
IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

[DOI: 10.2197/ipsjtcva.6.132]

Research Paper

Mathematical Information Retrieval (MIR) from
Scanned PDF Documents and MathML Conversion

Azadeh Nazemi1,a) IainMurray1 David A. McMeekin2

Received: April 4, 2014, Accepted: September 22, 2014, Released: December 10, 2014

Abstract: This paper describes part of an ongoing comprehensive research project that is aimed at generating a
MathML format from images of mathematical expressions that have been extracted from scanned PDF documents.
A MathML representation of a scanned PDF document reduces the document’s storage size and encodes the math-
ematical notation and meaning. The MathML representation then becomes suitable for vocalization and accessible
through the use of assistive technologies. In order to achieve an accurate layout analysis of a scanned PDF document,
all textual and non-textual components must be recognised, identified and tagged. These components may be text or
mathematical expressions and graphics in the form of images, figures, tables and/or diagrams. Mathematical expres-
sions are one of the most significant components within scanned scientific and engineering PDF documents and need
to be machine readable for use with assistive technologies. This research is a work in progress and includes multiple
different modules: detecting and extracting mathematical expressions, recursive primitive component extraction, non-
alphanumerical symbols recognition, structural semantic analysis and merging primitive components to generate the
MathML of the scanned PDF document. An optional module converts MathML to audio format using a Text to Speech
engine (TTS) to make the document accessible for vision-impaired users.

Keywords: math recognition, graphics recognition, Mathematical Information Retrieval (MIR), Support Vector
Machine (SVM)

1. Introduction

Lines in Mathematical PDF documents are categorized into
different three types.
1. Text lines (the top of Fig. 1)
2. Embedded formulae (EF) lines which are mixed with text (the

middle of Fig. 1)
3. Isolated formulae (IF) lines (the bottom of Fig. 1)

Currently there are several methods that facilitate math for-
mulae to be extracted from scanned documents. Jin et al. [1]
proposed a Mathematical Formulas Extraction method. The
method classifies each line as either Isolated Formulae (IF) or
non-Isolated Formulae (Non-IF) using the Parzen Window Clas-
sifier technique. The Parzen Window Classification [2] method is
a technique for nonparametric density estimation that can also be

Fig. 1 Different types of lines in mathematics documents.

1 Electrical and Computer Engineering Department, Curtin University,
Perth, Western Australia, Australia

2 Department of Spatial Sciences, Curtin University, Perth, Western
Australia, Australia

a) azadeh.nazemi@postgrad.curtin.edu.au

used for classification. Each class density is separately approx-
imated and a test point, with the maximal posterior probability,
is assigned to each class. The resulting algorithm is extremely
simple and closely related to Support Vector Machines (SVM).
Mathematical expressions are either one-dimensional (1-D) or
two-dimensional (2-D). After line classification, the Jin method
uses 2-D structure detection. This method does not support 1-D
structured EFs [2]. A different approach to Jin et al.’s method for
Mathematical Formulas Extraction was presented by Kacem et
al. [3]. The Kacem et al. [3] method is based on connected com-
ponent identification and uses several features, such as boundary
boxes, for IF detection and extraction. The EF method is depen-
dent upon the results from both symbol recognition and Optical
Character Recognition (OCR). This method specifies the most
significant symbol’s location and extends it to adjoining symbols
using contextual rules. This is continued until the entire formula
is delimited, usually through the use of white spaces [3], [4]. Lin
et al. [5] identified of embedded mathematical formulas in PDF
documents using SVM. This method carries out a word segmen-
tation over the scanned document and then classifies words as
either ordinary text or as a formula fragment using SVM clas-
sifier [5]. Since an isolated expression has a recognizable ge-
ometric layout, most of the previous methods for IF detection
and extraction are rule-based. However, embedded expressions
are often short and separating equations from text is problematic.
Character-based separation is a method to recognize the location
of embedded expressions. This method works in conjunction with
OCR and specifies the location of some symbols (e.g., the equal
sign) position within the line. In cases where the line does not

c© 2014 Information Processing Society of Japan 132

IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

contain the specified symbol, the EF’s position remains ambigu-
ous. The method undertaken in this paper to extract mathematical
expressions from scanned PDF uses the following steps:
1. Line segmentation
2. Classify line segments to IF and non-IF
3. Apply word segmentation for non-IF lines
4. Classify word blocks to text block and maths block
5. Send IF obtained by step 2, and EF by step 4 to Recursive

Components Extraction (RCE) to convert them to linear form

2. Line Segmentation Issues in Mathematical
Documents

In terms of line segmentation accuracy in mathematical PDF
documents, lines are divided to four categories as follows:
1. Full-Segmented: the line is completely segmented with its sub-

script or superscript (Fig. 2).
2. Over-Segmented: the line can be split into more than one line,

or partially detected. Figure 3 illustrates the 2-dimensional IF
line, and shows over-segmentation occurrence during ordinary
line segmentation, which splits one line into two separate seg-
ments.

3. Under-Segmented: the line is merged with some other lines.
Figure 4 indicates two IF lines and shows under-segmentation
occurrence during ordinary line segmentation, which merges
the bottom line with the superscript of the previous line and
subscript of the next line.

4. Broken symbol or character: Fig. 5 shows a 2-D EF line with a
symbol, which is broken during ordinary line segmentation.

3. Mathematical Information Retrieval
Overview

The flowchart shown in Fig. 6 illustrates several modules in-
volving MIR processing. These modules use image processing
techniques and PDF layout analysis.

Fig. 2 A Full-Segmented EF line.

Fig. 3 A 2-D IF line and over segmentation.

4. MIR Modules

4.1 Preprocessing
This module includes:

1. Document image binary conversion
2. Margin removal

Fig. 4 Under-Segmented 2-D IF line.

