
Lexical Syntax for
Statistical Machine Translation

Hany Hassan
BSc., MSc.

A dissertation submitted in fulfilment of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisors: Prof. Andy Way

Dr. Khalil Sima’an

January 2009



Declaration

I hereby certify that this material, which I now submit for assessment on the pro-

gramme of study leading to the award of Ph.D. is entirely my own work, that I have

exercised reasonable care to ensure that the work is original, and does not to the best of

my knowledge breach any law of copyright, and has not been taken from work of others

save and to the extent that such work has been cited and acknowledged within the text of

my work.

Signed:

(Candidate) ID No: 55154085

Date:



Abstract

Statistical Machine Translation (SMT) is by far the most dominant paradigm of Machine

Translation. This can be justified by many reasons, such as accuracy, scalability, compu-

tational efficiency and fast adaptation to new languages anddomains. However, current

approaches of Phrase-based SMT lacks the capabilities of producing more grammatical

translations and handling long-range reordering while maintaining the grammatical struc-

ture of the translation output. Recently, SMT researchers started to focus on extending

Phrase-based SMT systems with syntactic knowledge; however, the previous techniques

have limited capabilities due to introducing redundantly ambiguous syntactic structures

and using decoders with limited language models, and with a high computational cost.

In this thesis, we extend Phrase-based SMT with lexical syntactic descriptions that

localize global syntactic information on the word without introducing syntactic redundant

ambiguity. We presente a novel model of Phrase-based SMT which integrates linguistic

lexical descriptions —supertags— into the target languagemodel and the target side of

the translation model. We conduct extensive experiments intwo language pairs, Arabic–

English and German–English, which show significant improvements over the state-of-

the-art Phrase-based SMT systems.

Moreover, we introduce a novel Incremental Dependency-based Syntactic Language

Model (IDLM) based on wide-coverage CCG incremental parsing which we integrate

into a direct translation SMT system. Our proposed approachis the first to integrate

full dependency parsing in SMT systems with a very attractive computational cost since it

deploys the linear decoders widely used in Phrase–based SMTsystems. The experimental

results show a good improvement over a top-ranked state-of-the-art system.
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Chapter 1

Introduction

Statistical Machine Translation (SMT) is by far the most dominant paradigm in machine

translation today. This can be justified by many reasons, such as accuracy, scalability,

computational efficiency and fast adaptation to new languages and domains. Seeking

better translation quality, SMT has evolved from the IBM word-based models (Brown

et al., 1988, 1990) to phrase-based models (Zens et al., 2002; Koehn et al., 2003; Till-

mann and Xia, 2003) . However, Phrase-based SMT lacks the capability of producing

more grammatical translations and handling long-range reordering while maintaining the

grammatical structure of the translation output. The main objective of this thesis is to pro-

duce more fluent MT output from Phrase-based SMT by integrating syntactic structures

into the system. Syntax can help Phrase-based SMT systems toproduce well-formed

translation output by the use of syntactically-guided translation models, language models

and reordering techniques.

Recently, SMT researchers started to focus on extending Phrase-based SMT systems

with syntactic knowledge; however, early attempts caused system performance to dete-

riorate (Koehn et al., 2003). The most recent successful enrichments of Phrase-based

SMT with hierarchical structures are (Chiang, 2005; Marcu et al., 2006; Zollmann and

Venugopal, 2006).

We argue that these previous techniques have limited capabilities due to three major

drawbacks. Firstly, these approaches either employ non-linguistically motivated syntax to

1



capture hierarchical reordering phenomena (Chiang, 2005)or extend the phrase transla-

tion table with redundantly ambiguous syntactic structures over phrase pairs (Marcu et al.,

2006; Zollmann and Venugopal, 2006). Secondly, they compromise the computational ef-

ficiency of the phrase-based system since they depart from the computationally efficient

linear decoders to the more computationally costly chart-based decoders. Thirdly, they

limit the scalability of the system by their limited capability to handle high-order lan-

guage models which have proved to be pivotal to the accuracy of Phrase-based systems.

In this thesis, we study the possibility of extending Phrase-based SMT systems with

syntactic structures to provide more grammatical translations and better reordering with-

out compromising the advantages of such systems. This leadsus to our first research

question(RQ1):

RQ1: What is the grammatical representation that can best fitwith Phrase-based SMT

while not introducing redundantly ambiguous syntactic structures?

Extending Phrase-based SMT systems with linguistically motivated syntax represents

a major difficulty due to the mismatch between the notion of a ‘phrase’ in Phrase-based

SMT and the notion of a syntactic constituent in traditionallinguistics. The problem is

that the phrases in Phrase-based SMT systems are identified with regard to word align-

ment probabilities and thus do not need to follow any linguistic constraints. Due to such

mismatches, it is not directly clear how the SMT notion of a phrase may be extended with

a tree structure without introducing redundant ambiguity.For a non-constituent phrase,

a tree structure representation directly introduces redundant ambiguity; multiple, alter-

native subtrees will be associated with the same phrase, whereas they are merely minor

variants of each other, differing only in subgraphs that denote very specific contexts of

the phrase.

In this thesis, we explore the possibility of extending Phrase-based SMT with lexicon-

driven approaches to linguistic syntax, namely Lexicalized Tree-Adjoining Grammar (Joshi

and Schabes, 1991) and Combinatory Categorial Grammar (Steedman, 2000). In these

approaches, each word is associated with a number of lexicalentries which consist of

2



syntactic constructs —supertags (Bangalore and Joshi, 1999)— that describe such lexi-

cal information as its subcategorization information and the hierarchy of phrase categories

that the word projects upwards in the parse-tree. Thus, these lexical syntactic descriptions

localize global syntactic information on the word level; therefore, they can be assigned to

every word in a phrase without introducing much redundant ambiguity.

If we have an efficient syntactic representation that fits well with Phrase-based SMT,

the question arises as to how to incorporate this into Phrase-based SMT. This is our second

research questionRQ2.

RQ2: How can lexical syntax descriptions be incorporated into Phrase-based SMT

while maintaining its advantages? If this can be done, does it help in providing better and

more grammatical translations?

We address this problem by presenting a novel model of Phrase-based SMT which

integrates linguistic lexical descriptions —supertags— into the target language model and

the target side of the translation model. We examine whetherlexical syntactic information

proves useful or not. We carry out extensive experiments on small and very large training

and test sets for Arabic–English and German–English translation to examine the usage

of LTAG and CCG supertags in different conditions. We compare the effect of CCG

and LTAG with different data sizes. We examine whether the improvement provided

by our approach will be sustained with very large amounts of training data, or whether

large amounts of training data would bridge the performancegap with our system that

incorporates syntactic knowledge.

We conduct an in-depth manual analysis of the system performance. We show that

a very wide range of improvements are brought about by the useof a supertags-based

system, including improved reordering, overcoming the tendency of SMT systems to omit

verbs, improved verbal constructions, proper handling of negation, and better syntactic

modeling in general. We show that supertagged Phrase-basedSMT provides sustained

improvements with various data sets and languages.

The encouraging results of our proposed supertagged Phrase-based SMT approach
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leads to our next research questionRQ3:

RQ3: Does Phrase-based SMT need more syntactic knowledge oris our supertagged

approach sufficient for providing syntactic structures to enable more grammatical trans-

lations and better reordering?

The supertagged language model replaces the set of Combinatory Operators with

an n-gram language model over the sequence of supertags thus providing ‘almost pars-

ing’ (Bangalore and Joshi, 1999). Originally,‘almost parsing’was proposed for the han-

dling of monolingual strings, where the given sequence of words already constructs some

presumed syntactic structure. In the bilingual (machine translation) case, the sequence of

candidate target words might not construct a valid syntactic structure nor a compelling

sequence of associated supertags; therefore, achieving‘almost parsing’by deploying a

supertaggedn-gram language model on the huge space of hypotheses, representing the

candidate translations, is more challenging in the machinetranslation case than in the

monolingual parsing case.

We argue that the MT case needs a more sophisticated mechanism that can satisfy

three important aspects. First, it needs to efficiently support long-range dependencies

and construct full parse structures such that it would enable the MT system to distin-

guish between different translation candidates based on their role in constructing the

parse structure and satisfying the syntactic dependencies. Second, as is widely known,

Phrase-based SMT systems produce the translation candidates incrementally by process-

ing source words from left-to-right in a Markov fashion; therefore, this mechanism should

work in an incremental manner. Third, the mechanism should be computationally efficient

such that it can be integrated into large-scale Phrase-based SMT systems.

While incrementality is crucial for integrating syntax into SMT decoders, it is not

necessary for reranking of SMT output. However, reranking SMT output usually does not

provide good improvement due to the fact that SMT decoders deploy many strategies that

may prune good candidates earlier in the translation process such that better translations

may not even be part of a very large n-best candidate set.
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Having identified the need for an incremental dependency parser that could fit with

Phrase-based SMT, this directly leads to our next research questionRQ4:

RQ4: Can lexical syntax provide more syntactic knowledge for Phrase-based SMT

through incremental dependency parsing capabilities thatmatch the nature of Phrase-

based SMT?

We address this problem by introducing a novel incremental dependency-based lan-

guage model parser. To develop this incremental dependency-based parser, we create an

incremental version of CCGBank (Hockenmaier and Steedman,2007) and examine its

usefulness for developing a fully incremental parser. We conduct extensive experiments

to examine the proposed incremental parser with regard to various incrementality issues

as well as the accuracy of the parser.

We demonstrate that the proposed parser can be used to develop an incremental dependency-

based language model (IDLM). We show that this IDLM is deterministic in that it main-

tains a limited number of parsing decisions at each state which makes it very efficient

for integration into large-scale Phrase-based SMT systems. Furthermore, we show that

it can naturally handle non-constituent constructions, being based on CCG. Finally, we

show that the parser always seeks fully connected structures and can support long-range

dependencies and a number of interesting syntactic phenomena in a fully incremental

left-to-right fashion. However, it remains to be seen whether we can incorporate a lin-

ear though sophisticated incremental parser into Phrase-based SMT while maintaining

scalability and computational efficiency. This is the subject of our last research question.

RQ5: Is it possible to incorporate full incremental dependency parsing into SMT while

maintaining SMT scalability and computationally efficientlinear decoding?

One major difficulty in extending SMT systems with a sophisticated incremental

dependency-based language model is the need for a well-formalized model that can ac-

commodate the capabilities of a conventional phrase-basedsystem and the incremental

dependency parsing without compromising any of their advantages, while at the same

time maintaining a reasonable decoding space. We address this problem by proposing an
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extension of a discriminative phrase-based SMT model (DTM2) (Ittycheriah and Roukos,

2007) where we represent the incremental parser efficientlyas a large number of features.

We examine the capabilities of the proposed model and show that it can provide improve-

ments over top-ranked SMT systems. We conduct a detailed analysis of the system output

to obtain a deeper insight into the system’s performance.

In this thesis, we explore the possibility of improving the translation quality of Phrase-

based SMT systems by incorporating syntactic structures inthe target side while dealing

with the non-constituent phrases. Furthermore, we will explore the possibility of incor-

porating syntactic structures into Phrase-based SMT systems without compromising the

computational efficiency of the linear decoders or the largelanguage models capabilities.

We will explore various levels of syntactic integration that can provide more syntactic

knowledge to SMT.

1.1 Structure of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 introduces an overview of the state-of-the-art inSMT with the noisy

channel model, log-linear phrase-based models and direct translation models. The

chapter also reviews the previous work on incorporating syntax into SMT.

• Chapter 3 introduces an overview of lexical syntax and lexicalized grammars.

• Chapter 4 introduces the concept of lexical syntax for SMT and explores how we in-

corporate supertagged translation model and supertaggedn-gram language model

into Phrase-based SMT. Extensive experiments are reportedfor two pairs of lan-

guages.

• Chapter 5 introduces a novel incremental dependency-basedlanguage model based

on an incremental version of CCG, and introduces experiments for evaluating the

proposed parser.
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• Chapter 6, discusses the integration of our incremental dependency-based language

model into SMT

• Finally Chapter 7 concludes and discusses avenues for future work.

1.2 Publications

A number of publications were based on the work in this thesis:

• (Hassan et al., 2006) which is entitled “Syntactic Phrase-Based Statistical Machine

Translation” and was published in the Proceedings of the 2006 IEEE Workshop on

Spoken Language Technology.

• (Hassan et al., 2007a) entitled “MaTrEx: the DCU Machine Translation System

for IWSLT 2007” was published in proceedings of the International Workshop on

Spoken Language Translation

• (Hassan et al., 2007b) entitled “Integrating Supertags into Phrase based Statistical

Machine Translation” was published in the Proceedings of the 45th Annual Meeting

of the Association for Computational Linguistics (ACL-07).

• (Hassan et al., 2008a) entitled “Syntactically Lexicalized Phrase-based Statistical

Translation” was published in the IEEE Transactions on Audio, Speech and Lan-

guage Processing journal.

• (Hassan et al., 2008b) entitled “A syntactic language modelbased on incremental

CCG parsing” was published in the Proceedings of the 2008 IEEE International

Workshop on Spoken Language Technology.
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Chapter 2

State-of-the-art in Statistical Machine

Translation

2.1 Introduction

Machine translation (MT) is the process of using computers to translate text from one

natural language into another. Statistical machine translation (SMT) is an MT paradigm

where translations are generated using statistical modelswhose parameters are derived

from the analysis of bilingual and monolingual text corpora. The idea of performing

SMT by information theory methods was proposed a long time ago in (Weaver, 1949),

who proposed that the statistical techniques from information theory and cryptography

might make it possible to use computers to translate text from one natural language to

another.

Four decades later, in the late 1980’s, a group of IBM researchers revisited the idea

of using statistical techniques for translation. They wereencouraged by the increase in

computing power, the availability of large-scale parallelcorpora and the lack of progress

by other methods. (Brown et al., 1988, 1990) formulated the MT problem as a noisy

channel model, which has led to the rise of SMT as we experience today. SMT is now by

far the most dominant paradigm of MT for many reasons, such asaccuracy, scalability and
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fast adaptation to new languages and domains. In this chapter, we introduce an overview

of the state-of-the-art in SMT.

2.2 MT Overview

The classical architecture of MT systems follows the Vauquois Triangle (Vauquois, 1968).

This representation proposes that there are three main paradigms for MT, namely Direct,

Transfer and Interlingua. This classical architecture helped in understanding various pro-

cesses that might be used in performing MT; however, MT systems rarely adhere to this

claimed theoretical framework due to the compromised solutions assumed during systems

development.

A more recent representation was proposed by (Wu, 2005), in which he presented a

three-dimensional MT model space that focused on the components deployed to achieve

the translation rather than on the process of performing thetranslation. (Wu, 2005)’s

3D-representation consists of three dimensions: statistical versus logical, compositional

versus lexical, and example-based versus schema-based. (Wu, 2005) defines SMT as an

MT system that makes nontrivial use of statistics and probability while the logical sys-

tem makes extensive use of logical rules. Compositional MT uses compositional transfer

transduction rules while lexical MT uses lexical transfer without compositional rules. Fi-

nally, Example-based MT uses a large library of examples at translation runtime while

Schema-based MT uses abstract schemata during runtime.

Figure 2.1 shows the projection of different SMT systems in this three-dimensional

model. Word-based SMT models represent the statistical andlexical combination, while

Phrase-based SMT systems deploy more collocational information and therefore move

away from the lexical towards the compositional dimension.As more syntactic knowl-

edge is added into Phrase-based SMT, the system is pushed further into the compositional

dimension. In the next sections we will review Word-based models and Phrase-based

models.
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example-basedschema-based

statistical

lexical

compositional

Word based models

PBSMT

PBSMT with syntactic knowledge 

Figure 2.1: Various SMT models projected on the three-dimensional
model space

2.3 The Noisy Channel Model

(Brown et al., 1988, 1990) proposed that the problem of MT canbe handled as a noisy

channel model. A target sentenceT is transferred to a source sentenceS when going

through a noisy channel. If this noisy channel could be modelled, then translation from

S to T could be achieved. The machine translation decoder reverses the noisy channel by

reproducing the target sentenceT from the source sentenceS. As shown in Eqn (2.1),

the source channel model is composed of two components: the translation model and the

language model.

T ∗ = arg max
T

P (T |S) = arg max
T

P (S | T )P (T )/P (S)

≈ arg max
T

TranslationModel
︷ ︸︸ ︷

P (S | T )

LanguageModel
︷ ︸︸ ︷

P (T ) (2.1)

Figure 2.2 demonstrates the SMT system in the training and decoding phases. At train-

ing time, the system uses a parallel corpus to estimate the translation model probabilities

and a monolingual corpus to estimate the target language model probabilities. At decod-
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Language Model  P(T)

Source Language Text

Decoder
Global Search

argmax P(S|T) .P(T)

Target Language

Translation Model P(S|T)

Parallel Corpus
S,T

Monolingual Corpus
T

Training
Runtime

Figure 2.2: SMT system: training and runtime (decoding)

ing time, the two probabilistic components are utilized within a global search technique to

find the best translation for a given source sentence. The translation model can take vari-

ous forms such as word-based, phrase-based and syntax-based. The language model can

be ann-gram language model, syntax-based language model or any other model that mea-

sures how fluent the target language output is. In the following sections we will review

two forms of translation models: word-based and phrase-based.

2.3.1 Word-Based Models

In word-based translation models, the translation model inEqn (2.1) is simply a word-

to-word translation probability which has been estimated from word alignments that rep-

resent a mapping between source and target words in a parallel sentence pair. Word

alignment is crucial for SMT as the accuracy of the translation component is highly de-
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pendent on it. As shown in Eqn (2.2), the translation probability of a source sentence

S and a target sentenceT is the sum over all possible alignmentsA between the source

and the target sentences. (Brown et al., 1988, 1990) proposed five alignment models with

different complexity known as IBM Model1 – Model5.

P (S|T ) =
∑

A

P (S, A| T ) (2.2)

In all IBM alignment models a source word can be linked to exactly one target word,

thus these alignment models do not allow many-to-one or many-to-many alignments.

IBM Model1 is the simplest among these models which aim to learn the word (lexical)

translation model using the alignment links. If we already know the alignment links, we

can estimate the lexical translation model by collecting counts, as stated in Eqn (2.2), and

performing maximum likelihood estimation. On the other hand, if we have the translation

model we can assume the most likely alignment links. The problem is that we do not have

either of them. This is a well-known problem, when a model is being estimated from in-

complete data where there are hidden variables in the model.In the case of Model1, we

are trying to estimate the translation probabilities whilethe alignment links are the hid-

den variables in this problem. IBM Model1 uses the Expectation Maximization (EM)

algorithm (Dempster et al., 1977) to solve this problem.

EM is applied in two steps: the expectation step (E-step) andthe maximization step

(M-step). First, IBM Model1 initializes all the translation probabilities with a uniform

probability distribution, i.e. each source word can be the translation of each target word

with the same uniform initial probability. Then the E-step is applied by computing the

expected counts for the translation model based on summing over the alignments. In the

M-step, the maximum likelihood estimate of the translationmodel is computed from these

counts. The E-step and M-step are repeated iteratively until convergence.

IBM Model1 is the simplest among the five models since it only models the lexical

translation probability. IBM Model2 models the word deletion probability as well by in-
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troducing a null word and estimating the probability of words being aligned to the null

word. IBM Model3, in addition to modeling lexical translation and word deletion prob-

ability, models the fertility of each target wordti, indicating the number of source words

it may generate. IBM Model4 goes a step further and models therelative positions of

the source and the target words for reordering. Model4 can generate a source sentenceS

from a target sentenceT = t1, t2....tI as follows:

1. Each target wordti has a particular fertility indicating the number of words itmay

generate and thus the length ofS is the summation of the fertilities of all target

words.

2. Each target word produces a number of source words according to its fertility with

a translation probability.

3. The source words are reordered.

As we described for IBM Model1, EM is used to estimate the parameters of all other

models. IBM Model4 is the most widely used model for word alignment. For detailed

information about the mathematical formalization of IBM models, the reader is referred

to (Brown et al., 1993). IBM models are implemented in the widely used toolkit GIZA++1

(Och and Ney, 2003).

2.4 Phrase-Based Models

2.4.1 Overview

Word-based SMT models have a major disadvantage, namely that they do not use any

contextual information for estimating the translation probability. If the translation unit is

larger than a single word, the contextual effects will be captured and will help to produce

better translations; moreover this should help with local reordering of words such as noun-

adjective reordering between different languages. Phrase-based SMT has been proposed

1http://www.fjoch.com/GIZA++.html
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to overcome these problems where the unit of translation is any sequence of adjacent

words. As shown in Figure 2.3, Phrase-based SMT system starts by segmenting the

source sentence into phrases with arbitrary boundaries then translates the source phrases

into target phrases and finally performs reordering if applicable.

Figure 2.3: Phrase–based SMT. The Arabic source is segmented with ar-
bitrary phrase boundaries then translated to English phrases
which are reordered as needed.

The phrases of Phrase-based SMT are not linguistically motivated and do not neces-

sarily relate to any constituent phrase structure. In fact,these phrases are called blocks

or clumps in some literature (Tillmann and Xia, 2003); however we will use the term

’phrase’ throughout this thesis, while it should be clear that we mean the phrase as a

sequence of words unless otherwise stated.

The current paradigm of Phrase-based SMT was proposed by different research groups

(Zens et al., 2002; Tillmann and Xia, 2003; Koehn et al., 2003); however, there are more

similarities than differences between the various approaches. In this section, we will re-

view the Phrase-based SMT approach focusing on the commonlyused techniques in the

research community.

2.4.2 Phrase-based SMT Mathematical Model

Let s andt be an aligned pair of source and target sentences respectively. As is usually

done in Phrase-based SMT, we assume a set of segmentations ofs andt into phrase pairs.
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We denote withσs,t a segmentation ofs andt. With every segmentationσs,t, there is a set

of pairs of positionsO(s, t, σ) that retains the original ordering ins andt of the individual

phrase pairs inσs,t. We will write Os andOt as the set of source and target positions in

the pairs inO(s, t, σ) respectively.

A given segmentationσx and orderingOx define a derivation of sentencex in the fol-

lowing sense: the sentencex can be obtained by concatenating the phrases inφx according

to the orderOx.

t∗ = arg max
t

P (t|s) = arg max
t

P (s | t)P (t)

= arg max
t

∑

σ,O

TM
︷ ︸︸ ︷

P (φs | φt)

distortion
︷ ︸︸ ︷

P (Os | Ot)

LM
︷ ︸︸ ︷

Plm(t)

≈ arg max
σ,O,φt

TM
︷ ︸︸ ︷

P (φs | φt)

distortion
︷ ︸︸ ︷

P (Os | Ot)

LM
︷ ︸︸ ︷

Plm(t) (2.3)

In (2.3),Plm(t) is the target language model (LM) over word sequences,P (Os|Ot)

represents the conditional reordering/distortion probability, and P (φs|φt) stands for a

probabilistic translation model from target language bagsof phrases to source language

bags of phrases under the segmentationσs,t into a bag of phrase pairs. As shown in (2.3),

the sum over segmentations is disregarded for the efficiencyof optimization over target

sentence and segmentation pairs.

Instead of the original formulation of the translation problem as a noisy-channel

model, Phrase-based SMT employs a log-linear interpolation over a set of features as

will be discussed next.

2.4.3 Log-Linear Representation

As described in the previous section, Phrase-based SMT consists of three probabilistic

components: a phrase translation model (TM), reordering (distortion) model and the lan-
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guage model (LM). These components have resulted from applying the noisy channel

representation on the Phrase-based system. Motivated by adding more components in a

more flexible framework, (Och and Ney, 2002) proposed a log-linear representation for

Phrase-based SMT. (Och and Ney, 2002) proposed a simplification of the direct trans-

lation model proposed in (Papineni et al., 1997, 1998) whichuses Maximum Entropy

(Berger et al., 1996) as a framework for utilizing many feature functions to model the

direct translation probabilityP (T |S).

(Och and Ney, 2002) represented formula (2.3) as a log-linear model interpolating a

set of feature functions as in (2.4):

t∗ = arg max
t,σ

∏

f∈F

Hf(s, t, σ)λf (2.4)

The setF is a finite set of features andλf are the interpolation weights over feature

functionsHf of the aligned source-target sentence pairs. The set of different featuresF

employed in this approach consists of the following:

• lm: An n-gram language model over target sequencesHlm(s, t, σ) = P (t) =
∏

i P (ti|t
i−1
i−4), where the language model probabilities are trained over a large mono-

lingual corpus by Maximum-Likelihood estimation with an appropriate smoothing

technique (Goodman, 2001).

• φ, rφ: A source-target translation table is obtained from a word-aligned parallel

corpus using phrase extraction heuristics (cf. Section 2.4.5). For every possible seg-

mentationσ of the sentence pair〈s, t〉, two feature weights are employed, namely

Hφ(s, t, σ) = P (φs | φt) and its reverseHrφ(s, t, σ) = P (φt | φs).

The phrase translation probability distribution is estimated by the relative frequency

of a phrase pair in the multiset of phrase pairs obtained fromthe parallel corpus as

in (2.5):
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P̂ (s|t) =
count(s, t)

∑

s count(s, t)
(2.5)

Herecount() denotes the frequency count in the multiset of phrase pairs obtained

from the aligned parallel training corpus.

• lex: For every phrase pair〈si, ti〉 (see featureφ), the system employs a model

Hlex(s, t, σ) based on estimates ofPlex(si|ti) (and the reverse direction) using lex-

ical weights (word-to-word) as described in (Koehn et al., 2003). These weights

provide a measure of the translation relations in the phrasepair using a lexicon of

word-to-word translations obtained during the alignment phase,

• o: A phrase reordering modelHo(s, t, σ) (cf. Section 2.4.6).

• x: The standard word/phrase penalty (Hx(s, t, σ) = exp−|t|) which allows for con-

trol over the length of the target sentencet.

