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Notation and Abbreviations

Groups

W Coxeter group (p.9)

B(W ) Artin group (p.17)

G′ Commutator subgroup of G (p.40)

Maps

AB Abelianisation homomorphism on B(W ) (p.18)

RL Reflection length homomorphism on B(W ) (p.18)

Spaces

X Contractible B(W ) complex (p.17)

XH Quotient H\X (p.18)

X[0,3] Retract of X in F4 case (p.56)

X ′ Quotient X[0,3]/B(F4)′ (p.56)

X ′j Filtration of X ′ (p.59)

Xj Filtration of X[0,3] (p.60)

N Retract of Xker(RL) (p.18)

Ni Filtration of N (p.22)

N ′ Retract of XB(C3)′ (p.44)

st(v) Star of a vertex v (p.45)

Poset Notation

P[i,j] Truncation of poset P by its rank function (p.12)

|P | Order complex of poset P (p.12)

L The lattice of non-crossing partitions (p.13)

γ Coxeter element of L (p.13)

Homology Notation

Cn(Y ) Free abelian group with basis the n-cells of Y

Hn(Y ) Nth homology group of Y

S(v1 . . . vk+1) A cycle in Ck−1|L[1,k]| (p.33)

Miscellaneous

Fn Groups with a K(Γ, 1) with finite n-skeleton (p.41)

NCP Non-crossing partition, an element of L

Unique rising chain Factorisation of an NCP in terms of reflections (p.17)

that are all increasing in the total order

p-decreasing Factorisation of γ which decreases for 1st p (p.30)

reflections and increases for remaining reflections
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Abstract

Noncrossing Partitions and Subgroups of Artin Groups of Finite Type

Ben Quigley

In this thesis we use non-crossing partitions(NCP) to examine Artin groups of finite type

and their subgroups. We follow the work of Brady-Watt and Bessis to construct a con-

tractible universal cover for the Artin group B(W ) using this NCP structure. This space

X can be factored out by normal subgroups H of B(W ) and the resulting quotient space

is a K(H, 1). We examine this quotient space to see what information it gives us about

the subgroup H.

The main result of this thesis is that B(F4)′, the commutator subgroup of the Artin group

B(F4), is finitely presented. It is already known whether the commutator subgroups of

the other irreducible Artin groups are finitely presented. We retract the space X in the

F4 case and filter it appropriately to apply a theorem of Brown. If the filtration is finite

mod B(F4)′ and successive stages of the filtration are obtained from the previous stage by

the adjunction of 3-cells then B(F4)′ has finiteness type F2 but not finiteness type F3.

We also recover the fact that B(C3)′ is finitely generated but not finitely presented. This is

done by examining the fundamental group and second homology group of ourK(B(C3)′, 1).

The other subgroup we are interested in is the kernel of the map which sends the NCP

generators of an Artin group to the lengths of the corresponding non-crossing partitions.

We define a Morse function on the quotient space in this case to calculate the homology.

The Morse function on the quotient space also defines one on truncations of the NCP

lattice. The simplification resulting from this Morse function recovers the fact that the

homology of these truncations is entirely in the top dimension.
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Chapter 1

Introduction

For any Coxeter group W we can define a total length function on the group and use it to

construct a partial order on W . Choosing some product of the simple reflections, γ, to be

the maximum element of this poset determines the lattice of non-crossing partitions(NCP)

for W . These NCPs give an alternate presentation for the associated Artin group, which

we denote B(W ). We follow [6], [8] and [3] to construct a contractible universal cover X

for the Artin group using this presentation. Factoring X out by normal subgroups H of

B(W ) results in a K(H, 1). In this thesis we use these spaces to study the subgroups H.

We are generally interested in two particular subgroups; the kernel of the abelianisation

map and the kernel of the map RL, which sends the NCP generators of the Artin group

to the length of the corresponding NCPs. In the first half of the thesis we recover some

results about the RL map, looking at the homology of the space H. In the second half of

the thesis we apply our constructions to the abelianisation map, in the C3 and F4 cases

where it does not coincide with RL. The main result is that B(F4)′, the commutator

subgroup of the Artin group of type F4, is finitely presented.

The layout of the thesis is as follows. In Chapter 2 we review background information

regarding Coxeter groups, posets and the lattice of non-crossing partitions. We describe

the non-crossing partition approach to Artin groups and how this can be used to produce

classifying spaces for subgroups of Artin groups. In Chapter 3 we consider the kernel

of the RL map and its classifying space. We define a Morse function on this space and

use discrete Morse theory to simplify its homology groups. As a consequence we get a

Morse function on truncations of the NCP lattice, which shows that the homology of
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these truncations is all in the top dimension. In Chapter 4 we detail how we calculate

the homology of ker(RL). The appendix features matlab functions that were used to

calculate the homology, following this method, in the An case for n ≤ 7. This confirmed

these homology groups match those of Callegaro in [11]. In Chapter 5 we discuss some

techniques for analysing finiteness properties of groups utilising their classifying spaces.

In Chapter 6 we consider the C3 case, where the abelianisation and RL maps do not

coincide. We study the fundamental group of the K(B(C3)′, 1) to show that B(C3)′ is

finitely generated and study the second homology group of the space to show that B(C3)′

is not finitely presented, recovering a result of Squier [22]. Finally in Chapter 7 we use

some of the techniques from Chapter 5 to show that the commutator subgroup in the F4

case is finitely presented but not of finiteness type F3.
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Chapter 2

Coxeter Groups and Non-crossing

Partitions

In this chapter we give a brief introduction to Coxeter groups, Artin groups and how

the theory of non-crossing partitions can be used to study such groups. For more detail

regarding Coxeter groups we recommend Humphreys [17] and Bourbaki [5]. We refer to

Armstrong [1] for facts about non-crossing partitions.

2.1 Coxeter groups

Definition 2.1.1. Suppose S = {s1, . . . , sn} is a finite set and M is an n×n matrix with

(i, j)th entry m(si, sj) ∈ {1, 2, 3, . . . ,∞} which also satisfies

m(s, s′) = m(s′, s) and

m(s, s′) = 1⇔ s = s′.

Let W be a group generated by S with one relation of the form (ss′)m(s,s′) = 1 for each

pair of generators (s, s′) ∈ S × S. Note that m(s, s′) =∞ means that there is no relation

between s and s′. Such a group is called a Coxeter group and M is called a Coxeter matrix.

We call n the rank of the group. If there is a partition of the generators S = S′ ∪ S′′

such that the elements of S′ commute with the elements of S′′ then we say W is reducible.

Note that W = 〈S′〉×〈S′′〉 in this case, where both factors are themselves Coxeter groups,

otherwise W is irreducible.
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The numbers m(si, sj) for a particular Coxeter group can also be given by a graph known

as a Coxeter diagram. This graph has one vertex vs for each generator s ∈ S. Whenever

m(si, sj) ≥ 3 the vertices vsi and vsj are connected by an edge. If m(si, sj) ≥ 4 then we

label this edge by the number m(si, sj).

It can be shown that every Coxeter group W has a geometric representation as a group

generated by linear reflections. In the case that W is finite these generating reflections

can be chosen to be Euclidean reflections and W is a finite reflection group. The details

of this representation can be found in chapters 5 and 6 of [17]. We are mainly interested

in the finite case and from now on we will use W to denote a finite irreducible Coxeter

group of rank n. The figure below displays the Coxeter diagrams for these groups.

h h h . . . h h h
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h h h . . . h h����
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h h h
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h h h
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Fig. 2.1.1: Coxeter diagrams for the finite irreducible Coxeter groups
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Example 2.1.1. The groups Cn correspond to the symmetry groups of the hypercubes.

In the C2 case S = {a, d} and we have two generators, each of order 2, and these satisfy

(ad)4 = e. C2 is isomorphic to the symmetry group of the square. The elements a, d, ada

and dad are reflections through the lines in the Figure 2.1.2. The elements da, dada and

ad are clockwise rotations through π/2, π and 3π/2 respectively.
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Fig. 2.1.2: Reflections in C2

This example illustrates the fact that the reflections from the set S are not the only

reflections in the geometric representation. We sometimes refer to the elements of S as

the set of simple reflections. The set of all reflections is used to define the non-crossing

partitions for the group W .

Definition 2.1.2. We call

T = {wsw−1|s ∈ S,w ∈W}

the set of reflections.

We equip W with a length function, l : W → Z, with respect to this larger generating set

T . That is l(w) is the minimum integer r such that there exists an expression w = t1 . . . tr

with t1, . . . , tr ∈ T . We call such a minimal expression w = t1 . . . tr a reduced word for w.

This function will induce a partial order on W .

2.2 Posets

Definition 2.2.1. A relation≤ on a set P is a partial order if it is reflexive, anti-symmetric

and transitive. The set P is called a partially ordered set or poset. If for any x, y ∈ P we
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have that either x ≤ y or y ≤ x then we call this a total order.

Let (P,≤) be a partially ordered set. It is said to be graded if there exists a rank function,

ρ : P → N, that satisfies

(i) For every x, y ∈ P such that x ≤ y we have that ρ(x) ≤ ρ(y).

(ii) If x ≤ y and there does not exist any z such that x ≤ z ≤ y then ρ(y) = ρ(x) + 1.

Note we say that y covers x in this case.

The poset is said to be bounded if it has a maximum element 1̂ satisfying x ≤ 1̂ for all

x ∈ P and a minimum element 0̂ satisfying 0̂ ≤ x for all x ∈ P . The proper part of a

bounded poset P is P̂ = P\{0̂, 1̂}. We will often use the rank function to define other

truncations of a poset, let P[i,j] = {x ∈ P | i ≤ ρ(x) ≤ j}.

Definition 2.2.2. We define the order complex |P | of a poset P to be the simplicial

complex whose vertex set is elements of P and whose simplices are the non-empty finite

chains in P .

Definition 2.2.3. Let (P,≤) be any partially ordered set.

An element y of P is an upper bound of x1, x2 ∈ P if x1 ≤ y and x2 ≤ y. The element

y is a least upper bound of x1, x2 if it is an upper bound such that y ≤ z for any other

upper bound z of x1, x2.

An element y of P is a lower bound of x1, x2 ∈ P if y ≤ x1 and y ≤ x2. It is a greatest

lower bound if z ≤ y for any other lower bound z of x1, x2.

P is called a lattice if least upper bounds and greatest lower bounds exist for all pairs of

elements in P .

Let E(P ) be the set of covering relations of P , meaning pairs (x, y) such that y covers

x and let Λ be a totally ordered set. An edge labeling of P with label set Λ is a map

λ : E(P )→ Λ. Let c = x0 ≤ x1 ≤ · · · ≤ xr be an unrefinable chain of elements in P , that is

(xi, xi+1) ∈ E(P ) for all 0 ≤ i ≤ r− 1. We let λ(c) = (λ(x0, x1), λ(x1, x2), . . . , λ(xr−1, xr))

be the label of c with respect to λ. We say c is rising or falling with respect to λ if the

entries of λ(c) are strictly increasing or strictly decreasing, respectively, in the total order

of Λ. We say that c is lexicographically smaller than an unrefinable chain c′ in P of the

same length if λ(c) precedes λ(c′) in the lexicographic order induced by the total order on

Λ.
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Definition 2.2.4. An edge labelling λ of P is called an EL-labeling if for every non-

singleton interval [u, v] in P

(i) there is a unique rising maximal chain in [u, v] and

(ii) this chain is lexicographically smallest among all maximal chains in [u, v]

with respect to λ. The poset P is called EL-shellable if it has an EL-labelling for some

label set λ.

2.3 Non-Crossing Partitions

Definition 2.3.1. Define the absolute order on W by

w1 ≤ w2 ⇔ l(w2) = l(w1) + l(w−1
1 w2) ∀w1, w2 ∈W.

Thus w1 ≤ w2 if and only if there is a shortest expression for w2 with a prefix which is a

shortest expression for w1.

(W,≤) is a graded poset with rank function l and the identity e ∈ W is the unique

minimum element. In general though it does not have a unique maximum element. We

look at a special class of maximum elements.

Definition 2.3.2. A standard Coxeter element is any element of the form

γ = sσ(1)sσ(2)...sσ(n),

where σ is some permutation of the set {1, 2, ..., n}. A Coxeter element is any conjugate

of a standard Coxeter element in W .

Lemma 2.3.1.

(1) Any two standard Coxeter elements are conjugate.

(2) If γ ∈W is a Coxeter element then we have t ≤ γ for all t ∈ T .

A proof of this is given in [1], Lemma 2.6.2.

Definition 2.3.3. Fixing a specific Coxeter element γ, we define the poset of non-crossing

partitions (NCP) to be the set of elements in the interval [e, γ] = {w ∈ W |e ≤ w ≤ γ}
with the order inherited from (W,≤).
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Note that the isomorphism type of [e, γ] is independent of the choice of γ since the Cox-

eter elements are all conjugate and conjugation by a fixed group element w ∈ W is an

automorphism of the poset.

Theorem 2.3.1. The poset [e, γ] is a lattice.

This property is proved in [9]. We will refer to this non-crossing partition lattice as L.

Example 2.3.1. Returning to our C2 example, we see T = {a, d, b = ada, c = dad} and we

could choose γ = ad to be our Coxeter element. The non-crossing partition lattice simply

consists of T ∪ {e, γ} in this case. The other two elements in C2 are da and dada = db,

both of which have reflection length two and do not precede γ. Figure 2.3.1 shows the

order complex |L| of this lattice.

b

b

b

b

b

b

e

γ

a

b

c

d

Fig. 2.3.1: Order Complex |L| in the C2 case

2.4 An Order on Reflections

We will need some of the machinery from [9] in our later calculations. First we review

some information regarding root systems for finite reflection groups.

Let V be a real n−dimensional Euclidean space with inner product (·, ·). A hyperplane H

in V is defined as {x ∈ V |(x, α) = c}, for a non-zero vector α ∈ V . This vector α is called

a normal to the hyperplane. In the case c = 0 this is called a linear hyperplane, otherwise
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H is called affine. The formula for reflecting a general vector β ∈ V through H is

rα(β) = β − 2
(β, α)

(α, α)
α.

A finite reflection group is a group generated by such reflections.

Definition 2.4.1. A finite set of non-zero vectors Φ in V is called a root system for the

finite reflection group W if the following conditions hold:

Φ ∩ Rα = {α,−α} for all α ∈ Φ,

rα(Φ) = Φ for all α ∈ Φ.

A finite hyperplane arrangement A is a finite set of hyperplanes in V . The arrangement

is called central if all hyperplanes pass through the origin, otherwise it is affine. The

connected components of V \A are referred to as regions. Let A be the central hyperplane

arrangement for a finite reflection group W and fix a region C of the arrangement, called

the fundamental chamber. The inward unit normals of C is the set of simple roots, Π =

{α1, . . . , αn}. A positive root is a linear combination of the elements of Π with non-

negative coefficients. Similarly, a negative root is a linear combination of these elements

with non-positive coefficients. The set of positive roots is denoted by Φ+ while the set of

negative roots is denoted by Φ−. The set of roots Φ is the disjoint union of positive and

negative roots. Note that the reflections in the hyperplanes normal to the simple roots

correspond to the simple reflections in the geometric representation of a Coxeter group.

In [23] a total order is put on the set of roots ofW . First a specific ordering {α1, α2, . . . , αn}
is chosen on the simple roots so that {α1, . . . , αs} and {αs+1, . . . , αn} are orthogonal sets.

This can always be done since the Coxeter diagram is a tree. Next a total ordering on the

roots is defined by

ρi = R(α1)R(α2) . . . R(αi−1)αi, with αi+n := αi,

where R(v) is the reflection in the linear hyperplane with normal v. Let the Coxeter

element be γ = R(α1)R(α2) . . . R(αn). It is shown in [23] this lists the nh/2 positive

roots first, with {αs+1, . . . , αn} being the last n − s positive roots, perhaps after some

permutation. Here h is the order of γ in W . Also note that this induces a total order on

the reflections of W . For 1 ≤ i ≤ nh/2, we let Ri be the reflection R(ρi).

In [23] another set of auxiliary vectors (they’re called Petrie polygon vertices) are defined.

These are constructed starting with the dual basis {β1, . . . , βn} to {α1, . . . , αn}. Define

µi = R(α1)R(α2) . . . R(αi−1)βi, with αi+n := αi and βi+n := βi.
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In our computations of NCP lattices we will make use of Lemma 4.8 of [9], restated for

our purposes below. (The requirement on the ordering of the roots in the original Lemma

is not necessary.)

Lemma 2.4.1. For reflections Ri and Rj with corresponding positive roots ρi and ρj the

following are equivalent:

(a) l(RiRjγ) = n− 2.

(b) µj · ρi = 0.

Note that if condition (a) is true then l(RjRi) + l(RiRjγ) = l(γ) and thus RjRi ∈ L.

We also recall Theorem 4.2 of [2], which tells us that each element of L has a unique

factorisation as rising chain of reflections.

Theorem 2.4.1. If T is totally ordered as described above and γ = R(α1)R(α2) . . . R(αn)

then the natural edge labeling of L with label set T is an EL-Labeling.

Applying this result to an interval of length 2 we have the following corollary which we

use in Chapter 4. Since only one factorisation of the interval can be rising, the rest must

be falling.

Corollary 2.4.1. Let σ ≤ γ have length two and order m in W . Then there are reflections

τ1, τ2, . . . τm in W with τ1 < τ2 < · · · < τm in the total order on reflections and

σ = τ1τm = τmτm−1 = · · · = τ2τ1.

