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Abstract

Neural network training has been shown to be advantageous in many natural language processing
applications, such as language modelling or machine translation. In this paper, we describe in
detail a novel domain adaptation mechanism in neural network training. Instead of learning
and adapting the neural network on millions of training sentences – which can be very time-
consuming or even infeasible in some cases – we design a domain adaptation gating mechanism
which can be used in recurrent neural networks and quickly learn the out-of-domain knowledge
directly from the word vector representations with little speed overhead. In our experiments,
we use the recurrent neural network language model (LM) as a case study. We show that the
neural LM perplexity can be reduced by 7.395 and 12.011 using the proposed domain adaptation
mechanism on the Penn Treebank and News data, respectively. Furthermore, we show that using
the domain-adapted neural LM to re-rank the statistical machine translation n-best list on the
French-to-English language pair can significantly improve translation quality.

1 Introduction

One challenge which rises above others in natural language processing (NLP) is where application per-
formance decreases when there are dissimilarities between the training and the testing environments. In
research on domain adaptation, training data with the same style and topic (van der Wees et al., 2015)
as the test data is often defined as in-domain (ID) data, with everything else called general-domain (GD)
data. The ID data is often scarce and expensive to obtain, whereas the GD is plentiful and easy to access.

One approach to address the situation of scarce ID training data is through data selection. For example,
using the perplexity difference between ID and GD can select data that is close to ID and away from GD
(Moore and Lewis, 2010). The selected data can then be concatenated with ID data for training. However,
the drawback of using data selection is a threshold needs to be set, which often requires many models to
be trained and evaluated. The situation will worsen if neural networks are used since the computational
cost is immense in neural network training, where models often require days to converge even with the
help of GPU-accelerated computing. Thus, simply adapting previous domain adaptation techniques into
the neural network framework may not be efficient or effective. Ideally, we want to have an adaptation
approach which has the ability to learn knowledge from huge corpora at speed. The question that arises
here is how to make use of large amounts of GD data but avoiding long training times.

In neural network training, words are represented as distributed representations, so-called “word vec-
tors”, which can be pre-trained or trained with a specific task in mind. Although a pre-trained word
vector model is also learned with a neural network, the training can be very fast. Recent optimized work
shows learning word vectors can process more than 100 billion tokens in one day on a single machine
(Mikolov et al., 2013c). Another advantage of a pre-trained word vector model is its flexibility, as it
can be used later for different task-specific models. Furthermore, the pre-trained and the task-specific
word vector models have no functional difference. Accordingly, we think it is very natural to use them
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together. In this paper, we propose to perform domain adaptation from the large pre-trained word vector
models instead of the raw text, i.e. adapting from large pre-trained word vector into the task-specific one.
In this approach, we can make use of huge GD corpora with little speed overhead. We can also adapt the
richer GD word representations into ID training.

2 Background

2.1 Word Vectors
Word vectors are important building blocks in neural networks. While much work has been proposed
(Hinton et al., 1986; Mikolov et al., 2013b), we focus on the most popular approach of Mikolov et al.
(2013b), which uses a neural network to produce distributed word representations. Unlike other training
algorithms, labeled data is not required. It uses context words as features to make predictions. Word
vectors can capture linguistic regularities and similarities (Mikolov et al., 2013d) in the training corpus.
For example, using vector operations “king” - “man” + “woman” can result in a vector which is close to
the word “queen”.1

2.2 Neural Language Model
In a nutshell, the Recurrent Neural Network (RNN) language model (LM) uses the previous words to
estimate the probability of the next word. The simplest RNN LM consists of a look-up layer, a hidden
layer with recurrent connections and an output layer. The input words are firstly taken by the look-up
layer and converted into word vector representations. Then, the hidden layers project the word vectors
into a context vector with the states of input histories maintained. The output layer is a Softmax function.
It decodes the context vector and distributes probabilities over all words in the vocabulary. The word
with the highest probability is then chosen as the predicted output.

