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ABSTRACT
Traditional search system users actively interact with the system
to complete their search task. We believe that the next generation
of search systems will see a shift towards proactive understanding
of user intent based on analysis of user activities. Such a proactive
system could start recommending documents that are likely to help
users accomplish their tasks without requiring them to explicitly
submit queries to the system. We propose a framework to evaluate
such a search system. The key idea behind our proposed metric is to
aggregate a correlation measure over a search session between the
expected outcome, which in this case refers to the list of documents
retrieved with a true user query, and the predicted outcome, which
refers to the list of documents recommended by a proactive search
system. Experiments on the AOL query log data show that the
ranking of two sample proactive IR systems induced by our metric
conforms to the expected ranking between these systems.
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1 INTRODUCTION
Users typically interact with a search system to complete a task
within a search session. Examples of such search tasks are learning
or gathering knowledge on a topic, or a goal driven task, such as
making arrangements for traveling to a conference etc. A task often
consists of a number of granular sub-tasks, each with a correspond-
ing information need. For each such information need, a user needs
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to submit a query to the search system, which then returns a ranked
list of documents, which could potentially help the user with rel-
evant information to complete the sub-task. A traditional search
system involves considerable user effort in search task interactions,
where the user need to manually execute a set of queries. Now,
consider an alternative search system designed to minimize this
user interaction. One of the useful features of such a system would
be recommendation of a set of documents to the user that may
be relevant to his next sub-task (information need). To the best of
our knowledge, no reported research on proactive search systems
(PSSs) considers methods to suggest relevant documents ahead of
time without requiring the user to enter a query expressing their
next information need.

Existing research on proactive systems include tracking eye
movements over document titles to proactively find related doc-
uments [7], proactively suggesting attachments of an email from
previous emails [9], and utilizing screen surveillance signals for
proactive retrieval of relevant information [10]. A set of desirable
characteristics of a proactive IR interface is described in [1]. Studies
on related topics, such as search task classification [6] and query
prediction [3, 4] can serve as useful inputs to the development of
PSSs. Despite the presence of a considerable number of reported
studies, there exists no standard definition of proactivity in IR. For
our work, we define a IR system to be proactive if given the con-
text of a small number of queries towards the beginning of a search
task, the system is able to recommend documents that are likely to
be relevant for accomplishing their current task. As the title of our
paper suggests, unlike traditional search systems a PSS does not
procrastinate possible IR actions until the user inputs a query.

In this paper, we develop a framework to evaluate the effective-
ness of a PSS within a search session. The key idea is to aggregate
a correlation measure over a search session between the expected
outcome, which in this case refers to the list of documents retrieved
with a true user query, and the predicted outcome, which refers to
the list of documents recommended by a proactive system. A PSS
evaluation metric needs to take into account of the fact that differ-
ent search systems can start recommending documents at different
points in time. For instance, one system could start suggesting af-
ter the first query of each session, whereas the other could wait
to accumulate more contextual data (e.g. till the third query in a
session) before it starts proactive document recommendation.

2 PROACTIVE SEARCH SYSTEM OUTLINE
In this section, we describe the outline of a PSS and methodolo-
gies that may be used for contextual recommendation in a PSS.
Given a context of previously entered queries by a user within a

Short Research Papers II SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

1157

https://doi.org/10.1145/3209978.3210114
https://doi.org/10.1145/3209978.3210114


Figure 1: Schematic diagram of a proactive search system.

search session, say, q1, . . . ,qn−1, the objective of a PSS is to sug-
gest documents retrieved in response to the query qn without the
user explicitly submitting qn to the system. A simple approach
towards developing a PSS is to make use of a query prediction
system, which given a context of previous search queries within a
session, q1, . . . ,qn−1, predicts the next query q̂n . Such a system is
schematically described in Figure 1.

Without loss of generality, we assume that a PSSmay start recom-
mending documents after any length of context of queries executed
within a search session as shown by the dotted vertical line in
Figure 1. Before this point in time, a PSS behaves identically to a
standard search system, i.e. given a query qi , it returns a ranked
list of documents L(qi ). From the point of inception of proactivity,
in addition to the ranked list for the current query L(qi ), a PSS
starts recommending a ranked list of documents, L(q′i+1), based on,
generally speaking, a set of predicted next queries. A PSS system
can be considered to perform effectively if the documents in this
predicted list overlap with those that the user would see after ex-
plicitly executing the next query in sequence, qi+1. The objective
and the challenge of a PSS is then to accurately estimate (ahead of
time) the documents retrieved in response to the next information
need of the user within the search session.