Example 2.4.1. Again consider the C2 case. Examining Figure 2.1.2 we choose the

fundamental chamber C to be the cone on the points {(1, 0), (1, 1)}, thus the simple roots

are α1 = (0, 1) and α2 = (1,−1). Calculating the ρ vectors we find the roots to be

ρ1 = (0, 1), ρ2 = (1, 1), ρ3 = (1, 0), ρ4 = (1,−1),

ρ5 = (0,−1), ρ6 = (−1,−1), ρ7 = (−1, 0), ρ8 = (−1, 1).

The first row contains the four positive roots, while the second row contains the four

negative roots. The order on the positive roots induces an order on the reflections

R(ρ1) = a, R(ρ2) = b, R(ρ3) = c, R(ρ4) = d.

The chain e < a < γ is labelled by (a,d) since γ = ad. Consider this interval [e, γ], the only

interval of size greater than 1 in this case. It has four possible chains; (a, d), (b, a), (c, b), (d, c).

Of these (a, d) is the unique rising chain, the other three are all falling. Note also that

(a, d) is the lexicographically smallest chain.
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2.5 Artin Groups

Definition 2.5.1. The Artin group, or generalised braid group B(W ) is the group with

generating set S and for each pair of generators (si, sj) with i 6= j in S × S we have a

relation that says the alternating product of si and sj of length m(si, sj), beginning with

si, is equal to the alternating product of the same two generators, of length m(sj , si) and

beginning with sj . We require m(si, sj) = m(sj , si) ∈ {2, 3, . . . ,∞} with the convention

that there is no relation between si and sj if m(si, sj) =∞.

Example 2.5.1. The most well-known example of an Artin group is the classical braid

group Bn = B(Σn).

Example 2.5.2. Returning to the case W = C2 we find that B(C2) is the group generated

by two generators (which we also denote by a and d) subject to the single relation adad =

dada.

It is shown in [6], [8] and [3] that B(W ) also has a presentation with a generator [w] for

each w ∈ L \ {e} subject to the relations [w1][w−1
1 w2] = [w2] whenever w1 � w2.

We also recall from [6], [8] and [3] that the universal cover of the presentation complex

of this second presentation is the 2-skeleton of a contractible simplicial complex X of

dimension n.

Definition 2.5.2. Let X be the abstract simplicial complex whose k−cells are ordered

(k+1) tuples from B(W ) of the form {g0, g1, . . . , gk} with gi = g0[wi] for e < w1 < · · · < wk

a chain in L. In particular, the vertex set of X is B(W ).

We use the notation (g0, {e < w1 < · · · < wk}) for such a cell. Hence the cells of X are

identified with pairs (g, σ) where g ∈ B(W ) and σ is an initialised chain in L, that is a

chain beginning with e. The action of B(W ) on X is given by

g · {g0, g1, . . . , gk} = {gg0, gg1, . . . ggk} or

g · (g0, σ) = (gg0, σ).

Note that the cell (g0, {e < w1 < · · · < wk}) has k faces of the form

(g0, {e < w1 < · · · < ŵi < · · · < wk}), for 1 ≤ i ≤ k,

obtained by deleting wi from σ. The remaining face, which we call the ‘top’ face, is

obtained by deleting e from σ and is given by the set {g0[w1], g0[w2], . . . , g0[wk]} or in pair

notation (g0[w1], {e < w−1
1 w2 < · · · < w−1

1 wk}).
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Example 2.5.3. Returning to the case W = C2 we see that B(C2) also has a presentation

with generators a, b, c, d, γ and relations γ = ad = dc = cb = ba. The corresponding 2-

complex is a K(B(C2), 1) since n = 2 here and the universal cover coincides with X.

2.6 Subgroups

If H E B(W ) then we can form a CW complex XH , whose cells are of the form (Hg, σ)

where the first component is now a right H coset and σ remains an initialised chain in L.

If σ is the chain e < w1 < · · · < wk then this cell has boundary faces of the form

(Hg, {e < w1 < · · · < ŵi < · · · < wk}), for 1 ≤ i ≤ k,

and ‘top’ face (H(g[w1]), {e < w−1
1 w2 < · · · < w−1

1 wk)}. There is an action of the quotient

group H\B(W ) on XH given by

(Hg1)(Hg2, σ) = (H(g1g2), σ).

If H arises as the kernel of a homomorphism φ : B(W ) → D, we can identify the coset

Hg with the element φ(g) ∈ D through the first isomorphism theorem. Thus the cells of

XH can be described as pairs (d, σ) where d ∈ im(φ) and σ is an initialised chain in L.

Note that H acts freely on X and H\X = XH . Since X is contractible this means that

XH is a K(H, 1).

Example 2.6.1. For each W , there is a homomorphism RL : B(W ) → Z : [w] 7→ l(w)

which takes each NCP generator [w] to its total reflection length. In [7] it is shown that

XH deformation retracts to a finite (n−1)-complex for H = ker(RL). We will denote this

complex by N and now formally define it since we will use it later.

Definition 2.6.1. We let N be the finite subcomplex of Xker(RL) consisting of the cells

of the form

(m, e < w1 < w2 < · · · < wk) with m ∈ Z and 0 ≤ m < n− |wk|.

Example 2.6.2. For each W , there is an abelianisation homomorphism AB : B(W ) →
B(W )/[B(W ), B(W )]. This homomorphism coincides with RL except when W is Cn, F4

or I2(m) for m even.

Example 2.6.3. For W = C2, N is the finite 1-complex with two vertices labelled 0 and

1 and four arcs labelled by a, b, c and d each joining 0 to 1. Consequently, ker(RL) is
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free of rank 3. By contrast, the cover of N corresponding to ker(AB), given in Figure

2.6.1, is an infinite graph. The vertices of this cover are labelled (p,−p) or (p, 1−p) where

p ∈ Z. At each (p,−p) there are four edges originating with the edges labelled a and c

both terminating at (p + 1,−p) while the edges labelled b and d terminate at (p, 1 − p).
Consequently, ker(AB) is not finitely generated.

b b

b b

bb

b

a

c

bd

a

c

bd

a

c

bd

Fig. 2.6.1: Cover of N corresponding to ker(AB)
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Chapter 3

A Morse function on N

In this chapter we define a discrete Morse function on the complexN which is aK(ker(RL), 1).

Because of the structure of N this will be equivalent to a sequence of Morse functions on

truncations of the non-crossing partition lattice. We give an introduction to discrete Morse

theory and how it can be used to calculate the homology of cell complexes. We explain

how to construct a function on N and prove that it is a Morse function. We then use the

Morse function to show that the homology of a truncation of the NCP lattice is only in the

top dimension. We can also explicitly state the critical cells that give rise to this homology.

The important property of the non-crossing partitions that we use is the ordering on the

reflections from [23] and that every non-crossing partition has a unique factorisation as a

‘rising chain’ of reflections with respect to this ordering.

3.1 Introduction to Morse functions

Definition 3.1.1. A Morse function µ on a complex X is an assignment of a distinct real

number to each cell. The assignment satisfies the following properties:

1. For any cell σ1, the number of facets σ2 of σ1 which satisfy µ(σ2) > µ(σ1) is at most

one.

2. For any cell σ1, the number of cells σ2 of which σ1 is a facet which satisfy µ(σ2) < µ(σ1)

is at most one.

A cell for which both of these numbers is zero is called a critical cell. These critical cells

form a Morse complex with the same homology as the original complex X, see [13] or
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Chapter 11 of [18]. The boundary map for this Morse complex counts the number of

paths from each facet of a critical cell to the critical cells of one lower dimension. By path

here we mean a sequence of cells {τ1, τ2, . . . , τk} where µ(τi) > µ(τi+1) and either τi+1 is

a facet of τi or vice versa.

Example 3.1.1. Consider the 2-cell shown in Figure 3.1.1. The function µ, defined by

Table 3.1.1, is an example of a Morse function on this space.

Note that the only critical cell is the vertex a and this vertex is the Morse complex for

this space. We have also included arrows in the diagram connecting pairs of non-critical

cells. Each cell σ1 is paired with its facet σ2 satisfying µ(σ1) > µ(σ2). We can think of

deforming the space by ‘pushing’ in the direction of the arrows to give the Morse complex.

b b

b

a b

c

Fig. 3.1.1: A 2-cell collapsing to its Morse complex

Note that when X is finite, the values of µ can be chosen to be positive integers and the

Morse function is equivalent to a total order on the cells. Thus we can think of building

the cell structure of X by attaching the cells to each other in this order. In the rest of this

section we describe a canonical Morse function for N by putting a total order on its cells.

µ(σ) σ

1 a

2 a < c

3 c

4 a < b

5 b

6 a < b < c

7 b < c

Table 3.1.1: Morse function on a 2-cell
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3.2 Constructing the Morse function

We consider the filtration Nn−1 ⊂ Nn−2 ⊂ · · · ⊂ N1 ⊂ N0 = N of the complex N where

Ni is the subcomplex of N given by the union of all cells of the form

(i, {el w1 l · · ·l wn−i−1})

and their faces. Here ul v means that v covers u.

Notation: We order these maximum dimension cells of Ni lexicographically using the

total order on reflections. Let σ = {elw1l · · ·lwn−i−1} and σ = {elw1l · · ·lwn−i−1}.
Then we say (i, σ) < (i, σ) if w−1

j−1wj < w−1
j−1wj for some 1 ≤ j ≤ n− i − 1 and wk = wk

for all k < j.

We use the above filtration to build the Morse function starting with Nn−1, which consists

of the single cell (n − 1, {e}). Thus, (n − 1, {e}) is the first cell in our ordering. Then,

assuming that Ni+1 has been constructed, follow the steps below to attach the other cells

of Ni in the appropriate order.

3.2.1 Constructing Ni from Ni+1

We will use a recursive algorithm to attach the cells of Ni \Ni+1. The algorithm will take

as input a k-cell, τ = (i, {e < w1 < · · · < wk}) in Ni. It will ensure that all the faces of

τ are attached. In addition, the algorithm will ensure that either τ itself is attached and

‘true’ is returned, or it will not attach τ and ‘false’ will be returned.

Algorithm

1. Check if the cell τ has already been attached. If so, return ‘true’. Otherwise move to

step 2.

2. Input each of the k facets

(i, {e < w1 < · · · < wk−1 < ŵk}), (i, {e < w1 < · · · < ŵk−1 < wk}),

. . . , (i, {e < ŵ1 < · · · < wk−1 < wk})

into the algorithm in this order. If at any stage a facet returns ‘false’ then attach τ

followed by that facet. Proceed then with the remaining facets before returning ‘true’ for

τ . Otherwise do not attach τ and return ‘false’.
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Note: In step 2 above the face of τ not considered by the algorithm is the top face

(i+ |wi|, {e < w−1
1 w2 < · · · < w−1

1 wk}). However this has already been considered since it

belongs to Ni+1.

Note: The terms ‘true’ and ‘false’ have the following meaning. ‘True’ is returned for a

cell if it has been attached previously or is being attached at this stage. ‘False’ is returned

for a cell if its entire boundary has already been attached when the cell is first considered.

Note: We will see that it is impossible for more than one facet of a cell to return ‘false’.

To construct Ni from Ni+1, take its first cell of maximum dimension in the lexicographic

order. Input this cell into the algorithm. If the cell returns ‘false’, attach this cell after

the algorithm has completed. If the cell returns‘true’ then it has already been attached.

In both cases its entire boundary has been attached. Continue to repeat this process

for the next cell of maximum dimension in the lexicographic order until all cells have

been attached. Note that once this lexicographic order is chosen there is no choice in the

process.

Example 3.2.1. Consider the case W = C3, the classical presentation is

C3 =< a, b, c | (ab)4 = (ac)2 = (bc)3 = a2 = b2 = c2 = 1 > .

However C3 is isomorphic to the set of symmetries of a cube and we wish to use the non-

crossing partition presentation in terms of reflections. The following notation is used for

the nine reflections in C3:

[1] : (x, y, z) 7→ (−x, y, z)
[2] : (x, y, z) 7→ (x,−y, z)
[3] : (x, y, z) 7→ (x, y,−z)

(1, 2) : (x, y, z) 7→ (y, x, z)

(1, 3) : (x, y, z) 7→ (z, y, x)

(2, 3) : (x, y, z) 7→ (x, z, y)

(1, 2̄) : (x, y, z) 7→ (−y,−x, z)
(1, 3̄) : (x, y, z) 7→ (−z, y,−x)

(2, 3̄) : (x, y, z) 7→ (x,−z,−y).

A set of simple roots is {(2, 3), [1], (1, 3)} and we choose γ = (2, 3)[1](1, 3). The nine length
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2 elements of L are

[1](2, 3), [1, 2] = [1](1, 2), [1, 3] = [1](1, 3), (1, 2̄, 3̄) = (2, 3)(1, 3̄),

(1, 2, 3) = (2, 3)(1, 3), [2, 3] = (2, 3)[3], (1, 3̄)[2], (1, 2, 3̄) = (1, 3̄)(1, 2), (1, 2)[3].

Here N is 2-dimensional and we follow Chapter 2 to order the roots and the vertices. This

ordering is given Table 3.2.1. Note that for the rest of this example we will refer to the

reflection Ri simply by the digit i.

number 1 2 3 4 5 6 7 8 9

reflection (2, 3) [1] (1, 2̄) (1, 3̄) [2] (2, 3̄) (1, 2) [3] (1, 3)

Table 3.2.1: Order on the reflections of C3

Using the geometric model for the NCP lattice from [9], we can visualise the NCP lat-

tice with the following diagram. The vertices of the graph, in black, represent the nine

reflections. The midpoint of each edge represents a length two NCP. The different colours

denote points which are identified. Note that this graph is homotopy equivalent to the

proper part of the lattice and the minimum and maximum elements, e and γ, are not

included.

b

b

b

b

b

b

b

b

b

[1]

(1, 3̄)

[3]

(1,3)

(1,2)

(2,3)

(2, 3̄)

(1, 2̄)

[2]

[1,3]

(1,2,3)

[2,3]

(1,2)[3]

[1,2]

(1,2, 3̄)

[1](2,3)

(1, 2̄, 3̄)

(1, 3̄)[2]

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

Fig. 3.2.1: Proper part of C3 lattice

The table on the following page outlines the Morse function on N . Here the critical cells

are alone in rows while each non-critical cell in column 1 is paired with its facet in col-

umn 2. Cell number 1 is the sole element of N2. Cells 2 through 11 are in N1 \ N2,
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the single 0-cell being matched with the lexicographically first 1-cell and the rest of the

1-cells critical. The remaining cells are in N0 \N1 with, once again, the single 0-cell being

matched with the lexicographically first 1-cell but now the remaining 1-cells are matched

with eleven 2-cells leaving the remaining ten 2-cells critical. We notice that the critical

cells are top-dimensional in the subset of the filtration in which they first appear.

To illustrate how this example is constructed, consider starting to attach N0 \N1, having

already built N1. We take the lexicographically first 2-cell in the space which is σ = (0, e <

(2, 3) < (2, 3)[1]) or in the short notation (0, e < 1 < 12). This cell has not been attached

so we consider its facets in turn. First (0, e < 1), again this has not been attached and

so we look at its facets. The vertex (0, e) returns false at step 2, since it has no smaller

facets to input. Hence it is matched with (0, e < 1). We note that the other vertex (1, e)

returns true at step 1. We then input the next facet (0, e < 12) of σ into the algorithm.

This does not return true at step 1 so again we move to step 2 and examine its facets.

This time both vertices return true at step 1, so the cell itself (0, e < 12) returns false at

step 2. It is then matched with σ.

Now let σ = (0, e < 3 < 27), the first critical cell of N0 \ N1. It does not return true at

step 1, so we move to step 2 and look at its facets. The cell (0, e < 3) has already been

seen as a facet of (0, e < 3 < 14) and so returns true. The cell (0, e < 27) has already been

seen as a facet of the cell (0, e < 2 < 27) and it also returns true at step 1. So σ returns

false at step 2. It is a maximum dimension cell, so we attach it now before moving on to

the next maximum dimension cell. It has not been matched, so it is critical.

Finally we note that 27 = 32 and a factorisation of γ is 321, which is falling. In fact all the

critical cells of N0 \ N1 correspond to decreasing factorisations of γ. For example 981 is

another decreasing factorisation and corresponds to the critical cell (0, e < 9 < 29), note

that 29 = 98. We will see later how we can generalise this property.
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Number Cell Number Cell

1 (2, e)

2 (1, e < 1) 3 (1, e)

4 (1, e < 2)

5 (1, e < 3)

6 (1, e < 4)

7 (1, e < 5)

8 (1, e < 6)

9 (1, e < 7)

10 (1, e < 8)

11 (1, e < 9)

12 (0, e < 1) 13 (0, e)

14 (0, e < 1 < 12) 15 (0, e < 12)

16 (0, e < 1 < 14) 17 (0, e < 14)

18 (0, e < 1 < 18) 19 (0, e < 18)

20 (0, e < 1 < 19) 21 (0, e < 19)

22 (0, e < 2 < 12) 23 (0, e < 2)

24 (0, e < 2 < 27) 25 (0, e < 27)

26 (0, e < 2 < 29) 27 (0, e < 29)

28 (0, e < 3 < 14) 29 (0, e < 3)

30 (0, e < 3 < 27)

31 (0, e < 4 < 29) 32 (0, e < 4)

33 (0, e < 4 < 14)

34 (0, e < 4 < 45) 35 (0, e < 45)

36 (0, e < 4 < 47) 37 (0, e < 47)

38 (0, e < 5 < 18) 39 (0, e < 5)

40 (0, e < 5 < 27)

41 (0, e < 5 < 45)

42 (0, e < 6 < 47) 43 (0, e < 6)

44 (0, e < 6 < 18)

45 (0, e < 7 < 19) 46 (0, e < 7)

47 (0, e < 7 < 27)

48 (0, e < 7 < 47)

49 (0, e < 7 < 78) 50 (0, e < 78)

51 (0, e < 8 < 29) 52 (0, e < 8)

53 (0, e < 8 < 18)

54 (0, e < 8 < 78)

55 (0, e < 9 < 19) 56 (0, e < 9)

57 (0, e < 9 < 29)
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3.3 Properties of the Function

In the first step of our algorithm we need to check if a cell has already been attached

to the complex. One way to do this is to run through the cells that have been attached

and look for it. The lemma below gives a more efficient method of performing this check.

