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Abstract—This article presents a system for texture-based
probabilistic classification and localisation of 3D objects in 2D
digital images and discusses selected applications. The objects are
described by local feature vectors computed using the wavelet
transform. In the training phase, object features are statistically
modelled as normal density functions. In the recognition phase, a
maximisation algorithm compares the learned density functions
with the feature vectors extracted from a real scene and yields the
classes and poses of objects found in it. Experiments carried out
on a real dataset of over 40000 images demonstrate the robustness
of the system in terms of classification and localisation accu-
racy. Finally, two important application scenarios are discussed,
namely classification of museum artefacts and classification of

metallography images.

Index Terms—Object Recognition, Statistical Modelling,
Wavelet Analysis, Image Processing

I. INTRODUCTION

A
fundamental problem of computer vision is the recog-

nition of objects in digital images. The term object

recognition covers both, classification and localisation of

objects. For the problem of object classification the system

must determine the classes of objects occurring in an image

from the set of known object classes Ω = {Ω1, Ω2, . . . ,

Ωκ, . . . , ΩNΩ
}. However, the number of objects in a scene is

typically unknown and must also be determined. In the case of

object localisation, the recognition system must estimate the

pose of an object in the image. The object pose is defined with

a translation vector t = (tx, ty, tz)
T

and three rotation angles

(φx, φy , and φz) around the axes of the Cartesian coordinate

system. The origin of the Cartesian coordinate system is

placed in the symmetry centre of the image, the x- and y-

axes lie in the image plane, and the z-axis is orthographic to

the image plane. These transformation parameters are divided

into internal (tint = (tx, ty)
T

, φint = φz) for 2D objects and

external (text = tz , φext = (φx, φy)T) for 3D objects.

For recognition of 3D objects in 2D images, two main

approaches are known in computer vision: based on the result

of object segmentation (shape-based), or by directly using the

object texture (texture-based). Shape-based methods make use

of geometric features such as lines or corners extracted by

segmentation operations. These features as well as relations

between them are used for object description [1]. However, the

segmentation-based approach often suffers from errors due to

loss of image details or other inaccuracies resulting from the

segmentation process. Texture-based approaches avoid these

disadvantages by using the image data, i. e., the pixel values,

directly without a previous segmentation step. For this reason

the texture-based method for object recognition has been

chosen to develop the system presented in this contribution.

The object recognition problem has been intensively inves-

tigated in the past. Many approaches to object recognition,

like the one presented in this paper, are founded on proba-

bility theory [2], and can be broadly characterised as either

generative or discriminative according to whether or not the

distribution of the image features is modelled [3]. Generative

models such as principal component analysis (PCA) [4], inde-

pendent component analysis (ICA) [5] or non-negative matrix

factorisation (NMF) [6] try to find a suitable representation

of the original data [7]. In contrast, discriminative classifiers

such as linear discriminant analysis (LDA) [8], support vector

machines (SVM) [9], [10], or boosting [11] aim at finding

optimal decision boundaries given the training data and the

corresponding labels [7]. The system presented in this paper

represents the generative approaches.

Classification and localisation of objects in images is a use-

ful, and often indispensable step, for many real life computer

vision applications. Algorithms for automatic computational

object recognition can be applied in areas such as: face classi-

fication [12], [13], fingerprint classification [14], handwriting

recognition [15], service robotics [16], medicine [17], visual

inspection [18], the automobile industry [13], [19], etc. Al-

though successful applications have been developed for some

tasks, e. g., fingerprint classification, there are still many other
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areas that could potentially benefit from object recognition.

The system described in this article has been tested in real

application scenarios. One of these is the classification of

artefacts following a visit to a museum, another is the analysis

of metallography images from an ironworks.

There are further interesting approaches for object recog-

nition. Amit et al. proposes in [20] an algorithm for multi-

class shape detection in the sense of recognising and localising

instances from multiple shape classes. In [21] a method for

extracting distinctive invariant features from images that can

be used to perform reliable matching between different views

of an object or scene is presented. In [22] the problem of

detecting a large number of different classes of objects in

cluttered scenes is taken into consideration. [23] proposes a

mathematical framework for constructing probabilistic hier-

archical image models, designed to accommodate arbitrary

contextual relationships. In order to compare different methods

for object recognition, in [24] a new database specifically

tailored to the task of object categorisation is presented. In

[25] an object recognition system is described that uses a new

class of local image features. The features are invariant to

image scaling, translation, and rotation, and partially invariant

to illumination changes and affine or 3D projection. In [26] a

multi-class object detection framework whose core component

is a nearest neighbour search over object part classes is

presented.

As can be seen above, a lot of valuable research work

has been done in the field of object recognition in the past.