Fig. 5 2-D EF line (top) and broken symbol (bottom).

Fig. 6 MIR overview flowchart.

c© 2014 Information Processing Society of Japan 133

IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

3. Skewing detection and correction
4. Scaling or reducing a large image document by 50% improves

image processing speed during segmentation [6]
5. Converting PDF to PNG using the following commands:
pdftoppm math.pdf math

convert math.ppm math.png

4.2 Block Segmentation
Block segmentation preserves the reading order. In a multi-

column document the OCR results would not keep original read-
ing order. Block segmentation is responsible for identifying the
extended vertical black lines or extended vertical whitespace.
Block segmentation divides the multi-column document image
into blocks using combination of morphological operations [6] or
by the Recognition by Adaptive Subdivision of Transformation
Space (RAST) method to retain the reading order [7].

4.3 Line Segmentation
In this research One-Column-Projection (1CP) is used to seg-

ment the lines. It specifies the position of the largest rectangle of
whitespace area. Figure 7 illustrates a mathematical document
and its line segmentation. Using the 1CP method for line segmen-
tation solves the issues mentioned in Section 2, even though hand
written document pages have been successfully segmented with
this method. Figure 8 illustrates a hand written mathematical
page and its 1CP line segmentation result. The following snippet
(bash script source codes under Linux) using the open source Im-
ageMagick package performs 1CP and provides bounding boxes

Fig. 7 Line segmentation.

Fig. 8 Line segmentation of a mathematic hand written document.

information for lines. Then make it executable by: chmod +x
in=$1

convert "$in" −scale 50% bin.mpc
width=‘identify −format "%w" bin.mpc‘
height=‘identify −format "%h" bin.mpc‘
convert bin.mpc txt:−|sed ‘s/:.*#/ /g;1d;s/,/

/g;s/white/1/g;s/black/0/g‘|awk ‘{print $1,$2,$4}

‘|sort −b −k2n,2|awk ‘$3==1‘|awk ‘{ a[$2]++}END
{ for(i in a) print i,a[i]}‘|sort −b −k2n,2|awk
‘‘$width‘==$2‘|sort −b −k1n,1|awk ‘{print $1}‘|
awk ‘p{print $1,$1−p,p}{p=$1}‘|awk ‘$2!=1‘|sort
−b −k3n,3| awk ‘{print $1,$3}‘>yy.tmp
convert bin.mpc txt:−|sed ‘s/:.*#/ /g;1d;s/,/ /

g;s/white/1/g;s/black/0/g‘|awk ‘{print $1,$2,$4}‘

|sort −b −k2n,2|awk ‘$3==1‘|awk ‘{ a[$2]++}END
{ for(i in a) print i,a[i]}‘|sort −b −k2n,2|awk
‘‘$width‘==$2‘|sort −b −k1n,1|awk ‘{print $1}‘
|awk ‘p{print $1,$1−p,p}{p=$1}‘|awk ‘$2!=1‘|sort
−b −k3n,3| awk ‘{print $1,$3,NR}‘|awk ‘{print
"convert bin.mpc −crop 0x"$1−$2"+0+"$2" " $3"
−hor.mpc"}‘>crop.sh
chmod +x crop.sh

./crop.sh

nox=$(cat crop.sh |wc −l)
for ((e=1;e<=$(($nox));e++))

do

convert $e−hor.mpc txt:−|sed ‘s/:.*#/ /g;1d;
s/,/ /g;s/white/1/g;s/black/0/g‘|awk ‘{print

$1,$4}‘|awk ‘$2!=1‘>tmp.tmp

xs=$(cat tmp.tmp|sort −b −k1n,1|awk ‘NR==1
{ print $1}‘)

xe=$(cat tmp.tmp|sort −b −k1n,1|awk ‘END
{ print $1}‘)

ye=$(cat yy.tmp |awk ‘NR==‘$e‘ { print $1}‘)

ys=$(cat yy.tmp |awk ‘NR==‘$e‘ { print $2}‘)

echo $xs $xe $ys $ye >>tmp.box

done

cat tmp.box|awk ‘p{print NR,$1, ‘$width‘−$2,
$4−$3,$2−$1,$3−p,($4−$3)/($2−$1)}{p=$4}{if
(NR==1)print NR,$1, ‘$width‘−$2,$4−$3,$2−$1,0,
($4−$3)/($2−$1)}‘
convert $(ls *−hor.mpc|sort −b −k1n,1)
−background red −splice 0x1+0+1 −append x:

4.4 Global Line Labelling by Data Collection and SVM
Completed line segmentation using 1CP provides lines bound-

ing boxes which are defined by lower left and upper right posi-
tions. Suppose bounding box for a line is represented as: Bound-
ing box= (Xmin, Ymax, Xmax, Ymin)

Aspect Ratio=AR=h/w
Area=w*h
Left margin=LM=Xmin
Number of black pixels=nobp
Density=nobp/area
Right Margin=w-Xmax
vertical space=vs=Ymin(i)-Ymax(i-1) for two adjacent lines

c© 2014 Information Processing Society of Japan 134

IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

Table 1 Line features.

Table 1 indicates line features extracted by line segmentation
of the sample mathematical page.

Segmented lines by single column projection technique are di-
vided in to several categories. These categories are:

Text only
Linear Embedded Formula
Multi-Dimensional Embedded Formula (EF)
Multi-Dimensional Isolated Formula (IF)
Linear Isolated Formula
Caption
Running Footer
Running Header
Heading Title
The lines are classified using features such as: Left Mar-

gin, Right Margin, Aspect Ratio, Height, Density, and Vertical

Fig. 9 Threshold value=Mode(x) (left), Threshold value=Median(x)
(right).