It also provides the basis for proving that the algorithm gives a Morse function and for

identifying critical cells.

Lemma 3.3.1. Let σ be a cell first considered by the algorithm as a face of the maximum

dimension cell θ = (i, {e l w1 l · · · l wn−i−1}) and suppose σ is given by deleting from

the chain of θ the following (possibly empty) set of entries {wi1 , wi2 , . . . , wil}. Let R be

the first reflection in the total order which precedes w−1
n−i−1γ and let τ be the facet of σ

obtained by deleting the entry wj. Then the algorithm will return ‘true’ for τ at step 1 if

and only if one of the following properties is satisfied:

(1): j > i1 or

(2): w−1
j−1wj > w−1

j wj+1, where w−1
j wj+1 = R in the case j = n− i− 1.

Proof. The algorithm considers the faces of θ with deleted entry wn−i−1 first, followed by

wn−i−2 and so on. Hence if (1) holds τ would have been previously attached as a face of

the cell with deleted entries

[{wi1 , wi2 , . . . , wil} \ {wi1}] ∪ {wj}.

So ‘true’ would be returned at step 1 when τ was considered as a face of σ. Note that, for

property (1) to hold, we need σ 6= θ.

If (2) holds then τ is a face of the maximum dimension cell

θ̂ = (i, {el w1 l · · ·l wj−1 l wj−1(w−1
j wj+1)l wj+1 l · · ·l wn−i−1})

which precedes θ in the lexicographical order. In the case j = n− i− 1, we can set

θ̂ = (i, {el w1 l · · ·l wn−i−2 l wn−i−2R})

and the statement still holds.

For the converse, we note that ‘true’ would be returned at step 1 of the algorithm if τ

had already been attached and there are only two ways this could occur. First, τ could

be a facet of more than one face of θ and one of those faces might have previously been

considered by the algorithm, so (1) would hold. Second, τ could be a face of a previous

maximum dimension cell, that σ was not a face of, in which case (2) holds.
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Note: To elaborate on these properties:

(1) says that the segment of the chain of σ before the element wj is not saturated, that

is, there is a deleted element before wj .

Every maximum dimension cell gives a factorisation of the last element wk as a product

of reflections

wk = w1(w−1
1 w2)(w−1

2 w3) · · · (w−1
k−1wk).

Property (2) says that this factorisation is decreasing at wj . Note that we will often

compare w−1
j−1wj with w−1

j wj+1 in the propositions that follow. In the case where j =

n − i − 1, we always take w−1
j wj+1 = R, where R is the first reflection in the total order

which precedes w−1
n−i−1γ, as was the case for Lemma 3.3.1.

Theorem 3.3.1. Let θ = (i, {e l w1 l · · · l wn−i−1}) be a maximum dimension cell

and denote its face σ by the (possibly empty) set of deleted entries {wi1 , wi2 , . . . , wil}. If

w−1
j−1wj < w−1

j wj+1, for some j < i1 then exactly one of the facets of σ will return false.

Hence σ will return true at step 2.

In the case that σ = θ, and i1 does not exist, we check this condition for any j.

Proof. We use induction on l, the number of entries wj which satisfy w−1
j−1wj < w−1

j wj+1

and j < i1.

Start with l = 1 so that w−1
k−1wk > w−1

k wk+1 for all k < i1 except for k = j. Then all facets

with deleted entry wk, except for k = j will return true at step 1, since one of the properties

of Lemma 3.3.1 is satisfied. Now consider τ with deleted entries {wj , wi1 , . . . , wil}. Neither

of the two properties of Lemma 3.3.1 are satisfied so the algorithm will not return true

at step 1. Instead it will move to step 2 and examine all the facets of τ . Consider the

facet with deleted entry wk. If k > j then this facet satisfies property (1) of Lemma 3.3.1.

If k < j we know that w−1
k−1wk > w−1

k wk+1, so this facet satisfies property (2) of Lemma

3.3.1. Hence all the facets of τ will return true, which means that τ itself will return false.

Now assume that the case l = p holds and consider l = p+ 1. This means that

w−1
jm−1wjm < w−1

jm
wjm+1 for 1 ≤ m ≤ p+ 1, jm < jm+1, jp+1 < i1

and w−1
k−1wk > w−1

k wk+1 for k < i1 otherwise.

The facets of σ with deleted entry wk for k > i1 will all return true by property (1) of

Lemma 3.3.1. The facets of σ with deleted entry wk for jp+1 < k < i1 will all return true
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by property (2) of Lemma 3.3.1. Consider the facet of σ with deleted entry wjp+1 . The

algorithm will not return true at step (1) for this cell. However we note that this cell is a

face of θ with deleted entries {jp+1, i1, ..., il} and p entries satisfying w−1
k−1wk < w−1

k wk+1,

k < jp+1. By the induction assumption then, it will return true.

Similarly the facets of σ with deleted entries wk for 1 ≤ k < jp+1 will all return true,

either by the induction assumption or property (2) of Lemma 3.3.1, except when k = j1.

In this case the algorithm is considering a cell τ which is the face of θ with deleted entries

{j1, i1, ..., il} and w−1
k−1wk > w−1

k wk+1 for k < j1. It will not return true at step (1) for

τ so it will move to step (2). The facets of τ with deleted entry wk will return true by

property (1) of Lemma 3.3.1 for k > j1 and true by property (2) for k < j1. Hence the

algorithm will return false for τ and it is the only facet of σ that will return false.

Corollary 3.3.1. Let θ and σ be as above but w−1
j−1wj < w−1

j wj+1 is not satisfied for any

j < i1 (or for any j in the case that σ = θ). Then the algorithm will return false for σ.

Proof. The cell τ at the end of the proof of Theorem 3.3.1 satisfied exactly this condition

and we showed that it returned false.

Corollary 3.3.2. This algorithm gives a total order on the cells of Ni, we say that σ1 ≤ σ2

if σ1 was attached by the algorithm before σ2. This ordering defines a Morse function µ

by assigning the nth cell attached by the algorithm the function value n.

Proof. A Morse function must satisfy the two properties mentioned in section 3.1. The

theorem, together with corollary 3.3.1 imply that at most one facet of a cell σ will return

false during step 2 of the algorithm. Only the facet of σ that returns false during step

2 of the algorithm will be after σ in the order and hence have a greater Morse function

value. The number of such facets is at most one so the first property holds. For the

second property, suppose we are completing the algorithm for a cell σ and look at its facet

τ for the first time. This facet will either return true or false, if false then we will have

µ(σ) < µ(τ). In either case whenever we come across τ again, as a facet of some cell σ̂,

it will return true at step 1 and we have µ(τ) < µ(σ̂). So this ordering on the cells of Ni

satisfies both Morse function properties.

Corollary 3.3.3. The only critical cells of Ni that are not in Ni+1 are of maximum

dimension, n− i− 1. They are precisely the cells of the form

(i, {el w1 l · · ·l wn−i−1}) with w−1
j−1wj > w−1

j wj+1 for all j.
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Proof. Consider the critical cells of Ni. First we have all the critical cells in Ni+1 and we

have new critical cells that are added by the algorithm. A critical cell σ added by the

algorithm must have had all its facets return true. Otherwise the facet that returned false

would have a greater Morse function value. However this means σ itself will return false.

If σ is first considered as a facet of another cell θ then by returning false it will be given a

Morse function value greater than θ and it would not be critical. The only cells which are

not facets of other cells in Ni are those of maximum dimension. Hence the new critical

cells added are all of maximum dimension.

In particular these are maximum dimension cells which have returned false, so that they

have a greater Morse function value than all of their facets. By Corollary 3.3.1 this requires

that they are of the above form.

Definition 3.3.1. We will refer to factorisations of γ which are decreasing for the first p

steps and increasing afterwards as p-decreasing factorisations. That is τ1 . . . τpτp+1 . . . τn

is a factorisation of γ with l(τi) = 1 for all i and

τi > τi+1 for 1 ≤ i ≤ p,
τi < τi+1 for p < i < n.

Theorem 3.3.2. The critical n − i − 1 cells in the Morse complex for N are in one to

one correspondence with factorisations of γ which are n− i− 1 decreasing.

Proof. The critical n− i− 1 cells in N are precisely those maximum dimension cells in Ni

which return false. Hence they must be of the form specified in Corollary 3.3.3.

Now consider factorisations of γ as given in the hypothesis. Each such factorisation de-

termines a maximum dimension cell in Xi of the form:

(i, {el τ1 l (τ1τ2)l · · ·l (τ1τ2 · · · τn−i−1)}).

With wj = τ1τ2 · · · τj , we have w−1
j−1wj > w−1

j wj+1 for 1 ≤ j ≤ n − i − 2 since the first

n − i − 2 reflections are decreasing. The other requirement for this cell to be critical is

for τn−i−1 = w−1
n−i−2wn−i−1 > R, where R is the first reflection in the unique rising chain

for w−1
n−i−1γ. However w−1

n−i−1γ = τn−i · · · τn and in fact this chain is rising as well since

τj < τj+1 for n − i ≤ j ≤ n − 1. Hence R = τn−i since the unique rising chain for an

interval is also the lexicographically smallest. Since we have τn−i−1 > τn−i this cell is

critical by corollary 3.
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Similarly every critical cell, w1 l · · · l wn−i−1, in Ni has associated with it such a fac-

torisation of γ. We choose the obvious factorisation for wn−i−1 and the unique increasing

factorisation for w−1
n−i−1γ.

We recall from [7] that each Ni has the structure of a mapping cone on a truncation of

|L|:

Theorem 3.3.3. (Proposition 6.1 of [7]) Ni is the mapping cone of a map

f : |L[1,n−i−1]| → Ni+1 : w1 < w2 < · · · < wk 7→ (i+ |w1|, e < w−1
1 w2 < · · · < w−1

1 wk)

where p = n− i− 1 and |L[1,p]| is the order complex of L[1,p], the truncation of the lattice

L to elements w with 1 ≤ l(w) ≤ p.

We deduce the following corollary, which can also be derived from Theorem 4.2 of [2]

together with [4]

Corollary 3.3.4. Truncations |L[1,k]| have the homotopy type of a wedge of top dimen-

sional spheres.

Proof. The Morse function on Ni \Ni+1 determines a Morse function on |L[1,n−i−1]|. Let

µ̂(R1) = 0 and otherwise

µ̂(w1 l · · ·l wn−i−1) = µ(i, {el w1 l · · ·l wn−i−1}),

where µ is a Morse function determined by the algorithm of section 3.2 with µ(σ) > 0 for

all σ ∈ N0 \N1. Note that the cell (i, e < R1) would be matched with the vertex (i, e) in

Ni\Ni+1. However (i, e) is the cone point and does not have an equivalent in |L[1,p]|. Thus

R1 becomes a critical vertex but otherwise µ̂ is the same as µ. This Morse function defines

a Morse complex with the same homotopy type as the space. By Corollary 3.3.2 the only

critical cells of the Morse function, besides the vertex R1, are in the top dimension. Hence

the Morse complex is a wedge of spheres about R1.
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Chapter 4

Homology calculations on N

In the appendix we detail matlab functions that were used to calculate the homology of

N , which is a K(ker(RL, 1)) in the cases of A2 up to A7. We confirmed these homology

groups match those of Callegaro in [11]. We refer to [7] for more detail on the connection

between the different spaces used. In this chapter we detail some of the structure of N

which is used to simplify these calculations. The Morse function from Chapter 3 could

also be used to calculate the homology of the space but the boundary maps for the Morse

complex are complicated. It was easier to use a different geometric basis for H̃p−1(|L[1,p]|).

4.1 The Boundary Map

In [7] it is shown that each filtration Ni of N has the structure of a mapping cone on

truncations of the lattice L. We restated the map that gives rise to this structure in

Theorem 3.3.3. This allows the homology of N to be computed as the homology of a

chain complex whose groups are homologies of truncations of L:

Theorem 4.1.1. (Theorem 6.4 of [7]) The homology of N is isomorphic to the homology

of the chain complex whose pth group is H̃p−1(|L[1,p]|) and whose boundary homomorphism

is given, at the level of chains, by
∑
aσσ 7→

∑
aσΩ(σ), where

Ω(w1 l w2 l · · ·l wp) = (w−1
1 w2 l w−1

1 w3 l · · ·l w−1
1 wp).
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4.2 Spheres from factorisations.

From the above and the previous chapter we can compute the homology of N by com-

puting the images of the Morse generators for H̃p−1(|L[1,p]|) under the map induced by Ω.

However, since the computation of the Morse generators involves following all alternating

paths from the critical cells we will use a different basis. To introduce this basis we first

identify a large but finite set of cycles in Cp−1(|L[1,p]|).

Let 1 ≤ k ≤ n − 1, we note that each factorisation of a length k + 1 NCP determines a

cycle in Ck−1(|L[1,k]|) which contains (k + 1)! simplices of dimension k − 1, one for each

permutation in Σk+1 as follows. Suppose that σ = v1 . . . vk+1 is a length k+ 1 NCP where

vi is a reflection in W . For each subset {i1, . . . ij} of {1, 2, . . . , k + 1} define the NCP

w(i1, . . . , ij) to be the product of vi1 , vi2 , . . . , vij in increasing order, that is, in the order

in which they appear in the given factorisation of σ. We observe that w(i1, . . . ij) is the

least upper bound of the reflections vi1 , vi2 , . . . , vij in the lattice L. Our (k − 1)-sphere in

|L[1,k]| is the signed sum of the simplices corresponding to the chains

vi1 = w(i1)l w(i1, i2)l · · ·l w(i1, . . . , ik) = σ

where (i1, i2, . . . , ik+1) ranges over the permutations of (1, . . . , k + 1) and the sign is the

usual sign of the permutation given by (i1, i2, . . . , ik+1).

Notation: We will denote the (k − 1)-sphere determined by v1 . . . vk+1 by S(v1 . . . vk+1).

Example 4.2.1. Suppose σ = abcd is a length four NCP in W . The corresponding two

sphere in |L[1,3]| is shown in Figure 4.2.1 stereographically projected from the d vertex.

Note that S(abcd) consists of twenty four 2-cells. These can be split into four groups of

six, each group being the barycentric subdivision of a larger 2-cell whose vertex set is three

of {a, b, c, d}. For example consider the 2-cell on {a, b, c}, this consists of the following six

2-cells in |L[1,3]|:

a < ab < abc, b < ab < abc,

b < bc < abc, c < bc < abc,

c < ac < abc, a < ac < abc.
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Fig. 4.2.1: S(abcd) in L[1,3]

Theorem 4.2.1.

Ω(S(v1 . . . vk+1)) =
∑
j

(−1)j+1S(v
vj
1 v

vj
2 . . . v

vj
j−1vj+1 . . . vk+1).

Proof. We observe that for each j with 2 ≤ j ≤ k + 1

(∗) σ = v1 . . . vj−1vjvj+1 . . . vk+1 = vjv
vj
1 v

vj
2 . . . v

vj
j−1vj+1 . . . vk+1

and we compute

Ω[S(v1 . . . vk+1)] = Ω

 ∑
τ∈Σk+1

sign(τ)
(
vτ(1) < w(τ(1), τ(2)) < · · · < w(τ(1), . . . , τ(k))

)
=

∑
τ∈Σk+1

sign(τ)Ω[
(
vτ(1) < w(τ(1), τ(2)) < · · · < w(τ(1), . . . , τ(k))

)
]

=
∑

τ∈Σk+1

sign(τ)
(
v−1
τ(1)w(τ(1), τ(2)) < · · · < v−1

τ(1)w(τ(1), . . . , τ(k))
)
.

Grouping the terms according to the first reflection in the product and applying equation

(∗) gives the result.
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Example 4.2.2. Consider σ = abcd, a length four NCP in W as in Example 4.2.1. The

six 2-cells around the vertex b are

b < ab < abd, − b < ab < abc,

b < bd < bcd, − b < bd < abd,

b < bc < abc, − b < bc < bcd.

The image of each of these cells respectively under Ω is

ab < abd, − ab < abc,

d < cd, − d < abd,

c < abc, − c < cd.

