Selection

Dynamic Clock Selection (DCS) approach is depicted in Fig. 4.2. DCS is able to choose

the best clock frequency from a set of pre-generated clocks, using techniques such as multiple

crystal oscillators or frequency synthesis, to optimize the device power consumption.

Since there is no convergence time associated with PLL or DLL dynamics, unlike in

DCG, transitions in clock rate do not result in glitches. However, the supporting clock rates

of DCS are pre-defined so that the new required frequency can not be dynamically added

using DCG, the flexibility and usability are less. Besides, more supported clock rates in DCS

consume more hardware and it may result in failure of implementation due to the lack of

resources.
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Fig. 4.2 Dynamic Clock Selection (DCS)

4.2 New Frequency Scaling Network Device Design

4.2.1 Adjustable Scheduler

The energy efficiency of the packet processing engine is the focus in this thesis as it is

widely believed to be the most energy-consuming component in network devices [98]. It can

be done by dynamically tuning the core clock frequencies using in packet processing engine

(i.e., frequency scaling) as shown in Fig. 4.3. Frequency scaling allows the performance

of digital hardware to be modulated in response to demand, so as to consume no more

power than is needed to provide the necessary quality of operation. The goal of saving

energy consumption can be achieved by reducing the frequency of the scheduler, effectively

increasing the service time, or by decreasing the offered bandwidth.

Energy adaptation feature has been implemented based on the reference design of the

NetFPGA-1G/10G SDN switch, presented in Section 3.4.2. To save energy, a new switch

needs to be able to dynamically tune its operating frequency without seriously degrading
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Fig. 4.3 The Adjustable Scheduler

the quality of service. In accomplishing this, a DCG clock engine has been designed for the

NetFPGA-10G platform and a DCS engine was designed for the NetFPGA-1G platform.

4.2.2 Frequency Scaling on NetFPGA-10G Platform

The existing clock generator (provided by Xilinx IP [96]) has been used to generate the

reference frequency, from which circuitry encoded in Verilog generates new clocks which

are fed to the user logic, thus implemeting the power scaling. The NetFPGA-10G platform

provides flexible and efficient clock distributions for the core FPGA and other onboard

peripheral chips, in which, one differential and three single-ended clocks directly connect to

the FPGA, as shown in Fig. 4.4:

• one 100MHz clock coming from the host PC generates a pair of differential clocks

which are used for controlling the PCI data communication;

• four independent SPF+ (10Gbps) interfaces are supported by an independent clock

circuit that either provides a 125MHz or a 156.25MHz clock;

• a 100MHz clock provided by an onboard crystal is used as a core clock in the FPGA.

One PLL resource has been used to produce five different clock frequencies, which are

160MHz, 125MHz, 100MHz, 80MHz, and 50MHz.
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Fig. 4.4 Clock Distribution on the NetFPGA-10G Platform

• a frequency synthesizer (ICS843001) is used to scale the clock in the system and the

clock that feeds to the PHY chip is not changed so that the probability of losing packets

in input port becomes higher when the processing engine runs at a lower frequency.

A frequency setting module to scale the operating clock has been implemented. This

module is connected to the DMA engine via a AXI Lite slave interface so that the internal

registers can be accessed from the host over PCIe. This module will be controlled by Local

Control Policies (LCP) which is to be dicussed in Section 4.4.2. The ports of the frequency

setting module are assigned to GPIO pins (an onboard UART connector used for debugging)

and a LogicPort Logic Analyzer [99] is used to verify the design. The generated clock signals

are shown in Fig. 4.5.
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Fig. 4.5 Captured Clock Signals for the NetFPGA-10G Platform

4.2.3 Frequency Scaling on NetFPGA-1G Platform

The frequency scaling procedure has also been implemented on the NetFPGA-1G

platform. A novel clock dividing module has been designed and inserted into the scheduler

module of the reference implementation on the core Virtex II FPGA chip (known as UFPGA)

of 1G platform, without changing the SRAM module and PHY (such as GMII in NetFPGA-

1G platform). This energy proportional design generates a set of pre-defined clocks according

to fn = 125MHz/2n, where n is a positive integer and 125MHz clock is provided by an

onboard crystal. This design eventually provides five scalable frequency options: 125MHz,

62.5MHz, 31.3MHz, 15.6MHz and 7.8MHz. Fig. 4.6 shows the clock design at the top level.

A setting module has also been implemented to dynamically select an appropriate clock from

the pre-generated clocks.
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Fig. 4.6 Top Level View of the Scaling Clock on the NetFPGA-1G

A different frequency scaling design on NetFPGA-1G has been reported in [100], in

which, the power scaling mechanism is implemented by adding two functional blocks, which

are a Clock Controller and a Clock Divider. The Divider block generates the operating

frequencies from the core clock (125MHz) and the PCI clock (62.5MHz) in accordance with

the feedback from the Clock Controller block. This approach reuses the DCM (Digital Clock

Manager) to generate the new frequencies and consumes more hardware resources than our

design.

4.3 Evaluation of Power Consumption

Various experiments have been designed and conducted to evaluate the energy consump-

tion of the frequency scaling NetFPGA-1G and 10G SDN switches. These are described

below.
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4.3.1 Experimental Setup

4.3.1.1 The NetFPGA-10G Platform

The NetFGPA-10G platform can be operated in two modes. The board is solely driven

by an external 12V ATX supply powered for Stand-alone Mode, but it needs to be powered

by both External 12V ATX interface and via the PCI Express interface in PCIe Mode. The

external ATX power supply powers the DRAM, SRAM and all four PHY chips (Broadcom

AEL2005) in PCIe Mode. The PCIe power supply powers the FPGA. The host PC’s power

supply, from which the ATX connector is powered, and which powers the host motherboard

and thus the PCIe BUS, is a CORSAIR Vx550W. For a concurrent and comparative analysis

of power consumption of the device, the power utilization needs to be measured on both

PCIe and the ATX supply (using the PCIeEXT-16 Smart PCIe Bus Extender [101]). NI USB-

6251 [102] has been used as the DAQ (Data Acquisition). Fig. 4.7 depicts the measurement

environment schema as well as the real-life testing environment.

4.3.1.2 The NetFPGA-1G Platform

The test environment for NetFPGA-1G Platform is on another aspect as same as for the

10G. In testbed, an Ultraview PCI extender, PCIEXT-64U [101], is used together with a data

acquisition (NI USB-6251, same as used for NetFPGA-10G testbed) for data acquisition to

measure the NetFPGA-1G power consumption with a sampling rate of 764KHz on the DAQ,

and all experiments are undertaken with a room temperature of 23 degrees centigrade.

4.3.1.3 Packet Generator

As a commercial packet generator was unavalable in the lab, a second NetFPGA-10G

board was used as a packet generator. In comparison with the OSNT (Open Source Network

Tester [103]) project, the design is simplified to directly generate various traffic (for example,
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(a) Experimental Testbed

(b) 1G/10G Testbed Schema

Fig. 4.7 Experimental Testbed Setup using NetFPGA-1G/10G

different packet length and different load) in NetFPGA rather than accessing RAM and

replaying the PCAPed packets. The packet generator is able to generate up to 8 Gbit/s traffic

on each port.

A flow table is used to configure paths on the board to interface it to the packet generator

as in Table 4.1.
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Table 4.1 Ports Forward to Traffic Generator

Port of Device Under Test Connected Port of Packet Generator

1 2
2 1
3 4
4 3

Fig. 4.8 Power Consumption v. Operating Frequency

4.3.2 Performance Evaluation

4.3.2.1 Quiescent Power Consumption

An experiment was undertaken to measure the Quiescent Power Consumption3, to

determine the relationship between the clock frequency and power consumption in the

absence of any input traffic.

Fig. 4.8 depicts the results for both NetFPGA-1G and 10G platforms. It can be concluded

that the relationship between quiescent power consumption and operating frequency is, to a

3Quiescent Power Consumption is defined by Xilinx as "the power drawn by the device when it is powered
up, configured with user logic and there is no switching activity." [104]
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very close approximation, a linear one. This result is used in Section 4.5 to develop a model

of quiescent power consumption for all NDs using CMOS circuitry.

4.3.2.2 Variation with Traffic Rate

Fig. 4.9 shows the energy consumption of the NetFGPA-1G and 10G platforms for

various levels of traffic load. Evidently, the relationship between power consumption and

traffic rate is, to a very good approximation, a linear one. Furthermore the slopes of the

best-fit lines through the data are very similar for each system clock rate. It follows that the

variation in power consumption as traffic rate changes is largely independent of the system

clock rate.

4.3.2.3 Variation with Traffic Shape

The impact on power consumption of varying characteristics of the incoming traffic,

such as packet length and inter-arrival time, has also been studied on the 1G and 10G

platforms. A series of experiments has been conducted to explore the power consumption

distributions in various scenarios. The packet generator was configured to generate traffic

with the following properties.

1. Each burst generated has a duration of 100 seconds (a value chosen to ensure that

sufficient packets are in each burst for the mean of measurements to be statistically

valid);

2. The interval between each burst is 40 seconds (sufficient to ensure independence of

the results for successive bursts);

3. Within each burst, the packet length is drawn from a uniform distribution. The mean is

common within a burst, but varies between bursts;
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(a) Power Consumption v. Traffic Rate on NetFPGA-1G

(b) Power Consumption v. Traffic Rate on NetFPGA-10G

Fig. 4.9 Power Consumption v. Traffic Rate

4. Within each burst, the interval between successive packets has a exponential distribu-

tion;

5. Ten bursts are generated in succession, with progressively longer mean packet lengths.

The mean inter-departure time is adjusted so that the offered load is the same for all

bursts in the sequence;

6. The above sequence of bursts is repeated, with successively higher levels of offered

load.
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Fig. 4.10 Experimental Process

The Figure 4.10 shows the measured power consumption results of the experiments collected

from the 3.3V and 5V pins respectively and the total power consumption which is the sum of

the 3.3V power consumption and the 5V power consumption. The experimental results are

presented in Fig. 4.11.