Spaces. Then the lines which are labelled as IF or EF are sent to
the Mathematical Information Retrieval (MIR) module for further
investigation. The threshold value of each feature is used to com-
pare features in the datasets. Mean, mode and median are used to
find the threshold value. These three values are calculated with
the following formulae:

Mean(x) =

∑n
i=1 (xi)

n
1 < i < n

Median(x) =
x n

2
+ x n

2+1

2
Mode(x) = most frequent x

If Mode(x) >Mean(x) and Mode(x)>Median, the data set is
skewed to the left or it is negatively skewed. In this situation the
mean and the median are both less than the mode. Generally,
most of the time when the data is skewed to the left, the mean
will be less than the median.

If: Mean(x) <=Median(x) <=Mode(x) then Threshold-
value(x) =Mode(x) (Fig. 9 left)

If: Mode (x) <Mean(x) and Mode(x) <Median(x) it means the
data set is skewed to the right then Threshold-value(x) = Me-
dian(x) (Fig. 9 right)

The below snippets for feature i represented by fi have been
collected in a file (file.dat) in order to obtaint the mode, frequency,
mean, median, minimum and maximum.
Mode(fi)=$(cat file.dat| awk ’{ a[$1]++}END {

for(i in a) print i,a[i]}’ |sort −b −k1n,1|awk
’END {print $1}’)

Freq(fi)=$(cat file.dat| awk ’{ a[$1]++}END {

for(i in a) print i,a[i]}’ |sort −b −k2n,2|awk
’END {print $2}’)

mean(fi)=$(awk ’{sum+=$1} END { print sum/NR}’

file.dat)

median(fi)=$(sort −b −k1n,1 cat file.dat | awk
’ { a[i++]=$1; } END { x=int((i+1)/2); if (x <

(i+1)/2) print (a[x−1]+a[x])/2; else print
a[x−1]; }’)
min(fi)=$(cat file.dat|sort −b −k1n,1|awk

’$1!=0’|awk ’NR==1{print $1}’)

max(fi)=$(cat file.dat|sort −b −k1n,1|awk
’END {print $1}’)

The line labelling module first focuses on mathematical expres-
sion attribute to classify IF.

The line may be IF: if the line meets one the following condi-
tions:
1. If height >median (normal text characters height).
2. Mathematical expressions include subscript and superscripts

(S&S) or tall symbols (aspect ratio > 1.3) are often written
using 2–3 row to accommodate them).

3. If the line includes a horizontal line separating the numerator

c© 2014 Information Processing Society of Japan 135

IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

Fig. 10 Line labelling overview flowchart.

and denominator portions.
4. If Density<threshold (density).

Figure 10 illustrates a flowchart to show an overview of the
line labelling module based on feature extracted.

W=Line-width
H=Line-height
LM=Left-margin
IF=Isolated-formula
EF=Embedded-formula
VS=Vertical-space
I=Line-number
MD=Multi-dimension
A Support Vector Machine (SVM) is a discriminative classifier

formally defined by a separating hyperplane. SVM algorithms
calculate the optimal hyperplane to categorize new examples us-
ing labelled training data. This is known as supervised learn-
ing [8]. Utilizing SVM as a classifier needs a training data file
and a model file. In order to generate a training data file for
binary classifier, features (Vector= [W, H, LM, AR, VS, Den-
sity] [9]) were collected from more than 40 pages (about 700
lines) of mathematical expressions from the Mathematical For-
mula Handbook and the N38210A-GCE Mathematical Formulae
Statistical Tables. Then target values were manually assigned to
each line. (1,−1) are assigned to non-IF, and IF respectively to
classify IF or non-IF. To get optimal results heading lines (title
lines) are not included in the tetraining data file.

The lines with the following properties are considered heading
line and labelled as non-IF lines:

left margin !=Mode(lm)
Density>Threshold (density)
Vertical Space>Threshold (vertical-space)
The next step is the SVM model file generation utilizing this

command:
svm_learn traindatat.dat model

To apply a new line to the classifier, SVM model file and data
file contains feature vector are used by this command:
svm_classify data.dat model Result.txt

“Resault.txt” includes classifier result for data file.

4.5 EF Extraction Using Word Segmentation
Isolated formulae detection is performed based only on fea-

tures of the geometric layout and SVM classification because

Fig. 11 Word segmentation.

text lines and isolated expressions are significantly different in
properties such as height, separation, character sizes and symbol
layout [10] whereas position identification of embedded mathe-
matical expression between ordinary text is more complicated.
Unlike ordinary text, mathematical expressions in most cases are
2-Dimentional. Various types of 2-D math’s syntax include:
• Fraction
• Square root √
• Integral

∫
• Symbol with super and/or subscript right above and/or right

under it.
∏ ∑

• lim
• Accent sign¯

After global line labelling is completed using SVM classification;
each non-IF labeled line is either plain text or contains an embed-
ded formula is applied to the noise removal module in order to
reduce the possible noise. Noise removal is used to perform cen-
tral smoothing by the following formulae [11]. Supposing each
pixel is represented by

P(Xi,Yi)
Xi= 0.25Xi+1+ 0.5Xi+ 0.25Xi-1
Yi= 0.25Yi+1+ 0.5Yi+ 0.25Yi-1
Figure 11 shows three samples for word segmentation.
The following snippet is used to perform word segmentation

for segmented lines. Word segmentation specifes the white space
area between characters or mathematical symbols.
#!/bin/bash

nam=$(echo "$in"|sed ‘s/\./!/g‘|sed ‘s/!.*//g‘)

width=‘identify −format "%w" bin.png‘
height=‘identify −format "%h" bin.png‘
nox=$(convert bin.png txt:−|sed ‘s/:.*#/ /g;1d;

s/,/ /g;s/white/1/g;s/black/0/g‘|awk ‘{print $1,

$2,$4}‘|sort −b −k2n,2|awk ‘$3==1‘|awk ‘{
a[$2]++}END { for(i in a) print i,a[i]}‘|sort −b
−k2n,2|awk ‘‘$width‘−$2<2‘|sort −b −k1n,1|awk
‘{print $1}‘|awk ‘p{print $1,$1−p,p}{p=$1}‘|awk
‘$2!=1‘|wc −l)
convert bin.png txt:−|sed ‘s/:.*#/ /g;1d;s/,/