This is −S(abcd), a copy of S1. Grouping the six cells around each of the other three

vertices, the image under Ω is S(bcd), S(acbcd),−S(adbdcd).
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Fig. 4.2.2: Boundary of S(abcd)
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4.3 A geometric basis for H̃p−1(|L[1,p]|)

Definition 4.3.1. Let σ be the unique rising chain for (v1 . . . vp+1)−1γ. Then for each

p with 1 ≤ p ≤ n − 1 we define the geometric basis for H̃p−1(|L[1,p]|) to be the set

{S(v1 . . . vp+1)} where each of the factorisations v1 . . . vp+1σ is p-decreasing.

Theorem 4.3.1. The geometric basis is a basis for H̃p−1(|L[1,p]|).

Proof. Both the Morse and geometric generators are in one-to-one correspondence with

p-decreasing factorisations. Thus we order both sets of generators lexicographically using

the total order on reflections. For a specific such factorisation f denote by M(f) and G(f)

respectively the corresponding Morse and geometric cycles.

We express each Morse generator M(f) in terms of the geometric basis elements. By

Theorem 3.3.2, the facet of M(f) corresponding to f is the only facet whose factorisation

is p-decreasing. G(f) also contains this facet but some of its other facets could correspond

to other p-decreasing factorisations f ′. However, these other p-decreasing factorisations

must be lexicographically earlier than f since f is p-decreasing. Repeating this process we

find that M(f)−G(f) can be expressed as an integral linear combination of G(f ′) where

f ′ is lexicographically earlier than f . This means the matrix expressing the ordered set of

M(f)’s in terms of the ordered set of G(f)’s is upper triangular with 1’s on the diagonal.

This gives {G(f) | f p-decreasing } a basis for H̃p−1(|L[1,p]|).

Example 4.3.1. Recall Example 3.2.1. where we put a Morse function on N in the C3

case. By Corollary 3.3.4 this also induces a Morse function on L[1,2]. The ordering on the

reflections was as follows.

number 1 2 3 4 5 6 7 8 9

reflection (2, 3) [1] (1, 2̄) (1, 3̄) [2] (2, 3̄) (1, 2) [3] (1, 3)

Consider the factorisation f = R5R3R1. The Morse cycle M(f) consists of the cell R5 <

R5R3 = R2R7 and a complex of non-critical cells that could contract to the critical cell

R1. In this case M(f) =

R5 < R2R7 −R5 < R1R8 +R1 < R1R8 −R2 < R2R7 +R2 < R1R2 −R1 < R1R2.

The cycle G(f) is precisely S(R5R3R1) =

R5 < R2R7 −R5 < R1R8 +R3 < R1R4 −R3 < R2R7 +R1 < R1R8 −R1 < R1R4.
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Of these cells, only R5 < R2R7 and R3 < R2R7 correspond to 2-decreasing factorisations;

R5R3R1 and R3R2R1 respectively. We note that S(R3R2R1) =

R3 < R2R7 −R3 < R1R4 −R2 < R2R7 +R2 < R1R2 −R1 < R1R2 +R1 < R1R4.

None of these other five cells correspond to 2-decreasing factorisations, so the process stops

here. We see that the cells in M(f)−G(f) are precisely those in S(R3R2R1).

b b

b

b

b

b b

b

S(R5R3R1)

S(R3R2R1)

R3

R5

R1R2

R1R1R4

R1R8

R2R7

R2

Fig. 4.3.1: Cells in M(R5R3R1)

4.4 Syzygies in Cp−1(|L[1,p]|).

Recall Corollary 2.4.1, if σ ≤ γ has length two and order m in W , then there are reflections

τ1, τ2, . . . , τm in W with τ1 < τ2 < · · · < τm in the total order on reflections and

σ = τ1τm = τmτm−1 = · · · = τ2τ1. (4.4.1)

To compute the homology of the chain complex

H̃n−2(|L[1,n−1]|)→ H̃n−3(|L[1,n−2]|)→ ...→ H̃0(|L[1,1]|)→ H0(X1)

we need to express the image of a geometric generator in Hk−1(|L[1,k]|) in terms of geomet-

ric generators in Hk−2(|L[1,k−1]|). By Theorem 4.3.1, it is sufficient to express an arbitrary

S(v1 . . . vk+1) in terms of those S(v1 . . . vk+1) corresponding to k+1-decreasing sequences.

Our approach is to replace each S(v1 . . . vk+1) with an increasing segment σ = vjvj+1 by a

combination of S(v1 . . . vk+1)’s where the corresponding σ segments are decreasing. Since

the corresponding factorisations are lexicographically later by equation 4.4.1, the process

is finite.
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Lemma 4.4.1. Let S(v1 . . . vk+1) be a cycle in Ck−1(|L[1,k]|) as above and suppose the

product v1 . . . vk+1 factors as ασβ where σ itself factors as in equation 4.4.1. Then, in

Ck−1(|L[1,k]|), we have

S(α(τ1τm)β) + S(α(τmτm−1)β) + · · ·+ S(α(τ2τ1)β) = 0.

Proof. Consider S(α(τ1τm)β) first and recall that S(α(τ1τm)β) is a sum over permutations

θ in Σk+1 of the k-cell determined by the permuted reflections with coefficient given by

the sign of θ. Fix a specific permutation θ for which τm is the ith place and τ1 is the jth

place with 1 ≤ i < j ≤ k + 1 and consider the corresponding term in the expansion of

S(α(τmτm−1)β). Precisely the same k-cell arises in the expansion of S(α(τmτm−1)β) but

this time with coefficient sign((i, j)θ) = −sign(θ) and the corresponding terms cancel.

Similarly, each term of S(α(τmτm−1)β) in which τm−1 appears before τm cancels with a

corresponding term of S(α(τm−1τm−2)β) in which τm−1 appears before τm−2 until eventu-

ally each term of S(α(τ2τ1)β) in which τ1 appears before τ2 cancels with a corresponding

term of S(α(τ1τm)β) in which τ1 appears before τm.

Example 4.4.1. Consider the sphere S(R2R7R1) in the C3 case. Note that R2R7 =

R7R5 = R5R3 = R3R2. Hence by the Lemma we have

S(R2R7R1) + S(R7R5R1) + S(R5R3R1) + S(R3R2R1) = 0. (4.4.2)

Writing the spheres on the left hand side of equation 4.4.2 in terms of their edges in |L[1,2]|
we get:

+R2 < R2R7 + R7 < R7R5 + R5 < R5R3 + R3 < R3R2

−R2 < R2R1 − R7 < R7R1 − R5 < R5R1 − R3 < R3R1

+R7 < R7R1 + R5 < R5R1 + R3 < R3R1 + R2 < R2R1

−R7 < R7R5 − R5 < R5R3 − R3 < R3R2 − R2 < R2R7

+R1 < R1R2 + R1 < R1R9 + R1 < R1R8 + R1 < R1R4

−R1 < R1R9 − R1 < R1R8 − R1 < R1R4 − R1 < R1R2.

The first column are the edges in S(R2R7R1) and three of them cancel with edges in the

second column, elements of S(R7R5R1). The remaining three edges in the second column

cancel with three in the third column, which are elements of S(R5R3R1). Similarly the

remaining three edges in the third column cancel with three edges in S(R3R2R1) and

the final three edges of this sphere cancel with the edges remaining in S(R2R7R1). So
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equation 4.4.2 holds and we can write S(R2R7R1) in terms of spheres with decreasing

factorisations.

Note: In the case of W = An, we use Lemma 4.4.1 in the case m = 2 or m = 3.

We need one final syzygy in order to write any sphere as a linear combination of basis

elements.

Lemma 4.4.2. Let v1 . . . vk+2 be a factorisation of a length k + 2 element of L. Then

k+2∑
j=1

(−1)jS(v1 . . . v̂j . . . vk+2) = 0. (4.4.3)

Proof. Consider the sphere S(v1 . . . vk+2). The cells in this sphere can be split into k + 2

groups, each of which is the barycentric subdivision of a larger k-cell whose vertex set is

{v1, . . . v̂j , . . . vk+2}. Note that the boundary of such a k-cell is simply S(v1 . . . v̂j . . . vk+2).

Since these large k-cells fit together to form a k-sphere, the sum of their boundaries must

be 0, that is equation 4.4.3 holds.

Given a sphere, Lemma 4.4.1 allows us to write it as a combination of spheres with

decreasing factorisations. Let S(v1 . . . vk+1) be a sphere with vi > vi+1 for 1 ≤ i ≤ k and

σ = vk+2 . . . vn be the unique rising chain for (v1 . . . vk+1)−1γ. If vk+1 < vk+2 then the

factorisation v1 . . . vk+1σ is k-decreasing and S(v1 . . . vk+1) is a member of the geometric

basis for H̃k−1(|L[1,k]|). However if vk+1 > vk+2 this is not the case, in fact the factorisation

is (k + 1)-decreasing. We apply equation 4.4.3 to write S(v1 . . . vk+1) as a combination

other spheres. Note in this case that all the other factorisations are lexicographically

earlier, so again this process is finite.

The matlab programmes in the appendix work as follows. First they calculate all fac-

torisations of γ. They use these factorisations and Theorem 4.3.1 to identify a basis for

each H̃p(L[1,p+1]). Theorem 4.2.1 is used to calculate Ω of these basis elements in terms

of spheres of a lower dimension. Lemmas 4.4.1 and 4.4.2 are then used to write this as a

combination of basis elements of H̃p−1(L[1,p]). We put these results into matrices and find

their Smith normal forms to calculate the homology groups.
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Chapter 5

Finiteness Properties of groups

The construction from [7]/Chapter 2 gives classifying spaces for subgroups of Artin groups.

It is natural to try use these classifying spaces to infer information about the subgroups.

For the remainder of this thesis we will concentrate on the case where this subgroup is the

commutator subgroup. We will denote the commutator subgroup of G by G′.

Gorin and Lin computed finite presentations for the commutator subgroups of the braid

groups, which correspond to the Artin groups B(An), in [15]. In [24], Zinde used simi-

lar computations to find presentations for the commutator subgroups of the other Artin

groups, not all of which are finite presentations. Orevkov adds a finite presentation for

the H3 case in [21] and corrects the claim from [24] that B(C3)′ is a free group on four

generators. He notes that B(C3)′ and B(F4)′ are finitely generated but that it is still open

whether they are finitely presented. He summarises the presentations of the remaining

commutator subgroups as follows.

Theorem 5.0.1. (Orevkov) The groups B(I2(2k))′, k ≥ 2 are free groups on countable

sets of generators. The commutator subgroups of the remaining irreducible Artin groups,

besides the C3 and F4 cases, are finitely presented.

These results essentially use the Reidemeister-Schreier method to compute the presenta-

tions. More details of these calculations are given in [19]. (Although they also say B(C3)′

is a free group on 4 generators.) Regarding the C3 case, Squier shows in [22] that the

commutator subgroup is not finitely presented.

We are mainly interested in using our classifying space to show that B(F4)′ is finitely

presented; this is done in Chapter 7. In addition, Chapter 6 uses this construction to
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recover the fact that B(C3)′ is finitely generated but not finitely presented. This current

chapter will review some tools we need for these tasks, methods to infer information

regarding the presentation of a group from its classifying space.

5.1 Finiteness Properties

For a group Γ, we know that a K(Γ, 1) exists. See Example 1B.7. of [16], for example.

We further classify groups by the existence of K(Γ, 1)’s with particular properties.

Definition 5.1.1. A group Γ has type Fn if there is a K(Γ, 1) whose n-skeleton is finite.

Γ has type F1 if and only if Γ is finitely generated. Similarly Γ has type F2 if and only

if Γ is finitely presented. In general, Γ has type Fn if and only if we can find a finite n-

dimensional CW complex X with π1(X) isomorphic to Γ and πi(X) = 0, for 2 ≤ i ≤ n−1.

Example 5.1.1. For any finite W , the groups B(W ) are of type Fn for any n by [3] and

[8], while the groups ker(RL) are of type Fn for any n by [7]. On the other hand, we

can draw no such immediate conclusions for B(C3)′ and B(F4)′, since, as we will see in

Chapters 6 and 7, our classifying space for ker(AB) is not finite for these two cases. The

rest of this thesis will be occupied with finiteness properties of these two groups.

5.2 Hopf’s Formula

One way to establish that a group Γ is not finitely presented is to prove that H2(Γ) is

not finitely generated. This is the approach we use in Chapter 6 for Γ = B(C3)′ and the

conclusion is based on the following formula of Hopf.

Theorem 5.2.1. Suppose a group Γ has a finite presentation F/R, where F is free and

R is a normal subgroup of F generated by relation words, then

H2(Γ) =
R ∩ [F, F ]

[R,F ]
.

Our approach will be to compute H2(Γ) as H2(X) where X is our classifying space for

ker(AB) and Γ = B(C3)′. We will also show that Γ is finitely generated by directly finding

generators for π1(X).
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5.3 Brown’s Theorem

Applying the Hopf approach to B(F4)′ did not establish that the group is not finitely

presented so we began to wonder if B(F4)′ was, in fact, finitely presented. One approach

to showing this is to apply Brown’s theorem from [10], or more specifically, Corollary 3.3(b)

of that paper. The approach of that paper is to deduce finiteness properties of a group Γ

from a filtration of a nice Γ-complex. Essentially, we try to show that the passage from

one stage of the filtration to the next is eventually equivalent, up to homotopy, to the

adjunction of cells of a fixed dimension.

The finiteness property considered in [10] is defined using projective resolutions, a notion

which we will not use in this thesis. We will instead follow section 7.4 of [14] where Brown’s

Theorem is stated as

Theorem 5.3.1. (Brown) Let the (n − 1)-connected free Γ-CW complex Y admit a Γ-

filtration {Ki} where each Γ\Ki has finite n-skeleton. Then Γ has type Fn if and only if

{Ki} is essentially (n− 1)-connected, i.e., for each k with 0 ≤ k ≤ n− 1, the sequence of

maps

{πk(K0)→ πk(K1)→ · · · → πk(Ki)→ πk(Ki+1)→ . . . }

induced by inclusions becomes a sequence of trivial homomorphisms for i large enough.

This is the approach we use in Chapter 7, where Y is the universal cover of our classifying

space X for B(F4)′.
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Chapter 6

B(C3)
′ is not finitely presented.

We now turn our attention to the commutator subgroup of the Artin group of type C3.

We show that the group is finitely generated but not finitely presented.

We recall the notation used in Example 3.1.1 for the elements of L in the C3 case. We

note that the classical presentation of the Artin Group B(C3) is

B(C3) =< a, b, c | abab = baba, ac = ca, bcb = cbc > .

As explained in Chapter 2, the Artin Group has another presentation with a generator [w]

for each w ∈ L\{e} and relations [w1][w−1
1 w2] = [w2] whenever w1 � w2. Note that we will

refer to the generator [w] by w for the rest of this chapter to avoid awkward notation such

as [[1]]. The generators of the classical presentation correspond to the simple reflection

generators in the non-crossing partition presentation, that is

a = [1], b = (1, 3), c = (2, 3).

We will denote the commutator subgroup of this Artin group by B(C3)′. It is the subgroup

generated by all the commutators in B(C3), that is elements of the form

[g, h] = g−1h−1gh, g, h ∈ B(C3).

Now we follow Section 2.6 to construct XB(C3)′ . Since B(C3)′ E B(C3) we can form the

complex XB(C3)′ = B(C3)′\X whose cells are of the form (B(C3)′g, σ). Now B(C3)′ is the
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kernel of the abelianisation homomorphism:

AB : B(C3)→ B(C3)/B(C3)′ :


a 7→ e1

b 7→ e2

c 7→ e2

.

Note that when we abelianise the Artin group the relation bcb = cbc becomes b = c so the

image is Z× Z. We write the cells of XB(C3)′ as ((x, y), σ) where (x, y) ∈ Z× Z and σ is

an initialised chain in L.

We want to study the homotopy type of this space. This would be easier if we could retract

it onto a space that is easier to understand. Fortunately we already have an obvious choice

for such a retraction. We note that

q : XB(C3)′ → Xker(RL) : {(x, y), σ} 7→ {x+ y, σ}

is a covering space map. Further we know that Xker(RL) retracts onto the subspace N so

we can use homotopy lifting to lift this retraction to a subspace of XB(C3)′ . Consider the

following commutative diagram

XB(C3)′ × I

Xker(p)× I

XB(C3)′

Xker(p) N

q−1(N)

(q, id)

f

g

h

q

r

i

The maps i and r are inclusion and retraction maps respectively. The map f is the

homotopy with f(x, 0) = x, f(x, 1) = ir(x) and f(n, t) = n for all x ∈ Xker(RL), n ∈
N and t ∈ I. The composition f ·(q, id) is denoted by g. Now the identity map on XB(C3)′

is a lift of g(·, 0), that is q ·id = g(·, 0). Hence by the homotopy lifting property there exists

a unique homotopy h : XB(C3)′×I → XB(C3)′ that lifts g and satisfies h(·, 0) = id. So for all

y ∈ XB(C3)′ we have q · h(y, 1) = g(y, 1) = f(q(y), 1) ∈ N which implies h(y, 1) ∈ q−1(N).

Thus XB(C3)′ and q−1(N) have the same homotopy type.

6.1 A generating set for B(C3)
′

Now let us consider this space N ′ = q−1(N) whose fundamental group is isomorphic to

B(C3)′. First we will recover the fact that this group is finitely generated. N ′ is the union
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of all cells of the form

{(x, y), el w1 l w2}, x+ y = 0

and their faces. From now on we will refer to the vertices of this complex just by the pair

(x, y), rather than the full name ((x, y), {e}). We let the star of a vertex v, denoted st(v),

consist of every cell that contains v as a vertex and every cell which is a facet of such a

cell. Consider the star of the vertex (0, 0) illustrated in Figure 6.1.1 .