The power consumption in Fig. 4.11 falls with increasing inter-arrival time, because of

the reduced number of packet headers to be processed. Fig. 4.13a shows the power consumed

by the NetFPGA-10G board at various operating frequencies and incoming packet length

when the traffic load is 1 Gbit/s. Clearly power consumption decreases as the frequency

is reduced. Fig. 4.13b and 4.13c show the same trend at higher traffic load. As shown

in Fig. 4.12, if traffic load is same, smaller packets consume more power, as more packet

headers need to be processed. It can be concluded that the traffic load has a higher impact on

power consumption than the variable packet length.
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Fig. 4.11 Power Consumption: Packet Length v. Inter-arrival Time

Fig. 4.12 Power Consumption: Packet Length v. Traffic Load

4.3.2.4 Scaling Transition Time

The transition time is defined as the time taken to switch the system between two

operating frequencies. A long transition time can negatively impact QoS, due to packet

loss during the transition, especially in the input buffer. Quantifying this transition time
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(a) Load is 1 Gbit/s

(b) Load is 2 Gbit/s

(c) Load is 4 Gbit/s

Fig. 4.13 Power Consumption v. Operating Frequency
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is important in order to know the penalty incurred by triggering a clock transition. The

transition time is inferred from the power consumption measurements taken in an interval

around the instant the transition is triggered, as shown in Fig. 4.14. The transition time

is largely independent of the current traffic load and also of the operating frequency. The

average transition time of NetFPGA-1G board is around 0.3 millisecond, but this value is up

to 0.6 millisecond for the 10G board. This is because the DCG scheme is used in the 10G

switch and the PLL needs more time to lock the generated frequency.

(a) Transition Time Measurement on NetFPGA-1G

(b) Transition Time Measurement on NetFPGA-10G

Fig. 4.14 Transition Time Measurement
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4.4 Power Management Mechanism

The power measurements obtained show that energy consumption increases with in-

creasing the clock frequency. However, lowering the clock frequency can only safely be done

if traffic conditions permit. The goal is to assure that, at any instant, the device performance

capabilities exactly match the traffic requirements without excess capability (which need-

lessly consumes power) or insufficient capability (which results in poor QoS). Any algorithm

to achieve this must be supported by appropriate primitives in the hardware.

Power management primitives provide the possibility of dynamically adapting the trade-

off between the energy consumption and the processing capacity of a hardware block (e.g.,

one or more hardware components) in this way.

4.4.1 Two-Layer Architecture for Power Management

The simplest way to manage the power consumption of devices is to directly manipulate

the physical resources. In the case of the frequency scaled SDN switch, this would be

the system clock rate. However, such an approach would require a complete redesign for

every new piece of hardware. Instead, it will be more effective to decompose the power

management into two layers.

As Fig. 4.15 shows, the architecture is decomposed into a physical layer and a logical

layer. Extended SDN primitives can be used to pass physical layer properties through the

logical layer to the controller, but commands to the physical layer, must pass via the logical

layer or the Local Control Policy (LCP) to reach the physical layer. The LCP, as its name

suggests, makes decisions based only on local information. The controller, on the other hand,

can potentially take a system-wide or even network-wide view, making decisions relating to,

and informed by data from, multiple logical resources.
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Fig. 4.15 NetFPGA based Two-Layer Architecture

Table 4.2 EAS and Multi-Frequencies

EAS Frequency in NetFPGA-1G Frequency in NetFPGA-10G
0 125 160
1 62.5 125
2 31.3 100
3 15.6 80
4 7.8 50
5 Adaptive Scaling Adaptive Scaling

The logical layer uses the abstraction of "Energy Aware States", described in the ETSI

standard describing the green abstraction layer (GAL) in energy efficient network equipment.

Table 4.2 lists the relationship between these energy aware states and the frequency options

available at the physical layer.

4.4.2 Local Control Policies

As discussed in the previous section, the power surveillance and setting commands from

the Controller can only be sent to the logical level. The Local Control Policy (LCP) has the

capacity to look up the mapping relationship between logical and physical resources and

interpret the higher level commands for the corresponding lower level, so that the appropriate
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Fig. 4.16 EAS Transition by LCP for the NetFPGA-1G Platform

EAS (in this case, the operating frequency) of the associated hardware modules can be set.

In this way, the LCP controls each entity’s power consumption and provides a simplified way

for the Controller to interact with hardware. The state diagram showing the energy aware

states (EAS) and state transitions for the LCP of the NetFPGA-1G as shown in Fig.4.16 (the

state transition diagram for the NetFPGA-10G is the same, except for the EAS values). Each

EAS is assigned an associated threshold, which responds to either traffic load or packet loss.

The LCP monitors the MAC statistic data of each Ethernet port in a particular time interval.

If the measured value exceeds the threshold of the current EAS, the switch will automatically

shift to the next EAS with higher frequency. If measurement value goes below the threshold

of the adjacent EAS, the switch will move to the next lower frequency.

4.4.3 OpenFlow Extension to Support Power Management

OpenFlow exchanges routing configuration data between the controller and switches

through a secure channel. Given that power management techniques can be applied to single

hardware blocks, and that different hardware blocks can enter different power settings, the

OpenFlow abstraction model natively offers the opportunity of mapping logical network
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Fig. 4.17 Extended Procedures between Controller and Switch

functions with the power settings of hardware components realising them. Twelve new

messages are introduced for enhancing power efficiency among data plane elements. Table 4.3

lists the new messages and their functions; Fig. 4.17 describes the extended procedures

required between controller and switches.

4.5 Network Device Power Model

A CMOS device level power model is considered here in order to establish an empirical

power consumption model for a real ND. As discussed in Section 3.1, the power dissipation

in CMOS circuits comprises dynamic and static power consumption. The dynamic power

consumption is due to the switching activities of circuit nodes (the charging and discharging

of capacitances) and the static power consumption is caused by the logical states of the
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Table 4.3 Extended OpenFlow Primitives

Primitive Description

OFPT_DISCOVERY_REQUEST
and
OFPT_DISCOVERY_REPLY

Use for Controller to retrieve information about
available power states and other entity’s descrip-
tive information such as correspondent IP ad-
dress, the power gain in terms of the maximum
power consumption etc.

OFPT_PROVISIONING
_REQUEST
and
OFPT_PROVISIONING_REPLY

Allows the Controller to configure an entity into
a specified power states, but this change is pro-
visional, needs to be effective by using Commit
command.

OFPT_MONITORING
_REQUEST
and
OFPT_MONITORING_REPLY

Controller uses Monitoring to request the data
of current EAS and power consumption of an
entity.

OFPT_COMMIT_REQUEST
and
OFPT_COMMIT_REPLY

Make the provisional power state changes of
entity effective.

OFPT_ROLLBACK_REQUEST
and
OFPT_ROLLBACK_REPLY

Discard the provisional state changes and roll-
back to the last commit point.

OFPT_RELEASE_REQUEST
and
OFPT_RELEASE_REPLY

Restore the state of an entity back to the default
configuration.

circuits.
Ptotal = Pdyn +Pstat

= ∑
i∈net

(CiV 2
i f0→1)+Pstat

(4.2)

where Ci denotes the capacitance of the capacitor i, Vi is the power supply voltage and f0→1

is the switching activity, which represents the frequency of energy-consuming transitions,

which include both L to H and H to L transitions.
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In a synchronized circuit, we may re-write the switching activity f0→1 = P0→1 · fclk,

where P0→1 denotes the probability of an input signal transition during a clock cycle. The

switching activity is known as toggle-rate as defined by Xilinx. Toggle-rate is the rate

at which a network or logical element switches compared to its input. Thus, toggle-rate

reflects how often an output changes relative to a given clock input and can be modeled as a

percentage [96]. Evidently, this probability depends on the packet arrival rate. We describe

this relation as P0→1 = ζ (r), in which r denotes the packet arrival rate. We assume that P0→1

is identical for the entire circuit4. Thus, Eq. (4.2) becomes:

Ptotal( fclk,r) = fclkP0→1 ∑
i∈net

(CiV 2
i )+Pstat

= fclkζ (r) ∑
i∈net

(CiV 2
i )+Pstat

= fclkζ (r)CtotalV 2
swing +Pstat

(4.3)

where Ctotal is the sum of all capacitances and Vswing is the voltage swing. Eq. (4.3) can be

represented as Ptotal = f (clk,r)+Pstat , where clk denotes the clock frequency. Expanding

this as a Taylor Series about r = 0, we get:

Ptotal(c,r) = f (c,r)+Pstat

= f0(c)+ f1(c)r+ f2(c)r2 + · · ·+ fn(c)rn +Pstat

=
∞

∑
n=0

fn(c)rn +Pstat

In practice, fn(c)≈ 0 f or n > 1, resulting in:

Ptotal(c,r)≈ f0(c)+ f1(c)r+Pstat (4.4)

4this assumption has been widely used, for example in [105].
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For a given clock rate C, the quiescent power consumption (i.e. that consumed when no

packets are arriving) can be measured to determine the value of f0(c)+Pstat , and the f1(c)r

can be estimated by fitting the measured power to Eq. (4.4).