3 A PSS EVALUATION METRIC
In this section, we first introduce three desirable characteristics of
an evaluation metric for a fair and meaningful comparison between
PSSs before formally describing the metric.

3.1 Desirable Characteristics of the Metric
C1: Rewards computed exclusively on similarities between
predicted and groundtruth lists of documents. The first desir-
able characteristic of the PSS evaluation metric is that it should
not attempt to evaluate the effectiveness of any intermediate step
opaque to the system output. This is because it should be possible
to evaluate PSSs that do not employ any intermediate step. Thus,
the evaluation metric should only consider the predicted list of rec-
ommended documents and compare it with the list of documents
that would have been retrieved if the user had actually executed
the true query in the system.

C2: Normalized cumulative rewards. The second character-
istic of the metric is that the rewards of matching the expected list
with the predicted list should be accumulated for each query within

a search session that follows the recommendation inception point.
For instance, the rewards should be accumulated over all queries
to the right of the vertical line in Figure 1, i.e. queries qi , . . . ,qn .
This characteristic ensures that a PSS is considered effective if it
performs consistently well throughout the search session.

The metric should also consider the fact that different PSSs can
have different inception points (no fixed value of i for the vertical
line in Figure 1). Consequently, the accumulated rewards should be
normalized with respect to the proactivity period, or more precisely,
the number of queries for which a PSS suggests documents ahead
of time within a search session. As an example, in Figure 1 this
normalization value is n − i + 1.

C3: Rewards weighted on context length of queries. The
third important characteristic of a PSS metric is that it should be
able to favour systems that start recommending early (i.e. capable
of addressing the cold-start problem). This is because from a user
experience point of view, such a system should be considered more
proactive. In contrast, this metric should penalize a system which
waits for a large number of queries to be executed by a user before
starting to recommend documents proactively.

3.2 Formal Definition
We use the following notations in the description of our proposed
metric. We denote the effectiveness measure of a PSS as P(π ,M,n),
which is parameterized by the π -index and the number of recom-
mended documentsM over a search session of n queries.

#Queries in a session n
Proactivity inception index (π -index) π
#Documents recommended by a PSS M

3.2.1 Reward function. The reward function outlined in Section
3.1 is a measure of how similar the predicted list of documents is
to the groundtruth list of documents. The reward function, r (k),
is thus defined for a particular query qk within a session, where
i ≤ k ≤ n. Another parameter of the reward function is the number
of top ranked documents, M , returned by a PSS based on which
the similarity between the predicted and the groundtruth lists is
computed. The reward function is presented in a general form in
Equation 1, where ϕ denotes a function to measure the similarity be-
tween the predicted and the groundtruth ranked lists of documents
(each of cardinalityM) for the next query in sequence, qk+1.

r (k,M) = ϕ(L(qk+1),L(q
′
k+1)). (1)

This definition of the reward function is consistent with character-
istic C1. We propose two specific variants of the function ϕ. The
first of the two is based on reciprocal of the highest rank at which
a document from L(qk+1) is seen in L(q′k+1).

ϕ1(L(qk+1),L(q
′
k+1)) =

1
m
, m = min

j ∈H
j

= 0, if H = {}, whereH = Lj (q
′
k+1) ∩ L(qk+1).

(2)

A problem with the reciprocal rank (RR) based reward function is
that it considers each document in the reference list to be equally
relevant. However, it is more intuitive to think that a PSS where the
first predicted document is the 1st in the reference list, is preferable
to one in which the first predicted document is the 10th item in
the reference list. To capture the intuition of rank correlation, we
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propose a second variant of the reward function that employs the
Spearman’s rank correlation coefficient (normalized in [0, 1] so as
to ensure positive rewards) between the predicted and the reference
lists. This is shown in Equation 3.

ϕ2(L(qk+1),L(q
′
k+1)) =

1
2
(
1 + ρ(L(qk+1),L(q′k+1))

)
. (3)

3.2.2 Accumulating reward functions. The reward functions are
accumulated over a session as shown in Equation 4.

P(π ,M,n) =
1

n − π

n∑
k=π

r (k,M)

k
. (4)

As perC2, the total reward function is normalized by the total num-
ber of queries with proactivity retrieval, i.e. n − π . It is easy to see
that as per C3, the metric in Equation 4 discounts rewards that are
accumulated towards the end of a session by the factor 1

k . This way
the metric tends to favour systems that become proactive towards
the beginning of a session. According to the reward function used,
we get two variants of the metric, which we name as PREVAL-
RR (RR-based proactivity evaluation) and PREVAL-ρ (Spearman’s
coefficient-based proactivity evaluation), respectively.