2.4.4 Log-Linear Model Parameter Estimation

The parameters of each component of the log-linear model components are estimated in-

dependently. For example, the phrase translation probabilities are estimated from a bilin-

gual corpus while the language model probabilities are estimated usually from a much

larger monolingual corpus. The various components are interpolated in the log-linear

framework by a set of parameters following the Maximum Entropy approach as shown in

Eqn (2.4).

In the Maximum Entropy framework, each feature is associated with a weight. These

weights can be estimated using iterative search methods to find a single optimal solu-

tion under the maximum entropy principle; however, this is acomputationally expensive

process. Therefore, (Och, 2003) proposed an approximationtechnique called Minimum

Error Rate Training (MERT) to estimate the model parametersfor a small number of fea-
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tures, which will be discussed in the next section. An error function that corresponds

to the translation accuracy (Section 2.7) is defined and MERTestimates the log-linear

model parameters such that this error function is minimizedusing the n-best output of the

MT system.

MERT proceeds as follows:

• Initialize all parameters with random values.

• Produce the n-best translations using the current parameter set.

• Compute the error function using reference translations.

• Optimize each parameter to minimize the error function while fixing all other pa-

rameters.

• Iterate over all parameters.

MERT provides a simple and efficient method to estimate the model parameters; how-

ever, it can only handle a small number of parameters (in the order of ten (Ittycheriah

and Roukos, 2007)); when the number of parameters increasesthere is no guarantee that

MERT is able to find the most suitable parameter combination.

2.4.5 Phrase Extraction

IBM word alignment models provide word-to-word mapping where a source word can be

aligned to exactly one target word. These alignment models do not allow for many-to-one

or many-to-many alignments and so the alignments are asymmetric, i.e. the links of the

alignment are not the same if the source and target language are swapped. As shown in

Figures 2.4-a and 2.4-b, the alignment links are different when the languages are swapped.

(Och and Ney, 2003) proposed an approach for extracting phrase mappings based

on producing symmetrized alignments from word-based alignments and then using some

heuristics to extract phrase pairs. First, alignments in both directions (target-source and

source-target) are produced as shown in Figure 2.4-a and Figure 2.4-b respectively. Both
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(a) English–French alignment (b) French–English alignment

(c) Intersection of alignments (d) Intersection extended to union

Figure 2.4: Extracting Phrase Alignments from Word Alignments (from
(Groves & Way, 2005), p.310)
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alignments are intersected to produce a high precision alignment as shown in Figure 2.4-

c. The union of the two alignments is used to extend the intersection with more alignment

points using some heuristics such as GROW-DIAGONAL which examines all the neigh-

bouring alignment points of the intersections. If the neighbouring words are not in the

intersection and if both their source and target words are inthe union, then the alignments

are extended with the union words. Finally, phrase pairs areextracted from those extended

alignments as shown in Figure 2.4-d.

2.4.6 Reordering

Reordering defines how far the target phrase should move during translation. Generally,

the reordering models penalize any movement in the target translation away from the cor-

responding source position and depend on the language modelto judge how good this

movement is. The basic reordering model is proposed in (Tillmann and Ney, 2003) which

is a linear reordering model that simply skips a number of source words/phrases to allow

the movement of the target translation with a particular penalty. However, this simple ori-

entation model does not depend on the actual phrase itself but on the relative position be-

tween reordered phrases. More recently, a number of sophisticated reordering approaches

have been proposed by (Tillmann, 2004), (Kumar and Byrne, 2005) and (Al-Onaizan and

Papineni, 2006). These approaches focus on lexicalized reordering models which model

the reordering based on the phrase itself not on the relativeposition as before. For exam-

ple, the model can provide a probability for each phrase in a give context to be translated

in monotone, swap with the neighbouring phrases or translate as discontinuous phrase and

move further.

We think that the models presented above are satisfactory for modeling how to penal-

ize the movement of the phrases; however, it depends on the language model to judge the

grammaticality of the translation output with this movement. We think then-gram lan-

guage models limit the capability of reordering models since ann-gram language model

cannot judge the grammaticality of a movement beyond then-gram scope. We believe
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Maria no dio una bofetada a la bruje verde

Mary not give    a      slap to the witch green

did not a slap by green witch

no slap to the

did not give to

the

slap the witch

Figure 2.5: All possible source segmentations with all possible target
translations (from (Koehn, 2004))

that more sophisticated language models can enable better reordering using the already

proposed reordering techniques.

2.4.7 Phrase-based Decoder

The task of the Phrase-based SMT decoder is to search for the best translation given a

source sentence, i.e. to maximize the probability as shown in the log-linear representation

in Equation (2.4). Publicly available decoders like Pharaoh (Koehn, 2004a) and its open

source successor Moses (Koehn et al., 2007) deploy a beam search decoder. The decoding

starts by searching the phrase table for all possible translations for all possible fragments

of the given source sentence. As shown in Figure 2.5, many possible segmentations for

the source sentence along with many possible translations are available from the phrase

table.

Starting with a null hypothesis, the decoder expands the hypothesis with the possible

translations of the next source word (or phrase). The reordering is performed according to

any of the approaches discussed in Section 2.4.6. Figure 2.6shows possible expansions

of the search space with translation candidates, where the cost of the translation path is

accumulated together with pointer to the source covered words. The expansion process
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e:
f : --------
P:1

e: witch
f: -------*-
P:=.182

e: Mary
f: *--------
P:=.182

e: Mary slap
f: *-***-----
P:=.043

Figure 2.6: Expanding the decoder hypothesis with possibletranslations
(from (Koehn, 2004))

continues untill there are no more uncovered source words. This large space has to be

searched to obtain the best path.

The search space explodes exponentially due to the reordering and the large number

of translation candidates; (Knight, 1999) showed that evendecoding a word-based model

with a bigram language model is an NP-Complete problem. Somestrategies have to be

used to limit the exponential explosion of the search space;therefore, a beam search

pruning strategy is used to prune those hypotheses having a high cost and thus reduce the

search space. Moreover, similar hypotheses are combined toreduce further the search

space, if they cover the same source words and share the same language model history.

The decoder calculates a future cost estimation for the uncovered parts of the source

sentence; at each hypothesis the future cost is estimated based on the translation cost and

the language model cost of the uncovered source words. The total cost of the hypothesis

is the sum of the actual cost and the future cost and thus the total cost can be a good

estimation of the complete hypothesis cost. The decoder keeps a number of stacks to

keep all partial translations of the target sentence, and the beam search pruning is applied

to all such stacks to keep the most likely hypotheses. Finally the hypothesis that covers

all source words with the lowest cost is chosen as the most likely translation.
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2.5 Syntax support for Phrase-based SMT

There exist various approaches for enriching statistical models of translation with hi-

erarchical structure, e.g. (Wu, 1997; Alshawi et al., 2000;Yamada and Knight, 2001;

Koehn et al., 2003; Och et al., 2004; Chiang, 2005; Quirk et al., 2005; Marcu et al., 2006;

Galley et al., 2006; Zollmann and Venugopal, 2006). We concentrate here specifically

on related approaches that extend Phrase-based SMT systemsby incorporating syntac-

tic/hierarchical structure.

In contrast to (Koehn et al., 2003), who demonstrated that using syntax to constrain

their phrase-based system actually harmed its quality, a number of researchers have, to

different degrees, reported improvements when grammatical information is incorporated

into their models of translation. We will review these approaches here.

2.5.1 Syntax Support via Reranking

The work described in (Och et al., 2004) is a significant attempt at including a variety of

syntactic descriptions in a Phrase-based SMT system, including source language POS tags

for improved reordering, parse tree probability, and tree-to-string, tree-to-tree, subtree-to-

string and supertag-to-supertag features. Of these syntactic features, only the subtree-

to-string and supertag-to-supertag features gave a modestimprovement over the baseline

system when they were included as features for reranking then-best output of the baseline

system.

2.5.2 Hierarchical Phrase-Based Translation

(Chiang, 2005) introduced an approach for incorporating syntax into Phrase-based SMT,

targeting mainly phrase reordering. (Chiang, 2005) was thefirst work to demonstrate any

improvement when adding hierarchical structure to Phrase-based SMT. In this approach,

hierarchical phrase transduction probabilities are used to handle a range of reordering

phenomena in the correct fashion. (Chiang, 2005) proposed ageneralized form of the
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phrases where a synchronous context-free grammar is used toprovide the ability of in-

serting a sub-phrase into a larger phrase. The derived transduction grammar does not rely

on any linguistic annotations or assumptions, so that the ‘syntax’ induced is not linguis-

tically motivated and does not necessarily capture grammatical preferences in the output

target sentences. In fact all the phrases have a single generalization category and thus

each phrase can be substituted for any other phrase and ann-gram language model is

used to judge the resulting phrases. This approach requiresa chart-based decoding which

has much more computational cost than the beam search decoding used for Phrase-based

SMT (cf. Section 2.4.7). Furthermore, (Chiang, 2005) used asmall language model to

avoid the complex search requirements when adding a largen-gram language model.

2.5.3 Syntactified Phrase-based MT (SPMT)

Even more recently, (Galley et al., 2006) and (Marcu et al., 2006) present two similar

extensions of Phrase-based SMT systems with syntactic structure on the target language

side. Both employ tree-to-string (so-called xRS) transducers, but their methods of acquir-

ing the xRS rules and training them are somewhat different. In (Galley et al., 2006), the

target subtrees are obtained by cutting up the syntactic trees into subtrees while maintain-

ing a translation correspondence with the source language string. In (Marcu et al., 2006),

‘syntactified’ target language phrases are extracted by a traversal of the parse tree guided

by manually specified rules regarding the likelihood of xRS target structure boundaries.

Because of the conceptual and technical similarities between these two approaches, we

next concentrate on the approach presented in (Marcu et al.,2006).

In (Marcu et al., 2006), it is demonstrated that ‘syntactified’ target language phrases

can improve translation quality for Chinese–English. A stochastic, top-down transduction

process is employed that assigns a joint probability to a source sentence and each of

its alternative syntactified translations; this is done by specifying a rewriting process of

the target parse-tree into a source sentence. The rewriting/transduction process is driven

by xRS rules, each consisting of a pair of a source phrase and a(partially) lexicalized
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target sub-tree, termed a syntactified target phrase by (Marcu et al., 2006). This approach

depends on inducing millions of xRS rules from parallel data,; however, they note that

28% of the phrase pairs cannot be directly associated with xRs rules, so that this large

proportion of the phrase pairs can only be dealt with in anad hocmanner. Similar to

(Chiang, 2005), SPMT requires a chart-based decoding whichhas a high computational

cost.

2.5.4 Syntax-Augmented Machine Translation

(Zollmann and Venugopal, 2006) extended the work introduced in (Chiang, 2005) by aug-

menting the hierarchical phrases with syntactic categories derived from parsing the target

side of a parallel corpus. They associate a target parse treefor each training sentence pair

with a search lattice constructed from the existing phrase translations on the correspond-

ing source sentence. (Zollmann and Venugopal, 2006) used a parser to parse the target

side of the parallel corpus to produce a syntactically motivated bilingual synchronous

grammar like (Chiang, 2005). Similar to (Marcu et al., 2006), constituent target phrases

are assigned the associated subtrees while heuristics are used to assign partial rewriting

rules for the non-constituent phrases. Similar to (Chiang,2005), a chart-based parser with

a limited language model is used.

2.6 Direct Translation Models

2.6.1 Limitations of Log-Linear Phrase-based Model

First, we will define generative and discriminative modeling as two machine learning

techniques. Both models use some input to produce some output, i.e. we want to learn a

function to mapX− > Y which is equivalent to learningP (Y |X).

A generative model is a probabilistic model that estimates adistribution over all inputs

and outputs; this probability distribution is defined as a joint probability between all input

and output variables. We then modelP (X|Y ) andP (Y ); through the use of Bayes’ rule
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we can estimateP (Y |X). The generative models are so called because the distribution

P (X|Y ) describes how to generate an inputX for a given outputY . Generative models

enjoy very computationally efficient methods for estimating the model parameters as they

use maximum likelihood estimation directly on the observeddata; however, the joint

distribution limits the model capability as each input and output has to be modelled jointly.

On the other hand, the discriminative models provide a modelof the output variables

conditioned on the observed variables, i.e. they directly modelP (Y |X). These models

are called discriminative since they can discriminate between different possible outputs

given a particular input. This is usually done by defining a large number of feature func-

tions on the input-output variables. The main disadvantageof the discriminative models is

the high computational cost required for training the largespace of parameters associated

with the feature functions.

In the light of these definitions, the noisy-channel model isclearly a generative model

where we model a joint probability of source and target words, and using Bayes’ rule we

estimate the translation probability. On the other hand, the log-linear representation of

Phrase-based SMT is neither a generative model nor a discriminative model. In fact, it

deploys a discriminative framework in which a limited number of features can be com-

bined while using generative components as the feature functions. As we discussed in

Sections 2.4.3 and 2.4.4, simplification assumptions were made to facilitate the parame-

ter estimation process which led to limit the potential of the model.

The log-linear representation with MERT estimation has been widely used in Phrase-

based SMT research since it has been introduced. However, two major drawbacks limit

its utilization in modeling better MT systems. First, the parameters of the systems’ com-

ponents are independent and cannot be correlated. Second, the incapability of handling a

large number of features; as a matter of fact, along with other researchers (Chiang et al.,

2008), we think that the log-linear representation with thelimited capability of MERT

represents the bottleneck of further serious development of features rich SMT systems.

Fortunately, the log-linear representation of Phrase-based SMT was based on a fully
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discriminative SMT approach proposed in (Papineni et al., 1997, 1998). Next, we will

review this approach along with a more recent development based on it (Ittycheriah and

Roukos, 2007).

2.6.2 Direct Translation Model

(Papineni et al., 1997) proposed a Direct Translation Model(DTM) which models the

a posterioriconditional distributionP (T |S) as a discriminative model. DTM has three

components: a prior conditional distributionP0(T |S) , features that capture the translation

and language model effects in a unified framework, and finallyweights of the features that

can be estimated by Maximum Entropy (Berger et al., 1996).

DTM provides a very powerful framework for modeling MT by utilizing a large num-

ber of features which can capture different levels of correlations between various effects in

the MT system. Moreover, the estimation of the feature weights is fully data-driven. This

representation turns the problem of MT into a sequential classification problem in which

the classifier deploys various features from the source and candidate target translation to

specify a sequence of decisions that finally result in an output target string.

As shown in Eqn (2.6), the feature functionsφi(S, T ) are defined over source and tar-

get. These feature functions may represent any view of the source and target phrases such

as POS tags, parsing information and morphological information. Each feature function

is associated with a weightλi which specifies how much this feature contributes to the

overall translation probability. It is worth noting that the termZ in the formula is the nor-

malization factor which is needed to produce a well-formed probability distribution. This

term is responsible for the high computational cost of training Maximum Entropy models.

Fortunately, the normalization factor is not required at decoding time as it is constant for

a givenS.

T ∗ = arg max
T

P (T |S) = 1/Z exp
∑

i

λiφi(S, T ) (2.6)
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2.6.3 Direct Translation Model 2 (DTM2)

DTM2 Overview

Recently, (Ittycheriah and Roukos, 2007) introduced Direct Translation Model 2 (DTM2)

which outperforms state of-the-art Phrase-based SMT systems by handling the Phrase-

based SMT problem as a direct translation model, using minimum number of phrases

with no overlap and finally training the whole set of millionsof system parameters using

the Maximum Entropy framework.

Direct Translation Model (DTM) models thea posteriori conditional distribution

P (T |S) instead ofP (S|T ) as in the source channel approach. DTM has three compo-

nents: a prior conditional distributionP0(T |S) , features that capture the translation and

language model effects in a unified framework and finally weights of the features that can

be estimated by the Maximum Entropy (Berger et al., 1996) technique.

As shown in Equation (2.6), Phrase-based SMT is representedas a classification prob-

lem with arbitrary features defined over source and target. More specifically, the reorder-

ing and prior phrase probabilities are represented as shownin Equation (2.7).

P (T |S) = P0(T, J |S)/Z exp
∑

i

λiφi(T, J, S) (2.7)

HereP0 is the prior distribution for the phrase probability which is usually the phrase

normalized counts used in any conventional Phrase-based SMT system, andJ is the skip

reordering factor for this phrase pair which represents thejump from the previous source

word.

DTM2 Phrase Structure

Phrase extraction as outlined in Section 2.4.5 results in a huge phrase table with large

overlaps between the extracted phrases, such that longer phrases overlap with smaller

sub-phrases. (Chiang, 2005) extended the phrase-pairs to hierarchical phrase-pairs (cf.
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Section 2.5), where a grammar with a single non-terminal allows the embedding of phrase

pairs; however, the phrase pairs still have the overlap problem. DTM2 proposed a simi-

lar phrase structure to the one proposed in (Chiang, 2005) while solving the overlapping

problem by maintaining the minimum possible number of phrases by following the con-

cept introduced earlier in (Brown et al., 1993). Simply, a multi-word target phrase should

be included if it is sufficiently different from a word-by-word translation. Figure 2.7

shows some examples of the phrase pairs in DTM2.�é 	Jj. ÊË � of the X committee�éK
 	Q»QÖÏ � centralH. 	QjÊË of the X Party

Figure 2.7: Phrase structures in DTM2. X represents a variable in the
target phrase. From (Ittycheriah and Roukos, 2007)

DTM2 Features

DTM2 provides a flexible framework for any feature type. Currently it deploys five types

of features:

• Lexical Features: these are micro features that examine source and target words of

the phrases.

• Lexical Context Features: these features encode the context of the source and target

phrases (i.e. previous and next source and previous target).

• Source Morphological Features: these features encode morphological and segmen-

tation characteristics of the source words.

• Part-of-Speech Features: these features encode source andtarget POS tags effects

as well as POS tags of the surrounding contexts.
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DTM2 Decoder

The decoder adopted in (Ittycheriah and Roukos, 2007) is a beam search decoder similar

to decoders used in standard Phrase-based log-linear systems such as (Tillmann and Ney,

2003) and (Koehn, 2004a). There are two main differences between DTM2 decoder and

standard Phrase-based SMT decoders. First, DTM2 deploys Maximum Entropy proba-

bilistic models to obtain the translation costs and variousfeatures costs by deploying the

features described above. Second, the DTM2 decoder handlesphrases with variables, as

shown in Figure 2.7. When a decoding path is expanded with a phrase with variables, the

next extensions of this path can either substitute this variable or further extend it with an-

other phrase. The languge model can be added as a Maximum Entropy feature; however,

this would limit the language modeling to the target side of the parallel corpus. To over-

come this limitation, the translation model is combined with ann-gram language model

as a log-linear combination to allow the use of language models built from a very large

monolingual corpus.

2.7 MT Evaluation Overview

Evaluation of MT output is a very hard task as it is a subjective evaluation and there are no

known measures that can easily be checked to indicate how good the translation is. Evalu-

ation metrics have been proposed which try to measure the translation output while corre-

lating with human judgments. Bilingual Evaluation Understudy (BLEU) which has been

proposed in (Papineni et al., 2002) is the most widely used evaluation metric. BLEU score

measures the translation quality by calculating the geometric means ofn-gram agreements

between the output translation and one or more reference translations. To account for the

deletion of words and penalize translations with high precision but low recall, the BLEU

score includes a brevity penalty factor that penalizes translations shorter than the refer-

ences.

Many variations have been proposed to extend the BLEU score.For example, in
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METEOR (Banerjee and Lavie, 2005) the focus is on recall by incorporating the use of

stemming and synonyms from Wordnet to match similar target variations. More recently,

an extension of BLEU score to measure the dependency relations between the translation

and the references was proposed in (Owczarzak et al., 2007).Anyway, the automatic

evaluation of MT remains a highly controversial issue due tothe lack of an acceptable

measure that can capture translation variations.

More recently, human evaluation such Human Translation Error Rate (HTER) is be-

ing used in large-scale evaluations. HTER is a human-based version of the Translation

Error Rate (TER) metric, where a human calculates the minimum number of insertions,

deletions and substitutions needed to correct the translation output according to some

guidelines. While it is gaining acceptance, it is not available for everyday tasks for all

researchers.

2.8 Summary

SMT has evolved from the word-based models (Brown et al., 1988, 1990) to Phrase-based

models (Zens et al., 2002; Tillmann and Xia, 2003; Koehn et al., 2003). Then, motivated

by seeking more grammatical translations and better reordering, researchers started to

integrate syntax into Phrase-based SMT (Chiang, 2005; Marcu et al., 2006; Zollmann and

Venugopal, 2006). More recently, DTM2 (Ittycheriah and Roukos, 2007) was proposed

to allow for the integration of richer features into phrase-based SMT.

All the approaches proposed for incorporating syntax into Phrase-based SMT (Chi-

ang, 2005; Marcu et al., 2006; Zollmann and Venugopal, 2006)share common drawbacks.

First: they all use synchronous PCFG which does not match non-constituent phrases com-

monly used in Phrase-based SMT and therefore the approachesusually resort to some

heuristics to annotate such phrases with syntactic structures. Secondly, all of them deploy

chart-based decoders with a very high computational cost compared with Phrase-based

beam search decoders. Third, the proposed approaches deploy small language models
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compared to what is usually used in Phrase-based systems to limit the decoding complex-

ity.

In this thesis, we explore the possibility of improving Phrase-based SMT systems

translation quality by incorporating syntactic structures on the target sentences while

dealing with the non-constituent phrases. Furthermore, wewill explore the possibility

of incorporating syntactic structures into Phrase-based SMT systems without sacrific-

ing the computational efficiency of the linear decoders or the capabilities of high-order

language models. We will explore various levels of syntactic integration. First, incor-

porating lexical syntax translation model andn-gram language model into Phrase-based

SMT is explored in Chapter 4. Second, in Chapter 5, we introduce a novel incremental

dependency-based language model. Third, we incorporate the incremental dependency-

based language model into SMT in Chapter 6. In the next chapter, we will introduce an

over view of the lexical syntax and lexicalized grammars approaches used in this thesis.
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Chapter 3

Lexical Syntax Overview

3.1 Syntax and Parsing

The syntax of a language defines the rules and principles thatgovern the grammatical

structure of a sentence in that language. Syntax can define the grammaticality of a sen-

tence on many different levels: constituency, dependency relations and logical/semantic

structure.

Constituency is where a group of words function as a single unit within a structure,

e.g. a noun phrase such as “the time of the elections” represents a constituent which acts

as single unit and thus the syntax can describe the non-localreordering of constituents

within a structure.

Dependency grammars model the relations between words or constituents in the syn-

tax structure using the subcategorization information. For example subcategorization in-

formation of a di-transitive verb like “give” in a sentence like “I give him a pen” should

encode that the verb has a subject “I” and two objects “him” and “a pen”. Thus, the de-

pendency grammars define the syntax structure as a set of grammatical relations between

a word and its dependents.

Finally the syntax or the dependency structure can provide alogical representation

between words by predicate argument relations as a semanticrepresentation.

Having defined the role of syntactic structure, this is realized using parsing i.e. ana-
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S //NP V P : non − terminal

V P //V erb NP : non − terminal

V erb //eat : terminal

Figure 3.1: CFG production rules.

lyzing a sentence to determine its grammatical structure. Context-Free Grammar (CFG)

is the most commonly used syntactic representation for parsing. CFG is represented by

production rules on terminals (words) and non-terminals that represent more generalized

structures. Figure 3.1 shows some examples of CFG production rules. Probabilistic CFG

(PCFG) assigns a probability for each of the grammar production rules. The state-of-the-

art parsers (Collins, 1999; Charniak, 2000) are based on head-lexicalized PCFG.

3.2 Lexicalized Grammars

Modern linguistic theory proposes lexicalized grammars inwhich a syntactic parser has

access to an extensive lexicon of word-structure pairs and asmall set of operations to

manipulate and combine the lexical entries into parses. Thestructures of a lexicalized

grammar can be elementary trees, sub-graphs and etc. Each structure is associated with

a lexical item, thus the whole grammar is defined on the lexicon which associates the

lexical items to its corresponding structures. A finite set of operations is used to combine

the elementary structures together. In contrast to other grammars such as CFG, there are

no grammar rules defined on the non-lexical level at all.

Lexicalized grammars encode the dependency, syntactic andsubcategorization infor-

mation on the lexical level, such that the grammar localizesthe long-range dependencies.

Lexicalized grammars perform this localization by encoding all the arguments needed by

the associated lexical item but no more arguments than that.Moreover, lexicalized gram-
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mars factor out recursive structures into different elementary objects. Consider example

(3.1), where the elementary structure associated with the verbresignedshould contain an

argument which is linked to the subjectofficer. While this is a long-range dependency, it

has been localized on the lexical level using the elementarystructure.

Theofficer who is in charge of the operationresigned. (3.1)

These characteristics turned out to be pivotal for our approach of integrating syntax

into SMT systems as we will discuss in this thesis. In this chapter, we review two lexical-

ized grammars: LTAG and CCG. Both have been used in the work done for this thesis.

3.3 Lexicalized Tree Adjoining Grammar

In Lexicalized Tree Adjoining Grammar (LTAG) (Joshi and Schabes, 1991) a lexical de-

scription is an elementary tree structure as shown in Figure3.2. Each elementary tree

represents a possible tree structure for the word. The elementary tree represents a com-

plex syntax description that localized the syntactic and semantic (predicate-argument)

constrains using subcategorization information. There are two kinds of elementary trees:

initial trees and auxiliary trees. Initial trees are phrasestructure trees which contain no re-

cursion, while auxiliary trees represent phrase structurewith recursion. Figure 3.2 shows

initial trees denoted byα and auxiliary trees denoted byβ. The LTAG subcategorization

information is most clearly available in the verbincludeswhich takes a subject NP to its

left and an object NP to its right.