The maximum throughput supported by the hardware network devices can be approxi-

mately calculated as:

Rmax =C ·W (4.5)

where Rmax is maximum supported throughput in bits/second. C is the clock frequency

used in circuit, which is measured in Hz. W denotes the width of internal bus in bit. For

example, the reference NetFPGA-1G design supports 125 MHz × 64 bist=8 Gbits/sec,

and each input port can achieve 1 Gbits/sec. NetFPGA-10G board supports 160 MHz ×

256 bits=40 Gbits/sec and each input port can achieve 10 Gbits/sec. Considering the proposed

NDPM (Eq. (4.4)), applying Eq. (4.5) will give the upper bound of power consumption of

a network device. Fig. 4.20 shows the comparison of measured maximum throughput on

NetFPGA-1G evaluation board and its theoretical value.

4.6 Model Evaluation

A testbed is developed, as shown in Section 4.3.1, to evaluate the NDPM which is

derived in Section 4.5.

4.6.1 NDPM Validation

NDPM (Eq. (4.4)) can be rewritten as

Ptotal(c,r)≈ Pdynamic(c,r)+Pquiescent(c) (4.6)
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(a) Slope Fitting

(b) Intercept Fitting

Fig. 4.18 NetFPGA 1G/10G Power Model Measurements: Fittings
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(a) NetFPGA 1G Model Validation

(b) NetFPGA 10G Model Validation

Fig. 4.19 NetFPGA 1G/10G Power Model Measurements: Validations
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Fig. 4.20 Maximum Throughput on NetFPGA-1G

where Pquiescent is the quiescent power consumption with a clock frequency of c, and Pdynamic

denotes the dynamic power consumption arising from the processing of incoming packets

arriving at a rate of r bits/s. The quiescent power consumption is defined as the power

consumption with no arriving traffic (i.e, when r = 0), it is an inherent characteristic of

a ND, which can be measured and modelled using the linear least squares fitting tech-

nique [106]. Fig. 4.18b shows the close match obtained by fitting the measured quiescent

power consumption to this model on both NetFPGA-1G and 10G platforms.

Fig. 4.18a depicts the fitting of the measured dynamic power consumption to the formula

Pdynamic = f (c,r) with varying traffic rate r for two values of c. This is assumed to the linearly

dependent on the arrival rate and thus we may write that:

Pdynamic(c,r) = f (c)r

For a fixed clock rate, f (c) will be a constant. Since the slope of both fitted lines is similar, it

is clear that f (125MHz)≈ f (62.5MHz). The model can be further simplified by expending
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Table 4.4 NDPM Evaluation on NetFPGA-1G/10G

Device Under Test Model Average Error (Watt) Variation (Watt)
NetFPGA-1G 0.0019r+0.0159c+9.1204 -0.01979 0.051879

NetFPGA-10G 0.0824r+0.0183c+11.6230 0.031462 0.022216

f (c) as a Taylor Series in c:

f (c) = f (0)+ c
∂ f
∂c

∣∣∣
c=0

+ c2 ∂ 2 f
∂c2

∣∣∣
c=0

+ · · ·

If we assume that ∂ f
∂c = 0, ∀ c, we can approximate f (c) as a constant. The total power

consumption is then approximately of the form:

Ptotal(c,r)≈ Pdynamic(r)+Pquiescent(c)

≈ ar+bc+d
(4.7)

where r is the traffic rate, c is the clock frequency, and a,b and d are constants. This simplified

NDPM has been evaluated on both NetFPGA-1G and 10G platforms and the results are

shown in Fig. 4.19 and Table. 4.4.

4.7 Summary

This chapter described a green SDN network which is composed of OpenFlow NetFPGA-

1G and 10G switches configured using a power scaling mechanism. The operating clock

frequencies of these green switches can be dynamically adjusted to balance performance

and energy consumption. The power scaling mechanism can be managed effectively by the

Green Abstraction Layer or via SDN extensions.

It follows a description of a linear power consumption model of frequency scaled NetF-

PGA 1G/10G platforms, chosen as representative CMOS network devices, based on careful

measurements of actual power consumption. This linear power consumption model (Network
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Device Power Model or NDPM) can produce a good approximation of the experimental

testbed results.
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Chapter 5

Frequency Scaled Control Models and

their Performance Evaluation

5.1 Introduction

The power consumption of network devices depends on factors such as the arrival and

service rates, queue length etc., a control model will choose the appropriate energy aware

state by processing one or more of these factors. Ideally, this processing will exactly model

the dependence of power consumption on all these factors, so that the chosen state is always

optimal. In this chapter, such a model is developed based on probabilistic assumptions about

packet arrival rate and queue length. The model is complicated by the dependence of service

time not only on packet length, but on the clock state of the frequency scaled switch. This

behaviour is modelled by representing the service rate by a continuous time Markov chain.

The resulting queuing model is too complicated to model analytically or numerically and

will instead be emulated using computer simulation.

Two control policies will be described and their dynamics will be explored using the

simulation model.
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Table 5.1 Mathematical Notations in Models

Symbols Description
L the threshold step size.

M
the number of threshold steps, the system
provides M+1 different service rates
from µ0 to µM.

X(t) a stochastic process with the state space S.

S
the state space of a continuous-time
Markov Chain, S = 0,1,2, · · ·

i any state i ∈ S

o(∆t)
any function goes to zero with ∆t faster
than ∆t itself, namely, lim∆t→0

o(∆t)
∆t = 0.

λ
the mean arrival rate of the Poisson arrival
process.

µk
the mean service rate.
where 0≤ k ≤M, and µ0 < µ1 < · · ·< µM.

ρk
the traffic intensity ρk =

λ

µk
in one

server system.

pµk
i (t)

the probability that the service rate is µk,
and the system in state i, at time instant t,
i.e., pµk

i (t) = P{µ(t) = µk,N(t) = i}.

pµk
i

the probability that the service rate is µk,
and the system in state i while the system
is in equilibrium. pµk

i = limt→∞ pµk
i (t).

ri, j average rate of transitions µk→ µk−1.
Θ service process generator matrix.
ϒ service rate matrix.

5.2 System Modelling and Control Policies

In this section, the model to abstract the operating behavior of a frequency scaling system

is first described. Next, an Escalator Policy is presented which extends the single-threshold

ALR model described in [55]. This policy can potentially give rise to an excessive number of

clock rate transitions, and a Hysteresis Policy is proposed to dampen this behaviour. All the

notation to be used in this chapter is summarized in Table 5.1.
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5.2.1 Frequency Scaling System Model

The following assumptions are made in modelling the frequency scaling system:

• the arrival process has an exponentially distributed inter-arrival time with a constant

arrival rate (λ );

• the service time is exponentially distributed with a mean duration of (1/µ) but the

service rate µ is dynamically adjustable across a range of values µk for 0≤ k ≤M to

model the frequency scaling;

• a single packet processing engine forwards the packets on the user data path;

• the packets in the queue are served in a First Come First Serve (FCFS) manner;

• the size of the FIFO input queue is infinite;

• the arrival process and the service process are independent of each other.

In this model, the service rate is controlled by a Continuous Time Markov Chain

(CTMC). There are M+1 phases (states) in the modulated chain and if the system is in the

i-th phase, the service rate is adjusted to µi, i = 0,1,2, · · · ,M by using the proposed frequency

scaling technique. Therefore the service process is uniquely determined by an infinitesimal

generator matrix Θ and a service rate matrix ϒ, which are defined as:

Θ =



−r0 r01 . . . r0M

r10 −r1 . . . r1M

...
... . . . ...

rM0 rM1 . . . −rM


(5.1)
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where ri =
M
∑

j=0, j!=i
ri j. The service rate associated with each phase is a diagonal matrix

ϒ,

ϒ =diag(µ0,µ1, · · · ,µM)

=



µ0 0 . . . 0

0 µ1 . . . 0
...

... . . . ...

0 0 . . . µM


(5.2)

The entries in the generator matrix Θ depend on the control policy in place. The

following assumptions are made about control polices:

• An increase (resp. decrease) in queue length, if it triggers a change in service rate, will

cause an increase (resp. decrease) in service rate;

• A service rate transition can only occur immediately following when a packet is served

and leaves the system;

• There are M+1 service rates, µ0 to µM, where µ0 < µ1 < · · ·< µM;

• The system equilibrium condition (ergodicity) is met, λ < µM.

5.2.2 Escalator Policy

The Escalator Policy operates as follows.

• If the queue length reaches the threshold kL(0 < k ≤M) from kL−1, and the current

service rate is µk−1, the service rate is increased to µk,

• If the queue length falls to kL−1(0 < k ≤M) from kL, and the current service rate is

µk, the service rate is decreased to µk−1,
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• If the queue length exceeds the threshold ML, and the service rate achieves the maxi-

mum value µM, the service rate will remain at µM until the queue length drops below

ML.

Fig 5.1 depicts the state transition-rate diagram of the Escalator Policy according to the

definitions above.

Fig. 5.1 State Transition-Rate Diagram (Escalator Policy)

The entire process can be viewed as an infinite Birth-Death process.