For notational convenience, the look-up layer, the hidden layer and the output layer of RNN LM can
be represented as in Equations (1), (2) and (3), respectively:

xt = look-up(s) (1)

ht = RNN(xt, ht−1) (2)

y(t) = Softmax(f(ht)) (3)

where xt is the word vector representation of s, s is the input at time t, and look-up is the look-up layer.
The hidden layer RNN is then applied on xt and the previous hidden state ht−1 to obtain the current
hidden state ht. f is a function that can map the hidden state into a vocabulary size vector. y(t) is the
prediction, which is the distribution over all words in the vocabulary.

Early work on neural LMs used simpler networks, such as the feed-forward neural network (Bengio et
al., 2003). Later work (Mikolov et al., 2010) used simple RNNs for the input sentences, which showed
large improvements over neural LMs. However, the simple RNN suffers from the vanishing gradient
problem (Bengio et al., 1994). The Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) or the more recently introduced gated recurrent unit (GRU) (Chung et al., 2014) use gates to
control the information flow from previous words. Thus, LSTM and GRU are better at capturing long-
term dependencies than simple RNNs, and are often chosen in practice.

2.3 Gated Recurrent Unit
We use the GRU as a case study in this paper. The GRU consists of an update gate and a reset gate, as in
Equation (4):

ut = σ(Wuxt + Uuht−1 + bu)

rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Wxt + U(rt � ht−1) + b)

ht = (1− ut)� ht−1 + ut � h̃t

(4)

1The example is taken from Mikolov et al. (2013d)
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where ut is the update gate; rt is the reset gate; h̃t is the candidate activation; � is the element-wise
multiplication operation, and ht is the linear interpolated output between the previous hidden state ht−1

and the candidate activation. Intuitively, the update gate determines the interpolation weights between
the previous hidden state ht−1 and the candidate activation, and the reset gate determines the information
flow from previous hidden states. If the reset gate is set to be 1 and the update gate is set to be 0, the
GRU is equivalent to the simple RNN. Wu, Uu, Wr, Ur, W and U are the weight parameters, and bu, br
and b are the bias values of the corresponding gates. σ is the sigmoid function and tanh is the hyperbolic
tangent function.

3 Adaptation Mechanisms

In this section, we describe several adaptation mechanisms proposed in this paper. In order to distinguish
the input layers or hidden layers used in the network, we use Equations (1) and (2) to represent the ID
training path. We use Equations (5) and (6) to notate the training path of GD:

x∗t = look-up∗pre−trained(s) (5)

h∗t = RNN∗(x∗t , h
∗
t−1) (6)

where look-up∗pre−trained is a pre-trained word vector model and static.2 x∗t is the word vector representa-
tion of input s, h∗t is the hidden state and h∗t−1 is the previous hidden state of word s. For example, given
input s from the ID training data, we can obtain two word vector representations (xt and x∗t ). In addition,
the two representations can then be fed into the corresponding hidden layer (RNN and RNN∗3). It is
also worth mentioning that the proposed LMs are trained from scratch on ID training data, but adapting
knowledge from the GD word vector model. Thus, the hidden state in Equation (6) is not strictly the “GD
hidden state”; it uses the word embeddings from the GD pre-trained word vector model, but the inputs
are still ID data.4 Figure 1 shows the adaptation flow proposed in this paper, where the domain-adapted
training is presented in Section 3.1, 3.2 and 3.3.

3.1 Adaptation on Word Vectors
The look-up table in the neural network contains word vector representations for all words in the vocab-
ulary. We first propose to integrate the word vectors of ID and GD. The word vector from the ID look-up
table contains the input word meanings with adaptation, whereas the GD look-up table contains richer
word representations trained on a very large data set. We propose the following two approaches to adapt
from the GD look-up table:

1. Word Vector Concatenation (WVC): we concatenate the word vectors obtained from ID and GD
lookup-tables, as in Equation (7):

xWVC
t = [x∗t , xt] (7)

2By static, we mean the pre-trained word vector model is not updated during training.
3Depending on the adaptation methods that we will describe in this section, RNN∗ is not always used. For example, when

the adaptation is performed on word vectors (Section 3.1), RNN∗ is not used.
4Note that Equation (1) and Equation (5) have the same input s.
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Figure 2: RNN LM with adaptation on word vectors, where ⊕ indicates the adaptation mechanisms described in Section 3.1.
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Figure 3: RNN LM with adaptation on context representations, where ⊕ indicates the adaptation mechanisms described in
Section 3.2.

