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J. Zhou, L. Azevedo, T. Daudert, B. Davis, M. Hürlimann, H. Afli, J. Du, D. Ganguly, W.

Li, A. Way, A. F. Smeaton. “Dublin City University and Partners Participation in the INS

and VTT Tracks at TRECVid 2016”, In TRECVID 2016 Overview Papers and Slides,

2016.



Acronyms and Abbreviations

ACC Accuracy

CNN Convolutional Neural Network

LSTM Long short-term memory unit

FCN Fully Convolutional Network

GPU Graphics Processing Unit

CCTV Closed Circuit Television

RNN Recurrent Neural Network

SIFT Scale-Invariant Feature Transform

FPS Frames Per Second

STV Spatio-Temporal Volume

MSE Mean Square Error

MAE Mean Absolute Error

ROC Receiver Operating Characteristic

AUC Area Under the Curve

GMM Gaussian Mixture Model

HOG Histogram of Oriented Gradients

CPU Central Processing Unit

EER Equal Error Rate

SVM Support Vector Machine



RGB The red/green/blue colour space

ReLU Rectified linear unit

API Application Programming Interface

TPR True Positive Rate

FPR False Positive Rate

DLE Density Level Estimation

SOTA State-Of-The-Art

MTL Multi Task Learning

DA Domain Adaptation

TL Transfer Learning

IOT Internet Of Things

MAP Mean Average Precision



Contents

List of Figures

List of Tables

Abstract

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Internet-of-Things and Smart Cities . . . . . . . . . . . . . . . . . . . 5

1.3.2 Online Video Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Hypotheses and Research Questions . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 13

2.1 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 18



2.1.4 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.5 Batch Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.7 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.8 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Crowd Behaviour Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Behaviour Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Behaviour Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Crowd Congestion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Crowd Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Crowd Density Level Estimation . . . . . . . . . . . . . . . . . . . . . 35

2.4 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1 Crowd Behaviour Recognition . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 Crowd behaviour Anomaly Recognition . . . . . . . . . . . . . . . . . 45

2.6.3 Crowd Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.4 Crowd Density Level Estimation . . . . . . . . . . . . . . . . . . . . . 51

2.6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Crowd Behaviour Analysis Via Deep Neural Networks 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



3.3.1 Fixed Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Model Selection Issues Investigated . . . . . . . . . . . . . . . . . . . 61

3.4 Crowd Behaviour Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Hand-Crafted Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.2 Deep CNN Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 Comparison With The State-Of-The-Art . . . . . . . . . . . . . . . . . 68

3.5 Crowd behaviour Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Hand-Crafted Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.2 Deep Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.3 Comparison With The State-Of-The-Art . . . . . . . . . . . . . . . . . 77

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Crowd Congestion Analysis Via Deep Neural Networks 80

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Fixed Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Model Selection Issues Investigated . . . . . . . . . . . . . . . . . . . 83

4.4 Crowd Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Hand-Crafted Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.2 Deep Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.3 Comparison With The State-Of-The-Art . . . . . . . . . . . . . . . . . 89

4.5 Crowd Density Level Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 ShanghaiTech Density Dataset Construction . . . . . . . . . . . . . . . 91



4.5.2 Hand-Crafted Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5.3 Deep Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.4 Comparison With The State-Of-The-Art . . . . . . . . . . . . . . . . . 95

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Multi-Task Crowd Analysis 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Fixed Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.2 Model Selection Issues Investigated . . . . . . . . . . . . . . . . . . . 100

5.4 Auxiliary Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.1 Density Level Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.2 Crowd Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Joint Task Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.1 Task Specific Normalisation v. Shared Normalisation . . . . . . . . . . 108

5.5.2 Loss Weightings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.3 2-Task v. 3-Task Training . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.4 Comparison With the State-Of-The-Art . . . . . . . . . . . . . . . . . 112

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Visual Domain Adaption In Object Counting 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Fixed Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.2 Model Selection Issues Investigated . . . . . . . . . . . . . . . . . . . 117

6.4 Non-Crowd Object Counting Datasets . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Cell Counting Dataset Construction . . . . . . . . . . . . . . . . . . . . . . . 118

6.6 Domain Adaptation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6.1 Traditional Transfer Learning v. New DA Strategies . . . . . . . . . . 120

6.6.2 Choosing the Source Domain . . . . . . . . . . . . . . . . . . . . . . 123

6.7 Domain Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.8 Comparison to the State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . 126

6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Conclusions 130

7.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 139



List of Figures

1.1 Examples of the significant variation observed in images of large crowds . . . . 2

1.2 Taxonomy of the various vision-based crowd analysis tasks . . . . . . . . . . . 3

1.3 The IoT-based Smart City concept visualised (Shah, 2018) . . . . . . . . . . . 5

1.4 The live-streaming of video from mobile devices is now an everyday occurrence. 7

2.1 A single neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Multi-layer neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Example of gradient descent in action on a 2D plane. After each step the gra-

dient is re-calculated and another step towards the local minima (bottom of the

hill) is taken. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Example of a 2-D convolutional kernel in action . . . . . . . . . . . . . . . . . 19

2.5 Batch normalisation algorithm for processing the input x for a given layer. . . . 23

2.6 Local motion vectors captured through optical flow estimation. These local

motion vectors are coloured to indicate the direction of motion. . . . . . . . . . 24

2.7 ROC curves for two binary classification systems (red and blue). The black line

represents the performance achieved by a set of random guesses. Any curve

below the black line is therefore deemed to be inferior to randomly guessing. . 27

2.8 EER and AUC for a given ROC curve. . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Crowd behaviour recognition pipeline . . . . . . . . . . . . . . . . . . . . . . 29



2.10 The head detector based crowd counting algorithm of Li et al. (Li et al., 2008) . 33

2.11 Crowd density heatmap example. The jet colourmap has been applied to the

density heatmap (right). The integral of this ground truth image corresponds to

the number of people present in this original image (left). . . . . . . . . . . . . 35

2.12 A multi-task neural network performing 4 tasks simultaneously for a given input

x. The internal representations of the hidden layer are shared between all tasks. 38

2.13 Cross-stitch unit of Misra et al. (Misra et al., 2016) applied to the Alexnet archi-

tecture (Krizhevsky et al., 2012). These additional units optimise the proportion

of shared and task specific parameters in the network. . . . . . . . . . . . . . 39

2.14 Overview of the various classes of transfer learning (Pan and Yang, 2010) . . . 41

2.15 The learning without forgetting approach of (Li and Hoiem, 2017) . . . . . . . 43

2.16 The Violent-Flows dataset (Hassner et al., 2012a). Bottom left: violent clips.

Top right : non-violent clips . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.17 The WWW Crowd Dataset (Shao et al., 2015). Samples frames are shown as

well as a word cloud presenting the distribution of the various scene concepts. . 46

2.18 The limited range of scenes contained within the PETS2009 Dataset. . . . . . . 47

2.19 A sample frame taken from the UMN dataset. . . . . . . . . . . . . . . . . . . 47

2.20 A sample frame taken from the UCSD Anomaly Detection Dataset (Mahadevan

et al., 2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.21 Sample frames taken from the LV dataset (Leyva et al., 2017). . . . . . . . . . 49

2.22 Sample image taken from the UCF CC 50 dataset (Idrees et al., 2013). . . . . . 50

2.23 Sample image taken from the ShanhaiTech dataset (parts A and B) (Zhang et al.,

2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Residual block used in the architecture of (He et al., 2016). . . . . . . . . . . . 58



3.2 Details for the Resnet family of architectures (He et al., 2016). . . . . . . . . . 58

3.3 late fusion 3D CNN approach of Carreira and Zisserman (Carreira and Zisser-

man, 2017). 2D feature maps generated from each of the N frames ingested are

fused along the temporal axis before a 3D convolutional layer, 3D maxpooling

and fully connected layer are applied to produce a classification output. The 3D

convolutional layer contains 256 kernels each 3× 3× 3 in size. . . . . . . . . 65

3.4 Fully 3D convolutional architecture of Tran et al. (Tran et al., 2015). All con-

volutional layers perform 3D convolutions with 3 × 3 × 3 kernels and stride

1. The number of kernels contained in each layer is listed alongside the layer

name. 5 frames are fused together along the temporal axis before being pro-

cessed by this network. This network is trained from scratch due to the very

distinct architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 LSTM based video recognition architecture of Ng (Ng et al., 2015). Feature

vectors are extracted from a sequence of N frames, fused temporally and passed

through a deep LSTM block containing 5 layers of LSTMs, each with 512 mem-

ory cells. The output from the LSTM at the final time step is fed into a fully

connected layer to produce a classification output. . . . . . . . . . . . . . . . . 66

3.6 Examples of the proposed crowd behaviour recognition system in action on the

WWW Crowd Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



3.7 Examples of the proposed crowd behaviour anomaly detection system in action

on the LV dataset. A single key frame from the beginning of each clip is shown.

A clip level AUC of 0.98 is achieved on the first scene (crash3), which is largely

static in nature until a collision happens on the road later in the sequence. How-

ever, for the second scene (fight2) a clip-level AUC of just 0.32 is achieved,

due largely to the busy nature of this scene, which makes it difficult to detect

the fight that occurs later on in the sequence. Clearly the level of clutter in the

video sequence has an affect of detection performance. Images of anomalous

events are left out of the thesis due to their potentially upsetting nature. . . . . . 78

4.1 Heatmap based crowd counting via CNN. A network is trained to estimate con-

gestion heatmaps using a set of ground truth images. An estimated heatmap is

then integrated to produce an estimate of the overall crowd count. . . . . . . . 87

4.2 Examples of the proposed crowd counting system in action on the ShanghaiTech

dataset. The first image contains 803 people with an estimated count of 819

calculated. The second image contains 1544 people with an estimated count of

1394 calculated. Larger errors are observed for higher congestion scenes. . . . 91

4.3 Distribution of the ShanghaiTech Density dataset across the 10 density level

labels using the proposed annotation scheme. . . . . . . . . . . . . . . . . . . 93

4.4 Distribution of the ShanghaiTech Density dataset across the 10 density level

labels using an evenly spaced annotation scheme. This results in an extremely

skewed distribution across the 10 density levels. It is reminiscent of the Zipf

Parento distribution (Powers, 1998) . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Auxiliary regression loss output included for crowd density level estimation . . 103

5.2 Auxiliary heatmap generation output included for patch based crowd counting . 106



5.3 Multi-task crowd analysis architecture proposed for this set of experiments . . . 109

6.1 Sample images taken from the TRANCOS (Guerrero-Gómez-Olmedo et al.,
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Abstract

Crowd Behaviour and Congestion Analysis Through Deep Machine Learning

Mark Marsden

This thesis looks to advance understanding in the field of computer vision based crowd

analysis through a combination of deep learning techniques, multi-task learning, and domain

adaptation. Issues that have limited progress in this field to date include visual occlusion, scale

and perspective issues, variation in scene content as well as a lack of labelled training data.

Another negative trend that has emerged in this field as well as in computer vision in general is

the development of bespoke, single-task techniques that cannot be easily extended or re-used.

The core contributions of this work are as follows. First, deep learning methods are de-

veloped for several crowd analysis tasks including crowd counting, crowd density level esti-

mation, crowd behaviour recognition and crowd behaviour anomaly detection. The proposed

data-driven methods are shown to be superior to techniques which rely on hand-crafted features,

overcoming many of the observed challenges and achieving state-of-the-art results. Second,

multi-task learning strategies are applied to crowd behaviour and congestion analysis tasks,

increasing the overall predictive performance and removing redundant model parameters. Fi-

nally, domain adaptation techniques are investigated as a means to extend a given crowd analysis

model to perform the same task in new visual domains (e.g. medical, wildlife) and vice-versa,

with original domain performance preserved.





“Invention, my dear friends, is 93% perspiration, 6% electricity, 4% evaporation

and 2% butterscotch ripple”

Gene Wilder, Willy Wonka and the Chocolate Factory



Chapter 1

Introduction

The objective of this chapter is to provide a high level introduction to the subject of the thesis and

to describe the specific research objectives and core motivations. The next section introduces

the research area of computer vision as well as the topic of vision-based crowd analysis, which

itself is composed of several related analysis tasks. Following this, the main motivations behind

work in this area are discussed, some potential applications are presented as well as the core

research objectives and proposed hypotheses of the thesis. Finally, the overall structure of the

thesis is outlined.

1.1 Overview

Computer vision is a broad research area that deals with the extraction of high level under-

standing from digital images and video. Research in this area covers a range of analysis tasks

including object recognition, semantic segmentation, 3-D pose estimation and VQA (visual

question answering) among others. Computer vision techniques have been utilised in a range

of application domains including medical imaging, autonomous vehicles, facial recognition,

content-based information retrieval and crowd analysis. The origins of this field date back to
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the 1960s when Marvin Minsky, a co-founder of the Massachusetts Institute of Technology

AI lab, proposed The Summer Vision Project 1, a short term project that looked to developed

accurate image segmentation and object identification algorithms over the course of a single

summer. Work on these tasks continues to this day across the world. This thesis focuses on the

development of computer vision techniques to better understand the nature of large and dynamic

crowds.

Vision-based crowd analysis looks to extract global scene attributes from images containing

large groups of people, such as those shown in figure 1.1. Examples of such attributes include

the overall number of people present in the scene as well the collective behaviour of the crowd.

Figure 1.1: Examples of the significant variation observed in images of large crowds

Vision-based crowd analysis can be separated into a number of related analysis tasks which

can be defined as follows:

• Crowd Counting: Estimate the true number of people present in an image of a crowded
1https://dspace.mit.edu/bitstream/handle/1721.1/6125/AIM-100.pdf
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scene, expressed as an integer value.

• Crowd Density Level Estimation: Classify the congestion level observed in an image of

a crowded scene, expressed on a discrete scale (0-N).

• Crowd Behaviour Recognition: Categorise the collective behaviour observed in an im-

age or video of a crowded scene, expressed as a set of likelihood scores for a range of

behaviour concepts.

• Crowd Behaviour Anomaly Detection: Detect collective crowd behaviour in an image

or video that strays from an established norm, expressed as the likelihood that the given

frame or sequence of frames contains abnormal behaviour.

These 4 crowd analysis tasks can be split into two classes, crowd congestion analysis and

crowd behaviour analysis, as shown in the taxonomy presented in figure 1.2. While there is an

obvious relationship between the congestion level and behaviour of a large crowd, these factors

will be treated separately for the purposes of this study. can be related Related computer vision

tasks that do not fall under crowd analysis include person re-identification and human action

recognition. These tasks will not be investigated as part of this thesis as the focus of these tasks

is on an individual subject rather than the collective crowd.

Figure 1.2: Taxonomy of the various vision-based crowd analysis tasks
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1.2 Motivation

According to a 2014 report by the U.N., 54% of the world’s population currently live in urban

areas with this projected to increase to 66% by 20502. This corresponds to a growth in global

urban population of 2.5 billion people over the next 32 years. With this rapid increase in urban

population, highly congested crowds will become a significant part of daily life, presenting

enormous challenges to the maintenance of public safety and the efficient movement of people

in modern cities. Every year dozens of people are injured or killed in densely populated urban

areas due to stampedes and crushes3. A recent example of this was the 2014 New Year’s Eve

stampede in Shanghai, China where 36 people tragically died. This loss of life could potentially

be prevented with better analysis and understanding of crowd behaviour and congestion levels

across large metropolitan areas.

An unprecedented global rise in CCTV (Closed-Circuit Television) surveillance has accom-

panied this rapid growth in urban population. In cities such as London there have been extensive

networks of CCTV cameras installed4. This rapid deployment of infrastructure has resulted in

more CCTV footage being produced than can be analysed by human observers. Therefore the

automated analysis of these ever growing archives has become a necessity in order to fully ben-

efit from this large-scale deployment. This increase in CCTV data generation, however, pales

in comparison to the quantity of video now produced and shared online by individual users

from their smartphones and personal devices. It is projected that mobile video traffic will reach

38.1 Exabytes per month by 2021, up from 4.4 Exabytes per month in 2016 5. One Exabytes

is equivalent to one billion gigabytes. A significant number of video clips shared on platforms

2http://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html
3https://en.wikipedia.org/wiki/List of human stampedes
4https://www.caughtoncamera.net/news/how-many-cctv-cameras-in-london/
5https://www.cisco.com/assets/sol/sp/vni/forecast highlights mobile/
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such as Facebook contain violent and potentially upsetting behaviour such as large fights and

anti-social behaviour. Monitoring for this footage has proven a significant challenge, with au-

tomated solutions not yet able to accurately detect the undesired content.

Clearly there is a need for accurate and scalable crowd video analysis systems both in the

CCTV surveillance and online video domains. Developing such systems will allow us to pro-

duce safer and more efficient cities and prevent the proliferation of undesirable and hateful

video content online.

1.3 Applications

The development of highly accurate vision-based crowd analysis systems has the potential for

significant societal impact across several application areas. These potential applications are

discussed in this section.

1.3.1 Internet-of-Things and Smart Cities

Figure 1.3: The IoT-based Smart City concept visualised (Shah, 2018)

The term Internet-of-Things (IoT) refers to the vast network of Internet connected physi-
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cal devices found across the globe, all embedded with computing hardware and individually

identifiable within the network. This label was coined by Kevin Ashton of Procter & Gamble

in 19996. This network of devices ranges from household appliances and CCTV cameras to

biochip transponders in farm animals. Utilising this vast network of devices can allow more

direct integration between the physical and digital worlds, leading to significant societal and

economic impact. It is estimated that by 2020 there will be 30 billion IoT devices in the wild7

and that the global market value of the IoT sector will reach 7.1 trillion US dollars (Hsu and

Lin, 2016).

A major component of the overall IoT sector is the area of Smart City technologies. This

refers to an urban area that utilises data gathered by IoT devices to manage resources and assets

efficiently. This includes the movement of people, the consumption of energy and the safety of

individual citizens. This concept of a connected, data-driven Smart City is illustrated in figure

1.3. IP-enabled CCTV cameras represent a significant portion of the overall IoT network in a

Smart City, providing significant amounts of video data. Accurate analysis of this video data

can contribute significantly to the overall success of a Smart City concept, particularly when

it comes to analysing the movement of people, the management of large public spaces and the

detection of violent or dangerous crowd behaviour.

1.3.2 Online Video Monitoring

The introduction of video live-streaming on platforms such as Facebook has lead to an unman-

ageable quantity of video footage being produced and shared. These has enabled footage of

violent and hateful scenes, sometimes involving large crowd fights, murders, and rapes finding

6http://www.rfidjournal.com/articles/view?4986
7https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-

by-2020-is-outdated

6



1.4. Hypotheses and Research Questions

Figure 1.4: The live-streaming of video from mobile devices is now an everyday occurrence.

its way to everyday users of these services. Automated solutions are not yet sufficiently accu-

rate or computationally efficient, leading to large scale deployment of human agents to tackle

the problem 8. The development of highly accurate and robust crowd analysis algorithms that

can efficiently detect violent behaviour can contribute to the mammoth task of monitoring the

millions of hours of footage shared online on a daily basis.

1.4 Hypotheses and Research Questions

A significant body of literature now exists for the topic of vision-based crowd analysis with

many techniques developed for each of the crowd analysis tasks discussed in section 1.1. De-

spite this wealth of research activity, significant challenges still exist that limit the accuracy

and reliability of current crowd analysis algorithms. These challenges include visual occlusion,

scale and perspective issues caused by the camera position, as well as high levels of variation in

scene content and illumination levels. The recent re-adoption of artificial neural networks by the

machine learning community (Krizhevsky et al., 2012), enabled largely by the use of hardware

8http://abcnews.go.com/Technology/facebook-hire-3000-workers-monitor-content/story?id=47178969
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accelerated numerical optimisation, has led to noticeable performance increases across many

computer vision tasks including some promising initial work in crowd analysis. These data-

driven approaches, now commonly referred to as deep learning, allow for analysis pipelines to

optimise their parameters specifically for a given task. The optimal application of these tech-

niques to tasks other than conventional image classification, however, remains an open problem

for the computer vision research community. Another prevalent issue in vision-based crowd

analysis is the development of bespoke, single problem solutions, which require a significant

amount of engineering work and cannot be easily re-used or extended to perform additional

analysis tasks in other visual domains (e.g. medical, scientific). Given these opportunities and

challenges observed within the vision-based crowd analysis space, the hypotheses of this work

can be stated as follows.

Hypotheses

1. Data-driven models such as convolutional neural networks (CNN) are superior to hand-

crafted methods for vision-based crowd analysis tasks both in terms of predictive perfor-

mance and adaptability to various problem types.

2. Multi-task learning (MTL) techniques can be used to improve the predictive performance

of vision-based crowd analysis models and reduce the overall trainable parameter count

across related crowd analysis tasks.

3. Domain adaptation (DA) techniques can be used to extend a crowd analysis model to

other visual domains and vice versa while retaining model accuracy for all domains and

significantly reducing the overall parameter count.

To address this set of hypotheses the following research questions will be investigated ex-

perimentally in chapters 3-6:
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Research Questions

1. To what degree can the application of deep neural networks improve the accuracy

and robustness of computer vision based crowd analysis over methods that utilise

hand-crafted features and what are the best practices when using this technique?

This research question explores the effectiveness of deep neural networks as an approach

to solve various crowd analysis tasks. Deep learning implementations are investigated for

the tasks of crowd behaviour recognition (chapter 3), crowd behaviour anomaly detection

(chapter 3), crowd density level estimation (chapter 4), and crowd counting (chapter 4).

Comparisons are then made for each task to methods that rely on hand-crafted features as

well as the leading deep learning approaches from the literature.

An important caveat to remember when comparing deep learning and hand crafted meth-

ods is the requirement for labelled samples when training a deep learning model. This

labelled data may not always be readily available. However, with advances in transfer

learning and generative models this problem is becoming less restrictive. Another issue

to note is that deep learning models are not designed to replace well-established physical

and physiological models for natural phenomena, but rather these deep models can be

used to recognise patterns previously impossible to detect.

