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Abstract

This paper investigates modifying an existing neural network architecture for static
saliency prediction using two types of recurrences that integrate information from the
temporal domain. The first modification is the addition of a ConvLSTM within the
architecture, while the second is a conceptually simple exponential moving average of
an internal convolutional state. We use weights pre-trained on the SALICON dataset
and fine-tune our model on DHF1K. Our results show that both modifications achieve
state-of-the-art results and produce similar saliency maps.

1 Introduction
Visual saliency pertains to how an object or any piece of information may stand out from
its surroundings. Detecting saliency is an integral part of how sentient organisms process
information. We live in a world where the visual data we receive on a daily basis is immense
and cluttered with noise; therefore, the brain has evolved in such a way that allows living
organisms to focus their attention on the most relevant information, so as to function efficiently.
Efforts in the computer vision community have been ongoing for many years to simulate this
biological process artificially leading to the development of large-scale static gaze datasets,
(e.g. SALICON [10]) and, more recently, dynamic gaze datasets (e.g. DHF1K [24]). Based
on these datasets, model-driven approaches tackle the task of saliency prediction by estimating
heatmaps of probabilities, where every probability corresponds to how likely it is that the
corresponding pixel will attract human attention. Thanks to the availability of large-scale
datasets, deep learning architectures have managed to significantly improve the accuracy
achievable in this task (e.g. [6, 10, 15, 16, 24]).
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Most scientific interest has so far been focused on image-based saliency models, with
video saliency prediction gaining more traction in recent years with the introduction of large-
scale video saliency datasets ([13, 24]). When it comes to extracting visual information from
the temporal domain, ConvLSTMs have become increasingly popular, achieving state-of-the-
art results in various computer vision tasks (e.g. [24, 25, 26]). In this work we augment a
state-of-the-art architecture for image saliency [16] by adding a ConvLSTM module within
its internal structure, similar to [6, 24]. More interestingly, we also test a much simpler
method for temporal stability. We wrap a convolutional layer with a temporal exponential
moving average (EMA) [17] operation. Using this recurrence, the output will always be a
smoothed average of its previous states. This method is already used in gradient descent with
momentum [21] to speed up convergence, replacing the current gradient with the exponential
moving average of current and past gradients, derived from mini-batches of the data. To
the best of our knowledge, this is the first time that this method has been applied within the
architecture of a neural network.

Ablation studies are commonly used to better understand the performance impact of added
components. Whilst this has merit, we propose that simple functions should also be used to
investigate the necessity of complex modifications. To this end, in this work we consider both
an elaborate ConvLSTM recurrence and a much simpler weighted average recurrence, and
show that the simpler approach competes with the ConvLSTM on the task of video saliency.

2 Related Work

Video saliency prediction with deep neural networks has basically adapted to this task the
architectures proposed for video action recognition. A first popular option are two-stream
networks [19], in which the motion information is encoded by a pre-computation of the optical
flow and adding it in a separate tower from the RGB channels. This is the approach adopted by
STSConvNet [1]. This solution presents two important limitations: the computation overhead
that is necessary to compute the optical flow, and the lack of temporal perspective further
than the pairs of consecutive frames typically considered when computing optical flow. These
shortcomings are partially addressed with the neural architectures where the temporal relation
across frames is computed by a recurrent neural network (RNN) [4]. RNN-based deep models
for saliency prediction have already been explored [2, 6, 9, 24] and are the core of the state of
the art solutions. Similarly to [14] for activity detection, RMDN [2] combined the short-term
memory encoded by C3D spatio-temporal convolutions [22] with a long short-term memory
encoded by a plain LSTM. However, most current works have adopted a ConvLSTM layer
as temporal recurrence, so that the recurrent layer would have a notion of space at a local
scale. The OM-CNN model proposed in [9] fuses the RGB and optical flow from two-stream
architecture with two ConvLSTMs. The authors of the largest dataset for video saliency
prediction, the DHF1K (Dynamic Human Fixation 1K) dataset[24], trained a deep neural
model based on ConvLSTM layers with attention (ACLNet). The authors of [6] exploit an
existing model pre-trained for static saliency prediction, but with a more complex architecture
composed of four branches fused with a ConvLSTM.

Our model outperforms the presented state of the art with a simple architecture that
only considers RGB frames as input. As in some of the referred works, we exploit a model
pre-trained with static images and study its enhancement with two types a temporal recurrence.
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Figure 1: Architecture of the our model. A frame is input to the model at each time step.
Information encoded from the past frames persists via our recurrence that is located deeper in
the network. The output is a per-frame saliency map.