In state {i = kL−1,0 < k ≤M}, it has

pkL−1(t +∆t) =pkL(t)[µk∆t +o(∆t)]+ pkL−2(t)[λ∆t +o(∆t)]

+ pkL−1(t)[1− (λ +µk−1)∆t +o(∆t)]+o(∆t)

or
pkL−1(t +∆t)− pkL−1(t)

∆t
=µk pkL(t)+λ pkL−2(t)

− (λ +µk−1)pkL−1(t)+
o(∆t)

∆t

Letting ∆t → 0 and considering the general equilibrium solution (t → ∞, lim
t→∞

d
dt pi(t) = 0),

we have
µk pkL +λ pkL−2 = (λ +µk−1)pkL−1

(0 < k ≤M)

(5.3)
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Due to the sub-process {X(t) = i|kL− 1 < i ≤ (k + 1)L− 1,0 ≤ k < M} has a constant

service rate µk. When the system is in steady states:

µk pi+1 +λ pi−1 = (λ +µk)pi

(kL−1 < i≤ (k+1)L−1, 0 < k < M)

(5.4)

From Eqs. (5.3) and (5.4), it has

λ pkL−2−µk−1 pkL−1 = λ pi−µk pi+1

(kL−1≤ i < (k+1)L−1, 0 < k < M)

(5.5)

Considering the equilibrium solution on sub-process {X(t) = i|0≤ i < L−1},


λ p0−µ0 p1 = 0,

pi+1 = (
λ

µ0
)pi (0≤ i < L−1)

(5.6)

Using Eq. (5.5), it follows that



pi =(
λ

µ0
)i p0, (0≤ i≤ L−1)

pi =(
λ

µk
)(i−kL+1)pkL−1,

(kL≤ i < (k+1)L−1, 0 < k < M)

pi =(
λ

µM
)(i−ML+1)pML−1, (i≥ML−1)

pkL−1 =(
λ

µ0
)L−1

k−1

∏
j=1

(
λ

µ j
)L · p0 (0 < k ≤M)

(5.7)
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or 

pi =(ρ0)
i p0, (0≤ i≤ L−1)

pi =(ρk)
(i−kL+1)(ρ0)

L−1
k−1

∏
j=1

(ρ j)
L · p0,

(kL≤ i < (k+1)L, 0 < k < M)

pi =(ρM)i−ML+1(ρ0)
L−1

M−1

∏
j=1

(ρ j)
L · p0, (i≥ML)

(5.8)

where, if k = 1, ∏
0
j=1(ρ j)

L = 1. Calculating p0 using the normalization equation,

p0 = {
L−1

∑
i=0

(ρ0)
i +

M−1

∑
k=1

(k+1)L−1

∑
i=kL

(ρk)
i−kL+1(ρ0)

L−1
k−1

∏
j=1

(ρ j)
L

+
∞

∑
i=ML

(ρM)i−ML+1(ρ0)
L−1

M−1

∏
j=1

(ρ j)
L}−1

or

p0 = {
1− (ρ0)

L

1−ρ0
+(ρ0)

L−1
M−1

∑
k=1

ρk(1− (ρk)
L)

1−ρk

k−1

∏
j=1

(ρ j)
L

+(ρ0)
L−1 ρM

1−ρM

M−1

∏
j=1

(ρ j)
L}−1

(5.9)

Service rate transitions have an equilibrium property in this escalator policy.

Lemma 5.1. In the Escalator Policy, the transition rate between adjacent service rates are

balanced (equilibrium).

Proof. Consider transitions between the states i and i−1, where i = kL,0 < k ≤M, such a

state transition will cause the service rate to make a transition described as µk↔ µk−1. Using

Eq. (5.3) and (5.6), it may be observed that,

µk pkL = λ pkL−1
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This indicates that the average rate of transitions µk→ µk−1 is equal to the transition rate

µk−1→ µk. It follows that the infinitesimal generator matrix Θ of the modulated service

process is symmetric.

Consider the state i = kL−1 and i = (k+1)L−1, 0 < k < M, it has

µk pkL +λ p(k+1)L−1 = λ pkL−1 +µk+1 p(k+1)L

Hence the average rate of transition from µk→ (µk−1∪µk+1) is equal to the transition rate

(µk−1∪µk+1)→ µk.

Consider the average rate of transitions from µk−1→ µk is equal to

rk−1,k = λ pkL−1, (0 < k ≤M)

Applying Eq. (5.7) and (5.9) recursively, we obtain

rk−1,k = λ (ρ0)
L−1

k−1

∏
j=1

(ρ j)
L · p0, (0 < k ≤M).

Applying again Eq. (5.9), gives

rk−1,k

=

λ
k−1
∏
j=1

(ρ j)
L

1−(ρ0)L

(ρ0)L−1(1−ρ0)
+

M−1
∑

i=1

ρi(1−(ρi)L)
1−ρi

i−1
∏
j=1

(ρ j)L + ρM
1−ρM

M−1
∏
j=1

(ρ j)L
, (0 < k ≤M).

(5.10)

According to Lemma (5.1), we can obtain the average rate of transitions between adjacent

service rates as

R = 2
M

∑
k=1

rk−1,k (5.11)
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The average number in the system can be calculated by applying Eq. (5.8) and (5.9) to be

N̄ =
∞

∑
i=0

ipi (5.12)

Service rate transitions can result in packet loss. When using a DCG clock, once the

control module decides to adjust the service rate of the system, the PLL circuit is turned on.

Before the loop lock occurs and the new service rate has been established, the clock output

will be chaotic as the transition of this loop from its unlocked to locked state is a highly

nonlinear procedure [107]. This may result in packet loss. Even though this lock time is not an

issue in DCS, higher frequency transition rates consume more power as shown in Table. 5.2,

which shows empirical results captured from our NetFPGA-1G testbed. The experiment has

been designed as 50% of time at 125MHz clock rate and 50% of time at 62.5MHz clock rate

without any incoming traffic load. Thus, excessively frequent rate transitions can adversely

affect power consumption. For these reasons, unnecessary transitions should be avoided,

by introducing some form of damping to the algorithm. An alternative approach, called

Hysteresis Policy, addresses this issue.

Table 5.2 Power Consumption caused by Clock Rate Transition

Transition Rate (times/second) Power Consumption (Watt)
10 6.4900

100 6.5300
1000 6.6000

5.2.3 Hysteresis Policy

One way to introduce such damping is to use hysteresis. The thresholds at which

transitions occur depend on the dynamics of traffic. Specifically, the queue length thresholds

at which transition occurs depend on whether the queue is falling or emptying. Additional

state information is not required since the queue length and the service rate are related
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monotonically, and the latter data is already being recorded. The Hysteresis Policy can be

described as follows:

• Following a packet arrival, if the queue length reaches the threshold kL (where 0 <

k ≤M), and the current service rate is µk−1, and thus the corresponding queue length

was previously lower, the service rate is increased to µk,

• Following a packet departure, if the queue length reaches the threshold (k−1)L (where 0<

k ≤M), and the current service rate is µk, and thus the corresponding queue length

was previously higher, the service rate is decreased to µk−1,

• If the queue length exceeds the threshold ML, and the service rate is the maximum

value µM, then the service rate will maintain at µM until the queue length falls below

(M−1)L.

The initial service rate µ0 can be set to 0 to fully utilize the rates and achieve the

optimized power saving. The system state transition process when the system is in a stable

state is presented in Fig. 5.2.

Fig. 5.2 State Transition-Rate Diagram (Hysteresis Policy)

The fundamental idea of the hysteresis control is to provide a dead zone where momen-

tary fluctuations in queue length do not trigger rate transitions which results in the reduction
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of rate oscillation and thereby reduce power consumption. There are three independent

Birth-Death processes involved in this enhanced Hysteresis Policy control, which are as:

(a) the sub-process {X(t) = i|(k−1)L+1≤ i≤ kL,0 < k ≤M} is a Birth-Death process

with a constant service rate µk as load falls,

(b) the sub-process {X(t) = i|kL≤ i < (k+1)L−1,0 < k < M} is a Birth-Death process

with a constant service rate µk as load increases,

(c) the sub-process {X(t) = i|i > ML} is a Birth-Death process with a constant service

rate µM.

Analogously with Eq. (5.5), for sub-process (a), we have an equilibrium solution

µk pµk
i+1 = λ pµk

i +µk pµk
(k−1)L+1

f or (k−1)L+1≤ i < kL, where 0 < k ≤M
(5.13)

For sub-process (b), we have

µk pµk
i+1 = λ pµk

i −λ pµk
(k+1)L−1

f or kL≤ i < (k+1)L−1, where 0 < k < M
(5.14)

The equilibrium equation for sub-process (c) is simply

µM pµM
i+1 = λ pµM

i
(5.15)
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After simplification, we have



pµk
i+1 = ρk pµk

i + pµk
(k−1)L+1,

((k−1)L+1≤ i < kL, 0 < k ≤M)

pµk
i+1 = ρk pµk

i +(ρk)
L pµk

(k−1)L+1,

(kL≤ i < (k+1)L−1, 0 < k < M),

pµM
i+1 = ρM pµM

i , (i > ML)

pµk
(k−1)L+1 = ρk

k−1

∏
j=1

(ρ j)
L · pµ0

0 , (0 < k ≤M)

(5.16)

where, if k = 1, ∏
0
j=1(ρ j)

L = 1.

Conditioning the entire state space (S) on the value of service rate (µk), according to the law

of total probability and Eq. (5.16), it follows that

pµk
S =


L(1− (ρk)

Lρk)

1−ρk

k−1

∏
j=1

(ρ j)
L · pµ0

0 , (0≤ k < M)

Lρk

1−ρk

k−1

∏
j=1

(ρ j)
L · pµ0

0 , (k = M)

Calculating pµ0
0 using the normalization equation (∑M

k=0 pµk
S = 1), we obtain

pµ0
0 = {L

M−1

∑
k=0

ρk(1−ρL
k )

1−ρk

k−1

∏
j=1

(ρ j)
L +L

ρM

1−ρM

M−1

∏
j=1

(ρ j)
L}−1 (5.17)

Similarly, transitions of service rate in Hysteresis Policy also have an equilibrium property.

Lemma 5.2. Using the Hysteresis Policy, the transition rates between adjacent service rates

is in balance.