3.2.3 Analysis for variations in π -index. In this section, we ana-
lytically show that it is possible for our metric PREVAL (Equation
4) to score a system B higher than A even if A starts recommending
earlier than B. This analysis ensures fairness between two PSSs
with different π -index values. For simplicity, we base our analy-
sis on the RR-based reward function, i.e. PREVAL-RR. Let the two
systems be A(πA,M,n) and B(πB ,M,n), where πA < πB . Let the
reward function of system A for query qk bemA

k and that of B for
the same query bemB

k . If system B outperforms A, then

PB (πB ,M,n) > PA(πA,M,n), (5)

which on substitution from Equation 4 gives
n∑

k=πB

rB (k,M)

k
>

n∑
k=πA

rA(k,M)

k
≥ 0. (6)

Substituting Equation 2 into 6 gives
n∑

k=πB

1
k
(
1

mB
k

−
1

mA
k

) >

πB−1∑
k=πA

1
kmA

k

≥ 0. (7)

Now, with reference to Equation 7, we consider two scenarios with
different ideal rankings between systems A and B.

Case-1. System A does not perform worse than B from the point
B starts prediction (in which case the ideal rank is A > B). To see if
this could happen, we substitutemA

k ≤ mB
k , ∀k = πB , . . . ,n and get

0 ≤

πB−1∑
k=πA

1
kmA

k

≤ 0, (8)

which shows that PB (πB ,M,n) > PA(πA,M,n) is a contradiction.
In other words, the metric indeed scores system A better. This is
desirable because B’s predictions were late and not better than A.

Case-2. System A performed well before B’s recommendations
after which B performed well and A poorly. The ideal rank in
this case is A < B. To see what could happen in this scenario, let
mA
k = 1∀k = πA, . . . ,πB − 1 (A’s recommendation was perfect

initially),mA
k = ϵ ∀k = πB , . . . ,n (A fails to recommend well after

B starts), and mB
k = 1 ∀k = πB , . . . ,n (B recommends perfectly

throughout). Substituting these values in Equation 7, and using the
identity log(n) ≈

∑n
i=1

1
i ,

n∑
k=πB

1
k
(1 − ϵ) > log(πB − 1) ⇒ (1 − ϵ) log(

n

πB
) > log(πB − 1)

⇒ ϵ < log(
n

πB (πB − 1)
)

(9)

Equation 9 suggests an upper bound on A’s effectiveness to satisfy
the condition that B is scored better than A in terms of PREVAL.
This ensures that the metric is fair because it can score B better than
A if B (from its inception point which is later than A’s) performs
significantly better than A. Otherwise A is favored by PREVAL.

4 EMPIRICAL EVALUATION
Wefirst describe three sample proactive IR systemswith an intuitive
preferred ranking order. The objective of the experiments is to
compute the values of our proposed metric PREVAL (Equation 4)
on these systems, and see if the ranking induced by our metric
corresponds to the intuitive preference among the systems.

4.1 Sample proactive IR systems
While developing a PSS is not the objective of the paper, for the
sake of comparisons between different systems, we describe two
simple PSS approaches. We subsequently compute our proposed
PSS effectiveness metrics under a number of different settings.

Relevance Model based PSS (RM-PSS). The first approach
employs a relevance model [5] to obtain the predicted ranked list
L(q′i ) given the previous query qi−1 and the ranked list retrieved
in response to it, namely L(qi−1). The relevance model employs
relevance feedback to improve retrieval effectiveness. In this case,
we argue that the expanded query obtained from the estimated
distribution P(w |Q) (see [5] for details on the notations) is repre-
sentative of a reformulated query, which is then used to retrieve
the recommended documents L(q′i ). We call this system RM-PSS
(Relevance Model based PSS).

Query Prediction based PSS (QP-PSS). The second PSS ap-
proach employs a supervised query prediction algorithm to com-
pute a set of most likely query reformulations given a current query.
The probability of query reformulations is trained by constructing
a query flow graph (QFG) from a large number of real-user queries
in a query log [2]. In a QFG, each node represents a query and the
weight of each edge (qi ,qj ) indicates the likelihood of qj following
qi within a search session. This QP-PSS based system obtains a
ranked list of k predicted next queries, Rk (qi−1), from the current
query qi−1, sorted in descending order by the transition probabili-
ties estimated from a QFG. It then retrieves documents with each
predicted query q ∈ Rk (qi−1) and outputs a weighted COMBSUM
[8] of the lists. We experiment with two variants of COMBSUM
weights, one with uniform weights, denoted as QP-PSS-U, and the
other with weights set to probabilities of reformulation estimated
from the QFG, denoted as QP-PSS-W. With respect to the three
approaches described, the intuitive ranking between them should
be RM-PSS < QP-PSS-U < QP-PSS-W.
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Table 1: PREVAL metrics computed over the evaluation set.