3 Architecture

The adopted neural architecture follows an encoder-decoder scheme that processes the tem-
poral recurrence in the bottleneck. The topology of both encoder-decoder is adopted from
SalGAN [16], the current top performing static saliency model on the DHF1K saliency bench-
mark. SalGAN encoder corresponded to the popular VGG-16 convolutional network [18]
designed and trained to solve an image classification task. At the decoder side, SalGAN
used the same layers as in the encoder in reverse order, and interspersed by upsampling
instead of pooling operations. The original SalGAN model was trained using a combination
of adversarial and binary cross entropy (BCE) loss. Here, for simplicity, we use only BCE
and term the resulting architecture SalBCE.

We introduce a temporally aware component into the SalBCE network. This is either
the addition of a ConvLSTM layer or an exponential moving average (EMA) applied on a
pre-existing convolutional layer. Figure 1 presents a schematic of our architecture.

3.1 ConvLSTM

An LSTM is an autoregressive architecture that controls the flow of information in the network
using 3 gates: update, forget, and output (Figure 2, left). In ConvLSTMs [25], the operations
at each gate are convolutions. Temporal information is preserved in the cell state Ct upon
which gated element-wise operations are performed by the update and forget gate. The
hidden state Ht is concatenated with the input at each step and propagated through linear and
non-linear operations at the gates. At each gate the current state St of the model is passed
through the ConvLSTM gates and the cell state Ct and hidden state Ht are updated. In the
following equations ‘�’ represents the element-wise product, ‘�’ a convolution operation,
‘s ’ the sigmoid logistic function and ‘tanh’ the hyperbolic tangent. The update, forget, and
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Figure 2: (Left) LSTM recurrence. Parametric operations are highlighted in yellow. (Right)
EMA recurrence

output gates can be written as:

ut = s(W S
u � St +W H

u � Ht�1 +WC
u �Ct�1 + bu) (1)

ft = s(W S
f � St +W H

f � Ht�1 +WC
f �Ct�1 + b f ) (2)

ot = s(W S
o � St +W H

o � Ht�1 +WC
o �Ct�1 + bo) (3)

and the new cell state Ct and hidden state Ht are then given by:

Ct = ft �Ct�1 + ut � tanh(W S
C � St +W H

C � Ht�1 + bC) (4)
Ht = ot � tanh(Ct) (5)

where W �
� and b� are the model parameters.

We added the ConvLSTM architecture at the bottleneck of our model, so that the input
to the ConvLSTM is an encoded representation of the frame at time t. The output cell state
Ct is fed to the decoder for further processing that results in a saliency map. To obtain the
saliency map, a 1�1 convolution is used at the final layer of the decoder, so as to filter out all
channels but one. We sequentially pass video frames to the model as input and get a sequence
of time-correlated saliency maps in the output. The ConvLSTM component learns to leverage
the temporal features during training. The name we gave to this type of model is SalCLSTM.

3.2 Exponential Moving Average

As an alternative approach, the exponential moving average (EMA) recurrence [17] is added
on a specified layer so that at time t the convolutional state of this layer will be a decaying
weighted average of the current and all previous states (Figure 2, right). At time t the
convolutional layer St outputs a state that is fed to the exponential weighted average. The
output Et is then propagated further in the model. Note that there is a hyperparameter a that
affects the impact of previous states on the current time step (the lower the value the higher
the impact).

Et = aSt +(1 �a)Et�1 (6)

This recurrence is straightforward to implement, especially compared to the ConvLSTM.
We experimented with the placement of the EMA function at several different layers with
a = 0:1. We name our model SalEMA. On the initial step, where there is no past information,
the model runs like a static saliency map predictor.
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tuned on DHF1K AUC-J s-AUC NSS CC SIM

SalBCE (Baseline) 7 0.874 0.724 2.047 0.382 0.268
SalBCE 3 0.880 0.632 2.285 0.420 0.339
SalEMA 7 0.883 0.734 2.144 0.400 0.276
SalEMA 3 0.883 0.685 2.402 0.435 0.349
SalCLSTM 3 0.887 0.693 2.364 0.435 0.322

Table 1: Performance results on the DHF1K validation set.