2. Word Vector Sum (WVS): we sum the two word vectors from ID and GD lookup-tables. In this
approach, the two word vectors need to always have the same dimensionality, as in Equation (8):

xWVS
t = x∗t + xt (8)

When adapting, we replace the xt in Equation (2) with xWVC
t or xWVS

t . Figure 2 is a graphical illustration
of adaptation on word vectors.

3.2 Adaptation on Context Representations
Another approach is to delay the domain adaptation step until the context information is available. The
RNN encapsulates the word vectors of the current words and previous context, and then produces a
representation of the current context. Intuitively, if we maintain separate RNNs, where one uses the ID
word representation and another one uses the GD word representation, there will be two pieces of context
information available to us, namely contexts with the meaning of ID and GD. In this case, the following
domain adaptation approaches can be taken:

1. Context Vector Concatenation (CVC): we can concatenate the two context vectors, as in Equation
(9):

hCVC
t = [h∗t , ht] (9)

2. Weighted Context Vector Concatenation (WCVC): we can extend the CVC approach by applying
a concatenation weight on h∗t in Equation (6). Thus, the network can have simple control over the
amount of the information flowing from GD, as in Equation (10):

hWCVC
t = [Wh∗t , ht] (10)

3. Context Vector Sum (CVS): we can also add the ID context vector and the GD context vector. We
then have the compacted information from two domains to represent the context, as in Equation
(11):

hCVS
t = h∗t + ht (11)

4. Weighted Context Vector Sum (WCVS): another approach is to apply a weight vector on the GD
context vector. Thus the information from GD can be controlled before compacting, as in Equation
(12):

hWCVS
t =Wh∗t + ht (12)
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Figure 4: RNN LM with gated adaptation, where indicates the gates mechanisms described in Section 3.3.

Therefore, we replace the ht in Equation (3) with hCVC
t , hWCVC

t , hCVS
t or hWCVS

t when adapting. Figure 3
is a graphical illustration of adaptation on context representations.

3.3 Gated Adaptation
However, directly applying adaptation on the context may not be efficient. The information adapted from
GD is forced to be used by ID, i.e. the concatenation or sum operations. Furthermore, the adaptation
operations are segmented. Ideally, we want to have an adaptation mechanism that can sequentially adapt
the information from GD for the sequence inputs. Thus, we propose various gated domain adaptation
mechanisms.

1. Word Vector Gating (WVG): in the WVG approach, we first design a gate to control the information
flow from GD word vectors, as in Equation (13):

uWVG
t = σ(Wuxt + Uuht−1 +W ∗

ux
∗
t + U∗

uh
∗
t−1 + bu) (13)

where uWVG
t is the adapted update gate on word vectors. It is computed using the known knowledge,

i.e. xt and x∗t are the word vectors of the current word from ID and GD, respectively, and ht−1

and h∗t−1 are the previous context vectors of ID and GD, respectively. We then use a linear sum to
combine the word vector representations (ID and GD), as in Equation (14):

xWVG
t = uWVG

t � xt + (1− uWVG
t )� x∗t (14)

where xWVG
t is the domain-adapted word vector. Such an adaptation approach ensures that when the

gate uWVG
t tends to 1, we only use the ID word vector xt, and when uWVG

t tends to 0, the information
from GD is fully cascaded to the current word vector.

To use the domain-adapted word vector, we can simply replace the original xt in Equation (2) with
xWVG
t .