However, many features of our system prove its novelty

and originality as well as high performance in the sense of

classification and localisation accuracy. One of them is the

fusion of multiple views based on a recursive density propa-

gation. Furthermore, the training phase in our system can be

performed using images taken with a hand-held camera. The

missing pose parameters are then automatically reconstructed

with the so called structure-from-motion algorithm [27]. In

order to improve the performance of our system, we also

introduced the colour and the context modelling. Moreover,

the object feature extraction can be performed on different

resolution levels of the wavelet transform [28]. The object

models learned for these different resolutions can be then

combined with each other to accelerate the search and improve

the recognition results.

Many of the system features are presented on the following

pages. Section II describes the training procedure for the

object and context modelling. The object recognition phase

is detailed in Section III. Section IV covers the experimental

results achieved on a large database of over 40000 images

of real objects captured against heterogeneous backgrounds.

Section V describes two real application scenarios success-

fully implemented with our system: classification of museum

artefacts and classification of metallography images. The final

conclusions of this work are presented in Section VI.

II. TRAINING

This section starts with a short description of the acquisition

of data for training in Section II-A, followed by an explanation

on the feature extraction process in Section II-B. The so called

“object area” is then defined in Section II-C. The statistical

methods for object and background modelling are presented

in Sections II-D and II-E respectively. Finally, Section II-F

briefly presents the statistical context modelling, which can

also be performed using the system in training mode. Since

the training process is identical for all objects Ωκ, the object

class index κ will be omitted (Ωκ = Ω) until the end of

Section II-E.

A. Training Data Collection

In order to capture training data, objects are put on a

turntable that rotates to set angles, and training images are

taken for each of these angles. The camera is fixed on a

mobile arm that can move around the object. The turntable

position produces information about the rotation φy of the

object around the vertical y axis. The position of the camera

relative to the object yields the object’s rotation φx around

the horizontal x axis. The object’s scale (translation tz along

the z) can be set with the zoom parameter of the camera, or

by moving the camera closer or further from the object. By

modifying the camera parameters and position, images can

be captured from all top and sidewise views of the object,

with their external pose parameters (φext, text) known for each

training image.

B. Feature Extraction with Wavelet Transform

Both gray level and colour images can be used for object

modelling. First, the system converts and resizes the original

training scenes into gray level or RGB images of size 2n×2n

(n ∈ N) pixels, then local feature vectors cm in these images

are computed via the discrete wavelet transform [28]. In order

to calculate the cm vectors, a grid with the size ∆r = 2|ŝ|,
where ŝ is the minimum multiresolution scale parameter1 s, is

overlaid on the image [29]. Figure 1 depicts this procedure for

the case of gray level scenes divided into local neighbourhoods

of size 4×4 pixels. Using the coefficients introduced in Figure

1, the local feature vector cm for the gray level image is

defined by,

cm =

(
ln(2ŝ|bŝ|)
ln[2ŝ(|d0,ŝ| + |d1,ŝ| + |d2,ŝ|)]

)
. (1)

In the feature vector, the first component stores information

about the mean gray level (low-frequencies) in the local neigh-

bourhood, while the second component represents discontinu-

ities (high-frequencies). The natural logarithm (ln) helps to

depress local artefacts which can occur in real environments.

In the case of RGB images, each colour channel is treated

independently. The feature computation for each channel is

performed in the same way as for gray level images (see Figure

1). Therefore, the local feature vector for colour images has six

components. The first cm,1 and the second cm,2 components

are calculated from the red channel, the third cm,3 and the

fourth cm,4 from the green channel, and the fifth cm,5 and

1i.e. Further decomposition of the signal with the wavelet transform is not
possible.
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Figure 1. 2D signal decomposition with the wavelet transform for a local neighbourhood of size 4× 4 pixels. The final coefficients result from gray values
b0,k,l and have the following meaning: b−2 : low-pass horizontal and low-pass vertical, d0,−2 : low-pass horizontal and high-pass vertical, d1,−2 : high-pass
horizontal and high-pass vertical, d2,−2 : high-pass horizontal and low-pass vertical.

the sixth cm,6 from the blue channel. Generally, the system is

able to compute local feature vectors for any resolution scale

ŝ, but in practice ŝ ∈ {−1,−2,−3} is preferred.