4 Training

The parameters of SalCLSTM and SalEMA were estimated by backpropagating a pixel-wise
content loss that compared the value of each pixel in the predicted saliency map with its
corresponding pixel in the ground truth map. The total binary cross entropy loss was computed
as the average of the individual binary cross entropies (BCE) over all pixels:

LBCE = �
1
N

N

å
n= 1

Pn log(Qn) + ( 1� Pn) log(1� Qn) (7)

whereP represents the predicted saliency map andQ the ground truth saliency map.
SalCLSTM and SalEMA were not trained from scratch though, as the parameters of the

encoder-decoder convolutional layers were adopted from SalBCE. SalBCE was trained for 27
epochs over the SALICON [10] dataset of still images using only the same BCE loss. We
also utilized data augmentation techniques (mirroring and rotation of frames) which resulted
in improved performance.

Our next step was adding recurrence that uses the intrinsic temporal information of video
datasets and train it with the DHF1K dataset [24]. The DHF1K dataset [24] contains 700
annotated videos at 640� 360 resolution. We extracted frames at their original 30 fps rate,
and resized them to 192� 256 resolution. We loaded them using a batch size of 10 frames
from a single video at a time. By backpropagating the loss through time up to a maximum
of 10 frames, we avoid exceeding memory capacity and potential vanishing or exploding
gradients. We found it was necessary to initialize the ConvLSTM recurrence with the Xavier
initialization method [5], otherwise this model would converge to black images rather than
saliency maps. This was likely due to oversaturation of the sigmoid activation layer. We
trained all our models for 7 epochs, where we observed the loss reaching a plateau on our
baseline. We used the Adam optimizer [11] with a learning rate of 10-7.

5 Evaluation

The effect of temporal recurrences proposed for SalEMA and SalCLSTM was assessed with
�ve different visual saliency metrics: Normalized Scanpath Saliency (NSS), Similarity Metric
(SIM), Linear Correlation Coef�cient (CC), AUC-Judd (AUC-J), and shuf�ed AUC (s-AUC).
In all cases, a higher value corresponds to a better performance. The reader is referred to [3]
for a detailed description of these metrics. The reported �gures correspond to an average per
video, that is, we �rst compute the metric on each frame, then average across all frames of
each video, and we �nally average across all videos.
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We train and evaluate our models on three video saliency datasets, namely DHF1K [24],
Hollywood-2 and UCF-sports [13]. DHF1K is a large scale dataset with a high diversity of
contents and variable length (from 400 frames to 1200 frames at 30fps). It includes 1000
videos, out of which 700 are publicly annotated, and 300 are withheld for testing purposes. In
contrast to DHF1K, Hollywood-2 [12] and UCF-sports [20] are limited to human actions and
can be categorized as task-driven, given that the observers were explicitly asked to identify
actions and scene context. These datasets were originally formed for the task of action
recognition and were later adopted as a video saliency benchmark. Furthermore, both datasets
have been divided into separate shots, so that no scene change occurs in the sequences that
are fed into the models. Hollywood-2 is split into a training set of 3100 clips and a test
set of 3559 clips, while UCF-sports has been split to a training set of 104 clips and a test
set of 48 clips. These shots are much smaller in size than a DHF1K video sample, ranging
from 40 frames to just a single frame per shot. We also use SALICON [10], a large-scale
image saliency database, to set a baseline. DHF1K is used for experimenting with variations
over the proposed models, as well as for comparison with the state of the art together with
Hollywood-2 and UCF-sports.

The results in Table 1 indicate that the simple addition of EMA even without extra training
does almost as well as a sophisticated ConvLSTM recurrence, and even improves it after being
�ne-tuned with the DHF1K training partition. EMA essentially performs a smoothing over
the frames of the video by averaging. A possible explanation for why this boosts performance
in video saliency is that saliency tends to be relatively consistent across frames, with the
exception of rapid movements.

Encouraged by the positive results of our EMA modi�cation at the bottleneck (layer
30), we explored more possible locations of the EMA function. In particular we tested its
placement on: output (layer 61), decoder (layer 56), encoder (layer 7). We also implemented
a variation that integrates EMA at two separate layers simultaneously, one in the encoder (7)
and one in the decoder (56). In that case we seta to 0.3 at each location so as to not have
an over-smoothing effect that would result in a signi�cant lag at adapting to changes in the
scene. Furthermore, in a video there can be spontaneous scene changes. In such instances,
it would be optimal to have the EMA reset and forget all the previous states. However,
EMA is not adaptive in this way, so we experimented with a skip connection that allows
information to bypass this layer instead [7]. We also applied a second type of regularization,
the dropout technique [8], at the convolutional layer right before the EMA layer. Dropout
essentially turns off neurons with a preassigned probability (0.5) at each training step. This
mitigates co-adaptation of neurons during training, allowing for clusters of neurons to learn
independently. This way, at test time, we get the average from an ensemble of layers at
location 30. The average of this ensemble pertains to spatial information, but since we are
also using EMA, we get the moving average across the temporal dimension as well. The
results reported in Table 2 do not show a clear winning con�guration across the �ve metrics
metrics but, as NSS and CC are considered as the most appropriate ones to capture viewing
behavior [3], we adopted SalEMA30 with dropout as our best con�guration.