/g;s/white/1/g;s/black/0/g‘|awk ‘{print $1,$2,

$4}‘|sort −b −k2n,2|awk ‘$3==1‘|awk ‘{ a[$2]++}
END { for(i in a) print i,a[i]}‘|sort −b −k2n,2
|awk ‘‘$width‘==$2‘|sort −b −k1n,1|awk ‘{print
$1}‘|awk ‘p{print $1,$1−p,p}{p=$1}‘|awk ‘$2!=1‘
|sort −b −k3n,3| awk ‘{print $1,$3,NR}‘|awk
‘{print "convert bin.png −crop 0x"$1−$2"+0+"$2"
−rotate −90 " $3".mpc"}‘>$in.sh
chmod +x $in.sh

./$in.sh

convert $(ls *.mpc|sort −b −k1n,1) −background
red −splice 0x1+0+1 −append x:

Then SVM classifies each word block as either a text block or
a mathematical block using the following features:

c© 2014 Information Processing Society of Japan 136

IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

w=Xmax-Xmin h=Ymax-Ymin
Horizontal−space=hs= Xmin(i)- Xmax(i-1) supposing w(i)

and w(i+1) are two adjacent words
Aspect-Ratio =h/w
Area=w*h Density(i)=Number of black pixels/area(i)

• x-deviation-word = σx =

√∑n
i=1 (xi−mean(x))2

n

• y-deviation-word = σy =
√∑n

i=1 (yi−mean(y))2

n

After geometric classification, text blocks are applied to character
based classification.

If a text block contains one of the following items then it is
considered as a part of the mathematical block.
1. Greek alphabet
2. Latin alphabet
3. Mathematic standard functions such as: sin, cos, tan, csc, sec,

cot, sinh, cosh, tanh, log, ln, det, dim, lim, mod, gcd, lcm

4.6 Recursive Symbol Segmentation and Bracket Rule
Since in many cases mathematical expressions are multi-

dimensional, symbol segmentation or primitive component ex-
traction must be accomplished both vertically and horizontally.
For this purpose, several segmentation techniques were used,
compared and evaluated. The Voronoi-diagram based segmen-
tation algorithm is a bottom-up algorithm, which extracts sam-
ple points from the boundaries of the connected components.
A Voronoi diagram is then generated using sample points ob-
tained from the borders of the connected components. The
Voronoi edges that pass through a connected component are then
deleted to obtain a Voronoi diagram area. Unnecessary Voronoi
edges are deleted to obtain boundaries of document components.
The output of the algorithm consists of arbitrarily shaped re-
gions bounded by Voronoi edges. Voronoi performs segmenta-
tion by connected components [12]. Figure 12 proves that using
Voronoi solves the Impervious Component Extraction (ICE) is-
sue for some symbols like the radical symbol [13]. Additionally
the Voronoi result provides bounding boxes and geometric prop-
erties for all mathematical components, which are sufficient to
symbolize role recognition and semantic structure analysis.

Run Length Smearing Algorithm (RLSA) [14] is another seg-
mentation algorithm tried within this module. The algorithm
transforms a binary sequence x into y. Except in cases,
which mathematical expressions contain impervious components
RLSA provides better results compared to Voronoi and under-
segmentation occurrence is less than that of Voronoi. To improve
primitive component extraction accuracy, Recursive Component
Extraction (RCE) has been developed which contains two sub
modules: Vertical Component Extraction (VCE) and Horizontal
Component Extraction (HCE). To reduce ambiguity, each VCE
output first must be surrounded by (), then recursively applied
to the HCE module until all components are extracted [13]. The

Fig. 12 Voronoi result for sample EF.

brackets Rule or, considering brackets () around each VCE seg-
ment, is designed to investigate order, precedence and associativ-
ity of operators and addressing symbols relations ambiguity.

For example, without the brackets rule some expressions such
as a+b

c and a + b
c are not recognizable. Using the brackets rule

changes them to
(

a+b
c

)
and (a) +

(
b
c

)
which are totally different.

The bracket rule covers the following concepts to find operators’
order in expressions.
1) Operator range defines legal spatial locations for arguments

of an operator (e.g., for ‘+’, or fractions).
2) Operator dominance [15], defines a partial ordering on

the application of operators’ predicates. An operator
which nests completely within the range of another opera-
tor/relation is called dominated. For example, the + in a+b

c is
dominated by the fraction line. Dominating operators are ap-
plied after the operators they dominate. One operator dom-
inates another if and only if the latter is in the range of the
former and the converse is false.

3) Operator associativity is employed when two or more of the
same operator appear in each other range. For example, ad-
dition is normally left-associative: a + b + c = a + (b + c).

