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Abstract. CuCl thin films grown on (100) Si by thermal evaporation are studied by means of low temperature 

photoluminescence (PL) and reflectance spectroscopies. Spatially and wavelength resolved room temperature 

cathodoluminescence (CL) imaging of the surface of the CuCl samples in a scanning electron microscope (SEM) has also 

been performed. The reflectance spectra are modeled using a dielectric response function with various models involving 

dead layers and reflected waves in the thin film and the exciton-polariton structure obtained is compared to other studies 

of CuCl. The modeling is shown to match the experimental data quite well when a dead layer is included at the air/CuCl 

and CuCl/Si interfaces. Some inconsistencies between the CL spectra and those measured by PL and reflectance have 

been observed. The effects of changing the accelerating voltage of the probe from 10 keV to the range 1-5 keV to allow 

depth analysis of the CL are reported, in order to pinpoint the spatial origin of the CL emission within the thin film. 
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INTRODUCTION 

Wide band gap materials have been studied extensively for a range of applications such as UV light emitting 

diodes, diode lasers and detectors [1]. Most of these efforts have focused on II-VI and III-nitride material systems, 

with the latter being the most productive for applications to date. A fundamental problem with these systems is the 

large lattice mismatch (~ 13% [2]) between the GaN epitaxial layers and suitable substrates (e.g. SiC, α-Al2O3), 

which results in high densities of threading dislocations. With a band gap of 3.39 eV, a large exciton binding energy 

of 190 meV, and a lattice mismatch with cubic Si of <0.4% at room temperature [3], CuCl is not hindered in this 

regard. CuCl is closely lattice-matched to both Si and GaAs and is an ideal candidate for the development of hybrid 

electronic-optoelectronic platforms. The low lattice mismatch should allow for low defect density CuCl growth on 

silicon substrates. The optical properties of CuCl thin films, their detailed understanding and optimization, are key to 

potential uses of this material in optoelectronic devices.  

The purpose of this paper is to report low temperature reflectance and PL data from thin CuCl films on (100) Si 

substrates, to model the exciton-polariton structure underlying such phenomena, and to compare and contrast these 

data with room temperature CL images and spectra of the same samples in order to develop a more detailed 

understanding of the optical properties of such films.  
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EXPERIMENTAL TECHNIQUES 

CuCl thin films are grown on Si substrates with (100) surface orientation approximately 2 cm by 1.5 cm in size 

cut from a 4 inch silicon wafer. These wafers are single-sided, polished, p-type boron-doped silicon with a resistivity 

in the range of 0-20 Ωcm. Prior to deposition, the substrates were degreased using Decon solution and organic 

solvents. The substrate native oxide is removed using dilute HF. Commercially available CuCl beads with 99.99% 

purity (Sigma-Aldrich) were evaporated from a quartz crucible onto the substrates using an Auto 306 Edwards 

evaporation system. The vacuum deposition was performed at ~1 x 10
-6

 mbar at a rate of ~0.5 nms
-1

 until the desired 

thickness of 2000 nm was obtained. Due to the hygroscopic nature of CuCl, it was essential that the samples were 

stored in a vacuum container at all times upon completion of the deposition. Exposure to atmospheric moisture in air 

causes the optical properties of the material to decay due to an increase in the level of hydrated oxyhalides of Cu
++

. 

[4] 

The low temperature PL and reflectance scans were performed in a Janis CCS-500 closed-cycle cryostat in a He 

exchange gas environment. The temperature was controlled using an Oxford Instruments ITC-4 controller, resistive 

heater, and a 27 Ω rhodium-iron resistance sensor on the sample holder. A deuterium lamp illuminated the samples 

during reflectance scans and a Kimmon IK Series He-Cd laser 325 nm was used for the PL scans. The angle of 

incidence for the reflectance scans was <10˚ to the c-axis. Spectra were acquired using a Bomem DA8 Fourier 

Transform spectrometer fitted with a Hamamatsu R1913 photomultiplier (PM) tube with the PM output matched to 

the spectrometer using a Bomem variable gain preamplifier. The resolution of the spectra acquired using this setup 

was ~0.1 meV. CL scans were performed at room temperature using a Carl Zeiss EVO 50 Series SEM with an 

attached CL mirror and micrometer. Spectra were captured using the Gatan MonoCL monochromator with a 1200 

lines/mm grating and a constant probe current of 300 pA. 