2. Context Vector Gating (CVG): a similar gating mechanism can also be applied to the context vector,
as in Equation (15):

rCVG
t = σ(Wrxt + Urht−1 +W ∗

r x
∗
t + U∗

r h
∗
t−1 + br) (15)

where rCVG
t is the adapted update gate on the context vectors. We can also use the linear sum

operation to combine the context vectors of ID and GD, as in Equation (16):

hCVG
t−1 = rCVG

t � ht−1 + (1− rCVG
t )� h∗t−1 (16)

We then use the domain-adapted context vector hCVG
t−1 to replace the original context vector ht−1 in

Equation (2).

3. Domain-Adapted GRU (DAGRU): the WVG and CVG mechanisms can also be used together. In
this way, we can adapt both the word and context information of GD to the ID word and context
vectors.

Figure 4 illustrates the gated adaptation mechanisms.



Sentences Tokens
Training 42,068 887,521

Validation 3,370 70,390
Test 3761 78,669

Table 1: Statistics of the Penn Treebank corpus.

3.4 Properties

It is also worth mentioning the following properties in our proposed adaptation mechanisms:
Property 1: One of the main differences between our proposed adaptation mechanisms and previous
adaptation mechanisms is that we adapt word vector representations from a pre-trained word vector
model trained using a large GD data set. However, previous work focused on adapting raw word(s) from
GD, i.e. the data selection approach or the model combination approach. Our adaptation method is a
more natural fit for neural network training. Furthermore, we think there is no contradiction between
our approach and the previous data selection approach (Moore and Lewis, 2010), as data selection can
always be performed before LM training. Note that our approach performs domain adaptation during
LM training.
Property 2: Our approach also differs in the notation of GD data. Previous work defines a large corpus
as the GD data, whereas our GD data here is the pre-trained GD word vector model. Thus, our adapted
RNN LM model is still (only) trained using ID sentences. In practice, this is an efficient adaptation
mechanism since there will be no extra training time brought by the additional training corpus.
Property 3: The pre-trained GD word vector model is static, which means it is not updated during
training. This is because the pre-trained word vector model is obtained from a very large GD data
set. The word vectors in such a model are not domain-specific. By keeping it static, we interpret it
as a “knowledge database”, and the knowledge should be consistent. Another practical reason for not
updating the pre-trained GD word vector model is that fewer parameters need to be optimized in the
network.

4 Experiments

4.1 Adaptation on Penn Treebank and News Corpus

The typical setting of domain adaptation is small amount of ID training data and large amount of DG
training data. Accordingly, we choose to use the availability of widely known Penn Treebank (Marcus
et al., 1993) portion of the Wall Street Journal corpus in our LM adaptation experiment.5 The words
outside the 10K vocabulary frequency list are mapped to the special unk token; sections 0-20 are used
for training, and sections 21-22 are used for validation. We report the perplexity on data from sections 23-
24. More detailed data statistics are summarized in Table 1. We use the pre-trained word vector Google
word2vec6 (Mikolov et al., 2013a) as the GD “look-up table”. It is trained on about 100 billion words,
and consists of 3 million words and phrases. The word vectors are 300-dimensional in the word2vec
model.

In the experiments, our LM is trained with a single GRU hidden layer containing 600 hidden units. We
uniformly initialize the weight parameters between [-0.1,0.1]. We set the maximum training iterations
to 25. We set the initial learning rate to be 1, and then apply the learning rate with a decay factor of 0.5
after 13 iterations. The model is optimized using stochastic gradient descent with batch size of 20. We
set the back-propagation through time to 40 time steps. The word embedding size in the loop-up layer is
set to 600 for the baseline models. For a fair comparison, we use word embedding size 300 in the gated
adaptation experiments since we are also using the pre-trained word vectors of 300.