LTAG elementary trees can be combined using two operations,substitution and ad-

junction. The substitution operation is used to insert an initial tree into an elementary

tree. The adjunction operation is used to attach an auxiliary tree to an elementary tree. In

the lower part of Figure 3.2 the parse tree derived from combining the elementary trees

by substitution and adjunction operations is shown. This parse tree is called the derived
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Figure 3.2: LTAG elementary trees for the sentence with the parse tree
resulting from combining the elementary trees (from (Has-
san et al., 2008a))

36



tree which represents the resulting phrase structure from combining the elementary trees

during the derivation process. The derived tree neither encodes the elementary struc-

tures used in the derivation nor the operations used to combine them. On the other hand,

the derivation tree encodes the elementary structures and the operations used during the

derivation process. Figure 3.3 shows the derivation tree for the phrase structure shown in

Figure 3.2.

α:include

α:price

β:purchase β:The

α:taxes

Figure 3.3: LTAG derivation tree that produced the parse tree in Figure
3.2. Initial trees are inserted using substitution and auxiliary
trees are inserted by adjunctions.

3.3.1 LTAG Supertagging

The term “supertagging” (Bangalore and Joshi, 1999) refersto tagging each of the words

of a sentence with a supertag which represents the elementary tree associated with the

lexical item. When well-formed, an ordered sequence of supertags can be viewed as a

compact representation of a small set of constituents/parses that can be obtained by as-

sembling the supertags together using the appropriate combinatory operators (such as sub-

stitution and adjunction in LTAG). Similar to POS tagging, the process ofsupertagging

an input utterance proceeds with statistics that are based on the probability of a word-

supertag pair given their Markovian or local context (Bangalore and Joshi, 1999). When

supertagging is performed, most of the ambiguity in constructing the parse structure is

almost eliminated and the combinatory operators can be usedto construct the structure

using the assigned supertags (hence why this approach is called ’almost parsing’). In

fact, (Nasr and Rambow, 2004) have quantified the’almost parsing’to be 97.7% depen-

dency accuracy of the full parsing accuracy when using the correct supertags. The main
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difference with full parsing is that supertagging the inpututterance need not result in a

fully connected graph.

An LTAG parser may be used to perform the adjunction and substitution operations

to construct the syntactic tree. More efficiently, (Bangalore, 2000) proposed a simpler

method to construct the tree called ”Light Weight Dependency Analyzer“ that can con-

struct the derivation tree using the dependency information encoded in the supertags via

deterministic methods.

The original LTAG-based supertagger of (Bangalore and Joshi, 1999) is a standard

HMM tagger. A more recent version of the LTAG supertagger (Bangalore et al., 2005)

conditions a supertag on a vector of features representing its context and employs a Maxi-

mum Entropy classifier (Berger et al., 1996). The supertags were extracted from the Penn

Treebank (Marcus et al., 1993) by (Chen et al., 2006).

3.4 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steedman, 2000) is alexicalized grammati-

cal theory based on Categorial Grammar and lambda-calculus(Ajdukiewicz, 1935; Bar-

Hillel, 1953). The CCG lexical entries define syntactic categories which encode syntactic

valency and directionality; these categories can be augmented by a semantic representa-

tion to provide compositional semantics with a completely transparent interface between

surface syntax and logical semantics.

CCG syntactic categories can be associated with a semantic interpretation with the

same type of the syntactic category. These semantic categories are represented inλ-

calculus with predicate-argument information in a completely transparent interface with

the syntactic representation such that it can provide compositional semantics through the

syntactic structure. Although in this thesis we focus only on syntactic structures, CCG

provides the possibility of expanding the work presented inthis thesis to semantic repre-

sentation as well.
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The purchase price includes taxes

NP/NP (NP) NP (S\NP)/NP NP
> FA > FA

NP S\NP
> FA

NP
< BA

S

Figure 3.4: CCG Supertags and the derivation combining the supertags
into a parse-tree.

Each word is associated with syntactic categories which define its syntactic behaviour

in different contexts. There are two kinds of syntactic categories: atomic categories and

complex categories. Atomic categories are simple categories such asS, NP , PP and

N . Complex categories are functors; for example a complex category likeX/Y will take

argumentY to its right side resulting in categoryX.

As shown in Figure 3.4, the notationα/β andα\β represents a predicate/functorα

that expects an argumentβ to the right and left respectively. A sequence of supertags

[β α\β] can be combined by Backward application resulting inα (similarly for Forward

application[α/β β]). The derivation shown corresponds to the (upside-down) parse tree

shown in the lower part of Fig. 3.2.

It is worth noting that any complete or partial derivations can by associated with struc-

ture which makes CCG very appealing for handling non-constituent phrase structure and

for incremental parsing as well.

3.4.1 CCG Combinatory Operators

CCG has three types of operators: application operators, composition operators and type

raising. We will review here some of the CCG operators.

Application Operators

• Forward Application (FA): this operator performs the forward application com-

binatory rule for CCG as defined in (Steedman, 2000). As shownin (3.2) and

(3.3), if a constituent with categoryX/Y is immediately followed by a constituent
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with categoryY , the operatorFA can be used to combine them to construct a new

constituent with categoryX.

X/Y Y
> FA

X

(3.2)

The cat
NP/NP NP

> FA

NP

(3.3)

• Backward Application (BA): this operator performs the backward application com-

binatory rule, as defined for CCG (Steedman, 2000), on two categories. If a con-

stituent with categoryX\Y is immediately preceded by a constituent with category

Y , the operatorBA can combine them to construct a new constituent with category

X, as illustrated in examples (3.4) and (3.5).

Y X\Y
< BA

X

(3.4)

John sleeps
NP S\NP

< BA

S

(3.5)

40



Compositional Operators

• Forward Composition(FC): this operator is the compositional version of theFA

operator and it performs the Forward Composition combinatory rule on two com-

plex categories, as defined in (Steedman, 2000). Consider (3.6) and (3.7), where

if a constituent with categoryX/Y is immediately followed by a constituent with

categoryY/Z, the operatorFC can combine them to construct a new constituent

with categoryX/Z.

X/Y Y/Z
> FC

X /Z

(3.6)

The tall man
NP/NP NP/NP NP

> FC

NP/NP

(3.7)

• Backward Composition (BC): this operator is the compositional version of theBA

operator and it performs the Backward Composition combinatory rule as defined in

(Steedman, 2000). If a constituent with categoryY/Z is immediately followed by

a constituent with categoryX\Y , the operatorBC can combine them to construct

a new constituent with categoryX/Z, as illustrated in examples (3.8 and 3.9).

Y/Z X\Y
< BC

X/Z

(3.8)
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NP/PP S\NP
< BC

S/PP

(3.9)

Type Raising (TR):

Type raising captures long-range dependencies and is usually used with composition op-

erators. (Steedman, 2000) defines Type Raising as a unary rule. If a constituent with

categoryX/Y is immediately preceded by a constituent with categoryZ such thatX/Y

has a long-range dependency on the right side to a categoryZ, then Type Raising is used

to raise the categoryZ to categoryY .

Examples (3.10) and (3.11) demonstrate type raising with forward composition, the

subjectNP is type raised toS and then forward composed with(S\NP )/NP ) to com-

poseS/NP .

X (Y\X)/Z
T

X/Z

(3.10)

He bought
NP (S\NP) /NP

T

S/NP

(3.11)

3.4.2 CCG Supertagging

Based on the supertagging approach in (Bangalore and Joshi,1999), (Clark and Curran,

2004) introduced a CCG supertagger using Maximum Entropy classification techniques.

The CCG supertags are the atomic and complex categories associated with each word.

(Clark and Curran, 2004) used supertagging before parsing to achieve accurate and effi-
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cient parsing results. Similar to the LTAG supertagging, the supertagger uses statistical

sequence tagging techniques to assign a limited number of lexical categories to each word

in the sentence and therefore the parser can search in much reduced space to assign the

parse structure. The CCG supertags were automatically extracted from the Penn Tree-

bank (Marcus et al., 1993) by (Hockenmaier and Steedman, 2007).

3.5 Comparison between LTAG and CCG

Many researchers have indicated the similarity between LTAG and CCG since both gram-

mars are mildly context-sensitive grammars. In fact, the lexical descriptions of both gram-

mars are equivalent, i.e. the LTAG elementary trees are equivalent to CCG categories such

that the same dependency arguments are represented at both LTAG elementary trees and

CCG categories as well. Based on this similarity, (Doran andBangalore, 1994) introduced

a methodology for bootstrapping CCG categories from LTAG elementary trees. However,

as they pointed out the LTAG derived trees represent a more rigid structure than CCG

flexible derivations. In the context of supertagging, this difference seems minor and not

so relevant; while for full parsing these differences are more crucial. On the one hand, the

more flexible CCG derivations complicate the parsing process as more structures should

be considered (Clark and Curran, 2007). On the other hand, the more flexible derivations

can facilitate incremental and partial parsing (Hockenmaier and Steedman, 2007).

The CCG Combinatory Operators assemble lexical entries together into derivation-

trees; each partial or complete syntactic derivation corresponds directly to a structure.

For example, strings such as“John likes” have a natural interpretation as constituents.

(Doran and Bangalore, 1994) highlighted that the flexibility of CCG derivations allows

the handling of non-constituent constructions that LTAG cannot handle, which is due

to the fact that LTAG trees represent rigid structures whileCCG categories allow more

flexibility in the derivation process. Unlike many other linguistic theories, this flexibility

gives CCG an advantage over other grammatical formalism in handling non-constituent
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constructions. It is worth noting that the capability of CCGto handle non-constituent

constructions comes at a price, namely introducing more spurious parses and accordingly

leading to more complicated parsing than LTAG.

3.6 Syntactic Language Models

Our main interest in lexicalized grammar is to develop syntactic translation and language

models for enhancing MT output. In this section we will review the previous work of

syntactic language models and then discuss the potential oflexical syntax for developing

language models for machine translation.

3.6.1 Previous work

A number of researchers have introduced work that incorporates syntactic language mod-

els into speech recognition systems. The Structured Language Model (Chelba, 2000)

and (Xu et al., 2002) proposed an incremental shift-reduce parser which conditions the

probability of words on previous lexical heads, rather thanprevious words as inn-gram

language models. The probability of the word is the weightedsum of its conditional

probabilities from possible parses.

(Roark, 2001) proposed an incremental top-down and left-corner parser that generates

conditional word probabilities. He deployed parse probabilities directly to calculate the

string probabilities. (Collins et al., 2005) extended (Roark, 2001) by using a discrimina-

tive approach to estimate the model with more syntactic features.

(Charniak, 2001) proposed a head-driven parsing approach that directly used gen-

erative PCFG models as language models which made use of a non-incremental, head-

driven statistical parser to produce string probabilities. (Charniak et al., 2003) integrated

the model proposed in (Charniak, 2001) into a syntax-based MT system (Yamada and

Knight, 2001) on a very small scale.

All the previous approaches depend on non-deterministic techniques to grow a huge
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number of partial derivations which is unmanageable for large-scale applications such

as MT. This has limited the usability of these approaches to very small tasks and/or

re-ranking of systems outputs. Another major aspect is thatmost of the previous ap-

proaches deploy PCFG which can not handle non-constituent constructions commonly

used in Phrase-based SMT systems (cf. Section 2.4). Moreover, PCFG is not lexicalized

and thus cannot naturally provide a complete account for lexical and syntactic effects.

Lexicalized modifications of PCFG complicates the parsing process further.

3.6.2 Lexical Syntax Language Models

Lexical syntax offers a very appealing representation for language modeling since it has

four distinct advantages that can help in providing efficient language modeling. First, all

syntactic information is localized on the lexical level andthus it can match word or multi-

word level. Second, since lexical syntax localizes the dependency information, there is no

need to encode more complicated syntactic information on the higher level of the struc-

tures. This is a major advantage, since it can allow adding syntax without explicit need

for high-level search of the possible structures (i.e. chart parsing). Third, lexical syntax

can seamlessly provide dependency information using the subcategorization information

encoded in the categories; therefore dependency information is represented on the lexical

level. A language model can make use of such information to estimate the most likely

word sequence based on satisfying the dependency relations. Fourth, as we discussed

previously, supertagging can limit the ambiguity in the possible structures and therefore

lexical syntax with supertagging will not grow a huge numberof partial derivations when

scoring possible structures for a language model, in contrast to the case with previously

discussed syntactic language models.
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3.7 Summary

Lexical syntax represents a very appealing grammatical formalism for exploring different

forms of syntactic language models to enhance Phrase-basedSMT systems. In this the-

sis, we will examine the utilization of lexical syntax in twoforms. First, incorporating

supertagging in the translation model and ann-gram supertagging language model into

Phrase-based SMT is explored in Chapter 4. Second, in Chapter 5, we introduce a novel

syntactic language model based on incremental CCG parsing.Third, we incorporate the

incremental parsing language model into SMT in Chapter 6.

46



Chapter 4

Syntactic Phrase-based SMT: The

Supertagging Approach

4.1 Introduction

Recently, SMT researchers have started to focus on extending Phrase-based Statistical

Machine Translation (henceforth Phrase-based SMT) systems with syntactic knowledge;

however, some of the early attempts caused system performance to deteriorate (Koehn

et al., 2003). The most recent successful enrichment of Phrase-based SMT with hierarchi-

cal structure either employ non-linguistically motivatedsyntax for capturing hierarchical

reordering phenomena (Chiang, 2005) or extend the phrase translation table with redun-

dantly ambiguous syntactic structures over phrase pairs (Marcu et al., 2006; Zollmann

and Venugopal, 2006).

In this thesis, we study the question as to whether thelexical descriptions developed

in linguistic theory can benefit the translation quality of Phrase-based SMT system by im-

proving the syntactic structure of the target sentences. Weexplore various levels of syn-

tactic integration in a Phrase-based SMT system. First, incorporating supertags into the

translation model and the language model of Phrase-based SMT is explored in this chap-

ter. Second, in Chapter 5, we introduce a novel incremental dependency-based language
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model based on incremental CCG parsing. Third, we introduceincremental dependency-

based SMT model by incorporating incremental parsing into the translation model along

with incremental dependency-based language model, as described in Chapter 6.

In section 4.2 of this chapter, we discuss the main problems regarding integrating

syntax into Phrase-based SMT and demonstrate how lexical syntax ia able to resolve these

issues. In the rest of this chapter, we introduce our approach for integrating supertags into

the translation model and the language model of Phrase-based SMT.

4.2 Syntax and Phrase based SMT

Over the last few years, Phrase-based SMT has been the most dominant paradigm within

the field of Machine Translation (MT). As we discussed in Section 2.4, Phrase-based SMT

systems demonstrate better accuracy and scalability than any other MT paradigm. How-

ever, it has proven difficult to incorporate linguisticallymotivated syntactic knowledge in

order to obtain better quality translation output from Phrase-based SMT systems.

In Section 2.5, we reviewed various approaches for incorporating syntax into Phrase-

based SMT. For example, (Koehn et al., 2003) demonstrated that adding syntactic con-

straints harmed the quality of their Phrase-based SMT system. (Och et al., 2004) explored

the effectiveness of deploying a large set of syntactic features for re-ranking the transla-

tion output; only lexicalized subtrees and supertags gave amodest improvement among

all features. (Chiang, 2005) induced hierarchical rules over the phrases that could capture

a number of reordering phenomena. However, the induced syntactic structures are not

linguistically motivated and do not necessarily capture grammatical preferences. More

recently, (Marcu et al., 2006) employed a constrained yet syntactically justified phrase-

translation table in which the target language side of a phrase pair constitutes a partially

lexicalized syntactic structure. They induced millions ofsyntactic structures associated

with the target phrase table; however, they resorted to someheuristics to obtain syntactic

structures for the non-constituent target phrases which represent a huge part (28%) of their
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phrase table. Finally, (Zollmann and Venugopal, 2006) extended the work introduced in

(Chiang, 2005) by augmenting the hierarchical phrases withsyntactic categories derived

from parsing the target side of a parallel corpus. Similar to(Marcu et al., 2006), heuristics

were used to assign partial rewriting rules to the non-constituent phrases.

S

NP

VP

V NP

NP NP

The president meets Saudi economic officials

Figure 4.1: Arabic and English aligned phrase pairs with theEnglish
constituent structure (from (Hassan et al., 2008a)).

One major difficulty in extending Phrase-based SMT systems with linguistically mo-

tivated syntax is the mismatch between the notion of a ‘phrase’ in Phrase-based SMT

systems (any sequence of words defined by the word alignment mapping) and the notion

of a syntactic constituent in traditional linguistics. We present an example in Figure 4.1,

which demonstrates clearly that while the first Arabic–English chunk alignment contains

both the English subject NP as well as the main verb“The president meets”, this is not

conventionally accepted as a constituent in English syntax. In contrast, in the same exam-

ple, we see that the part of the object NP“economic officials”—the 3rd English chunk

which maps to the second Arabic chunk— is usually interpreted as a constituent in En-

glish syntax. The problem is that the phrases in Phrase-based SMT systems are identified

with regard to word alignment probabilities which need not follow any linguistic conven-

tion.

Figure 4.2 exemplifies the problem of associating a tree structure with non-constituent

phrases such as those commonly assumed in treebanks and existing parsers. If we tried

to associate a subtree with the non-constituent phrase“The president meets”, the subtree

must also include the three encircled nodes in the figure. These three nodes constitutes

an objectNP (marked obj) and two adjuncts (aPPand the other encircledNP). Generally
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meetsThe president Saudi

NP V NP NP PP NP

VP

NP

S

obj

economic officials in Riyadh next week

Figure 4.2: Mismatch between PBSMT phrases and tree structures (from
(Hassan et al., 2008a)).

speaking, any of the sentences accepted by the regular expression(The president

meets NP [PP]* [NP]*) that occurs in the training data will imply a new subtree

for the phrase in question. The resulting subtrees differ only with respect to the number of

adjuncts included under theVP. We refer to this as redundant syntactic ambiguity, because

these subtrees unnecessarily partition the contexts and statistics of this phrase. Such re-

dundancy represents an obstacle for any generalization to new instances and complicates

the model both statistically and computationally. It is worth noting that this redundant

subtrees are not lexicalized; usually these subtrees wouldbe lexicalized which could lead

to even more redundancy.

Due to such mismatches, it is not directly clear how the SMT notion of a phrase

may be extended with atree structure without introducing redundant ambiguity. For a

non-constituent phrase, a tree structure representation directly introduces redundant am-

biguity; multiple, alternative subtrees will be associated with the same phrase, whereas

they are merely minor variants of each other, differing onlyin subgraphs that denote very

specific contexts of the phrase.

The alternative, therefore, is to look for syntactic descriptions that do not produce re-

dundant ambiguity in the phrase translation pairs. These syntactic descriptions must en-

sure an adequate and efficient representation of syntactic constraints on the word/lexeme

level; moreover, these syntactic descriptions should be able to localize the global depen-

dencies on the local, word/lexeme level. Accordingly, we explore a syntactic localization

50



of Phrase-based SMT systems based on lexicon-driven approaches to linguistic syntax,

i.e. Lexicalized Tree-Adjoining Grammar (Joshi and Schabes, 1991) and Combinatory

Categorial Grammar (Steedman, 2000). In these linguistic approaches, it is assumed that

the grammar consists of a very rich lexicon and a small set of combinatory operators

that assemble lexical entries together into parse-trees. These operators neither carry nor

presuppose further linguistic knowledge beyond what the lexicon contains. The lexical

entries consist of syntactic constructs (supertags) that describe such lexical information

as the POS tag of the word, its subcategorization information and the hierarchy of phrase

categories that the word projects upwards in the parse-tree.

In this chapter, we present a syntactic lexicalization of Phrase-based SMT systems

based on supertags called Supertagged Phrase-based SMT, which provides‘almost pars-

ing’ to Phrase-based SMT by incorporating supertags in the translation model as well as

in then-gram language model.

4.3 Supertagging for Phrase-based SMT

Lexical syntax deploys rich syntax descriptions —supertags— that match individual words,

and a limited set of Combinatory Operators which are used to combine supertags into a

set of constituents/derivations. The supertagging language model (Bangalore and Joshi,

1999) replaces the set of combinatory operators with the more robust and efficient, sta-

tistical n-gram language model over the sequence of supertags (thus‘almost parsing’).

Supertagging language models can be implemented using finite-state technology, e.g.

Markov Models, using probabilities based on the local context of the supertags such that

an approximation to the syntactic structure is provided. There are currently two supertag-

ging approaches: LTAG-based (Bangalore and Joshi, 1999) and CCG-based (Clark and

Curran, 2004); the reader is referred to Chapter 3 for a thorough account of supertagging,

LTAG and CCG.

Supertagging has two very interesting properties which make it especially suitable for
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extending Phrase-based SMT with syntax. Firstly, a supertag sequence can be constructed

for any phrase found in a text, whether the phrase corresponds to a syntactic constituent

or not. This implies that the target side of the phrase pairs can be augmented by supertags

in a straightforward manner by annotating the parallel corpus with supertag sequences.

Secondly, a supertag provides an extendedlexical description of the neighbourhood and

dependents of a word. Therefore, co-occurrence statisticsover supertags may provide a

good approximation of the syntactic validity of a concatenation of two phrases, leading

to more fluent output. In addition to integrating the Markovian supertagging approach in

Phrase-based SMT, we explore the utility of a new surface grammaticality measure based

on combinatory operators.

In this chapter, we examine the effectiveness of extending astate-of-the-art Phrase-

based SMT system with both LTAG and CCG supertags on the target language side. In

order to avoid sparseness, we smooth the supertagged components (both language model

and target side of the translation table) with backed-off components, including the com-

ponents of a standard Phrase-based SMT system.

The remainder of the chapter is organized as follows. In section 4.4 we discuss

the differences between Supertagged Phrase-based SMT and previous work on enrich-

ing Phrase-based SMT systems with syntactic structure. In section 4.5, we detail our

approach. Section 4.6 describes the experiments carried out, together with the results

obtained. Section 4.7 concludes, and discusses open questions.

4.4 Why Supertagged Phrase-based SMT?

There exist various approaches to incorporate syntax into Phrase-based SMT, e.g. (Chi-

ang, 2005), (Marcu et al., 2006) and (Zollmann and Venugopal, 2006). As we have re-

viewed these approaches in Section 2.5, we will focus here oncomparing our approach

with (Marcu et al., 2006) and (Zollmann and Venugopal, 2006)which has extended (Chi-

ang, 2005) by adding syntactic categories derived from parsing the target side of the par-
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allel data.

While the work described in (Marcu et al., 2006) and (Zollmann and Venugopal, 2006)

have much in common with the approach proposed in this chapter (such as the syntactified

target phrases), there remain a number of significant differences. Firstly, both approaches

deployedad hocmanually specified rules to induce parse-chunks to accompany phrases;

however, in our approach we utilize a more sophisticated andformalized syntactic repre-

sentation that localizes global syntactic information anddeploys rich lexical descriptions

that match individual words/lexemes straightforwardly. Asupertag can, therefore, be as-

signed to every word in a phrase. On the one hand, the correct sequence of supertags

could be assembled (using only a small set of combinatory operators) into a small set of

constituents/parses (‘almost parsing’). On the other hand, because supertags are lexical

entries, they facilitate robust syntactic processing (using Markov models, for instance)

which does not necessarily aim at building a fully connectedgraph and which avoids

redundant structural ambiguity.

A second major difference with (Marcu et al., 2006) and (Zollmann and Venugopal,

2006) is that our supertag-enriched source–target phrase pairs have not been generalized

into any transduction rules that work with abstract categories. Such transduction rules are

usually aimed at providing a treatment of phrase reordering. While it is certainly possible

to extend our approach towards a transduction system, our model is currently targeted at

more grammatical output given the standard reordering techniques used in mainstream

Phrase-based SMT systems (cf. 2.4.6).

Thirdly, our model works with fully lexicalized syntactic descriptions and retains all

phrase pairs used by the standard Phrase-based SMT system enriched with linguistic syn-

tactic descriptions. Fourthly, supertagging is more efficient than actual parsing or tree

transduction both in training and at run-time. Fifthly, we deploy a log-linear, left-to-

right decoder (Tillmann and Ney, 2003), unlike (Marcu et al., 2006) and (Zollmann and

Venugopal, 2006) who used a CKY-style decoder with high computational cost and small

language models. Finally, unlike both approaches, we have no need to resort toad hoc
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tree-rewriting measures in order to provide a better interaction between (‘normal’ Phrase-

based SMT) and transduction rules.

In this chapter, we describe a different approach to obtaining more grammatical output

using supertags, and provide stronger evidence for their effectiveness on large data sets for

more language pairs. This chapter describes in detail our previous work in (Hassan et al.,

2006), where we gave preliminary results on the effectiveness of our method using LTAG

supertags, and (Hassan et al., 2007b), where we added work onCCG, used larger data

sets, used a different decoder, showed greater improvements, as well as providing details

on possible upper bounds with the method, and discussions onhow the two supertaggers

might be combined into one model; and finally, our work in (Hassan et al., 2008a) pro-

vided experiments on German–English translation and a morethorough analysis of the

system.

Following our initial results on integrating supertags into Phrase-based SMT (Hassan

et al., 2006), (Birch et al., 2007) presented a factored approach for Dutch–to–English em-

ploying CCG supertags as one of the factored translation models in a log-linear model in

a completely different fashion than in the present work; they employed the supertags as

a factored translation model as implemented in Moses (cf. (Koehn et al., 2007)). Posi-

tively, they report improved translation output when supertags are included on the target

language side, and also when (separately) they are includedon the source language side.

Interestingly, however, in an analysis of the empirical results, (Birch et al., 2007) conclude

that most of the improvement given by supertags can be obtained when using an improved

reordering model. While we do not exclude the possibility that better reordering is one

of the ways in which supertags improve over standard Phrase-based SMT systems, our

empirical analysis in section 4.6 indicates that this accounts for only about 20% of the

cases in which supertags provide improved output. In any case, we believe that supertags

constitute a more promising, linguistically motivated method for improving reordering

based on the existing reordering techniques as it can provide better language modeling

for judging the movements proposed by the reordering modelswhich cannot usually be
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judged by ann-gram language model.