(0,0)

66

6

6

3

3
3

Fig. 6.1.1: st(0, 0) in N ′

Of the nine reflection generators in B(C3) the map AB sends three of them, [1], [2] and

[3], to e1 and the other six to e2. Of the nine generators corresponding to length 2 non-

crossing partitions, three of them, (1, 2, 3), (1, 2, 3̄) and (1, 2̄, 3̄), are sent to 2e2 by AB and

the remaining six sent to e1 + e2. Thus the labels in Figure 6.1.1 refer to the number of

edges ((x, y){e < w}) joining each pair of vertices. We can see there are three types of

2-cells in this subcomplex, the first joining the vertices (0, 0), (1, 0) and (1, 1), the second

joining the vertices (0, 0), (0, 1) and (1, 1) and the third joining the vertices (0, 0), (0, 1)

and (0, 2). There are nine 2 cells of each type.

To build up N ′ we sew in another copy of this subcomplex for each simplex (x, y) with

x+y = 0. We will examine the fundamental group of N ′ in the same way by calculating the

fundamental group of st(0, 0) and then adding in subsequent copies of this cell structure.

The space N ′ is illustrated in Figure 6.1.2, note that the blue lines here emphasize the six

edges where each pair of adjacent stars intersect.
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(0,0)

(1,−1)

(−1,1)

Fig. 6.1.2: Illustration of N ′

6.1.1 The fundamental group of the star of (0, 0).

We use the following method to compute the fundamental group of this subcomplex. First

we choose a maximal tree of its 1-skeleton. Thus each additional edge defines a loop in the

subcomplex and a generator in its π1. We then look at the 2-cells. The boundary of each

2-cell defines a loop that is now homotopic to the trivial loop. So each 2-cell will define

a relation on the generators. Many of these relations will end up identifying generators.

Eventually we will show that

Theorem 6.1.1. The group π1(st(0, 0)) has a presentation with four generators and two

relations.

Proof. First we will change our notation. Each edge in this subcomplex is of the form

((x, y), {e < s})

where (x, y) is the starting vertex and s is an element of L of length one or two. We

will instead refer to each set of edges joining a pair of vertices by a letter in the set
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{T,U, V,W,X, Y, Z}. Figure 6.1.3 indicates which letters are used for each vertex set.

A specific edge in one of these sets will be denoted by the subscript s, the non-crossing

partition that labels the edge.

(0,0)

TX

Y

U

V

Z
W

Fig. 6.1.3: Edge labelling in st(0, 0)

For example we will now refer to the edge ((0, 0), e < [2]) by V[2].

We choose our maximal tree to consist of the edges X(1,2), Y(1,2), V[1] and Z[1]. The remain-

ing twenty seven edges then determine loops. Table 6.1.1 gives names to each of these

generators and says precisely which set of edges determine each loop. We have chosen the

vertex (0, 1) as the basepoint.

Name Loop Possible values of s

T̃s −X(1,2) + V[1] + Ts − Z[1] (1, 3̄), (1, 3), (1, 2), (2, 3), (1, 2̄), (2, 3̄)

Ũs −X(1,2) + Us − Z[1] [1, 3], [1](2, 3), [2, 3], [1, 2], [2](1, 3̄), (1, 2)[3]

Ṽs −X(1,2) + V[1] − Vs +X(1,2) [2], [3]

W̃s Y(1,2) −Ws +X(1,2) (1, 2, 3), (1, 2, 3̄), (1, 2̄, 3̄)

X̃s −X(1,2) +Xs (1, 3̄), (1, 3), (2, 3), (1, 2̄), (2, 3̄)

Ỹs Y(1,2) − Ys (1, 3̄), (1, 3), (2, 3), (1, 2̄), (2, 3̄)

Z̃s Z[1] − Zs [2], [3]

Table 6.1.1: Loops in st(0, 0)

Table 6.1.2 will deal with the 2-cells. All of the cells start at the vertex (0, 0) so we omit

this and simply refer to each by its chain in L. We state the boundary of each 2-cell and
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the relation that occurs when this boundary loop is made trivial.

2-cell Boundary Relation

1 e < [1] < [1, 3] T(1,3) − U[1,3] + V[1] T̃(1,3) = Ũ[1,3]

2 e < [1] < [1, 2] T(1,2) − U[1,2] + V[1] T̃(1,2) = Ũ[1,2]

3 e < [1] < [1](2, 3) T(2,3) − U[1](2,3) + V[1] T̃(2,3) = Ũ[1](2,3)

4 e < [2] < [1, 2] T(1,2̄) − U[1,2] + V[2] T̃(1,2̄) = Ṽ[2] + Ũ[1,2]

5 e < [2] < [2, 3] T(2,3) − U[2,3] + V[2] Ṽ[2] = T̃(2,3) − Ũ[2,3] = Ũ[1](2,3) − Ũ[2,3]

6 e < [2] < [2](1, 3̄) T(1,3̄) − U[2](1,3̄) + V[2] T̃(1,3̄) = Ṽ[2] + Ũ[2](1,3̄)

7 e < [3] < [1, 3] T(1,3̄) − U[1,3] + V[3] T̃(1,3̄) = Ṽ[3] + Ũ[1,3]

8 e < [3] < (1, 2)[3] T(1,2) − U(1,2)[3] + V[3] Ṽ[3] = T̃(1,2) − Ũ(1,2)[3] = Ũ[1,2] − Ũ(1,2)[3]

9 e < [3] < [2, 3] T(2,3̄) − U[2,3] + V[3] T̃(2,3̄) = Ṽ[3] + Ũ[2,3]

10 e < (2, 3) < (2, 3)[1] −X(2,3) + U(2,3)[1] − Z[1] Ũ(2,3)[1] = X̃(2,3)

11 e < (2, 3) < [2, 3] −X(2,3) + U[2,3] − Z[3] Ũ[2,3] = X̃(2,3) − Z̃[3]

12 e < (1, 3) < [1, 3] −X(1,3) + U[1,3] − Z[3] Z̃[3] = −Ũ[1,3] + X̃(1,3) = −X̃(1,3̄) + X̃(1,3)

13 e < (1, 3̄) < [1, 3] −X(1,3̄) + U[1,3] − Z[1] Ũ[1,3] = X̃(1,3̄)

14 e < (1, 3̄) < [2](1, 3̄) −X(1,3̄) + U[2](1,3̄) − Z[2] Ũ[2](1,3̄) = X̃(1,3̄) − Z̃[2]

15 e < (1, 2̄) < [1, 2] −X(1,2̄) + U[1,2] − Z[1] Ũ[1,2] = X̃(1,2̄)

16 e < (1, 2) < [1, 2] −X(1,2) + U[1,2] − Z[2] Z̃[2] = −Ũ[1,2] = −X̃(1,2̄)

17 e < (1, 2) < (1, 2)[3] −X(1,2) + U(1,2)[3] − Z[3] Ũ(1,2)[3] = −Z̃[3]

18 e < (2, 3̄) < [2, 3] −X(2,3̄) + U[2,3] − Z[2] Ũ[2,3] = X̃(2,3̄) − Z̃[2]

19 e < (2, 3) < (1, 2̄, 3̄) Y(1,3̄) −W(1,2̄,3̄) +X(2,3) W̃(1,2̄,3̄) = Ỹ(1,3̄) − X̃(2,3)

20 e < (2, 3) < (1, 2, 3) Y(1,3) −W(1,2,3) +X(2,3) W̃(1,2,3) = Ỹ(1,3) − X̃(2,3)

21 e < (1, 3̄) < (1, 2̄, 3̄) Y(1,2̄) −W(1,2̄,3̄) +X(1,3̄) Ỹ(1,2̄) = W̃(1,2̄,3̄) + X̃(1,3̄)

22 e < (1, 3̄) < (1, 2, 3̄) Y(1,2) −W(1,2,3̄) +X(1,3̄) W̃(1,2,3̄) = −X̃(1,3̄)

23 e < (1, 2) < (1, 2, 3) Y(2,3) −W(1,2,3) +X(1,2) Ỹ(2,3) = W̃(1,2,3) = Ỹ(1,3) − X̃(2,3)

24 e < (1, 2) < (1, 2, 3̄) Y(2,3̄) −W(1,2,3̄) +X(1,2) Ỹ(2,3̄) = W̃(1,2,3̄)

25 e < (1, 3) < (1, 2, 3) Y(1,2) −W(1,2,3) +X(1,3) W̃(1,2,3) = −X̃(1,3)

26 e < (1, 2̄) < (1, 2̄, 3̄) Y(2,3) −W(1,2̄,3̄) +X(1,2̄) W̃(1,2̄,3̄) = Ỹ(2,3) − X̃(1,2̄)

27 e < (2, 3̄) < (1, 2, 3̄) Y(1,3̄) −W(1,2,3̄) +X(2,3̄) Ỹ(1,3̄) = W̃(1,2,3̄) + X̃(2,3̄)

Table 6.1.2: 2-cells in st(0, 0)

We see that relations 1− 4, 7 and 9 express the six T̃ generators in terms of the Ũ and Ṽ .

Relations 5 and 8 then write the Ṽ generators in terms of Ũ . Next relations 10, 11, 13 -

15 and 17 define these Ũ loops in terms of the X̃ and Z̃ . Relations 12 and 16 express the

two Z̃ generators in terms of the X̃. The relations 19, 20 and 22 write the W̃ generators
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as a combination of the X̃ and Ỹ . After a bit of simplification, relations 21, 23 - 25 and

27 give the following formulas for the Ỹ generators in terms of the X̃.

(24) Ỹ(2,3̄) = −X̃(1,3̄)

(25) Ỹ(1,3) = −X̃(1,3) + X̃(2,3)

(23) Ỹ(2,3) = −X̃(1,3)

(27) Ỹ(1,3̄) = −X̃(1,3̄) + X̃(2,3̄)

(21) Ỹ(1,2̄) = −X̃(1,3̄) + X̃(2,3̄) − X̃(2,3) + X̃(1,3̄)

So, we are left with the five X̃ generators and the three relations 6, 18 and 26. Writing

every generator in relation 26 in terms of the X̃, we have

X̃(1,2̄) = X̃(2,3) − X̃(2,3̄) + X̃(1,3̄) − X̃(1,3).

Similarly, relation 18 gives

X̃(1,2̄) = −X̃(2,3̄) + X̃(2,3) − X̃(1,3) + X̃(1,3̄).

Setting these two expressions equal to one another gives one relation between the four

generators. Finally, using these expressions for X̃(1,2̄), relation 6 simplifies to

−X̃(2,3) + X̃(2,3̄) + X̃(2,3) − X̃(1,3̄) + X̃(1,3) − X̃(2,3) + X̃(1,3̄) − X̃(2,3̄) + X̃(2,3) − X̃(1,3) = 0.

Hence π1(st(0, 0)) has four generators and two relations.

6.1.2 The fundamental group of N ′

We are now in a position to show that B(C3)′ is finitely generated.

Theorem 6.1.2. The fundamental group of N ′ is generated by the set of four generators

for π1(st(0, 0)).

Proof. Let Â = st(0, 0), B̂ = st(1,−1) and P be an open neighbourhood of A ∩ B that

retracts onto A∩B. Then A = Â∪P and B = B̂ ∪P are open sets in A∪B that retract

onto Â and B̂ respectively. We use van Kampen’s theorem to calculate the fundamental

group of A ∪B from π1(A) and π1(B). Choose (1, 0) as the basepoint since it is common
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to both A and B. Let iAB : π1(A ∩ B) → π1(A) be the homomorphism induced by the

inclusion A∩B → A and iBA be defined similarly. Then van Kampen’s theorem says that

π1(A ∪B) ∼= π1(A) ∗ π1(B)

G
,

where G is the subgroup generated by all elements of the form iAB(ω)iBA(ω)−1 for ω ∈
π1(A ∩B). We will show that these relations allow us to write the generators of π1(A) in

terms of the generators of π1(B) and vice versa.

We will use the same notation as before to refer to edges and loops and a superscript to

denote whether we are talking about the subcomplex A or B. Note that the edges that

make up a loop in A are those given in Table 6.1.1 conjugated by −V[1] + X(1,2), to deal

with the change in basepoint. We consider the four generators of B. Note that we can

invert the Ỹ equations (24), (25), (23), (27) and (21) above to get

X̃(1,3̄) = −Ỹ(2,3̄),

X̃(1,3) = −Ỹ(2,3),

X̃(2,3) = −Ỹ(2,3) + Ỹ(1,3),

X̃(2,3̄) = −Ỹ(2,3̄) + Ỹ(1,3̄).

So we can use these four Ỹ B loops as the generators of π1(B) instead of the X̃B.

Choose TA(1,2) = Y B
(1,2) to be the maximal tree in A∩B. Then the generators of π1(A∩B)

are

TA(1,2) − TAs = Y B
(1,2) − Y B

s = Ỹ B
s

where s ∈ {(1, 2̄), (1, 3)(1, 3̄), (2, 3), (2, 3̄)}. The van Kampen relations identify the left and

right hand sides of this equation. The left hand side can be written as

TA(1,2) − TAs = (TA(1,2) − ZA[1] −XA
(1,2) + V A

[1])− (V A
[1] +XA

(1,2) + ZA[1] − TAs )

= T̃A(1,2) − T̃As .

We have already seen that the T̃ loops are homotopic to some combination of the X̃, hence

these Ỹ B generators can also be written in terms of the X̃A.

To prove the other direction we note that the X̃ can be written in terms of the T̃ . The

cells 10 - 18 in Table 6.1.2 write the four X̃ and two Z̃ in terms of the Ũ . They also write

Ũ(2,3)[1], Ũ[2](1,3̄) in terms of the other four Ũ and put one relation between these four Ũ .

Then cells 1 - 9 express these four Ũ along with the two Ṽ in terms of the T̃ . They also

give

T̃(1,2̄) = T̃(1,3̄) − T̃(1,3), T̃(2,3̄) = T̃(1,2̄) + T̃(2,3) − T̃(1,2̄) + T̃(1,2)
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and put one more relation between the remaining T̃ . We show that the van Kampen

relations can be used to write the T̃A in terms of the Ỹ B.

Start with the van Kampen relation

T̃A(1,2) = Ỹ B
(2,3̄) + T̃A(2,3̄)

= Ỹ B
(2,3̄) + T̃A(1,2̄) + T̃A(2,3) − T̃A(1,2̄) + T̃A(1,2)

⇒ 0 = Ỹ B
(2,3̄) + T̃A(1,2̄) + T̃A(2,3) − T̃A(1,2̄)

⇒ T̃A(2,3) = −T̃A(1,2̄) − Ỹ B
(2,3̄) + T̃A(1,2̄).

Next we note that T̃A(1,2) = Ỹ B
(1,2̄)

+ T̃A
(1,2̄)

and thus

T̃A(1,2) = Ỹ B
(2,3) + T̃A(2,3)

⇒ Ỹ B
(1,2̄) + T̃A(1,2̄) = Ỹ B

(2,3) − T̃A(1,2̄) − Ỹ B
(2,3̄) + T̃A(1,2̄)

⇒ T̃A(1,2̄) = −Ỹ B
(2,3̄) − Ỹ B

(1,2̄) + Ỹ B
(2,3).

This gives allows us to express T̃A(1,2) in terms of the Ỹ B and once we have that the other

van Kampen relations easily allow us to write the other T̃A, and hence the X̃A, as a

combination of the Ỹ B.

Note that there are five relations between these generators of π1(A∪B): two from π1(A),

two from π1(B) and one from the fifth van Kampen relation.

Now consider the generalised van Kampen theorem from [12]. Define

Ên =
n⋃

k=−n
st(k,−k),

P1 as an open neighbourhood of En∩st(n+1,−n−1) that retracts onto this subspace, P2

as an open neighbourhood of En ∩ st(−n− 1, n+ 1) that retracts onto this subspace and

En = Ên ∪ P1 ∪ P2. Then the spaces En are open subsets of N ′, all of which include the

basepoint (0, 0), such that N ′ =
⋃
En. By the generalised van Kampen theorem π1(N ′)

is the direct limit of the system (π1(En), θij), where the homomorphisms θij : π1(Ei) →
π1(Ej) are induced by inclusion. By repeated application of the argument above for a

pair of stars, these homomorphisms are onto and it follows that π1(N ′) is generated by

the four generators of π1(st(0, 0)).
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6.2 B(C3)
′ is not finitely presented.

As explained in Chapter 5, we can show that B(C3)′ is not finitely presented by examining

the second homology group of N ′. We now calculate H2(N ′) and show it is not finitely

generated. First we will look at the homology of st(0, 0), as we did for the fundamental

group, and then we will use Mayer-Vietoris sequences to add on additional copies of this

subcomplex. We used Matlab to calculate H2(st(0, 0)) and show it was equal to Z2. The

table of 2-cells in the previous section gives the boundary of each 2-cell. We put these

boundaries into a matrix and computed its Smith Normal Form. This showed that there

were two generators for the kernel of the map ∂ : C2 → C1. Since there are no 3-cells,

there is no torsion and H2(st(0, 0)) = Z2.

Theorem 6.2.1. Fix n ≥ 0, let Dn =
n⋃
k=0

st(k,−k) be the union of n + 1 stars. Then

H2(Dn) = Z3n+2.