C. Object Area Definition

Since the object usually only composes a part of the image,

a tightly enclosing bounding region O is defined for each

object class. From here on we will term this bounding region

the object area. By this term the set of features belonging

to the object will be referred. The object area can change its

location, orientation, and size from image to image depending

on the object pose parameters. In the simplest case, when

the object is rotated by φint ∈ IR around the perpendicular

axis to the image plane and translated by tint ∈ IR2 in the

image plane, its appearance and size will not change. For more

complex transformations in the external pose, not only its size,

but also its appearance, i. e., pixel values in the object area, can

change. Thus for some external transformations (φext, text)

a local feature vector cm describes the object (cm ∈ O),

whilst for others the same vector belongs to the background

(cm 6∈ O). For this reason, the object area is modelled as a

function of the external pose parameters

O = O(φext, text) , (2)

ideally within a continuous domain. This is done by using the

so called assignment functions ξ defined for all feature vectors

cm and all training viewpoints (φext, text) as,

ξ = ξm(φext, text) . (3)

The assignment function ξm decides, whether the feature

vector cm belongs to the object in the pose (φext, text) or

to the background, as follows,

{
ξm(φext, text) ≥ SO ⇒ cm ∈ O(φext, text)
ξm(φext, text) < SO ⇒ cm 6∈ O(φext, text)

, (4)

where the threshold value SO is set experimentally and has the

same value for all object classes. The assignment functions are

trained for each training view separately

ξm(φext, text) =

{
1, if cm,1 ≥ Sξ

0, if cm,1 < Sξ
, (5)

where Sξ is a threshold value2. Since there is a finite number of

training views (φext, text), these are discrete functions initially,

but after interpolation with the sine-cosine transformation they

become continuous. Therefore, considering both the internal

and external transformation parameters, the object area can be

expressed by the function

O = O(φ, t) (6)

defined in a continuous six-dimensional pose parameter space

(φ, t). Please note that an object feature vector (cm ∈ O) for a

particular view (φext, text) is always computed on a particular

object point xm, i. e., it moves with the object within the image

plane in terms of internal pose parameters (φint, tint).

D. Statistical Object Modelling

In order to handle illumination changes and low-frequency

noise, the elements cm,q of the local feature vectors cm

are interpreted as normal random variables. Assuming the

object’s feature vectors cm ∈ O as statistically independent

of the feature vectors outside the object area, the background

feature vectors cm 6∈ O can be disregarded and modelled

separately as outlined in Section II-E. The elements of the

object feature vectors are represented with Gaussian den-

sity functions p(cm,q|µm,q, σm,q, φ, t). The mean µm,q and

standard deviation σm,q values are estimated for all training

views (φext, text), which form a subspace of (φ, t). Assuming

the statistical independence of the elements cm,q, which is

valid due to their different interpretations in terms of signal

processing (Section II-B), the density function for the object

feature vector cm ∈ O can be written as,

p(cm|µm, σm, φ, t) =

Nq∏

q=1

p(cm,q|µm,q, σm,q, φ, t) , (7)

where µm is the mean value vector, σm the standard deviation

vector, and Nq the dimension of the feature vector cm (Nq = 2
for gray level images, Nq = 6 for colour images). Further, it

is supposed that the feature vectors belonging to the object

cm ∈ O are statistically independent of each other. Under

2In the training phase objects are acquired against homogeneous back-
ground, either black (bright objects) or white (dark objects). Therefore, a
simple thresholding is sufficient for object area detection. (5) assumes bright
objects and would change its direction for dark ones.
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this assumption, an object can be described by the probability

density p as follows,

p(O|B, φ, t) =
∏

cm∈O

p(cm|µm, σm, φ, t) , (8)

where B comprehends the mean value vectors µm and the

standard deviation vectors σm. This probability density is

called the object density and, taking into account (7), can be

written in more detail as,

p(O|B, φ, t) =
∏

cm∈O

Nq∏

q=1

p(cm,q|µm,q, σm,q, φ, t) . (9)

In order to complete the object description with the object

density (9), the means µm,q and the standard deviations σm,q

for all object feature vectors cm have to be learned. For this

purpose, Nρ training images of each object fρ are used in as-

sociation with their corresponding transformation parameters

(φρ, tρ). The mean vectors µm, concatenated written as µ,

and the standard deviation vectors σm, concatenated written

as σ, can be estimated from the maximisation of the object

density (9) over all Nρ training images,

(µ̂, σ̂) = argmax
(µ,σ)

Nρ∏

ρ=1

p(O|B, φρ, tρ) . (10)

As a result of a subsequent interpolation step, the mean vectors

µm and standard deviation vectors σm are trained for all pose

parameters (φ, t) in a continuous sense.

E. Statistical Background Modelling

As mentioned in Section II-D, the background feature vec-

tors cm 6∈ O are assumed to be statistically independent of the

feature vectors inside the object area O and can be modelled

separately. Since in the recognition phase the background is a-

priori unknown, each possible value of the background feature

vector element cm,q can be observed with the same probability.