4.5 Our Approach: Supertagged Phrase-based SMT

We extend the baseline Phrase-based SMT described in Section 2.4 with lexical syntactic

representations (supertags) (cf. Sections 3.3 and 3.4) both in the language model as well

as in the phrase translation model.

4.5.1 A Supertag-Based SMT model

Our baseline system is based on the system described in Section 2.4 where bidirectional

word alignments are used to obtain lexical phrase translation pairs using heuristics pre-

sented in (Och and Ney, 2003) and (Koehn et al., 2003) (cf. Section 2.4.5 for more

details).

Our extension of the baseline model includes supertags bothin the phrase translation

table and in the language model. As for the translation table, we employ an LTAG su-

pertagger (cf. Section 3.3) and a CCG supertagger (cf. Section 3.4) to enrich the English

side of the parallel training corpus with the 1-best supertag sequence per sentence. Then

we extract phrase pairs together with the co-occurring English supertag sequence from

this corpus using the usual phrase extraction method in Phrase-based SMT (cf. Section

2.4.5). For each extracted lexical phrase pair, we extract the corresponding supertagged

phrase pairs from the supertagged target sequence in the training corpus. For each lexi-

cal phrase pair, there is at least one corresponding supertagged phrase pair, i.e. a phrase

pair in which the target phrase is supertagged. It is worth noting that the word align-

ment is done on the lexical words only as in the baseline system. The target side of the

training corpus is augmented with supertag sequences afterthe alignment process then

the phrase extraction is performed on the supertagged target side of the training data to

extract phrases with associated supertag sequences.

As for the supertagged language model, we employ the two aforementioned supertag-

55



gers to provide supertag sequences for a very large monolingual English corpus, from

which we train a 5-gram language model over supertags to acquire an HMM supertag-

ger (Bangalore and Joshi, 1999). This provides us with two HMM supertagging systems

(CCG and LTAG) which are trained on large amount of monolingual target language

data. This reduces the problems of sparseness in the lexicalmodel, and provides useful

language model probabilities for integration within our supertagged Phrase-based SMT

model, described in the next section.

Using the supertagged translation table and language model, acquired as described

above, we proceed with extending the baseline model described in Section 2.4. Next

we define the probabilistic model that accompanies this syntactic lexicalization of the

baseline model.

Let ST represents a supertag sequence of the same length as a targetsentencet.

Because the target sentences in the parallel corpus are now supertagged, we extractsu-

pertagged phrase pairs, i.e. phrase pairs in which the target phrase is supertagged. We

will use the same notationσ for a segmentation into supertagged phrase pairsφs andφt,ST

just as in the standard Phrase-based SMT (cf. Section 2.4).

In our model formulation, we employ the noisy-channel approach as the background

against which we specify the log-linear formulation. The noisy-channel formulation

would extend the noisy-channel model described in Section 2.4 as in Equation(4.1):

arg max
t

∑

ST

P (s | t, ST )PST (t, ST ) ≈

arg max
t,ST

P (s | t, ST )PST (t, ST ) ≈

arg max
σ,t,ST

TM w.sup.tags
︷ ︸︸ ︷

P (φs | φt,ST )

distortion
︷ ︸︸ ︷

P (Os | Ot)
λo

LM w.sup.tags
︷ ︸︸ ︷

PST (t, ST ) (4.1)

In the first approximation we decide to avoid the complexity of summing over the su-

pertag sequences for a target sentence. In the second approximation, just as in the baseline

model, we do not sum over segmentations into phrases and their order (i.e. derivations),

but rather again take a computationally more attractive approximation. These approxima-
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tions carry over to the log-linear model formulation that isdescribed next as an extension

of equation the baseline log-linear formulation as in (4.2)which has been described in

Section 2.4.

t∗ = arg max
t,σ

∏

f∈F

Hf(s, t, σ)λf (4.2)

Because we do not sum over supertag sequences in (4.1), the feature weight functions

Hf(s, t, σ, ST ) in the log-linear model formulation (equation (4.2)) now have access to

sequences of target language supertag sequencesST , as in (4.3):

t∗ = arg max
t,σ,ST

∏

f∈F

Hf(s, t, σ, ST )λf (4.3)

Our model interpolates (log-linearly) a novel set ofsupertagged featureswith the

features of the baseline model. More formally, our model employs a feature setF
′

=

F ∪ Fst that extends the standard Phrase-based model’s feature setF (listed in Section

2.4) with the following set of supertagged features (Fst):

• [lm.st] The functionHlm.st(s, t, σ, ST ) = P (ST ) is a Markov supertagging model

over sequences of supertags as in (4.4):

P (ST ) =
n∏

i=1

p(sti|st
i−1
i−4) (4.4)

HereST = st1 . . . stn. The parametersp(sti|st
i−1
i−4) are estimated using Maximum-

Likelihood with Kneser-Ney smoothing (Kneser and Ney, 1995). Note that because

the five-grams in this model are over supertags, this model should suffer less from

data sparseness than a five-gram language model over words. In what follows, we

will refer to this Markov model over supertag sequences by the term ‘supertagged

language model’.
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• [φ.st, rφ.st] A weight functionHφ.st(s, t, σ, ST ) = P (φs | φt,ST ) and its reverse

Hrφ.st
(s, t, σ, ST ) = P (φt,ST | φs). The supertagged phrase translation probability

is approximated in the usual way:

P (φs | φt,ST ) ≈
∏

〈si,tiSTi〉∈(φs×φt,ST )

p(si | ti, STi) (4.5)

P (φt,ST | φs) ≈
∏

〈si,tiSTi〉∈(φs×φt,ST )

p(ti, STi | si) (4.6)

In both (4.5) and (4.6),〈si, ti, STi〉 is a supertagged phrase pair consisting of the

phrase pair〈si, ti〉 in which ti is supertagged withSTi. As usual, the parameters

p(s | t, ST ) andp(t, ST | s) are estimated by means of the relative frequency in

the multiset of all supertagged phrase pairs extracted fromthe parallel corpus, as in

(4.7) and (4.8) :

p(s | t, ST ) =
count(s, t, ST )

∑

s count(s, t, ST )
(4.7)

p(t, ST | s) =
count(s, t, ST )

∑

t,ST count(s, t, ST )
(4.8)

• [Smoothing:x.φ.st, x.rφ.st] We employ two more feature functions (x.φ.st and

x.rφ.st) capturing the statisticsp(si | STi) andp(STi | si), which in effect smooth

the feature functionsφ.st andrφ.st. Because the baseline phrase-table probability

(p(si | ti)) is also a feature function in our model, interpolating withp(si | STi)

can be seen as smoothingp(si | ti, STi) using the approximationp(si | ti, STi) ≈

p(si | ti) × p(si | STi)/p(si), where the probability of the sourcep(si) is discarded

as it does not alter the maximization over supertagged target sequences. Similarly,

the featurep(STi | si) can be seen to smooth the reverse probabilityp(ti, STi | si)
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in equation (4.6) as in the approximationp(ti, STi | si) ≈ p(ti | si) × p(STi | si).

A model in which we omit these two smoothing components (i.e.p(si | STi) and

p(STi | si)) turns out to be less optimal than this formulation (but still outperforms

the baseline system).

It is important to highlight that the interpolation of the language and phrase-translation

table component features of the baseline model (lm, φ andrφ) in our model can be seen as

smoothing of the corresponding supertagged components (lm.st, andφ.st, rφ.st, respec-

tively).

Figure 4.3 illustrates the main differences between the baseline system and our su-

pertagged system. As shown in part (A) of the figure, the baseline employs a five-gram

language model over English words. In part (B), our supertagged system employs a five-

gram model over supertags and feature functions of supertagged phrase-pairs. Further-

more, we add smoothing feature functions (as shown in part (C)) with statistics over

supertagged phrase-pairs where we marginalize over supertagged target phrases by using

five-grams on supertags without the lexical items.

4.5.2 Language Models with a Grammaticality Factor

As is usual withn-gram language models, the probabilities of the supertagged language

model are smoothed to provide better estimation for unobserved sequences. While smooth-

ing then-gram statistics is essential, the language model may prefer less grammatical su-

pertag sequences over more grammatical ones. Recall that CCG supertags encode valency

and directionality information for the arguments; this information can be used to construct

an ‘almost parse’ with the help of external CCG composition operators. We are interested

in examining the effect of applying the combinatory operators on the supertags sequence,

such that we measure the grammaticality of the sequence based on the number of violated

operators. We opt to examine this effect by integrating a penalty term into the language

model which expresses the extent to which the formal composition operators are violated

in a sequence of supertags. In general, the kind of violations that can arise between two
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The president meets Saudi economic officialsModels
φ

and
rφ

English Language model

A. Baseline System

S〈.〉S〈3,4,5,6〉S〈2,3,4,5〉S〈1,2,3,4〉S〈$,1,2,3〉S〈$,1,2〉S〈$,1〉S〈$〉

S1 S2
The president

S3
meets

S4
Saudi

S5 S6
economic officialsModels

φ.st

and
rφ.st

Ngram model over supertags

B. Unsmoothed Supertagged System

S〈.〉S〈3,4,5,6〉S〈2,3,4,5〉S〈1,2,3,4〉S〈$,1,2,3〉S〈$,1,2〉S〈$,1〉S〈$〉

S1 S2 S3 S4 S5 S6Models
x.φ.st

and
x.rφ.st

Ngram model over supertags

C. Smoothed System:
Supertagged Phrase-Pairs without Target Words

Figure 4.3: Supertagged PBSMT system (from (Hassan et al., 2008a))
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consecutive supertags can be characterized as “type-mismatches” between the argument

that one supertag expects to its left (right) and the supertag actually occurring to its left

(respectively right).

Ideally, the more violations, the less grammatical the sequence of supertags is deemed

to be according to the grammar. This is due to the observationthat these violations rep-

resent non-satisfied dependency relations in this context.It is not to be taken for granted,

though, that the formal grammaticality criteria (measuredhere in terms of compositional-

ity) should coincide with better translation output or a better grammatical sequence.

The penalty factor that we experiment with here is added as a feature in the log-linear

model, although we do not tune this parameter, instead relying on the supertag LM feature

weight. The penalty term measures the ratio of the number of encountered violations

over all adjacent supertag pairs to the total number of adjacent pairs in a sequence of

supertags. For a supertag sequence of lengthL, which hasV operator violations (as

measured by the CCG system), the language modelP will be adjusted to becomeP∗

whereP∗ = P × (1 − V
L−1

).

This term is, of course, no longer a simple, smoothed maximum-likelihood estimate

of a language model, nor is it a true probability. Nevertheless, this mechanism provides a

simple, efficient integration of a global compositional (grammaticality) measure into the

n-gram language model over supertags.

As illustrated in Figure 4.4, the sentence with a possible supertag sequence (not correct

sequence). The sentence length is six words, i.e.L = 5 operator applications in total over

pairs of adjacent supertags. The supertag of“believes” demands directly to its right an

(NP ) with Forward Application; however, it finds a(PP/NP ) instead. This counts as a

single violationV = 1, since all other pairs of adjacent words have supertags thatmatch

under Forward and Backward application. Note that the supertag that fits best in the given

sequence for“believes” is (S\NP )/PP , which would be appropriate for a sentence such

as“He believes in me”.

While measuring the grammaticality of a target language sentence by penalizing the
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He believes in what he said

N (S\NP)/NP PP/NP NP/(S/NP) NP (S\NP)/NP
> FA

Figure 4.4: A grammatical violation example.

supertags LM, based on the number of grammatical violations, might be viewed as some-

whatad hoc, it has provided us with better insight into the usability ofcombinatory oper-

ators for our models. As a matter of fact, our observations from using this method have

reformed our research agenda for the rest of this thesis, as we will discuss in the next

chapter.

4.5.3 Supertagged Phrase-based Decoder

The decoder used in this chapter is Moses (Koehn et al., 2007), a log-linear decoder sim-

ilar to Pharaoh (Koehn, 2004a), modified to accommodate supertag phrase probabilities

and supertag language models. It is worth noting that while Moses implements factored

translation models, in this work we do not avail of this functionality. In our preliminary

results (Hassan et al., 2006), we built a decoder using the MOOD framework (Patry et al.,

2006). After the development of Moses, we switched to it as itis much faster than MOOD

framework.

4.6 Experiments

4.6.1 Arabic–to–English

In this section we evaluate the effect of lexical syntax on translation quality. A number

of experiments were carried out on the NIST open domain news translation task from

Arabic–to–English, with the aim of examining the effect of incorporating both supertag-

ging approaches (CCG or LTAG) in our models with varying datasizes.
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Data and Settings

The experiments were conducted for Arabic–to–English translation and tested on the

NIST 2005 evaluation set. The systems were trained on the LDCArabic–English parallel

corpus; we used the news part (130K sentences, about 5 million words) to train systems

with what we call thesmalldata set, and the news together with a large part of the UN

data (2 million sentences, about 50 million words) for experiments withlargedata sets.

Then-gram target LM and the supertag LM were built using 250M words from the En-

glish GigaWord Corpus using the SRILM toolkit (Stolcke, 2002).1 This differs from our

previous work in (Hassan et al., 2006), where just 25M words of the English GigaWord

Corpus was used for building both target LMs. For the LTAG supertags experiments, we

used the most recent LTAG English supertagger2 (Bangalore et al., 2005) to tag the En-

glish part of the parallel data and the monolingual LM data. This supertagger is a MaxEnt

supertagger employing more than 5000 different supertags;in the large data that we su-

pertagged (more than 300M words), we encountered 3994 different supertags. For the

CCG supertag experiments, we used the CCG supertagger of (Clark and Curran, 2004)

and the ‘C&C’ tools3 to tag the English part of the parallel corpus as well as the CCG

supertag LM data.

The NIST MT03 test set was used for development, particularly for optimizing the

interpolation weights using Minimum Error Rate Training (MERT) (cf. Section 2.4.4)

using the Moses scripts. As we described in Section 2.4, the baseline system deploys

6 log-linear features, while our Supertagged Phrase-basedsystem (Section 4.5) added

5 more features. Thus our system has to tune 11 features usingMERT. We found that

MERT was not able to tune this relatively large number of features in one batch; thus we

resorted to running MERT in several batches trying to tune a subset of the parameters at

each time, i.e. tuning translation parameters in a batch andthen fix them and tune the

language model parameter in the next batch and so on. While werealize that this is not

1http://www.speech.sri.com/projects/srilm/
2This supertagger employs a more elaborate supertag set thanthe original supertagger employed in

(Hassan et al., 2007b).
3http://svn.ask.it.usyd.edu.au/trac/candc
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the best solution for this problem, but we had to deal with it in thisad hocmanner. As

we discussed in Section 2.6.1 this is a real limitation of MERT estimation for log-linear

models as has just been highlighted in (Chiang et al., 2008).

Baseline System

The baseline system is a state-of-the-art Phrase-based SMTsystem as described in Sec-

tion 2.4. Our baseline uses GIZA++4 (Och and Ney, 2003) to obtain word-level align-

ments in both language directions. The bidirectional word alignment is used to obtain

phrase translation pairs using heuristics presented in (Och and Ney, 2003). More specif-

ically, we use the intersection of the bidirectional GIZA++alignments and Grow-Diag

heuristics to expand the alignments by adding direct neighbour and diagonal neighbour

alignment points (cf. Section 2.4.5 for more details). The Moses framework (Koehn et al.,

2007) is used for phrase extraction and decoding.5

We built two baseline systems with two different-sized training sets: ‘Base-SMALL’

(5 million words) and ‘Base-LARGE’ (50 million words) as described in the previous sec-

tion. Both systems use a 5-gram language model with Kneser-Ney discounting (Kneser

and Ney, 1995; Goodman, 2001) built using 250 million words from the English Giga-

Word Corpus. Table 4.1 presents the BLEU scores (Papineni etal., 2002) for both systems

on the NIST 2005 MT Evaluation test set.

System BLEU Score
Base-SMALL 40.08
Base-LARGE 44.18

Table 4.1: Baseline systems’ BLEU scores

Note that these scores (especially the latter) are indicative of quite good quality sys-

tems already.

4http://www.fjoch.com/GIZA++.html
5http://www.statmt.org/moses/.
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Baseline vs. Supertags on Small Data Sets

We compared the translation quality of the baseline systemswith the LTAG and CCG

supertags systems (LTAG-SMALL and CCG-SMALL). The resultsare given in Table 4.2.

System BLEU Score
Base-SMALL 40.08

LTAG-SMALL 42.52
CCG-SMALL 41.74

Table 4.2: LTAG and CCG systems on small data

All systems were trained on the same parallel data. The LTAG supertag-based system

outperforms the baseline by 2.44 BLEU points absolute (or 6.1% relative), while the

CCG supertag-based system scores 1.66 BLEU points over the baseline (4.1% relative).

These statistically significant improvements (using bootstrap resampling (Koehn, 2004b))

indicate that the rich information in supertags helps select better translation candidates.

POS Tags vs. Supertags

A supertag is a complex tag that localizes the dependency andthe syntactic information

from the context, whereas a normal POS tag just describes thegeneral syntactic category

of the word without further constraints. In this experimentwe compared the effect of

using supertags and POS tags on translation quality. As can be seen in Table 4.3, while

System BLEU Score
Base-SMALL 40.08

POS-SMALL 40.73
LTAG-SMALL 42.52

Table 4.3: Comparing the effect of supertags and POS tags

the POS tags help (by 0.65 BLEU points, or 1.7% relative increase over the baseline),

they clearly underperform compared to the supertag model (by 4.4% relative).
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The Usefulness of a Supertagged LM

In these experiments we studied the effect of the two added feature (cost) functions: su-

pertagged translation and language models. We compared thebaseline system to the

supertags system with the supertag phrase-table probability but without the supertag LM.

Table 4.4 shows the performance of the baseline system (Base-SMALL), the LTAG sys-

tem without supertagged language model (LTAG-TM-ONLY) andthe LTAG-SMALL

system with both supertagged language and translation models. The results presented

System BLEU Score
Base-SMALL 40.08

LTAG-TM-ONLY 41.46
LTAG-SMALL 42.52

Table 4.4: The effect of supertagged components

in Table 4.4 indicate that the improvement is due to a shared contribution between the

supertagged translation and language models: adding the LTAG TM improves the BLEU

score by 1.38 points (3.45% relative) over the baseline, with the LTAG LM improving

BLEU score by a further 1.06 points (a further 2.65% increase).

Scalability: Larger Training Corpora

Outperforming a Phrase-based SMT system on small amounts oftraining data is less

impressive than doing so on really large data sets. The issues here concern scalability

as well as the question as to whether the Phrase-based SMT system is able to bridge the

performance gap with the supertagged system when reasonably large sizes of training

data are used. To this end, we trained the systems on 2 millionsentences of parallel

data, deploying LTAG supertags and CCG supertags. Table 4.5presents the comparison

between these systems and the baseline trained on the same data. The LTAG system

improves by 1.82 BLEU points (4.1% relative), but the CCG system gives an even larger

increase: 1.91 BLEU points (4.3% relative). While the relative improvement score for

CCG is a little higher than with the smaller data set, for LTAGit is slightly lower (6.1%
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on the smaller data set). Nonetheless, the fact that sustained increases are to be found at all

is probably due to observing more data with different supertag contexts, which enables

the models to select better target language phrases. The difference between the LTAG

system and the CCG system is statistically insignificant.

System BLEU Score
Base-LARGE 44.18

LTAG-LARGE 46.00
CCG-LARGE 46.09

Table 4.5: Performance on large training data

Adding a grammaticality factor

As described in Section 4.5.2, we integrate a grammaticality factor based on two standard

CCG combination operations, namely Forward and Backward Application, and Forward

Composition. Table 4.6 compares the results of the baseline, the CCG with ann-gram

LM-only system (CCG-LARGE) and CCG-LARGE with this ‘grammaticalized’ LM sys-

tem (CCG-LARGE-GRAM). We see that bringing the grammaticality tests to bear on the

supertagged system gives a further improvement of 0.79 BLEUpoints, a 1.7% relative

increase, culminating in an overall increase of 2.7 BLEU points, or a 6.1% relative im-

provement over the baseline system.

System BLEU Score
Base-LARGE 44.18

CCG-LARGE 46.09
CCG-LARGE-GRAM 46.88

Table 4.6: CCG with grammaticality factor (CCG-LARGE-GRAM)

Combining LTAG and CCG Supertags

A natural question to ask is whether LTAG and CCG supertags are playing similar (over-

lapping, or conflicting) roles in practice. Using an oracle to choose the best output of

the two systems gives an average per-sentence BLEU score of 44.1, indicating that the
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System BLEU Score
CCG-Large 41.03

LTAG-Large 40.87
LTAG-CCG-Oracle 44.10

Table 4.7: Sentence average BLEU score for CCG, LTAG and oracle
with both

combination provides significant room for improvement (cf.Table 4.7). However, our

efforts to build a system that benefits from the combination did not give any significant

performance change. We investigated two issues that might lead to this: the interpolation

mechanism, and the conflict between LTAG and CCG constraints.

We tried different ways of interpolating LTAG and CCG models; the LTAG-CCG

system in Table 4.8 uses log-linear interpolation while LTAG-CCG2 uses additive inter-

polation by averaging both LTAG and CCG scores before interpolating with other systems

components. Both systems results fall below that of the baseline system. System LTAG-

CCG3 deploys both a CCG language model and a CCG translation model, but it uses

only the LTAG translation model. The score of LTAG-CCG3 is somewhat better than the

baseline, but remains lower than both the LTAG and CCG scoreswhen deployed sepa-

rately. Obviously, more sophisticated ways of combining the two could result in better

performance than a simple interpolation of the components.

System BLEU Score
Base-LARGE 44.18

LTAG-LARGE 46.00
CCG-LARGE 46.09
LTAG-CCG 41.81
LTAG-CCG2 42.86
LTAG-CCG3 44.93

Table 4.8: Sentence average BLEU score for CCG, LTAG and oracle
with both

Conflicts between LTAG and CCG constraints may lead to such effect, given the need

to satisfy different, and possibly contradicting constraints. In any case, this experiment

indicates that combining constraints from different grammatical formalisms should be
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done with care. Figure 4.5 demonstrates an example where LTAG and CCG outputs

contradict. Both the LTAG and CCG systems preferredauthorities reported thatrather

than the baselinethe authorities that, but the LTAG and CCG constraints conflict on the

subphraseallowed ... family ... This may have resulted from obtaining bad subphrases

when combining both approaches.

Source:: �èPAJ
�Ë� 	áÓ é�JÊ K� A« X�Q 	̄ AK. ' A �J
 	®�KAë ÈA���BAK. éË �IjÖÞ� A �î 	E � �HA¢Ê�Ë� �HXA 	̄ �ðA�îD
	̄ 	àA¿ ú
 �æË � �éj 	®�ÖÏ �
Reference: The authorities said he was allowed to contact family members by phone
from the armored vehicle he was in.

Baseline: the authorities that it had allowed him to communicate by phone with his
family of the armored car where

LTAG : authorities reported that it had allowed him to contact by telephone with his
family of armored car where

CCG: authorities reported that it had enabled him to communicateby phone his family
members of the armored car where

LTAG+CCG : authorities reported that it had allowed him by telephone contact his
family of the car of armored personnel where

Figure 4.5: Conflict of CCG and LTAG when combined

Systems Output Analysis

In order to acquire a deeper insight into the effect of the supertag components on system

output, as well as where they might not help, we conducted a manual analysis of a subset

of the system’s output against the baseline and reference translations. To select interesting

cases, we employed a threshold (20 BLEU points) as the minimal difference between the

sentence-level BLEU score of the CCG-LARGE system and that of the Base-LARGE sys-

tem. There are only 41 cases where (Base-LARGE− CCG-LARGE)≥ 20. From the 76

cases where (CCG-LARGE− Base-LARGE)≥ 20 we randomly sampled 50 sentences.

We inspected both sets of cases manually against the reference translation, with the aim

of finding an explanation as to why supertags improved over the baseline and vice versa.

Naturally we tried to find a mutually exclusive classification of the test cases. Where this

was not possible we employ a general bucket called “Other reasons”.
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N=50 test sentences
Reason # %
Inserting verb omitted by baseline 11 22%
Better reordering 11 22%
Better word/phrase selection 5 10%
Other reasons 23 46%

Table 4.9: How CCG improves over baseline

Table 4.9 exhibits the reasons for improved output for the CCG-based system over

the baseline system. Only 22% of the cases are due to improvedreordering, mainly

verb/subject and noun/adjective, as illustrated in Figure4.6. The CCG system correctly

includes a verb which was omitted by the baseline system in 22% of cases; this concerns

verbs such assaid, concluded, is, signed, etc., as shown in Figure 4.7.

Source:: A �	£ñjÊÓ 'A �ÓY�®�K �HYîD�� �éJ
 	J�
�Ë� - �éJ
�ðQË� �HA�̄CªË� 	à� 	¬ñ	KA 	®K
� ÈA�̄ , éJ. 	KAg. 	áÓ�éJ
 	�AÖÏ � � � �ñ«B� ÈC 	g
Reference: For his part, Ivanov said that Sino-Russian relations have undergone marked

progress in recent years.
Baseline: For his part , said Ivanov that russian-chinese relations witnessed a remark-
able progress during the past years .

CCG: For his part , Ivanov said that russian-chinese relations witnessed a remarkable
progress during the past years .

Figure 4.6: Improved Reordering in the CCG system

Source:: ©�ð� ��J
�®j�JË � �YJ
êÖ �ß �PAÓ ú
 	̄ èA 	ªË � é 	JºË QK
�Q�. 	̄ ú
 	̄ A�J
Ê 	g�X A ��®J
�®m��' 	àA 	J« ø �Qk. �ðÉ�®�J�Óð
Reference: Annan opened an internal investigation in February but cancelled it in
March in preparation for a broader, independent investigation.