 

REFLECTANCE MODELLING 

The classical theory of exciton-polariton coupling given by Hopfield and Thomas [5] was used to model the 

reflectance data. Each of the experimental scans were performed at near normal incidence to minimize the influence 

of longitudinal exciton bands and allow our spectra to be modeled using a coupled two-exciton band model for the 

CuCl Z1,2 and Z3 exciton bands. These models combine Maxwell’s boundary conditions with a form of ABCs. There 

are various possible ABCs reported but the ‘Pekar ABC’ has proved adequate for modeling our spectra. This 

specifies that the total polarization due to each exciton branch disappears at the crystal interface or at a finite 

distance from the interface which gives rise to an exciton dead layer, as detailed elsewhere [6]. We have modeled 

each of these scenarios with our model 1 ignoring this dead layer and applying Pekar’s ABC at the crystal interface 

and our model 2 including the dead layer thickness as a fitting parameter and applying Pekar’s ABC at the dead 

layer boundary. Once Maxwell’s equations are combined with Pekar’s boundary conditions, we are left with a series 

of simultaneous equations for the boundary conditions. Details on the derivation of the models used is available in 

previous work [7]. 

To aid the fitting procedure, initial values are taken from the experimental data for the transverse and 

longitudinal frequencies of the excitons Z1,2 and Z3 which can be estimated from the maximum and minimum 

reflectivity at the expected spectral regions. The static background dielectric constant can be estimated from the 

average reflection coefficient far from the areas of interest. By varying parameters such as the Z1,2 and Z3 

longitudinal and transverse exciton energies, the damping coefficient, exciton mass, and in the case of model 2 the 

dead layer thickness, the fitted reflectance spectra is optimized to the experimental data using a least squares 

procedure. For this we have used MATLAB [8]. 

For the first model we included the thickness of the material, the reflected waves from the CuCl/Si interface, and 

a wave transmitted into the silicon substrate itself. The series of simultaneous equations obtained from the 

combination of Maxwell’s equations with Pekar’s boundary conditions are modified to include these parameters and 

re-expressed as a matrix equation. For the second model we included same parameters as the first, but with the 

exciton dead layers at the air/CuCl and CuCl/Si interfaces included. Each of these dead layers has its own thickness 

and the equations are modified and re-expressed as a matrix equation as before.  
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RESULTS AND DISCUSSION 

Figure 1 (a) shows the experimental reflectance data as well as the best fits for each of the two models used. We 

can see that both of the models quite closely match the experimental data with the dead layer model (model 2) being 

slightly closer to the measured experimental values for the Z3 exciton (3.203 eV) and the Z1,2 exciton (3.275 eV). 

This figure also displays the Fabry-Perot oscillations present throughout the spectra away from the exciton positions. 

The modeling allows us to ascertain the values for the thickness of the film, damping parameters of the excitons, and 

the effective masses all at the area under reflection. These values are found to be quite close to the literature values, 

which can be found elsewhere [9] [10] [11], indicating that our sample is of high quality with a low degree of stress 

or strain present [12]. There was a slight increase in the effective mass for the Z3 exciton (2.5 instead of 2.4) and a 

larger thickness than deposited (2.3 μm instead of ~2 μm). The difference in thickness could be due to a small 

variance throughout the sample due to the nature of the deposition. 

We have also optically characterized the CuCl sample using photoluminescence. This is shown in figure 1 (b) 

with 3 main peaks visible. The free exciton peak Z3 appears at 3.203 eV which matches the value obtained from the 

reflectance data. The peak at 3.180 eV is attributed to the bound exciton peak I1 which may be associated with an 

impurity, such as a Cu
+
 vacancy [13]. The free bi-exciton PL band (M) is visible with the longitudinal (marked) at 

3.165 eV and the transverse at 3.173 eV, but of lower intensity. These are quite close to emissions previously 

recorded and with a similar order of intensity as well [14]. The broad PL band due to impurities, which can usually 

be observed on the low energy side of the I1 band, is not visible in this sample [15].  
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FIGURE 1.  (a) Comparison of the reflectance spectra of the CuCl sample with computed reflectance spectra. (i) Model 1 using 

the thin film interference effects. (ii) Experimental data. (iii) Model 2 using the thin film interference effects combined with dead 

layers at both the CuCl-Air and CuCl-Si interfaces. The data is offset for clarity by 1 and 1.8 for the experimental data and the 

Model 1 fit respectively. The vertical scale is correct for each of the fits provided the appropriate offset is taken into account. 