Proof. as per Lemma 5.1.
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The average rate of transitions from µk→ µk−1 is given by

rk−1,k = µk pµk
(k−1)L+1

=

λ
k−1
∏
j=1

(ρ j)
L

L

(
M−1
∑

i=0

ρi(1−(ρi)L)
1−ρi

i−1
∏
j=1

(ρ j)L + ρM
1−ρM

M−1
∏
j=1

(ρ j)L

) (5.18)

The average rate of transitions can be obtained by applying Eq. (5.11). In addition to above,

the average service rate can be calculated as

µ̄ =
M

∑
k=0

µk pµk
S

5.2.4 Algorithmic Implementation

The algorithms to implement these policies are listed as algorithm 5.1 and 5.2. The

feasibility and usability of hardware implementation are an advantage from other control

policies. Algorithm 5.2, for example, can be implemented by a combinational logic circuit

including 3 comparators, 1 adder and several logical gates as presented in Fig. 5.3.

5.3 Performance Evaluation of Control Policies

5.3.1 Numerical Studies of Transition rate

The characteristics of the two proposed control policies have been investigated by

detailed numerical analysis using Maple. Eqs (5.10) and (5.18) were processed by Maple to

conduct this analysis. Fig. 5.4 shows the multi-factorial relationship between the threshold

step size (L), arrival rate (λ ) and the transition rate (R) for both the Escalator and the

Hysteresis control policies respectively. The numerical analysis is of a frequency scaled
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Algorithm 5.1: Escalator Policy
Input: L: the length of threshold, L > 0

M: the number of thresholds, M > 0
µ: a set of multiple service rates {µ0, . . . ,µM}
l(t): the current queue length

Output: µ(t): the current service rate
1 Function generate_current_service_rate ◃ executed when a packet arrives
2 if l(t)≥ML then
3 µ(t)← µM;
4 return;
5 end
6 forall index i in (0 : M−1) do
7 if iL≤ l(t)< (i+1)L then
8 µ(t)← µi;
9 return;

10 end
11 end
12 end

system implementing five service rates, chosen to match those generated in the NetFPGA

testbed, which have been listed in Table 4.2.

It is clear from Fig 5.4 that the transition rate is relatively insensitive to packet arrival

rate. This is particular to the Hysteresis policy, showing that it is successful in reducing the

frequency of transitions. As expected, the transition rate is much higher from smaller step

stages, as shown in Fig 5.5. The effect of this on energy efficiency will be investigated in the

next subsection.

As shown in Fig. 5.6, for both control polices. For the same threshold step size, the

Hysteresis Policy is more resilient to variations of arrival rate.

Although the threshold mechanism would most accurately track system load if the buffer

occupancies were recorded by bytes, this would cause implementation difficulties due to the

size of registers and arithmetic logic required. Instead, the unit of queuing length used is the

packet. This metric tracks the amount of header processing required, which is justified by

the proportion of overall energy consumption it causes.
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Algorithm 5.2: Hysteresis Policy
Input: L: the length of threshold, L > 0

M: the number of thresholds, M > 0
µ: a set of multiple service rates {µ0, . . . ,µM}
l(t): the current queue length
µ(t−1): the last service rate

Output: µ(t): the current service rate
1 Function generate_current_service_rate◃ executed when a packet arrives/departs
2 forall index i in (0 : M) do
3 if l(t) = iL then
4 µ(t)← µi;
5 return;
6 end
7 end
8 µ(t)← µ(t−1);
9 return;

10 end

5.3.2 Queuing Performance

Although the numerical models presented in the previous subsection allow various

insights to the gained about the operation of the frequency scaled switch, they are limited in

that only a simple arrival process can be modelled and the model is limited to an assumed

infinite buffer capacity so extending the numerical model is not feasible thus further evaluation

of the system requires computer simulation.

The simulation developed supports both the Escalator and the Hysteresis policies. It

is based on Java Modelling Tools (JMT)1 [108] which consists of a suite of GPL licensed

applications for performance analysis and workload characterization studies. We integrate

our proposed control policy algorithms with the JMT framework and add a new dedicated

measurement functionality for investigating the impacts of controlling transition rate.

The key parameter values used are enumerated in Table 5.3 and the simulation outputs

are listed in Table 5.4.
1Version 1.0.1-Beta 2, released 2017-May-28.
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Fig. 5.3 Implementation of Hysteresis Policy in Hardware

The simulation outputs are processed using transient detection control and confidence

interval estimation. Non-stationary data which is collected during the initial transient simula-

tion period is detected by using R5 heuristic control [109] and discarded before calculating

statistics. The confidence intervals of the results are computed by using the spectral analysis

method presented in [110]. The process flowchart is shown in Fig. 5.7.

The simulation results match those obtained by the numerical studies closely. Fig. 5.8

compares the transition rate and average queue length obtained by these two approaches

using the Hysteresis Policy values. Fig. 5.8a depicts the variations of the transition rate vs.

different arrival rates varying from 0.5 to 10, and 5 traffic intensities are evenly dispersed
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(a) Escalator Policy

(b) Hysteresis Policy

Fig. 5.4 Transition rates for both Policies

along the range of 0 to 1. Fig. 5.8b demonstrates the average queue length with the same

conditions.

Fig. 5.9 illustrates the queue length distributions of obtained by simulation for an arrival

rate of 10 packets/second. It can be seen that the larger threshold step size (10 rather than 5)

in general results in higher queue length. Note that in the case of the Hysteresis Policy, the

median queue length is equal to the step size. Thus the Hysteresis Policy would appear to
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Fig. 5.5 Transition Rate vs. Threshold Step Size

Fig. 5.6 Transition Rate vs. Threshold Step Size

offer worse delay properties. In fact, this is not the case, as will be discussed shortly. Also,

its energy consumption is less, as shown by the empirical results collected form the testbed.

The Hysteresis Policy has worse queuing performance (i.e. delay, average queue) but

better energy efficiency than the Escalator Policy. For both policies, increasing the threshold

step size improves energy efficiency at the expense of QoS. The question then arises, which

policy to use, and how to select L. Looking more deeply at the system QoS can inform this

decision.
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Table 5.3 Key Simulation Parameters

Parameters Value
Max number of samples 1000000

Max simulation time infinite
Confidence Level 0.99

Max Relative Error 0.03

Source process
exponential inter-arrival time distribution
with mean varying in[0.5,10]

Queue size infinite

Service process
exponential service rate distribution
with mean varying in [0,30]

Number of threshold steps (M) 5
Traffic intensities {0.18,0.36,0.54,0.72,0.9}

Threshold step size varying in [1,10]

Table 5.4 Simulation Outputs

Simulation Outputs
Average Transition Rate
Average Queue Length

Average Delay
Average Throughput
Average Drop Rate

Fig. 5.10 presents the relationship between the threshold step size (L), arrival rate and

power consumption when using the Escalator and the Hysteresis control policies by using

the data acquired from our frequency scaled NetFPGA-1G platform.

To investigate the QoS achieved using our proposed frequency scaling control policies,

the impact of a finite queue size was considered. These simulations were configured with

various arrival rates ranging between 1 to 20 packets/second. We assume that the system

provides 5 different service rates (M = 5) which are 1, 2, 4, 8 and 16 packets/second. The

threshold step size (L) is defined as {Bu f f erCapacity/5}. For both the Escalator Policy and

the Hysteresis Policy, we have recorded queue occupancy, delay, throughput and drop rate

and compared the results with those for a legacy system which has a constant service rate
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Fig. 5.7 Simulation Process Flowchart

equivalent to the frequency scaled switch running at its highest speed. The results are shown

in Figs. 5.11 - 5.14.

From the combination of numerical, simulation, and empirical data collected in this

chapter, the following conclusions may be drawn:

• As expected from traditional queuing systems, average queue occupancy increases as

load increases.

• Counter-intuitively, delay falls as load increases. This is because the frequency scaling

increases the system throughput under high load.

• The average delay of the Hysteresis Policy is lower than that of Escalator Policy. This

is because the Hysteresis Policy is more likely to use higher service rate.
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(a) Average Transition Rate

(b) Average Queue Length

Fig. 5.8 Comparison of Simulation and Numerical Results

• The drop rate is higher when frequency scaling is used than when the system operates

at a constant clock rate. This is a major performance drawback of using frequency

scaling.

5.4 Summary

Energy efficient techniques such as frequency scaling, voltage gating etc. have matured

and their effectiveness has been widely recognized. Policies for adapting these green tech-
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5.4 Summary

(a) Escalator Policy

(b) Hysteresis Policy

Fig. 5.9 Queue Length Distribution for Escalator and Hysteresis Control Policies

niques in real time have received less attention. This chapter contains a thorough analysis of

two novel control policies for handling packet queue in frequency scaled systems and the

algorithms for implementing these policies have been presented. The performance impacts

of using frequency scaling have been investigated using numerical analysis and simulation.

The results show that, for example, mean delay paradoxically falls with increasing load in

systems using frequency scaling, as the increase in load is compensated for by an increase in

system capacity.
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(a) Escalator Policy

(b) Hysteresis Policy

Fig. 5.10 Power Consumption Characteristics using Control Policies
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5.4 Summary

(a) Escalator Policy

(b) Hysteresis Policy

(c) Single Service Policy

Fig. 5.11 Evaluations: Average Queue Length of the Systems
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5.4 Summary

(a) Escalator Policy

(b) Hysteresis Policy

(c) Single Service Policy

Fig. 5.12 Evaluations: Average Delay of the Systems
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(a) Escalator Policy

(b) Hysteresis Policy

(c) Single Service Policy

Fig. 5.13 Evaluations: Average Throughput of the Systems
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(a) Escalator Policy

(b) Hysteresis Policy

(c) Single Service Policy

Fig. 5.14 Evaluations: Drop Rate of the Systems
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Chapter 6

Energy-aware Resource Allocation at

Network Edge

This chapter contains a proposal for energy-efficent resource allocation at edge networks.

