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Abstract

We introduce deep neural networks for scanpath and saliency prediction trained

on 360-degree images. The scanpath prediction model called SaltiNet is based

on a temporal-aware novel representation of saliency information named the

saliency volume. The first part of the network consists of a model trained to

generate saliency volumes, whose parameters are fit by back-propagation using

a binary cross entropy (BCE) loss over downsampled versions of the saliency

volumes. Sampling strategies over these volumes are used to generate scanpaths

over the 360-degree images. Our experiments show the advantages of using

saliency volumes, and how they can be used for related tasks. We also show

how a similar architecture achieves state-of-the-art performance for the related

task of saliency map prediction. Our source code and trained models available

at https://github.com/massens/saliency-360salient-2017.
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1. Motivation

Visual saliency prediction is a field in computer vision that aims to estimate

the areas of an image that attract the attention of humans. This information

can provide important clues to human image understanding. The data collected

for this purpose are fixation points in an image, produced by a human observer5

that explores the image for a few seconds, and are traditionally captured with

eye-trackers [1], mouse clicks [2], and webcams [3]. The fixations are usually

aggregated and represented with a saliency map, a single channel image obtained

by convolving a Gaussian kernel with each fixation. The result is a gray-scale

heatmap that represents the probability of each pixel in an image being fixated10

by a human, and it is usually used as a soft-attention guide for other computer

vision tasks.

Traditionally, saliency maps have only described fixation information with

respect to the spatial layout of an image. This type of representations only

encode the probability of each image pixel capture the visual attention of the15

user, but with no information regarding the order in which these pixels may be

scanned or the duration of the fixation. Recent studies have raised the need

for a representation that is also temporal-aware [4]. We address the temporal

challenge for the particular case of 360◦ images, which contain the complete

scene around the capture point and allow the viewer to choose the observation20

angle. Predicting the pattern that humans follow in 360◦ images is a topic of

special interest for VR/AR applications, as it facilitates an efficient encoding

and rendering on the display devices.

The main contributions of this paper are the following:

• the introduction of saliency volumes to capture the temporal nature of25

eye-gaze scan-paths;

• the SaltiNet architecture to generate scan-paths from a deep neural net-

work that predicts saliency volumes and a sampling strategy over them;

• this work has been awarded as the best scanpath solution at the Salient360!

2



challenge from the IEEE International Conference on Multimedia and30

Expo (ICME) 2017 [5].

Figure 1: Scan-paths, saliency maps and temporally weighted saliency maps can be generated

from a saliency volume.

This paper is structured as follows. Section 2 reviews the related literature

in saliency prediction for eye fixations and presents our work with respect to

them. Section 3.1 presents the whole architecture of the system, and Section

5 describes how the deep neural network was trained. Section 6 describes the35

experiments and results to assess the performance of the model, while Section

7 draws the conclusions and future work.

2. Related Work

2.1. Saliency prediction

The first models for saliency prediction were biologically inspired and based40

on a bottom-up computational model that extracted low-level visual features

such as intensity, color, orientation, texture, and motion at multiple scales.

Itti et al. [6] proposed a model that combines multiscale low-level features to

create a saliency map. Harel et al. [7] presented a graph-based alternative that

starts from low-level feature maps and creates Markov chains over various image45
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maps, treating the equilibrium distribution over map locations as activation and

saliency values.

Although these models performed reasonably well qualitatively, they had

limited practical use because they frequently did not match actual human sac-

cades from eye-tracking data. More recent research has revealed that humans50

not only base their attention on low-level features, but also on high-level se-

mantics [4] (e.g., faces, humans, cars, etc.). Judd et al. introduced in [8] an

approach that used low, mid, and high-level image features to define salient lo-

cations. These features where used in combination with a linear support vector

machine to train a saliency model. Borji [9] also combined low-level features55

with top-down cognitive visual features and learned a direct mapping to eye

fixations using Regression, SVM, and AdaBoost classifiers.