Baseline: Annan was to internally in February but abolished in March asa prelude to
broader and independent .

CCG: Annan conducted an internal inquiry in February but abolished in March in
preparation for broader and independent .

Figure 4.7: Overcoming missing verbs in the CCG system

Omitting verbs turns out to be a problem for the baseline system (see Figure 4.8). Both

supertagged systems have a more grammatically strict language model than a standard
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word-level Markov model, and so exhibit a preference (in theCCG system especially) for

the insertion of a verb with a similar meaning to that contained in the reference sentence.

We think that the improvement of restoring omitted verbs is due to the fact that verbs have

rich supertag structures that encode full syntactic information and therefore can directly

influence the system to opt for a more syntactic output.

Source: �éJ
ÖÏ AªË � �èPAj. �JË � �éÒ 	¢	JÓ PðX ú
Î« 	àAJ. 	KAm.Ì '� Y» �ð
Reference: The two sides highlighted the role of the World Trade Organization
Baseline:The two sides on the role of the World Trade Organization ( WTO)
LTAG : The two sides on the role of the World Trade Organization
CCG: The two parties reaffirmed the role of the World Trade Organization

Figure 4.8: Baseline system omits verbs while supertags system can pro-
duce them

Apart from improvements with these verbs, the CCG system achieves better output

due to improved word/phrase selection in about 10% of cases.In a large number (48%)

of cases, the CCG system improvement is accounted for by a number of reasons, e.g.

selecting the correct form of verb (cf. Figure 4.9, where we see ‘killed’ vs. ‘killing’,

among other improvements), restoring negation (cf. Figure4.11), improved grammatical-

ity (cf. Figure 4.12), and a variety of other reasons (cf. Figure 4.10). Although restoring

the negation may not be the direct effect of supertags unlikethe case with restoring verb

since the negations do not have rich supertag structures, wethink that such improvements

are due to the fact that we are using a log-linear model with a variety of features; A small

change in the cost of any of these features may influence the system to produce a better

translation.

Table 4.10 shows the reasons as to why the baseline system gives improved output

compared to the CCG-based system. In 14.6% of cases, the output of the CCG system

reads better than the baseline and conveys the correct meaning, yet the baseline matches

the reference translation more closely. Another 12.1% of the cases concern long NPs and

PPs for which supertaggers do not offer a good treatment; CCGtends to prefer briefer

translations in such cases. In another 7.3% of instances, the CCG system inserts extra
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Source:: �éªK. P� ú
Í �ñk hð 	Q 	Kð É�̄B� ú �Î« �	m��� 	àñJ
ÊÓ 1.5 É�J �®Ó 	á« ¨� 	Q	�Ë � Q 	®��ð�	m��� 	á�
K
CÓ
Reference: This dispute has killed at least 1.5 million people and displaced approxi-
mately four million people.

Baseline:The conflict on the 1.5 killing of at least a million people andthe displacement
of some four million people .

CCG: The conflict killed at least 1.5 million people and the displacement of about four
million people .

Figure 4.9: Improved Verb Forms in the CCG system

Source: .2003 ñK
AÓ / PAK
� 	Y 	JÓ ÉJ
�J�̄ �éJÓ� 	áÓ Q��» �  ñ�®� 	á« �H�Z�Y�J«BA è 	Yë �HQ 	®�� �ð
Reference: These attacks have resulted in over 100 deaths since May 2003.
Baseline: In the attacks left more than 2003 people killed since May .
CCG: Resulted in these attacks on more than one hundred deaths since May 2003 .

Figure 4.10: Improved translation in general in the CCG system

Source: ÉJ
K� � �Qå�B 	áÓB� Q 	̄ñ�K 	áË �HA	J£ñ�J�ÖÏ �ð P�Ym.Ì'� :�AJ.« XñÒm×
Reference: Mahmoud Abbas: The Wall And Settlements Will Not Bring Israel Security
Baseline:Mahmoud Abbas , the wall and settlements will provide security to Israel
CCG: Mahmoud Abbas : the wall and settlements will not provide security for Israel

Figure 4.11: Restored negation in the CCG system

Source: ú
 	̄ �é 	̄ Aj�Ë� �éK
Qk Èñk H. Q 	ªÖÏ � ú
 	̄ XAg ÈYg. PðYK
 ( H. 	¬ �) 14-1  AK. QË �ÉJ
 	k�YÓ Y�®�J 	��K �HBA�®Ó Qå�� 	� YªK. A�J
�	m��� �XA�Ë� YÒm× ½ÊÖÏ � �Ö �ß ú
 �æË � ©J
 	��ñÖÏ AK. ��Êª�JK
 A �Óé�KA£A ��	�ð ú
G. Q 	ªÖÏ � ÉëAªË�
Reference: Rabat 1-14 (AFP) - A sharp debate is raging in Morocco on the freedom of
the press with regard to matters connected personally to King Mohamed VI following
the publication of articles criticizing the Moroccan monarch’s income and activities.

Baseline:Rabat 14-1 ( afp ) - was a sharp controversy in morocco on pressfreedom in
terms of topics affecting king Mohamed VI himself after publishing articles critical of
the revenues of the moroccan .

CCG: Rabat 14-1 ( afp ) - a sharp controversy in Morocco on press freedom in respect of
topics affecting king Mohamed VI personally after the publication of articles criticizing
the moroccan monarch revenues.

Figure 4.12: Better syntactic modelling in the CCG system
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function words (e.g. “of”, “that”, “which”) which are not available in the reference trans-

lation. In another 7.3% of the cases, the CCG supertagger wasconfronted with an Out-

Of-Vocabulary item which lead to a deterioration in supertagging output. Verb confusion

(5.1%), where one verb is nested under another (e.g. “said” and “returned” in “He said

that life has almost returned to normal”), also constitutesa problem for the CCG-based

system, as it tries simultaneously to satisfy the argument specifications of both verbs,

which are often incompatible.

N=41 test sentences
Reason # ≈%
Better CCG output that matches less with reference 6 14.6%
Long NPs and PPs 5 12.1%
CCG wrongly inserting function words 3 7.3%
Supertagger facing OOV 3 7.3%
Verb-confusion 2 5.1%
Other reasons 22 53.6%

Table 4.10: How Baseline improves over CCG

In general we observed that supertagging seems to help most when the baseline system

already has reasonable alternative translations; where supertagging improves the selection

of a better translation. Whenever the baseline system formsa bad starting point (mostly

when translation involves many short phrases), the CCG supertags do not help much; in

fact, the CCG supertags may even lead to slightly worse output than the baseline in such

cases. This analysis is not surprising for two reasons. Firstly, supertags offer a syntactic

improvement over the baseline system mainly with regard to the grammaticality of the

output via constructing‘almost parsing’. Secondly, when the input sentence consists

of unseen combinations of words/phrases relative to the training data, the phrase-based

systems perform the translation using the smallest phrasesfound in the training data (in

the worst-case, word-to-word translation). In this case, the supertagged Phrase-based

SMT helps a little as the translation candidates are not goodenough to construct‘almost

parsing’. It might be helpful to use an approach based on the confidencescore of the

baseline system such that we may be able to decide when a syntatctic model should be
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used or not.

While on average our system selects more grammatical outputthan the baseline, it is

still limited to the same set of hypothesis translations that can be built by the standard

reordering mechanism used in the baseline system. Nonetheless, in last year’s IWSLT-07

evaluation, it was encouraging that our supertags-based Arabic–English system described

in (Hassan et al., 2007a) was ranked first by some margin in thehuman evaluation, despite

this clear advantage of more fluent output not carrying over to the automatic evaluation

scores.

4.6.2 German–to–English

In order to examine the applicability of our method to other language pairs, we carried out

a number of experiments on German–to–English. The data usedwas that of the shared

task of the ACL 2007 MT Workshop (WMT 2007),6 comprising over 1 million sentence

pairs of Europarl (Koehn, 2005) and (much smaller, about 1 million words) news com-

mentary data, giving a total of around 22 million words for each language.

The language models (bothn-gram and supertag-based) were trained on the 39 million

words of English monolingual data. The standard setup for the workshop was used to

build the baseline system, and we built a CCG supertags system in the same manner as

described in section 4.5. We used devset2006 (2000 sentences) for parameter tuning using

Minimum Error Rate Training (MERT) (cf. section 2.4.4), andTestset-2006 for testing.

Each of the test sets was composed of 2000 sentences.

The results are contained in Table 4.11:

System BLEU Score
Baseline 27.07

CCG Supertags 27.55
Baseline (w/o Brevity Penalty) 27.34

CCG Supertags (w/o Brevity Penalty) 29.47

Table 4.11: CCG Supertags System for German–English

6http://www.statmt.org/wmt07/shared-task.html
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Here we can see that the CCG supertags system improves on the baseline by 0.48

BLEU points, a 1.77% relative increase in performance. While at first glance this result

might be seen as disappointing compared to the Arabic–English scores, there are a number

of explanations for the relative discrepancies.

Firstly, for Arabic–English there were 4 reference translations for the MT05 testset

against which the output sentences were evaluated, whereasfor German–English, there

exists just a single reference.

Secondly, the translation output from the CCG supertags system tends to be shorter

in sentence length than the single reference and so is highlypenalized by the brevity

penalty in the BLEU metric (cf. Section 2.7). This can be seenby the final row of

results in Table 4.11, where we observe an increase in BLEU score of 2.4 points, an 8.9%

relative improvement, compared to the baseline performance, when the negative effects

of the brevity penalty are disregarded.7 In this light, an improvement of around 0.5 BLEU

points, even taking into account the effect of the brevity penalty, is a good improvement

for a single reference testset for any language pair.

Figure 4.13 provides a good example of the sorts of improvements which a supertag-

enriched model of translation provides compared to a baseline Phrase-based SMT system.

The supertagged model provided enhancements with respect to treatment of negation,

reordering, better verb treatment and overall a more syntactic translation. The baseline

wrongly omits “not”, and does not capture the collocation “Mann report”. It can be seen

that the CCG system generates good verb strings (“is being completely forgotten”), and

in general provides more fluent and intelligible output, even on this 49-word German

sentence.

Figure 4.14 shows that just like for Arabic–English (cf. Figure 4.7), the tendency

for SMT systems to omit verbs in translation is overcome whensupertags are deployed.

Firstly we see that “is to be” is correctly inserted in the subordinate clause, and also that

in the relative clause, “which does not belong” appears to render the translation perfectly

7The baseline score has not been much affected by the brevity penalty as the translation is slightly
shorter than the reference.
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Source: Ich habe nicht f̈ur den Bericht Mann gestimmt, denn bei allem tatsächlich
notwendigen Streben nach Gleichbehandlung in Beschäftigung und Beruf braucht
deswegen noch nicht im̈Ubereifer so weit gegangen zu werden, dass der Schutz der
Freiheiten und die Achtung des Rechtsstaates dabei völlig in Vergessenheit geraten.

Reference: I have not voted for the Mann report because, while it is indeed necessary
to seek equal treatment for people in employment and occupation, it is also necessary
to refrain from pushing zeal to the point of abandoning all protection of freedoms and
all respect for the rule of law.

Baseline: I have voted in favour of the report because , in particular , man is actually
needed quest for equal treatment in employment and occupation is therefore not yet in
excess of zeal went so far as to say , the protection of freedoms and respect for the rule
of law is completely forgotten .

CCG: I have not voted for the Mann report because , in fact , with allthe necessary
search for equal treatment in employment and occupation is therefore not yet gone so
far in excess of zeal , that the protection of freedoms and respect for the rule of law is
being completely forgotten .

Figure 4.13: Improved performance of the CCG system for German–
English.

intelligible. Note, of course, that this latter improvement does not perfectly match the

reference, so will not receive the full benefit when it comes to an increase in BLEU score,

despite being a perfectly acceptable translation.

Source: Wenn die Richtlinie annehmbar und durchführbar sein soll, darf sie nicht mit
Literatur und Wunschdenkenüberlastet werden, die in einem legislativen Text nichts zu
suchen haben.

Reference: If the directive is to be adopted and implemented, it must notbe encumbered
with a literary approach and wishful thinking, which have noplace in a legal document.

Baseline: If the directive acceptable and is going to be possible , it must not be over-
loaded with literature and wishful thinking , not in a legislative text .

CCG: If the directive is to be reasonable and workable , it must notbe overloaded with
literature and wishful thinking , which does not belong in a legislative text .

Figure 4.14: Overcoming missing verbs in the CCG system for German–
English

4.7 Conclusions and Open Questions

SMT practitioners have on the whole found it difficult to integrate syntax into their sys-

tems mainly because of the mismatch between the notions of anSMT phrase and a con-
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stituent in mainstream linguistics. The main difficulty lies in devising some syntactic

structure that fits with phrases but does not admit (much) redundant ambiguity into the

phrase translation table. Such redundancy leads to even larger tables, more complex prob-

ability models and less efficient decoding.

In this chapter, we have presented a novel model of Phrase-based SMT which inte-

grates linguistic lexical descriptions, supertags, into the target language model and the

target side of the translation model. Supertags fit seamlessly with Phrase-based SMT as

they are lexical, linguistically rich and can be used in efficient Hidden Markov Models

(Rabiner, 1989) as well as full parsing models. However, currently there are only a few

languages for which supertag-sets and supertaggers exist,which limits the current appli-

cability of our model to translation to such languages.

We believe that our use of supertags in the experiments conducted in this chapter ex-

emplifies the importance of lexical syntactic information such as subcategorization frames

for improved translation output. Much of this lexical information can be acquired without

the need for full parsing or treebanking.

We have carried out extensive experiments on small and very large training and test

sets for Arabic–English translation. While using LTAG supertags gives the best improve-

ment over a state-of-the-art Phrase-based SMT system for the smaller data set, using CCG

supertags works best on the large training set. Adding grammaticality factors based on

algebraic compositional operators gives the best result, namely 46.88 BLEU, or a 6.1%

relative increase over the baseline. This result compares very favourably with the best

systems on the NIST 2005 Arabic–English task.

The experiments on very large training data are important because they provide evi-

dence that ever increasing amounts of data (and correspondingly larger phrase-translation

tables) will not bridge the performance gap with a system that incorporates syntactic in-

formation about phrase combination/ordering.

In addition, we demonstrated the applicability of our approach to another language

pair, namely German–English. Our CCG supertags model improves over the baseline
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Phrase-based SMT system by 0.48 BLEU points, a 1.77% relative increase. This is a

satisfactory improvement when one takes into account that only one reference translation

was available for this 2000-sentence testset. Nonetheless, when the severe effect of the

BLEU brevity penalty is disregarded, we observed an increase in BLEU score of 2.4

points, an 8.9% relative improvement, compared to the baseline performance.

In this chapter we showed that integrating lexical syntax inthe translation model and

language model of a Phrase-based SMT system have caused translation quality to im-

prove. We showed that a supertagged translation model provided improvements on its

own, and more improvement was observed when used with the supertagged language

model. Our analysis of the translation output showed that a very wide range of improve-

ments were brought about by the use of a supertags-based system, including improved

reordering, overcoming the tendency of SMT systems to omit verbs, improved verbal

constructions, proper handling of negation, and well-formed syntactic output in general.

In this regard, we noted that in a recent large-scale open evaluation, the output from our

Arabic–English supertags-based system (Hassan et al., 2007a) was preferred by human

evaluators, although given the remaining differences between the output and the reference

translations, this does not always result in improvements in BLEU score.

Having addressed the question as to wheather lexical syntaxcan be of use in Phrase-

based SMT; we now move our attention to the related questionsof whether lexical syntax

can provide Phrase-based SMT with full parsing capability and whether this is needed

by Phrase-based SMT systems. We will try to answer these questions in the next two

chapters.
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Chapter 5

Incremental Dependency-based

Language Modeling

5.1 Introduction

In Chapter 4, we described our supertagged Phrase-based SMTmodel which integrated a

supertagged translation model and ann-gram supertagged language model into a baseline

Phrase-based SMT system; this integration significantly improved the translation accu-

racy. Perhaps surprisingly, we also showed that adding simple heuristic grammaticality

measures can further improve the translation accuracy. This unexpected improvement

highlighted a drawback of supertagged language models; there is no guarantee that the

sequence of proposed supertagged phrases constitutes a valid syntactic constituent. An-

other more serious, though expected, drawback is that supertagged language models can-

not handle long-range dependencies. In this chapter, we introduce a solution for those

problems: an incremental dependency-based language modelthat enables the seamless

integration of incremental dependency parsing into Phrase-based SMT systems.

In this chapter, we introduce a novel Incremental Dependency-based Language Model

(IDLM) using CCG incremental parsing. In Chapter 6, we will show how our proposed

IDLM is integrated into the SMT model.
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5.2 Incremental Dependency-based Language Model for

MT

5.2.1 From Supertagged to Dependency-based Language Models

Lexical syntax deploys rich syntax descriptions —supertags— that match individual words,

and a limited set of Combinatory Operators which are used to combine supertags into a

set of constituents/parses. The supertagging language model replaces the set of Combi-

natory Operators with ann-gram language model over the sequence of supertags (thus

‘almost parsing’). Originally, ‘almost parsing’had been proposed for handling monolin-

gual strings, where the given sequence of words already constructs a presumed syntactic

structure (Bangalore and Joshi, 1999). In the bilingual —MT— case, the sequence of

candidate target words might not construct a valid syntactic structure nor a compelling

sequence of associated supertags; therefore, achieving‘almost parsing’by deploying a

supertaggedn-gram language model on the huge space of hypotheses, representing the

candidate translations, is more challenging in the MT case than in the monolingual pars-

ing case.

We argue that the MT case needs a more sophisticated mechanism that can satisfy

three important aspects. First, it needs to efficiently support long-range dependencies

and construct full parse structures such that it would enable the MT system to distin-

guish between different translation candidates based on their role in constructing the

parse structure and satisfying the syntactic dependencies. Second, as is widely known,

Phrase-based SMT systems produce the translation candidates incrementally by process-

ing source words from left-to-right in a Markov fashion; therefore, this mechanism should

work in an incremental manner. Third, the mechanism should be computationally efficient

such that it can be integrated into large-scale Phrase-based SMT systems.

In this chapter, we introduce an incremental dependency-based language model which

deploys CCG incremental parsing mechanism to construct theparsing structure step-by-

step, where each step represents the accumulation of parsing decisions as the parserincre-
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mentallyconsumes the input word-by-word from left-to-right. The proposed dependency-

based language model complies with the Markovian nature of Phrase-based SMT de-

coders; therefore, it has the potential to be integrated seamlessly with such systems. Fur-

thermore, it is based on a deterministic parsing approach, i.e. it maintains a limited num-

ber of parse decisions at each parsing step which makes it very efficient computationally.

In the next section we will briefly introduce our proposed Incremental Dependency-based

Language Model (IDLM).

5.2.2 IDLM Overview

An incremental model of syntax and semantics construction was proposed in (Milward,

1994a). In this model the syntactic process is represented by a sequence of transitions

between adjacent syntactic/semantic states. The syntactic representation is built step-by-

step, hence incremental, from left-to-right while traversing the input string as shown in

(5.1). The syntactic state contains all the dependency information about fragments that

have already been processed so far. The parser produces fully connected intermediate

structuresincrementallywhile moving from one word to the next. As (Milward, 1994a)

indicated the model can be seen as a Markov model with an unbounded number of states

(in principle).

S0
w1

//S1
w2

//S2 Sn−1
wn

//Sn (5.1)

Before we go further in describing our proposed IDLM, let us first clarify some no-

tions regarding incremental parsing, left-to-right parsing and lookahead. Incremental de-

pendency parsing is the process of constructing the dependency graph step-by-step, so

that at each step the constructed partial graph is never altered or revised in any later step.

On the other hand, the construction of the incremental dependency graph does not have

to be strictly left-to-right. In fact, it can be left-to-right, right-to-left or even bidirectional
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as long as the incrementality condition mentioned above is maintained. Moreover, in-

cremental parsers may have access only to a fixed, limited window of lookahead words.

In other words, an incremental parser may delay decisions but may not delay decisions

indefinitely, i.e. requiring lookahead for the whole sentence. Incremental parsers without

lookahead information decide what is the next expansion to the dependency graph without

access to any words to the right of the current word. By contrast, parsers with lookahead

have access to a limited number of words to the right of the current word. As a matter

of fact, the lookahead is equivalent to buffering a number ofwords before processing

them; as stated by (Marcus et al., 1983), a deterministic parser can buffer and examine

a small number of words before adding them to the existing structure. Based on these

definitions, we call an incremental, left-to-right parser without lookahead information a

fully incremental parser, while we call an incremental left-to-right parser with limited

lookahead capability aweakly incremental parser. It is worth noting that fully incremen-

tal parsers are cognitively plausible (Marslen-Wilson, 1973; Sturt and Lombardo, 2004),

while weakly incremental parsers can serve well for syntax-based language modeling

where a context of the word is usually provided for scoring.

Our IDLM is an embodiment of the theoretical representationoutlined above, where

we use an incremental parser based on CCG as the grammatical representation of the

syntactic/semantic states and the transition actions thatlead from a state to another.

As shown in (5.2), each wordwi is associated with a lexical syntactic/semantic de-

scriptorsti. At each transition, a parsing actionoi is associated with that transition, which

transforms the current parse-stateSi to the next stateSi+1 which in turn represents a new

partial syntactic derivation. When the last word is encountered, a final stateSn represents

the final syntactic structure for the given sequence of words. Such a sequence of parsing

actions constructs the parsing derivation step-by-step.

S0
o1

w1,st1
//S1

o2

w2,st2
//S2 Si

oi

wi,sti
//Si+1 Sn (5.2)
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We use incremental CCG as our grammatical representation such that the lexical de-

scriptorsti is represented by a CCG supertag, and the parsing actionoi is represented by

a CCG Combinatory Operator with the stateSi being a composite CCG category. Each

stateSi is determined exactly by the previous stateSi−1 and a choice of a supertagsti and

an operatoroi. Therefore, the probabilityP (W, S) of a word sequenceW and associated

final parse-state sequenceS, which represents a possible derivation, can be described as

in Eqn (5.3):

P (W, S) =

n∏

i=1

Word Predictor
︷ ︸︸ ︷

P (wi|Wi−1Si−1) .

Supertagger
︷ ︸︸ ︷

P (sti|Wi) .

Operator Tagger
︷ ︸︸ ︷

P (oi|Wi, Si−1, STi) (5.3)

This probability represents the product of the production probabilities at each parse-state

and is similar to the structured language model representation in (Chelba, 2000):

• P (wi|Wi−1Si−1) is the probability ofwi given the previous sequence of wordsWi−1

and the previous sequence of statesSi−1.

• P (sti|Wi) is the lexical descriptor (supertagsti) probability given the word se-

quenceWi up to the current position. This is represented by a sequencetagger

(supertagger) in our CCG incremental parser.

• P (oi|Wi, Si−1, STi) represents the parsing action (operatoroi) probability given

the previous words, supertags and state sequences up to the current position. This

is represented by a sequence operator tagger in our CCG incremental parser.

It is worth noting that the proposed language model parser isdeterministic, in the

sense that it maintains a limited number of parse-states (only one here) that represent

possible parsing decisions at each word position. This characteristic is very important for

incorporating IDLM into large-scale MT systems due to its computational efficiency.

In this chapter we discuss in detail the our work introduced in (Hassan et al., 2008b).

In the remainder of this chapter, we will describe the mechanics of this incremental parser,
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while the deployment of IDLM in MT systems will be introducedin Chapter 6.

In Section 5.3, we will review the related work on syntax-based language models as

well as incremental parsing. In Section 5.4 we will introduce our incremental parsing

approach in detail. In Section 5.5, we will describe the transformation of the CCGbank

derivations into the incremental derivations needed for the incremental parser. In Sec-

tion 5.6, we will describe the implementation details of ourincremental parser. We will

present our parser evaluation in Section 5.7 and finally provide some discussion in Sec-

tion 5.8.

5.3 Related Work

Many psycholinguists have claimed that the meaning of a sentence can be obtained be-

fore all words in the utterance have been heard (e.g. (Marslen-Wilson, 1973; Sturt and

Lombardo, 2004)). Incrementality in parsing has also been proposed for real-time appli-

cations such as speech-to-speech translation, where analysis of the input utterance needs

to be updated on a regular basis. In this section, we will discuss the differences between

our proposed IDLM and the previously proposed syntactic language model approaches

(cf. Section 3.6). Then we will review related work introduced for incremental parsing

in general.

5.3.1 Syntax-based Language Models

In Section 3.6, we reviewed previous work that incorporatedsyntactic language mod-

els into speech recognition systems and MT systems such as (Chelba, 2000; Charniak,

2001; Roark, 2001; Wang et al., 2004; Xu et al., 2002; Collinset al., 2005). All these

approaches were evaluated only on small-scale speech recognition tasks. As for MT,

only (Charniak et al., 2003) integrated the model proposed in (Charniak, 2001) into a

syntax-based MT system (Yamada and Knight, 2001). All the previous approaches de-

pend on non-deterministic techniques to grow a huge number of partial derivations which
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is unmanageable for large-scale applications such as MT or speech recognition. This has

limited the usability of these approaches to very small tasks and/or re-ranking of system

output. Another major aspect is that the previous approaches deploy CFG or dependency

grammar that cannot handle non-constituent constructionsin Phrase-based SMT systems

(cf. Section 2.4).

Our proposed IDLM differs from this related work in four major respects:

• It is based on incremental parsing that seamlessly matches the incremental nature

of SMT decoders.

• It is deterministic, in the sense that it maintains a limitednumber of parse-states

that represent possible parsing decisions at each word position. This characteristic

is very important for incorporating IDLM into large-scale MT systems due to its

computational efficiency.

• The grammatical representation is based on CCG structures which enable the han-

dling of non-constituent constructions.

• The parser seeks out intermediate connected structures, unlike previous approaches

which deployed dependency relations or head words to enablesyntax-based proba-

bilities into the language model.