Table 2 lists the perplexity results for the LM experiments. The baseline (KN5) model is a 5-gram
LM trained using modified Kneser-Ney smoothing. It results in 148.007 and 141.186 perplexities on the
validation and test data set, respectively. The baseline (word2vec) model is a neural LM, which uses the

5We download the data from http://www.fit.vutbr.cz/˜imikolov/rnnlm/simple-examples.tgz
6https://code.google.com/archive/p/word2vec/



Validation Set Test Set
Baselines
Baseline (KN5) 148.007 141.186
Baseline (word2vec) 121.871 117.730
Baseline (Standard) 92.983 89.295
Adaptation on Word Representations
WVC 95.149 91.414
WVS 88.398 85.231
Adaptation on Context Representations
CVC 90.337 86.168
WCVC 88.551 85.067
CVS 88.244 84.721
WCVS 90.293 86.679
Gated Adaptation
WVG 90.937 87.853
CVG 90.301 86.832
DAGRU 86.247 81.900

Table 2: LM perplexity on Penn Treebank corpus.

Sentences Tokens
Training 181,108 4,691k
Validation 3,000 64k
Test 3,003 71k

Table 3: Statistics of the News corpus.

pre-trained word2vec model as the embedding layer. It can achieve 121.871 and 117.730 perplexities on
the validation and test data set, respectively. The baseline (Standard) model is a neural LM, which is
trained only on the ID data, it can achieve 92.983 and 89.295 perplexities on the validation and test data
set, respectively. For the baseline (word2vec) model, we observe a sudden explosion in the evaluation
perplexity. We experimentally set the learning rate with a decay factor of 0.5 after 4 iterations.

In the adaptation on word representations experiments, we found that summing up the word vectors
in WVS can outperform the concatenation approach of WVC. Adding up the context representations in
CVS is also more useful than concatenating the context representations in CVC. Thus, we can draw the
conclusion that information from GD should be compressed (summed) into ID rather than using scat-
tered (concatenated) representations. However, weighted vectors can be harmful to the sum approaches
in WCVS. We think this is because the adapted representation is a newly computed vector after the sum
operation, where the weight vectors are hidden behind the sum operation. Thus the model can be hard to
optimize. In contrast, when applying weight vectors in the concatenation cases in WCVC, the adapted
representation is still separable into domains. Thus the weights in the adapted model are easy to opti-
mize. However, observing the experimental results, only a small positive impact can be observed when
applying weighted vectors to the concatenation approaches. For example, approximately 1 perplexity
point difference can be found between CVC and WCVC models. This indicates that the approach of
using weight vectors for domain adaptation in neural network training is too simple.

We now move our focus to the News corpus. We test the DAGRU adaptation approach on the target
side of the French-to-English News Commentary v10 corpus from the WMT2015 translation task. We
use corpus newstest 2013 for evaluation and newstest 2014 for testing the trained LMs. More detailed
data statistics are summarized in Table 3. Table 4 presents the LM perplexity differences between the
baseline LM and the adapted LM. On the News training corpus, the adapted LM can also produce a better
result than the baseline LM with a perplexity reduction of 12.

4.2 Statistical Machine Translation Re-ranking

In this experiment, we apply the DAGRU-adapted LMs trained in Table 4 on the statistical machine
translation (SMT) n-best re-ranking task. We use the French-to-English News Commentary v10 and
Europarl v7 corpus from the WMT2015 translation task to train our baseline SMT system. The newstest
2013 and 2014 data sets are used for tuning and testing for the SMT, respectively. The SMT baseline



System Validation Set Test Set
Baseline LM 94.341 109.420
DAGRU LM 85.551 97.409

Table 4: LM perplexity on News dataset.

System Tuning Test
Baseline 26.18 27.14
Baseline + baseline LM 26.71 27.65
Baseline + DAGRU LM 27.17 27.96

Table 5: BLEU scores of baseline SMT and re-ranked SMT.
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Figure 5: Language model coverage plot for baseline LM and DAGRU LM on the Penn Treebank data.

is trained using Moses (Koehn et al., 2007), with a lexicalized reordering model (Galley and Manning,
2008) and a 5-gram KenLM (Heafield, 2011) LM trained on the target side of the SMT training data.

The re-ranked SMT systems can both increase the baseline BLEU score significantly as seen in Table
5. Using the baseline LM for re-ranking, we can observe a 0.51 absolute improvement (1.8% relative).
Using the DAGRU LM for re-ranking, we an obtain a 0.82 absolute (3% relative) improvement. Com-
paring the two re-ranked systems, we observe that using DAGRU LM for re-ranking can provide an
additional increase of 0.31 (1.1% relatively) in BLEU score. The improvement is statistically significant
(Koehn, 2004). The significance testing uses bootstrapping method at the level p = 0.05 level with 1,000
iterations.