Recently, the field of saliency prediction has made great progress due to

advance of deep learning and its applications on the task of image classification

[10] [11]. The advances suggest that these models are able to capture high-level60

features. As noted in [4], in March of 2016 there where six deep learning models

among the top 10 results in the MIT300 saliency Benchmark [12].

The enormous amount of training data necessary to train these networks

makes them difficult to train directly for saliency prediction. With the objec-

tive of allowing saliency models to capture high-level features, some authors65

have adapted well-known models with good performance in the task of image

recognition. DeepGaze [13] achieved state-of-the-art performance by reusing

the well-known AlexNet [10] pretrained on ImageNet [14] with a network on

top that reads activations from the different layers of AlexNet. The output

of the network is then blurred, center biased, and converted to a probability70

distribution using a softmax. A second version called DeepGaze 2 [15] used

features from VGG-19 [16] trained for image recognition. In this case, they did

not fine-tune the network. Rather, some readout layers were trained on top

of the VGG features to predict saliency with the SALICON dataset [2]. This

results corroborated the idea that deep features trained on object recognition75

provide a versatile feature space for performing related visual tasks. A complete
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new architecture designed and trained for saliency prediction was proposed in

[17], but the same work also observed the benefits of using deeper pre-trained

models for image classification as a basis. Other advances in deep learning such

as generative adversarial training (GANs) and attentive mechanisms have also80

been applied to saliency prediction: SalGAN [18] is a deep network for saliency

prediction that measured the gain in performance when using a universal ad-

versarial training in opposite to optimizing for a specific loss function. The

Saliency Attentive Model (SAM) [19] includes a Convolutional LSTM that fo-

cuses on the most salient regions of the image to iteratively refine the predicted85

saliency map.

In [20], Torralba et al. studied how the scene modules visual attention and

discovered that the same objects receive different attention depending on the

scene where they appear (i.e. pedestrians are the most salient object in only 10%

of the outdoor scene images, being less salient than many other objects. Tables90

and chairs are among the most salient objects in indoor scenes). With this

insight, Liu et al. proposed DSCLRCN [21], a model based on CNNs that also

incorporates global context and scene context using RNNs. Their experiments

have obtained outstanding results in the MIT Saliency Benchmark.

Recently, there has been interest in finding appropriate loss functions. Huang95

et al. [22] made an interesting contribution by introducing loss functions based

on metrics that are differentiable, such as NSS, CC, SIM, and KL divergence to

train a network (see [23] and [24]).

Finally, the field of saliency prediction on omni directional images has re-

ceived interested in the last years due to its applications in Virtual Reality100

technologies [25][26][27][28][29].

2.2. Scanpath prediction

Unlike the related task of saliency map prediction, there has not been much

progress in the task of scanpath prediction over the last years. Cerf et al.

[30] discovered that observers, even when not instructed to look for anything105

particular, fixate on a human face with a probability of over 80% within their
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first two fixations. Furthermore, they exhibit more similar scanpaths when faces

are present. Recently, Hu et al. [31] have introduced a model capable of selecting

relevant areas of a 360◦ video and deciding in which direction should a human

observer look at each frame. An object detector is used to propose candidate110

objects of interest and a RNN selects the main object at each frame. d

3. SaltiNet: Scanpath prediction model

3.1. Architecture

The central element in the architecture of SaltiNet is a deep convolutional

neural network (DCNN) that predicts a saliency volume for a given input image.115

This section provides detail on the structure of the network, the loss function,

and the strategy used to generate scan-paths from saliency volumes.

Figure 2: Overall architecture of the proposed scanpath estimation system.

3.1.1. Saliency Volumes

Saliency volumes aim to be a suitable representation of spatial and temporal

saliency information for images. They have three axes that represent the width120

and height of the image, and the temporal dimension.

Saliency volumes are generated from information already available in cur-

rent fixation datasets. First, the timestamps of the fixations are quantized. The

length of the time axis is determined by the longest timestamp and the quantiza-

tion step. Second, a binary volume is created by placing a ‘1’ at fixation points125

and a ‘0’ on the remaining positions. Third, a multivariate Gaussian kernel is
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convolved with the volume to generate the saliency volume. The values of each

temporal slice are normalized, converting the slice into a probability map that

represents the probability of each pixel being fixated by a user at each timestep.