4) Operator precedence is applied to different operators when
they are within each other’s range. For example, a + b × c =

a + (b × c) or by ordering the operators “+” and “/” of the
string a + b

c ⇒ a +
(

b
c

)
The following snippets represent VCE and HCE functions which
call each other in order to provide primitive components. They
are used to convert multi-dimensional mathematical expression
to linear form.
#!/bin/bash

#Vertical component extraction

fin="$1"

name=$(echo "$fin"|sed ‘s/\./!/g‘|

sed ‘s/!.*//g‘)

fb="fbin"$name convert "$fin" −threshold 60%
fbin$name.png

width=‘identify -format "%w" fbin$name.png‘

height=‘identify -format "%h" fbin$name.png‘

if [[$(convert fbin$name.png txt:−|sed
‘s/:.*#/ /g;1d;s/,/ /g;s/white/1/g;s/black/0/g‘|

awk ‘{print $1,$2,$4}‘|sort −b −k1n,1|awk ‘$3==1‘
|awk ‘{ a[$1]++}END { for(i in a) print i,a[i]}‘

|sort −b −k1n,1|awk ‘‘$height‘−$2==0‘|awk
‘{print $1}‘|awk ‘p{print $1,$1−p,p}{p=$1}‘|awk
‘$2>2‘|wc -l) -gt 2]];then

convert fbin$name.png txt:−|sed ‘s/:.*#/ /g;
1d;s/,/ /g;s/white/1/g;s/black/0/g‘|awk ‘{print

$1,$2,$4}‘|sort −b −k1n,1|awk ‘$3==1‘|awk ‘{
a[$1]++}END { for(i in a) print i,a[i]}‘|sort

−b −k1n,1|awk ‘‘$height‘−$2==0‘|awk ‘{print $1}‘
|awk ‘p{print $1,$1−p,p}{p=$1}‘|awk ‘$2>2‘|sort
−b −k3n,3| awk ‘{print $1,$3,NR"‘$name‘","‘$fb‘",
‘$width‘,‘$height‘}‘|awk ‘{print "convert

"$4".png −shave 0x0 −repage " $5"x"$6"+0+0 png:
−|convert png:− −crop " $1−$2"x0+"$2"+0 "$3".png
"}‘>$fin.sh convert fbin$name.png txt:−|sed

c© 2014 Information Processing Society of Japan 137

IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

‘s/:.*#/ /g;1d;s/,/ /g;s/white/1/g;s/black/0/g‘

|awk ‘{print $1,$2,$4}‘|sort −b −k1n,1|awk
‘$3==1‘|awk ‘{ a[$1]++}END { for(i in a) print

i,a[i]}‘|sort −b −k1n,1|awk ‘‘$height‘−$2==0‘
|awk ‘{print $1}‘|awk ‘p{print $1,$1−p,p}{p=$1}‘|
awk ‘$2>2‘|sort −b −k3n,3| awk ‘{print $1,$3,NR
"‘$name‘"}‘|awk ‘{print "./hce "$3".png "}‘

>>$fin.sh

chmod +x $fin.sh

echo $fin.sh

./$fin.sh fi

#!/bin.bash

#Horizontal component extraction

in="$1"

nam=$(echo "$in"|sed ‘s/./!/g‘|sed ‘s/!.*//g‘)

convert "$in" −threshold 80% bin$nam.png
fbi="bin"$nam

width=‘identify −format "%w" bin$nam.png‘
height=‘identify −format "%h" bin$nam.png‘
if [[$(convert bin$nam.png txt:−|sed

‘s/:.*#/ /g;1d;s/,/ /g;s/white/1/g;s/black/0/g‘|

awk ‘{print $1,$2,$4}‘|sort −b −k2n,2|awk ‘$3==1‘
|awk ‘{ a[$2]++}END { for(i in a) print i,a[i]}‘|

sort −b −k2n,2|awk ‘‘$width‘==$2‘|sort −b −k1n,1
|awk ‘{print $1}‘|awk ‘p{print $1,$1−p,p}{p=$1}‘|
awk ‘$2>2‘|awk ‘$1−$3>2‘|wc −l) −gt 2]];then
convert bin$nam.png txt:−|sed ‘s/:.*#/ /g;1d;

s/,/ /g;s/white/1/g;s/black/0/g‘|awk ‘{print

$1,$2,$4}‘|sort −b −k2n,2|awk ‘$3==1‘|awk ‘{
a[$2]++}END { for(i in a) print i,a[i]}‘|sort −b
−k2n,2|awk ‘‘$width‘==$2‘|sort −b −k1n,1|awk
‘{print $1}‘|awk ‘p{print $1,$1−p,p}{p=$1}‘|awk
‘$2>2‘|awk ‘$1−$3>2‘|sort −b −k3n,3| awk
‘{print $1,$3,NR"‘$nam‘","‘$fbi‘"}‘|awk ‘{print

"convert "$4".png −crop 0x"$1−$2"+0+"$2"
" $3".png "}‘>$in.sh

convert bin$nam.png txt:−|sed ‘s/:.*#/ /g;1d;
s/,/ /g;s/white/1/g;s/black/0/g‘|awk ‘{print

$1,$2,$4}‘|sort −b −k2n,2|awk ‘$3==1‘|awk ‘{
a[$2]++}END { for(i in a) print i,a[i]}‘|sort −b
−k2n,2|awk ‘‘$width‘==$2‘|sort −b −k1n,1|awk
‘{print $1}‘|awk ‘p{print $1,$1−p,p}{p=$1}‘|awk
‘$2>2‘|awk ‘$1−$3>2‘|sort −b −k3n,3| awk ‘{print
$1,$3,NR"‘$nam‘"}‘|awk ‘{print " ./vce "$3".png "

}‘>>$in.sh"

chmod +x $in.sh

./$in.sh

Figure 13 shows RCE results for a 2D mathematical expres-
sion.

4.7 Generating a Symbol Dictionary Using InftyMDB
In the Infty Project, InftyMDB-1 was collated to be used for

development. The formulae were collected from 32 pure mathe-
matical articles. Each mathematical formula in the database con-
sists of 10 or more symbols. Original images of the formulae are
available [16]. The RCE run for 1,000 mathematical expression

Fig. 13 VCE and HCE result for a sample.