2. Can multi-task learning techniques be used to improve the predictive performance

of crowd analysis models and what are the associated benefits and tradeoffs?

A major limitation in vision-based crowd analysis is the lack of commonality and re-

usability between developed models. This research question investigates how multi-task

learning techniques can improve the predictive performance of crowd analysis models

and reduce the overall number of trainable parameters required (chapter 5). Auxiliary

9



1.5. Thesis Structure

loss terms are investigated in a single task setting before the joint training of multiple

related crowd analysis tasks in a single model is evaluated.

3. Can domain adaptation techniques be used to adapt computer vision models trained

in other visual domains to accurately perform crowd analysis tasks and vice versa?

What are the associated benefits and tradeoffs?

Another issue associated with recent crowd analysis algorithms is that the developed mod-

els are optimised to work within a given visual domain (e.g. CCTV footage) and cannot

be used to perform similar computer vision tasks in other visual domains such as medical

imaging. This research question investigates the use of recently developed domain adap-

tation strategies as a means to adapt a crowd analysis model to other visual domains and

vice versa (chapter 6). These methods are compared to more traditional transfer learning

techniques (fine-tuning, feature extraction). This thesis will focus on domain adaptation

in context object counting which has not yet been investigated by the research community.

1.5 Thesis Structure

The remainder of the thesis is structured as follows:

• Chapter 2 : A comprehensive literature review is carried out. First, background theory

relevant to the research carried out in this thesis is presented. Second, the dominant trends

and leading approaches used for each of the four vision-based crowd analysis tasks high-

lighted in section 1.1 tasks are discussed. Third, research within the area of various multi-

task learning and domain adaptation is presented. Finally, the commonly used datasets

in the field of vision-based crowd analysis are discussed before a final subset is decided

upon for the experimental phase of the thesis.
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• Chapter 3: Deep learning based crowd behaviour analysis is investigated. Various convo-

lutional neural network configurations, preprocesing steps and and implementation strate-

gies are evaluated for each task in an attempt optimise performance and find the dominant

trends and best practices for crowd behaviour analysis. A baseline run using hand crafted

features is included for each task to compare performance with deep learning methods.

Following the development of a refined method for each task using a validation set, com-

parisons are made with the leading techniques from the literature using a larger test set.

• Chapter 4: Deep learning based crowd congestion analysis is investigated. Various con-

volutional neural network configurations, preprocesing steps and and implementation

strategies are again evaluated for each task in an attempt to optimise performance and

find the dominant trends and best practices for crowd congestion analysis. Comparisons

are then made with a hand-crafted baseline as well as the learning techniques from the

literature.

• Chapter 5: Multi-task learning is investigated within the context of crowd analysis.

Auxiliary loss terms are evaluated within the context of single-task learning before the

joint training of related crowd analysis tasks within a shared model is performed. Multi-

objective models are compared to single-objective baselines both in terms of predictive

performance achieved and the overall number of model parameters required.

• Chapter 6: Domain adaptation is investigated as a means to extend a crowd analysis

model to other visual domains and vice versa. Recently proposed domain adaptation

techniques are compared to more traditional transfer learning methods (feature extraction,

fine-tuning).

• Chapter 7: In this chapter a summary of the thesis is presented. Each of the hypotheses
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and related research questions proposed in chapter 1 are addressed with respect to the

experimental results produced in chapters 3-6. The core research contributions of the

thesis are then presented before a discussion on the possible future research is finally

presented.
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Chapter 2

Literature Review

This chapter firstly presents background theory relevant to the work carried out in this thesis

(section 2.1), including artificial neural networks, gradient descent and optical flow estimation.

This is followed by a review of the leading works in the areas of crowd behaviour analysis

(Section 2.2), crowd congestion analysis (Section 2.3), multi-task learning (Section 2.4) and

domain adaptation (Section 2.5). The main datasets used for performance benchmarking in the

area of vision-based crowd analysis are also discussed (Section 2.6) before a subset is chosen

for the experimental phase of the thesis.

2.1 Background Theory

This section presents an overview of the core background theory upon which the research pre-

sented in this thesis relies.

2.1.1 Artificial Neural Networks

An artificial neural network (ANN) is a biologically inspired computing model optimised to

perform a given analysis task in a data-driven fashion rather than with hand engineered rules. A
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given ANN consists of a set of connected units or nodes referred to as neurons. Early work in

this field developed single neuron models called perceptrons before combining multiple neurons

to form full networks.

The Single Neuron Model

In this type of model a single neuron (alternatively referred to as a perceptron) applies a set of

learned weights w via dot product to a fixed length input vector x before adding a learned bias

b as described in equation 2.1. This fixed input vector x is some existing data representation

(e.g. meteorological sensor data) for which a prediction needs to be made (e.g. will it rain or

not). The output of this single neuron is then passed through an activation function f , given in

equation 2.2, which within this biological abstraction decides whether this neuron fires or not

based on the input x.

u = w · x+ b (2.1)

y = f(w · x+ b) (2.2)

Various non-linear activation functions can be employed to model non-linear relationships in-

cluding sigmoid, hyperbolic tan and rectified linear unit (ReLU) functions. On the other hand, a

linear activation function (f(u) = u) can be applied if the underlying relationship can be mod-

eled as linear. The full perceptron model is visualised in figure 2.1. The parameters of a single

neuron model (w, b) can be optimised to perform either regression or binary classification by

employing a set of training samples {xi, yi}Ni=0 to minimise an objective function by adjusting

the weights and bias term. An objective function typically contains a loss term which measures

the performance of the model and a regularisation term which adds stability to the optimisation.
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Binary classification requires a decision threshold to be applied to the neuron output y which

introduces another model selection parameter to tune.

Figure 2.1: A single neuron model

Multi-class classification can be performed by extending the model to contain several neu-

rons which are optimised simultaneously, with each neuron producing a likelihood score for a

given class/concept. Both the input x and output y of this model are vectors in this setting. For

multi-class classification an activation function such as softmax, given in equation 2.3, is typ-

ically applied to the output of all neurons simultaneously. This activation function normalises

the output to form a categorical probability distribution over the possible classes with an overall

sum of 1.0.

f(ui) =
e
ui∑N

j=0 e
uj

(2.3)

Multi-Layer Networks

The single neuron models described above can be used to map simple relationships but more

complex functions may prove more difficult to approximate. To address this issue additional

model complexity can be created by feeding the activations of a multi-neuron model into another

multi-neuron model forming a multi-layered model that can be jointly optimised. This multi-

layered model is then referred to as a neural network or fully connected network. Such a model,

visualised in figure 2.2, consists of an input layer of neurons, an output layer of neurons and

an arbitrary number of intermediary hidden layers. These hidden layers produce progressively

15



2.1. Background Theory

more abstract internal representations of the input vector x which can allow for challenging

non-linear relationships to be modeled. The number of hidden layers as well as the number of

neurons per hidden layer can be varied to include additional trainable parameters and model

more complex functions. The quantity of trainable parameters within a given neural network

is referred to as the network’s capacity. Including too many parameters for a given modeling

task may lead to a network fitting to the idiosyncrasies and noise within the training data and

generalise poorly to unseen data,a phenomenon known as overfitting. On the other hand, a

lack of training parameters leads to a very coarse approximation of the true function, which

is known as underfitting. Including additional hidden layers increases the depth of a neural

network, resulting in more abstract high-level representations being produced. This is where

the phrases deep learning and deep neural networks come from.

Figure 2.2: Multi-layer neural network.

2.1.2 Gradient Descent

Gradient descent is a first order optimisation algorithm used to final a local minimum for a

given function in an incremental manner, even if the function is non-convex. This algorithm
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can be used to optimise a given neural network by finding a set of model parameter values

that minimises an objective function for a set of training samples. Gradient descent is based

on the observation that if a multi-variate function F (x) is defined and differentiable in the

neighborhood of a point p, then F (x) decreases fastest in the direction of the negative gradient

of F (x) at p. During each optimisation step the model parameters W are updated to move in

this downward direction within the parameter space by subtracting the calculated gradient of

F (x) from the current parameter set, as described below:

W
′
= W − α∇WF (x) (2.4)

A scalar weighting α, refereed to as the learning rate, is applied to the subtracted gradient. The

learning rate influences the size of the jump taken in a given optimisation step. After each

iteration the gradient of F (x) is re-calculated and another step is taken in the direction of the

negative gradient. This concept is visualised in figure 2.3. Selecting an appropriate learning

rate α and adjusting it during optimisation to ensure a local minima is converged upon is an

active area of research within the machine learning community.

Gradient descent requires the objective function to be calculated using all training samples

employed, which for large datasets may be highly computationally demanding. To address this

issue representative mini-batches are randomly drawn from the training set in what is referred to

as Stochastic Gradient Descent (SGD) (LeCun et al., 1988). The size of the mini-batch used has

a strong influence on how quickly and smoothly the optimiser converges on a local minimum.

Gradient descent can be efficiently carried out in deep neural networks by combining it with

backpropagation (Rumelhart et al., 1986), an approach which re-uses gradients computed in

higher layers to update lower layer weights, rather than naively calculating separate gradients

for each layer during each optimisation step. The use of backpropagation significantly reduces
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Figure 2.3: Example of gradient descent in action on a 2D plane. After each step the gradient is re-calculated and

another step towards the local minima (bottom of the hill) is taken.

the computational complexity of gradient descent in neural networks, allowing optimisation to

be performed on affordable hardware.

2.1.3 Convolutional Neural Networks

Neural networks are designed with vector input data in mind. This type of model does not

scale well to multi-dimensional input data such as an images, which when flattened produce

very large input vectors. These large input vectors require large numbers of weights per neuron

in the input layer. For example, a 200 × 200 pixel RGB image requires 120,000 weights per

neuron in the input layer when training a fully connected neural network. This high numbers of

parameters will quickly lead to an overfit model.

This issue is addressed through the use of convolutions, resulting in so called Convolutional

Neural Networks (CNN) being developed. A new type of network layer, referred to as convo-

lutional layer is included. For the purposes of this explanation a 2-D network input is assumed
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(i.e. an image). Each convolutional layer consists of a set of 2-D kernels (e.g. 3 × 3 pixels in

size) which are convolved with an input to produce a set of feature maps. These feature maps

highlight the occurrence of a given local feature within the input. Bias terms and activation

functions are applied as in fully connected layers. This concept is visualised in figure 2.4. The

input resolution can be reduced by performing a strided convolution, which skips every K pix-

els before convolving, producing a smaller feature map output. These layers can be stacked

together and optimised via backprogation and gradient descent in the same way as fully con-

nected layers. Max-pooling layers can also be interspersed within the network to reduce the

resolution of feature maps further by taking the maximum value within each J × J region and

discarding the rest.

After a series of convolutional layers a final set of lower resolution feature maps can be

flattened to produce a 1-D vector and fed into a fully connected layer to perform a classification

or regression task. Translational invariance is another advantage of convolutional layers. This

type of approach can also be used to process other high dimensional modalities such as audio,

sensor data and 3-D point clouds by altering the number of dimensions in the convolutional

kernel.

Figure 2.4: Example of a 2-D convolutional kernel in action

Other advancements in CNN architecture design have allowed for recursion to be included,
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producing what is referred to as a recurrent neural network (RNN) (Funahashi and Nakamura,

1993). A recurrent neural network (RNN) is a class of neural network where connections be-

tween nodes form a directed graph along a sequence. This allows for the network to capture

the temporal dynamics of sequential data. Unlike feedforward neural networks, RNNs can use

their internal state (memory) to process sequences of inputs. While RNNs approaches allow for

long term temporal dynamics to be observed, they are designed to work for vectoral data and

are thus not well suited for direct application to multi-dimensional video data.

Another development in the field is Generative adversarial networks (GANs). GANs are an

approach to unsupervised machine learning, wherein a system of two neural networks contest

with each other in a zero-sum game framework. They were introduced by Goodfellow et al.

in 2014 (Goodfellow et al., 2014) and allow for improved dataset augmentation and pixel-wise

processing tasks. This technique was not investigated directly as part of this study but is listed

in the suggested future work.

2.1.4 Objective Functions

The objective function minimised when training a neural network typically consists of a loss

term and one or more regularisation terms. A generalised form of this is given in equation 2.5,

where W is the current set of network parameters, X is the set of training samples, L is the

loss function and R is the regularisation term. The loss function measures the performance of

the model on the training data, typically in terms of some error metric, while the regularisation

term constrains the optimisation to add stability during training and prevent overfitting.

C(X; Θ) = L(X;W ) +R(W ) (2.5)
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Loss Functions

For regression problems a mean squared error loss, given in equation 2.6, is typically used as

the loss function L. N is the total number of training samples in a batch, Ŷ (Xi;W ) is the

prediction for training sample i given the current set of training parameters W while Y (Xi) is

the corresponding ground truth value for sample i.

L(X,W ) =
1

2N

N∑
i=0

∥∥∥Ŷ (Xi;W )− Y (Xi)
∥∥∥2
2

(2.6)

For multi-label classification problems a categorical cross entropy loss, given in equation

2.7, is typically used as the loss function L. N is total number of training samples, K is the

total number of classes, Ŷj(Xi;W ) is the prediction score for concept j in training sample i

while Yj(Xi) is the corresponding ground truth label.

L(X,W ) = − 1

N

N∑
i=0

K∑
j=0

Yj(Xi) log(Ŷj(Xi;W )) (2.7)

Regularisation

L2 regularisation (Krogh and Hertz, 1992), often referred to as weight decay, is the most com-

mon regularisation term used for neural network optimisation and is described in equation 2.8.

The thinking behind this regularisation term is to penalise large weight values. N is the total

number of trainable weights in a given model, Wi is a given parameter and λ is the weight

decay coefficient value. This coefficient value λ controls how severely large weight values are

penalised during optimisation. Including this term prevents certain weights and therefore cer-

tain input values having a significant impact on the network prediction (i.e. overfitting to the

training data). The choice of weight decay coefficient is another model selection issue presented

when developing a neural network approach.
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R(W ) =
λ

2

N∑
i

W 2
i (2.8)

2.1.5 Batch Normalisation

Batch normalisation (Ioffe and Szegedy, 2015) is a process used in neural networks to address

an issue known as internal covariate shift. Covariate shift refers to the change in statistical

distribution for the input x as the model is exposed to samples drawn from different domains.

This change in distribution can make it difficult for a model to reliably converge on a local

minimum, requiring normalisation to be applied to the input x. This issue is exacerbated in a

deep neural network as the input distribution for each individual layer can vary and is affected

by the parameters of the preceding layers. A small change to a given layer can affect the input

distribution for several layers. This phenomenon is known as internal covariate shift. Therefore

normalisation needs to be applied before each layer to produce a whitened distribution (i.e zero

mean, unit variance) and ease model convergence.

Batch normalisation was developed to perform this during network training. It is referred

to as batch normalisation because this process is performed in a batch-by-batch basis during

stochastic gradient descent. At each step, a transform is applied to keep the mean close to

zero and standard deviation close to 1 for a given layer input. The full algorithm is detailed in

figure 2.5. A different normalisation transform is learned for each stage of the network. Ap-

plying batch normalisation when training allows for a higher learning rate to be employed due

to the more stable convergence, enables deeper networks to be reliably trained, makes a given

network more robust to variations in model initialisation and provides some additional regular-

isation which can improve overall predictive performance. A recent study from Santurkar et

al. proposes that the true benefit of batch normalisation is the smoothing of the optimisation

22



2.1. Background Theory

landscape which increases stability and convergence rates. (Santurkar et al., 2018).

Figure 2.5: Batch normalisation algorithm for processing the input x for a given layer.

2.1.6 Transfer Learning

Transfer learning, also known as inductive transfer, refers to the concept of taking knowledge

gained while solving a given machine learning problem and applying that knowledge to a dif-

ferent but related problem. This obtained knowledge can include highly discerning feature

detectors learned in convolutional layers and high level representations produced using fully

connected layers that can be used to perform a range of analysis tasks.

Transfer learning in neural networks is performed by firstly initialising a new model using

the parameters learned for a previous task. A subset of the weights within the new model can

then be frozen during optimisation (no updates made) to fully retain the original knowledge and

simplify the learning tasks by reducing the trainable parameter count. Choosing what weights
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to freeze and what weights to fine tune from the original model is an issue actively researched

by the machine learning community. Training a neural network using high level representations

drawn from one or more frozen layers is referred to as Feature Extraction. A common approach

to fine tuning a set of pre-trained layers involves training at a lower learning rate in order to

retain most of the original knowledge and only subtly changing the learned function.

2.1.7 Optical Flow

Optical flow is the pattern of apparent motion of objects, surfaces and edges in a video caused

by the relative motion between an observer and a scene (Gibson, 1950). Techniques have been

developed to model this phenomenon and calculate the local motion vectors observed within a

sequence of images. These local motion vectors can then be used to localise and subseqently

recognise activity in video sequences. This data can also be used to perform other video process-

ing tasks including video stabalisation and structure from motion approximation. An example

of the these local motion vectors being estimated is presented in figure 2.6.

Figure 2.6: Local motion vectors captured through optical flow estimation. These local motion vectors are

coloured to indicate the direction of motion.
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When modelling optical flow there are several assumptions made: 1) the pixel intensities of

an object do not change between consecutive frames 2) neighbouring pixels have similar motion

patterns. Consider a pixel I(x, y, t), taken from a given frame t in a video sequence. This pixel

is displaced by (dx, dy, dt) in the next frame. If we assume the pixel intensity values of objects

do not change between frames then the following can be defined:

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (2.9)

Assuming the motion between frames is small, a Taylor series approximation can taken for the

right hand side. Removing the common terms and dividing both sides by dt results in following:

fxu+ fyv + ft = 0 (2.10)

This is referred to as the optical flow equation. fx, fy and ft are the image gradients between

the two frames and are defined as fx = δf
δx

, fy = δf
δy

and ft = δf
δt

respectively. These values

can be calculated in a straightforward manner. On the other hand u and v represent the local

motion vector of this pixel, defined by u = dx
δt

and v = dy
δt

. The exact values of u and v are

unknown and with a single equation cannot be easily calculated. Therefore several methods

have been developed to approximate these values including the work of Gunnar Farneback

(Farnebäck, 2003). It can be extremely difficult to accurately approximate optical flow when

there is significant motion and illumination changes between frames. Estimating optical flow

for the entirety of a high resolution video can be very computationally demanding and this

has led to specialised hardware being developed for this task. Convolutional neural network

approaches have also been developed to perform optical flow estimation, allowing hardware

acceleration to be employed (Ilg et al., 2017).
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2.1.8 Performance Metrics

Various performance metrics are used to benchmark machine learning algorithms for regression

and classification tasks.

Regression

Mean absolute error (MAE) and root mean squared error (MSE), given in equations 2.11 and

2.12 respectively, are used to measure the performance of regression tasks. Y is the set of

predicted values in the validation/test set while Ŷ is the set of corresponding ground truth values.

MAE(Y, Ŷ ) =
1

N

N∑
i=0

‖Yi − Ŷi‖ (2.11)

MSE(Y, Ŷ ) =

√√√√ 1

N

N∑
i=0

(Yi − Ŷi)2 (2.12)

Classification

Accuracy is the most common metric used for multi-class classification problems and can sim-

ply be defined as the percentage of correct predictions made within a validation/test set. For

neural networks the prediction made for a given input x is the class which has the highest like-

lihood score in the output y. Top-K accuracy is a variant of conventional accuracy where a

prediction is deemed correct if the true class is within the top k likelihood scores predicted for

a given input x. Top-K accuracy is often used in conjunction with accuracy to give a broader

impression of the model’s performance.

Binary classifiers can be evaluated using accuracy if a threshold is firstly applied, however

this approach produces a very limited view of the model’s performance, obscuring how the

performance varies as this threshold is altered. Receiver operating characteristic (ROC) curves
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were developed during the second world war to address this issue. An ROC curve plots the true

positive rate (TPR) and false positive rate (FPR) of a binary classifier as the decision threshold

is varied. A sample ROC curve is shown in figure 2.7. This method allows for a much broader

comparison to be made between binary classifiers and removes the need for a threshold to

be selected during evaluation. The overall performance of an ROC curve can be summarised

into several scalar metrics, namely the area-under-the-curve (AUC) and equal-error-rate (EER).

AUC can be calculated by taking the integral of the generated ROC curve and can be interpreted

as the probability that the classifier in question will produce a higher likelihood score for a

randomly chosen positive sample than a randomly chosen negative sample. The EER of an

ROC curve corresponds to the value where the false negative rate and true positive rate are

equal, with a lower value corresponding to a more robust classifier. EER is also a useful tool

in selecting a threshold with the best tradeoff between true and false positives. Both EER and

AUC are visualised in figure 2.8.

Figure 2.7: ROC curves for two binary classification systems (red and blue). The black line represents the perfor-

mance achieved by a set of random guesses. Any curve below the black line is therefore deemed to be inferior to

randomly guessing.

Precision and recall are performance metrics typically used in information retrieval prob-

lems. Precision refers to the fraction of correct samples among the retrieved samples while
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Figure 2.8: EER and AUC for a given ROC curve.

recall refers to the fraction of relevant samples retrieved from the total number of relevant sam-

ples in the collection. These metrics can also be computed for concept detection problems in

fields such as computer vision, but require a detection threshold to be decided upon when using

techniques such as neural networks. To avoid this threshold selection issue during evaluation

the decision threshold is varied and the precision and recall values (Pn and Rn) are computed

for all thresholds, producing a precision-recall curve showing how both metrics vary with the

threshold. Average Precision (AP), given in equation 2.13, summarises a precision-recall curve

in the same way AUC summarises an ROC curve. AP is calculated by producing a weighted

mean of the precision values achieved for all thresholds, with the increase in recall from the

previous threshold used as the weight in each case. Mean Average Precision (MAP) can then

be calculated for a range of queries by taking a mean of the AP score calculated for each.