Proof. We use induction and note that the case n = 0 holds since we have seen that

H2(st(0, 0)) = Z2. For the general step define Dn+1 as the union of

A =

n⋃
k=0

st(k,−k) and B = st(n+ 1,−n− 1).

We recall the Mayer-Vietoris sequence for A and B.

· · · → H2(A ∩B)→ H2(A)⊕H2(B)→ H2(A ∪B)

→ H1(A ∩B)→ H1(A)⊕H1(B)→ H1(A ∪B)→ . . .

The maps in this sequence are defined as

φn : Hn(A ∩B)→ Hn(A)⊕Hn(B) : x 7→ (x,−x)

ψn : Hn(A)⊕Hn(B)→ Hn(A ∪B) : (a, b) 7→ a+ b

δn : Hn(A ∪B)→ Hn−1(A ∩B) : x 7→ ∂a

where we write x, a cycle in A ∪B, to be a sum a+ b of chains in A and B and we have

∂a = −∂b since ∂(a+ b) = 0.

There are no 2-cells in A ∩B so

0→ H2(A)⊕H2(B)
ψ2−→ H2(A ∪B)→ . . .
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is the first part of this sequence. We know that H2(A) = Z3n+2 by the induction assump-

tion and H2(B) = Z2. Since the sequence is exact we have ker(ψ2) = 0 and these 3n + 4

homology generators are embedded in H2(A ∪B).

There is one more homology generator coming from the intersection between A and B.

Let Ci be the 2-cell described in row i of Table 6.1.2. In st(n,−n) we have that

∂(C1 − C2 + C4 − C5 − C7 + C9) = T(1,3) − T(1,2) + T(1,2̄) − T(2,3) − T(1,3̄) + T(2,3̄).

In B we have

∂(C20 − C22 + C21 − C23 − C19 + C24) = Y(1,3) − Y(1,2) + Y(1,2̄) − Y(2,3) − Y(1,3̄) + Y(2,3̄).

Subtracting the cells in st(−n, n) from those in B we have a cycle C. We know that this

cycle is not in Im(ψ2) since it is not in the kernel of δ2. Hence this is a new homology

class in H2(A ∪B).

Finally we note that there are no homology generators missing from this description. The

next part of the Mayer-Vietoris sequence is

· · · → H2(A ∪B)
δ2−→ H1(A ∩B)

φ1−→ H1(A)⊕H1(B)→ . . .

where we know that H1(A ∩ B) = Z5. We also know that H1(B) = Z4 as it is the

abelianisation of its fundamental group. These four generators for H1(B) are clearly in

the image of φ1. Suppose there was an additional generator Ĉ of H2(A ∪ B) that is not

a linear combination of the previous generators. Then Ĉ /∈ Im(ψ2) which means that

δ2(Ĉ) 6= 0. Both δ2(C) and δ2(Ĉ) are in ker(φ1) and they are linear independent. This

would contradict the rank-nullity theorem for H1(A ∩B). Thus

H2(A ∪B) = Z3n+2 ⊕ Z2 ⊕ Z = Z3n+5.

Corollary 6.2.1. B(C3)′ is not finitely presented

Proof. Consider the directed system (H2(Ên), θij) where

Ên =
n⋃

k=−n
st(k,−k)

as in Corollary 6.1.2 and θij : H2(Êi) → H2(Êj) is the homomorphism induced by the

inclusion Êi → Êj . Note that the space Ên is isomorphic to D2n and so it is clear from
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Theorem 6.2.1 that the θij are embeddings. Hence the direct limit of the system is not

finitely generated. We note that N ′ is the direct limit of the spaces Ên and that each

compact set of N ′ is contained in some Ên. By Proposition 3.33 of [16] we have that the

natural map

lim
→
H2(Ên)→ H2(N ′)

is an isomorphism. It follows that H2(N ′) is also not finitely generated and then by Hopf’s

formula, π1(N ′) is not finitely presented.
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Chapter 7

B(F4)
′ is finitely presented.

7.1 Introduction

In this chapter we show that the commutator subgroup of the Artin group B(F4) is finitely

presented but not of type F3. First we recall how the non-crossing partition lattice is used

to construct the space X from chapter 2, which is a B(F4)′ complex. We also recall how

it is retracted in [7] to the space X[0,3]. We then examine the quotient of this space by

B(F4)′ and get an understanding how cells of this quotient relate to the lattice L. We use

the quotient to define an appropriate filtration {Xj} of X[0,3] that satisfies the hypothesis

of Brown’s theorem from Chapter 5. At this stage we need to show that we can obtain

Xj+1 from Xj by the adjunction of 3-cells, up to homotopy. Brown’s theorem would then

tell us that B(F4)′ is of type F2 but not of type F3. In order to do this we split the vertices

that are added onto Xj+1 from Xj into four different types. We add these vertices, and

the cells that are incident on them, to Xj one type at a time, and inside these types one

vertex at a time. It turns out that each vertex cones off a subcomplex in the space. In

a series of propositions we examine these four different subcomplexes and show they are

homotopy equivalent either to a single 2-sphere or a wedge of four 2-spheres. Coning off

these 2-spheres then is equivalent to adjoining 3-cells to the complex, as required.

7.2 The Space

We recall from Chapter 2 the use of the non-crossing partition lattice of a finite Coxeter

group to construct a classifying space for the corresponding Artin group. The universal
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cover X of this classifying space is the abstract simplicial complex with a vertex for each

element g of B(F4). There is a k−simplex {g0, ..., gk} on these vertices if for each i we

have gi = g0[wi] where e < w1 < ... < wk is a chain in L. We write such a simplex in the

form {g0, e < w1 < ... < wk}. In [7] it is shown that X deformation retracts, equivariantly

with respect to the ker(RL) action, to the three dimensional subspace consisting of all the

cells of the form

(g, e < w1 < w2 < w3), RL(g) = 0, w3 6= γ

and their faces. We will denote this subspace by X[0,3]. Since ker(AB) ≤ ker(RL), X[0,3] is

the universal cover of a classifying space for ker(AB) = B(F4)′. We wish to apply Brown’s

theorem from Chapter 5 to the group Γ = B(F4)′ and the space Y = X[0,3]. It remains to

choose an appropriate filtration of the space that satisfies the hypotheses of this theorem.

7.3 The Quotient

We first examine the quotient space X[0,3]/B(F4)′, which we will denote X ′. We will

require the images of the subsets in the filtration to all be finite in this quotient.

For each coset gB(F4)′ with RL(g) ∈ [0, 3] we have a vertex in X ′. In the appendix we

show that B(F4)/B(F4)′ ∼= Z × Z as in the C3 case. We labelled the 24 reflections of F4

by ri, 1 ≤ i ≤ 24, and we defined the abelianisation map, AB on the generating set {[ri]}
by

AB : B(F4)→ B(F4)/B(F4)′ : [ri] 7→

(0, 1) if i is odd

(1, 0) if i is even.

So the vertices of X ′ are the elements (x, y) of Z × Z with x, y ≥ 0 and 0 ≤ x + y ≤ 3.

The last condition follows from the fact that RL(g) = x+ y for AB(g) = (x, y).

Note that we will sometimes refer to the non-crossing partitions {ri| i even} as even re-

flections and {ri| i odd} as odd reflections.

We use the function AB to define the quotient map

AB∗ : X[0,3] → X ′ : {g0, . . . , gk} 7→ {AB(g0), . . . ,AB(gk)}.

This allows us to examine the higher dimensional cells of X ′. The space has edges of the

form AB∗({g, e < w1}) joining AB(g) to AB(g[w1]), labelled by the element w1 6= γ. Note

that AB(g[w1]) = AB(g) + AB([w1]). The appendix describes the different possible values
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AB([wi]) Number of NCPs wi

(1,0) 12

(0,1) 12

(2,0) 8

(0,2) 8

(1,1) 39

(2,1) 12

(1,2) 12

Table 7.3.1: Abelianisation of the generators [wi]

for AB([w1]) and the number of non-crossing partition generators that map to each value.

This is summarised in Table 7.3.1.

Thus, for example, at every vertex (x, y) in X ′ with x + 1 + y ≤ 3, there are 12 edges

joining (x, y) to (x+ 1, y).

The space has 2-cells of the form AB∗({g, e < w1 < w2}). Such a 2-cell has vertices

{AB(g),AB(g)+AB([w1],AB(g)+AB([w2])} and its edges are labelled by the appropriate

NCPs: w1, w2 and w−1
1 w2. Table 7.3.1 shows that there are 55 choices for w2 where

l(w2) = 2 and 24 choices for w2 where l(w2) = 3. The number of different options for w1

depends on the factorisations of the element w2. The appendix lists all factorisations as

a product of reflections of an element ti where l(ti) = 2. Table 7.3.2 lists the number of

factorisations for these elements.

If AB([ti]) = (2, 0) then ti must be the product of two even reflections and if AB([ti]) =

(0, 2) then ti must be the product of two odd reflections. If AB[ti] = (1, 1) then half of the

factorisations of ti are of the form revenrodd and the other half are of the form roddreven.

Hence, for example, at every vertex (x, y) in X ′ with x + y + 2 ≤ 3, there are 54 2-cells

AB([ti]) Number of factorisations of ti Parabolic subgroup Number of NCPs ti

(2, 0) 3 A2 8

(0, 2) 3 A2 8

(1, 1) 2 Z2 × Z2 24

(1, 1) 4 C2 15

Table 7.3.2: The parabolic subgroups of length 2 NCPs
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connecting (x, y), (x + 1, y) and (x + 1, y + 1). Of these 24 come from the NCPs in the

third row of Table 7.3.2 and 30 of these come from the NCPs in the last row.

The appendix also lists factorisations of elements τi, where l(τi) = 3. It lists those factori-

sations of the form tjrk, where l(tj) = 2 and l(rk) = 1. For each such rk there is another

factorisation of τi beginning with rk and for each tj there is another factorisation of τi

that ends in tj . The number of factorisations is summarised in Table 7.3.3.

In order to illustrate where these numbers come from, we will consider one example from

the third row. The NCP τ2 satisfies AB([τ2]) = (1, 2). It has four factorisations listed in

the appendix:

t8r24 = t9r23 = t54r1 = t55r21.

It also has factorisations

r24t8 = r21t9 = r23t54 = r1t55.

Note that of the four ri preceding τ2, three have i odd and the fourth must have i even.

The subgroup generated by {r1, r23, r24} is a parabolic subgroup of F4 with parabolic

Coxeter element τ2. The corresponding subgroup is isomorphic to Z2 × A2. In the other

case, where τi has nine reflections listed, τi is the parabolic Coxeter element for a subgroup

that is isomorphic to C3.

Table 7.3.3 can also tell us about the 3-cells in X ′: AB∗({e < w1 < w2 < w3}). Consider

the number of 3-cells joining the vertices (x, y), (x+ 1, y), (x+ 2, y), (x+ 2, y + 1), where

x + y = 0. There are twelve choices for w3. Six of these are the Coxeter elements of

parabolic subgroups isomorphic to Z2 ×A2. For each of these there is only one choice for

w2 with AB([w2]) = (2, 0). For each such w2 there are three elements w1 with w1 < w2.

This gives 6 × 1 × 3 = 18 3-cells. The other six possible w3 are the Coxeter elements of

parabolic subgroups isomorphic to C3. Each of these has three elements w2 with w2 < w3

and AB([w2]) = (2, 0). Again for each such w2 there are three choices for w1. This makes

AB([τi]) No. of factorisations of τi No. of NCPs τi No. of rj with rj < τi, j even

(2, 1) 4 6 3

(2, 1) 9 6 6

(1, 2) 4 6 1

(1, 2) 9 6 3

Table 7.3.3: Factorisations of length 3 NCPs
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a further 6× 3× 3 = 54 3-cells. In total there are 72 different 3-cells joining these vertices

and by symmetry there is also 72 3-cells joining the vertices (x, y), (x, y+ 1), (x, y+ 2) and

(x+ 1, y + 2).

Now consider the 3-cells joining the vertices (x, y), (x+ 1, y), (x+ 1, y + 1), (x+ 2, y + 1).

Again the possibilities for w3 are split into two groups of six. One group has six w2 with

w2 < w3 and AB([w2]) = (x+1, y+1). Of these w2, three have parabolic subgroup C2 and

hence two choices of even reflections w1 that precede w2. The other three have parabolic

subgroup Z2×Z2 and thus only one such w1. This makes a total of 6× (3×2+3×1) = 54

3-cells. The other group of six w3 are the parabolic Coxeter elements of copies of Z2×A2.

Each has three elements w2 which precede it and satisfy AB([w2]) = (1, 1). All of these

w2’s are products of a pair of commuting reflections so for each there is only one w1 with

w1 < w2 and AB([w1]) = (1, 0). This gives us another 6× 3× 1 = 18 3-cells and together

we get another 72 3-cells on these vertices.

Note that for every w1 < w2 with AB([w1]) = (1, 0) and AB([w2]) = (1, 1) there will be

a ŵ1 = w−1
1 w2 such that ŵ1 < w2 and AB([ŵ1]) = (0, 1). So for every 3-cell described

above on the vertices (x, y), (x + 1, y), (x + 1, y + 1), (x + 2, y + 1) there will also be a

3-cells on the vertices (x, y), (x, y + 1), (x + 1, y + 1), (x + 2, y + 1). Thus there are a

total of 72 3-cells on these vertices too. By symmetry there are also the same number

of 3-cells on the vertices (x, y), (x, y + 1), (x+ 1, y + 1), (x+ 1, y + 2) and on the vertices

(x, y), (x+ 1, y), (x+ 1, y+ 1), (x+ 1, y+ 2). To summarise, for any legal choice of vertices

there are 72 different 3-cells joining those vertices and a total of 432 3-cells incident on

every vertex (x, y) with x+ y = 0.

7.4 The Filtration

We define the following filtration on the quotient X ′ corresponding to the filtration of Z
given by the intervals [−n, n].

X ′0 = st(0, 0)

X ′1 = st(−1, 1) ∪ st(0, 0) ∪ st(1,−1)

...

X ′j =

j⋃
x=−j

st(x,−x)

...
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Clearly each X ′j is finite since there are a finite number of cells in the star of each vertex,

as described in the previous section. We choose our filtration on X[0,3] to be the pre-image

of this filtration under the map AB∗ : X[0,3] → X ′. Thus

X0 =
⋃

AB(g)=(0,0)

st(g),

X1 =

 ⋃
AB(g)=(−1,1)

st(g)

 ∪
 ⋃
AB(g)=(0,0)

st(g)

 ∪
 ⋃
AB(g)=(1,−1)

st(g)

 ,

...

Xj =

j⋃
x=−j

 ⋃
AB(g)=(x,−x)

st(g)

 ,

...

Note that for each vertex (−x, x) in X ′, there are an infinite number of vertices g in X[0,3]

with AB(g) = (−x, x), one for each element of B(F4)′.

We need to show that Xj+1 is obtained from Xj by the adjunction of 3-cells up to ho-

motopy. Moving from Xj to Xj+1 we add the stars of the vertices g with AB(g) =

(j + 1,−j − 1) or AB(g) = (−j − 1, j + 1). We will show that adding st(g) for all g with

AB(g) = (j+1,−j−1) is equivalent to the adjunction of 3-cells. The other case is similar.

We do this adjoining in four steps.

There are 8 vertices in the star of a vertex (j + 1,−j − 1) in X ′. These are

(j + 1,−j − 1), (j + 2,−j − 1), (j + 3,−j − 1), (j + 3,−j),

(j + 1,−j), (j + 2,−j), (j + 1,−j + 1), (j + 2,−j + 1).

Of these the last four belong to X ′j while the first 4 are new in X ′j+1. Thus Xj+1 is the

subcomplex of X[0,3] consisting of cells whose vertices g satisfy

AB(g) ∈ X ′j ∪ {(j + 1,−j − 1), (j + 2,−j − 1), (j + 3,−j), (j + 3,−j − 1)}.
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(j + 1,−j − 1)

(j,−j)

Fig. 7.4.1: Illustration of X ′j and st(j + 1,−j − 1)

Definition 7.4.1. We define the following subcomplexes of Xj+1:

Xj+1/4 is the subcomplex consisting of the cells of Xj+1 whose vertices g satisfy

AB(g) ∈ X ′j ∪ {(j + 1,−j − 1)}.
Xj+1/2 is the subcomplex consisting of the cells of Xj+1 whose vertices g satisfy

AB(g) ∈ X ′j ∪ {(j + 1,−j − 1), (j + 2,−j − 1)}.
Xj+3/4 is the subcomplex consisting of the cells of Xj+1 whose vertices g satisfy

AB(g) ∈ X ′j ∪ {(j + 1,−j − 1), (j + 2,−j − 1), (j + 3,−j)}.

Proposition 7.4.1. Xj+1/4 is obtained from Xj by the adjunction of 3-cells, up to homo-

topy.