Thus, they are modelled as uniform random variables, and their

constant density functions,

p(cm,q) =
1

max(cm,q) − min(cm,q)
(11)

do not depend on the transformation parameters (φ, t). Assum-

ing the statistical independence of cm,q, (11) can be extended

to

p(cm) =

Nq∏

q=1

1

max(cm,q) − min(cm,q)
= pb , (12)

where pb is a constant value called background density.

F. Statistical Context Modelling

Usually, statistical approaches for object classification as-

sume the same a-priori occurrence probability for all consid-

ered object classes. However, with additional knowledge about

the environment in which a scene was captured, the occurrence

of some objects might be more likely than the occurrence of

others. Taking into consideration this additional knowledge in

the learning phase is called context modelling. In our approach

the contexts are trained separately from the objects. For all

considered contexts Υ ι=1,...,NΥ
the statistical context models

Mι=1,...,NΥ
are learned. The context models contain a-priori

densities pι(Ωκ) for all objects classes Ωκ=1,...,NΩ
taken

into account in the recognition task. It is assumed that the

number NΥ and the types of context are known. The training

starts with the image acquisition where Nι images are taken

from random viewpoints with a hand-held camera for each

context Υ ι. The objects Ωκ=1,...,NΩ
occurring in the images

are counted for each context. In the following Nι,κ denotes

how often the object Ωκ occurs in the context Υ ι. This number

defines the a-priori occurrence probability for the object Ωκ

in the context Υ ι as follows

pι(Ωκ) = ηιNι,κ , (13)

whereas the normalisation factor ηι ensures that the sum of the

a-priori occurrence probabilities for all objects in the context

Υ ι is equal to 1.

III. CLASSIFICATION AND LOCALISATION

This section describes the recognition mode of the system.

The classification and localisation algorithm for single-object

scenes is presented in Section III-A, while Section III-B deals

with multi-object scenes.

A. Single-Object Scenes

In this section it is assumed that each image contains exactly

one single object. In order to perform the classification and

localisation in the image f , the density values

pκ,h = p(Oκ|Bκ, φh, th) (14)

for all objects Ωκ and for a large number of pose hypotheses

(φh, th) are compared to each other. As you can see, the pose

parameter space has been discretised again (φh, th) and the

training interpolation to a fully continuous model (see Section

II-D) might seem to had been unnecessary. However, the time

optimisation in the recognition phase has got a higher priority

than the time reduction in the training process. First, the test

image f is taken, preprocessed, and the local feature vectors

cm are determined according to Section II-B. The computation

of the object density value pκ,h for the given object Ωκ,

and pose parameters (φh, th) starts with the estimation of the

object area Oκ(φh, th) which has been learned in the training

phase (Section II-C). For feature vectors from this object area

cm ∈ Oκ(φh, th) the mean value vectors µκ,m and standard

deviation vectors σκ,m have been trained and are stored in the

object models. Therefore, their density values

pcm
= p(cm|µκ,m, σκ,m, φh, th) (15)

can be easily determined. Now, the object density value is

calculated as follows

pκ,h =
∏

cm∈Oκ

max{pcm
, pb} , (16)

where pb is the background density introduced in Section II-E.

This is applied as a minimum multiplication component in
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Training Image of Ωκ in pose (φh, th) Test Image of Ωκ in pose (φh, th)

µκ,m 6= cm

Figure 2. Training image and test image of the same object in the same pose. Due to the occlusion with a razor in the test image, the test feature vector
cm is completely different from the corresponding training feature represented by µκ,m and σκ,m . Thus, the density value for cm is very close to zero
p(cm|µκ,m, σκ,m, φh, th) ≈ 0.

order to solve object occlusions such as that presented in

Figure 2. The object densities (16) normalised by a quality

measure Q are maximised over all object classes Ωκ and a

large number of pose hypotheses. The quality measure (also

called geometric criterion), defined in the following way

Q(pκ,h) = Nκ,h

√
pκ,h , (17)

decreases the influence the object size has on the recognition

results. Nκ,h denotes the number of feature vectors that belong

to the object area Oκ(φh, th). The classification and localisa-

tion process can be described by the following maximisation

term

(κ̂, φ̂, t̂) = argmax
(κ,φh,th)

Q(p(Oκ|Bκ, φh, th)) (18)

where (κ̂, φ̂, t̂) represent the final recognition result, i. e., the

class index and the pose parameters of the object found in

image f .