Table 2 Mathematic symbol categories based on mathematic symbol aspect
ratio.

image files included segmenting them to primitive symbols so as
to provide a mathematical symbol dictionary. This dictionary was
divided to 3 categories considering the symbols’aspect ratio. Any
symbol, belongs to one or two (but never three) categories [17].
Table 2 shows 3 categories for 258 different symbols and char-
acters considering their aspect ratio. In the end there were, 18
symbol which are short, 206 square and 43 tall symbols. This
dictionary is utilized for symbol recognition. For symbol recogni-
tion Vector-based Symbol Recognition collects the Aspect Ratio,
Area, Density and Norm as the symbol features.

Area (i) =WxH

c© 2014 Information Processing Society of Japan 138

IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

Density (i) =Number of black pixels/Area (i)

Aspect Ratio = H/W

x-deviation = σx =

√∑n
i=1 (xi − mean(x))2

n

y-deviation = σy =

√∑n
i=1 (yi − mean(y))2

n

Norm (i) =
√
σx(i)2 + σy(i)2 + ar(i)2 + density(i)2

Vector (i) = [σx, σy, ar, density, norm]

The matching function calculates the Euclidean distance be-
tween symbol i and all symbols in the dictionary of its cate-
gory. The matching function is responsible for comparing the
Euclidean distance values and finding the smallest one as a result
of symbol i recognition.

Euclidean Distance

=

√√√√√√√ ((σx(i) − σx(model))2 + (σy(i) − σy(model))2

+(ar(i) − ar(model))2

+(density(i) − density(model))2

4.8 Symbol Layout or Structural Semantic Analysis Issues
Regarding Mathematic Layout Analysis Include

1. Two-dimensional structure
2. Non-ordering symbol arrangements
3. No dictionary of all math expressions
4. Large variations in symbol scale
5. Many more symbol classes

The first two issues have been already addressed by the pre-
viously described approach (RCE) and using the brackets rules.
The mathematic dictionary is generated, as described in the previ-
ous section reduces the lack of availability of complete and com-
prehensive dictionaries. The 4th and 5th issues are addressed by
using semantic structure analysis by investigating relationships
between two adjacent symbols. Mathematical expressions gen-
erally represent an application of functions, operators and rela-
tions to arguments. Multiple mathematical statements may be
represented by a single expression; in other words, mathematical
expressions are polysemic [18]. It means the definition and role
of symbols frequently change. Even when the domain is clear,
symbol definitions are often ambiguous. Analysis of the spa-
tial relationships between symbols is the symbol layout or struc-
tural semantic analysis. The spatial relationships are composed
of baseline, subscript, superscript, upper, and lower relations.
Since spatial relationships convey the meaning of mathematical
expressions, its identification is critical to recognize mathemat-
ical expressions. Symbol semantic analysis is considered when
solving the ordering and relationship problems noting the symbol
role and situation concentration instead of symbol isolation. Se-
mantic analysis detects upper, lower, subscripts and superscripts
components, assigning them to their parent symbols and merging
them as a single unit [19]. Identifying relationships between each
symbol and its previous adjacent symbol has been implemented
by measuring the line slope between bounding box corners [20].
As shown in Fig. 14, these slopes are captured by the following
formulae:

Green line slope (i) = Ymaxi − Ymaxi−1/Xmini − Xmaxi−1

Fig. 14 Slopes between two adjacent symbols.

Fig. 15 Relationship between two adjacent mathematic symbols.

Table 3 Different relations between two adjacent symbols in mathematical
expressions.

Red line slope (i) = Ymini − Ymini−1/Xmini − Xmini−1

Other useful features to recognize adjacent symbols’ relation-
ships and classify them are (Fig. 15 [21])

HR = H Ratio(i) = hi

hi−1

MLR = middle.line.ratio(i) = Ymini+Ymaxi−Ymaxi−1−Ymini−1
hi

Table 3 indicates different relationships between two adjacent
symbols.

4.9 Merging Primitive Components and MathML Genera-
tion

In order to comply with symbol layout analysis, symbols are
inspected from left to right [22]. Symbol layout analysis and sym-
bol classification are based on extracted features format. One of
the most critical tasks in this module is detecting dependent com-
ponents and merging them as a single unit using brackets to sur-

c© 2014 Information Processing Society of Japan 139

IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

round them. Dependent components may be:
Operands of an individual operator
Parameters of a function
Subscript and superscript of a symbol
Upper and lower part of a symbol
Math symbols are divided to 13 classes, this classification sup-

ports symbol layout analysis:
1) simple/ordinary A, x
2) prefix operator

∑∏∫
3) binary operator (conjunction) +−
4) relation/comparison (verb) = < ?
5) Open left/opening delimiter ([{
6) Close right/closing delimiter)] }
7) postfix/punctuation . , ; ! and Ellipses a0, a1, . . . , an

8) Subscripts and superscripts
9) Accents
10) Binomial
11) Matrices
12) Roots
13) Text or Named operator. These operators are represented by

a multi letter abbreviation:
14) arccos, arcsin, arctan, arg, cos, cosh, cot, coth, csc, deg, det,

dim, exp, gcd, hom, inf, inj, lim, lg, ker, ln, log, max, min,
Pr, sec, sin, sinh, sup, tan, tanh

These parts of mathematical expressions can be recognized using
OCR. Symbols of class 3, notably the minus sign, are automati-
cally coerced to class 1, if they do not have a suitable left operand.
cci−1ccicci+1 supposing cci is in the prefix class, if cci be located
at below or left below of cci+1 and above or above left of cci−1,
then it can be the parent for cci−1, cci+1 and so cci−1ccicci+1 can
be placed in the same bracket.