AP =
N∑
n=0

Pn(Rn −Rn−1) (2.13)
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2.2 Crowd Behaviour Analysis

Vision-based crowd behaviour analysis can be cleanly divided into two distinct tasks: crowd be-

haviour recognition and crowd behaviour anomaly detection. Behaviour recognition techniques

attempt to categorise the collective behaviour observed in an image or video of a crowded scene,

while behaviour anomaly detection methods are used to detect unusual behaviour which strays

from an established norm.

2.2.1 Behaviour Recognition

Crowd behaviour recognition can be approached either as a single-label or multi-label problem.

Single-label approaches categorise the collective behaviour into one of K mutually-exclusive

classes, while multi-label approaches produce likelihood scores for a set of K behaviour con-

cepts that can occur simultaneously. Behaviour concepts that are typically detected by these

systems include violence, panic, running, standing and sitting. The typical pipeline for this

task first extracts some local or global features from a given image or video, these features are

then collated into a high-level descriptor before a classification step is performed. This generic

pipeline can be used to describe most crowd behaviour recognition models and is illustrated in

figure 2.9.

Figure 2.9: Crowd behaviour recognition pipeline
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Local motion vectors generated via optical flow estimation have been used extensively for

crowd behaviour recognition. An example of this is the video-level descriptor of Hassner et al.

which extracts regional histograms of optical flow magnitude change and uses this descriptor to

train a behaviour classifier (Hassner et al., 2012a). Local motion vectors were then combined

with shape and appearance features for crowd behaviour recognition by Xu et al. who utilised

the moSIFT descriptor and sparse feature encoding to achieve highly accurate violence recog-

nition (Xu et al., 2014). Senst et al. propose the combination of Lagrangian direction fields

with bag-of-words encoding to classify crowd behaviour, further improving violence recogni-

tion performance over the existing techniques (Senst et al., 2017) .

Multi-label behaviour recognition was firstly tackled by Shao et al. who trained a deep con-

volutional neural network to produce likelihood scores for 94 crowd behaviour concepts using

both RGB and optical flow input channels (Shao et al., 2015). This work was then improved

upon in a subsequent paper in which the authors anaylsed the crowd behaviour within a 3-D

video volume by applying 2D convolutions across 3 orthogonal planes and fusing the results

(Shao et al., 2016)

The leading approaches to crowd behaviour recognition tend to have a few key similarities:

1) they combine local motion and appearance features 2) they capture medium and long term

trends observed over many frames 3) they produce a highly abstract and transform invariant

representation of crowd behaviour before classification is carried out. Deep learning techniques,

specifically convolutional neural networks have not been fully investigated for crowd behaviour

recognition, particularly for violence recognition which has typically been approached using

established hand-crafted features. This thesis attempts to define a set of best practices for vision-

based crowd behaviour recognition.
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2.2.2 Behaviour Anomaly Detection

Crowd behaviour anomaly detection methods attempt to classify whether a frame or sequence of

frames contains unusual crowd behaviour. Unusual crowd behaviour is deemed to be that which

strays significantly from an established norm within a given context. This type of approach is

used to detect abnormal events that are either difficult to define or rarely occur, leading to a lack

of training samples.

Early approaches such as the work of Boiman and Irani attempt to reconstruct a frame or

spatio-temporal region using a codebook of normal behaviour samples for local frame regions,

with a high reconstruction error corresponding to an anomalous region due to the difficulty in

reconstruction (Boiman and Irani, 2007). This concept was refined by Roshtkhari and Levine

who sorted spatio-temporal cuboid samples into a large contextual graphs before constructing

a hierarchical codebook of normal behaviour samples (Roshtkhari and Levine, 2013). Mehran

et al. proposed the social force model for behaviour anomaly detection (Mehran et al., 2009)

Lu et al. proposed a more computationally efficient approach to reconstruction-based anomaly

detection where a low rank projection captures the intrinsic compositions of small video regions

(Lu et al., 2013). Reddy et al. developed an approach to anomaly detection which combines

local motion and texture features with an efficient implementation of kernel density estimation

(Reddy et al., 2011). Deep learning techniques were combined with a one-class SVM by Xu et

al. to perform offline behaviour anomaly detection with a high degree of accuracy (Xu et al.,

2015). Ravanbakhsh et al. propose the use of generative adversarial networks for behaviour

anomaly detection (Ravanbakhsh et al., 2017)

Overall there has been minimal investigation into the use of deep learning techniques for

crowd behaviour anomaly detection. Many of the existing approaches utilise highly engineered

hand crafted features to localizing small unexpected objects within innocuous scenes rather
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than detecting truly salient and noteworthy events in large scale video datasets. This thesis will

investigate the use of deep learning for crowd behaviour anomaly detection.

2.3 Crowd Congestion Analysis

Crowd congestion analysis can be divided into two distinct tasks: crowd counting and crowd

density level estimation. Crowd counting methods produce an estimate of the true number of

people present in a scene. Crowd density level estimation (DLE) methods on the other hand

approximate the congestion level observed within a scene and express it on a discrete scale

(0-N). Crowd DLE can be viewed as a coarse but computationally efficient approximation of

crowd counting.

2.3.1 Crowd Counting

Crowd counting can be approached either as an object detection problem, a count regression

problem or as a heatmap generation task. The existing counting approaches are divided into

these three categories.

Counting By Detection

Counting by detection approaches train an object detector to locate each individual person in a

scene, typically using a key feature such as their head or torso. Examples of detection-based

approaches include the head detector based method of Li et al. (demonstrated in figure 2.10)

(Li et al., 2008), the multiple body part detector of Wu and Nevatia (Wu and Nevatia, 2005) and

the marked point process (MPP) based approach to whole body detection from Ge and Collins

(Ge and Collins, 2009). The accuracy of this type of approach suffers significantly from visual

occlusions, resulting in rapid performance degradation as a crowd becomes highly congested
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(i.e. several hundred people in frame).

Figure 2.10: The head detector based crowd counting algorithm of Li et al. (Li et al., 2008)

Counting By Regression

Counting by regression methods on the other hand attempt to learn a direct mapping between a

low-level representation (e.g raw pixel values) and the overall number of people within a frame

or frame region. Individual people are not explicitly detected or tracked in these approaches.

The holistic nature of this type of approach reduces the impact of visual occlusions on counting

accuracy. Examples of regression-based counting include the work of Chen et al. who trained a

count regressor by fusing local and global scene features (Chen et al., 2012) and the patch based

neural network regressor of Han et al. (Han et al., 2017). While occlusion is less of an issue,

regression-based techniques can often suffer from overfitting due to a lack of varied training
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data and model regularisation during training.

Counting By Heatmap Generation

Finally, heatmap generation approaches tackle the counting problem by training a model to

transform an image of a crowded scene into a density heatmap highlighting the locations of

people within the scene. The produced heatmap is then integrated to produce an estimate of

the true number of people. This concept is illustrated in figure 2.11. Ground truth heatmap im-

ages used during training are generated using manually produced head annotations. Gaussian

blurring is typically applied to the produced heatmap to ease the learning task, while retain-

ing the original count sum. Zhang et al. developed a dynamic blurring approach that applies

more Gaussian blurring to heavily congested parts of the scene, leading to improved count-

ing performance (Zhang et al., 2016). This dynamic blurring approach has been utilised by

many subsequent approaches, however the generation algorithm features several hyperparame-

ter choices that have not been validated experimentally or justified mathematically, leading to

the possibility that they have been optimised specifically for a given test set. Other heatmap

based approaches include the dilated convolutional neural network based approach of Li et al.

who achieve high benchmarking performance but tune certain parameters for certain test sets,

which limits the generalisation of their approach (Li et al., 2018).

Some novel approaches to heatmap based crowd counting switch between several individu-

ally trained CNN models following a density classification step (Sam et al., 2017; Wang et al.,

2017) in an attempt to boost performance through density level specific estimators. While

this approach leads to marginal performance improvements it results in a significant increase

in training time and the number of model parameters required, limiting the scalability of the

technique. Sindagi and Patel on the other hand attempted to jointly train a CNN regressor and
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Figure 2.11: Crowd density heatmap example. The jet colourmap has been applied to the density heatmap (right).

The integral of this ground truth image corresponds to the number of people present in this original image (left).

heatmap generation model whose outputs are fused to produce a final estimate (Sindagi and

Patel, 2017).

Overall there has been a healthy level of research into machine learning based crowd count-

ing with several approaches utilising deep learning techniques. Many of the developed ap-

proaches are slight variations on a core heatmap generation/regression concept with incremen-

tal performance boosts. Counting accuracy is shown to improve when training is carried out on

smaller image regions in which pedestrians are observed to be more homogeneous in size. This

eases the learning task significantly. It still remains unclear what the optimal implementation of

deep learning techniques for crowd counting is, both in terms of model accuracy and efficiency.

This thesis aims to identify these best practices for deep learning based crowd counting.

2.3.2 Crowd Density Level Estimation

Crowd density level estimation (DLE) methods attempt to classify the congestion level observed

in an image of a crowded scene on a discrete scale (0-N). The main considerations with this task

are the semantic meaning of the various density levels and the choice of what annotation scheme
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to employ. Crowd DLE can be addressed either as a conventional classification problem, a re-

gression problem with rounding applied or as an ordinal regression problem. Ordinal regression

can be viewed as something of a hybrid between regression and classification models where dis-

tinct classification labels are produced but where the order and distance between labels is taken

into account during optimisation.

An early approach to this task assigns 1 of 5 density levels to a scene based on the Minkowski

fractal dimension (Marana et al., 1999). The density level labels used for this approach are in-

ferred from the crowd count of each image, which removes subjectivity, but the density level

labeling scheme used is far too granular and centered near 0 (the maximum density level of 5

refers to any image containing 60 or more people). This scheme cannot be applied in a mean-

ingful way to highly congestion scenes with hundreds of people in frame. Xiaohua et al. used

wavelet features to train an SVM to classify a crowded scene into 1 of 4 density levels (Xiaohua

et al., 2006). Again the annotation scheme used is not comprehensive in terms of the congestion

levels it covers and not consistent with other techniques. The commonly adopted SIFT local de-

scriptor was used for density level estimation as part of a bag-of-words approach by Zhang and

Zhang, classifying between low, medium and high density scenes (Zhang and Zhang, 2015). A

CNN-based approach to density level estimation was developed by Fu et al. but this technique

fails to even use a consistent density level scheme across the 3 test sets used for evaluation (Fu

et al., 2015).

Overall the lack of an accepted benchmarking activity or a standardised density level annota-

tion scheme are major obstacles to carrying out research for this task. New techniques cannot be

quantitatively compared to older methods if the evaluation process is not consistent and clearly

defined. One possible solution may be to re-purpose the leading crowd counting benchmarks

that have already been accepted by the community and develop a standard crowd density level
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annotation scheme based on the contents of these datasets. Using a broad set of images ranging

in congestion from tens of people to thousands will allow for a more comprehensive image la-

beling scheme to be produced. This thesis will address the lack of a high quality dataset for this

task and investigate the use of deep learning methods for density level estimation.

2.4 Multi-Task Learning

It has been empirically demonstrated that the predictive performance of supervised machine

learning models can be improved by jointly training several related tasks at once (Caruana,

1998). Rich Caruana describes this concept of multi-task learning (MTL) as follows ”Multi-

task Learning is an approach to inductive transfer that improves generalization by using the

domain information contained in the training signals of related tasks as an inductive bias. It

does this by learning tasks in parallel while using a shared representation; what is learned for

each task can help other tasks be learned better” (Caruana, 1998).

The benefits of multi-task learning have been successfully demonstrated in computer vision

problem domains such as facial analysis (Ranjan et al., 2017), head pose estimation (Yan et al.,

2016), medical imaging (Zhang et al., 2012) and non-vision tasks such as speech recognition

(Seltzer and Droppo, 2013). Multi-objective approaches to crowd analysis have shown some

initial promise, such as the work of Hu et al., who included a density level estimation output

to increased the robustness of their crowd counting model (Hu et al., 2016). To date, no crowd

analysis model has been developed which jointly performs behaviour and congestion analysis

tasks.

The multi-task learning concept has been applied to a variety of machine learning model

types including neural networks. A neural network can be extended to perform multiple tasks

by including additional output neurons to produce all of the required task predictions (Caruana,
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1998). The internal representations generated by the hidden layers of a neural network are then

shared between all tasks. An example of a multi-task neural network is shown in figure 2.12.

MTL neural networks can be optimised via gradient descent by including a seperate loss term

for each task in the overall objective function. Various combinations of loss functions can be

used. Task specific weightings can also be applied to loss terms in the objective, giving certain

task greater influence during optimisation. The MTL concept has also been applied to support

vector machines, leading to improved performance on real and synthetic datasets (Evgeniou

and Pontil, 2004). MTL extensions has also been developed for K-nearest neighbour (KNN)

classification (Caruana, 1998) and decision trees (Kocev et al., 2007).

Figure 2.12: A multi-task neural network performing 4 tasks simultaneously for a given input x. The internal

representations of the hidden layer are shared between all tasks.

Recently the MTL concept has been applied to very deep convolutional neural networks,

allowing for highly abstract representations to be shared between tasks in areas such as facial

analysis (Ranjan et al., 2017). One issue to consider when developing a multi-task CNN model
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Figure 2.13: Cross-stitch unit of Misra et al. (Misra et al., 2016) applied to the Alexnet architecture (Krizhevsky

et al., 2012). These additional units optimise the proportion of shared and task specific parameters in the network.

is the choice of what portions of the overall network should be shared between tasks and what

should be task-specific. These choices can require extensive model validation and experimenta-

tion for each analysis problem tackled. Misra et al. propose the cross-stitch unit (illustrated in

figure 2.13) to address this architecture selection issue (Misra et al., 2016). These cross-stitch

units allow for a multi-task CNN to learn the optimal combination of shared and task specific

representations throughout the network while training for multiple tasks in an end-to-end fash-

ion. The main drawback of the cross-stitch unit approach is that it fails to reduce the overall

parameter count across tasks. While the overall network of Misra et al. is fixed from the start,

Lu et al. propose a multi-task architecture that widens dynamically during training and in-

creases the level of representation sharing for similar groups of tasks (Lu et al., 2017). Kendall

et al. take an alternate approach to multi-task CNN design by modeling the uncertainty of each

task and altering the loss weighting of each task during training (Kendall et al., 2017).

Overall there has been significant investigation into MTL in deep neural networks with
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improved performance observed in several computer vision problems with the inclusion of ad-

ditional learning objectives. A range of approaches to automating multi-task CNN design have

been developed, improving benchmarking performance and speeding up development time.

There has, however, been very limited application of these techniques to vision-based crowd

analysis, and no research into combining crowd behaviour and congestion analysis models.

This previously under investigated area is addressed extensively in this thesis.

2.5 Domain Adaptation

Domain adaptation (DA) is a form of inductive transfer described by Gabriela Csurka as follows

“Domain Adaptation (DA) is a particular case of transfer learning (TL) that leverages labeled

data in one or more related source domains, to learn a classifier for unseen or unlabeled data in

a target domain” (Csurka, 2017). A domain in this setting refers to a specific context with its

own statistical distribution and specific traits. Examples of domains within computer vision in-

clude CCTV footage, medical imaging, facial analysis, and manufacturing. What distinguishes

domain adaptation from multi-task learning is the assumption that the training samples from the

source and target data are not available at the same time and thus the model must be training in

a sequential manner, while MTL models are trained simultaneously. The distinction between

MTL, DA and the various other forms of transfer learning are illustrated in figure 2.14.

The motivation for domain adaptation research is the observation that it may be infeasible to

keep training data for a given task in a given domain indefinitely, due to storage costs, security

and licensing reasons. However, the trained model produced using this training data is often

significantly smaller and is likely to be kept and remain in use. Therefore the goal of DA is to

utilise this model originally trained in a given source domain to produce a new model is a given

target domain. The distinct statistical properties of the various domains, however, make this
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Figure 2.14: Overview of the various classes of transfer learning (Pan and Yang, 2010)

challenging to perform. Features learned in the source domain may not be highly discerning

in the target. The ideal case for DA is to achieve strong predictive performance in the target

domain while including a minimal amount of additional network parameters and maintaining

the predictive performance originally achieved in the source domain, all in a singular model that

can be extended over time.

Several domain adaptation strategies for vectorial data have been developed, often extending

support vector machines to perform DA. The cross-domain SVM, proposed in (Jiang et al.,

2008), constrains the impact of the source data by down-weighting support vectors from the

source data that are far from the target samples. The Domain Transfer SVM of Duan et al.

attempts to simultaneously reduces the mismatch in the distributions between two domains

while learning a target decision function (Duan et al., 2009). DA has also been investigated

in deep neural networks. A major obstacle to performing DA in deep CNNs is a phenomenon

known as catastrophic forgetting (Goodfellow et al., 2013), where training a network to perform

a new task results in the network forgetting the old task and changing the learned model weights
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reached through optimisation, with an observable loss in predictive performance. This may not

be an issue if all of the original models are retained indefinitely, but this results in a linear

increase in the overall parameter count as new models are trained. This approach is not at

all scalable and goes against the core philosophy of domain adaptation research. To avoid

catastrophic forgetting, traditional transfer learning techniques such as feature extraction/weight

freezing have been employed; however, this often leads to sub optimal predictive performance

in the target domain.

To overcome these limitations several new approaches to CNN domain adaptation have

been proposed. Li and Hoiem proposed the Learning without Forgetting (LwF) method for

domain adaptation, which attempts to preserve source domain performance by initially storing

the output of the source domain network for each sample in the target domain training set

and optimising for these outputs as an auxiliary task (Li and Hoiem, 2017). This concept is

illustrated in figure 2.15. Using this novel approach, LwF achieves superior source and target

domain performance to feature extraction and fine-tuning approaches while introducing only

a negligible amount of additional model parameters. LwF can be easily implemented on top

of any existing network. Mallya et al. proposed the use of network pruning to free up model

capacity during training and add new tasks in a sequential manner over time, all while achieving

superior source and target performance to LwF (Mallya and Lazebnik, 2017). In a follow up

paper the authors improve upon their results, using a technique they refer to as piggyback, which

uses per task binary weight masks to piggyback new tasks onto an existing network (Mallya and

Lazebnik, 2018). Rosenfeld and Tsotos perform DA by learning new CNN filters that are linear

combinations of existing filters (Rosenfeld and Tsotsos, 2017). Rebuffi et al. developed the

visual decathlon challenge for evaluating domain adaptation methods and proposed their own

Residual Adapter Module (Rebuffi et al., 2017). This module performs DA by adding domain
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specific normalisation and scaling throughout the network to adapt to the specific statistical

distribution of each domain, all while maintaining original performance in the source domain

and strong classification performance in the target with only a marginal increase in the overall

parameter count. (Rebuffi et al., 2017).

Figure 2.15: The learning without forgetting approach of (Li and Hoiem, 2017)

Overall there has been significant research into domain adaptation for computer vision tasks

using neural networks. The most recent techniques have seen the field move beyond simple

feature extraction and fine-tuning to more sophisticated methods with improved source and

target domain performance. Generally these methods have been applied to commonly used

image classification benchmarks while regression and object detection problems in areas such

as crowd analysis and medical imaging have yet to be investigated fully.

2.6 Datasets

In this section the datasets used for the evaluation of various crowd analysis tasks are presented.

The strengths and weaknesses of each dataset are highlighted before a final subset is decided

upon for the experimental section of the thesis.
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2.6.1 Crowd Behaviour Recognition

Violent-Flows

The Violent-Flows dataset of Hassner et al. contains 246 video clips of violent and non-violent

crowd behaviour captured from CCTV cameras and mobile phones (Hassner et al., 2012a). This

binary classification task is evaluated using a 5-fold cross validation with methods compared

using mean accuracy and ROC curve AUC score. Classification is carried out at the video

level. The clips in this dataset range in length from 1 to 6 seconds with a mean length of 3.6

seconds. The content of this dataset are illustrated in figure 2.16. This collection contains a

variety of challenging real-world scenes and has received significant interest from the research

community. Given the relatively small size of this dataset it is an ideal collection on which to

develop a crowd behaviour analysis system before testing on larger datasets.

Figure 2.16: The Violent-Flows dataset (Hassner et al., 2012a). Bottom left: violent clips. Top right : non-violent

clips
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WWW Crowd Dataset

The WWW Crowd Dataset contains 10,000 clips of crowded scenes labelled for 94 crowd be-

haviour concepts and related scene content labels (Shao et al., 2015). WWW refers to Who

What Why for this dataset. These labels are not mutually exclusive and thus this dataset is

treated as a multi-label classification problem. These 10,000 clips are split into training, vali-

dation and test sets using a 7:1:2 ratio while methods are evaluated using mean AUC score and

mean average precision (mAP). Classification is also carried out at the video level. This collec-

tion is illustrated in figure 2.17. The size and scope of this dataset make it ideal for evaluating

a crowd behaviour recognition system in a comprehensive fashion. There has been limited us-

age of this dataset despite the high citation rate of the original paper, which may be due to the

time-consuming nature of working with this 8 million frame collection.

PETS2009

The PETS2009 dataset (Dee and Caplier, 2010) has been utilised for a range of analaysis tasks

including crowd behaviour recognition. 4 distinct crowd behaviour classes (running, loitering,

dispersal, formation) are included in this collection. This dataset is quite limited in terms of

variety and the crowd behaviour events are produced artificially. Classification is carried out at

the frame level. Sample frames taken from these scenes are shown in figure 2.18

2.6.2 Crowd behaviour Anomaly Recognition

UMN Dataset

The University of Minenesota unusual crowd behaviour dataset 1 contains 11 video sequences

filmed in 3 locations. Each sequence begins with a period of normal crowd behaviour before

1http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi
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Figure 2.17: The WWW Crowd Dataset (Shao et al., 2015). Samples frames are shown as well as a word cloud

presenting the distribution of the various scene concepts.

a panic event/anomaly occurs near the end. Anomaly detection is performed at the frame level

and evaluated using AUC score. The events that take place in this dataset are artificial and the

dataset only contains frames from 3 scenes. A sample frame is shown is shown in figure 2.19.
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Figure 2.18: The limited range of scenes contained within the PETS2009 Dataset.