In this work, the programmable data plane NDs dynamically collaborate with the control

plane to meet performance, flexibility and energy related challenges. The proposed Online

Energy-efficient Resource Allocation (OERA) is based on an online approach using Integer

Programming [26] with the objective of minimizing the edge network energy consumption.

6.1 Resource Allocation Model

The power-aware resource allocation model in this chapter is based on the edge network

embodied with nodes, including networking (switches/routers) and processing (comput-

ing/storage) devices, which support frequency scaling.

1. Substrate Edge Network: The substrate edge network is modelled as a undirected

connected graph G with specific weights, denoted by GS = (NS,ES,AS
N ,A

S
E), where:
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• NS = (SS,CS) represents a set of substrate nodes that includes a network node set

(SS) and a processing (computing/storage) node set (CS)1;

• ES denotes a set of substrate links;

• AS
N and AS

E describe the attribute sets of the substrate nodes and links (for example;

clock frequency, CPU capacity and location are attributes of a node);

• PS(s,d) denotes the set of all loop-free paths in the substrate network from a

source node s to a destination node d, ∀s,d ∈ NS and s ̸= d.

In this study, we use the NDPM (as validated in Section 4.5) to represent each such

node.

2. Virtual Network Request: The VNR is an undirected connected graph denoted as

GV = (NV ,EV ,CV
N ,C

V
E ), where:

• NV is the set of requested nodes;

• EV is the set of requested links;

• CV
N and CV

E describe the constraints on the requested nodes and requested links;

• Pv denotes the set of all loop-free paths in the virtual network request graph.

3. Virtual Network Request Mapping: The mechanism of mapping virtual network

requests to a subset of the substrate network, is modelled as M : GV 7→ (N′,P′,RN ,RE),

where:

• N′ ∈ Ns;

• P′ ∈ Ps;

• RN and RE represent the resources allocated to virtual nodes and virtual links

respectively.

1NS = (SS,0) denotes a network switching node only.
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In general, the virtual network mapping can be divided into two stages: node mapping

and link mapping.

(a) Node Mapping: A virtual node mapping to a substrate node with constraints is

defined as M N : (NV ,CV
N) 7→ (N′,RN).

(b) Link Mapping: A virtual edge mapping to a substrate link/path with constraints

is defined as M E : (EV ,CV
E ) 7→ (P′,RE).

The significant distinction between the new algorithm and others is that it can control

substrate nodes running in their low power state, thus achieving the goal of minimizing

overall power consumption of the entire edge network.

6.2 Online Energy-aware Resource Allocation Solution

6.2.1 Augmented Substrate Graph Construction

To maximise the benefit of edge networking, the processing units, including storage

mediums, as much closer as where the user demands it to be, we associate each requested

virtual node (nV ∈ NV ) with a constrained radius (RadV ). We denote a cluster of requested

virtual nodes by Ω(nV ), which consists of the set of substrate nodes satisfying the geometrical

positioning requirements and the conditions for each request:

Ω(nV ) = {ns ∈ NS| ∥nv,ns∥ ≤ RadV} (6.1)

where ∥nv,ns∥ is the distance between a request virtual node nv and a substrate note ns.

At a higher level of abstraction of the network, the set of nodes comprising Ω(nV ) will be

regarded as a single meta-node. This meta-node is denoted as µ(nV ). Then, we connect

µ(nV ) with all the substrate nodes in Ω(nV ) using infinite bandwidth meta-edges to complete

the final augmented substrate graph which comprises:
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• all the nodes and edges of the original substrate graph NS;

• a set of meta-nodes, are for each virtual node in the request;

• a set of meta-edges, connecting each meta-node to the substrate nodes which are

sufficiently chose to its ideal location, as denoted by Eq. 6.1.

Hence, the augmented substrate graph is denoted as Gs′ = (NS′ ,ES′), where

NS′ = {µ(nV )|nV ∈ NV}∪NS

ES′ = {(µ(nV ),nS)|nV ∈ NV ,nS ∈Ω(nV )}∪ES

6.2.2 Integer Programming for Energy-aware Resource Allocation

Once the augmented graph is established, the resource allocation problem can be

modelled as a formal Multi-Commodity Flow Problem (MFP) [111]. Each flow starts from

one meta-node and terminates at another meta-node. The notation used in the OERA is

described in Table 6.1. The system model can be expressed using Integer Programming as

follows:

Model Output Variables:

• f reqn: The clock frequency of a substrate node n.

• f i
uv: The total amount of flow from u to v for the i′th virtual edge.

• xmn: A binary variable, assigned the value "1" when a virtual node m is allocated to

the substrate node n.
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Table 6.1 OERA Symbols and Their Descriptions

Symbols Interpretation

NS Set of substrate nodes
NV Set of requested nodes
SS Network node
EV Set of requested edges

(CS)2 Processing node with computing and storage
AS

N Attribute set of substrate nodes
AS

E Attribute set of edges in substrate network
PS(s,d) Set of loop-free paths from source s to destination d

PV Set of virtual network loop-free paths
MN Node Mapping of VNR to a subset of substrate node
ME Edge Mapping of VNR to a subset of substrate link/path

Ω(nV ) Cluster of requested virtual node
µ(nV ) nV representation as meta-node
η(n) Weight factor of network node n
ν(n) Weight factor of computing node n

R f req(n) Residual frequency resource of node n
Rc(n) Residual processing resource of node n

Λ(u,v) Throughput from node u to v
Ξ(n) Allocated CPU capacity of node n
c(n) Computation capacity of node n
Busu Bus width of node u
Portu No. of ports in node u
f requ Clock frequency of node u

f i
uv Flows from u to v for i′th virtual edge

{si,di} Source and Sink nodes of link i

Problem Formulation: We formulate the OERA problem for resource allocation:

Problem : min Power (6.2)

subject to:

Frequency constraints(6.6)-(6.7)

Capacity constraint (6.8)-(6.9)

Flow constraints (6.10)-(6.14)
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Meta and Binary constraints (6.15)-(6.17)

Domain constraints (6.18)-(6.20) where,

Power = ∑
n∈NS

η(n)Pnetwork(n)+ ∑
n∈NS

ν(n)Pcomp(n)

and the weight factors η and ν are set as

η(n) =
αn

R f req(n)+δ
, ν(n) =

βn

Rc(n)+δ

where R f req(n) is the residual frequency resource of the network node and Rc(n) is the

residual processing resource of the computation node n. αn and βn are the variables to

control load balancing and are limited to 1≤ αn ≤ R f req(n) and 1≤ βn ≤ Rc(n) respectively.

The residual frequency resource is the difference between the resourceś maximum clock

frequency and the currently assigned operation frequency. While the residual processing

resource is the proportion of the processing capacity of a processing node which is currently

unallocated, weighted by its peak processing capacity. We investigate the selection of

these parameters later in this Chapter. δ is a small positive constant to avoid the case

where the denominator is equal to zero. Pnetwork(n) describes the power consumption on the

substrate node n ∈ NS(SS,0) and is obtained from the models presented in Chapter 4, with

parameters obtained using the methods of Section 4.5. The term Pcomp(n) is used to model

the relationship between workload and power consumption. For simplicity, here we use the

linear model presented in [112] as follows,

P(u) = Pidle +(Pbusy−Pidle) ·u (6.3)

where u is the current proportion of the processing resource in use, i.e.,

u = 1− Rc(n)
Rmax

c (n)
(6.4)
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6.2 Online Energy-aware Resource Allocation Solution

Hence, the objective equation is rewritten in Eq. (6.5)

Minimize:

∑
v∈NS

αv

R f req(v)+δ
P(v)

network( f reqv, ∑
u∈NS′

(Λ(u,v)+∑
i

f i
uv)

+ ∑
n∈NS

βn

Rc(n)+δ
P(n)

comp(
Ξ(n)+∑m∈(NS′\NS) xmnc(m)

c(n)
)

(6.5)

subject to:

Frequency Constraints:

b(eS
uv) = min{Busu · f requ

Portu
,
Busv · f reqv

Portv
}, ∀u,v ∈ NS (6.6)

∑
v∈NS

(Λ(u,v)+∑
i

f i
uv)≤ Busu · f requ, ∀u ∈ NS (6.7)

Capacity Constraints:

∑
i
( f i

uv + f i
vu)≤ RE(u,v) ∀u,v ∈ NS′ (6.8)

Rc(n)≥ xmnc(m), ∀m ∈ (NS′ \NS),∀n ∈ NS (6.9)

Flow Constraints:

∑
w∈NS′

f i
uw = ∑

w∈NS′
f i
wu, ∀i,∀u ∈ (NS′ \{si,di}) (6.10)

∑
w∈NS

f i
si,w− ∑

w∈NS

f i
w,si

= b(eV
i ), ∀i (6.11)

∑
w∈NS

f i
di,w− ∑

w∈NS

f i
w,di

=−b(eV
i ), ∀i (6.12)

f i
si,w = b(eV

i ) · x(si,w), ∀i,∀w ∈ NS (6.13)

f i
w,di

= b(eV
i ) · x(di,w), ∀i,∀w ∈ NS (6.14)

Meta and Binary Constraints:

∑
w∈Ω(m)

xmw = 1, ∀m ∈ (NS′ \NS) (6.15)
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6.2 Online Energy-aware Resource Allocation Solution

∑
m∈(NS′\NS)

xmw ≤ 1, ∀w ∈ NS (6.16)

f i
uv = 0, ∀i,∀u,v ∈ (NS′ \NS) (6.17)

Domain Constraints:

f reqn ≥ 0, ∀n ∈ NS′ (6.18)

f i
uv ≥ 0, ∀u,v ∈ NS′ (6.19)

xu,v ∈ {1,0}, ∀u,v ∈ NS′ (6.20)

Remarks:

• The frequency constraints in (6.6)-(6.7) define the bandwidth provision of a network

node. All NDs forward packets use a round-robin strategy to offer a fair bandwidth

utilization of each port as shown in Eq. (6.6).