Proactive System PREVAL-RR PREVAL-ρ

RM-PSS 0.0235 0.4955
QP-PSS-U 0.0503 0.4980
QP-PSS-W 0.0503 0.5004

Figure 2: Comparison of PREVAL-RR values of RM-PSS (x-
axis) and QP-PSS-W (y-axis), π -index values being shown
alongside the axes. i) Left: A black cell indicates that PA > PB .
ii) Right: Each cell plots the value of PA−PB

max(PA,PB ) ∈ [−1, 1],
darker shades denoting values towards 1 (PA > PB ).

4.2 Experiment Settings and Results
We used a subset of the AOL query log data from the period of
Mar’06 to Apr’06 for our experiments, which comprises over 6M
queries. The first 5M queries (preprocessed using a Porter stemmer)
were used as a training set to construct a QFG, which was then
used in the QP-PSS approaches. A session length of 26 minutes, as
prescribed in [6], was used as the adjacency criteria to construct the
CFG. As our evaluation set to measure the relative performances
of the three PSS systems, we use a random subsample of 50 query
sessions. Each session of the evaluation set comprises at least 5
queries (after removing duplicate queries within a session). The
average session length in our evaluation set is 8.12.

Table 1 shows the results of applying the two variants of the
metric PREVAL on the test set of 50 query sessions. To compute the
reward functions,M was set to 10 (see Equation 1). It can be seen
that RM-PSS performs theworst in terms of both the RR and ρ-based
PREVAL scores. This is to be expected since RM-PSS only uses the
information from the current query and the top documents retrieved
in response to it. Our metric is also able to rank QP-PSS-W better
than QP-PSS-U. This is also expected since the latter considers the
contribution from all predicted queries uniformlywhen constituting
the final list of suggested documents. An interesting observation is
that PREVAL-ρ is better able to distinguish between QP-PSS-W and
QP-PSS-U (in terms of the relative differences between the scores)
in comparison to PREVAL-RR. This shows that the rank correlation
based reward acts as a better estimate for PSS effectiveness.

Figure 2 shows the relative differences between the PREVAL-
RR values for systems A (RM-PSS) and B (QP-PSS-W), i.e., δ =

PA−PB
max(PA,PB ) , for a range of π -index values πA and πB . To report an
average over sessions of varying lengths, we plot relative propor-
tions of πA and πB values within a range of 0.1 to 0.9. A sample

cell (πA,πB ) = (0.2, 0.6) in both plots of Figure 2 indicates that
A started suggesting documents after 20% queries within a ses-
sion were executed, whereas B waited until 60% of the queries had
been executed before initiating proactive suggestions. Each of the
9 × 9 = 81 cells of Figure 2 represents an experimental observation.
The left plot indicates whether RM-PSS is the winner (black cell).
The right plot shows the relative differences between the PREVAL-
RR values of RM-PSS and QP-PSS-W. If RM-PSS performs better,
this relative difference is close to 1 (represented by darker shades),
whereas lighter shades indicate that QP-PSS-W is better.

It can be seen that if QP-PSS-W starts predicting too late in com-
parison to RM-PSS (cells corresponding to the upper left region of
the plots in Figure 2), RM-PSS is the winner. This happens because
the rewards accumulated from a small number of proactive sugges-
tions in these cases is not sufficient to outweigh the effectiveness
of the early suggestions coming from RM-PSS. This in turn shows
that the metric is able to prefer cold-start proactive systems. On the
other hand, the system QP-PSS-W (being a more effective system)
often wins in the central and the bottom-right part of the plots in
Figure 2. This can be seen from the white regions in the left plot,
and the lighter shades in the right plot of Figure 2, with the relative
differences getting larger towards the bottom-right. This shows
that the metric is not overly biased towards cold-start systems and
can favour more effective systems with higher π -index values.

5 CONCLUDING REMARKS
Our analysis shows that the proposed metric PREVAL is able to
fairly compare between two PSSs that become proactive at different
times during search sessions and the the ranking of systems induced
by PREVAL conforms to the intuitive expectation. We believe that
our proposed PSS evaluation framework will help in developing
effective proactive systems in the near future.
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