5.3.2 Incremental Parsing: Related Work

As we are using incremental parsing for our IDLM, we will review here the most relevant

work for incremental parsing. Most current parsers do not tackle the problem of sentence

analysis in an incremental fashion. State-of-the-art parsers such as (Collins, 1999) and

(Charniak, 2000) require the derivation of a packed parse forest via dynamic program-

ming, prior to a probabilistic disambiguation of the full sentence. As the packing of the

parse forest is largely non-deterministic, incrementality is not an option here.

In contrast, partial parsers such as (Abney, 1991) do not output a full sequence of con-

nected phrases, which causes the constraint of incrementality to fail for a quite different
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reason.

(Nivre, 2004) suggests that deterministic dependency parsing (e.g. (Yamada and Mat-

sumoto, 2003)) is an intermediate solution between full andpartial parsing, in that the

building of a full parse of the input string is the aim, while at the same time remaining

robust, efficient and deterministic.

(Nivre, 2004) describes an incremental approach to deterministic dependency parsing.

While strict incrementality was not possible using his framework, as far as well-formed

utterances are concerned, the degree of incrementality which is achievable approaches

90%.

(Ratnaparkhi, 1997) proposed a linear time model based on Maximum Entropy frame-

work to determine chunks and higher syntactic structures; however he used multiple

passes over the input string. Based on (Nivre, 2004) and (Ratnaparkhi, 1997), (Sagae and

Lavie, 2006) introduced a statistical shift-reduce parserthat uses a probabilistic frame-

work to determine the shift and reduce actions and keep multiple possible parse decisions

that are handled by a beam strategy.

(Shen and Joshi, 2005) use the term ‘semi-incremental’ to refer to parsers (both left-

corner (e.g. (Collins and Roark, 2004)) and head-corner (e.g. (Yamada and Matsumoto,

2003))) which permit multiple iterations of left-to-rightscans, rather than just one.

In contrast to these models, (Shen and Joshi, 2005) introduce an approach for fully in-

cremental parsing of spinal Lexicalized Tree Adjoining Grammar (LTAG), which supports

full adjunction, a dynamic treatment of coordination, as well as non-projective dependen-

cies. (Shen and Joshi, 2005) observe that their model of incremental parsing with LTAG is

very closely related to the supertagging approach of (Bangalore and Joshi, 1999), except

that while supertagging can be seen as a two-stage approach (supertagging and composi-

tion of the complete derivation via the elementary trees), they incorporate the supertagger

and dependency analyser dynamically in a similar way to (Bangalore, 2000). While the

work described in (Shen and Joshi, 2005) has much in common with the approach pro-

posed in this chapter, such as using supertagging and using classifications techniques to
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assign the parsing actions, there remain two significant differences that limit the capabil-

ity of using this parser in language modeling. Firstly, (Shen and Joshi, 2005) requires full

access to the sentence and thus may delay parsing decision indefinitely. Secondly, the

parser uses a stack of disconnected derivations to represent the left context similar to (Xu

et al., 2002), which further complicates its usage for language modeling.

Incremental parsing was applied to Categorial Grammar in (Milward, 1995) using a

state-transition (or dynamic) processing model, where each state consists of a syntactic

type together with an associated semantic value. In (Milward, 1994a), a generic approach

for dynamic syntax and incremental parsing is proposed based on an infinite state Markov

representation.

The model of incremental parsing for CCG that we propose hereis largely inspired

by ideas presented in (Milward, 1995), (Bangalore and Joshi, 1999) and (Bangalore,

2000), in that we use a state-transition model, based on an infinite state Markov represen-

tation, using CCG supertags and learning the parsing actions at each step. We describe

our approach in the next three sections, together with experiments demonstrating the ef-

fectiveness of this method.

5.4 Incremental Parsing for CCG

In this work, the incremental parsing process is represented by an infinite Markov model.

A parsing derivation is built step-by-step, where the wordsrepresent the transitions be-

tween states, and each state represents the partial parsingderivation constructed so far.

Furthermore, each state is associated with a composite CCG category such that the num-

ber of possible states is (in principle) unbounded. The complex CCG category defines the

required arguments at the current state, while the partial parsing derivation represents the

partial dependency interpretation constructed so far.

The incremental parsing process consists of the construction of such dependency

graphs in a step-by-step manner. At each state the partial dependency structure can be
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John likes Mary

GFED@ABCS0
// GFED@ABCS1

// GFED@ABCS2
// GFED@ABCS3

Cat1 Cat2 Cat3

S0
WVUTPQRSJohn

S1
WVUTPQRSJohn // WVUTPQRSlikes

S2
WVUTPQRSJohn // WVUTPQRSlikes _^]\XYZ[Maryoo

Figure 5.1: Illustration of the incremental parser representation and the
associated intermediate dependency graphs at each state.

represented as a directed graph with nodes representing words and arcs representing de-

pendency relations. Given a string of words, a sequence of partial interpretations and

associated dependency graphs can be established. When the last word in the sentence

has been processed, the graph represents the dependency structure of the whole sentence.

It is worth mentioning that the model presented here is not restricted to fully connected

graphs, i.e. during parsing, the proposed incremental parser can quite naturally handle

partially connected graphs.

Figure 5.1 illustrates the incremental parsing representation. At the initial stateS0, the

dependency graph is simply the node representing the first word “John” . The transition to

the next stateS1 is triggered by the verb“likes” , where the dependency graph associated

with stateS1 shows the realized dependency between“likes” and“John” . Finally the last

word triggers the final state, and the parser is able to construct the full dependency graph

which is associated with the last stateS3. Each state is associated with a complex CCG

category,Cat1, Cat2andCat3respectively.

The proposed approach deploys three modules in a cascade: (1) a statisticalSupertag-

ger, (2) a statisticalOperator tagger, and (3) a deterministicParsing State Realizer.

Figure 5.2 illustrates the operation of the cascaded architecture. First the supertagger

assigns a possible supertag sequence to the words, shown under the words. Second, the

operator tagger assigns a sequence of left-to-right operators, shown on the arrows’ heads,

which are able to satisfy the required dependency structure. Finally, the deterministic state
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John likes Mary

S0 NP (S\NP)/NP NP
> NOP

S1: NP
> TRFC

S2: S/NP
> FA

S3: S

Figure 5.2: A sentence and a possible supertag sequence, operator se-
quence and state sequence. NOP: No Operation; TRFC:
Type-Raise Forward Composition; FA: Forward Application.

realizer constructs the parse-states and the associated dependency graph incrementally,

using the two assigned sequences.

The supertagger and the operator tagger have to be trained onleft-to-right incremental

CCG derivations. In order to obtain such data, we transformed the CCGbank (Hocken-

maier and Steedman, 2007) from normal form derivations to strictly left-to-right deriva-

tions that can satisfy the dependencies in the CCGbank. The next section presents the

transformation technique that we developed to obtain the appropriate training data.

Figure 5.3-a illustrates the transformation and training phase of the incremental parser;

the CCGbank with associated dependency structures is transformed into two sequences

of supertags and operators. The supertags sequence is used to train a MaxEnt supertagger

and the operators sequence is used to train a MaxEnt operatortagger; this is described in

detail in Section 5.6.1.

Figure 5.3-b illustrates the runtime parsing operation of the incremental parser; the

supertagger and the operator tagger are used in a cascade to assign appropriate supertag

and operator sequences to the given sentence. Both supertagand operator sequences

are fed into the state realizer to construct the incrementalparsing and the corresponding

dependency graph step-by-step. This is described in detailin Section 5.6.2.

5.4.1 Merits of CCG for Incrementality?

We present a novel approach for wide-coverage incremental parsing based on CCG. As we

described in Chapter 3, there are currently two supertagging approaches: LTAG (Joshi and
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CCGBank

Transformation to 
Incremental representation

Supertags Operators

MaxEnt Framework

Supertagger
Operator 
Tagger

Sentence to parse

Supertagger

Operator 
Tagger

State Realizer

Dependency Structures

a b

Figure 5.3: Incremental Parser: a: Transformation & Training phase, b:
Parsing runtime phase.

Schabes, 1991) and CCG (Steedman, 2000). The two approacheshave more similarities

than differences (cf. Section 3.5); however, our proposed incremental parsing approach

deploys CCG for several reasons:

• CCG (Steedman, 2000) is a lexicalized grammatical theory where the CCG lexical

entries define syntactic categories which encode syntacticvalency and direction-

ality; these categories can be augmented by a semantic representation to provide

compositional semantics with a completely transparent interface between surface

syntax and logical semantics. Although in this thesis we focus on syntactic struc-

tures, CCG provides the possibility of expanding the proposed approach to a se-

mantic representation as well1.

• The CCG Combinatory Operators assemble lexical entries together into derivation-

trees; each partial or complete syntactic derivation corresponds directly to a struc-

ture. For example, strings such as“John likes” have a natural interpretation as

1cf. Chapter 3 for detailed discussion on the compositional semantics capability of CCG.
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constituents. (Doran and Bangalore, 1994) highlighted that the flexibility of CCG

derivations allows the handling of non-constituent constructions that LTAG cannot

handle, which is due to the fact that LTAG trees represent rigid structures while

CCG categories allow more flexibility in the derivation process. Unlike many other

linguistic theories, this flexibility gives CCG an advantage over other grammatical

formalisms in handling non-constituent constructions forboth incremental parsing

and Phrase based SMT with arbitrary phrase boundaries (cf. (Tillmann and Xia,

2003; Koehn, 2004a)).

• As highlighted in (Steedman, 2000), CCG can represent everyleftmost string as a

constituent even if it is not a syntactic constituent. This can enable any left branch-

ing (left-to-right) parser to work fully incrementally.

• A fully incremental dependency parser is only possible if the leftmost graph is fully

connected at each parse state, which has been highlighted in(Nivre, 2004). This

is only possible with grammars like CCG where the type raising and compositional

capabilities can be utilized to keep the graph connected even when not resolving a

dependency relation.

• CCG has a wide-coverage treebank available, the CCGbank (Hockenmaier and

Steedman, 2007).2 The CCGbank is a CCG transformation of the Penn Wall Street

Journal Treebank (Marcus et al., 1993); obtained by transforming the parse trees

into normal form derivations in CCG. The CCGbank provides a wide-coverage

CCG lexicon together with head-dependency annotations; therefore, it could be

used to obtain the data needed for our proposed incremental parser.

We present a linear-time, incremental CCG parser. Our approach (Section 5.4) is based

on a representation of parses as a sequence of parse-states,each representing the accu-

mulation of parsing decisions as the parser consumes the input word-by-word from left-

to-right. A parse-state is constructed by applying a CCG Combinatory Operator to the

2CCGbank is available through LDC, Catalog No.: LDC2005T13.
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I gave them advice

NP1 ((S\NP1)/NP2)/NP3 NP2 NP3

Figure 5.4: CCG dependency structure.

previous state and the supertag of the current word. The parser constructs, incrementally,

only a linear number of parse-states in sentence length. In the next section, we will define

the CCG dependency structure as it is used in this work.

5.4.2 CCG Dependency Structure

CCG dependency structures consist of a set of CCG predicate-argument relations defined

through the argument slots in the CCG lexical categories. Consider the sentence in Fig-

ure 5.4 where we see that the ditransitive verb has the category (((S\NP1)/NP2)/NP3)

which encodes the dependency information of this verb. However, the dependency re-

lations are established when a parsing derivation is constructed and the argument slots

are filled with the appropriate categories. In this example,the first slotNP1 of the verb

“gave” is filled with the subject“I” , the second slotNP2 is filled with the first object

“them” and finally the third slot is filled with the second object“advice” . Thus we can

interpret the dependency relations once the arguments are filled.

In this thesis, the CCG dependencies are used for two purposes. First, they are used

to control the transformation process of the CCGbank from normal form derivations into

incremental derivations. Second, they are used to evaluatethe overall performance of our

incremental parser by measuring how the parser can produce the dependencies.

5.5 Transforming the CCGbank into left-to-right Deriva-

tions

The main objective of the transformation process is to obtain training data annotated with

supertags as well as a sequence of left-to-right operators such that we are able to satisfy

the corresponding syntactic dependencies in the CCGbank.
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For each sentence in the CCGbank, we apply the following procedure:

• Initialize empty operator sequence and empty unsatisfied dependencies.

• For each word:

1. Add current dependencies to unsatisfied dependencies.

2. Check unsatisfied dependencies:

(a) If adjacent dependency with simple categories, then assign application

operators;

(b) If adjacent dependency with complex categories, then assigncomposition

operators;

(c) If long-range dependency, then applyType Raisingfollowed byForward

Composition.

3. Handle special cases, if any:

(a) Coordination cases (subsection 5.5.2),

(b) Apposition and interruption (subsection 5.5.3),

(c) WH-movement (subsection 5.5.4),

4. Update Current state,

5. Assign selected operator to the operator sequence.

6. Update the dependencies by removing satisfied dependencies.

This procedure deploys the dependencies available in the CCGbank in order to as-

sign the simplest possible operator sequence that is able tosatisfy, and reproduce, the

dependency structure of the sentence under investigation.

Figure 5.5 illustrates the transformation process, step-by-step, on a sentence of the

CCGbank. At the beginning of the process, we start with the words, the associated su-

pertags and the dependency relations, indicated by curved dotted arrows in the figure.
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The purpose of the transformation process is to induce the state sequence and the opera-

tor sequence. This operator sequence along with the supertag sequence should be able to

reproduce the given dependency relations.

The transformation process proceeds word-by-word, and at each word position we

check all previous and current unsatisfied dependencies. The transformation proceeds as

follows:

1. StateS1is an initial state; therefore, it will be associated with operatorNOP, which

performs no operation, and the state category will be equivalent to the current word

categoryNP/NP.

2. Moving to StateS2, we first check the current and previous dependencies. In this

case, there is a dependency between the word in first position, “Mr.” , and the word

at the current position“Warren” , shown by dotted arrows in the figure. As this

dependency relation is adjacent and in the forward direction then the OperatorFA

is associated with this transition and so the state is transferred toS2with category

NP.

3. Moving to StateS3is triggered by the word“will” , which has both backward and

forward dependencies. Therefore, the operatorTRFC (Type-Raise and Forward

Composition) is applied to fulfill the backward dependency and the potential for-

ward dependency as well.

4. Moving to StateS4 is triggered by the word“remain” which is linked with the

word “will” by a forward dependency relation; therefore, a Forward Composition

FC operator is assigned. The state becomes(S/PP), which indicates a requirement

for a prepositional phrase to the right.

5. Moving to StateS5 is triggered by the word“on” which is linked to the previous

verb“remain” and hence a Forward CompositionFC operator is assigned changing

the state to(S/NP). This state indicates a dependency that requires a noun phrase to

the right in order to be satisfied.
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6. Moving to StateS6is triggered by the word“the” which has neither backward nor

forward dependencies; however, it is linked through a chainof dependencies with

a future position which satisfies the current open dependency, the word“board” .

Therefore, we apply theTRFC operator to type-raise the current word to the re-

quired dependency category and then perform a forward composition.

7. Moving to StateS7 is triggered by the word“company” which has a forward de-

pendency with the previous position; therefore, theFA operator is applied.

8. Moving to StateS8 is triggered by the word“’s” which has adjacent forward and

backward dependencies; therefore the FC operator is applied. This changes the

state to(S/NP)which indicates that a noun phrase is required to satisfy theprevious

dependency.

9. Moving to StateS9 is triggered by the word“board” which is linked back to the

word “on” at stateS5. A simple FA operator is finally applied to construct the

complete sentence categoryS.

The above illustration shows how the CCGBank is transformed. We started with a

supertag sequence and a dependency graph, and ended with thecorresponding operator

and state sequences. However, the same procedure applies during parsing, i.e. if we have

the supertag sequence and the operator sequence then we can construct the incremental

states and the dependency graph step-by-step as we showed.

Certain more complex cases need special handling; therefore, we added some special

operators to handle them, namely for coordination, cases ofapposition and interruption,

and WH-movement. These new operators together with the other operators used in the

parser are described in the next section.

5.5.1 Incremental Combinatory Operators

Table 5.1 presents each operator used in our incremental parser, together with the percent-

age of its usage in the transformed CCGbank. It is clear that the simple, standard operators
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Operator Description Usage %
FA Forward Application 34.7
FC Forward Composition 24.4
NOP No Operation 16.1
BA Backward Application 13.1
TRFC Type Raising + Forward Composition 4.0
BC Backward Composition 2.8
COORD Coordination 2.4
INTR Interrupters 1.6
WHMV WH-movement 0.9

Table 5.1: Operators’ Utilization.

of CCG are much more widely used than the more complex operators introduced in our

method.

Our proposed set of Combinatory Operators are binary operators whose two argu-

ments are the previous state and the current supertag. When the operator is applied to its

two arguments, the result is the current state category. Forexample in (5.4), an operator

FA is applied toState2 andSupertag3 to produceState3.

Supertag1 Supertag2 Supertag3
State1 State2 State3

> FA

(5.4)

We extended the set of standard CCG operators reviewed in Section 3.4.1 with new

operators to handle various needs raised by the incrementalnature of the parser. In this

section, we will discuss in detail the newly introduced operators.

No Operation (NOP)

The operator(NOP)performs no operation on any two constituents, such that theresulting

state remains the same as the previous one.NOPis used at the initial position when com-

mencing the incremental parsing process, and is also used with some of the punctuation

marks that do not alter the parse-states or the dependencies.
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Type Raising Forward Composition (TRFC)

Type raising and forward composition act together to capture long-range right-side de-

pendencies. We designed the presented incremental parser to push forward the needed

dependencies by increasing the “eagerness” of the states’ categories. In other words, we

push the dependencies forward such that they are always represented by the current state

category. Our incremental parser achieves this eagerness by using Type Raising followed

by Forward Composition.

(Steedman, 2000) defines Type Raising as a unary rule and Forward Composition

as a binary combinatory rule. However, our incremental parser is restricted to binary

operators; therefore, we combined type raising and forwardcomposition in one operator

calledTRFC.

If a constituent with categoryX/Y is immediately preceded by a constituent with cat-

egoryZ such thatX/Y has a long-range dependency on the right side to a categoryY \Z,

Type Raising is used to raise the categoryZ to categoryY and then forward composition

is applied to push the required dependency forward.

Examples (5.5 and 5.6) show TRFC in action, where the subjectNP is type-raised to

S and then forward composed with(S\NP )/NP ) to compose(S/NP ).

X (Y\X)/Z
> TRFC

X/Z

(5.5)

He bought
NP (S\NP) /NP

> TRFC

S/NP

(5.6)
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5.5.2 Coordination

Coordination constructions occur in a significant number ofsentences in written text.

Cognitive studies (Sturt and Lombardo, 2004) have highlighted the fact that coordination

is an incremental operation; thus, we should be able to handle coordination efficiently

within the proposed incremental parsing approach. Unfortunately, the CCGbank uses

a simple category for coordinationconj instead of the more elaborate category(X\X)/X

which was originally defined for coordination in CCG (Steedman, 2000). The simple

conj operator is not efficient for incremental parsing, because it does not provide any

information on the coordinated elements. Therefore, we used the dependency informa-

tion to assign more elaborate coordination categories to the coordinator. For example,

if the coordination is performed on two noun phrases, the coordination category would

be (NP\NP)/NP. Furthermore, we have added a new coordination operator (COORD) to

handle these constructions in the Parsing State Realizer.

He plays football and tennis

S1 : NP (S\NP)/NP NP2 (NP1\NP2)/NP3 NP3
> TRFC

S2: S/NP
> FA

S3: S
> COORD

S4: S/NP
> FA

S5: S

Figure 5.6: Coordination Handling.

The example shown in Figure 5.6 illustrates the handling of coordination during pars-

ing. The conjunction “and” is associated with a supertag(NP1\NP2)/NP3 which indi-

cates a coordination between twoNPs.3 The left argumentNP2 will be satisfied with the

word “football” , while the right argument will be filled by the word“tennis” . This will

construct a coordinated constituentNP1 with the phrase“football and tennis”. During

parsing, at the transition fromS3 to S4 a coordination operator,COORD, is encountered,

which causes the current stateS4 to be a replica of stateS2 with structureS/NP, i.e.

expecting anNP to the right. In this way, the coordinated constituentNP3 “tennis” is

3The categories subscripts in all the examples are for illustration purposes only.
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expected on the right side to be coordinated with the previousNP “football” .

He plays football and listens to music

S1 : NP (S\NP)/NP NP2 ((S\NP)\(S\NP))/(S\NP) (S\NP)/PP) PP/NP NP
> TRFC

S2: S/NP
> FA

S3: S
> COORD

S4: NP
> TRFC

S5: S/PP
> FC

S6: S/NP
> FA

S7: S

Figure 5.7: VP Coordination Handling.

Another example shown in Figure 5.7 illustrates the handling of coordination for two

verb phrases (VP). In this example, the conjunction “and” isassociated with a more com-

plicated supertag((S\NP )\(S\NP ))/(S\NP ) which indicates a coordination between

two VPs. At the coordination stateS4, a coordination operator,COORD, performs the

coordination by producing a new state with structureNP, i.e. expecting aVP to the right.

In this way, the coordinatedVP constituent will be expected, just as the firstVP was

expected afterS1.

Although the representation presented above could theoretically support non-constituent

coordination (Milward, 1994b), the current implementation of our incremental parser does

not support that.

5.5.3 Apposition and Interruption

Neither the CCGbank nor the WSJ treebank distinguish between the appositive comma

and the coordination comma (Hockenmaier and Steedman, 2007). The comma mostly

has a single supertag in the CCGbank that does not indicate its actual role in the syntactic

structure. We adopted the syntactic patterns introduced in(Bayraktar et al., 1998) to

identify the different possible syntactic categories of the comma. Based on these syntactic

patterns, we enriched the supertags associated with the comma to indicate the correct

syntactic role for the coordination, apposition and interruption cases.
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The man , who plays tennis , likes football

S0 : NP/NP NP1 APSV (NP\NP)/(S\NP) (S\NP1)/NP NP APSV (S\NP)/NP NP
> FA

S1: NP
> INTR

S2: NULL
> NOP

S3: NP/(S\NP)
> FC

S4: NP/NP
> FA

S5: NP
> INTR

S6: NP
> TRFC

S7: S/NP
> FA

S8: S

Figure 5.8: Apposition Handling.

Furthermore, we have added a new supertag and a new operator for handling such

cases. The new supertag, APSV, is used for indicating apposition cases for commas and

some other punctuation marks, such as bracketing. The operator INTRhas been added to

handle both interruptions and apposition.

The example in Figure 5.8 illustrates the handling of apposition during parsing. The

parser consumes a noun phrase“The man” up to stateS1 then a comma withAPSVsu-

pertags and operatorINTR is encountered. The parser handles the apposition by moving

to aNULL stateS2 and storing the interrupted stateS1; then the apposition phrase“who

plays tennis”is consumed up to stateS6. At the transition fromS5 to S6, a second ap-

position comma is encountered, so the parser terminates theapposition states and moves

to S6 which is equivalent to the interrupted stateS1. In this way, parsing of the sentence

can continue from where it was interrupted; thus theNP “The man” will fill the subject

argument of the verb“likes” .

5.5.4 WH-movement

WH-movement is a syntactic phenomenon where a syntactic category is required on the

right but, having moved, is available only on the left. Consider the sentence in Figure 5.9,

the verb“sold” has the category(S\NP1)/NP2, i.e. it is a transitive verb, where if a

subjectNP1 is available to its left, and an objectNP2 to its right, a sentence will have been
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He bought what she sold

S0 : NP (S\NP)/NP NP/(S/NP) NP1 (S\NP1)/NP2
> TRFC

S1: S/NP
> FC

S2: S/(S/NP)
> TRFC

S3: S/((S/NP) \NP)
< WHMV

S4: S

Figure 5.9: WH-movement Handling.

formed. The required objectNP2 “what” has already moved to an appropriate position

somewhere to the left. Accordingly, we added a new operatorWHMV to handle such cases

of WH-movement in the incremental parsing framework. TheWHMV operator reverses

the direction of the arguments such that the parser seeks theobject of the verb“sold” to

the left instead of the right, such that a sentence is composed as shown in the example.

Having described the combinatory operators of our incremental parser, we will de-

scribe the parser’s components in the following section.

5.6 Implementation Details of the Incremental Parser

5.6.1 Supertagger and Operator tagger

The transformed data from the CCGbank was used to train two Maximum Entropy (Max-

Ent) classifiers: a supertagger, and an operator tagger. As shown in Eqn. (5.7), MaxEnt

classification associates a weightλi with each feature functionφi(Y, X). The weights are

estimated during training in order to maximize the likelihood of the training data. Max-

Ent can be used for sequence classification by converting theclassification scores into

probabilities and then using standard dynamic programming(Viterbi search). We train

our MaxEnt model using sequential conditional generalizediterative scaling (Goodman,

2002). This method is a simple variation of Generalized Iterative Scaling (Berger et al.,

1996), but converges faster by training the model parameters sequentially rather than si-

multaneously.
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Y ∗ = arg max
Y

P (Y |X) = 1/Z exp
∑

i

λiφi(Y, X) (5.7)

For the supertagger MaxEnt classifier, we use words and POS features with a window

of two words to the left and two words to the right of the current word (hence it is consid-

ered ‘weakly’ incremental). For the operator tagger, we do not use any lexical features,

but rather the POS and supertag features within the same window as the supertagger.

5.6.2 Parse-State Realizer

Theparse-state realizeris a deterministic module that deploys the sequences of supertags

and CCG incremental operators to realize the parse-states as well as the intermediate

dependency graphs between words. The state realizer carries out the CCG operations

incrementally and enables the special handling of coordination, apposition, interruption

and WH-movement as described above.