For operands finding of an operator this algorithm must be run:
• Parse from left to right until meeting class 6 in position A
• Parse right to left from position A until reaching class 5 in

position B
• Extract the most inner layer between B and A
• Parse from B to A until getting one of the existing symbols

in class 3 in position C
• Parse back between C and B to get the first operand
• Parse forward between C +LENGTH (symbol) and A to get

the second operand
• Result of RCE is a series of symbol images without order-

ing. Thus to reorder them so as to keep conceptual meaning,
bracket rule, symbol layout analysis and merging algorithm
are used as described in the following examples:

Example 1: x2+z
y

VCE and bracket rule convert formula to (x2+z
y

)
Brackets which are located around only one single component

are removed
It is converted to : x2+z

y

HCE converts x2+z
y

to x2 + z, f raction bar, y
VCE and bracket rule convert x2 + z, f raction bar, y to

(x)(2)(+)(z), f raction bar, y

Brackets which are located around only one single component
are removed

Component segmentation is completed: x2 + z, f raction bar, y

Parse from left to right until reach class 2, 3, 4, 5
Reach + in class 3
Parse back looking for first operand for +
Reach 2 which is not at + level (considering Ymax)
Parse back
Reach x at the + level
Calculation 1, 2 shows x is located in the below left of 2
x is parent of 2 and x, 2 should be put in bracket and treated as

an unit (x2)
There is nothing before (x2)
(x superscript 2) is tagged for being first operand for +
Parse forward after +
Reach z at the (x2) and + levels
Parse forward
Reach fraction which is not at 3 level
Parse back and tagged z as second operand for +
Consider (x2) +z as an unit and put them in bracket ((x2)+z)
Parse forward after z

Reach fraction bar
Parse back looking for first operand for fraction bar
Reach unit ((x2) +z) and tag it a as numerator
Parse forward after fraction bar
Reach y
There is nothing after y so y is the denominator
Numerator ((x2)+z)
Fraction bar
Dominator y
Example 2: x2+z

y

VCE and bracket rule convert formula to (x2+z

y
)

Brackets which are located around only one single component
are removed

It is converted to: x2+z

y

HCE convert it to x2+z f raction bar, y

VCE and bracket rule convert formula to x, 2, z, f raction bar, y
All single component are extracted
Parse from left to right until reach class 2, 3, 4 ,5
Reach + in class 3
Parse back looking for first operand for +
Reach 2 which is at + level
Parse back reach x

x is not at the same as 2
2 is tagged as first operand for +
Parse forward after +
Reach z at the 2 same level
Parse forward
Reach f raction bar, which is not at the same level as z

z is second operand for +
2+z tagged as unit and put in brackets (2+z)
Calculate O1,O2 shows x is located in the below left of (2+z)
x is parent of (2+z) and x, (2+z) should be put in bracket and

treated as an unit
Parse forward after unit x(2+z)

Reach f raction bar

Parse back looking for first operand for f raction bar

c© 2014 Information Processing Society of Japan 140

IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

Reach unit (x(2+z)) and tag it as numerator
Parse forward after fraction bar
Reach y
There is nothing after y so y is the denominator
Numerator (x(2+z))
Fraction bar
Dominator y

5. Conclusion and Further Development

This research presented to several approaches for MIR
from scanned PDF and converted mathematical expressions to
MathML, which has the potential to make mathematics accessible
to those with visual and print disabilities. It will allow mathemat-
ical content to be reused and exchanged with technical computing
systems for further manipulation such as rendering with MATH-
SPEAK (an application to transfer MathML to audio). MATH-
SPEAK has the ability to preserve conceptual information of for-
mulae, discard the visual description and reduce ambiguity [23].
Further research is required to deal with handwritten mathemati-
cal document.

References

[1] Jianming, J., Xionghu, H. and Qingren, W.: Mathematical formulas
extraction, Proc. 7th International Conference on Document Analysis
and Recognition (2003).

[2] Duda, R.O. and Hart, P.E.: Pattern Classification and Scene Analysis,
Wiley (1973).

[3] Kacem, A., Belaı̈d, A. and Ahmed, B.M.: Automatic extraction of
printed mathematical formulas using fuzzy logic and propagation of
context, International Journal on Document Analysis and Recogni-
tion, Vol.4, No.2, pp.97–108, DOI: 10.1007/s100320100064 (2001).

[4] Kacem, A., Belaid, A. and Ahmed, M.B.: Embedded formulas ex-
traction, Proc. 15th International Conference on Pattern Recognition
(2000).

[5] Lin, X., Liangcai, G., Tang, Z. and Hu, X.: Identification of em-
bedded mathematical formulas in PDF documents using SVM, Proc.
SPIE 8297, Document Recognition and Retrieval XIX, 82970D, DOI:
10.1117/12.912445 (2012).

[6] Nazemi, A., Murray, I. and McMeekin, D.A.: Practical segmentation
methods for logical and geometric layout analysis to improve scanned
PDF accessibility to Vision Impaired, International Journal of Signal
Processing, Image Processing and Pattern Recognition (Aug. 2014).

[7] Nazemi, A., Murray, I. and McMeekin, D.: Layout analysis for
Scanned PDF and Transformation to the Structured PDF Suitable for
Vocalization and Navigation, J. Comput. Inf. Sci., Vol.7, No.1 (Feb.
2014).

[8] Tong, S. and Koller, D.: Support vector machine active learning with
applications to text classification, Journal of Machine Learning Re-
search Archive, Vol.2, pp.45–66, DOI: 10.1162/153244302760185243
(2002).

[9] Garain, U. and Chaudhuri, B.B.: A syntactic approach for processing
mathematical expressions in printed documents, Proc. 15th Interna-
tional Conference Pattern Recogn., Vol.4, pp.523–526 (2000).