• The set of capacity constraint in (6.8)-(6.9) defines the computation capacity that can

be offered by the nodes. Eq. (6.9) uses a binary variable xmn to ensure that the mapped

server has enough capacity to fulfil the resource requests.

• The set of flow constraints in (6.10)-(6.14) defines the traffic flow characteristics.

Eq. (6.10)-(6.12) ensures flow conservation except at the source and sink nodes {si,di},

which have the constraints defined in Eq. (6.13)-(6.14)

• The meta and binary constraints in (6.15)-(6.17) define the behavior and efficiency

strategy for OERA. Eq. (6.15)-(6.16) ensure that the node mapping M will be a

one-to-one mapping, so that only one substrate node will be selected for each requested

virtual node. Eq. (6.17) ensures that no flow is allocated between virtual nodes [113].

• The domain constraints in (6.18)-(6.20) denote the variable constraints.
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6.3 OERA Performance Evaluation

Fig. 6.1 The procedure of the operating simulation

6.2.3 OERA Simulation Environment

The OERA is implemented using C++ (Algorithm 6.1). The GNU Linear Programming

Kit (GLPK) is used in the implementation. GT-ITM [114] is used to randomly generate a

topology of edge network resources and virtual network requests for the simulation study.

Fig. 6.1 describes the algorithm implementation and its simulation. The simulation parame-

ters used are listed in Table 6.2.

6.3 OERA Performance Evaluation

For benchmarking, we compare OERA with two existing algorithms2 namely R-ViNE

and D-ViNE [27]. Both R-Vine and D-Vine are two-stage deterministic algorithms and

minimize resource costs efficiently. However, OERA uses the NDPM and implements two

levels of energy minimization (Device and Network). We compare OERA to [27] using three

performance metrics,

2Based on the source code on http://www.mosharaf.com/ViNE-Yard.tar.gz
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6.3 OERA Performance Evaluation

Table 6.2 Key Simulation Parameters

Parameters Values

Weight Factors

αn R f req(n)
βn Rc(n)

Power Scaling Network Devices

Coefficient of the throughput uniformly distrb. in (0.05, 0.1)
Coefficient of the clock frequency uniformly distrb. in (0.5, 1)
Base constant uniformly distrb. in (10, 30)
Number of ports node degree
Bus width 64

Substrate Network

Number of substrate nodes 100
Computation and bandwidth capacity uniformly distrb. in (50, 100)

Virtual Network Request

Number of virtual nodes uniformly distrb. in (2, 20)
Requested computation uniformly distrb. in (0, 20)
Requested bandwidth uniformly distrb. in (0, 50)
Inter-VNR time exponentially distrb. with mean 25
Request valid time exponentially distrb. with mean 250
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6.3 OERA Performance Evaluation

Fig. 6.2 Request Acceptance Ratio over Time

• The acceptance ratio is defined as the ratio of the number of successful requests to the

total number of requests from the virtual network to the substrate network.

Acceptance Ratio =
Number of accepted requests

Number of total requests
(6.21)

• The overall power dissipation of the edge network is calculated as

Power = Pn
network +Pn

comp (6.22)

• The node and link utilization are defined as the ratio of the number of nodes (resp.

links) used over the total number of nodes (resp. links).

Node Utilization =
Number of used nodes
Number of total nodes

Link Utilization =
Number of used links
Number of total links

(6.23)
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6.3 OERA Performance Evaluation

(a) Computational Hosts

(b) Network Devices

Fig. 6.3 Power Consumption Evaluation
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6.3 OERA Performance Evaluation

(a) Computing Nodes

(b) Network Nodes

Fig. 6.4 The Resource Utilization over Time
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6.4 Parameter Selection in OERA

Fig. 6.2 shows that the OERA improves the acceptance ratio by approximately 11%

and 17% in comparison with D-ViNE and R-ViNE. Fig. 6.3a and Fig. 6.3b show the power

consumption of the computational hosts and NDs. The computational hosts are modelled

using Eq. (6.3) for power consumption evaluation in comparing all three techniques. Once

the acceptance ratio stabilizes, the average power consumption in computational hosts using

OERA is higher than that of R-ViNE and D-ViNE; this is merely because OERA, as shown

in Fig. 6.2, supports an 11% higher acceptance rate which results in improved resource

allocation. In comparison, OERA exhibits approximately 9% lower power dissipation in the

ND resources as shown in Fig. 6.3b. In particular, this power saving result is due to the use

of proposed frequency scaling ability in NDPM. Fig. 6.4 illustrates the resource utilization

(nodes and links) comparison. Here, OERA achieves better resource utilization than D-ViNE.

OERA and D-ViNE both perform better than R-ViNE.

6.4 Parameter Selection in OERA

The objective function in Eq. (6.2) depends on the weight factors η (weight of network

node) and ν (weight of computing node). These weights allow the network service providers

to control cost of the network operations. For example, in a densely populated area with

high resource demands, the weights of both network nodes and computing nodes can be

configured a little higher than the sparely populated areas in order to decrease the probability

of being selected for further requests.

In this section, we investigate the weight factors for establishing their relationships with

the residual capacity of the network resources (R f req(n)) and computing resources (Rc(n)).

If αn is set to R f req(n) and βn is set to Rc(n), the weight values will be approximately equal

to 1 for every network node. In comparison, if both αn and βn are set to 1, the objective

function Eq.(6.2) will rely on R f req(n) and Rc(n). We present three use-cases to evaluate the
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6.4 Parameter Selection in OERA

Fig. 6.5 Acceptance Ratio with Weight Factor Variations

impact of weight variations called OERA-CW(Constant Weight), OERA-LB(Load Balanced)

and OERA-RL(Random Load) respectively as shown in Table 6.3.

Table 6.3 OERA Weight Assignments Use-Cases

Notation Description
OERA-CW αn is set to R f req(n), βn is set to Rc(n).
OERA-LB αn and βn are set to 1.

OERA-RL
αn is uniformly distr. in [1,R f req(n)],
βn is uniformly distr. in[1,Rc(n)].

We observe from Fig. 6.5 that both OERA-LB and OERA-RL have moderately better

acceptance ratio than OERA-CW. In OERA-CW, the configurations of αn and βn ignore the

resource allocation status of different network nodes. Whereas, in OERA-LB and OERA-

RL, the weight parameters have direct impact over the residual capacity of the network

resources. This reflects that the lower residual capacity of a particular network node leads to

the higher value of Eq. (6.2), which decreases the resource utilisation and keep the critical

nodes available to increase the acceptance ratio. Fig. 6.6 shows that both OERA-LB and

OERA-RL have merely higher network node utilisation than OERA-CW. This is due to the
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(a) Computing Nodes

(b) Network Nodes

Fig. 6.6 Resource utilisation with Weight Factor Variations
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6.5 Summary

Table 6.4 OERA Use-cases Performance Results

Acceptance Ratio Comp. Nodes Util. Network Nodes Util.
OERA-CW 0.663 0.242 0.106
OERA-LB 0.693 0.237 0.116
OERA-RL 0.714 0.241 0.121

fact of avoiding lower residual capacity nodes. The OERA-LB and OERA-RL select the

nodes with higher residual capacities to improve the performance.

6.5 Summary

This chapter proposed an Online Energy efficient Resource Allocation (OERA) scheme

that using the NDPM model (has been discussed in previous chapter) to reduce power

consumption in NDs supporting frequency scaling. The model’s results show 11-17% more

virtual networks can be supported (i.e., a higher acceptance ratio) as well as a 9% reduction

in power consumption compared to existing solutions. The goal of the energy aware problem

(OREA) introduced in this chapter is to allocate the set of virtual network requests in a

reduced group of physical network equipment and propose a mixed integer program (MIP)

to optimally solve it. The implementation of OREA model is not scalable for very large

networks as MIP is NP-hard. However, the OREA model can provide an optimal bound for

future energy-aware resource allocation heuristics.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Rising energy costs and the requirements to reduce global Greenhouse Gas emissions

have made energy efficient networks a vital research topic. One effective approach to

controlling the power dissipation of CMOS network devices is frequency scaling. This

thesis describes the implementation and evaluation of the frequency scaling technique in a

CMOS network device. Two multiple frequency clocks approaches to support frequency

scaling, namely Dynamic Clock Generation (DCG) and Dynamic Clock Selection (DCS) are

developed. Two control policies, namely the Escalator and the Hysteresis control policies are

introduced in the thesis to select the operating frequency. The performance of these policies

has been compared to that of a conventional fixed-clock system using both numerical and

simulation studies. A model of CMOS device energy consumption and its dependence on

system clock rate has been developed. Empirical measurements of power consumption from

the frequency scaled switch testbed have been used both to validate the model and to obtain

realistic values for its parameters.

The control policies on the bestbed react only to local conditions (specifically the

queue length). The wider problem of how to minimise network energy consumption, as
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opposed to merely network device energy consumption, also requires attention. This has

been addressed in this thesis in the context of edge network. Edge networks are assumed to

offer better performance than cloud networks because of their proximity to the end user. The

thesis contains a description and evaluation of the online energy efficient resource allocation

(OERA), a novel algorithm to reduce overall energy consumption in an edge network, when

overlaying a virtual network on top of the physical substrate network. This uses the network

device power model (NDPM) developed earlier in a linear programming algorithm to reduce

overall power consumption. The simulation results show that OERA gives rise to better

acceptance ratios and lower power consumption than two well-known existing schemes.