The parse-state realizer constructs the dependency graph step-by-step by constructing

intermediate dependency graphs word-by-word. The realizer performs the following steps

for each word starting from a null state at the first word:

• Apply the current operator to the previous state and the current supertag,

• Change the current state to the new resulting state,

• Add edges to the dependency graphs between words that were linked as CCG argu-

ments,

• Repeat until the last word has been processed.

Figure 5.10 illustrates the realizer operation along with the incrementally constructed

partial dependency graphs at each state. At the initial stateS1, the Null Operator (NOP) is

applied to the previous state, a Null state, and the current supertagNP; the resulting state
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John likes Mary

NP (S\NP )/NP NP

NOP TRFC FA
GFED@ABCS0

// GFED@ABCS1
// GFED@ABCS2

// GFED@ABCS3

NP S/NP S

S1
WVUTPQRSJohn

S2
WVUTPQRSJohn // WVUTPQRSlikes

S3
WVUTPQRSJohn // WVUTPQRSlikes _^]\XYZ[Maryoo

Figure 5.10: Illustration of the operation of the incremental parse-state
realizer and the associated intermediate dependency graphs
at each state.

is NP and the resulting dependency graph is simply the node representing the first word

John. The transition to the next stateS2 is triggered by the verblikes, where the operator

(TRFC) is applied to the previous state and the current supertag, resulting in a new state

S/NP, which indicates that a further NP is needed on the right to compose a complete

sentence structure. The dependency graph associated with stateS2 shows the realized

dependency betweenlikes andJohnwhich has resulted from the previous composition

operation. Finally the last word triggers the final state, and the realizer is able to construct

the full dependency graph associated with the last stateS3.

It is worth mentioning that the state realizer is the complement of the transformation

process described in Figure 5.5. If we have both the supertagand operator sequences,

then we are able to construct the state sequence and the corresponding dependency graph

accordingly.

5.7 Experiments and Results

This section details a number of experiments carried out to test the effectiveness of the

supertagger, the operator tagger, and our ability to capture the necessary dependencies
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Architecture Lookahead Search Dependency Supertagging Operator Incremental
Accuracy Accuracy Accuracy

Joint NO LOCAL 56.02 67.47 Incr.
NO GLOBAL 56.13 68.31 Semi
YES LOCAL 82.17 84.34 Incr.+LH
YES GLOBAL 83.20 85.02 Semi+LH

Cascaded NO LOCAL 59.01 68.11 76.19 Incr.
NO GLOBAL 59.30 68.62 76.53 Semi
YES LOCAL 86.31 91.62 90.76 Incr.+LH
YES GLOBAL 86.70 91.70 90.90 Semi+LH

Table 5.2: Supertagger, Operator tagger and Dependency results (F-
Score) of all systems.

using a range of incremental parsers. We used the same data split as in (Clark and Curran,

2007). Sections 02–21 were used for training, section 00 fordev-testing of intermediate

taggers, and section 23 for testing dependencies.

5.7.1 Supertagging Results

Given our introduction of new supertags for coordination, apposition, interruption, and

WH-movement, we used section 00 to evaluate our supertagger’s accuracy compared to

the standard CCGbank set. Although our supertags are more complex, we obtain an F-

score of 91.7 (cf. Table 5.2, last row, ‘Supertagging’ column), which compares favourably

with the supertagger of (Clark and Curran, 2007), which scores 92.39 on the same dataset.

Our supertags set is much richer than the supertags set of (Clark and Curran, 2007);

therefore the results may not be directly comparable. Whilewe have not carried out

significance testing at this stage, it is clear that there is little difference between the two

sets of scores, indicating that our supertagger is robust aswell as accurate. As will be

seen for all experiments in this section, this is only true when lookahead is utilised; note

that our best score of 91.7 dips to 68.62—an absolute drop of 23.08 points, or a 33.6%

relative decrease in performance—when lookahead is turnedoff.
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5.7.2 Operator Tagging Results

In Table 5.2 we also present the results for our Operator tagger. This displays a very high

accuracy (90.9%, cf. last row, ‘Operator Tagging’ column) even when no lexical features

are used. We also contemplated a hypothetical situation in which we feed the correct (gold

standard) previous syntactic state as a feature to the system. In this scenario an operator

tagging score of 99.22% (8.32% absolute improvement, or 9.15% relative) was obtained,

indicating that a high gain is to be expected if this state were to be made available to the

operator classifier.

5.7.3 Dependency Results

In Table 5.2 we also present the results for unlabeled dependency accuracy using our

method. We use the same evaluation criteria as (Clark and Curran, 2007) by comparing

the dependency output of the incremental parser with the predicate-argument dependen-

cies in the CCGbank. Testing on section 23 of the WSJ, we obtain an F-score of 86.7 (last

row, ‘Dependency’ column). The score with the gold standardPOS and supertags in the

input is 87.5, 0.8% absolute (or 0.92% relative) higher thanthe result when using the POS,

supertags and operators hypothesized by the system, but notby much. This overall result

is considerably below the result reported in (Clark and Curran, 2007) (91.65% unlabelled

dependency F-score). However, using a non-incremental bottom-up parser is much less

efficient than our (weakly) incremental parser. (Clark and Curran, 2007) observe that on

section 23 of the WSJ, while the parser of (Collins, 1999) takes 45 mins to parse all the

sentences, and that of (Charniak, 2000) takes 28 mins, theirparser takes just 1.9 mins. By

contrast, our parser takes just 11 seconds, a speed-up of around ten times, on the same

specification machine.
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5.7.4 Cascaded vs. Joint Approach

The results reported above demonstrate the accuracy of the cascaded approach using two

cascaded taggers: the first for supertags, and the second theoperator tagger followed by

the deterministic state realizer. In this section we compare the cascaded model with a

joint model, where we train a single classifier that producesthe supertags and operators

simultaneously in the same step. In Table 5.2 we give the unlabeled dependency results

for section 23 for the cascaded and joint models side-by-side for comparative purposes.

The cascaded model significantly outperforms the joint model (by 3.5% absolute, or 4.2%

relative; this rises to 4.3% absolute, or 5.17% relative, ifwe compare the joint model

with the dependency score using the gold standard POS and supertags, as described in

the previous section). Besides data sparseness, the joint model makes the choice of an

operator at a certain position in the sentence based on supertag information only to the

left of the current position because the joint model must guess supertag–operator pairs at

once.

Note that our Cascaded version with lookahead and GLOBAL search is the semi-

incremental model of (Shen and Joshi, 2005). They report an F-score of 89.3 on section

23 using a semi-incremental approach, together with extra information from Propbank

(Palmer et al., 2005). While not directly comparable, we consider our performance to be

on a par with theirs, with a considerable improvement in parsing time (they report a speed

of 0.37 sent./sec.).

5.7.5 Effect of Lookahead

The present parser is just two words of lookahead away from being fully incremental.

Here, we examine the effect of lookahead features on the supertagger, operator tagger

and dependency results. We examine two versions of a supertag- and operator-classifier,

namely a weakly incremental and a fully incremental version. The weakly incremental

version deploys features in a window of two words to the left and two words to the right of

the focus word. The fully incremental parser deploys features in a window of two words
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to the left only.

Looking at all the results in Table 5.2, the scores for the weakly (semi-)incremental

versions of the parser barely differ from their fully incremental counterparts, whether we

are concerned with dependency, supertagging or operator accuracy; the scores are higher,

on the whole, but not by much.

By contrast, what isextremelysignificant is the extent to which lookahead is utilised.

For all accuracy measures, huge improvements are to be seen when the parser avails of

lookahead. Clearly, full incrementality at this stage comes at a high cost in accuracy,

relative to the weakly incremental version, without any benefit in efficiency.

5.7.6 Examples

In this section we will guide the reader through three examples and examine the parser

output. The examples are selected from newswire data typically used in MT evalua-

tion tasks. The newswire data is harder to parse than the PennWall Street Journal Tree-

bank (Marcus et al., 1993) data, which we have used for training and testing our parser.

For the three examples shown, starting with the sentences, our incremental parser pro-

ceeded by tagging them with POS tags, supertags, operators and then the state realizer

was applied.

Example 1

The example shown in Figure 5.11 demonstrates an incremental parsing output of the

proposed parser. In the example shown here each state represents a partial construction of

the dependency graph.

The example demonstrates how the parser is able to handle long-range dependencies

and coordination. We will highlight some important aspectshere:

• At stateS4, the parser assigned aTRFC operator, although the previous stateS2

has a required argumentNP to the right. The more straightforward action is to

fill this open argument with the noun phrase“President Putin” using a forward
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composition operator. However, this is not the correct dependency indicated by the

sentence structure because“They listened to the point of view”not to “President

Putin” . The parser can capture that effect by taking into account features from

the word(’s) a few positions ahead. This exemplifies how Markov-based syntax

representations are able to capture long-range dependencies.

• At stateS13, the parser opts for aNOPoperation for this comma which reflects that

it has no apposition or coordination role.

• The coordination at stateS21 is coordinating two long clauses, the first running from

S16 to S20 and the second running fromS22 to S28. TheCOORDoperator atS21 can

restore the state back to a category similar toS15, i.e. expecting the second noun

phrase.

Example 2

The example shown in Figure 5.12 exemplifies the handling of apposition together with

some other interesting issues.

• An apposition phrase runs between statesS5andS11, which the parser indicated by

assigning theAPSVsupertag and theINTRoperator at both positions. This enables

the parser to interrupt the normal sequence between those two states to construct

the apposition noun phrase. After applying theINTRoperator a new state sequence

runs fromS6up toS10. At stateS11the interruption ends and the state becomes

equivalent to the state atS4such that the state sequence is able to resume from

where it was interrupted. In this way, the subject argument of the verb“refused” is

filled with the word“official” which is eight positions away.

• Some intermediate states such asS16, S19andS22have a full sentence category

S, which indicates that those are partially completed sentences for which all depen-

dencies are satisfied.
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State Word Supertag Operator State Category

S1 They NP NOP NP
S2 listened S\NP BA S
S3 to ((S\NP)\(S\NP))/NP BC (S/NP)
S4 President NP/NP TRFC ((S/(NP\NP))/NP)
S5 Putin NP FA (S/(NP\NP))
S6 ’s (NP\NP)/NP FC (S/NP)
S7 point NP FA S
S8 of (NP\NP)/NP BC (S/NP)
S9 view NP FA S
S10 on (NP\NP)/NP BC (S/NP)
S11 various NP/NP FC (S/NP)
S12 subjects NP FA S
S13 , , NOP S
S14 such (NP\NP)/(NP\NP) BC (S/(NP\NP))
S15 as (NP\NP)/NP FC (S/NP)
S16 human NP/NP FC (S/NP)
S17 rights NP FA S
S18 in (NP\NP)/NP BC (S/NP)
S19 his NP/NP FC (S/NP)
S20 country NP FA S
S21 and ((NP\NP)/NP) COORD (S/NP)
S22 the NP\NP FC (S/NP)
S23 latest NP/NP FC (S/NP)
S24 crisis NP FA S
S25 between (NP\NP)/NP BC (S/NP)
S26 Russia NP FA S
S27 and ((NP\NP)/NP) COORD (S/NP)
S28 Georgia NP FA S
S29 . . NOP S

Figure 5.11: Example1: Incremental Parsing.
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State Word Supertag Operator State Category

S1 However S/S NOP (S/S)
S2 , , NOP (S/S)
S3 the NP/NP TRFC ((S/(S\NP))/NP)
S4 official NP FA (S/(S\NP))
S5 , APSV INTR NULL
S6 who (NP\NP)/(S\NP) NOP (NP/(S\NP))
S7 requested (S\NP)/(S\NP) FC (NP/(S\NP))
S8 to (S\NP)/(S\NP) FC (NP/(S\NP))
S9 remain (S\NP)/(S\NP) FC (NP/(S\NP))
S10 anonymous S\NP FA NP
S11 , APSV INTR (S/(S\NP))
S12 refused (S\NP)/(S\NP) FC (S/(S\NP))
S13 to (S\NP)/(S\NP) FC (S/(S\NP))
S14 give (S\NP)/NP FC (S/NP)
S15 more NP/NP FC (S/NP)
S16 details NP FA S
S17 about (NP\NP)/NP BC (S/NP)
S18 the NP/NP FC (S/NP)
S19 negotiations NP FA S
S20 in (NP\NP)/NP BC (S/NP)
S21 which NP/NP FC (S/NP)
S22 Cairo NP FA S
S23 is (S\NP)/(S\NP) FC (S/(S\NP))
S24 playing (S\NP)/NP FC (S/NP)
S25 the NP/NP FC (S/NP)
S26 role NP FA S
S27 of (NP\NP)/NP BC (S/NP)
S28 mediator NP FA S
S29 . . NOP S

Figure 5.12: Example 2: Incremental Parsing.
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Example 3

State Word Supertag Operator State Category

S1 Its NP/NP NOP (NP/NP)
S2 total NP/NP FC (NP/NP)
S3 debt NP FA NP
S4 was (S\NP)/NP TRFC (S/NP)
S5 5 NP/NP FC (S/NP)
S6 trillion NP/NP FC (S/NP)
S7 yuan NP FA S
S8 , , NOP S
S9 an NP/NP FC (S/NP)
S10 increase NP FA S
S11 of (NP\NP)/NP BC (S/NP)
S12 5 NP/NP FC (S/NP)
S13 billion NP/NP FC (S/NP)
S14 yuan NP FA S
S15 , ((NP\NP)/NP) COORD (S/NP)
S16 or conj NOP (S/NP)
S17 5 NP/NP FC (S/NP)
S18 percent NP FA S
S19 from (NP\NP)/NP BC (S/NP)
S20 nine NP/NP FC (S/NP)
S21 months NP NOP (S/NP)
S22 ago ((S\NP)\(S\NP))\NP BA NULL
S23 . . NOP NULL

Figure 5.13: Example 3: Incremental Parsing.

In the example shown in Figure 5.13, the parser made a mistakeby assigning a wrong

operator atS21. It is worthwhile highlighting some issues here:

• The parser was able to construct partially completed sentences at statesS7, S14

andS18.

• At stateS21, the parser assigned a wrong operatorNOP and this led to a wrong

sequence of states up to the end of the sentence.

• The parser cannot construct a fully connected derivation. However, the partially

connected derivation may still identify some correct dependencies.
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5.8 Discussion

In this chapter we introduced our Incremental Dependency-based Language Model (IDLM)

based on wide-coverage CCG incremental parsing. The introduced dependency-based

LM has very interesting characteristics that facilitates its integration into Phrase-based

SMT systems:

• The language model parser is deterministic in that it maintains a limited number

of parsing decisions at each state which makes it very efficient for integration into

large-scale Phrase-based SMT systems.

• It is incremental in Markovian fashion similar to Phrase-based SMT decoders.

• It can naturally handle non-constituent constructions, being based on CCG.

• The parser always seeks fully connected structures, not just using syntactic infor-

mation to augment LM probabilities. At the same time, the parser can handle non-

connected structures as well.

• The parser supports long-range dependencies and a number ofinteresting syntactic

phenomena in a fully incremental left-to-right fashion.

It is worth mentioning that the current implementation of the incremental parser can-

not be considered as a language model as it is, since this implementation employs a looka-

head of words and a cascade of MaxEnt classifiers. However, this incremental parser can

be used to parse training data with the incremental parsing information which could be

used to train a language model to be used within SMT decoders to estimate the probability

of a string-parse pair as described in IDLM formalization inEqn (5.3).

As further work for the incremental parser itself, we think there are two main issues

that could have a good effect on the parser’s accuracy such that it might narrow the accu-

racy gap between linear incremental parsing and cubic time top-down parsing:

• We want to investigate the possibility of having joint simultaneous taggers for su-

pertags and operators, such that each tagger is informed with the other tagger possi-
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ble decision. This would enable the usage of the states as features for both taggers

which can have a good effect on the taggers accuracy.

• The current implementation of the parser maintains only thebest parsing decision

at each state, but maintaining a limited number of possible states would enhance the

parser’s accuracy. However, this should be handled with an adequate graph search

strategy such as A* search to keep the search space reasonable.

The techniques proposed in this chapter can be utilized in a different way tolinearize

any dependency graph. We can train a supertagger and an operator tagger to assign su-

pertags and opertaor tags while having access to features from the dependency graph

itself. Thus, we can use any dependency parser such as (Nivre, 2004; Shen and Joshi,

2005; Clark and Curran, 2007) to produce dependency structures for any available data.

Then, the dependency-informed taggers are used to assign supertags and opertors which

should represent a linearization of dependency structures. This indicates that we may use

any dependency parser to construct our incremental dependency-based language model

(IDLM).

In the next chapter, we will show how we make use of our incremental dependency-

based language model (IDLM) to improve the translation quality of SMT.
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Chapter 6

Dependency-based SMT

6.1 Introduction

Syntactically-enriched language models (cf. Section 3.6)constitute a promising compo-

nent for SMT. These syntax-based language models, if integrated within an MT frame-

work, can produce more grammatical translations by two means. First, they can enable

constituency (cf. Section 3.1) by allowing constituent units of the translation to undergo

long-range re-ordering while maintaining the grammaticality and the logical meaning of

the units. Secondly, the subcategorization and dependencyinformation can provide non-

local, long-range relations such that it can enable long-range reordering while maintaining

the grammatical structure of the translation output. However, to maintain a useful level of

accuracy, existing parsers are non-incremental and must span a combinatorially growing

space of possible structures as every input word is processed. This prohibits their incor-

poration into standard linear-time MT decoders. Moreover,most existing parsers deploy

PCFG techniques which cannot handle non-constituent constructions commonly used in

Phrase-based SMT systems.

In Chapter 5, we presented Incremental Dependency-based Language Model (IDLM)

using incremental, linear-time dependency parser based onCombinatory Categorial Gram-

mar (CCG). IDLM maintains a limited number of parse-states at each prefix of the sen-

tence and so is very efficient for large-scale SMT systems. Since it is based on CCG,
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IDLM can handle non-constituent constructions (cf. Chapter 5) which are commonly

found in Phrase-based SMT systems. In this chapter, we present a dependency-based

SMT model which deploys IDLM and constructs the target language dependency struc-

ture incrementally as the translation proceeds step-by-step.

The remainder of this chapter is organized as follows. In Section 6.2 we present the

general representation for incorporating IDLM into SMT systems. In Section 6.3 we

review the related work. In Section 6.4 we discuss our choicefor the baseline system

in this chapter. In Section 6.5, we detail our approach. In Section 6.6, we introduce

the experiments and the results. In Section 6.7, we introduce results analysis along with

systems output examples. Finally, Section 6.8 concludes, and discusses future work.

6.2 Dependency-based Language Model for SMT

6.2.1 IDLM Representation for SMT

As it processes an input sentence left-to-right word-by-word, IDLM builds —for each

prefix of the input sentence— a partial parse that is a subgraph of the partial parse that

it builds for a longer prefix. The dependency graph is constructed incrementally, so at

each step the constructed subgraph is never altered or revised in any later step. IDLM,

as an incremental parser, is more appealing for large-scaleapplications as its time and

space (worst-case) complexities are linear in input length. IDLM, an incremental and

linear-time parser, constitutes a natural match for the word-by-word decoding and pruning

schemes used within phrase-based SMT systems.

S0
o1

w1,st1
//S1

o2

w2,st2
//S2 Si

oi

wi,sti
//Si+1 Sn (6.1)

For incremental parsing in the monolingual case, as we discussed in Chapter 5, the

IDLM syntactic process is represented by a sequence of transitions between adjacent syn-
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tactic states. The syntactic representation is built step-by-step from left-to-right while

traversing the input string as shown in (6.1). The syntacticstate is supposed to summarize

all the syntactic information about fragments that have already been processed so far. The

parser produces fully connected intermediate structures while moving from one word to

the next.

For MT, the same process applies except that the target words/phrases are the can-

didate translations of the source words/phrases. Each target word/phrase represents a

structure or sub-graph composed of the lexical words, with associated supertag and oper-

ator sequences. As shown in (6.2), each source phrase can be translated to a target phrase

structure. In this structure, each wordwi is associated with a lexical syntactic/semantic

descriptorsti and a possible parsing action (operator)oi that may take place with this

word/phrase-supertag pair. These sub-graphs along with their probabilities represent our

phrase table augmented with incremental dependency parsing support.

si...sn
//[wi, sti, oi]...[wn, stn, on] (6.2)

6.2.2 Linear-time, Incremental Parsing Decoder

As it processes the source sentence left-to-right, word-by-word, the decoder expands each

translation hypothesis with the possible translations forthis source word/phrase. The

translations are associated with possible supertag and operator sequences as discussed

above. The decoder specifies and maintains a parse-state foreach decoding hypothesis

state. Each parse-state is represented by a composite CCG category which is the result of

applying the combinatory operator sequence to the preceding parse-state and the current

phrase supertag sequence. The parse-state CCG composite category specifies a functor

and its arguments are the expected categories while expanding the current hypothesis.

Based on (6.1), each stateSi is determined exactly by the previous stateSi−1, and a

choice of a supertagsti and an operatoroi. Therefore, the probabilityP (W, S) of a word
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sequenceW and associated final parse-state sequenceS, which represents a possible

derivation, can be described as in Eqn (6.3). The probability P (W, S) represents the

product of the state production probabilities at each parse-state:

P (W, S) =
n∏

i=1

P (wi|Wi−1Si−1).P (sti|Wi).P (oi|Wi, Si−1, STi) (6.3)

In Eqn (6.3):

• P (wi|Wi−1Si−1) is the probability ofwi given the previous sequence of wordsWi−1

and the previous sequence of statesSi−1.

• P (sti|Wi): is the lexical descriptor (supertagsti) probability given the word se-

quenceWi up to the current position. This is represented by a sequencetagger

(supertagger) in our CCG incremental parser.

• P (oi|Wi, Si−1, STi) represents the parsing action (operatoroi) probability given

the previous words, supertags and state sequences up to the current position. This

is represented by a sequence operator tagger in our CCG incremental parser.

Crucially, given a sentence and its state sequence, the dependency structure can be re-

trieved unambiguously. At each state the partial dependency structure can be represented

as a directed graph with nodes representing words and arcs representing dependency re-

lations.

Although the above outlined framework matches the nature ofPhrase-based SMT

systems, further attention should be paid to two issues. First, an efficient representation

for the phrase tables is needed to avoid an explosion of the phrase space. Since each phrase

is associated with a number of supertag sequences and a number of operator sequences,

this could simply lead to very large phrase tables with sparse probabilities which in turn

complicates the decoding process. Second, although IDLM maintains a single state for

each hypothesis, the search space will be much larger than the case without IDLM and
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this needs efficient handling to avoid a further explosion ofthe search space. In the next

section we will review the related work.

6.3 Related Work

In Section 2.5, we discussed previous approaches for incorporating syntax into Phrase-

based SMT and we highlighted their limitations. In Section 3.6, we reviewed various

syntax-based language models and highlighted their limitations as well. In this section

we review a very recent approach using a dependency-based language model for SMT

and we contrast this approach and our own.

(Shen et al., 2008) introduced an interesting approach for incorporating a dependency-

based language model into SMT. They proposed to extract String-to-Dependency trees

from the parallel corpus. As the dependency trees are not constituents by nature, they

are able to handle non-constitute phrases as well. While this work shares the same target

as ours, namely incorporating dependency parsing into SMT,there remain three major

differences. Firstly, (Shen et al., 2008) resorted to some heuristics to extract the String-

to-Dependency trees while our approach deploys a more formalized grammatical theory.

Secondly, their decoder works bottom-up and uses a chart parser with limited language

model capability (3-gram), while we use the more efficient linear decoder commonly

used in Phrase-based SMT. Thirdly, (Shen et al., 2008) deploys the dependency language

model to augment the lexical language model probability between two head words simi-

lar to (Xu et al., 2002) and never seek a full dependency graph. In contrast, our approach

integrates a fully incremental parsing capability that produces the dependency structures

while decoding and thus provides better guidance for the decoder to construct more gram-

matical output. To the best of our knowledge, our approach isthe first to incorporate fully

incremental dependency parsing capabilities into SMT withlinear time and space decod-

ing.
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6.4 Difficulties of incorporating IDLM into Phrase-based

SMT

In Chapter 4, we extended the Phrase-based SMT system with supertagged translation

and language models by adding a number of log-linear features to the model such that

we had a total of eleven log-linear features in our model. We also show in Section 4.6

that we have resorted to somead hocmethods to be able to tune this relatively large

number of system parameters. As we discussed in Section 2.6.1, the limited capability of

MERT estimation represents a bottleneck to further seriousdevelopment of features-rich

SMT systems, as has just been highlighted in (Chiang et al., 2008), who proposed a new

method to estimate up to 56 parameters.

For integrating IDLM, we definitely need more features than the supertagged Phrase-

based model in which we added five features to support just thesupertags. We need to

represent supertags, operators, states and various conditional probabilities between them

and other features in the system. In the light of the above limitations, we think that

integrating IDLM into SMT needs a more sophisticated systemthat can support many

features without such a limitation in the estimation process. Fortunately, discriminative

direct translation models (DTM2) (Ittycheriah and Roukos,2007) allows the use of mil-

lions of features in a more formalized probabilistic framework with optimal estimation

techniques. Based on these factors, we opted for DTM2 as the framework for integrating

our IDLM into SMT. We think that DTM2 is a more formalized framework and will allow

the exploration of a wide variety of possible features in a unified modeling framework.

6.5 Dependency-based Direct Translation Model (DDTM)

6.5.1 Model Overview

We reviewed Direct Translation Models (DTM) in detail in Section 2.6. DTM models the

a posterioriconditional distributionP (T |S) instead ofP (S|T ) as in the source channel
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approach. DTM has three components: a prior conditional distributionP0(T |S), a number

of feature functions that capture the translation and language model effects in a unified

framework and finally weights of the features that can be estimated by MaxEnt (Berger

et al., 1996). (Ittycheriah and Roukos, 2007) introduced DTM2 to handle Phrase–based

SMT using a minimum number of phrases with no overlap and finally training the whole

set of millions of system parameters using MaxEnt.