B. Multi-Object Scenes

This section deals with multi-object scenes under considera-

tion of context dependencies. These context dependencies have

been modelled in the training phase as described in Section

II-F. In the recognition phase there is no a-priori knowledge

about the context Υ ι, in which the test image f has been

taken. For this reason the algorithm automatically determines

the context first. When searching for the first object Ωκ1
in

the multi-object scene f , the algorithm does not make use of

contextual information. The class κ1 and the pose (φ̂1, t̂1) of

the first object is estimated by maximisation of the normalised

object density value with (18). It is assumed that at least one

of the objects from the set Ω = {Ω1, Ω2, . . . , Ωκ, . . . , ΩNΩ
}

occurs in the image f . Subsequently, the context Υ ι̂ for the

scene f (the context number ι̂) is determined by maximisation

of the a-priori probability for the first object pι=1,...,NΥ
(Ωκ1

)
over all modelled contexts

ι̂ = argmax
ι

pι(Ωκ1
) . (19)

In the next step, the system estimates the optimal pose param-

eters (φ̂κ, t̂κ) for all objects Ωκ=1,...,NΩ
using the Maximum

Likelihood (ML) method presented in Section III-A

(φ̂κ, t̂κ) = argmax
(φh,th)

Q(p(Oκ|Bκ, φh, th)) . (20)

Then, the object density values for the optimal pose parameters

are weighted with the a-priori probabilities pι̂(Ωκ) learned for

the context Υ ι̂ in the training phase

Q̂ι̂,κ = Q{pι̂(Ωκ)p(Oκ|Bκ, φ̂κ, t̂κ) . (21)

These normalised and weighted object densities Q̂ι̂,κ=1,...,NΩ

are now sorted in non-increasing order

Q̂κ1
≥ Q̂κ2︸ ︷︷ ︸
d1

≥ . . . ≥ Q̂κi
≥ Q̂κi+1︸ ︷︷ ︸
di

≥ . . . ≥ Q̂κI
, (22)

where I = NΩ and di is a difference between neighbouring

elements,

di = d(Q̂κi
, Q̂κi+1

) = Q̂κi
− Q̂κi+1

. (23)

The index î of the highest distance dî (∀ i 6= î : di ≤ dî) is

interpreted as the number of objects found in the multi-object

scene f and is calculated as

î = argmax
i

di . (24)

The final recognition result in the multi-object scene f are the

following object classes and poses:

first object (κ1, φ̂κ1
, t̂κ1

)

second object (κ2, φ̂κ2
, t̂κ2

)
...

last object (κî, φ̂κ
î
, t̂κ

î
)

. (25)

In order to evaluate the recognition algorithm for multi-object

scenes, not only the object classification result Ωκi
and the

object localisation result (φ̂κi
, t̂κi

) have to be verified, but

also the number î of objects found in the scene f must be

checked.

IV. EXPERIMENTS AND RESULTS

This section discusses the performance of our system on

3D object recognition in a real world environment. The

image database (3D-REAL-ENV) used in this experiment is

described in Section IV-A. Classification and localisation rates

for single-object scenes are presented in Section IV-B, while

Section IV-C evaluates the system performance for multi-

object scenes.
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Figure 3. Examples of test scenes on all three types of background Type ∈ {hom,weak, strong}. The top row shows images with homogeneous background
(Type = hom), the middle row images with weak heterogeneous background (Type = weak), and the bottom row images with strong heterogeneous
background (Type = strong).

A. 3D-REAL-ENV Image Database

In our experiments we used the 3D-REAL-ENV [30]

database consisting of ten real world objects which can be

seen in Figure 3. The object pose in 3D-REAL-ENV is defined

by internal translations tint = (tx, ty)
T

and external rotation

parameters φext = (φx, φy)
T

. The objects were captured in

RGB at a resolution of 640× 480 pixels under three different

illumination settings Ilum ∈ {bright, average, dark}. For this

experiment the images were resized to 256 × 256 pixels.

Training images were captured with the objects against a

dark background from 1680 different viewpoints under two

different illumination settings Ilum ∈ {bright, dark}. This

produced 3360 training images in total for each 3D-REAL-

ENV object. Each object was placed on a turntable performing

a full rotation (0◦ ≤ φtable < 360◦) while the camera attached

on a robotic arm was moved on a vertical to horizontal

arc (0◦ ≤ φarm ≤ 90◦). The movement of the camera

arm φarm corresponds to the first external rotation φx, while

the turntable spin φtable corresponds to the second external

rotation parameter φy . The angle between two successive steps

of the turntable amounts to 4.5◦. The rotation of the turntable

induces an apparent translation in the object position in the

image plane, which results in varying internal translation pa-

rameters tint = (tx, ty)
T

. These translations parameters were

determined manually after acquisition.