Proof. We order the infinitely many vertices g of X[0,3] satisfying AB(g) = (j + 1,−j − 1)

using some arbitrary total order. We construct Xj+1/4 from Xj by adjoining each of

these vertices g in turn together with the finitely many cells whose vertex set contains

g and is contained in Xj ∪ {g}. For such a vertex g, we wish to add in all the cells

that start at the vertex g and have the rest of their vertices in Xj . The top facets of

these cells are already in Xj , where the top facet of σ = (g, e < w1 < · · · < wk) is

(g[w1], e < w−1
1 w2 < · · · < w−1

1 wk). Adding on the cell σ is essentially coning off this top
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facet. Adding the vertex g and the cells described above is equivalent to coning off the

subcomplex Xj ∩ st(g), up to homotopy. We will show that this subcomplex is homotopy

equivalent to the wedge of four 2-spheres. Coning this off is, up to homotopy, equivalent

to adjoining four 3-cells to Xj , as required.

The complex Xj ∩st(g), illustrated in Figure 7.4.2, is 2-dimensional. There are 12 vertices

g[w1] that map to (j + 1,−j) under the abelianisation, 12 that map to (j + 2,−j + 1), 8

that map (j + 1,−j + 1) and 39 that map to (j + 2,−j).

b

b

b b

b

g

12

8

39

12

Fig. 7.4.2: The star of g

We will begin our analysis of this intersection by looking at the 1-dimensional graph

between the (j + 1,−j) vertices and the (j + 2,−j + 1) ones. We will then add the cells

that include the other two types of vertices and examine how this affects the homotopy

type. This graph is shown in Figure 7.4.3. Each vertex g[wi] is simply labelled wi for

brevity. We can see there are 24 vertices in the graph and 54 edges. The blue edges form

a maximal tree and each red edge creates a loop, a generator of the fundamental group of

the graph, in combination with edges in the maximal tree. There are 31 such loops.

Now consider the effect of adding on the 39 vertices that map to (j+2,−j) and the cells that

include these vertices. These vertices are of the form g[ti] where AB([ti]) = (1, 1). Twelve

of the corresponding non-crossing partitions; t1, t13, t21, t27, t32, t36, t40, t44, t47, t50, t53, t55,

have only one rodd below them and one τeven above them in the lattice L. So each con-

tributes one cell of the form {g[rodd] < g[ti] < g[τeven]} to the space. Adding these cells

does not effect the homotopy type of the graph, as the 2-cell can be collapsed to the

edge{g[rodd] < g[τeven]}. For example t1, has the reflection r1 below it, the length 3 ele-

ment τ4 above it and the cell {g[r1] < g[t1] < g[τ4]} collapses to the edge {g[r1] < g[τ4]}
as show in Figure 7.4.4.
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τ10
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Fig. 7.4.3: Graph of the vertices mapping to (j + 1,−j) and (j + 2,−j + 1)

b b

b

g[r1] g[t1]

g[τ4]

b

b

g[r1]

g[τ4]

Fig. 7.4.4: Cell {g[r1] < g[t1] < g[τ4]}

A further twelve of these non-crossing partitions; t3, t9, t15, t23, t28, t34, t37, t42, t45, t49, t51, t54,

have only one rodd below them and two τeven above them in L. Adding these cells also

has no effect on the homotopy type of the graph. For example the element t3 has the

reflection r1 below it and the length 3 elements τ24 and τ6 above it, contributing the

cell {g[r1] < g[t3] < g[τ24]}, which collapses to the edge {g[r1] < g[τ24]} and the cell

{g[r1] < g[t3] < g[τ6]}, which collapses to the edge {g[r1] < g[τ6]}. This is shown in Figure

7.4.5.

Twelve more of these elements; t4, t7, t10, t12, t14, t17, t20, t24, t30, t35, t39, t43, have two rodd

below them in L and one τeven above them. Following a similar collapse as the previous

case, these cells also do not effect the homotopy type of the graph.

That leaves just three of these vertices that do affect the homotopy type of the graph,

those being g[t5], g[t18] and g[t25]. Consider t5, which has r1 and r13 preceding it, while τ4
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b

b

bb

g[r1]

g[t3]

g[τ6]g[τ24] b

b

b

g[r1]

g[τ24] g[τ6]

Fig. 7.4.5: Collapse of the cells containing the vertex g[t3]

and τ16 come after it in L. These four vertices already form a loop in our graph, shown in

Figure 7.4.6. Including the cells {g[r1] < g[t5] < g[τ16]}, {g[r1] < g[t5] < g[τ4]}, {g[r13] <

g[t5] < g[τ16]} and {g[r13] < g[t5] < g[τ4]} simply cones off this loop and kills it.

b b

bb

g[r1] g[r13]

g[τ4] g[τ16]

Fig. 7.4.6: Vertices incident on g[t5]

Similarly the 2-cells incident on g[t18] fill in the loop joining g[r9], g[r21], g[τ12] and g[τ24],

while the 2-cells incident on g[t25] kill the loop between g[r5], g[r17], g[τ20] and g[τ8].

We now consider the 8 vertices g[w1] where AB(w1) = (0, 2). Each of these has three rodd

below them in L and three τeven above them. This is summarised in Table 7.4.1.

Figure 7.4.7 shows the vertices incident on the vertex g[t2] and the edges joining them.

Recall that the blue edges were part of our maximal tree, while the red edges defined

generators in the fundamental group of the graph. By adjoining the star of g[t2], we cone

off this graph, killing these four loops. This pattern repeats for t22, t33, t41, t48, we move

clockwise around the circle in Figure 7.4.3, killing off four π1 generators each time.

Figure 7.4.8 shows the graph coned off by the vertex g[t8]. The edge {g[r1] < g[τ24]} is
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t2 r1 r3 r5 τ4 τ6 τ8

t22 r5 r7 r9 τ8 τ10 τ12

t33 r9 r11 r13 τ12 τ14 τ16

t41 r13 r15 r17 τ16 τ18 τ20

t48 r17 r19 r21 τ20 τ22 τ24

t8 r21 r23 r1 τ24 τ2 τ4

t6 r1 r9 r17 τ8 τ16 τ24

t26 r5 r13 r21 τ4 τ12 τ20

Table 7.4.1: Elements above and below ti in L, where AB([ti]) = (0, 2)

b b

bb

b

b

g[r1] g[r3] g[r5]

g[τ4] g[τ6] g[τ8]

Fig. 7.4.7: Vertices incident on g[t2]

b b

bb

b

b

g[r21] g[r23] g[r1]

g[τ24] g[τ2] g[τ4]

Fig. 7.4.8: Vertices incident on g[t8]

not part of the maximal tree for the larger graph, nor is the loop it creates killed off here.

This leaves seven π1 generators in the graph, the one contributed by this edge {g[r1] <

g[τ24]} and the six from the edges going from one side of the circle directly to the other in

Figure 7.4.3. Figure 7.4.9 shows the graph coned off by the vertex g[t6]. The blue edges

were not part of the maximal tree for the graph but a disc has now been glued on along

each edge and a portion of this tree. Hence each is homotopic to a path in the maximal

tree. Adding these new 2-cells fills in the loops contributed by the four red edges.
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bb

b

b

g[r1] g[r9] g[r17]

g[τ8] g[τ16] g[τ24]

Fig. 7.4.9: Vertices incident on g[t6]

We now have three π1 generators remaining, contributed by the edges {g[r13] < g[τ4]},
{g[r21] < g[τ12]} and {g[r5] < g[τ20]}. These correspond to the three loops killed off by

the vertices g[t5], g[t18] and g[t25] that we previously mentioned. The graph now has the

homotopy type of a point and the cells attached to g[t26] still have to be added. Now that

there are no loops to be killed off, adding these cells gives our space the homotopy type

of a wedge of four 2-spheres.

Proposition 7.4.2. Xj+1/2 is obtained from Xj+1/4 by the adjunction of 3-cells, up to

homotopy.

Proof. We order the infinitely many vertices g of X[0,3] satisfying AB(g) = (j + 2,−j − 1)

using some arbitrary order. We construct Xj+1/2 from Xj+1/4 by adjoining each of these

vertices g in turn together with the finitely many cells whose vertex set contains g and

is contained in Xj+1/4 ∪ {g}. The 3-dimensional cells that satisfy this criteria have the

form {g[reven]−1 < g < g[rodd] < g[ti]} and the facets {g[reven]−1 < g[rodd] < g[ti]} are

already in Xj+1/4. We will show that the space Xj+1/4 ∩ st(g) has the homotopy type of

a single sphere. Adding the vertex g and these cells is equivalent to coning off this sphere,

adjoining a 3-cell to Xj+1/4.

The complex Xj∩st(g) is illustrated in Figure 7.4.10. There are twelve vertices g[reven]−1,

twelve of the form g[rodd] and eight of the form g[ti] which map to (j + 2,−j + 1) under

the abelianisation.

This space has a very similar structure to the one we studied in the first proof. The 1-

dimensional graph between the vertices g[reven]−1 and g[rodd] has the same homotopy type

as Figure 7.4.3. We repeat this graph below with the appropriate labels for the vertices. In

this case the vertex g[reven]−1 is simply labelled reven, while the vertex g[rodd] is labelled by
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Fig. 7.4.10: The star of g

rodd. Again the blue edges form a maximal tree and each red edge contributes a generator

to the fundamental group of the graph.
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Fig. 7.4.11: Graph of the vertices mapping to (j + 1,−j − 1) and (j + 2,−j)

Now we adjoin the eight vertices g[ti] and the cells incident on them to this graph. Note

that these are precisely the same eight ti with AB([ti]) = (0, 2) that we encountered at

the end of the previous proof. We saw each had three elements rodd preceding them in L
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t2 r1 r3 r5 r4 r6 r8

t22 r5 r7 r9 r8 r10 r12

t33 r9 r11 r13 r12 r14 r16

t41 r13 r15 r17 r16 r18 r20

t48 r17 r19 r21 r20 r22 r24

t8 r21 r23 r1 r24 r2 r4

t6 r1 r9 r17 r8 r16 r24

t26 r5 r13 r21 r4 r12 r20

Table 7.4.2: Labels for the elements in the graph above and below g[ti]

and three elements τj above them. Each such τj satisfied AB(τj) = (1, 2), so for each we

have that τj = rkti for some k even. Hence g[rk]
−1 < g[ti] is an edge in Figure 7.4.11. We

summarise the elements g[rodd] and g[reven]−1 which are joined to g[ti] in Table 7.4.2.

Once again adjoining the star of a vertex g[ti] is equivalent to coning off the graph on the

vertices incident with it. This is killing four π1 generators in the graph. The six subgraphs

described by Table 7.4.2 are isomorphic those described at the end of the previous proof.

We follow the method there for the first five elements, t2, t22, t33, t41 and t48 which collapses

all the loops in the graph besides the three contributed by the edges: {g[r4]−1 < g[r13]},
{g[r12]−1 < g[r21]} and {g[r20]−1 < g[r5]}. Figure 7.4.12 shows the graph coned off by

the final vertex g[t26]. The blue edges were not originally part of the maximal tree for

the larger graph, but they are now homotopic to some segment of it. These last three π1

generators are killed off and in addition one final disc is adjoined to the space, giving it

the homotopy type of a 2-sphere.

b b

bb

b

b

g[r5] g[r13] g[r21]

g[r4]
−1 g[r12]

−1 g[r20]
−1

Fig. 7.4.12: Vertices incident on g[t26]
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Proposition 7.4.3. Xj+3/4 is obtained from Xj+1/2 by the adjunction of 3-cells, up to

homotopy.

Proof. We order the vertices g of X[0,3] that satisfy AB(g) = (j+ 3,−j) in some arbitrary

order. We construct Xj+3/4 from Xj+1/2 by adjoining each of these vertices g in turn

together with the cells whose vertex set contains g and is contained in Xj+1/2 ∪ {g}. The

space Xj+1/2∩st(g) is illustrated in Figure 7.4.13. It is homotopic to the space Xj ∩st(ĝ),

for ĝ satisfying AB(ĝ) = (j + 1,−j − 1), that was discussed in the proof of proposition

7.4.1. It was shown that space is homotopic to the wedge of four 2-spheres. Adding each

element g cones off these spheres, which is equivalent to adjoining 3-cells to Xj+1/2.

b

b

b

bb
g

12

8

39

12

Fig. 7.4.13: Star of g

Proposition 7.4.4. Xj+1 is obtained from Xj+3/4 by the adjunction of 3-cells, up to

homotopy.

Proof. We order the vertices g of X[0,3] that satisfy AB(g) = (j + 3,−j − 1) in some

arbitrary order. We construct Xj+1 from Xj+3/4 by adjoining each of these vertices g in

turn together with the cells whose vertex set contains g and is contained in Xj+3/4 ∪ {g}.
The space Xj+3/4 ∩ st(g) is illustrated in Figure 7.4.14. It is homotopic to the space

Xj ∩ st(ĝ), for ĝ satisfying AB(ĝ) = (j + 2,−j − 1), that was discussed in the proof of

proposition 7.4.2. It was shown that space is homotopic to a single 2-sphere. Adding each

element g cones off this sphere, which is equivalent to adjoining a 3-cells to Xj+3/4.
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g8 12

12

Fig. 7.4.14: Star of g

Theorem 7.4.1. The group B(F4))′ satisfies the finiteness property F2, but not the finite-

ness property F3.

Proof. Propositions 7.4.1, 7.4.2, 7.4.3 and 7.4.4 combined with Theorem 5.3.1 give this

result.

Note: The Propositions 7.4.1, 7.4.2, 7.4.3 and 7.4.4 refer to the filtration of X[0,3]. They

show that the next stage of the filtration can be built from the previous stage by the

adjunction of 3-cells. Following a similar method does not give the same result for the

quotient X ′. If it did we would have a K(B(F4)′, 1) with a finite 2-skeleton, up to homo-

topy, and would not need Brown’s theorem to deduce that B(F4)′ is finitely presented.

In particular, recall the step in X[0,3] when adding the cells of Xj+1/4 whose vertex set

contains g and is contained in Xj ∪ {g} to Xj . We saw that these cells are homotopy

equivalent to coning off the subcomplex Xj∩st(g). This is not true if we try to do a similar

step in X ′; adding the cells whose vertex set contains (j + 1,−j − 1) and is contained in

X ′j ∪ {(j + 1,−j − 1)} to X ′j . For example consider the cell {(j + 1,−j), e < r1 < r1r2} in

X ′j∩st(j+1,−j−1). This is coned off not once but twice to the vertex (j+1,−j−1), by the

cells {(j+1,−j−1), e < r3 < r3r1 < r3r1r2} and {(j+1,−j−1), e < r4 < r4r1 < r4r1r2}.
The corresponding 3-cells in the X[0,3] case have two different top faces they are coning

off, those being {g[r3] < g[r3r1] < g[r3r2r1]} and {g[r4] < g[r4r1] < g[r4r1r2]}.
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Appendix A

F4 calculations

A.1 The Non-Crossing Partition Lattice for F4

This appendix details the non-crossing partition lattice for the Coxeter group F4. We

follow Section 2.4 or [23] to number the reflections in this group. We choose

α1 = (0.5,−0.5,−0.5,−0.5),

α2 = (0,−1, 1, 0),

α3 = (0, 1, 0, 0),

α4 = (0, 0,−1, 1)

to be our simple roots. Let R1, R2, R3, R4 be the corresponding reflections with fixed

subspace α⊥i , represented by matrices in R4. Note that the roots have been ordered such

that {α1, α2} and {α3, α4} are orthogonal sets. We label the vertices in the Coxeter

diagram below to show the relationships between the reflections.

b b b b

4

R4 R2 R3 R1

Let γ = R1R2R3R4 be the Coxeter element and note that γ12 = I. We calculate the

24 positive roots by ρi = R1R2...Ri−1αi where the α’s and the R’s are indexed cyclically

modulo 4. We denote the reflection with fixed subspace ρ⊥i by ri. So there are 24 reflections

in F4. As in Chapter 2 we put a partial order on the group given by w1 < w2 when
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l(w1) + l(w−1
1 w2) = l(w2) and the non-crossing partition lattice L consists of all elements

in the interval [e, γ] of this partial order.

We now examine the non-crossing partitions whose image under the length function is 2.

Not all products of a pair of reflections precede γ, and thus are in L. To determine those

that do, we look at the dual basis to {α1, α2, α3, α4}:

β1 = (2, 0, 0, 0),

β2 = (2, 0, 1, 1),

β3 = (3, 1, 1, 1),

β4 = (1, 0, 0, 1).

These vectors satisfy βi · αj = δi,j for 1 ≤ i, j ≤ n, where δi,j is the Kronecker delta.

We define the vectors µi by µi = R1R2...Ri−1βi, where the R’s and β’s are again indexed

cyclically modulo 4. By Lemma 2.4.1, the product of two reflections rjri is an element of

L if µj · pi = 0. We check all possible products and obtain 55 matrices representing length

2 elements in L. We denote these elements by ti, 1 ≤ i ≤ 55. Each element has between

two and four factorisations, listed in Table A.1.1.

Regarding the non-crossing partitions w with l(w) = 3, we note that for each reflection ri:

l(ri) + l(r−1
i γ) = l(γ)

⇐⇒ l(γ−1riγ) + l(r−1
i γ) = l(γ)

⇐⇒ r−1
i γ < γ.