Validation Set Test Set
Word Embedding = 50
Baseline 104.465 101.285
SENNA (Collobert et al., 2011) 95.453 92.026
GloVe (glove 6b) (Pennington et al., 2014) 95.292 91.251
Word Embedding = 100
Baseline 97.034 93.645
GloVe (glove 6b) (Pennington et al., 2014) 89.521 85.330
Word Embedding = 200
Baseline 94.201 90.993
GloVe (glove 6b) (Pennington et al., 2014) 86.638 82.762
Word Embedding = 300
Baseline 92.983 89.295
GloVe (glove 6b) (Pennington et al., 2014) 86.438 82.593
GloVe (glove 42b) (Pennington et al., 2014) 87.096 82.297
GloVe (glove 840b) (Pennington et al., 2014) 86.853 82.165
Google (word2vec) 86.247 81.900

Table 6: The DAGRU adaptation on different word vector models

4.3 Observations

There are many reasons to explain the efficiency of the DAGRU approach. First, from the perspective of
adapted information, our method is not only adapting knowledge from GD, but also with very little speed
overhead in the neural network training framework. It makes use of the internal data representation in
neural network training. We adapt GD information directly from distributed word representations, which
is a more natural way of learning in the neural network.

A further possible explanation is that the DAGRU approach is a better fit to the sequence learning
tasks. We proposed several adaptation methods in Section 3, where adapting word vector representations
ignores the previously adapted histories. Words are adapted individually from GD at each step. The ap-
proach of adapting context vector representations has the same issue. Although the adapted information
is the context vectors which are generated by previous histories, the adaptation is still segmented. Taking
the CVC approach as an example, the adapted context vector hCV C

t is only used for predicting outputs
in the output layer at step t, but not in the adaptation operation at step t + 1. In contrast, the DAGRU
approach can achieve sequential adaptation. The gates (uWVG

t and rCV G
t ) are computed by the previous

adapted context vector ht−1 and the previous GD context vector h∗t1 . Furthermore, the computation of
the current adapted representation also involves ht−1 and h∗t1 . Thus, the adaptation histories are managed
by the model and sequentially traverse along the input string.

Furthermore, we also compare the learning curves between the baseline LM and the DAGRU LM on
validation and test data of the Penn Treebank. As Figure 5 shows, the predictions become more certain
and accurate after iterations for training both LMs. Already after training iteration 2, the DAGRU LM
starts to outperform the baseline LM in terms of perplexity at every iteration. The plots flatten after 18
iterations, and the learning begins to converge for both the baseline LM and DAGRU LM.

To demonstrate the scalability of the DAGRU adaptation approach, we also train LMs adapting from
other freely available word vector models. SENNA (Semantic/syntactic Extraction using a Neural Net-
work Architecture) is the word vector model received after a LM training (Collobert et al., 2011). The
training data is obtained from Wikipedia. GloVe (Pennington et al., 2014) – Global Vectors for Word
Representation – provides several versions of word vector models. The glove 6b model is trained on
Wikipedia data and the English Gigaword Fifth Edition corpus;7 the glove 42b model is trained on the
Common Crawl data; and the glove 840b model is trained on the the Common Crawl and additional web
data.

Table 6 presents the experimental results of DAGRU adaptation using different word vector models as
GD data. The baseline models are trained on the Penn Treebank only. The word embedding numbers in
Table 6 indicate the word vector size of the adapting word vector model, e.g. the SENNA model has a
word vector size of 50 under Word Embedding = 50 setting. For the baseline systems with embedding

7https://catalog.ldc.upenn.edu/LDC2011T07



size 50 and 100, we observe a sudden explosion in the evaluation perplexities with the decay factor
setting described in Section 4.1. We experimentally set the learning rate to a decay factor of 0.5 after 8
iterations. In Table 6, the DAGRU approach can produce better perplexity results in all settings.