For testing, the ten 3D-REAL-ENV objects were captured

from 288 different viewpoints under the average illumina-

tion setting (Ilum = average) and against three different

backgrounds: homogeneous, weak heterogeneous, and strong

heterogeneous. This resulted into three test sets of 2880
images each denoted according to the background used as

Type ∈ {hom, weak, strong}. Test scenes of the first type

(Type = hom) were taken on homogeneous black background,

while 200 different real backgrounds were used to create het-

erogeneous backgrounds (Type ∈ {weak, strong}). In scenes

with weak heterogeneous background (Type = weak) the

objects are easier to distinguish from the background than

in scenes where strong heterogeneous background (Type =
strong) have been used (see Figure 3). Similarly to the

acquisition of training images, the objects were put on a

turntable (0◦ ≤ φtable < 360◦) and the camera moved on

Classification Rate [%] Localisation Rate [%]

3D-REAL-ENV Hom. Weak Strong Hom. Weak Strong

Back. Het. Het. Back. Het. Het.

4.5◦
GL 100 92.2 54.1 99.1 80.9 69.0
C 100 88.0 82.3 98.5 77.8 73.6

9.0◦
GL 100 92.4 55.4 98.7 80.0 67.2
C 100 88.3 81.2 98.2 76.4 72.1

13.5◦
GL 99.4 89.7 56.2 96.9 78.6 65.4
C 99.6 82.7 80.3 94.9 68.4 66.6

18.0◦
GL 99.9 89.2 55.1 96.6 71.4 54.5
C 97.3 80.6 68.6 94.3 64.9 60.7

22.5◦
GL 99.4 86.0 52.8 94.5 60.7 38.6
C 94.7 74.8 59.2 89.4 52.2 46.2

27.0◦
GL 96.5 69.4 54.4 83.8 49.9 32.8
C 93.8 53.6 50.2 78.3 35.8 35.6

Table I
CLASSIFICATION AND LOCALISATION RATES OBTAINED FOR

3D-REAL-ENV IMAGE DATABASE WITH GRAY LEVEL (GL) AND COLOUR

(C) MODELLING. THE DISTANCE OF TRAINING VIEWS VARIES FROM 4.5◦

TO 27◦ IN 5 STEPS. FOR EXPERIMENTS, 2880 TEST IMAGES WITH

HOMOGENEOUS, 2880 TEST IMAGES WITH WEAK HETEROGENEOUS, AND

2880 IMAGES WITH STRONG HETEROGENEOUS BACKGROUND WERE USED.

a robotic arm from vertical to horizontal (0◦ ≤ φarm ≤ 90◦).

However, for test images the turntable’s rotation between two

successive steps is 11.25◦. Thus, test views are different from

the views used for training. Also, the illumination in the test

scenes is different from the illumination in the training images.

B. Experimental Results for Single-Object Scenes

The recognition algorithm for single-object scenes described

in Section III-A was evaluated for the 3D-REAL-ENV image

database presented in the previous section. The training of

statistical object models was performed for 6 angle-steps

(4.5◦, 9◦, 13.5◦, 18◦, 22.5◦, 27◦). Since this was done twice,

i. e., for gray level and colour images, it resulted in 12
training configurations. The classification and localisation rates

obtained for these configurations are summarised in Table I. A

classification result is counted as correct when the algorithm

returns the correct object class. A localisation result is counted

as correct when the error for internal translations is not greater

than 10 pixels and the error for external rotations not greater

than 15◦. The results show that colour modelling brings a

significant improvement in the classification and localisation

rates for test images with strong heterogeneous background.

For scenes with homogeneous and weak heterogeneous back-

ground the recognition algorithm performs well even for gray
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Without Context Modelling With Context Modelling

Hom Weak Strong Hom Weak Strong

ON 100% 83.9% 43.2% 99.9% 88.2% 59.2%
CL 100% 91.9% 62.9% 100% 97.0% 87.5%
LL 99.7% 81.7% 58.1% 99.7% 81.7% 58.1%

Table II
QUANTITATIVE COMPARISON OF THE SYSTEM’S PERFORMANCE WITH

AND WITHOUT CONTEXT MODELLING. ON - OBJECT NUMBER

DETERMINATION, CL - CLASSIFICATION, LL - LOCALISATION.

level modelling. For these types of background the use of

computational demanding colour information can be avoided.

Object recognition takes 3.6s in one gray level image and 7s
in one colour image on a workstation equipped with a Pentium

4, at 2.66 GHz, and 512 MB of RAM.

C. Experimental Results for Multi-Object Scenes

For recognition of multi-object scenes, context modelling

was incorporated in the system in addition to statistical object

modelling. For each context considered in the experiments

(Υ 1 = kitchen, Υ 2 = nursery, Υ 3 = office), 100 images

were captured with a hand-held camera at random viewpoints.

Then, the a-priori occurrence probabilities for all objects in all

contexts were trained as described in Section II-F.