We denote these 24 elements by τi = riγ, for 1 ≤ i ≤ 24, and clearly there can be no

additional length 3 elements of L. Each length 3 element has either 4 or 9 factorisations

as a product of a length 2 element by a reflection, listed in Table A.1.2.
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t1 r2r1 r1r2 t2 r3r1 r5r3 r1r5

t3 r4r1 r1r4 t4 r6r1 r7r6 r12r7 r1r12

t5 r8r1 r13r8 r20r13 r1r20 t6 r9r1 r17r9 r1r17

t7 r16r1 r19r16 r22r19 r1r22 t8 r21r1 r23r21 r1r23

t9 r24r1 r1r24 t10 r3r2 r8r3 r21r8 r2r21

t11 r4r2 r24r4 r2r24 t12 r5r2 r20r5 r23r20 r2r23

t13 r4r3 r3r4 t14 r6r3 r9r6 r24r9 r3r24

t15 r5r4 r4r5 t16 r6r4 r8r6 r4r8

t17 r7r4 r10r7 r13r10 r4r13 t18 r9r4 r16r9 r21r16 r4r21

t19 r12r4 r20r12 r4r20 t20 r17r4 r22r17 r23r22 r4r23

t21 r6r5 r5r6 t22 r7r5 r9r7 r5r9

t23 r8r5 r5r8 t24 r10r5 r11r10 r16r11 r5r16

t25 r12r5 r17r12 r24r17 r5r24 t26 r13r5 r21r13 r5r21

t27 r8r7 r7r8 t28 r9r8 r8r9

t29 r10r8 r12r10 r8r12 t30 r11r8 r14r11 r17r14 r8r17

t31 r16r8 r24r16 r8r24 t32 r10r9 r9r10

t33 r11r9 r13r11 r9r13 t34 r12r9 r9r12

t35 r14r9 r15r14 r20r15 r9r20 t36 r12r11 r11r12

t37 r13r12 r12r13 t38 r14r12 r16r14 r12r16

t39 r15r12 r18r15 r21r18 r12r21 t40 r14r13 r13r14

t41 r15r13 r17r15 r13r17 t42 r16r13 r13r16

t43 r18r13 r19r18 r24r19 r13r24 t44 r16r15 r15r16

t45 r17r16 r16r17 t46 r18r16 r20r18 r16r20

t47 r18r17 r17r18 t48 r19r17 r21r19 r17r21

t49 r20r17 r17r20 t50 r20r19 r19r20

t51 r21r20 r20r21 t52 r22r20 r24r22 r20r24

t53 r22r21 r21r22 t54 r24r21 r21r24

t55 r24r23 r23r24

Table A.1.1: Factorisations of length 2 NCPs in F4
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τ1 τ4 τ5 τ8 τ9 τ12 τ13 τ16 τ17 τ20 τ21 τ24

t11r23 t1r23 t10r24 t2r24 t3r20 t15r21 t23r24 t5r17 t18r20 t25r21 t5r24 t3r23

t12r24 t2r2 t11r21 t4r5 t4r4 t17r5 t24r8 t6r20 t19r21 t26r24 t7r20 t6r4

t15r2 t5r5 t13r2 t6r12 t5r12 t18r13 t25r16 t28r1 t34r4 t37r5 t9r22 t7r17

t19r5 t8r20 t14r4 t9r17 t16r1 t22r4 t29r5 t30r9 t35r12 t39r13 t31r1 t8r22

t20r20 t10r1 t16r3 t14r1 t17r8 t24r9 t30r12 t33r8 t38r9 t41r12 t42r8 t18r1

t25r4 t12r21 t18r8 t21r3 t19r13 t26r16 t31r17 t35r13 t39r16 t43r17 t43r16 t20r21

t49r12 t23r3 t28r6 t22r6 t27r6 t32r7 t36r10 t40r11 t44r14 t47r15 t46r13 t45r9

t52r17 t26r8 t31r9 t25r9 t29r7 t33r10 t38r11 t41r14 t46r15 t48r18 t50r18 t48r16

t55r22 t51r13 t54r16 t34r7 t37r10 t42r11 t45r14 t49r15 t51r18 t54r19 t52r19 t53r19

τ2 τ3 τ6 τ7 τ10 τ11 τ14 τ15 τ18 τ19 τ22 τ23

t8r24 t1r24 t2r4 t15r8 t22r8 t28r12 t33r12 t37r16 t41r16 t45r20 t48r20 t51r24

t9r23 t3r2 t3r5 t16r5 t23r9 t29r9 t34r13 t38r13 t42r17 t46r17 t49r21 t52r21

t54r1 t9r4 t13r1 t21r4 t27r5 t32r8 t36r9 t40r12 t44r13 t47r16 t50r17 t53r20

t55r21 t11r1 t15r3 t23r6 t28r7 t34r10 t37r11 t42r14 t45r15 t49r18 t51r19 t54r22

Table A.1.2: Factorisations of length 3 NCPs in F4

A.2 Abelianisation of the Artin Group

We are interested in the abelianisation of the associated Artin group B(F4). The presenta-

tion of B(F4) can be read from the Coxeter diagram, the generators are [R1], [R2], [R3], [R4]

with relations

[R4][R2][R4] = [R2][R4][R2],

[R4][R3] = [R3][R4],

[R4][R1] = [R1][R4],

[R2][R3][R2][R3] = [R3][R2][R3][R2],

[R2][R1] = [R1][R2],

[R3][R1][R3] = [R1][R3][R1].

There is a natural set inclusion map i : F4 → B(F4) : Ri 7→ [Ri] that extends to the other

elements of L. When we abelianise, the generators [R4] and [R2] get identified and so do

generators [R3] and [R1]. Any element g of B(F4) can be written as a word in these four

generators. The abelianisation map is

AB : B(F4)→ Z× Z : g 7→ (x, y)
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where x is the sum of the exponents of [R4] and [R2] and y is the sum of the exponents of

[R3] and [R1] in such a word for g.

We note that it follows from the total order on reflections that

ri = γk+1Rjγ
−k−1, j > 2,

where i = j + 4k, 1 ≤ j ≤ 4.

Since r1 = R1, r2 = R2, r23 = R3 and r24 = R4 we have

AB([ri]) =

(0, 1) if i is odd

(1, 0) if i is even.

Note that there are 8 elements g with AB([g]) = (0, 2), each of which has three factorisa-

tions as a product of reflections. Similarly there are 8 elements g with AB([g]) = (2, 0),

each of which has three factorisations. Finally there are 39 elements g with AB([g]) =

(1, 1). Of these, 24 have two factorisations as a product of a pair of commuting reflections,

while 15 of them have four different factorisations.

Note that there are 12 elements g with AB([g]) = (1, 2) and 12 with AB([g]) = (2, 1). In

each case 6 of these elements have 4 factorisations and 6 have 9 factorisations as a product

of a length 2 element by a reflection. Note also that for any length 3 element g of NCP,

we can easily read off the reflection set that precedes it and the set of length 2 elements

that precede it from this list of factorisations.
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Appendix B

Matlab Functions for Calculating

Homology of Artin Groups An

%R is the set of reflections in the symmetric group $S_n$

%This function will take in the set R and create the two

%relationship sets, C the set of commutative elements and D for sets of

%dihedral groups with 3 elements.

function[C,D]=Relationships(R)

[n,useless]=size(R);

k=1;

l=1;

for i=1:n

for j=i+1:n

%Check if R(i,:) and R(j,:) commute

if [R(i,1),R(i,2),R(i,2),R(i,1)]~=[R(j,1),R(j,2),R(j,1),R(j,2)]

if R(j,1)>R(i,2) || R(i,1)>R(j,2) || (R(i,1)<R(j,1) && R(i,2)>R(j,2)) || (R(j,1)<R(i,1) && R(j,2)>R(i,2))

C(k,:)=[i,j];

k=k+1;

end

end

%Check if R(i,:) and R(j,:) are part of a dihedral set

if R(i,2)==R(j,1)

%Run thro. R again and find the 3rd element of the set

m=0;

found=’no’;

while strcmp(found,’no’)

m=m+1;

if R(m,:)==[R(i,1),R(j,2)]

found=’yes’;

end

end

D(l,:)=[i,j,m];

l=l+1;
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elseif R(i,1)==R(j,2)

m=0;

found=’no’;

while strcmp(found,’no’)

m=m+1;

if R(m,:)==[R(j,1),R(i,2)]

found=’yes’;

end

end

D(l,:)=[i,j,m];

l=l+1;

end

end

end

end

%This function takes an array of 2 characters and the relationship sets C

%and D. It uses these to move the second character to the first position

%and replace the appropriate character in the 2nd position.

function[A]=Replace(S,C,D)

i=1;

arg=’no’;

[n,useless]=size(C);

[m,useless]=size(D);

while (strcmp(arg,’no’) && i<=n)

if (S(1)==C(i,1) && S(2)==C(i,2)) || (S(1)==C(i,2) && S(2)==C(i,1))

arg=’yes’;

end

i=i+1;

end

if strcmp(arg,’yes’)

A=[S(2),S(1)];

else

i=1;

while (strcmp(arg,’no’) && i<=m)

if (S(1)==D(i,1) && S(2)==D(i,2))

A=[S(2),D(i,3)];

arg=’yes’;

elseif (D(i,1)==S(1) && D(i,3)==S(2))

A=[S(2),D(i,2)];

arg=’yes’;

elseif (D(i,2)==S(1) && D(i,1)==S(2))

A=[S(2),D(i,3)];

arg=’yes’;

elseif (D(i,2)==S(1) && D(i,3)==S(2))

A=[S(2),D(i,1)];

arg=’yes’;

elseif (D(i,3)==S(1) && D(i,1)==S(2))

A=[S(2),D(i,2)];
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arg=’yes’;

elseif (D(i,3)==S(1) && D(i,2)==S(2))

A=[S(2),D(i,1)];

arg=’yes’;

end

i=i+1;

end

end

if strcmp(arg,’no’)

S

end

end

%This function will that in an n character array S, a number i and the

%relationship matrix M. It will use these relationships to move the ith

%character to the front of the array changing the rest of the characters

%appropriately.

function[S]=Move(S,i,M)

while i>1

temp=S(i-1);

S(i-1)=S(i);

if M(temp,S(i))==-1

S(i)=temp;

else

S(i)=M(temp,S(i));

end

i=i-1;

end

end

%This function takes an array of 2 characters and the relationship sets C

%and D. It will return a third character if these three

%form a dihedral set or -1 if the original two commute.

%If they cross, it returns 0.

function[a]=Ascending(S,C,D)

[n,useless]=size(C);

[m,useless]=size(D);

i=1;

arg=’no’;

while (strcmp(arg,’no’) && i<=n)

if (S(1)==C(i,1) && S(2)==C(i,2)) || (S(1)==C(i,2) && S(2)==C(i,1))

arg=’yes’;

end

i=i+1;

end

if strcmp(arg,’yes’)

a=-1;

else
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i=1;

while (strcmp(arg,’no’) && i<=m)

if (S(1)==D(i,1) && S(2)==D(i,2))

a=D(i,3);

arg=’yes’;

elseif (D(i,1)==S(1) && D(i,3)==S(2))

a=D(i,2);

arg=’yes’;

elseif (D(i,2)==S(1) && D(i,1)==S(2))

a=D(i,3);

arg=’yes’;

elseif (D(i,2)==S(1) && D(i,3)==S(2))

a=D(i,1);

arg=’yes’;

elseif (D(i,3)==S(1) && D(i,1)==S(2))

a=D(i,2);

arg=’yes’;

elseif (D(i,3)==S(1) && D(i,2)==S(2))

a=D(i,1);

arg=’yes’;

end

i=i+1;

end

end

if strcmp(arg,’no’)

a=0;

end

end

%This function will take a set of n rows representing a loop in the

%complex. The first entry gives the sign of the loop and the number of times that generator is included. This

%function will write that loop in terms of the generating loops.

%The array G will consist of the generators of the n facets giving a

%straightening algorithm for n-1 dim elements.

function[A]=Generators(A,M,G)

[n, m]=size(A);

alldescending=’no’;

%Continue running through the for loop below until it doesn’t need to

%change anything, which means each element must be descending.

while strcmp(alldescending,’no’)

alldescending=’yes’;

%This loop checks if any pair of each element of A is ascending and if

%so changes that element. Sometimes this involves adding extra elements

%to the end of A.

for i=1:n

for j=2:m-1

S=A(i,:);

if S(j)<S(j+1)

alldescending=’no’;

79



if M(S(j),S(j+1))==-1 %They commute

A(i,1)=S(1)*(-1);

A(i,j)=S(j+1);

A(i,j+1)=S(j);

% elseif M(S(j),S(j+1))==0 %they cross

% ’error in Generators: elements cross’

else %they’re part of a dihedral set

A(i,1)=S(1)*(-1);

A(i,j)=S(j+1);

A(i,j+1)=M(S(j),S(j+1));

n=n+1;

A(n,:)=A(i,:);

%A(n,1)=S(1)*(-1);

A(n,j)=M(S(j),S(j+1));

A(n,j+1)=S(j);

end

end

end

end

end

%Once we have written this as a set of descending loops we use the

%straightening algorithm to write it in terms of the generators.

[p,q]=size(G);

% if q ~= m

% ’error’

% else

i=1;

while i<=n

j=1;

while j<=p

if A(i,2:m)==G(j,1:q-1)

temp=A(i,1);

A(i,:)=[];

n=n-1;

for k=1:q-1

S=G(j,:);

S(q-k)=[];

A(n+k,:)=[temp*(-1)^(k-1),S];

end

n=n+q-1;

i=i-1;

j=p; %Break this j loop,move to the next i.

end

j=j+1;

end

i=i+1;

end

%end

%Finally, we add up the generators
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i=1;

while i<n

j=i+1;

while j<=n

if A(j,2:m)==A(i,2:m)

A(i,1)=A(i,1)+A(j,1);

A(j,:)=[];

j=j-1;

n=n-1;

end

j=j+1;

end

%If the final answer is 0, then just delete the row

if A(i,1)==0

A(i,:)=[];

i=i-1;

n=n-1;

end

i=i+1;

end

end

%This function will take in the relationship matrix M and 2 sets of Generators, 1 for dim n

% and 1 for dim n-1. It will use the other functions defined to calculate a matrix H which

%satisfies Hc=0 if f(c.x)=0

function[H]=Matrix(M,A,G)

[m,n]=size(A);

[p,q]=size(G);

if (q~=n-1)

-1

end

H=zeros(p,m);

%Run thro. each element of A, calculate its boundary, perform the

%straightening algorithm on the answer

for i=1:m

i

B=Boundary(A(i,:),M);

B=Generators(B,M,A);

[l,useless]=size(B);

%Run thro. each element of B and enter it in the appropriate place in

%the matrix

for j=1:l

foundalready=’no’;

k=1;

while (k<=p) && strcmp(foundalready,’no’)

if B(j,2:n)==G(k,:)

foundalready=’yes’;

H(k,i)=B(j,1);

end

k=k+1;
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end

end

end

end

%This function will take in an array of permutations expressing an element

%of length n. It will return the set of these chains which are descending

%for the first l terms and then ascending for the remainder.

function[A]=Sort(Chains,l)

[n,m]=size(Chains);

A=zeros(n,m);

k=1;

for i=1:n

j=1;

correct=’yes’;

while(strcmp(correct,’yes’) && j<l)

if Chains(i,j)<Chains(i,j+1)

correct=’no’;

end

j=j+1;

end

while(strcmp(correct,’yes’) && j<m)

if Chains(i,j)>Chains(i,j+1)

correct=’no’;

end

j=j+1;

end

if strcmp(correct,’yes’)

A(k,:)=Chains(i,:);

k=k+1;

end

end

A(k:n,:)=[];

end

%The function will take in the relationship matrix M and an n character

%array S, and will return its boundary. The first entry in each row of the new array will

%be either +1 or -1, representing the sign of the face.

function[A]=Boundary(S,M)

n=length(S);

A=zeros(n,n);

for i=1:n

temp=Move(S,i,M);

A(i,1)=(-1)^(i-1);

A(i,2:n)=temp(2:n);

end

end

%Given a length n element S and the relationship sets C and D, this

%function will return all possible expressions for that element.
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function[A]=Expressions(S,C,D)

n=length(S);

if n==2

temp=Replace(S,C,D);

A=[S;temp];

if temp(2)~=S(1)

A(3,:)=[temp(2),S(1)];

end

else

%Initialise

Done=[S(1)];

B=Expressions(S(2:n),C,D);

[m,useless]=size(B);

for i=1:m

A(i,:)=[S(1),B(i,:)];

end

%Run through A, if we see an entry that hasn’t been moved to the

%front(isn’t in Done) then add the expressions with it at the front

%and add it to Done.

i=1;

p=1; %this is the original length of Done

while(i<=m)

for j=1:n

%Check if A(i,j)is in Done

in=’no’;

for k=1:p

if A(i,j)==Done(k)

in=’yes’;

end

end

%If it isn’t move it to the front and get the expressions

%for the remaining terms

if strcmp(in,’no’)

R=A(i,:);

R=Move(R,j,C,D);

B=Expressions(R(2:n),C,D);

[q,useless]=size(B);

for l=1:q

A(m+l,:)=[A(i,j),B(l,:)];

end

%Record the increased length of A

m=m+q;

%Add A(i,j) to Done

Done(p+1)=A(i,j);

p=p+1;

end

end

i=i+1;

end
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end

end

84



Bibliography

[1] D. Armstrong, Generalised Noncrossing Partitions and Combinatorics of Coxeter

Groups, Memoirs of the American Mathematical Society(2009), vol. 202, no. 949

[2] C.A. Athanasiadis, T. Brady and C. Watt, Shellability of noncrossing partition lat-

tices, Proc. Amer. Math. Soc. 135 (2007), no. 4, 939–949.

[3] D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (2003), no. 36, 647–683
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