5 Related Work

Domain adaptation for n-gram LMs is a well-studied research field. In general, there are approaches to
select data which are similar to ID from GD (Moore and Lewis, 2010; Axelrod et al., 2011; Duh et al.,
2013; Toral, 2013). There are also model mixture approaches (Bellegarda, 2004; Hsu and Glass, 2006;
Allauzen and Riley, 2011), which try to find a weight to combine the ID LM and GD LM.

In neural LM work, one approach to perform domain adaptation is to use an additional adaptation
layer to combine the GD neural LM into the ID neural LM (Park et al., 2010; Ter-Sarkisov et al., 2014).
However, an LM trained on all GD data is required. Curriculum learning (Bengio et al., 2009), which
rearranges the training data in a particular order to improve generalization, is also applied on domain
adaptation on a neural LM (Shi et al., 2013). In the work of Mikolov and Zweig (2012), word predic-
tions are conditioned on the word topic representations. Thus, building multiple topic-specific language
models is avoided.

6 Conclusions and Future Work

In this paper, we present and compare several domain adaptation approaches using neural LM train-
ing. Compared to previous domain adaptation methods, we propose the idea of learning GD knowledge
directly from GD word vectors instead of from raw sentences. Using the proposed domain adaptation gat-
ing mechanism, we demonstrate LM perplexity improvements on the Penn Treebank and News domain
data sets. We compare the adaptation performance on several publicly available word vector models. We
also apply the adapted LM in the SMT re-ranking task. The experimental results suggest that the pro-
posed domain adaptation gating approach can efficiently produce a better LM and significantly improve
SMT translation performance.

Our domain adaptation gating mechanism is not only limited to LM training. We are interested in
further exploring its performance on other NLP tasks, e.g. neural machine translation. In future work,
we are also interested to find out the efficiency of applying it to other gated RNNs, such as LSTM.
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Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa. 2011.
Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research, 12:2493–2537.

Kevin Duh, Graham Neubig, Katsuhito Sudoh, and Hajime Tsukada. 2013. Adaptation Data Selection using
Neural Language Models: Experiments in Machine Translation. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics, ACL 2013, 4-9 August 2013, Volume 2: Short Papers, pages
678–683, Sofia, Bulgaria.

Michel Galley and Christopher D. Manning. 2008. A Simple and Effective Hierarchical Phrase Reordering Model.
In 2008 Conference on Empirical Methods in Natural Language Processing, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 848–856, Honolulu, Hawaii, USA.

Kenneth Heafield. 2011. KenLM: Faster and Smaller Language Model Queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages 187–197, Edinburgh, Scotland.

G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. 1986. Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, vol. 1. In Distributed Representations, pages 77–109. MIT Press, Cambridge,
MA, USA.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. LONG SHORT-TERM MEMORY. Neural Computation,
9(8):1735–1780.

Bo-June Paul Hsu and James R. Glass. 2006. Style & Topic Language Model Adaptation Using HMM-LDA.
In EMNLP 2007, Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing,
22-23 July 2006, pages 373–381, Sydney, Australia.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke
Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan
Herbst. 2007. Moses: Open Source Toolkit for Statistical Machine Translation. In ACL 2007, Proceedings of
the 45th Annual Meeting of the Association for Computational Linguistics, Prague, Czech Republic.

Philipp Koehn. 2004. Statistical Significance Tests for Machine Translation Evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural Language Processing , EMNLP 2004, A meeting of SIGDAT,
a Special Interest Group of the ACL, held in conjunction with ACL 2004, 25-26 July 2004, Barcelona, Spain,
pages 388–395, Barcelona, Spain.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a Large Annotated Corpus
of English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

Tomas Mikolov and Geoffrey Zweig. 2012. Context Dependent Recurrent Neural Network Language Model. In
2012 IEEE Spoken Language Technology Workshop (SLT), pages 234–239, Miami, Florida ,USA.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur. 2010. Recurrent Neural
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