Model parameters are given in table 1. (b) Photoluminescence spectra of the CuCl sample recorded at 20 K and normalized to the 

peak of maximum intensity. (c) Cathodoluminescence spectra of the CuCl sample recorded at room temperature with a beam 

energy of 4 keV probe current of and normalized to the 390 nm peak. 

 

Deep level defect emission at photon energies below the band edge region is a useful tool for judging material 

quality. An example of such emission is the 520 nm band in CuCl as seen in figure 1 (c). This was recorded at 4 

keV, as there was a clear increase in the level of intensity emitted from the sample at this point. Figure 2 shows the 

effect of the beam energy on the CL output of this 520 nm band, which allows us to judge the depth at which defect 

contributions become important in the thin film samples. Several different samples have been tested with similar 

outcomes. The sample of highest quality (in terms of integrated PL intensity detailed in previous work [16]) was 

chosen for examination. 

Figure 2 (a) shows how the defect band at 520 nm increases relative to the 390 nm peak as the beam energy is 

increased. The small maximum in intensity between 1-2 keV is due to the overall CL at these energies being of low 

intensity and may be ignored. As the beam energy was increased to 4 keV, there was a clear increase in the intensity 

emitted from the surface. Using a Monte Carlo simulation of the sample at this energy [17], the penetration depth 

was found to be over 140 nm, which appears to be a crossover point within the material for a high level defect 

emission CL signal to be observed. Similarly between 20-30 keV (and presumably beyond, although the limit of this 

SEM is 30 keV) we can see a leveling off of the relative 520 nm intensity. This can be attributed to the finite 

thickness of our sample. By tilting the sample in the SEM and imaging the edge of the material at a high resolution, 

the thickness of the CuCl layer was measured to be ~2 μm. To ensure minimum variance in thickness, the CL 

spectra were recorded in close proximity to this edge region. A beam energy of 22 keV or above will penetrate this 

layer and the Si substrate beneath. Previous studies [18] and our own observations have shown that the Si substrate 

does not contribute to the 520 nm or other emission bands. Therefore, the luminescence observed above this beam 

(a) (b) (c) 
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FIGURE 2. CL data from CuCl thin film sample. (a) Intensity of peak intensity of 520 nm emission band normalised to the band 

edge emittance peak as a function of beam energy. (b) The subtraction from each other of two CL images recorded in 

polychromatic mode at 4 keV and 30 keV. Differences between the two beam energy images are clearly seen with the brighter 

material indicated by the arrow coming from the 30 keV image. (c) Conventional (secondary electron) SEM image of the same 

area imaged by CL. 

 

energy comprises luminescence from within the entire CuCl layer and no further changes in the band edge to deep 

level emission are seen, as expected. In figure 2 (b) and (c) we can see the increase in the beam energy has allowed 

us to image defects from beneath the surface of the material. The shapes in area indicated by the white arrow in (b) 

were not present in the 4 keV CL image or in the SEM image (c). Their position within the material can be 

ascertained by varying the beam energy and recording the initial and final positions of CL spectra change. Combined 

with the penetration depth of the beam energy this would allow their depth within the material to be ascertained.  
 

CONCLUSIONS 

CuCl thin films grown on Si (100) substrates have been optically characterized. Strong exciton and bi-exciton 

features have been observed at low temperature for both PL and reflectance spectra. The results of reflectance 

modeling using a dielectric response function have been shown to match our experimental spectra and can be used to 

characterize future samples. CL spectra at increasing levels of beam energy have been analyzed showing the 

increase in the defect band within CuCl relative to the 390 nm peak. Polychromatic CL imaging has been used to 

show the increase in detail obtained from this band beneath the sample’s surface. 

The authors gratefully acknowledge funding from Science Foundation Ireland under the Research Frontiers 

programme and Enterprise Ireland under the Proof of Concept programme. 
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