Figure 2.19: A sample frame taken from the UMN dataset.

UCSD Dataset

The UCSD Anomaly Detection Dataset (Mahadevan et al., 2010) contains 98 short clips taken

from two scenes. Each scene is evaluated separately and divided into a set of normal behaviour

training and test clips. Anomalies must be localised spatially as well as temporally for this

benchmark. Events that are defined as anomalies for this dataset include people walking on

the grass and unexpected objects such as cars entering the scene. The value of developing

a technique to detect such innocuous events is questionable. This dataset is also extremely

homogeneous in terms of scene content with only two locations used and a fixed camera angle

for both. The one advantage of this dataset over UMN is that the anomalous events are naturally
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occurring. A sample frame is shown in figure 2.20.

Figure 2.20: A sample frame taken from the UCSD Anomaly Detection Dataset (Mahadevan et al., 2010).

LV Dataset

The LV (Live Videos) behaviour anomaly dataset (Leyva et al., 2017) contains 4 hours of

footage ranging dramatically in scene content, image resolution and the types of behaviour

anomalies present. The dataset is broken up into 28 distinct sequences each beginning with

a period of normal behaviour for model training followed by a test region in which one or

more anomalies may occur. All events are naturally occurring and must be localised spatially

and temporally within each test sequence. Techniques are evaluated in terms of AUC score.

Sample frames from this collection are presented in figure 2.21. This collection is by far the

most comprehensive and challenging crowd behaviour anomaly dataset available to the research

community.

2.6.3 Crowd Counting

UCF CC 50 Dataset

The UCF CC 50 dataset (Idrees et al., 2013) contains 50 images of highly congested scenes

fully annotated for crowd counting via dot maps. This highly challenging collection contains
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Figure 2.21: Sample frames taken from the LV dataset (Leyva et al., 2017).

significant variation in scene content and is benchmarked on using a 5-fold cross validation.

Performance is evaluated using Mean Absolute Error (MAE) and Mean Squared Error (MSE).

It has been suggested in the literature that the annotations used for this dataset are not entirely

accurate due to the extremely high number of people contained in each scene (Hu et al., 2016).

Several images in this dataset contain over 4000 people and are captured at a resolution lower

than 1080 × 1920 (HD). Without a fully reliable ground truth the value in benchmarking on

this collection is limited. A sample image taken from this dataset showing the highly congested

49



2.6. Datasets

crowds is presented in figure 2.22.

Figure 2.22: Sample image taken from the UCF CC 50 dataset (Idrees et al., 2013).

ShanghaiTech Dataset

The ShanghaiTech dataset (Zhang et al., 2016) contains 1198 images of crowded scenes ranging

in the number of people present from a few dozen to several thousand. This collection is split

into a medium-high congestion set (referred to as part A) and a low-medium congestion set

(referred to as part B). Part A images contain between 0-3000 people while Part B images

contain between 0-600 people. These two sets are evaluated separately with their own train/test

splits. Performance is again evaluated using Mean Absolute Error (MAE) and Mean Squared

Error (MSE). It is clear when looking at this collection that the ground truth annotations are

far more reliable and the level of variation in scene content is much higher than UCF CC 50.

Sample frames from parts A and B of the ShanghaiTech dataset are shown in figure 2.23.
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Figure 2.23: Sample image taken from the ShanhaiTech dataset (parts A and B) (Zhang et al., 2016).

UCSD Dataset

The UCSD crowd counting dataset repurposes the same set of clips used for the UCSD anomaly

detection dataset by applying a set of head annotations (Mahadevan et al., 2010). This collec-

tions consists of 2000 images of low density scenes captured from just two cameras. The

number of people present ranges from 11 to 46. The frames captured for this dataset are of a

significantly lower resolution (158 × 238) than the ShanghaiTech and UCF CC 50 sets.

2.6.4 Crowd Density Level Estimation

For the crowd DLE task there are no commonly accepted benchmarks and annotation schemes

in use. There have been a few datasets utilised for this task, which vary in quality but in general

lack the range in crowd congestion and scene content required to properly evaluate a given

method.
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PETS2009 Dataset

The PETS2009 dataset has been adapted for crowd density level estimation with a 4 density

level scheme applied. Frames are taken from 5 distinct clips within the overall PETS2009 set.

The 4-level annotation scheme covers only a small range of crowd count values, with the max-

imum level referring to any image with more than 21 people present. This type of annotation

scheme is not appropriate for developing a robust and deployable density level estimator for all

scenes and contexts.

Subway Dataset

The Subway sequence of Ma et al. has been used for density level estimation, with a 5-level

scheme employed (Ma et al., 2008). Similar to PETS2009 this set consists entirely of low

density images captured from a single camera location. For example the maximum density

level for this benchmark corresponds to scenes with more than 31 people present.

2.6.5 Discussion

The quality of datasets used across the four crowd analysis tasks discussed ranges dramatically

from thousands of fully annotated clips taken from hundreds of camera locations to a few hun-

dred frames taken from a single location. For the experimental phase of this thesis the goal is

to use challenging datasets that provide a broad and representative set of samples for fair evalu-

ation of a method. Having a trusted set of annotations is also very important. With this in mind

the following datasets will be used for experimentation:

• Crowd behaviour Recognition: Violent-Flows, WWW Crowd

• Crowd behaviour Anomaly Detection : LV Dataset
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• Crowd Counting : ShanghaiTech

• Crowd Density Level Estimation: ShanghaiTech (adapted for DLE)

As there is no dataset of sufficient quality for the crowd DLE task, the ShanghaiTech col-

lection is adapted for this task. The crowd count annotations used for this set can be easily

converted to density level labels using an appropriate scheme (discussed fully in chapter 4).

The significant range in congestion level observed in this collection makes it ideal for the eval-

uation of a DLE method.

2.7 Summary

This chapter began by presenting some important background theory relevant to the research

work carried out in this thesis. Following this a review of the leading techniques for each of the

four crowd analysis tasks was presented. Promising initial work in deep neural network based

crowd analysis has been demonstrated for all tasks. Other prominent developments include

the use of reconstruction error when detecting crowd behaviour anomalies and the observed

superiority of patch-based training for crowd counting systems via heatmap generation. The

evolution of multi-task learning strategies, particularly in the context of neural networks, was

then discussed. While there have been many recent advancements within the area of MTL, these

techniques have yet to be fully investigated for crowd analysis. The leading domain adaptation

methods were then presented, with some methods adding auxiliary learning objectives to pre-

serve performance in the source domain while others include domain specific normalisation and

scaling. These techniques have been evaluated mainly on commonly used image classification

benchmarks but have not yet been tested on regression and object detection tasks in areas such

as crowd analysis and medical imaging. Finally, the leading publicly available datasets used for
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crowd analysis were evaluated, with a subset decided upon for the experimental phase of this

thesis.
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Chapter 3

Crowd Behaviour Analysis Via Deep

Neural Networks

3.1 Introduction

This chapter investigates the use of deep neural network techniques for the related computer

vision tasks of crowd behaviour recognition and crowd behaviour anomaly detection. Research

question 1 is addressed in this chapter as well as in chapter 4. Various convolutional neural

network configurations, preprocesing steps and implementation strategies are evaluated for each

task in an attempt to find the best practices for deep learning based crowd behaviour analysis. A

baseline run using hand crafted features is also included for each task to compare performance

with deep learning methods. Following the development of a refined method for each task using

a validation set, comparisons are made with the leading techniques from the literature using a

larger test set.

55



3.2. Contributions

3.2 Contributions

The main contributions of this chapter are listed below:

• A 3D Late Fusion CNN approach is developed for crowd behaviour recognition;

• The trained model is used to perform distance-based crowd behaviour anomaly detection

on the LV Dataset;

• The proposed technique is shown to be superior to a hand-crafted baseline for both be-

haviour recognition and anomaly detection;

• State-of-the-art performance is achieved on the LV and Violent-Flows datasets.

3.3 Experimental Framework

The proposed crowd behaviour analysis models are developed using a common framework in

which certain hyperparamaters and model selection choices are kept consistent across all experi-

ments. This limits the parameter space to explore during validation and focuses experimentation

on the more impactful model selection issues.

3.3.1 Fixed Hyperparameters

Learning Rate

Learning rate selection issues often delay model development when optimising a neural network

using Stochastic Gradient Descent (LeCun et al., 1988), requiring extensive validation and re-

finement for a given model and dataset. In order to alleviate these issues the Adagrad optimiser

(Duchi et al., 2011) is used for all experiments in this chapter. Adagrad adapts the learning rate
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dynamically for each weight individually in an attempt to remove global learning rate selection

issues and has been shown to reliably converge to local minima (Dean et al., 2012).

Network Architecture

There have been numerous convolutional neural network architectures proposed in the literature

(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016;

Howard et al., 2017) with improvements in predictive performance, accelerated convergence

rates and reductions in the overall parameter count observed for various designs. The focus of

this thesis, however, is not implicitly in CNN design and therefore the model selection space

must be reduced in order to focus on the more relevant design choices for crowd analysis.

To this end, the Resnet family of CNN architectures are chosen for model development (He

et al., 2016), specifically the 18 layer and 50 layer variants. A Resnet architecture consists of a

series of residual blocks, illustrated in figure 3.1, each containing several convolutional layers,

a feedforward connection and an element-wise addition. This feedforward connection results

in a residual representation being produced by each block. These residual representations are

empirically shown to allow for faster convergence of very deep networks. Rectified linear unit

activations and batch normalisation (Ioffe and Szegedy, 2015) are applied after each conovolu-

tional layer. Following a series of residual blocks an average pooling step is carried out before

the set of feature maps is flattened and a single fully connected layer is used to produce a net-

work output. This type of architecture can easily be made deeper by including more residual

blocks or more convolutional layers per residual block. Strong benchmarking performance has

been demonstrated for various tasks using Resnet (He et al., 2016). The exact configurations

of the Resnet18 and Resnet50 networks are presented in figure 3.2 including the kernel size,

number of kernels and number of residual blocks in each stage of the network.. Max-pooling is
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performed after conv3 1, conv4 1, and conv5 1 with a stride of 2.

Figure 3.1: Residual block used in the architecture of (He et al., 2016).

Figure 3.2: Details for the Resnet family of architectures (He et al., 2016).

Model Regularisation

L2 regularisation is used for all experiments. A λ value of 0.001 is employed to train the Resnet

architecture in use just as it is in the original Resnet paper (He et al., 2016).

Data Augmentation

The following data augmentation steps are performed to increase the variation of training im-

ages and boost model generalisation:
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• Random spatial cropping (aspect ratio preserved)

• Random horizontal flips

• Overlapping temporal crops in video (starting from every 5th frame)

• Dataset shuffled after each training epoch

All random cropping and flips are performed dynamically during training. Fixed length

temporal crops are taken when using a multi-frame technique, with the starting point of each

temporal crop 5 frames apart. The length of the temporal crop taken is experimented with using

validation sets. At inference time, centre crops are taken for each frame, again with the aspect

ratio preserved and any necessary downsampling performed to best fit the network input size.

Vertical rotations are not applied as this is deemed to change the semantic meaning of a crowd

video.

Model Initialisation

Network parameter initialisation is handled for all crowd behaviour analysis experiments via

the uniform initaliser of Glorot and Bengio (Glorot and Bengio, 2010) while the bias terms are

initalised to zero. The only time these initialisation steps are not carried out is when a pre-

trained model is being used to initialise a given set of network layers. The pre-trained network

used for all cases has been trained on the ImageNet ILSVRC collection (Russakovsky et al.,

2015).

Loss Functions

For multi-label behaviour recognition problems, a binary cross entropy loss, given in equation

3.1, is minimised following a sigmoid activation on the final network output. K is the total
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number of concepts, Ŝj refers to the predicted probability score for concept j while Sj refers to

the ground truth score.

LBCE = −
K∑
j=1

Sj log(Ŝj) + (1− Sj) log(1− Ŝj) (3.1)

For single-label behaviour recognition problems a categorical cross entropy loss, given in

equation 3.2, is minimised following a softmax activation on the final network output. K is

the total number of concepts, Ŝj refers to the predicted probability score for concept j while Sj

refers to the ground truth score. Both loss functions are calculated and summed for a batch of

training samples before the model parameters are updated. In all cases the chosen loss term is

combined with a regularisation term to form the overall objective function.

LCCE = −
K∑
j=1

Sj log(Ŝj) (3.2)

Hardware

The following hardware setup is used for all crowd behaviour analysis experiments: An Nvidia

GTX 970 GPU with 4GB of VRAM is used for CNN optimisation and inference. An 8 core Intel

i7-4790K CPU with 32GB of GDDR4 RAM is used for all dataset generation and experiment

management tasks. While it has been suggested recently that smaller batch sizes generalise

better (Masters and Luschi, 2018), large batches are required to perform batch normalisation

effectively and therefore the maximum batch size possible using the available memory is used

for each training experiment.

The common set of model selection parameters used for all experiments in this chapter are

summarised in table 4.1.
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Optimiser Adagrad (Duchi et al., 2011)

CNN Architecture Resnet (18, 50 layers)

Regularisation L2 Weight Decay (0.001)

Augmentation Random Crops, Random Flips, Temporal Overlap (Video)

Initalisation (Glorot and Bengio, 2010), bias terms set to 0

Loss Functions BCE for multi-label, CCE for single-label

Hardware 4GB Nvidia GTX 970 GPU, 8 core Intel i7 CPU, 32GB RAM

Table 3.1: Common training framework used for all crowd behaviour analysis experiments

3.3.2 Model Selection Issues Investigated

With this experimental framework in place the focus of this chapter can now be discussed. The

following model selection issues will firstly be investigated for crowd behaviour recognition:

• Model capacity (number of network layers)

• Training from scratch v. fine-tuning v. feature extraction

• Single frame v. multi-frame methods

• Optical flow input v. RGB input v. Fusion of RGB+OF

The following model selection issues will be investigated for crowd behaviour anomaly

detection:

• Single-frame v. multi-frame features

• Optical flow input v. RGB input v. Fusion of RGB+OF

• Distance metric used for outlier detection
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3.4 Crowd Behaviour Recognition

Crowd behaviour recognition methods are developed and benchmarked in this section using the

Violent-flows and WWW Crowd datasets. These collections represent a small scale, single-

label recognition problem and a large scale, multi-label recognition problem respectively. Both

collections are labelled at the clip level. Performance is evaluated on the violent-flows dataset

using mean accuracy and AUC score while AUC and mean Average Precision are used for the

WWW Crowd collection. Accuracy cannot be used for the WWW crowd set due to it being

a multi-label problem. One of the five validation folds that make up the violent-flows dataset

is used for model selection experiments before a full five-fold cross validation is carried out

to compare with the leading approaches. For validation experiments on a single fold no error

margins can be computed. WWW Crowd on the other hand has its own dedicated validation

and test sets. Optimisation is carried out for 25,000 iterations for all experiments. The corre-

sponding number of training set epochs varies with the training set and the CNN model in use

(which in turn affects the batch size). The size of the training, validation and test sets used for

each dataset are listed in table 4.2.

Dataset Training Set Size Validation Set Size Test Set Size

WWW Crowd 7249 Clips 917 Clips 1834 Clips

Violent Flows 200 Clip 50 Clips 50 Clips

Table 3.2: Training, validation and test set sizes for the WWW Crowd and violent-flows datasets. A 5-fold cross

validation is carried out at test time for the violent-flows data set.
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3.4.1 Hand-Crafted Baseline

In order to compare deep learning models with hand-crafted methods an implementation of

Hassner et al.’s ViF descriptor (Hassner et al., 2012a) is produced and used as a hand crafted

baseline run for crowd behaviour recognition. This method analyses the statistics of how optical

flow vector magnitudes change over time, producing a fixed length descriptor for a variable

length sequence. Classification is performed using a linear support vector machine. For multi-

label problems a separate linear SVM is trained for each concept in a one-v-rest fashion.

3.4.2 Deep CNN Approach

Model Capacity, Trainable Parameters

This initial set of experiments use networks of various depths (Resnet18 and Resnet50) while

also comparing various training strategies for each (training from scratch, fine-tuning and fea-

ture extraction). All 6 training permutations are evaluated on both the violent-flows and WWW

crowd validation sets. For all runs a single frame classification model is trained, with the mean

frame level predictions across the entire clip used for evaluation. The final fully connected layer

of a given network is adjusted to produce the appropriate number of classes for each dataset (94

for WWW Crowd, 2 for Violent-Flows). Raw RGB frames are used as the input for all runs.

The results of these experiments are presented in table 3.3, with each unique approach given an

identification number which are used throughout the chapter to avoid any ambiguity.

The best performing run on the violent-flows validation set employs feature extraction from

a pre-trained Resnet18 model. For this small scale classification task a lower capacity model

utilising an existing feature set resulted in superior accuracy and AUC scores. On the other hand

the best validation performance on WWW Crowd was achieved when fine-tuning a Resnet50

model end-to-end. The larger and more varied dataset supplied with WWW Crowd takes ad-
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vantage of the additional capacity of a full Resnet50 model. In all cases transfer learning from

a pre-trained model resulted in superior performance and deep learning runs outperformed the

hand crafted baseline. These optimal configurations for each dataset are the starting point for

all subsequent experiments.

Approach VF: ACC VF: AUC WWW: mAUC WWW: MAP

1: Resnet18 From Scratch 85% 0.87 0.85 0.415

2: Resnet18 Fine-tuning 87% 0.9 0.892 0.462

3: Resnet18 Feature Extraction 91% 0.94 0.885 0.456

4: Resnet50 From Scratch 83% 0.85 0.865 0.434

5: Resnet50 Fine-tuning 85% 0.87 0.902 0.468

6: Resnet50 Feature Extraction 90% 0.85 0.896 0.462

7: ViF 82% 0.84 0.66 0.100

Table 3.3: Comparison of the various network architectures and training strategies for single-frame crowd be-

haviour recognition on the WWW Crowd and violent-flow validation sets. The hand-crafted baseline is also in-

cluded for both datasets. Each approach to behaviour recognition is given a unique identification number which

are used in all subsequent tables.

Single-Frame v. Multi-Frame Models

The next set of experiments compares the optimal single frame runs for each dataset with vari-

ous multi-frame CNN video recognition techniques from the literature which are re-implemented

as part of this work. These include the late fusion 3-D CNN approach of Carreira and Zisserman

(Carreira and Zisserman, 2017) (detailed in figure 3.3), the fully 3-D CNN of Tran et al. (Tran

et al., 2015) (detailed in figure 3.4) and the RNN/Long-Short Term Memory (LSTM) approach

of Ng et al. (Ng et al., 2015) (detailed in figure 3.5). These methods allow for the temporal dy-
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namics of crowd behaviour to be captured alongside the local appearance patterns. The results

of this experiment are presented in table 3.4

Figure 3.3: late fusion 3D CNN approach of Carreira and Zisserman (Carreira and Zisserman, 2017). 2D feature

maps generated from each of the N frames ingested are fused along the temporal axis before a 3D convolutional

layer, 3D maxpooling and fully connected layer are applied to produce a classification output. The 3D convolu-

tional layer contains 256 kernels each 3× 3× 3 in size.

Figure 3.4: Fully 3D convolutional architecture of Tran et al. (Tran et al., 2015). All convolutional layers perform

3D convolutions with 3 × 3 × 3 kernels and stride 1. The number of kernels contained in each layer is listed

alongside the layer name. 5 frames are fused together along the temporal axis before being processed by this

network. This network is trained from scratch due to the very distinct architecture.

The inclusion of temporal information results in noticeable improvements for the WWW

Crowd dataset, with the Late Fusion 3D Resnet18-FT run producing the best validation perfor-

mance. This late fusion technique did not result in any improvement for the smaller violent-

flows dataset which does not contain enough training samples to train a high performing multi-

frame behaviour recognition model. In its current configuration, the late fusion approach com-

bines 5 frames spaced 10 frames apart (covering an overall 50 frame region). To investigate

other configurations of this approach a further experiment is carried out which includes a wider

temporal region. The spacing between extracted frames is increased to 15 and 20 for two addi-

tional runs. The results of this experiment are shown in table 3.5.
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Figure 3.5: LSTM based video recognition architecture of Ng (Ng et al., 2015). Feature vectors are extracted

from a sequence of N frames, fused temporally and passed through a deep LSTM block containing 5 layers of

LSTMs, each with 512 memory cells. The output from the LSTM at the final time step is fed into a fully connected

layer to produce a classification output.

Significant performance improvements are observed on the WWW crowd dataset as more

temporal information is exposed to the network with the 5 frames, Spaced 20 Frames Apart

run producing the best overall validation scores on the WWW Crowd dataset. This is not the

case for the violent-flows dataset, most likely due to the smaller training set which does not

have enough variety to accurately model longer term behaviour patterns. Ideally more temporal

information could be exposed to the network (e.g. all 100 frames within a 100 frame region)

but the hardware setup used for these experiments cannot support the training of such a high

capacity model. In the original paper for the late fusion 3D CNN model the authors use 64

GPUs in parallel (Carreira and Zisserman, 2017).