We extended DTM2 to support our incremental dependency-based language model

(IDLM) introduced in Chapter 5. The target-side sentences are augmented with supertag,

operator and state sequences. DTM2 was extended by incorporating the model introduced

in Eqn. (6.3) as a set of MaxEnt features, as we will discuss indetail later.

This representation turns the complicated problem of MT with incremental parsing

into a sequential classification problem in which the classifier deploys various features

from the source sentence and the candidate target translations to specify a sequence of

decisions that finally results in an output target string along with its associated depen-

dency graph. The classification decisions are performed in sequence step-by-step while

traversing the input string to provide decisions on possible words, supertags, operators

and states. A beam search decoder simultaneously decides which sequence is the most

probable.

T ∗ = arg max
T

P (T |S) = 1/Z exp
∑

i

λiφi(S, T ) (6.4)

As shown in Equation (6.4), Phrase–based SMT is representedas a classification prob-

lem with arbitrary features defined over the source and the target. More specifically, the

reordering and prior phrase probabilities are representedas shown in equation (6.5).

P (T |S) = P0(T, J |S)/Z exp
∑

i

λiφi(T, J, S) (6.5)
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HereP0 is the prior distribution for the phrase probability which is usually the phrase

normalized counts used in any conventional Phrase–based SMT system. J is the skip

reordering factor for this phrase pair which represents thejump from the previous source

word.

6.5.2 DDTM Features

In our DDTM, we have implemented many features along with thebaseline DTM2 fea-

tures that we have discussed in Section 2.6. We have extendedDTM2 with a number of

features to represent the incremental dependency-based language model as listed here:

• Supertag-Word features: these features examine the targetphrase words with their

associated supertags.

• Supertag sequence features: these features encoden-gram supertags (equivalent to

then-gram supertags Language Model).

• Supertag-Operator features: these features encode supertags and their associated

operators.

• Supertag-State features: these features encode states andsupertags co-occurrence.

• State sequence features: these features encoden-gram states features and are equiv-

alent to ann-gram states Language Model.

• Word-State sequence features: these features encode wordsand states co-occurrence.

The features described above encode all the probabilistic components in Eqn. (6.3)

along with some more empirically intuitive features.

6.5.3 DDTM Decoder

The decoder adopted in the baseline DTM2 (Ittycheriah and Roukos, 2007) is a beam

search decoder similar to decoders used in standard phrase-based log-linear systems such
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as (Tillmann and Ney, 2003) and (Koehn, 2004a). The main difference between the

DTM2 decoder and the standard Phrase–based SMT decoders is that DTM2 deploys

Maximum Entropy probabilistic models to obtain the translation costs and various fea-

ture costs by deploying the features described above in a discriminative MaxEnt fashion.

In order to support incremental dependency parsing, the decoder has been extended in

three main ways: firstly, by constructing the syntactic states during decoding; secondly,

by extending the hypothesis structures to incorporate the syntax states and the partial

dependency derivations; and thirdly, by modifying the pruning strategy to handle the large

search space.

At decoding time, each hypothesis state is associated with aparse-state which is con-

structed while decoding using the Parse State Realizer (identical to the parse-states and the

Realizer introduced in Section 5.6.2). The Parse-State Realizer is a deterministic module

that deploys the previous state, the sequences of supertagsand CCG incremental oper-

ators to realize the parse-states as well as the intermediate dependency graphs between

words.

Figure 6.1 shows the DDTM decoder while decoding a sentence with the English

translation “Attacks rocked Riyadh”. Each hypothesis is associated with a parse-stateSi

and a partial dependency graph (shown for some states only).Moreover, each transition

is associated with an operatorO that combines the previous state and the current su-

pertagST to construct the next stateSi. The decoder starts from a null stateS1 and then

proceeds with a possible expansion with the word “attacks”,supertagNP and operator

NOP to produce the next hypothesis with stateS2 and categoryNP . Further expansion

for that path with the verb “rocked”, supertag ‘(S\NP )/NP and operatorTRFC will

produce the stateS5 with categoryS/NP . The partial dependency graph for stateS5 is

shown above the state where a dependency relation between the two words is established.

Furthermore, another expansion with the word “Riyadh”, supertagNP and operatorFA

produces stateS7 with categoryS and a completed dependency graph as shown above the

state. Another path which spans the statesS1, S3 , S6 andS8 ends with a state category

123



S/NP and a partial dependency graph as shown under stateS8 where the dependency

graph is still missing its object.

Figure 6.2 shows partial decoding graph for a longer sentence, with complete paths.

Each hypothesis is associated with a parse-state.

The addition of parse-states may result in very large searchspace due to the fact that

the same phrase/word may have many possible supertags and many possible operators.

Moreover, the same word sequences may have many parse-statesequences and, therefore,

many hypotheses that represent the same word sequence. The search space is definitely

larger than the baseline search space. We adopt the following three pruning heuristics to

limit the search space.

Grammatical Pruning

Any hypothesis which does not constitute a valid parse-state is discarded, i.e. if the pre-

vious parse-state and the current supertag sequence cannotconstruct a valid state using

the associated operator sequence, then the expansion is discarded. Therefore, this prun-

ing strategy maintains only fully connected graphs and discards any partially connected

graphs that might result during the decoding process.

As shown in Figure 6.1, the expansion from stateS1 to stateS4, with the dotted line,

is pruned and not expanded further because the proposed expansion is the verb “attacks”,

supertag(S\NP )/NP and operatorTRFC. Since the previous state is NULL, it cannot

be combined with the verb using theTRFC operator. This would produce an undefined

state and thus the hypothesis is discarded.

Supertags and Operators Threshold

We limit the supertag and operator variants per target phrase to a predefined number of

alternatives. We tuned these thresholds using the MT03 DevSet. The supertags limit was

set to four alternatives while the operators limit was set tothree alternatives. We tuned

these thresholds for the best accuracy while maintaining a manageable search space.
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As shown in Figure 6.1, each word can have many alternatives with different su-

pertags. In this example the word “attacks” has two forms, namely a noun and a verb,

with different supertags and operators. The proposed thresholds limit the possible alter-

natives to a reasonable number.

Merging Hypotheses

Standard Phrase–based SMT decoders (cf. Section 2.4) mergetranslation hypotheses if

they cover the same source words and share the samen-gram language model history.

Similarly, DDTM decoder merges translation hypotheses if they cover the same source

words, share the samen-gram language model history and share the same parse-state

history. This helps in reducing the search space by merging paths that will not constitute

a part of the best path.

6.6 Experiments

We conducted an extensive set of experiments to examine the proposed approach and

its features. In this set of experiments we used the UN parallel corpus and LDC news

corpus together containing 3.7M parallel sentences. The lexical 5-gram LM was trained

on the English Gigaword Corpus. Our baseline system is the DTM2 model described

in (Ittycheriah and Roukos, 2007) and outlined in Section 2.6.

In order to train our DDTM model, we used the incremental parser introduced in

Chapter 5 to parse the target side of the parallel training data. Each sentence is associated

with supertag, operator and parse-state sequences. We thentrained various models with

different features.

Although we used our incremental parser described in Chapter 5, any dependency

parser, whether incremental or not, such as (Nivre, 2004; Shen and Joshi, 2005; Clark and

Curran, 2007) can be used to process the training data. As we highlighted in Section 5.8,

using our approach any dependency structure can be linearized into incremental form with
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CCG grammar. Indeed, we tried to use the ‘C&C’ dependency parser1 (Clark and Curran,

2007) as its accuracy is higher than our incremental version; unfortunately more than 30%

of the training data sentences cannot obtain a parse using the ’C&C’ parser at all.

6.6.1 Results

We compared two baseline systems with our DDTM using the features listed above. The

first baseline is IBM Phrase–based SMT system (Al-Onaizan and Papineni, 2006) while

the second is the DTM2 system. Table 6.1 shows which featuresare used in which system.

Features/System DTM2 D-SW D-SLM D-SO D-OLM D-SS D-WS D-SLM DDTM
Baseline features X X X X X X X X X
Supertag-Word X X X X X X X X
Supertag ngram X X X X X X

Supertag-Operator X X X X X X
Operatorn-gram X
Supertag-State X X X

State-Word X
Staten-gram X X

Table 6.1: DDTM systems with associated features

Generally we examined all features to realize their effect on the system. The systems

examined are:

• IBM-PB: IBM Phrase–based SMT baseline system.

• DTM2: the baseline Direct Translation model system.

• D-SW: examines Supertag-Word features.

• D-SLM: examines Supertag-Word features and supertagsn-gram features.

• D-SO: examines Supertag-Operator features.

• D-OLM: examines operatorn-gram features.

• D-SS : examines supertags and states features with parse-state construction.

1http://svn.ask.it.usyd.edu.au/trac/candc
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• D-WS : examines words and states features with parse-state construction.

• D-SLM: examinesn-gram states features with parse-state construction.

• DDTM: fully fledged system with all features that proved useful above.

System BLEU Score on MT05
IBM-PB 50.16

DTM2-Baseline 52.24
D-SW 52.28

D-SLM 52.29
D-SO 52.01

D-OLM 51.87
D-SS 52.39
D-WS 52.03

D-SLM 52.53
DDTM 52.61

Table 6.2: DDTM Results with various features.

As shown in Table 6.2, the DTM baseline system demonstrates avery high BLEU

score. It is worth mentioning that the baseline system is already top-ranked in two recent

major MT evaluations. Among the features we tried, supertags andn-gram supertags sys-

tems (D-SW and D-SLM systems) give slight yet statisticallyinsignificant improvements.

On the other hand, the statesn-gram sequence features ( D-SS and DDTM systems) give a

small yet statistically significant improvements. The operatorsn-gram features (D-OLM

system) show a remarkable degradation of the system. This shows that the operators

sequence, on its own, is not an important factor to guide the structure without the corre-

sponding supertags and states. Similarly, the states-wordfeatures (D-SW system) show a

degradation. This may be due to the fact that the states-words interaction is very sparse

and could not be estimated with good evidence.

We might expect that using an MT evaluation metric such as (Owczarzak et al., 2007),

that takes into account the matching of the dependency relations between the system trans-

lation and the references, would give a better result. However, we tried this evaluation

metric for some of the systems reported above and we found that the relative differences
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between system scores with this metric are similar to the differences provided by BLEU.

In any case, we think that evaluating MT systems that incorporate dependency informa-

tion using MT evaluation metrics that measure dependency relation matching is as unfair

as evaluatingn-gram-based systems using the BLEU score (Callison-Burch et al., 2006).

As a matter of fact, we think that our proposed model would have a better chance using

human evaluation; in the last year IWSLT-07 evaluation, oursupertags-based Arabic–

English system described in (Hassan et al., 2007a) was judged to be ranked first by some

margin in the human evaluation, despite being ranked 5th in the automatic evaluation with

2 BLEU points less than the first system in the automatic evaluation (Fordyce, 2007).

6.7 Results Analysis

Although the BLEU score did not show a remarkable improvement by the dependency-

based system over the baseline sysem, human inspection of the data gives us important

insight into the pros and cons of the dependency-based model. The examples here show

a consistent behaviour of the baseline and the DDTM systems which can be observed

in many examples throughout the test set. We only highlight some of the examples for

illustration purposes.

The example in Figure 6.3 shows how DDTM manages to insert verb “reported” in-

stead of the phrase “according to”. Usually DDTM prefers to deploy verbs since they

have complex and more detailed syntactic structures which give better and more likely

state sequences. Furthermore the example shows how DDTM avoids longer noun phrases

and instead uses some prepositions in between; the baselineopted for “cali cartel leader”,

while DDTM preferred “the leader of cali cartel”. Again, this may be due to the fact that

prepositions have a complex syntactic description that maygive rise to a more likely state

sequence.

Figure 6.4 shows two examples where DDTM provides better andmore concise syn-

tactic structure. As we can see, there is not much agreement between the reference and
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Source: ú
Í A¿ É�KPA¿ Õæ
« 	P 	à� �QK. �	��Q 	̄ �éËA¿ð É��QÓ Q» 	X - ( H. 	¬ �) 12-4 A��J 	«ñK.ÕÎ� , ÕËAªË � ú
 	̄ �H�PY 	jÖÏ � ú
G. QêÓ Q�.» � Yg� , ÈñîE
Pð� � 	ªK
PXðP ñ�KQ�. ÊJ
k. (H. Q 	« H. ñ	Jk. ). �èYj�JÖÏ � �HAK
BñË� ú
Í � �éªÒm.Ì'� ZA�Ó
Reference: Bogota 12-4 (AFP) - An Agence France-Presse correspondent reported th
at Cali cartel boss (south-west) Gilberto Rodriguez Orejuela, one of the biggest drug
traffickers in the world, was handed over to the United Stateson Friday e vening.

Baseline: Bogota 4-12 ( afp ) - according to an Agence France Presse correspondent
that cali cartel leader ( southwest ) , gilberto rodriguez orejuela , one of the biggest
drug traffickers in the world , surrendered friday night to the united states .

DDTM : Bogota 4-12 ( afp ) - An Agence France Presse correspondent reported that the
leader of the cali cartel ( southwest ) Gilberto Rodriguez Orejuela , one of the biggest
drug traffickers in the world , handed over friday night to theUnited States .

Figure 6.3: DDTM opts for inserting verbs and breaking long noun
phrases with prepositions.

Source: �é£Qå��Ë � ZAJ.£� Yg� A �ë �Qk. � �HA�ñj 	®Ë ½Ë 	X YªK. © 	� 	kð
Reference: He then underwent medical examinations by a police doctor .
Baseline:He was subjected after that tests conducted by doctors of thepolice .
DDTM : Then he underwent tests conducted by doctors of the police .

Source: 	á�
�J 	j� 	j 	®Ó 	á�
�KPAJ
��. 	àAÓñj. ë �ñJ
Ë � ZA�Ó 	�AK
QË� 	Që Y�̄ð
Reference: Riyadh was rocked tonight by two car bomb attacks..
Baseline:Riyadh rocked today night attacks by two booby - trapped cars.
DDTM : Attacks rocked Riyadh today evening in two car bombs.

Figure 6.4: DDTM provides better syntatctic structure withmore concise
translation.

the proposed translation. However, longer translations enhance the possibility of picking

more commonn-gram matches via the BLEU score and so increases the chance of better

scores. This is not in favour with the more concise DDTM output.

The example shown in Figure 6.5 shows a better translation bythe baseline. The

baseline lexical language model made a better job here as it is not a likelyn-gram that

“prime minister meets the capital”, whereas DDTM opted for adifferent syntactic struc-

ture. We think such problems can be solved with a light lexicalization of the verbs’

predicate-argument structures in our framework. We could use features that encode the

lexicalization of the subject-object frames of the verbs such that the features would prefer
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Source: �éJ
»Q��Ë � �éÖÞ�AªË� PXA 	ªK
 	à� ÉJ. �̄ 	àAg. ðXP� I. J
£ I. k. P Z� �P 	PñË� ��
K�P ù
 �®�JÊJ
�ðZA�Ó
Reference: He will meet Prime Minister Recep Tayyip Erdogan before leaving the Turk-

ish capital in the evening.
Baseline:He will meet prime minister Recep Tayyip Erdogan before leaving the turkish
capital in the evening .

DDTM : Prime minister Recep Tayyip Erdogan will meet before he leaves the turkish
capital in the evening .

Figure 6.5: Example: Long range reordering and the need for lexicaliza-
tion.

the bilexical relation “meet-minister” over the bilexicalrelation “meet-capital”. Similarly,

the bilexical relation “organization-announced” should be preferred over “organization-

said”.

Source: ñK. � I. �m�'. hñ�J 	̄ ú
kðP �I�̄ñÖÏ � ��
K�QÊ�Ë �éK
Pñ�J�YË� �éÊêÖÏ � Z A��KC�JË � �ñJ
Ë � ú
æî �D 	J�Kð. hC�
Reference: According to Abu Salah, today, Tuesday, is when the constitutional period
of the Interim President Rouhi Fattouh expires.

Baseline: Ends today , Tuesday , the constitutional deadline for the interim president
Rouhi Fattouh and according to Abu Salah .

DDTM : Today , Tuesday , the constitutional deadline to end the interim president Rouhi
Fattouh , according to Abu Salah .

Figure 6.6: Better long-range reordering

The example shown in Figure 6.6 shows how DDTM manages to handle syntactic-

based long-range reordering (9 positions here), which resulted in better syntactic structure

and better translation in general.

6.8 Conclusion

In this chapter, we have presented a novel model of dependency phrase-based SMT which

integrates fully incremental dependency parsing into the translation model while retaining

the linear decoding assumed in conventional Phrase–based SMT systems. To the best of
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our knowledge, this model is the first model to integrate dependency parsing into Phrase–

based SMT systems with linear decoding. Our model is based onthe novel IDLM which

deploys dependency parsing to provide incremental parser information in the translation

system. Moreover, our proposed approach integrates the capability of full dependency

parsing in SMT systems with a very attractive computationalcost since it still deploys the

linear decoders widely used in Phrase–based SMT systems.

We carried out extensive experiments on a very large training set and a standard widely

used test set for Arabic–English translation. While we did not observe a huge improve-

ment over the already top-ranked baseline system, we believe that the proposed approach

can provide better translation quality especially in humanevaluations.

As we show in the last section, incremental dependency parsing in the form of our

proposed dependency language model can make better syntactic structures available to

the MT output. Syntactic-informed long-range reordering and constituency enablement

are also introduced such that constituent units can undergolong-range reordering while

maintaining grammaticality. All of these aspects can help to produce better, more gram-

matical MT output.

Our DDTM system could be further expanded in many dimensions. As we noted

while analyzing the system output, some light lexicalization features could be of benefit

to the system. Furthermore, we could examine the possibility of using the dependency

information encoded in the CCG categories as features in thesystem.

Finally, the approach introduced here can be extended to include logical semantic

relations as well using the CCG syntactic/semantic interface, which would be a further

step on the right direction of producing better MT output.
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Chapter 7

Conclusions

7.1 Contribution of the Thesis

In this thesis, we extended Phrase-based SMT with lexical syntactic descriptions —

supertags— that localize global syntactic information on the word level. Supertags can,

therefore, be assigned to every word in a phrase without introducing syntactic redundant

ambiguity. We introduced two different levels of syntacticsupport namely:

• Incorporating supertagged translation model and supertaggedn-gram language model

into Phrase-based SMT.

• Incorporating incremental dependency-based language model into DTM2.

Both approaches proved to be useful for enhancing the translation quality and provid-

ing more grammatical translations.

We presented a novel model of Phrase-based SMT which integrates supertags into the

target side of the translation model and the target languagemodel. We carried out ex-

tensive experiments on small and very large training and test sets for Arabic–English and

German–English translation. While using LTAG supertags gives the best improvement

over a state-of-the-art Phrase-based SMT system for the smaller data set, using CCG su-

pertags works best on the large training set. The experiments on very large training data
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provided evidence that an ever increasing amount of data will not bridge the performance

gap with a system that incorporates syntactic information.

We provided an in-depth manual analysis of the system performance. We showed

that a very wide range of improvements were brought about by the use of a supertags-

based system, including improved reordering, overcoming the tendency of SMT systems

to omit verbs, improved verbal constructions, proper handling of negation, and better

syntactic modeling in general. We noted that in a recent openevaluation, the output from

our Arabic–English supertagged system (Hassan et al., 2007a) was ranked first by human

evaluators reflecting the fact that lexical syntax can produce more grammatical and fluent

translations despite the fact that today’s automatic evaluation metrics cannot capture such

effects.

The encouraging results of our proposed supertagged Phrase-based SMT approach

provided a momentum to investigate further opportunities for improvements using lexi-

cal syntax. We introduced our Incremental Dependency-based Language Model (IDLM)

based on wide-coverage CCG incremental parsing. The proposed dependency-based LM

has very interesting characteristics that facilitates itsintegration into Phrase-based SMT

systems. First, the language model parser is deterministicin that it maintains a limited

number of parsing decisions at each state which makes it veryefficient for integration

into large-scale Phrase-based SMT systems. Second, it is incremental in Markovian fash-

ion similar to Phrase-based SMT decoders. Third, it can naturally handle non-constituent

constructions, being based on CCG. Fourth, the parser always seeks fully connected struc-

tures, not just using syntactic information to augment LM probabilities. At the same time,

the parser can handle non-connected structures as well. Fifth, the parser supports long-

range dependencies and a number of interesting syntactic phenomena in a fully incremen-

tal left-to-right fashion.

Furthermore, we developed an incremental version of the CCGbank that can be used

to train such an incremental parser. The techniques deployed in the conversion can be

used to linearize any dependency structure so that it can be used in language modeling.
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Finally, we have incorporated our IDLM into the direct translation model (DTM2)

while retaining the linear decoding assumed in conventional Phrase–based SMT systems.

To the best of our knowledge, this model is the first to integrate dependency parsing di-

rectly into Phrase–based SMT systems with linear decoding.Our model is based on the

novel IDLM which deploys dependency parsing to provide incremental parsing informa-

tion to the translation system. Moreover, our proposed approach integrates the capability

of full dependency parsing in SMT systems with a very attractive computational cost since

it still deploys the linear decoders widely used in Phrase–based SMT systems.

We carried out extensive experiments on a very large training set and a standard

widely used test set for Arabic–English translation. Whilewe did not observe a huge

improvement over the already top-ranked baseline system, we believe that the proposed

approach can provide better translation quality especially in human-based evaluations

such as HTER (cf. Section 2.7).

We carried out an extensive analysis of the system output anddemonstrated that

the incremental dependency parsing in the form of our proposed dependency language

model can make better syntactic structures available to theMT output. Syntactically-

informed long-range reordering and constituency enablement is also introduced such that

constituent units can undergo long-range reordering whilemaintaining grammaticality.

All of these aspects can help produce better and more grammatical MT output.

Recalling our research questions that we have introduced inChapter 1:

RQ1: What is the grammatical representation that can fit withPhrase-based SMT

while not introducing redundantly ambiguous syntactic structures?

We found that Phrase-based SMT can be extended with lexicon-driven approaches

to linguistic syntax, namely Lexicalized Tree-Adjoining Grammar (Joshi and Schabes,

1991) and Combinatory Categorial Grammar (Steedman, 2000). These lexical syntactic

descriptions localize global syntactic information on theword level; therefore, they can

be assigned to every word in a phrase without introducing redundant ambiguity.
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RQ2: How to incorporate lexical syntax descriptions into Phrase-based SMT while

maintaining its advantages and does it help in providing better and more grammatical

translation?

We presented a novel model of Phrase-based SMT which integrates supertags into

the target side of the translation model and the target language model. Our proposed ap-

proach provided significant improvements over state-of-the-art systems for two different

language pairs.

RQ3: Does Phrase-based SMT need more syntactic knowledge orour supertagged ap-

proach is sufficient for providing syntactic structures to enable more grammatical trans-

lations and better reordering?

We Showed that MT needs a more sophisticated mechanism that can support long-

range dependencies, construct full parse structures, workin an incremental manner and

be computationally efficient.

RQ4: Can lexical syntax provide more syntactic knowledge for Phrase-based SMT

through incremental dependency parsing capabilities thatmatch the nature of Phrase-

based SMT?

We introduced our Incremental Dependency-based Language Model (IDLM) based

on wide-coverage CCG incremental parsing. Our IDLM is deterministic, incremental in

Markovian fashion and naturally handle non-constituent constructions, being based on

CCG.

RQ5: Is it possible to incorporate full incremental dependency parsing into SMT while

maintaining SMT scalability and computationally efficientlinear decoding?

we have incorporated our IDLM into the direct translation model (DTM2) with linear

decoder. Our approach provided good improvements over a top-ranked baseline system.

We summarize here the major contributions of this thesis :

• We introduced a novel model of supertagged Phrase-based SMTwhich integrates

supertags into the target language model and the target sideof the translation

• We introduced a novel dependency-based LM which is deterministic in that it main-
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tains a limited number of parsing decisions at each state which. Furthermore, it is

incremental in Markovian fashion similar to Phrase-based SMT decoders and it can

naturally handle non-constituent constructions, being based on CCG.

• We introduced an extension to direct translation models that integrates incremental

dependency parsing while retaining the linear decoding assumed in conventional

Phrase–based SMT systems.

7.2 Future Research Avenues

This thesis provides many directions for future research opportunities. The incremental

dependency-based parser offers many opportunities for enhancements. The parser de-

pendency accuracy could be enhanced using joint simultaneous taggers for supertags and

operators, such that each tagger is informed with the other tagger possible decisions. This

would enable the usage of the states as features for both taggers which should have a

good effect on the taggers accuracy. Another possibility ofenhancing the parser is adding

an adequate graph search strategy such as A* search, so that the parser is able to keep a

reasonable number of states instead of single state, as is the case now.

The dependency linearization techniques that we introduced to convert the CCGbank

into incremental form need a more thorough study from the graph representation point

of view. We may want to know which kind of dependency graphs could be linearized,

what is the limitation of this linearization and whether there are more formalized ways to

perform such linearization.

Our DDTM system could be further expanded in many dimensions. For example,

some light lexicalization features could be of benefit to thesystem. Using the dependency

information encoded in the CCG categories as explicit features may help as well.

A possible future direction is to include supertags and dependency information from

the source side as well. This would help to obtain target structures in correspondence with

source structures. However, currently there are only a few languages for which supertag-
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sets and supertaggers exist, which limits such possible extensions. We hope that the work

presented in this thesis may encourage other researchers toinvestigate the possibility of

bootstrapping supertags for more languages.

7.3 Closing Remark

We believe that this thesis puts the first corner stone into a fully integrated lexicalized, syn-

tactic and semantic framework. In this thesis, we have just scratched the surface where

lexicalized syntactic translation is concerned; however,we believe that the same frame-

work can be extended to include logical semantic relations as well using the CCG syn-

tactic/semantic interface, which would be a further step inthe right direction to produce

better MT output.
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