Figure 1 shows how saliency volumes are a meta-representation of saliency130

information and how other saliency representations can be extracted from them.

Saliency maps can be generated by performing an addition operation across all

the temporal slices of the volume, and normalizing the values to ensure they

add to one. A similar representation is the temporally weighted saliency map,

which can be generated by performing a weighted addition operation of all the135

temporal slices. Finally, scan-paths can also be extracted by sampling fixa-

tion points from the temporal slices. Sampling strategies that aim to generate

realistic scan-paths are discussed in Section 6.3.

3.1.2. Convolutional Neural Network

We propose a convolutional neural network (CNN) that adapts the filters140

learned to predict flat saliency maps to predict saliency volumes. Figure 2

illustrates the architecture of the convolutional neural network, composed of

10 layers and a total of 25.8 million parameters. Each convolutional layer is

followed by a rectified linear unit non-linearity (ReLU). Excluding the last layer,

the architecture follows the proposal of SalNet [17], whose first three layers are145

initialized from the VGG-16 model [32] trained for image classification.

Our network was designed considering the amount of training data available.

Different strategies where introduced to prevent overfitting. First, the model

was previously trained on the similar task of saliency map prediction, and the

obtained weights were fine-tuned for the task of saliency volume prediction.150

Second, the input images were resized to 300× 600, a much smaller dimension

than their original size of 3000× 6000. The last layer of the network outputs a

volume of size 12× 300× 600, with three axis that represent time, height, and

width of the image.
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3.1.3. Scan-path sampling155

We take a stochastic approach to scan-path sampling2. The generation of

scan-paths from the saliency volumes requires determining: 1) number of fixa-

tions of each scan-path; 2) the duration in seconds of each fixation; and 3) the

location of each fixation point. The first two values were sampled from their

probability distributions learned from the training data. The location of each160

fixation point was also generated by sampling, this time from the correspond-

ing temporal slice from the predicted saliency volume. Different strategies were

explored for this purpose, presented together with their performance in Section

6.

4. A model for saliency map prediction165

After the development of the scanpath prediction model, we also explored

how a similar model based on a deep convolutional neural network could be

used for the task of saliency map prediction on 360-degree images.

4.1. Architecture

The architecture of this model is similar to the one used for the previous170

scanpath prediction model, the main difference being the number of channels

in the last convolutional layer. While the previous model featured 12 different

filters in the last convolutional layer, this model only has a single filter. This

results in a 2-dimensional network output suitable size for representing saliency

maps.175

The network is first initialized with parameters that were trained to pre-

dict saliency maps on normal images, and adapts them for the prediction of

saliency maps on 360-degree images on the equirectangular space. The layers

were initialized from the SalNet model [17], whose first three layers are in turn

2We also experimented with using an LSTM to directly predict scan-paths from the training

data. However, we found that this resulted in the model regressing to the image center [33].

Future work will consider using adversarial training to address this.
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initialized from the VGG-16 model [32] trained for image classification. The180

output of the network has a size of [300× 600].

5. Training

The training procedure of the two described models is very similar. We

trained the CNNs over 36 images of the 40 training images from the Salient360

dataset [5], leaving aside 4 images for validation. We normalized the values of the185

saliency volumes and saliency maps to be in the interval of [0, 1]. Both the input

images and the output activation volumes were downsampled to 600×300 prior

to training. The saliency volumes were generated from fixations by convolving

with a multivariate Gaussian kernel with bandwidths {4, 20, 20} (time, height,

width). The 2D saliency maps used for training are those provided by the190

dataset.