Optical-Flow Channels v. Raw RGB Channels

The final set of validation experiments for this task looks at the impact of using pre-computed

optical flow channels instead of raw RGB channels for crowd behaviour recognition. All runs

involve an identical late fusion 3D CNN architecture Carreira and Zisserman (2017), with 5

frames spaced 20 apart fusion applied in all cases and a Resnet18 CNN He et al. (2016) used
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Model VF: ACC VF: AUC WWW: mAUC WWW: MAP

3: Resnet18-FE-SF 91% 0.94 0.885 0.456

6: Resnet50-FE-SF 85% 0.87 0.902 0.468

8: Late Fusion 3D Resnet18-FT 85% 0.87 0.908 0.503

9: Late Fusion 3D Resnet18-FE 89% 0.88 0.905 0.492

10: LSTM Resnet18-FT 83% 0.85 0.845 0.467

11: LSTM Resnet18-FE 85% 0.87 0.865 0.478

12: 3D CNN (From Scratch) 82% 0.85 0.815 0.423

7: ViF 82% 0.84 0.66 0.100

Table 3.4: Comparison of the various multi-frame approaches to crowd behaviour recognition with a set of single-

frame baselines. FE refers to feature extraction, FT refers to fine-tuning while SF refers to Single-frame models.

Evaluation is carried out on the WWW Crowd and violent-flow validation sets.

Model VF: ACC VF: AUC WWW: mAUC WWW: mAP

8:(5 frames, Spaced 10 Apart) 85% 0.87 0.908 0.503

8: (5 frames, Spaced 15 Apart) 84% 0.87 0.912 0.508

8: (5 frames, Spaced 20 Apart) 83% 0.86 0.919 0.516

Table 3.5: Comparing various temporal ranges covered by a late fusion 3D CNN model Carreira and Zisserman

(2017) for crowd behaviour recognition. Evaluation is carried out on the WWW Crowd and violent-flows validation

sets.

as the base network. Separate models are trained for each input type as well as an ensemble

run where a mean prediction is taken for the two models as well as a configuration where

the outputs of the penultimate layer of each network (optical flow and RGB inputs) are fused,

L1 normalisation is applied and a bank of linear SVMs are trained. Optical flow frames are

generated during training/inference using the approach of Farneback (Farnebäck, 2003) with
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no additional preprocessing or quantization applied. No pre-training is applied for any of the

optical flow models. The results of this experiment are highlighted in table 3.6.

Model VF: ACC VF: AUC WWW: mAUC WWW: MAP

13: Late Fusion 3D Resnet OF 81% 0.84 0.890 0.430

8: Late Fusion 3D Resnet RGB 83% 0.86 0.919 0.516

14: Ensemble prediction (OF+RGB) 84% 0.86 0.926 0.553

15: SVM fused (OF+RGB) 85% 0.87 0.929 0.565

Table 3.6: Performance of optical flow and raw RGB channel inputs for crowd behaviour recognition. Evaluation

is carried out on the WWW Crowd and violent-flows validation sets.

The best overall performance is achieved when fusing features from networks trained on

both input types via a bank of SVMs. This method allows for the most discerning features

from each network to be utilised. Optical flow features in isolation result in inferior validation

scores as they only capture local motion information without any appearance features. Ideally

a model which is jointly trained on optical flow and RGB frames in an early fusion manner

would be developed but this is not possible with the current hardware setup without significant

compromises in model capacity.

3.4.3 Comparison With The State-Of-The-Art

The best performing CNN configuration for both datasets has been determined through ex-

tensive validation. For the violent-flows collection a feature extraction approach using a pre-

trained 50 layer Resnet and RGB input frames results in the best validation performance. On

the other hand for the WWW Crowd set a multi-frame CNN approach which combines features

from RGB and optical flow trained networks produces the best overall validation performance.

This contrast in best performing approaches between the two is due to the large discrepancy
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in dataset size and scene variation. With these refined configurations in place we can compare

these methods to the leading techniques in the literature. A 5-fold cross validation is used to

compare performance on violent-flows while the assigned test set is used for WWW crowd.

Violent-Flows Dataset

Table 3.7 compares the developed small-dataset approach with the state-of-the-art methods for

the violent-flows dataset as well as the hand crafted baseline run (Hassner et al., 2012a). The

proposed method achieves a superior mean accuracy to all of the leading techniques on the

Violent-Flows dataset, highlighting the potential of deep learning methods for violent behaviour

recognition.

Approach mACC mAUC

3: Resnet50-Feature Extraction (Proposed) 95.2±7.5% 0.98

ViF (Hassner et al., 2012a) 81.30±0.21% 0.85

GLCM-Texture (Lloyd et al., 2017) 86.03±4.25% 0.94

VPS (Mohammadi et al., 2016) 86.61% N/A

MoSIFT+KDE+SC (Xu et al., 2014) 89.05±3.26% 0.9357

LaSIFT+BOW (Senst et al., 2017) 93.12±8.77% 0.97

Table 3.7: Proposed small-dataset crowd behaviour recognition approach compared to the leading techniques on

the violent-flows dataset. A 5-fold cross validation is carried out in all cases, with a 95% confidence interval

calculated across the 5 folds and presented alongside the mean, as is convention for this dataset.

WWW Crowd Dataset

Table 3.8 compares the developed large-dataset approach with the state-of-the-art methods for

the WWW crowd test set as well as the hand crafted baseline run (Hassner et al., 2012b). The
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proposed method achieves performance comparable to the state-of-the-art despite the limita-

tions in hardware (specifically in terms of GPU VRAM). The inferior performance of the pro-

posed method to the work of Shao et al. is likely due to the application of early fusion along the

temporal axis in their approach, as opposed to the late fusion applied in the proposed method.

More consistency is observed among class-level AUC scores, with a standard deviation of just

0.05 calculated across the 934 test videos. If we divide this standard deviation by
√

10 (where

10 corresponds to 10% of the overall dataset) the error for the entire dataset can be approxi-

mated as 0.0158. On the other hand, MAP scores vary a lot more with a standard deviation of

0.23 reported for the test set (0.072 for the entire dataset). No cross-validation was performed

on this dataset due to the time consuming nature of experiments on a dataset of this scale. This

discrepancy in standard deviation across the two metrics suggests that MAP is a much more

challenging metric to score highly in for this dataset and should be focused on in future. In-

cluding additional model capacity and exposing the network to more temporal information will

likely improve this performance further, as demonstrated for other video classification tasks

(Carreira and Zisserman, 2017). The developed deep learning method significantly outperforms

the hand crafted baseline run.

Examples of the proposed recognition model in action are presented in figure 3.6, with the

10 highest likelihood classes predicted by the network listed. A likelihood over 50% is deemed

to be a trusted prediction as in many binary classification tasks. These likelihood scores corre-

spond to the output of the final sigmoid activation for each class and are as such independent

of each other. Classes correctly predicted with a likelihood over 50% are highlighted in green

while classes incorrectly predicted with a likelihood above 50% are shown in red. Low likeli-

hood predictions (below 50%) are presented in yellow and can largely be ignored while classes

present in the scene but not predicted in the top 10 are shown in orange on the right hand side.
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The prediction of a dancer in the beach scene is likely due to either an annotation error in the

WWW Crowd training set or a particular pattern or movement resembling the dancer class. As

all class likelihood scores are independent, in that they predict the presence of absence of a given

class in isolation, they can contradict each other occasionally (night v. day, beach v. park). This

is ultimately a flaw in the composition of the WWW crowd dataset and the recognition task put

forward by the authors. The proposed model can sometimes fail to distinguish between indoor

and outdoor locations, which can be quite challenging to classify with the presence of artificial

lighting and highly cluttered scenes. However, classifying night and day time scenes is not di-

rectly related to crowd behaviour and is only included in this study to comprehensively evaluate

the WWW Crowd dataset.

Approach WWW: AUC WWW: mAP

15: SVM-fused 3D CNN (Proposed) 0.931± 0.05 0.576± 0.23

7: ViF (Hand-Crafted) (Hassner et al., 2012b) 0.65 0.12

DLSF+DLMF (Shao et al., 2015) 0.877 0.412

3D-CNN (Ji et al., 2013) 0.86 0.39

Slicing-CNN (Shao et al., 2016) 0.94 0.6255

Table 3.8: Proposed large-dataset crowd behaviour recognition approach compared to the leading techniques on

the WWW Crowd test set. Mean and standard deviation are presented for the proposed method for both metrics.

3.5 Crowd behaviour Anomaly Detection

Crowd behaviour anomaly detection methods are developed and benchmarked in this section

using the LV dataset. This large-scale dataset contains a highly varied set of 28 sequences cov-

ering a range of abnormal behaviour events. Each clip contains a sequence of normal behaviour
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Figure 3.6: Examples of the proposed crowd behaviour recognition system in action on the WWW Crowd Dataset.

for a given camera location followed by a test section in which one or more behaviour anoma-

lies occur. Normal behaviour frames can be used to perform any scene specific model training

required by a given method. Performance is evaluated at the frame level and evaluated over an

entire clip using AUC score. In total there are 68,989 abnormal frames across a total of 340,406

frames (20.5% abnormal). Validation is performed on a 5 clip subset of this collection (Crash4,

Crash1, Illegal turn, robbery3 and Kidnap) before a full comparison with the leading techniques

is carried out on all clips. The following hyperparameter selection issues are optimised for this

task:

• Distance metric used for outlier detection

• Single-frame v. multi-frame features

• Optical flow input v. raw RGB input v. Fusion (RGB+OF)
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3.5.1 Hand-Crafted Baseline

The hand-crafted baseline run used for this task is the two-pass approach of Reddy et al. which

utilises motion, object size and texture features to detect abnormal behaviour (Reddy et al.,

2011). The scene foreground is firstly segmented, before being split into non-overlapping cells

from which motion, size and texture features are extracted individually. Mean optical flow

magnitude is computed for each cell and smoothed temporally to produce a simple 1-D motion

magnitude feature. A 1-D object size feature is then computed within each cell by computing the

segmented foreground occupancy level. Texture features are then generated using 2-D Gabor

wavelets and combined with the previous features to produce a 4-D feature vector for each

frame cell. Each feature is then modeled separately across all grid cells extracted from a given

training set. The motion and size features are modelled using kernel density estimation while

the the 2-D texture descriptor is modelled via a codebook. This codebook is generated in an

online fashion where Pearson’s correlation coefficient is used to measure descriptor similarity.

Once the three models are trained a two-step anomaly detection process is then applied

to each grid cell in a test set. The first classifier is a simple thresholding step applied to the

likelihood of a given motion feature occurring, calculated using the trained KDE model. If this

first classifier deems the motion feature to be abnormal then the second classifier is called upon

to further confirm this, otherwise the cell is deemed to contain normal behaviour. The second

classifier analyses the likelihood of the size and texture features. If both of these fall below a

certain threshold then the cell region is deemed to be anomalous. This two-step approach is

used to optimise the system towards real-time computation. A spatio-temporal post-processing

step is also applied to remove isolated anomalies. Any anomalous cell that does not contain

at least two adjacent anomalous cells in either the temporal or spatial plane is re-classified as

being normal.
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3.5.2 Deep Learning Approach

For this task the proposed deep learning method uses features extracted from pre-trained crowd

behaviour recognition models to perform distance based outlier detection and classify frames

or frame sequences as normal or abnormal. This approach is similar in nature to many crowd

behaviour anomaly detection methods albeit with the benefit of deep CNN features being used to

compare samples in a more discriminative fashion. Training features are firstly extracted from

the normal behaviour region within a given test clip using the activations of the penultimate

layer in a given pre-trained network. A distance metric is then used at test time to compute

nearest neighbour distance between a given test sample and the set of normal behaviour training

sample. This distance is then thresholded to classify the observed test sample as normal or

abnormal.

This type of approach analyses a given scene in a holistic fashion, extracting features from

a large central crop of each frame rather than a series of smaller patches. This method requires

no explicit model optimisation for a given clip, merely a feature extraction stage to generate a

set of normal behaviour descriptors. The CNN models trained on the WWW Crowd dataset in

the previous section are used for this task due to relevant source domain, the sheer size of the

dataset and level of scene variation.

Distance Metric

The first validation experiment in this section evaluates various distance metrics for a single-

frame outlier detection approach. Features are extracted from a Resnet50 model trained on the

WWW Crowd dataset with an RGB input used. The hand crafted baseline approach discussed

previously is also evaluated. The results of this experiment are presented in table 3.9. The

cosine distance run performs best and is used for all subsequent experiments. All deep learning
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approaches outperform the hand crafted baseline.

Approach LV: AUC

6: Resnet50-Cosine distance 0.368

6: Resnet50-Euclidean distance 0.356

6: Resnet50-Manhattan distance 0.311

16: Hand crafted baseline (Reddy et al., 2011) 0.234

Table 3.9: Evaluation of various distance metrics for outlier detection based behaviour anomaly detection on the

LV validation set.

Single-Frame v. Multi-Frame

This validation experiment compares features extracted from multi-frame and single-frame be-

haviour recognition networks. The pre-trained multi-frame model used (Late fusion 3D CNN)

classifies each 100 frame temporal region holistically, with the overall prediction being used for

all frames within this region. The results of this experiment are shown in figure 3.10

Approach LV: AUC

8: Late Fusion 3D Resnet18 (5 frames, 20 apart) 0.479

6: Resnet50-Single Frame 0.368

16: Hand-Crafted Baseline (Reddy et al., 2011) 0.234

Table 3.10: Comparison of multi-frame and single-frame behaviour recognition features for outlier detection based

anomaly detection. Evaluation is performed on the LV validation set.

The use of multi-frame recognition features results in significantly better AUC performance

over the single-frame model despite the lack of granularity during classification (100 frames are

classified at a time rather than each frame individually). This approach allows for the high-level
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temporal dynamics present in the scene to be extracted and used to detect unusual behaviour.

Optical Flow v. Raw RGB v. Fusion (OF+RGB)

In the final validation experiment in this section, a comparison is made between models trained

on optical flow input and those trained on raw RGB pixels, as well as an ensemble approach

which combines the two feature sets. The same RGB Late Fusion 3D Resnet 18 approach

as before is used for these experiments. l1 normalisation is applied to the fused descriptor in

order to account for the variation in distribution between the two feature sets. The results of

this experiment are presented in figure 3.11. Isolated RGB features result in the best overall

performance and are used for comparisons with the state-of-the-art. This RGB based multi-

frame method captures both the visual appearance and motion dynamics of a given scene thanks

to the 3D fusion step while optical flow features can only capture local motion dynamics. A

fusion approach results in minor performance degradation when compared to the RGB Late

Fusion 3D Resnet18 run.

Approach LV: AUC

8: RGB Late Fusion 3D Resnet18 0.479

13:OF Late Fusion 3D Resnet18 0.415

14: Ensemble (RGB-OF) 0.465

16: Hand crafted baseline (Reddy et al., 2011) 0.23

Table 3.11: Comparison of models trained on optical flow input, RGB input and a joint approach. Evaluation is

performed on the LV validation set.

76



3.5. Crowd behaviour Anomaly Detection

3.5.3 Comparison With The State-Of-The-Art

LV Dataset

The best performing anomaly detection configuration, found through extensive validation, is

compared with the leading anomaly detection approaches on the entire LV dataset. The results

of this experiment are presented in table 3.12. Examples of the proposed system in action are

presented in figure 3.7.

Approach LV: AUC

8: RGB Late Fusion 3D Resnet18 (Proposed) 0.732

16: Two-Pass Motion,Texture,Shape (Reddy et al., 2011) 0.325

Spatio-Temporal Compositions (Roshtkhari and Levine, 2013) 0.427

H.264 Features (Biswas and Babu, 2013) 0.151

150 FPS Detection (Lu et al., 2013) 0.112

Table 3.12: Comparison of the proposed anomaly detection method with the leading techniques. Evaluation is

performed on the full LV dataset.

The proposed deep learning approach significantly outperforms the existing methods by

a sizable margin, highlighting the value of multi-frame CNN features for behaviour anomaly

detection. The developed technique utilises an existing crowd behaviour recognition model and

does not require any scene specific training. The best AUC performance is achieved on scenes

crash1 (0.99 AUC), panic0 (0.96 AUC) and robbery6 (0.90 AUC) while the worst performance

is observed on illegal turn (0.20 AUC), kidnap (0.34 AUC) and wrong way (0.44 AUC). Inferior

performance appears to occur when the abnormal event is more subtle in nature and requires a

higher level understanding of the scene content and societal norms.
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Figure 3.7: Examples of the proposed crowd behaviour anomaly detection system in action on the LV dataset. A

single key frame from the beginning of each clip is shown. A clip level AUC of 0.98 is achieved on the first scene

(crash3), which is largely static in nature until a collision happens on the road later in the sequence. However, for

the second scene (fight2) a clip-level AUC of just 0.32 is achieved, due largely to the busy nature of this scene,

which makes it difficult to detect the fight that occurs later on in the sequence. Clearly the level of clutter in the

video sequence has an affect of detection performance. Images of anomalous events are left out of the thesis due

to their potentially upsetting nature.

3.6 Discussion

Deep learning based methods have been shown to produce state-of-the-art performance in crowd

behaviour recognition and behaviour anomaly detection. The RGB Late Fusion 3D Resnet18

run results in superior performance for both tasks. This approach employs a combination of

appearance and motion features captured over a wide temporal region (100+ frames). Training

such a model does however require large quantities of training data (100,000+ samples). Single-

frame feature extraction performs better for small dataset behaviour recognition problems where

the number of discrete training samples needs to be maximised. The inferior performance of

the proposed method to the work of Shao et al. is likely due to the application of early fusion

along the temporal axis in their approach, as opposed to the late fusion applied in the proposed

method.

The ability to re-purpose behaviour recognition models for behaviour anomaly detection
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provides additional functionality to these models. Developing this type of approach enables a

supervised learning model to be trained for a known set of behaviour concepts and then de-

ployed in an unsupervised manner to detect any unknown/abnormal behaviour concepts.

Training video analysis models using deep learning methods requires significant computa-

tional resources to achieve high levels of predictive performance. This computational bottleneck

limits the possible performance of the methods developed using the current hardware setup. De-

spite these constraints, strong performance can been achieved using workarounds such as lower

capacity models and spacing out the frames ingested into a late fusion CNN model rather than

processing all frames in a region.

3.7 Summary

In this chapter deep learning based approaches to crowd behaviour recognition and behaviour

anomaly detection are developed. Various model selection issues including network capacity,

length of the temporal region observed and data preprocessing steps are explored, leading to

high predictive performance in each analysis task. State-of-the-art performance is achieved on

the violent-flows and LV datasets while competitive performance is achieved on the WWW

Crowd dataset. The superiority of deep learning approaches to hand crafted features for crowd

behaviour analysis is demonstrated throughout this chapter.
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Chapter 4

Crowd Congestion Analysis Via Deep

Neural Networks

4.1 Introduction

This chapter investigates the use of deep neural network techniques for the computer vision

tasks of crowd counting and crowd density level estimation. Research question 1 is addressed

in this chapter as well as in chapter 3. Various convolutional neural network configurations,

preprocesing steps and implementation strategies are evaluated for each task in an attempt to

find the best practices for deep learning based crowd congestion analysis. As in chapter 3 a

baseline run using hand crafted features is included for each task to compare performance with

deep learning methods. Following the development of a refined method for each task using a

validation set, comparisons are made with the leading techniques from the literature using a

larger test set. The work in this chapter was published at VISAPP 2017 under the title “Fully

convolutional crowd counting on highly congested scenes” (Marsden et al., 2016).
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4.2 Contributions

The main contributions of this chapter are listed below:

• A patch-based regression approach to crowd counting is developed;

• A crowd density level estimation dataset is constructed;

• The proposed technique is shown to be superior to a hand crafted baseline for both crowd

counting and crowd density level estimation;

• State-of-the-art performance is achieved on the ShanghaiTech crowd counting dataset.

4.3 Experimental Framework

The proposed crowd congestion analysis models are developed using a common framework in

which certain hyperparamaters and model selection choices are kept consistent across all exper-

iments. These limit the parameter space to explore during validation and focus experimentation

on the more impactful model selection issues.

4.3.1 Fixed Hyperparameters

The majority of the fixed parameters for this set of experiments are kept consistent with those

used in the previous chapter. The common framework used for all experiments in this chapter

is listed in table 4.1. The only changes to the previous chapter are the objective functions used

(detailed in full below) and the absence of temporal data augmentation due to the single frame

nature of the datasets used.
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Optimiser Adagrad (Duchi et al., 2011)

CNN Architecture Resnet (18, 50 layers)

Regularisation L2 Weight Decay (0.001)

Augmentation Random Crops, Random Flips

Initalisation (Glorot and Bengio, 2010), bias terms set to 0

Loss Function MSE/BCE for count regression, CCE/MSE for DL Estimation

Hardware 4GB Nvidia GTX 970 GPU, 8 core Intel i7 CPU, 32GB RAM

Table 4.1: Common framework used for all crowd congestion analysis training runs

Loss Functions

For regression-based crowd counting problems a mean squared error loss, given in equation 4.1,

is minimised. Ŝi refers to the predicted value while Si is the corresponding ground truth values.

LMSE =
K∑
i=1

(Si − Ŝi)2 (4.1)

Two types of loss function are investigated for heatmap generation based crowd counting.

First, a pixel-wise mean squared error is employed (in this case the MSE loss is summed for

all pixels in the image). Second, a combination of a binary cross entropy loss and a sigmoid

activation on the final output layer is investigated. Binary cross entropy loss is presented again

in 4.2.

LBCE = −
K∑
j=1

Sj log(Ŝj) + (1− Sj) log(1− Ŝj) (4.2)

For crowd density level estimation two different loss functions are evaluated. First, for clas-

sification based density level estimation a categorical cross entropy loss, given in equation 4.3,

is minimised following a softmax activation on the final network output. Second, a regression

82



4.4. Crowd Counting

based density level estimation approach is investigated with a mean squared error minimised.

LCCE = −
K∑
j=1

Sj log(Ŝj) (4.3)

4.3.2 Model Selection Issues Investigated

With this framework in place the experimental focus of this chapter can be discussed. The

following model selection issues are investigated for the task of crowd counting:

• Patch regression counting v. heatmap generation counting;

• Patch size used for training and inference of crowd counting models;

• Model capacity (number of network layers);

• Trainable parameters: training from scratch v. fine-tuning v. feature extraction.

The following model selection issues are investigated for crowd density level estimation:

• Model capacity (number of network layers);

• Trainable parameters: training from scratch v. fine-tuning v. feature extraction;

• Classification based DLE v. regression based DLE.