Altogether 3240 gray level multi-object scenes sized 512×
512 pixels were used in the testing phase of the recognition

algorithm. Each image contains between one and three objects

from the 3D-REAL-ENV database pictured in Figure 3. Sim-

ilarly to the case of single-object scenes, the test images were

divided into three types: 1080 images with homogeneous back-

ground, 1080 scenes with weak heterogeneous background,

and 1080 with strong heterogeneous background. Additionally,

the 3D-REAL-ENV objects were assigned into three different

contexts, namely the kitchen Υ 1, the nursery Υ 2, and the office

Υ 3. For each background type and each context, 120 one-

object images, 120 two-object images, and 120 three-object

images were created.

The quantitative comparison of our system’s performance

with and without context modelling is presented in Table

II. Since object localisation is performed for a-priori known

object classes, the context modelling does not influence its

performance rate. However, the classification and the object

number determination rates increase significantly when using

context modelling for scenes with real heterogeneous back-

ground.

D. Experimental Results for COIL Image Database

In order to allow a performance comparison of our system

with other object recognition approaches, we performed ad-

ditional experiments on the so called COIL image database

(Columbia Object Image Library). COIL-20 presented in [31]

consists of 20 objects, while COIL-100 [32] is a completion

of COIL-20 with additional 80 objects. Although the COIL

image database provides only gray level images and we

could not make use of the colour modelling, we achieved

satisfactory classification rates, namely 100% for COIL-20 and

98.9% for COIL-100. In [33], five tree-based machine learning

methods for object classification based on random extraction

and classification of subwindows are compared to each other

using the COIL-100 dataset. The average classification rate for

these approaches amounts to 86.7%.

V. REAL WORLD APPLICATION SCENARIOS

A. Annotation of Museum Visit Photos

It often happens that after spending few hours in a museum

we only remember some of the most impressive artefacts

on display. Fortunately digital photo cameras are convenient

extensions for our short-lived memory; pictures help us re-

member our experiences. Nowadays, cameras are omnipresent

on holidays, excursions and cultural tours.

Research initiatives such as SCULPTEUR 3 [34] and CHIP
4 [35] have targeted innovative ways of bringing the benefits

of digital technology for preservation, study and protection of

heritage collections. Recently, radio frequency identification

(RFID) tags have also been used to guide visitors through

discovery tours in museums and to provide enhanced infor-

mation on the items of interest to visitors [36]. Although

less interactive than solutions using radio tags the image-

based recognition of artefacts is less expensive considering that

RF tagged collections need to provide visitors with wireless

PDA devices that trigger these tags. Furthermore, it is not

encumbered by privacy concerns since the interests of visitors

cannot be traced without their consent as in the case of RF

tags.

Our targeted application starts from the observation that

many museum visitors actually take photos of items on display.

As the time goes by they remember less and less information

about the artefacts in the photos. In order to enrich the visit

experience the museum can provide the visitors with an on-line

or on-site service in which a visitor presents a set of digital

photos taken inside the museum and the museum returns

additional information about the artefacts contained in the

photos. Due to the amount of photos that would be presented

for annotation such an application is feasible for museums

only when the annotation process is entirely automated.

The crucial bottleneck in the automatic annotation system

corresponds to artefact identification i.e the classification

process that should have the ability to accurately recognise

the artefacts depicted in the submitted photos. The photos

submitted by visitors are quite diverse, being taken at various

positions around the artefact display. The scales at which

the artefacts appear in various photos also vary according to

the distance to the camera and the zoom level used when

the photo was captured. However the lighting conditions are

mostly invariant and known deriving from the light provided

in the museum exhibit space. Therefore, the challenges in

artefact recognition derive mainly from the changes in view

(angle) and scale of the artefact in the photos. Clearly this

is an ideal application scenario for the approach proposed in

this paper. In order to deal with changes in position multiple

views of the artefact can be captured on a turntable that

rotates the artefact in controlled steps around its own vertical

axis during the museum’s cataloguing process. The lighting

3Semantic and content-based multimedia exploitation for European benefit
http://www.sculpteurweb.org

4Cultural Heritage Information Personalisation http://www.chip-project.org
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could be constrained to be similar to that in the room where

the artefact is exhibited. Each photo to be recognised is

then matched to multiple-views of artefacts in the collection

captured in controlled conditions. A multi-scale approach can

deal with scale variations. We are currently designing and

building an prototype end-user application for this scenarios

in consultation with the National Museum of Ireland.

For preliminary experiments, we used an image database

containing 75 artefacts. For training, 72 different viewpoints

of all artefacts were used. For classification, 300 additional

images under real museum-like conditions were acquired. Our

system performed well for this image database and achieved

a classification rate of 95.3%.

B. Classification of Metallography Images

The system presented in this contribution is being success-

fully applied for analysis of metallography images from the

Ironworks in Ostrava (Czech Republic) [37]. The aim of this

analysis is monitoring the quality process in the steel plant.