The CNNs were trained using stochastic gradient descent with cross entropy

loss using a batch size of 1 image for 90 epochs. The binary cross entropy loss

is defined as LBCE in Eq.1, where Sj and Ŝj correspond to the ground truth

and predicted values of the saliency map.195

LBCE = − 1

N

N∑

j=1

Sj log(Ŝj) + (1− Sj) log(1− Ŝj). (1)

During training, results on the validation set were tracked to monitor conver-

gence and overfitting problems. The L2 weight regularizer (weight decay) was

used to avoid overfitting. Our networks took approximately two hours to train

on a NVIDIA GTX Titan X GPU using the Keras framework with the Theano

backend. The learning rate was set to α = 0.001 for the scanpath prediction200

model, and α = 0.01 for the saliency map prediction model. Figure 3 shows the

learning curves of both models.
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(a) Scanpath prediction model

(b) Saliency map prediction model

Figure 3: Training curves obtained for both models (binary cross entropy loss).

6. Experiments

6.1. Datasets

Due to the small size of the training dataset, we performed transfer learning205

to initialize the weights of the networks using related tasks. First, the network

was trained to predict saliency maps using the SALICON dataset [22] using

the same architecture of SalNet [17]. Then, the network was trained to pre-

dict saliency volumes generated from the iSUN dataset [34] that contains 6000

training images. The network was fine-tuned using the 60 images of the dataset210
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of head and eye movements provided by the University of Nantes [35]. This

dataset was acquired based on the images displayed on the head mounted dis-

play (HMD) Oculus-DK2. Eye gaze data was captured from a Sensomotoric

Instruments (SMI) sensor in the HMD, which transmitted eye-tracking data

binocularly at 60Hz. There were 40-42 observers, who could freely observe the215

scene with no task instructed. Each 360 images were shown for 25 seconds and

there was a 5 second gray screen between two images.

6.2. Metrics

The similarity metric used for scanpath evaluation is a variation of the Jar-

odzka algorithm [36] proposed by the authors of the 360 saliency dataset [35].220

The toolbox and evaluation tools can be found in [37]. The standard similarity

criteria was slightly modified to use equirectangular distances in 360 instead of

Euclidean distances. The generated and ground truth scan-paths are matched 1

to 1 using the Hungarian algorithm to obtain the minimum possible final cost.

The presented results compare the similarity of 40 generated scan-paths with225

the scan-paths in the ground truth.

The evaluation of saliency map prediction has received the attention of sev-

eral researchers, and there are different proposed approaches. Our experiments

consider several of these, in a similar way to the MIT saliency benchmark [12].

6.3. Sampling strategies230

Figure 4 shows the distribution of the number of fixations and the duration

of each fixations for the training set. During scan path generation, we sample

the number of fixations and their duration from these empirical distributions.

Regarding the spatial location of the fixation points, three different strate-

gies were explored. The simplest approach (1) consists of taking one fixation for235

each temporal slice of the saliency volume. Through qualitative observation we

noticed that scan-paths generated in this way were unrealistic, as the probabil-

ity of each fixation is not conditioned on previous fixations. A more elaborated
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sampling strategy (2) consists of forcing fixations to be closer to their respec-

tive previous fixation. This is accomplished by multiplying a temporal slice240

(probability map) of the saliency volume with a Gaussian kernel centered at the

previous fixation point. This suppresses the probability of positions that are far

from the previous fixation point. The third sampling strategy (3) we assessed

consisted of suppressing the area around all previous fixations using Gaussian

kernels. As shown in Table 1, we found that the best performing model was the245

one using sampling strategy (2).

Figure 4: Empirical distributions of the number of fixations per scan-paths (top) and duration

of each fixation (bottom).

6.4. Results

Scan-path prediction evaluation has received attention lately and it is a very

active field of research [38][36].

Table 1 presents the impact of different sampling strategies over the saliency250

volume. We have compared our results with the accuracy that would be obtained

by a model that outputs random fixations, and a model that outputs the ground

truth fixations.

Table 2 compares our scanpath prediction model with two other solutions

presented at the Salient360! Challenge [5] held at the 2017 IEEE ICME con-255

ference in Hong Kong. These figures were provided by the organizers of the
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Jarodzka↓
Random scan-paths 4.94

(1) Naive sampling strategy 3.45

(3) Avoiding fixating on same places 2.82

(2) Limiting distance between fixations 2.27

Sampling ground truth saliency map 1.89

Sampling ground truth saliency volume 1.79

Ground truth scan-paths 1.2e-8

Table 1: Comparison between the three considered spatial sampling strategies. Lower values

are better.