4.4 Crowd Counting

Crowd counting methods are developed and benchmarked in this section using the Shang-

haiTech dataset (parts A and B evaluated separately). These two datasets represent a low-

medium congestion and medium-high congestion crowd counting dataset respectively. Both
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datasets are evaluated at the frame level, with dot map annotations highlighting the head lo-

cation of each person included for all images. Performance is evaluated using mean absolute

error (MAE) and root mean squared error (MSE). For model selection experiments a 50 image

validation set is taken from the training set of parts A and B. Training is carried out for 10,000

iterations for all experiments. The number of training set epochs this corresponds to varies

with the dataset used and the model trained (which in turn affects the maximum batch size).

The full details of each dataset is listed in table 4.2. The following model selection issues are

investigated for this task:

• Patch regression counting v. heatmap generation counting;

• Patch size used for training and inference of crowd counting models;

• Model capacity (number of network layers);

• Trainable parameters: training from scratch v. fine-tuning v. feature extraction.

Dataset Count Range Training Set Size Validation Set Size Test Set Size

ShanghaiTech A 33-3139 300 Frames 50 Frames 182 Frames

ShanghaiTech B 5-600 400 Frames 50 Frames 316 Frames

Table 4.2: Training, validation and test set sizes for the ShanghaiTech Dataset. 50 frames are removed from each

training set to form a validation set, reducing the training set size for any model selection experiments.

4.4.1 Hand-Crafted Baseline

The hand crafted feature baseline used for this experiment is the support vector regression ap-

proach of Idress et al. (Idrees et al., 2013). This method combines HOG-based head detection

(Dalal and Triggs, 2005) with texture features generated using the SIFT descriptor (Lowe, 2004)
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and frequency-domain features produced via the Fourier transform to perform count regression.

A global consistency constraint is then employed using a Markov Random field, catering for

local disparities in count estimates.

4.4.2 Deep Learning Approach

Patch-based Regression v. Heatmap Generation

The first validation experiment for crowd counting compares patch-based count regression with

heatmap generation based counting on the ShanghaiTech validation sets. Patch based regression

is simply regression based counting where the image is processed in sections due to hardware

limitations. Patch based count regression divides a given frame into a set of non-overlapping

patches, passing each patch through a CNN regressor before accumulating the overall count for

the scene. A given CNN architecture (e.g. Resnet18) can be converted to a regressor by updating

the final layer to produce a single output value and applying a ReLU activation afterwards.

Training is carried out at the patch level, enabling large amounts of training samples to be

produced from a given training image, particularly when random cropping is employed.

Heatmap based counting on the other hand produces a pixel-wise map of crowd congestion

which when integrated produces an estimate of the overall crowd count. Any CNN architecture

(e.g. Resnet18) can be converted to perform pixel-wise heatmap generation by taking the output

of a given convolutional layer in the network and adding a single kernel convolutional layer and

any necessary upscaling required to match the input image. Billinear upscaling is applied for

all experiments. Training is performed using pairs of image patches and pre-generated heatmap

ground truth images (Zhang et al., 2016). These ground truth heatmap images are generated

by setting the pixel location of each person to 1.0 and applying guassian bluring to the whole

ground truth patch. Heatmap based counting via a CNN is illustrated in figure 4.1. Gaussian
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blurring via a 3 × 3 kernel is applied to all ground truth heatmaps for training. This blurring

eases the learning task for heatmap generation. Both mean squared error (MSE) and binary

cross entropy (BCE) are investigated as loss functions for heatmap generation. BCE loss looks

at each pixel individually and considers whether a person is present or not while MSE looks at

the overall heatmap error.

The Resnet18 architecture is used for all runs in this experiment with the entire network

trained end to end and initialised from an ImageNet pretrained model. 100×100 images patches

are used for training all runs in this case. For heatmap based counting models the output of the

9th convolutional layer is used to produce the estimated heatmap as going beyond this layer

reduces the feature maps to 1/8 the input size, while the 9th layer output is 1/4 the original size

(allowing easier upscaling). The results of this experiment are presented in table 4.3. Patch-

based regression far exceeds the performance of either heatmap based approach as well as the

hand-crafted baseline. This is due to the inability of the heatmap-based approach to handle

low-density crowds as this approach treats a large crowd as a texture or pattern rather than a

collection of discrete objects. The use of BCE loss results in superior performance to MSE

loss for heatmap generation counting, possibly due to the sigmoid activation function limiting

the range of the count prediction values, resulting in a more robust estimator. Patch regression

based counting will form the basis of all subsequent validation experiments.

Model Capacity, Trainable Parameters

The next validation experiment compares regression based counting networks of various depths

(Resnet18 and Resnet50) while also comparing training strategies for each (training from scratch,

fine-tuning and feature extraction). Training is carried out for 10,000 iterations for all runs with

a patch size of 100× 100 used during training and inference. The results of this experiment are
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Figure 4.1: Heatmap based crowd counting via CNN. A network is trained to estimate congestion heatmaps using

a set of ground truth images. An estimated heatmap is then integrated to produce an estimate of the overall crowd

count.

Model Part A: MAE Part A: MSE Part B: MAE Part B: MSE

Resnet18-Regressor 133.8 245.74 9.23 13.42

Resnet18-Heatmap-MSE 229.23 391.02 80.08 99.98

Resnet18-Heatmap-BCE 177.4 278.6 34.3 49.18

(Idrees et al., 2013) 256.3 410.5 86.5 102.3

Table 4.3: A comparison of patch regression and heatmap generation based crowd counting on the ShanghaiTech

validation sets (parts A and B). The hand-crafted baseline approach of Idress et al. (Idrees et al., 2013) is also

evaluated.

presented in table 4.4. The best overall performance is achieved when a Resnet18 model is fine-

tuned from a pre-trained ImageNet model. Including additional model capacity via Resnet50

results in inferior performance most likely due to overfitting. In all cases transfer learning from

a pre-trained model resulted in superior performance and the deep learning runs outperform the

hand crafted baseline.
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Architecture Config Part A: MAE Part A: MSE Part B:MAE Part B:MSE

Resnet18 FS 145.6 275.3 11.3 14.3

Resnet18 FT 133.8 245.74 9.23 13.42

Resnet18 FE 160.2 295.2 17.8 27.81

Resnet50 FS 190.6 310.9 16.5 22.5

Resnet50 FT 177.5 303.5 13.6 19.6

Resnet50 FE 145.9 263.8 12.83 18.26

Hand-Crafted N/A 256.3 410.5 86.5 102.3

Table 4.4: Comparison of the various network architectures and training strategies for patch regression based

crowd counting on the ShanghaiTech validation sets (Part A and B). FS refers to From Scratch, FT refers to Fine

Tuning while FE refers to Feature extraction.

Patch Size During Training and Inference

The final model selection experiment for crowd counting compares various patch sizes used for

CNN based count regression. A larger patch size will expose the network to more scene context

but will result in a less homogeneous object size (i.e. people in the scene) due to camera

perspective issues. A smaller patch size on the other hand will result in a more homogenous

object size but the inclusion of less scene context. Patches of size 50×50, 100×100 and 200×

200 are evaluated. Training is carried out using a pre-trained Resnet18 for 10,000 iterations in

each case. The results of this experiment is shown in figure 4.5

A 100 × 100 patch size during model training and inference results in the best overall val-

idation performance. This size results in the best tradeoff between scene context and variation

in object size. Significantly inferior performance is observed for 200× 200 patches, highlight-

ing the challenge in training a counting model for images containing objects of significantly
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Patch Size Part A: MAE Part A: MSE Part B:MAE Part B:MSE

50× 50 142.1 259.3 10.3 14.4

100× 100 133.8 245.74 9.23 13.42

200× 200 190.5 287.5 19.5 28.3

(Idrees et al., 2013) 256.3 410.5 86.5 102.3

Table 4.5: Comparison of the various patch sizes used for regression based crowd counting on the ShanghaiTech

validation sets (Part A and B).

different sizes.

4.4.3 Comparison With The State-Of-The-Art

The best performing crowd counting configuration on the ShanghaiTech validation sets involves

a Resnet18 patch-based regressor trained end-to-end on 100×100 patches and initialised from a

pre-trained ImageNet model. This configuration is compared with the leading techniques in the

literature as well as a hand-crafted baseline on the test sets of the ShanghaiTech dataset (parts

A and B). Table 4.6 presents the results of this experiment. The proposed technique achieves

state-of-the-art performance on the ShanghaiTech part B test set and competitive performance

on the ShanghaiTech part A test set. However when the two datasets are considered together

the proposed technique can be deemed superior to the work of Sindagi and Patel as it achieves

a 48% better MAE score on part B and just a 13% inferior MAE score on part A. This line of

thinking assumes that both datasets are of equal importance and that accuracy in low congestion

scenes is as important as in high congestion scenes. The proposed technique also employs fewer

trainable model parameters, with a single resnet18 model trained compared to the 3 branch

network of Sindagi and Patel. Examples of the proposed counting model in action are presented

in figure 4.2. Larger errors are observed for higher congestion scenes, due to the limited number
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of pixels occupied by each person.

Approach Part A: MAE Part A: MSE Part B:MAE Part B:MSE

(Idrees et al., 2013) 160.5 225.6 65.4 89.7

(Zhang et al., 2016) 110.2 173.2 26.4 41.3

(Sam et al., 2017) 90.4 135.0 21.6 33.12

(Sindagi and Patel, 2017) 73.6 106.4 20.1 30.1

Patch-Regressor (Proposed) 83.62 131.5 12.61 23.6

Table 4.6: Comparison of the leading CNN based crowd counting approaches on the ShanghaiTech test sets (parts

A and B). Not all methods listed here are included in the literature review as many of the approaches apply a very

similar heatmap generation approach.

4.5 Crowd Density Level Estimation

Crowd density level estimation (DLE) methods are developed and benchmarked in this section

using a re-purposed version of the ShanghaiTech dataset that combines parts A and B in order

to maximise the range of crowd congestion level. This new dataset, which will be referred to

as ShanghaiTech Density, is proposed here since the existing collections for this task contain

only low congestion scenes, with no dataset commonly accepted by the research community.

Performance is evaluated for density level estimation at the frame level using mean absolute

error, accuracy, and top-2 accuracy. For these experiments the entire frame is processed in a

single CNN forward pass, with appropriate downsampling and cropping applied. Model se-

lection experiments are carried out on a 100 image validation subset taken from the combined

training sets of parts A and B. Training is carried out for 10,000 iterations for all experiments.

The following model selection issues are investigated for this task:
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Figure 4.2: Examples of the proposed crowd counting system in action on the ShanghaiTech dataset. The first

image contains 803 people with an estimated count of 819 calculated. The second image contains 1544 people

with an estimated count of 1394 calculated. Larger errors are observed for higher congestion scenes.

• Classification based density level estimation v. regression based density level estimation;

• Model capacity (number of network layers);

• Trainable parameters: training from scratch v. fine-tuning v. feature extraction.

4.5.1 ShanghaiTech Density Dataset Construction

The Shanghaitech dataset is combined into a single collection by joining the training, validation

and test sets of ShanghaiTech parts A and B. The overall breakdown of this new Shanghaitech
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Density dataset is presented in table 4.7. This provides a significant increase in crowd density

variation compared to using either set individually. The overall crowd count value associated

with each image in the original dataset is then used to infer a crowd density level label. The

annotation scheme presented in table 4.8 is used to this end. This scheme provides greater

granularity for low congestion scenes which are more commonly encountered in public. Crowds

of up to 5000 people are covered by this scheme, providing far greater range than the existing

datasets and schemes.

Dataset Training Set Size Validation Set Size Test Set Size

ShanghaiTech Density 700 Frames 100 Frames 498 Frames

Table 4.7: Training, validation and test set sizes for the ShanghaiTech Density Dataset.

Density Level Label Min Count Max Count.

0 0 49

1 50 99

2 100 149

3 150 249

4 250 499

5 500 999

6 1000 1999

7 2000 2999

8 3000 3999

9 4000 5000

Table 4.8: Annoation scheme used for the ShanghaiTech Density dataset

The distribution of the ShanghaiTech Density dataset across these 10 density levels is illus-
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trated in figure 4.3. The distribution of an evenly spaced annotation scheme (0,500,1000,1500

etc) is shown in figure 4.4. This scheme results in an extremely skewed distribution with the

majority of the samples falling under label 0. Therefore the annotation scheme which provides

more granularity to lower congestion scenes is employed.

Figure 4.3: Distribution of the ShanghaiTech Density dataset across the 10 density level labels using the proposed

annotation scheme.

4.5.2 Hand-Crafted Baseline

The hand crafted baseline for this experiment uses SIFT descriptors (Lowe, 2004) to generate

a bag of visual words model. 128-D SIFT descriptors are extracted in a dense manner from all

training images. These descriptors are then clustered into 512 codewords using k-means clus-

tering. The normalised distribution of SIFT descriptor occurrence across these 512 codewords

is then used as a fixed length descriptor for comparing images. 10 one-v-rest support vector

machines are then trained to classify crowd density images using the proposed fixed length de-

scriptor. This overall pipeline is then used to classify the crowd density level of a given image.
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Figure 4.4: Distribution of the ShanghaiTech Density dataset across the 10 density level labels using an evenly

spaced annotation scheme. This results in an extremely skewed distribution across the 10 density levels. It is

reminiscent of the Zipf Parento distribution (Powers, 1998)

4.5.3 Deep Learning Approach

Classification based Crowd DLE Vs. Regression based Crowd DLE

The first validation experiment in this section compares classification based Crowd density level

estimation (DLE) with regression based Crowd DLE. For classification models, the final net-

work layer will contain 10 neurons and be followed by a softmax activation. For regression

models, the final network layer will contain a single neuron and be followed by a ReLU acti-

vation. Regression outputs are rounded to the nearest whole number to produce a density label

for evaluation. The Resnet18 architecture will be trained end-to end for each run after being

initialised from a pre-trained ImageNet model. The results of this experiment are presented in

table 4.9. Classification-based DLE achieves the best overall performance despite the ordinal

relationships between class labels. Both deep learning runs comfortably outperform the hand
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crafted baseline. Classification based estimation is used for all subsequent experiments in this

chapter.

Approach MAE Accuracy Top-2 Accuracy

Classification-based DLE 0.62 52% 89%

Regression-based DLE 0.71 50% 87%

Dense SIFT+ BOW (Hand Crafted) 1.14 33% 72%

Table 4.9: Comparison of regression-based DLE, classification-based DLE and the hand crafted baseline run.

Evaluation is carried out on the ShanghaiTech Density validation set.

Model Capacity, Training Strategy

The next experiment compares classification based DLE models of various depths (Resnet18

and Resnet50) while also comparing training strategies for each (training from scratch, fine-

tuning and feature extraction). The results of these experiments are presented in table 4.10. A

fine-tuned Resnet18 model performs best for MAE score and jointly best for accuracy, while a

Resnet50 feature-extractor performs best for top-2 accuracy. Due to the ordinal nature of this

problem more importance is placed on MAE score and therefore the Resnet18 fine tuned run is

deemed to be the best performing configuration and is used for all subsequent experiments. In

all cases transfer learning from a pre-trained model resulted in superior performance.

4.5.4 Comparison With The State-Of-The-Art

The proposed technique is evaluated on the ShanghaiTech Density test set and compared with

the hand crafted baseline as well as the previously developed crowd counting model being

re-purposed for the DLE task. Crowd counting estimates are quantized into a crowd density

level label using the previously proposed annotation scheme. The results of this experiment
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Approach MAE Accuracy Top-2 Accuracy

Resnet18-Scratch 0.67 44% 0.82%

Resnet18-FE 0.90 40% 81%

Resnet18-FT 0.62 52% 89%

Resnet50-Scratch 1.02 29% 62%

Resnet50-FE 0.66 52% 91%

Resnet50-FT 0.95 32% 68%

Dense SIFT+ BOW (Hand Crafted) 1.14 33% 72%

Table 4.10: Comparison of various model depths and training strategies for classification based density level

estimation on the ShanghaiTech Density validation set.

are presented in table 4.11. The best overall performance is achieved when a crowd counting

model is re-purposed for density level estimation. This performance boost, however, results in

significantly more computational demand due to the patch-based regression method used, with

each patch individually processed through the network. Both methods significantly outperform

the hand crafted baseline run. The method used for a given application ultimately depends

on the available computational resources, the need for real-time processing, and the minimum

margin of error required.

Approach MAE Accuracy Top-2 Accuracy

Resnet18-FT 0.65 47.7% 89.9%

Resnet18-Count-Quantized 0.28 72.4% 99.5%

Dense SIFT+ BOW (Hand Crafted) 0.95 32.7% 80.1%

Table 4.11: Comparison of various DLE techniques on the ShanghaiTech Density test set.
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4.6 Discussion

Deep learning based methods have been shown to produce state-of-the-art performance in crowd

counting and very strong density level estimation performance on a newly proposed benchmark.

The lack of training data available for both tasks is overcome through aggressive data augmenta-

tion (i.e. random cropping and flipping during optimisation). With the availability of larger and

more varied datasets the performance of these data-driven models should only improve further.

The best performing crowd counting run employs patch-based CNN regression trained end-

to-end on 100 × 100 patches. The superiority of patch regression counting to heatmap based

counting is due to the inability of heatmap based counting to deal with low congestion scenes

where the crowd is a collection of individual object/people. Heatmap counting treats the overall

crowd as a texture or pattern and is therefore suited mainly to high congestion scenes. Patch

regression can however scale to both settings. This is a computationally expensive method but

leads to highly accurate counting models.

The best performing DLE run applies Softmax classification on top of a lower capacity net-

work due to the lack of available training data. Density level estimation can be considered a

coarse, surface level approximation of crowd counting. The developed DLE method, which pro-

cesses an entire frame in a single CNN forward pass is far less computationally demanding than

the proposed counting method and requires only a single label per frame rather than a dot anno-

tation for each individual object/person. The choice of which method to use ultimately depends

on the hardware resources available, whether real-time processing is needed, and the acceptable

margin of error when measuring the congestion of a crowded scene via CCTV footage.
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4.7 Summary

In this chapter deep learning based approaches to crowd counting and crowd density level es-

timation are developed and compared to the leading approaches from the literature. Various

model selection issues including model capacity, choice of loss function and training strat-

egy are explored for both tasks. State-of-the-art performance is achieved on the ShanghaiTech

dataset for crowd counting while promising initial performance is achieved on the newly pro-

posed ShanghaiTech Density dataset. The superiority of deep learning approaches to hand-

crafted features for crowd congestion analysis is once again demonstrated throughout this chap-

ter.
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Chapter 5

Multi-Task Crowd Analysis

5.1 Introduction

This chapter investigates the use of multi-task learning (MTL) techniques for deep neural net-

work based crowd video analysis. Research question 2 is addressed by this chapter. Auxiliary

loss terms are first investigated as a means to improve the performance of a given crowd analysis

task without introducing any additional data or annotation labels. Joint training of complemen-

tary crowd analysis tasks (behaviour recognition, crowd counting, density level estimation) is

then investigated to see if any improvements in predictive performance can be achieved while

reducing the overall network parameter count across multiple tasks. Various model selection

issues are refined for each multi-objective experiment using the relevant validation sets in each

case. A multi-task crowd analysis model is then compared with the already proposed single

objective approaches to each task as well as the leading approaches in the literature. The work

in this chapter was published at AVSS 2017 under the title “ResnetCrowd: A Residual Deep

Learning Architecture for Crowd Counting, Violent Behaviour Detection and Crowd Density

Level Classification” (Marsden et al., 2017).
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5.2 Contributions

The main contributions of this chapter are listed below:

• Auxiliary loss functions are shown to improve crowd density level estimation perfor-

mance with a negligible increase to the overall parameter count;

• A joint model for crowd counting and behaviour recognition is developed, improving the

predictive performance of both tasks and reducing the overall parameter count by 50%.

5.3 Experimental Framework

As in the previous chapters, the proposed multi-task crowd analysis models are developed using

a common framework in which certain hyperparamaters and model selection choices are kept

consistent across all experiments. This limits the parameter space to explore during validation

and focus experimentation on the more impactful model selection issues.

5.3.1 Fixed Hyperparameters

All of the fixed parameters for this set of experiments are kept consistent with those used in

chapters 3 and 4. The common framework used for all experiments in this chapter is listed in

table 6.1.

5.3.2 Model Selection Issues Investigated

The following model selection issues are investigated for auxiliary loss experiments:

• Loss term weightings (equal v. manual v. data-driven).

The following model selection issues are investigated for joint task training experiments:
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Optimiser Adagrad (Duchi et al., 2011)

CNN Architecture Resnet (18, 50 layers)

Regularisation L2 Weight Decay (0.001)

Augmentation Random Crops, Random Flips

Initalisation (Glorot and Bengio, 2010), bias terms set to 0

Loss Functions MSE, BCE, CCE

Hardware 4GB Nvidia GTX 970 GPU, 8 core Intel i7 CPU, 32GB RAM

Table 5.1: Common framework used for all multi-task analysis training runs.

• Task specific normalisation v. shared normalisation;

• Loss term weightings (equal v. manual v. data-driven);

• 2-task training v. 3-task training.

5.4 Auxiliary Loss Functions

Auxiliary loss terms can be included in the objective function employed when optimising a

neural network to add additional regularisation to the model or induce a bias towards learning a

certain type of function by penalising certain conditions. An example of this is shown in equa-

tion 5.1 where two separate loss terms and a regularisation term make up the overall objective

function. This additional loss term can be calculated using the existing training data X or it

may require a separate ground truth to be generated from the existing labels. After training is

completed, a given neural network can be used for inference exactly as before, even if auxiliary

network outputs are included.
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C(X;W ) = L1(X;W ) + L2(X;W ) +R(W ) (5.1)

Weightings can be applied to the various loss terms within a given objective function to give

a greater influence to a certain loss term or terms during optimisation as shown in equation 5.1.