Metallography is a complex analysis process performed in the

production of metal and composite materials with the purpose

of controlling the composition and quality of the final alloy.

This process involves various preparations of the metal speci-

men to be analysed followed by specialised visual inspection

carried out under optical or electron microscopy. Based on

the microscopy images a skilled technician can identify alloy

composition and processing conditions. Considering the visual

nature of the examination, metallography is an appealing test

application for our texture-based image recognition approach.

In order to classify metallography images into quality

categories (image concepts) the object recognition problem

reduces to an image classification task. The ground truth

knowledge about the quality categories was provided by a

human expert. The system has to find the concept Ωκ̂, (its

index κ̂) present in a test image f . For that, the density

values for all concepts Ωκ have to be compared to each other.

Assuming the feature vectors cm as statistically independent

on each other the density value for the given test image f and

concept Ωκ is computed with

pκ =

m=M∏

m=1

p(cm|µκ,m, σκ,m) , (26)

where M is the number of all feature vectors in the image

f . All data required for computation of the density value pκ

with (26) is stored in the statistical concept model Mκ. These

density values are then maximised with Maximum Likelihood

(ML) Estimation [38]

κ̂ = argmax
κ

pκ . (27)

Having the index κ̂ of the resulting concept the classification

problem for the image f is solved.

We tested our approach on 240 example metallography

images categorised into four quality classes by a human expert.

Our system provided the same classification results in 223
cases which yields a classification rate of 92.9%. We are

continuing the work with a comprehensive investigation on

quality scoring of metallography images, currently collecting

data and setting up a large ground truth database.

VI. CONCLUSIONS

This article presents a system for 3D texture-based prob-

abilistic object classification and localisation and its appli-

cations. In contrast to shape-based approaches, texture-based

methods do not use any segmentation techniques for feature

extraction. The features are computed directly from the image

pixels as described in Section I.

The training mode of the system (Section II) starts with

the local feature extraction by the discrete wavelet transform.

Subsequently, a tightly enclosing object area is learned for

each object class. Feature vectors inside this object area are

represented by normal density functions, while background

features are modelled with the uniform distribution. Finally,

context dependencies between objects are modelled in the

training phase.

The recognition mode of the system is described in Section

III. At first we present an approach that deals with single-

object scenes and solves the recognition problem by the max-

imum likelihood estimation. The second recognition algorithm

addressed in this paper deals with the problem of object classi-

fication and localisation in multi-object scenes. However, it

takes into consideration context dependencies between objects,

which are statistically modelled in the training phase.

As can be seen in (18), in order to perform the classification

and localisation of a single object in a single image the density

values pκ,h are compared to each other for all objects Ωκ

and for all pose hypotheses (φh, th). However, the number of

objects NΩ and the number of pose hypotheses Nh might vary

depending on the task definition and the desired localisation

accuracy. The running time of the recognition algorithm Trec

highly depends on these numbers and can be expressed by

Trec ∼ NΩ · Nh.

Experimental investigation has been carried out (Section

IV) on an image database of over 40000 images specifically

recorded for 3D object recognition in a real world environment

(3D-REAL-ENV). The classification and localisation results

obtained in the experiment prove the high performance of

our system. A boost in performance is obtained by using

colour and context modelling. The classification rate achieved

for 3D-REAL-ENV test images with strong heterogeneous

background is 54.1% for gray level modelling while when

colour information is applied the classification reaches 82.3%.

The performance of the localisation algorithm is also improved

by colour modelling for difficult heterogeneous environments

from 69.0% on gray level modelling to 73.6% on colour

modelling. Furthermore, due to the modelling of context de-

pendencies between objects, higher classification rates where

obtained for multi-object scenes. The classification rate for

multi-object scenes with strong heterogeneous background but

without considering context dependencies amounts to 62.9%,

while taking into account context increases the classification

rate to 87.5%.

The system described in this paper is currently being em-

bedded in real applications (Section V). The first application
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targeted is recognition of museum artefacts from photos taken

by visitors. The second application investigated is the analysis

of metallography images from an steel plant.

As shown, the texture-based statistical object classification

approach presented in this article can be easily adapted to other

computer vision tasks. Two such tasks, namely classification of

museum artefacts and of metallography images are described

in here. Improvements are possible and we are currently inves-

tigating some promising paths. One extension of our approach

is combining the appearance-based model with a shape-based

model for object recognition. There are objects with the same

shape, which are distinguishable only by texture, but one can

also imagine objects with the same texture features, which

can be easily distinguished by shape. Finally, since our system

is adaptable to many image classification tasks we intend to

apply it for image and video content retrieval.
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