7.2 Future Work

The work described here can be extended further, in directions such as the following:

• Dynamic Voltage Scaling

The power consumption analysis of CMOS devices presented in Section 3.1 shows a

quadratic relationship between the dynamic power consumption and the supply voltage.

Thus, more dramatic improvements in energy consumption can be achieved using

voltage scaling than frequency scaling (where the dependence is linear rather than

quadratic). This thesis focused on frequency scaling technique as this approach can be

easily implemented by accessing hardware resources to control the operating clock.

In contrast, dynamically scaling the supply voltage needs more complex hareware

support, which is not widely provided by existing technology. Recently, hardware has

begun to emerge with voltage scaling supported, such as the 7 Series FPGAs and Zynq-

7000 Programmable SoCs from Xilinx [96], so that research on the voltage scaling

will be feasible. Since higher voltages allow faster charge and discharge of CMOS

capacitances, and thus faster operation, the minimisation of energy consumption by

combining voltage and frequency scaling will present interesting challenges.
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• Optimal Control Policy features "Just Enough" Work

Two frequency scaling control policies have been discussed in Section 5.2. Future work

will seek to identify an optimal control policy where the mean delay is ideally invariant

with offered load, so that the system does "just enough" work to meet delay and other

performance targets. Such an algorithm should exhibit optimal energy efficiency, and

the work described in this thesis provides a soled platform for evaluating candidate

algorithms. The ultimate goal will be to implement real-time scheduling, where the

hardware state is modified continually in response to QoS demands.

• Improved Clock Generation

Recent FPGA designs feature two built-in digital PLLs. Using these to implement two

frequency-synthesised clocks would allow a hybrid clock generating scheme, where

the system alternates between the two clocks using DCS and the clock signal is never

chaotic. This would provide a greater range of clocks than DCS, for the same footprint,

without the clock stability issues of DCG.

• Network Resource Reconfiguration

The OERA algorithm presented in Section 6.1 maps virtual network requests to the

underlying substrate network in an energy efficient manner. It will be of increasing

importance in the future to support user and application mobility, and this is particularly

challenging when using the edge networking concept. Extending OERA to efficiently

handle the resulting migration of virtual network requests from one geographical

location to another will be a useful enhancement to its scope of operation.

• Resource Allocation across Autonomous Domain

OERA is a centralized resource allocation approach, which assumes that the entire sub-

strate network is operated and maintained by a single infrastructure network provider

(InP), and so the allocation algorithm has a global view of the entire network. However,
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the physical network typically will be under the control of multiple InPs. This will

result in decisions having to be made based on incomplete information, as each InP will

not disclose full state information to its neighbours. Some research on this Multi-InP

problem [39] [40] have been undertaken, and OERA can be extended to incorporate

such capabilities.
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Appendix A

Related Resource Allocation Algorithms

In this appendix, several typical VNE algorithms will be discussed elaborately.

A.1 Stress Based Algorithm

The paper [25] describes this algorithm in detail. Node stress and link stress has been

discussed in Section 2.5.2, in terms of mathematical evaluations. The prime objective of this

algorithm is to maintain a balanced node and link stress with a low value in the substrate

network. To achieve this goal, [25] has proposed a heuristic approach which is transcribed in

algorithm. The key idea lies with the algorithm, firstly, select a cluster of substrate nodes

that are combination of both lightly stress nodes and links, secondly, mapping the virtual

nodes to those substrate nodes, and finally, mapping links between the nodes processed in

the previous stage.

A.2 Path Splitting Algorithms

This algorithm is firstly proposed in [24], as shown in algorithm A.1. The target of

this algorithm is to maximize the long average revenue. It is an online algorithm which is
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A.2 Path Splitting Algorithms

designed to efficiently allocate resources to VNRs according to their revenue. Node mapping

is performed by using a greedy algorithm based on the residual resources of the substrate

nodes. Path splitting algorithm assumes that the virtual path can be mapped into multiple

physical paths. To achieve the expected mapping the algorithm constructs linear constraints

based on MFP. Node remapping (line 4) will be recursively used to find alternative nodes,

because there is a probability of unsuccessful solution to MFP, therefor mapping the links by

another MFP have to be performed to maximizing the likelihood of successful mapping.

Algorithm A.1: Splittable Path Mapping Algorithm based on [24]

1 Step 1: For all requests with splittability, construct linear constraint on the

commodities for each substrate link.

2 Step 2: Solve Multicommodity Flow Problem (MFP).

3 Step 3: If feasible, stop.

Node Remapping :

4 Step 4: Randomly choose one virtual link that is originally mapped at the bottleneck

link, pick one end of the virtual link and map it to another substrate node with

maximum remaining resource H. Then GOTO Step 2 with new linear constraints.

Step 5: If remapping of virtual nodes for Ttry times does not produce a feasible

solution, eliminate one of the VN requests having the "largest" impact on

infeasibility. Then, construct the linear constrains only with the remaining requests,

and GOTO Step 2

◃ H(ns) =CPU(ns) ∑
ls∈L(ns)

bw(ls)
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A.3 Coordinated Node and Link Algorithms

A.3 Coordinated Node and Link Algorithms

Chowdhury et al. [9] proposed an online algorithm to resolve the VNE problem by

presenting a new node mapping stage (introducing Metanodes and Metaedges). Comparing

with path splitting algorithms [24], this algorithm encounters a requirement for geographical

location of the virtual nodes. This algorithm uses Mixed integer linear programming (MILP)

to solve the optimized objective, i.e. to find the minimum value of weighted sum of the

allocated bandwidth and CPU. Before the node mapping stage, this algorithm creates an

augmented graph over the substrate network by considering the location constraints of the

virtual nodes. The linear programing equations defining this algorithm take both node and

link constrains into account and for avoiding NP-hard issue of MILP [26], the algorithm

relaxes the integer constraints leading to the solutions which then can be solved in polynomial

time. Then the algorithm approximates the values of the binary variables for the initial MILP

by two policies: deterministic and randomized rounding. Based on this, the proposed

algorithms are named as D-ViNE (Deterministic VN Embedding) and R-ViNE (Randomized

VN Embedding) respectively.

A.4 Topology-Aware VNE Algorithms

In [35], Butt et al. propose a key parameter called Critical Index of the substrate

nodes and links. CI is the value representing a node or a link in a connected topology,

and it measures the unavailability likelihood of the residual substrate network becoming an

unconnected graph if a certain node or a link is removed.
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A.5 Node Ranking Based VNE Algorithms

A.5 Node Ranking Based VNE Algorithms

Several papers propose a ranking system for the virtual and substrate nodes along

with applying greedy algorithm into the mapping stage. [24] gives a hybrid formula, which

considers both computing and link capacity into it, to measure the value of NodeRank (NR)

for each node, as follows.

H(u) =CPU(u) ∑
l∈L(u)

BW (l) (A.1)

Where, CPU(u) donates the computing capacity of node u, and ∑
l∈L(u)

BW (l) gives the

sum of link capacities of all directly connected links to node u. NR of node u, expressed as a

product of its computing capacity and total link capacities.

[28] takes a step further from above NR definition. The novelty of the NR calculation

in [28] is inspired by the Google’s PageRank search algorithm, which is then again based on

the classical model of Markov random walk. The initial NR of node u defined as:

NR(0)(u) =
H(u)

∑
v∈V

H(v)
(A.2)

and defined the transmission probability, which are then divided into Jump probability and

Forward probability, from node u to node v as:

pJ
uv =

H(v)
∑

w∈V
H(w)

(A.3)

pF
uv =

H(v)
∑

w∈nbr(u)
H(w)

(A.4)
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A.5 Node Ranking Based VNE Algorithms

In which, the Jump probability implies the multi-hop between u and v. The NR of node v ∈V

at time (t +1) is defined as:

NR(t+1)(v) = ∑
u∈V

pJ
uv · pJ

u ·NR(t)(u) +

∑
u∈nbr(u)

pF
uv · pF

u ·NR(t)(u)
(A.5)

Where the pJ
u and pF

u are bias factors for weighing Jump probability and Forward probability.

In [28], they are set as 0.15 and 0.85 respectively. The above equation can be simplified as

follows:

NR(t+1) = T ·NR(t), (A.6)

and

T =



pJ
11 pJ

12 . . . pJ
1n

pJ
21 pJ

22 . . . pJ
2n

...
... . . . ...

pJ
n1 pJ

n2 . . . pJ
nn


·



pJ
1 0 . . . 0

0 pJ
2 . . . 0

...
... . . . ...

0 0 . . . pJ
n


+



0 pF
12 . . . pF

1n

pF
21 0 . . . pF

2n
...

... . . . ...

pF
n1 pF

n2 . . . 0


·



pF
1 0 . . . 0

0 pF
2 . . . 0

...
... . . . ...

0 0 . . . pF
n



(A.7)

T is stable due to a fact that a Markov matrix guarantees that one is an eigenvalue of

it (See the MIT opencourseware 18.06 Lecture 24). The NR value for each node can be

calculated by algorithm A.2
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A.5 Node Ranking Based VNE Algorithms

Algorithm A.2: NodeRank Computation based on [28]

1 Given a positive value ε , i← 0

2 while δ ≥ ε do

3 NRi+1← T ·NR(i);

4 δ ← ||NR(i+1)−NR(i)||;

5 i++;

6 end
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