These weightings can either be set manually, inferred in a data driven way, or set to 1.0 resulting

in an equal weighting for all terms.

Crowd counting and density level estimation are both well suited for research into auxiliary

loss terms, given that both tasks have already been attempted using various loss functions in

chapter 4. Both of these tasks are investigated for any potential performance boosts associated

with an auxiliary loss training strategy. The following model selection issues are investigated

for auxiliary loss experiments:

• Loss term weightings (equal v. manual v. data-driven).

5.4.1 Density Level Estimation

CNN based crowd DLE is investigated in the previous chapter (sections 4.5) using both mean

squared error (MSE) loss for regression based estimation and categorical cross entropy (CCE)

loss for classification based estimation. While classification based estimation performed better

of the two, a regression based auxiliary loss may improve performance as it recognises the

ordinal relationship between density level classes unlike classification based estimation. This

auxiliary regression output can be included through an additional fully connected output layer

with a single neuron. This concept is visualised in figure 5.1. These two network outputs are

then used to compute the two loss terms within the overall objective function for this task. This

new approach can then be trained in an identical manner to the original single task DLE method

with the classification output serving as the primary output used for inference and evaluation.
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Figure 5.1: Auxiliary regression loss output included for crowd density level estimation

Loss Weightings

Various loss weighting schemes are investigated for auxiliary loss training on the ShanghaiTech

Density validation set. These include several fixed weighting schemes as well a data driven

scheme that attempts to balance the influence of all loss terms on weight updates. The proposed

data-driven scheme produces a set of loss weights based on the gradient magnitude calculated

for each network output over the entire training set. Network weights are frozen while these

gradient magnitudes are computed, before any optimisation steps have been taken. These output

specific gradient values correspond to the influence each output has upon weight updates during

optimisation. Once these gradient values are computed, the weighting for each loss term Wi is

computed using equation 5.2. Outputs with a higher gradient receive a lower weighting using

this scheme in an attempt to balance the influence of various loss terms during optimisation.

This set of loss weights are then applied for the entire optimisation process.
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Wi =
max
i
∇Li(x;W )

∇Li(x;W )
(5.2)

The Resnet18 architecture is trained end to end for all training runs while being initialised

from a pre-trained imageNet model. The results of this experiment are presented in table 5.2.

W1 refers to the weighting for cross entropy loss (classification) while W2 refers to the weight-

ing for MSE loss (regression). Equal loss weightings achieves the best overall validation perfor-

mance as MAE performance is deemed to be more important than accuracy due to the ordinal

relationship between classes. Data driven loss weighting does not have a significant influence

in this experiment. This may be due to the lack of variation in gradient magnitudes between

network outputs in this case.

Model W1 W2 MAE ACC Top-2 ACC

Resnet18 1.0 0.5 0.64 52% 90%

Resnet18 0.5 1.0 0.63 53% 90%

Resnet18 1.0 1.0 0.62 54% 90%

Resnet18 Data Driven Data Driven 0.63 53% 90%

Table 5.2: Density level estimation performance for various weighting schemes on the ShanghaiTech Density

validation set.

Comparison To The State-Of-The-Art

The best performing auxiliary loss configuration for crowd DLE is compared to the other ap-

proaches developed in chapter 4 on the ShanghaiTech Density test set, the results of which are

presented in table 5.3. The inclusion of the auxiliary regression loss improves performance over

the single loss baseline for all metrics with a negligible increase in network parameters and in-

ference time. This approach is still however inferior in terms of benchmarking performance to
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the computationally heavy patch-based counting method, but closes the gap while maintaining

the low computational cost.

Approach MAE Accuracy Top-2 Accuracy

Resnet18-FT 0.65 47.7% 89.9%

Resnet18-FT-Auxiliary loss 0.644 49.1% 90.1%

Resnet18-Count-Quantized 0.28 72.4% 99.5%

Hand Crafted Baseline 0.95 32.7% 80.1%

Table 5.3: Comparison of various DLE techniques on the ShanghaiTech Density test set including the hand-crafted

baseline run and the quantized crowd count method proposed in chapter 4.

5.4.2 Crowd Counting

CNN based crowd counting is investigated in chapter 4 (section 4.4) as both a patch-based

regression model and a heatmap-generation model, optimised using a patch level MSE loss and

pixel level MSE loss respectively. A patch-level MSE lacks any local spatial context which

can be provided by the pixel level MSE of heatmap based counting. Training a patch-based

regression model which includes a heatmap generation auxiliary loss may add some robustness

to the count regressor. The Shanghaitech dataset (parts A and B) are again used to evaluate

validation performance. The Resnet18 architecture is used for this experiment, with the patch-

based regression and heatmap generation counting architectures used in chapter 4 combined into

a single model. The heatmap generating convolutional layer is added onto the 9th convolutional

layer of Resnet18 as before while the regression output layer is included at the very top of the

network. This architecture is visualised in figure 5.2. Training is carried out end-to-end in

a single run, with heatmap ground truth images and corresponding count values generated to

calculate the two loss terms.
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Figure 5.2: Auxiliary heatmap generation output included for patch based crowd counting

Loss Weightings

Various weightings schemes are investigated for auxiliary loss based crowd counting including

the data driven scheme discussed in the previous section. The results of this experiment are pre-

sented in table 5.4. The data-driven weighting scheme results in the best overall performance,

while there is little variation between the various fixed weighting schemes. The superiority

of the data-driven scheme in this case is likely due to a significant difference in the gradient

magnitudes of pixel level and patch-level output layers.
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Heatmap Weight Reg. Weight PART A: MAE/MSE PART B: MAE/MSE

0.5 1.0 135.6/231.4 13.1/16.7

1.0 0.5 136.12/213.4 12.1/16.3

1.0 1.0 136.12/213.4 12.1/16.3

Data-Driven Data-Driven 130.1/228.6 9.6/13.3

Table 5.4: Crowd counting performance for various auxiliary loss weighting schemes on the ShanghaiTech vali-

dation sets (Part A and B).

Comparison With The State-of-the-Art

The optimal auxiliary loss configuration for patch-based crowd counting is compared to the

single-task approach developed in chapter 4 as well as the leading approaches from the litera-

ture. Performance is evaluated on the ShanghaiTech test set (part A and B), the results of which

are presented in table 5.3. The inclusion of the auxiliary loss term reduces MAE for Part A by

2% but at the cost of an increase in MAE on part B by 4.7%. The heatmap loss appears to be

more suited to higher congestion scenes and improves MSE performance for both parts of the

dataset.

Approach PART A: MAE/MSE PART B: MAE/MSE

(Sam et al., 2017) 90.4/135.1 21.6/33.12

(Sindagi and Patel, 2017) 73.6/106.4 20.1/30.1

Patch-Regression 83.6/131.5 12.61/23.6

Patch-Regression-Auxiliary Loss 81.9/127.9 13.2/23.4

Table 5.5: Comparison of various crowd counting techniques on the ShanghaiTech test set (Part A and B).
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5.5 Joint Task Training

In this section the joint training of related crowd analysis tasks using a shared CNN is inves-

tigated. The tasks of crowd counting, crowd behaviour recognition and crowd density level

estimation are trained and evaluated using the ShanghaiTech Part A, Violent-Flows and Shang-

haiTech Density datasets respectively. As there is no common dataset annotated for all 3 anal-

ysis tasks this shared model must be trained in a round robin fashion, optimising one task in a

given optimisation step before switching to the next. The loss function in use is also switched

in and out in this round robin fashion. Single frame analysis is used for all tasks in order to

simplify this set of experiments. The Resnet18 architecture is trained end-to-end with separate

fully connected output layers for each task. This overall network configuration is illustrated in

figure 5.3. The auxiliary output for density level estimation is included as it is shown to boost

overall performance while the auxiliary output for crowd counting is omitted as it boosts per-

formance on one dataset at the cost of another. Once a refined method has been developed using

a collection of validation sets, comparisons are made to the leading techniques in the literature

as well as the previously developed approaches presented in chapters 3 and 4. The following

model selection issues are investigated for joint task training experiments:

• Task specific normalisation v. shared normalisation;

• Loss term weightings (equal v. manual v. data-driven);

• 2-task training v. 3-task training.

5.5.1 Task Specific Normalisation v. Shared Normalisation

The Resnet architecture performs batch normalisation (Ioffe and Szegedy, 2015) after each

convolutional layer and is a major contributor towards the reliable convergence and predictive
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Figure 5.3: Multi-task crowd analysis architecture proposed for this set of experiments

performance achieved by this architecture. Several implementation strategies are investigated

for normalisation in a multi-task configuration, including 1) Apply no task specific normali-

sation of any kind; 2) Include a task specific batch normalisation layer prior to the final fully

connected layer(s) for each task; 3) Include a shared batch normalisation layer following the

base network that is connected to all task specific layers. These 3 normalisation configurations

are evaluated on a 2-task model trained jointly for behaviour recognition and crowd counting (3

task models are investigated in a later experiment). The results of this experiment are shown in

table 5.6. Task specific batch normalisation results in the best overall performance, with a neg-
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ligible increase in the overall model parameters from the inclusion of the additional BN layer.

This configuration is used for all subsequent experiments.

Approach Counting MAE/MSE Behaviour ACC/AUC

No Additional BN 135.3/256.3 90.4%/0.943

Task specific BN 132.50/241.3 91.6%/0.949

Shared BN 166.8/305.4 89.5%/0.946

Table 5.6: Comparison of various batch normalisation strategies for multi-task crowd analysis. Evaluation is

performed on the ShanghaiTech Part A validation set and the violent-Flows dataset (fold 1).

5.5.2 Loss Weightings

Various task weightings schemes are investigated for joint task training. Again a 2-task model

trained for crowd counting and behaviour recognition is used for validation. While the use

of round robin training results in optimisation not being performed in a truly joint fashion,

loss weights can still be applied to the various tasks to influence training. The results of this

experiment are shown in table 5.7. Equal loss weighting results in optimal performance for both

tasks while the data driven weightings significantly degrade the performance in this case. Equal

weighting across tasks is used for all subsequent joint training experiments.

5.5.3 2-Task v. 3-Task Training

Finally the impact of including additional crowd analysis tasks is investigated with crowd DLE

added as this extra task. In order to ensure equal loss weighting across all tasks the weightings

of the two DLE loss terms are each set to 0.5. End-to-end training is again carried out using a

Resnet18 network initialised from a pre-trained ImageNet model. All other 2-task permutations
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Scheme Counting MAE/MSE Behaviour ACC/AUC

Equal Weighting 132.50/241.3 91.6%/0.949

1.0/0.5 136.70/246.4 89.5%/0.946

0.5/1.0 139.50/255.7 90.5%/0.946

Data Driven 155.4/267.2 85.4%/0.927

Table 5.7: Comparison of various loss weighting for multi-task crowd analysis. Evaluation is performed on the

ShanghaiTech Part A validation set and the violent-flows validation dataset

and single task baselines are also included for a comprehensive comparison. The results of this

validation experiment are shown in figure 5.8. The inclusion of the 3rd task degrades perfor-

mance for both crowd counting and behaviour recognition, resulting in poor performance across

all tasks. All 2-task permutations result in performance boosts on the other hand. Therefore this

may be a network capacity issue limiting the performance of the 3 task run.

Tasks Counting MAE/MSE Behaviour ACC/AUC DLE MAE/ACC

Behaviour N/A 89%/0.935 N/A

Counting 133.8/245.74 N/A N/A

Density N/A N/A 0.62/54%

Behaviour/Counting 132.50/241.3 91.6%/0.949 N/A

Behaviour/Density N/A 90.6%/0.939 0.62/54%

Counting/Density 134.8/249.8 N/A 0.62/54%

3-Task 237.2/467.7 68.7%/0.847 1.57/0.16

Table 5.8: Comparison of various multi-task training permutations for crowd analysis. Evaluation is performed

on the ShanghaiTech part A validation set, the violent-flows validation set dataset and the ShanghaiTech density

validation set.
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5.5.4 Comparison With the State-Of-The-Art

Following the development of the proposed multi-task crowd analysis model comparisons are

made with the leading techniques from the literature. As the proposed 3 task run on Resnet18

performs very poorly in validation, a 2 task run (behaviour recognition/crowd counting) is used.

A 5-fold cross validation is used to compare performance on the violent-flows dataset, meaning

5 separate crowd counting runs are also generated, with the mean performance across these runs

used for comparison purposes. Crowd density level estimation is not included in this experiment

as there are no existing methods evaluated on the proposed ShanghaiTech density dataset in the

literature. The results of this experiment are presented in table 5.9. Multi-task training boosts

performance for both tasks, improving the mean accuracy on the violent-flows dataset beyond

the proposed method and reducing the margin between the proposed counting model and the

work of Sindagi and Patel (Sindagi and Patel, 2017) on the Shanghaitech Part A dataset. It is

important to remember that the proposed counting technique comfortably outperforms Sindagi

and Patel on ShanghaiTech Part B even in a single task training run.

Tasks Counting MAE/MSE Behaviour ACC/AUC

Behaviour-Single N/A 95.2±7.5%/0.98

Counting-Single 83.62/131.5 N/A

(Senst et al., 2017) N/A 93.12±8.7%/0.97

(Sindagi and Patel, 2017) 73.6/106.4 N/A

Behaviour/Counting 81.3/128.1 95.4±6.9%/0.98

Table 5.9: Comparison of the proposed multi-task crowd analysis model with the leading techniques in the litera-

ture for each task. Evaluation is performed on the ShanghaiTech Part A test set as well as the violent-Flows dataset

(via a 5 fold cross validation). error margins are presented for the violent-flows dataset as is convention for this

benchmarking task.
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5.6 Discussion

Multi-task learning strategies have been shown to boost performance for several crowd analysis

tasks with a negligible increase to model capacity required (a single additional fully connected

layer per task). Auxiliary loss terms increase the benchmarking performance for density level

estimation and for crowd counting in high congestion scenes. The joint training of related crowd

analysis tasks has been shown to produce more accurate and robust predictions while reducing

the number of required models parameters by 50% for a 2 task model. This holds true for 2 task

joint training, while 3 task training results in inferior performance most likely due to a lack of

model capacity within the fixed architecture used.

Task specific normalisation is shown to improve the predictive performance of multi-task

crowd analysis models with a negligible increase in the overall parameter count. Various loss

weighting schemes are investigated for multi-loss objective functions, with improved perfor-

mance observed for crowd counting when loss weightings are informed by the gradient magni-

tudes calculated for the various network outputs. Equal weighting across tasks performs best

for multi-objective density level estimation and the joint training of multiple analysis tasks.

Varying the ratio of shared and task specific network parameters has been targeted as a possible

direction for future work in area.

Performance boosts associated with multi-task learning are likely due to the degree of corre-

lation between tasks, with complementary tasks benefiting the most. Uncorrelated tasks receive

limited performance boosts when MTL is performed.
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5.7 Summary

In this chapter deep learning based approaches to multi-task crowd analysis were developed.

Various model selection issues including loss weightings, task specific normalisation and the

number of tasks trained on simultaneously are investigated. State-of-the-art performance is

achieved on the violent-flows dataset when joint training with crowd counting is performed.

Issues that remain to be investigated for this task include the ratio of shared and task specific

network parameters as well as the overall network capacity required to train 3 or more crowd

analysis tasks simultaneously.
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Chapter 6

Visual Domain Adaption In Object

Counting

6.1 Introduction

This chapter investigates the use of domain adaptation (DA) techniques to extend deep learning

models trained in a given visual domain to perform accurate analysis in other visual domains.

Research question 3 is addressed by this chapter. The majority of the research to date for

domain adaptation has focused on image classification tasks. This thesis however focuses on

domain adaptation in regression tasks (i.e. object counting) which have up to now been largely

unexplored. A new dataset for cell counting in microscopy is constructed and combined with

existing collections for vehicle, person and wildlife counting. Recently proposed domain adap-

tation strategies are compared with more traditional techniques (feature extraction, fine tuning)

both in terms of counting error and the number of new model parameters required to adapt a

given network to a new domain. A domain classifier is also trained to distinguish between visual

domains in the event that the observed domain is unknown during inference in a deployment
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scenario. Once a refined multi-domain technique is developed, comparisons are made with the

leading object counting methods in the literature for each domain. The work in this chapter was

published at CVPR 2018 under the title “People, Penguins and Petri Dishes: Adapting Object

Counting Models To New Visual Domains And Object Types Without Forgetting” (Marsden

et al., 2018).

6.2 Contributions

The main contributions of this chapter are listed below:

• Rebuffi adapter modules are shown to be superior to traditional fine-tuning for domain

adaptation in object counting;

• A cell counting dataset was constructed in collaboration the University College Dublin

School Of Medicine;

• A multi-domain object counting is developed for crowd, cell, vehicle and wildlife count-

ing.

6.3 Experimental Framework

As in the previous chapters, a common framework is used in which certain hyperparamaters

and model selection choices are kept consistent across all experiments.

6.3.1 Fixed Hyperparameters

All of the fixed parameters for this set of experiments are kept consistent with those used in

chapters 3, 4 and 5. The common framework used for all experiments in this chapter is listed in
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table 6.1.

Optimiser Adagrad (Duchi et al., 2011)

CNN Architecture Resnet (18, 50 layers)

Regularisation L2 Weight Decay (0.001)

Augmentation Random Crops, Random Flips

Initalisation (Glorot and Bengio, 2010), bias terms set to 0

Objective Functions MSE for object counting regression

Hardware 4GB Nvidia GTX 970 GPU, 8 core Intel i7 CPU, 32GB RAM

Table 6.1: Common framework used for all domain adaptation training runs.

6.3.2 Model Selection Issues Investigated

The following model selection issues are investigated for domain adaptation of object counting

models:

• Traditional transfer learning methods v. recently proposed DA strategies

• Choosing the source domain used to initalise the model

6.4 Non-Crowd Object Counting Datasets

In order to carry out this research new counting datasets for other visual domains need to be

utilised. Fortunately several fully labelled datasets from distinct visual domains have been made

available to the research community. The TRANCOS dataset (Guerrero-Gómez-Olmedo et al.,

2015) consists of 1244 images of vehicles with a mean object count of 36.5 and serves as the ve-

hicle counting dataset for this study. The Penguins dataset (Arteta et al., 2016) contains 80,095
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images of penguins with a mean object count of 7.18 and serves as the widlife counting dataset.

Sample images from these datasets are shown in figure 6.1. Cell counting is another application

where computer vision is a possible solution. The currently available cell counting datasets are

either synthetic in nature (Xie et al., 2016) or captured via an imaging modality not commonly

used for counting tasks in practice (e.g. histological slides (Cohen et al., 2017)). Cell counting

in a tissue culture setting is a commonly used analysis tool for medical research and patient

diagnoses, yet there is no publicly available dataset for developing computer vision solutions to

this task. This need led to the development of a new cell counting dataset in collaboration with

University College Dublin’s School of Medicine.

Figure 6.1: Sample images taken from the TRANCOS (Guerrero-Gómez-Olmedo et al., 2015) and Penguins

(Arteta et al., 2016) datasets.

6.5 Cell Counting Dataset Construction

There is no fully annotated dataset suitable for the development of cell counting methods in

a tissue culture setting. To address this the Dublin Cell Counting (DCC) dataset is developed.

This dataset consists of 177 images containing a wide array of tissue and species. Amongst them
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are examples of stem cells derived from embryonic mice, isolated human lung adenocarcinoma

and examples of primary human monocytes isolated from a healthy human volunteer. Several

factors were varied during image capture to provide a more representative set of images. First,

the density of cells loaded onto the slide naturally varies as cell lines proliferate at different

rates. Second, the morphology and size of the cells for each cell line can vary significantly.

Furthermore, the objective lens used during imaging was varied as was the diameter of the

diaphragm which controls the amount of light hitting the sample. Finally, the haemocytometer

grid size was varied to produce a representative set of non-cellular image artifacts. Cell images

were obtained via a camera mounted on an Olympus CKX41 microscope using both 4× and

10× objectives. The high levels of variation in this collection provides a representative and

challenging benchmark.

Once the full set of image is acquired an annotation process was performed by a domain

expert with a background in molecular biology, applying a single pixel dot to each cell within

a given image. The mean cell count across these images is 34.1 with a standard deviation of

21.8, showing the significant variation in cell density level. 100 images are used for training and

validation while the remaining 77 form an unseen test set. Sample images from this newly cre-

ated dataset are shown in figure 6.2. Combining this collection with the TRANCOS, Penguins

and ShanghaiTech datasets provides 4 high quality object counting datasets in distinct visual

domains which can be used for domain adaptation research.
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Figure 6.2: DCC dataset examples showing the significant variation within this collection.

6.6 Domain Adaptation Methods

6.6.1 Traditional Transfer Learning v. New DA Strategies

In this section more traditional transfer learning techniques (fine-tuning, feature extraction) are

compared with a recently proposed domain adaptation strategy for the task of object counting.

The recently proposed DA strategy evaluated is the residual adapter modules of Rebuffi et al.

(Rebuffi et al., 2017). This approach includes a set of so called adapter modules before each

convolutional or fully connected layer which allow the network to adapt to the statistical prop-

erties of each visual domain. These domain-specific modules are interchanged during training

and inference depending on the chosen visual domain (this switching concept is highlighted in

figure 6.3). Each adapter module (visualised in figure 6.4) consists of a batch normalisation
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layer, a bank of N 1× 1 convolutional filters (where N is the length of the input vector), a skip

connection to enable residual representation learning followed by a final batch normalisation

layer. 1 × 1 convolutions are applicable in the case of vector data. These adapter modules

contribute only a small percentage to the overall parameter count of a given CNN.

After an object counting model has been trained end-to-end for a given domain (including a

set of domain adapter modules for that domain) it can be adapted to another domain by training

a fresh set of adapter modules and a new fully connected output layer, with the shared model pa-

rameters frozen during optimisation. This allows for sequential model training to be performed

with performance in the original domain preserved. The original domain is referred to as the

source domain while the newly added domain is referred to as the target domain. The benefits

of this approach are the potential for transfer learning and a significant reduction in the overall

parameter count compared to an ensemble of single domain models.