[10] Garain, U. and Chaudhuri, B.B.: OCR of printed mathematical expres-
sions, Digital Document Processing, pp.235–259, Springer (2007).

[11] Keshari, B. and Watt, S.M.: Hybrid Mathematical Symbol Recogni-
tion Using Support Vector Machines, 9th International Conference on
Document Analysis and Recognition, ICDAR 2007 (2007).

[12] Shafait, F., Keysers, D. and Breuel, T.M.: Performance Evaluation and
Benchmarking of Six-Page Segmentation Algorithms, IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol.30, No.6, pp.941–954,
DOI: 10.1109/TPAMI.2007.70837 (2008).

[13] Nazemi, A. and Murray, I.: Mathematical Formula Recognition and
Transformation to a Linear Format Suitable for Vocalization, Inter-
national Journal on Computer Science and Engineering, Vol.5, No.9
(2013).

[14] Wong, K.Y., Casey, R.G. and Wahl, F.M.: Document analysis system,
IBM Journal of Research and Development, Vol.26, No.6, pp.647–656
(1982).

[15] Chang, S.-K.: A method for the structural analysis of two-dimensional
mathematical expressions, Inf. Elsevier Sci., Vol.2, No.3, pp.253–272,

DOI: 10.1016/S0020-0255(70)80052 (1970).
[16] Fujiyoshi, A., Suzuki, M. and Uchida, S.: Verification of mathemat-

ical formulae based on a combination of context-free grammar and
tree grammar, Proc. MKM 2008, LNCS (LNAI), Vol.5144, pp.415–429
(2008).

[17] Malon, C., Uchida, S. and Suzuki, M.: Support Vector Machines for
Mathematical Symbol Recognition, Yeung, D.-Y., Kwok, J.T., Fred,
A., Roli, F. and Ridder, D. (Eds.), Structural, Syntactic, and Statistical
Pattern Recognition, Vol.4109, pp.136–144, Springer Berlin Heidel-
berg (2006).

[18] Zanibbi, R. and Blostein, D.: Recognition and retrieval of math-
ematical expressions, International Journal on Document Analy-
sis and Recognition (IJDAR), Vol.15, No.4, pp.331–357, DOI:
10.1007/s10032-011-0174-4 (2012).

[19] Aly, W., Uchida, S., Fujiyoshi, A. and Suzuki, M.: Statistical classi-
fication of spatial relationships among mathematical symbols, Proc.
10th International Conference on Document Analysis and Recogni-
tion, ICDAR 2009, Barcelona, Spain, pp.1350–1354 (2009).

[20] Aly, W., Uchida, S., Fujiyoshi, A. and Suzuki, M.: Identifying Sub-
scripts and Superscripts in Mathematical Documents, Mathematics in
Computer Science, Vol.2, No.2, pp.195–209, DOI: 10.1007/s11786-
008-0051-9 (2008).

[21] Labahn, G., Lank, E., MacLean, S., Marzouk, M. and Tausky,
D.: MathBrush: A System for Doing Math on Pen-Based Devices,
8th IAPR International Workshop on Document Analysis Systems,
DAS ’08 (2008).

[22] Li, Y., Wang, K., Tang, L. and Wu, J.: A Two-dimensional Structure
Analysis Method of Printing Mathematical Formula Based On Char-
acteristic Characters, International Conference on Mechatronics and
Automation, ICMA 2007, pp.953–957 (2007).

[23] Nazemi, A. and Murray, I.: Mathspeak: An Audio Method for Pre-
senting Mathematical Formulae to Blind Students, (2012), available
from 〈http://hsi2012.debii.edu.au〉.

Azadeh Nazemi received her B.S. degree
in Computer Hardware Engineering from
Shiraz University, Iran. She started Mas-
ter by Research and Ph.D. in September
2010 and 2012 in Curtin University, WA,
Australia respectively. She was awarded
a Curtin University Postgraduate Scholar-
ship (CUPS) and an Australian Postgrad-

uate Award (APA) scholarship in 2012, respectively. She is
presently working towards a Ph.D. degree in Computer engineer-
ing at Curtin University, Perth, Australia. Her research area is
Assistive Technology and specifically she is working to design
Complete Reading System for vision impaired. On November
2012 her research paper has been awarded “Best Student Paper”
in 3rd Annual International Conference on Computer Science Ed-
ucation Innovation & Technology (CSEIT 2012) in Singapore.
She has nine years of industry experience as an engineer working
in consultant companies.

c© 2014 Information Processing Society of Japan 141

IPSJ Transactions on Computer Vision and Applications Vol.6 132–142 (Dec. 2014)

Iain Murray received his B.Eng. (Hons)
in Computer Systems Engineering in 1998
and his Ph.D. titled “Instructional eLearn-
ing technologies for the vision impaired”
in 2008 both at Curtin University. He has
worked in the field of assistive technology
for more than 25 years both as a practi-
tioner and researcher. Currently employed

as a senior lecturer in the Department of Electrical and Computer
Engineering, his research interest include learning environments
for people with vision impairment, embedded sensors in health
applications and assistive technology. He founded the “Cisco
Academy for the Vision Impaired” in 2002 to deliver ICT train-
ing to vision impaired people globally. He is a Fellow of the
Australian Computer Society and a member of the IEEE.

David A. McMeekin received his Ph.D.
degree in Software Engineering from
Curtin University. He is currently a se-
nior research fellow in the Cooperative
Research Centre for Spatial Information
based in the Department of Spatial Sci-
ences at Curtin University. His research
interests are in the areas of the use of tech-

nology for people with differing physical and mental challenges
as well as the real time delivery of spatially enabled data through
semantic web technologies. He is a member of the IEEE Com-
puter Society and Electronics Society.

(Communicated by Dong Xu)

c© 2014 Information Processing Society of Japan 142