Jarodzka↓
SaltiNet (Ours) 2.8697

SJTU [26] 4.6565

Wuhan University [39] 5.9517

Table 2: Comparison between three submissions to the Salient360! Challenge. Lower values

are better.

challenge. Results clearly indicate the superior performance of our system with

respect to the two other participants.

The performance of our model has also been explored from a qualitative

perspective by observing the generated saliency volumes and scan-paths. Figure260

5 compares a generated scan-path with a ground truth scan-path. Figure 6

shows two examples of ground truth and generated saliency volumes.

Table 3 compares the performance of our saliency map prediction model with

other solutions presented at the Salient360! Challenge. The results demonstrate

the superior performance of our system for two of the metrics.265
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KL↓ CC↑ NSS↑ ROC↑
Our Model 0.1954 0.8471 0.7785 0.6819

TU Munich, Germany [40] 0.4489 0.5786 0.8052 0.7259

SJTU, China [26] 0.4805 0.5324 0.9180 0.7347

Wuhan University, China [39] 0.5082 0.5383 0.9358 0.7363

TU Munich, Germany [40] 0.5008 0.5535 0.9153 0.7467

Zhejiang University, China [41] 0.6980 0.5270 0.8505 0.7140

Trinity College, Ireland [42] 0.4865 0.5361 0.7574 0.7019

University of Science and Technology, China [5] 2.0171 0.5073 0.9175 0.6946

Table 3: Comparison between the submissions to the Salient360! Challenge in the saliency

map prediction track.

(a) Example of predicted scan-path

(b) Example of ground truth scan-path

Figure 5: The top image shows a predicted scanpath, sampled from a predicted saliency

volume. The image at the bottom shows a single ground truth scanpath.
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(a) Indoor example

(b) Outdoor example

Figure 6: The images above show the predicted and ground truth saliency volumes for a given

stimulus. For each saliency volume, three temporal slices are shown.
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7. Conclusions

This work has presented SaltiNet, a model capable of predicting scan-paths

on 360◦ images. This model won a performance award at the Salient360! chal-

lenge from the IEEE International Conference on Multimedia and Expo (ICME)

2017 [5]. We have also introduced a novel temporal-aware saliency representa-270

tion that is able to generate other standard representations such as scanpaths,

saliency maps, or temporally weighted saliency maps. Our experiments show

that it is possible to obtain realistic scanpaths by sampling from saliency vol-

umes, and the accuracy greatly depends on the sampling strategy.

We have also found the following limitations to the generation of scanpaths275

from saliency volumes: 1) the probability of a fixation is not conditioned to

previous fixations; 2) the length of the scanpaths and the duration of each

fixation are treated as independent random variables. We have tried to address

the first problem by using more complex sampling strategies. Nevertheless, this

three parameters are not independently distributed and therefore our model is280

not able to accurately represent this relationship. Future work will focus on

training a fully end-to-end neural network capable of prediction the scan-paths

without requiring a sampling module.

Finally, we used a very similar architecture for the related task of saliency

map prediction, improving the state-of-the-art on two of the metrics. Our results285

can be reproduced with the source code and trained models available at https:

//github.com/massens/saliency-360salient-2017.
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The main contributions of this paper are the following: 

 

• the introduction of saliency volumes to capture the temporal nature of 

eye-gaze scan-paths; 

 

• the SaltiNet architecture to generate scan-paths from a deep neural 

network that predicts saliency volumes and a sampling strategy over them; 

 

• this work has been awarded as the best scanpath solution at the 

Salient360! challenge from the IEEE Inter- national Conference on 

Multimedia and Expo (ICME) 2017 [29]. 

 

• A similar architecture to SaltiNet suitable for saliency map prediction 

with state of the art performance 

Highlights (for review)