In this chapter this adapter module approach is compared to several combinations of fine-

tuning and feature extraction as well as training in the target domain from scratch. A Resnet18

network is used to perform patch-based regression counting for all runs, with training carried

out for 10,000 iterations each time. Comparisons are made both in terms of MAE performance

and the number of new model parameters that need to be introduced for the target domain.

For this experiment, cell counting is used as the source domain while crowd counting is used

as the target domain (the choice of source and target is fully explored in later experiments).

Performance is evaluated on the ShanghaiTech dataset part A validation set. The results of this

experiment are shown in table 6.2. The use of the adapter modules matches the performance of

training in the target domain from scratch and does so while introducing just 500k additional

parameters (compared to the 11.1M required when training from scratch in the target domain).

Adapter modules significantly outperform all fine-tuning/feature-extraction runs in terms of the
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Figure 6.3: Domain specific adapter modules of Rebuffi et al. (Rebuffi et al., 2017) are interchanged during

training and inference depending on the chosen counting domain (red path).

Figure 6.4: The residual adapter module (Rebuffi et al., 2017).

performance gained relative to new parameters required. This technique will therefore be used

for all subsequent object counting domain adaptation experiments. Adapter modules and other

refined approaches to DA can be viewed as an evolution of traditional transfer learning methods.
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Approach Target Domain Parameters Target MAE

Target From Scratch 11.1M 133.8

Final 9 layers fine-tuned 10.2M 145.3

Final 5 layers fine-tuned 8.3M 232.2

Final 2 layers fine-tuned 4.7M 245.5

Adapter Modules (Rebuffi et al., 2017) 0.5M 133.5

Table 6.2: MAE validation performance on the Shanghaitech dataset (part A) for various domain adaptation

strategies. Cell counting (via the DCC dataset) is used as the source domain for each run. For all fine-tuning runs

the non-trained layers are frozen after training on the source domain.

6.6.2 Choosing the Source Domain

This section investigates the choice of source domain when performing domain adaptation for

object counting. Performance is evaluated across all 4 visual domains introduced earlier (cells,

crowds, vehicles, penguins). After training on a given source domain the model is then adapted

to the other 3 as targets. Rebuffi’s DA method (Rebuffi et al., 2017) is utilised for all runs. The

Resnet18 architecture is used for all runs, with training carried out for 10,000 iterations each

time. The validation set for each domain dataset is used to measure performance. Table 6.3

presents the MAE score observed for each permutation, with each row corresponding to the

source domain and each column corresponding to the target domain. The diagonal entries cor-

respond to the performance achieved when training the network from scratch for each domain.

Another run is also included where concurrent training is performed for all domains in a round

robin fashion.

It can be seen that using the cell domain as the source results in the best overall performance,

achieving superior MAE on 3 of the 4 domains and beating the concurrent training run. Concur-
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Visual Domain Crowd (Target) Vehicles (Target) Wildlife (Target) Cells (Target)

Crowd (Source) 133.5 10.3 6.8 12.9

Vehicles (Source) 149.2 9.9 6.1 11.5

Wildlife (Source) 146.3 10.3 6.05 10.2

Cells (Source) 131.2 10.2 5.7 9.5

Concurrent Training 135.6 9.95 5.93 10.1

Table 6.3: The MAE validation performance achieved when varying the source domain. A concurrent training run

is also included.

rent training likely suffers from trying to balance all 4 domains to find an optimal function for

all domains. Sequential training via Rebuffis method on the other hand allows for each domain

to be optimised individually. Adapting from the cell domain achieves performance superior to

training from scratch on both the crowd and wildlife domains, which is noteworthy given the

small number of domain-specific parameters trained. The high performance observed across

domains when adapting from a cell counting model is likely due to the significant morpholog-

ical variation (observed qualitatively) between cell objects in the DCC dataset, resulting in a

more varied set of learned features which can be applied to a variety of counting tasks. Future

work will look to measure this morphological variation. In all subsequent experiments the cell

domain is used as the source domain.

6.7 Domain Classification

If the visual domain observed during inference is unknown this can be predicted by extending

the multi-domain counting network to also perform domain classification. To accomplish this

the final fully connected layer is interchanged with a K-neuron fully connected layer, where K
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is the number of visual domains considered. Following this final layer, a softmax activation

is applied. Training can then be performed by again freezing the shared model parameters

and creating a fresh set of adapter modules for the domain classification task. Categorical

cross entropy is minimised to train this classifier. The overall domain classification concept is

visualised in figure 6.5.

Figure 6.5: Domain classification pipeline adapted from an existing multi-domain object counting model.

A representative dataset is constructed to train this domain classifier by taking 300 images

from the dataset of each of the 4 visual domains used in this study. Horizontal flip augmentation

is applied to provide 300 cell images for the smaller DCC dataset. This 1200 image dataset is

then divided into a training, validation and test set using a 7:1:2 split while ensuring equal

representation among visual domains. The cell domain is again used as the source domain and

training is carried out for 10,000 iterations. Table 6.4 compares validation accuracy for several

configurations including: training from scratch, adapting from a cell counting network using a

fresh set of adapter modules and adapting from a cell counting network and just training the final

fully connected layer. The best overall validation performance is observed when training the full

network from scratch for domain classification, however this performance is closely followed by

the run which adds only a set of adapter modules (+0.5M parameters) to an existing model. Both

of these approaches significantly outperform the run which trains only the final fully connected

layer, again highlighting the potential of using a distributed domain adaptation technique such as
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Rebuffi’s method. Test set using of 99.2% is achieved using the adapter module configuration,

showing how distinct and easily distinguished these visual domains are. With this approach it

is possible to combine a multi-domain object counting model with a domain classifier into a

single network while achieving strong performance across all tasks.

Source Domain Training Approach Accuracy

None Entire Network Trained 99.6%

Cells Adapter Modules + Final Layer 98.1%

Cells Final Layer Only 58.3%

Table 6.4: Domain classification validation accuracy as the training approach is varied.

6.8 Comparison to the State-of-the-art

The developed multi-domain object counting technique is now compared to the leading tech-

niques from the literature for each visual domain. Evaluation is performed in all cases on

the relevant test set. The cell domain is used as the source in all cases. Table 6.5 compares

crowd counting performance on the ShanghaiTech dataset. The multi-domain model achieves

performance comparable to the state-of-the-art run proposed in chapter 4. Table 6.6 then com-

pares vehicle counting performance on the TRANCOS test set, with competitive performance

achieved and boosted by the use of a multi-domain object counting strategy.

Wildlife counting test performance on the Penguins dataset is presented in table 6.7, with state-

of-the-art performance achieved on this benchmark and multi-domain counting again boosting

performance. MAE is computed on the Penguin test set with respect to the max count label

for each image (as there are multiple annotators). The separate site dataset split is used for

the Penguins collection and no depth information is utilised. Finally table 6.8 compares cell
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Part A Part B

Method MAE MSE MAE MSE

(Zhang et al., 2016) 110.2 173.2 26.4 41.3

(Sam et al., 2017) 90.4 135.0 21.6 33.12

(Sindagi and Patel, 2017) 73.6 106.4 20.1 30.1

Single-Domain Model (Proposed) 83.62 131.5 12.61 23.6

Multi-Domain Model (Proposed) 84.1 133.6 13.12 24.3

Table 6.5: Comparing the performance of various crowd counting approaches on the Shanghaitech dataset includ-

ing the developed multi-domain counting model.

Method MAE

(Onoro-Rubio and López-Sastre, 2016) 10.99

(Zhang et al., 2017) 4.2

Single-Domain Model (Proposed) 9.7

Multi-Domain Model (Proposed) 9.5

Table 6.6: Comparing performance of various vehicle counting approaches on the TRANCOS test set.

counting performance on the MBN dataset (which uses images from histological slides rather

than from a tissue culture setting). Competitive performance is achieved by the proposed multi-

domain method

.

Overall the proposed multi-domain counting network achieves state-of-the-art performance

in crowd and wildlife counting with competitive performance in cell and vehicle counting. This

strong overall performance is achieved using a common framework with a dramatic reduction

in the overall parameter count. This method can be extended to perform other counting tasks
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Method MAE

(Arteta et al., 2016) 8.11

Single-Domain Model (Proposed) 6.1

Multi-Domain Model (Proposed) 5.8

Table 6.7: Comparing performance of various counting techniques on the Penguins dataset test set. MAE is

computed with respect to the max count on each image (as there are multiple annotators). The separate site dataset

split is used and no depth information is utilised.

Method N=5 N=10 N=15

(Xie et al., 2016) 28.9 ± 22.6 22.2± 11.6 21.3± 9.4

Multi-Domain Model (Proposed) 23.6± 4.6 21.5± 4.2 20.5± 3.5

(Cohen et al., 2017) 12.6± 3.0 10.7± 2.5 8.8±2.3

Table 6.8: Cell counting MAE performance on the MBM dataset. Out of the 44 images in this collection, N are

used for training, N for validation and an unseen 14 images for testing. At least 10 runs using random dataset splits

are performed for the each N value.

over time once a labelled dataset is provided.

6.9 Discussion

The benefits of a multi-domain object counting method are demonstrated in this chapter. Bench-

marking performance consistent with and sometimes exceeding single-domain baselines can be

achieved while significantly reducing the overall parameter count. The superiority of newer do-

main adaptation methods such as the work of Rebuffi et al. (Rebuffi et al., 2017) over traditional

transfer learning is also shown. State-of-the-art performance is achieved in crowd and wildlife

counting while competitive performance is observed in vehicle and cell counting. This dispar-
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ity in performance is most likely due to the fixed framework used for all domains, with model

selection issues such as the patch size used during training and inference kept at a constant for

all domains.

Future work in this area will investigate alternate domain adaptation strategies, the domain-

specific optimisation of hyperparamters such as patch size, choices in network architecture and

the inclusion of auxiliary loss terms. Domain adaptation can also be investigated for other

crowd analysis tasks such as behaviour recognition in video and crowd density level estimation.

6.10 Summary

In this chapter a deep learning approach to multi-domain object counting was developed. A

recently proposed domain adaptation technique was applied to the task of object counting and

shown to be superior to more traditional transfer learning methods such as feature extraction

and fine tuning. Strong performance across all domains was observed with best in class per-

formance in people and wildlife counting achieved using the shared model. A new dataset for

cell counting was constructed in collaboration with researchers from University College Dublin.

This multi-domain approach also results in a significant reduction in overall model parameters

and can be extended over time to perform object counting in new visual domains.
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Chapter 7

Conclusions

This chapter summarises the research carried out as part of this thesis. Each of the hypotheses

proposed in chapter 1 are discussed with respect to the experimental results produced in chapters

3-6. The outcomes of this experimental work are then presented as a set of core research con-

tributions. Finally some potential directions for future work are proposed before some closing

remarks.

7.1 Hypotheses

This section discusses each of the hypotheses proposed as part of this thesis with respect to the

experimental results produced in chapters 3-6.

Hypothesis 1

Data-driven models such as convolutional neural networks are superior to hand-crafted

methods for vision-based crowd analysis tasks both in terms of predictive performance

and adaptability to various problem types.

Experiments conducted in chapters 3 and 4 investigate the application of deep learning meth-
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ods, specifically convolutional neural networks, to the area of vision-based crowd analysis. A

refined CNN technique is developed for four crowd analysis tasks through extensive validation

before comparisons are made to techniques which rely on hand crafted features as well as the

leading methods from the literature, with the DL approaches consistently outperforming other

methods.

Chapter 3 investigates crowd behaviour analysis, which itself is separated into two tasks,

crowd behaviour recognition and crowd behaviour anomaly detection. For the task of crowd

behaviour recognition the superiority of the refined CNN approach over hand crafted methods

is demonstrated on multiple datasets, with a 2% improvement in mean accuracy on the Violent-

Flows dataset and a 28% relative improvement in mean AUC score on the more challenging

WWW Crowd dataset. When compared to the leading techniques, the proposed CNN method

achieves state-of-the-art crowd behaviour recognition performance on the Violent-flows dataset

and competitive performance on the WWW crowd (1% inferior mean AUC score). For the

task of crowd behaviour anomaly detection the proposed CNN method improves upon the lead-

ing hand-crafted approach with a 31% relative increase in AUC score on the LV dataset. This

method is also superior to all other approaches from the literature evaluated on the LV dataset.

These significant improvements show that data-driven approaches clearly lead to superior per-

formance in the very challenging field of crowd behaviour analysis. Through the extensive

experimentation carried out in chapter 3 the best practices for implementing a vision-based

crowd behaviour analysis system can be summaried as follows:

• The use of a data-driven model such as a CNN;

• The analysis of longer term temporal dynamics observed over a 100+ frame period;

• The joint analysis of spatial and temporal dynamics in video
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• The joint analysis of RGB and optical flow channels to capture local appearance and

motion features.

Chapter 4 investigates crowd congestion analysis, which itself is divided into crowd count-

ing and crowd density level estimation. For the task of crowd counting the performance gains

associated with the refined CNN method over hand crafted features are demonstrated on the

ShanghaiTech dataset, with a 51% reduction in MAE observed on Part A of the dataset and an

82% reduction in MAE on Part B. This proposed CNN method achieves state-of-the-art crowd

counting performance on the ShanghaiTech dataset. For crowd density level estimation an im-

provement in accuracy of 15% and a 32% reduction in MAE is observed on the newly proposed

ShanghaiTech Density dataset when comparing the proposed deep learning approach to a hand-

crafted baseline. These performance gains can be increased to 40% and 70% respectively by re-

purposing a trained crowd counting model for density level estimation, albeit with a significant

increase in the computational requirements. Again these significant increases in benchmarking

performance over hand-crafted approaches highlight the superiority of data-driven approaches

to vision-based crowd congestion analysis. Through extensive experimentation in chapter 4

the best practices for implementing a crowd congestion analysis system can the summarised as

follows:

• The use of a data-driven model such as a CNN;

• A patch-based regression approach to crowd counting;

• Random image cropping during the training of a crowd counting model in order to in-

crease data variation and boost model generalisation;

• The use of a classification approach to crowd DLE rather than a regression + estimation

rounding method.
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Considering the overall set of results from chapters 3 and 4 it has been shown that the use

of data-driven approaches leads to vastly superior performance in vision-based crowd analysis

over hand crafted approaches.

Hypothesis 2

Multi-task learning techniques can be used to improve the predictive performance of

vision-based crowd analysis models and reduce the overall trainable parameter count

across related crowd analysis tasks.

Experiments carried out in chapter 5 investigate the use of MTL techniques for vision-based

crowd analysis. Auxiliary loss terms are firstly investigated as a means to improve single task

performance before the joint training of several related crowd analysis tasks is evaluated.

Auxiliary loss terms are shown to improve single-task performance for multiple crowd anal-

ysis problems. For crowd density level estimation a 2% improvement in accuracy and a 1%

reduction in MAE is observed when including an auxiliary regression loss term to a classifica-

tion based model, with a negligible increase in the number of network parameters and inference

time. For crowd counting, the inclusion of an auxiliary heatmap generation loss to a patch-

based regression model results in a 3% reduction in MAE on ShanghaiTech part A and a 4%

increase in MAE on part B. Part A contains high congestion scenes and benefits more from

the inclusion of the heatmap loss, while Part B contains lower density scenes and suffers when

it is used. Therefore the inclusion of such an auxiliary counting loss boosts performance in

high congestion scenes at the cost of performance in lower congestion scenes. This may be

suitable in certain scenarios and applications. Overall the inclusion of auxiliary loss terms has

been shown to boost the performance of crowd congestion analysis systems with a negligible

increase in computational cost.
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The joint training of multiple related crowd analysis tasks is also shown to boost the overall

predictive performance of crowd analysis tasks though with several limitations. Jointly training

a 2-task model for crowd counting and behaviour recognition reduces the overall parameter

count by 50% and results in a 2% reduction in MAE for crowd counting and a 0.2% increase

in mean accuracy for crowd behaviour recognition. Including a third task however leads to

significantly inferior performance most likely due to the fixed capacity of the network used,

resulting in the model underfitting. Including additional model capacity could help address

this issue but goes against the parameter reduction goal of this research task. Equal task loss

weightings during optimisation and task-specific batch normalisation prior to each output layer

are observed to be some overall best practices when training a multi-task crowd analysis models.

Overall multi-task learning strategies have been shown to increase the predictive perfor-

mance of crowd analysis tasks while reducing the overall parameter count during joint task

training. This strategy can however fail when the capacity of a given model cannot cover the N

tasks being trained.

Hypothesis 3

Domain adaptation techniques can be used to extend a crowd analysis model to other

visual domains and vice versa while retaining model accuracy for all domains and signifi-

cantly reducing the overall parameter count.

Experiments carried out in chapter 6 address the application of domain adaption techniques

to extend crowd analysis models to other domains and vice versa. This concept of domain adap-

tation is investigated for visual object counting for the first time. A new dataset for cell counting

in a tissue culture setting, referred to as the Dublin Cell Counting dataset, is constructed to help

conduct this research. This newly proposed dataset is combined with existing collections for
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crowd, vehicle and wildlife counting to develop a multi-domain counting model through adapta-

tion. The recently developed domain adaptatation strategy of Rebuffi et al. (Rebuffi et al., 2017)

is compared to more traditional transfer learning strategies (fine-tuning, feature extraction).

The Rebuffi method is first used to adapt a cell counting model trained on DCC (source)

to perform crowd counting on ShanghaiTech Part A (target). The use of this recently proposed

DA method results in superior MAE performance on ShanghaiTech Part A compared to all tra-

ditional transfer learning runs (fine-tuning, feature extraction) and closely matches the perfor-

mance when training from scratch on the target domain. Another benefit of this approach is the

small increase in the overall parameter count (550,000) for each additional domain compared

to the 11.1M additional parameters required when training each new domain from scratch. The

choice of which source domain to use when developing a multi-domain object counting model

is then investigated, with the best overall performance achieved when the cell domain is used

as the source. This is likely to be due to the significant morphological variation observed in the

DCC dataset, leading to a broader and more general set of learned features. In terms of pre-

dictive performance, the developed multi-domain model achieves state-of-the-art MAE on the

ShanghaiTech dataset (crowd) and Penguins Dataset (wildlife) while competitive performance

is observed on the MBN (cell) and TRANCOS (vehicle) datasets. The downsides of this ap-

proach are the static framework used for all counting tasks in all domains, with model selection

issues such as the patch size used during training and inference fixed across all domains.

Overall it has been demonstrated that DA techniques can be used to extend crowd analysis

models to new visual domains and vice versa, with no drop in predictive performance and a

significant reduction in model parameters when developing a multi-domain analysis model.

Despite the shortcomings of the current implementation, there is great potential for domain

adaptation in fields such as object counting.
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7.2 Research Contributions

The core research contributions of this thesis can be summarised as follows:

• A 3D Late Fusion CNN approach is developed for crowd behaviour recognition;

• The trained model is used to perform distance based crowd behaviour anomaly detection

on the LV Dataset;

• The proposed technique is shown to be superior to a hand crafted baseline for both be-

haviour recognition and anomaly detection;

• State-of-the-art performance is achieved on the LV and Violent-Flows datasets;

• A patch-based regression approach to crowd counting is developed;

• A crowd density level estimation dataset is constructed;

• The proposed technique is shown to be superior to a hand crafted baseline for both crowd

counting and crowd density level estimation;

• State-of-the-art performance is achieved on the ShanghaiTech crowd counting dataset;

• Auxiliary loss functions are shown to improve crowd density level estimation perfor-

mance with a negligible increase to the overall parameter count;

• A joint model for crowd counting and behaviour recognition is developed, improving the

predictive performance of both tasks and reducing the overall parameter count by 50%;

• Rebuffi adapter modules are shown to be superior to traditional fine-tuning for domain

adaptation in object counting;
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• A cell counting dataset was constructed in collaboration with the University College

Dublin School Of Medicine;

• A multi-domain object counting is developed for crowd, cell, vehicle and wildlife count-

ing.

7.3 Future Work

Future research in the area of vision based crowd analysis can proceed along any of the follow-

ing directions:

• The utilisation of depth information to help boost the performance of crowd analysis

models;

• The combination of multi-frame and single-frame analysis pipelines using MTL tech-

niques to perform tasks such as multi-frame crowd behaviour recognition and single-

frame crowd counting in a shared model;

• The construction of a multi-frame crowd counting dataset to investigate video-based

crowd counting;

• The localisation of crowd behaviour anomalies within large and complex scenes using

deep learning methods;

• Domain-specific optimisation of model configuration choices such as input patch size and

model architecture when developing multi-domain object counting models;

• A combination of regression-based object counting and bounding box object detection

that can adjust based on the content of the scene or scene region;
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• An investigation into domain adaptation for video recognition tasks using multi-frame

models.

• The visualisation of trained CNN features used in domain adaptation experiments.

• The use of generative models for crowd dataset augmentation.

• The measurement of morphological variation in object counting datasets.

7.4 Closing Remarks

Vision-based crowd analysis is just one of the many research topics to benefit from the applica-

tion of data-driven models, deep neural networks and hardware accelerated numerical optimisa-

tion. In this thesis the superiority of these methods over more traditional hand-crafted methods

is demonstrated and quantified for crowd analysis problems. While significant progress has been

made, a great deal of work must be done before benchmarking performance is high enough for

real world deployment of these systems to be considered. Another challenge preventing real

world deployment of these crowd analysis models is the high computational demands of CNN

models. Multi-task learning and domain adaptation methods can reduce the overall parame-

ter count of these models and in turn the memory requirements when employing CNN models

for crowd analysis. Deployable crowd analysis via deep learning techniques will likely come

through a combination of hardware advancements, model compression methods, dataset gener-

ation and transfer learning techniques.
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