Furthermore, we evaluated our two models on Hollywood-2 and UCF-sports [13]. We
compare our models to the current state-of-the-art as evaluated on the test split of the cor-
responding datasets by Wanget al. [24]. Like ACLNet [24], our models were trained �rst
for DHF1K in all cases, and later �ne-tuned for the speci�c Hollywood-2 or UCF-Sports
dataset. Table 3 shows how, for DHF1K, SalEMA achieves the best performance compared
to other models in the current benchmark across all metrics but s-AUC. On the other hand,
SalCLSTM obtains the best results on all metrics for UCF-Sports and leads the performance
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Model tuned on DHF1K AUC-J s-AUC NSS CC SIM

SalEMA30 7 0.883 0.734 2.144 0.400 0.276
SalEMA30 3 0.883 0.685 2.402 0.435 0.349

SalEMA30 (dropout) 3 0.886 0.690 2.495 0.450 0.360
SalEMA30 (residual) 3 0.875 0.670 2.274 0.415 0.339

SalEMA61 7 0.884 0.737 2.133 0.399 0.270
SalEMA61 3 0.888 0.681 2.394 0.438 0.354
SalEMA54 7 0.883 0.734 2.149 0.401 0.276
SalEMA7 7 0.872 0.656 2.217 0.409 0.318
SalEMA7&54 3 0.828 0.561 1.403 0.366 0.344

Table 2: Performance of SalEMA variants on DHF1K.

Figure 3: Per-video comparison between SalEMA and SalCLSTM using the NSS and CC
metric on the DHF1K validation set. The values represent the margin by which a model's
performance differs from the other.

on AUC-J, NSS and CC for Hollywood-2.
A more detailed analysis between SalEMA and SalCLSTM was obtained by plotting the

difference in their NSS and CC performance per video in the DHF1K validation set (100
videos). Concretely, we subtracted the metric value achieved by the SalCLSTM from that of
SalEMA in each video and display the results in Figure 3. This way, we can assess whether
the two con�gurations end up producing similar results. In this case we would expect the
variance to be low and the NSS difference to be close to zero most of the time. However, the
results are sparse and diverge from video to video. This observation serves as evidence that
the function approximated by the ConvLSTM is differs from that of an exponential moving
average, despite its similar overall effectiveness.

We also delved deeper into the Hollywood-2 dataset for potential clues that would explain
the difference in performance. This dataset consists of very small shots, including even
single-frame shots. In these cases we found that the ConvLSTM does much better than the
EMA (by a margin of around4 NSS points). We also noticed, however, that in these cases
the ground truths for the saliency maps correspond to a central Gaussian, despite the fact that
other salient objects are present in other locations of the frame. Figure 5 shows two examples
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Dataset Model AUC-J s-AUC NSS CC SIM

DHF1K

SalEMA 0.890 0.667 2.573 0.449 0.465
SalCLSTM 0.887 0.693 2.364 0.435 0.322
ACLnet [24] 0.890 0.601 2.354 0.434 0.315
SalGAN [16] 0.866 0.709 2.043 0.370 0.262
DVA [23] 0.860 0.595 2.013 0.358 0.262

Hollywood-2

SalEMA 0.919 0.708 3.186 0.613 0.487
SalCLSTM 0.933 0.715 3.499 0.672 0.530
ACLnet [24] 0.913 0.757 3.086 0.623 0.542
OM-CNN [9] 0.887 0.693 2.313 0.446 0.356
DVA [23] 0.860 0.727 2.459 0.482 0.372

UCF-sports

SalEMA 0.906 0.740 2.638 0.544 0.431
SalCLSTM 0.914 0.782 3.063 0.611 0.477
ACLnet [24] 0.897 0.744 2.567 0.51 0.406
DVA [23] 0.872 0.725 2.311 0.439 0.339
OM-CNN [9] 0.870 0.691 2.089 0.405 0.321

Table 3: Comparison of SalEMA and SalCLSTM with the state of the art on DHF1K,
Hollywood-2, and UCF-sports test sets.

a AUC-J s-AUC NSS CC SIM

0.05 0.886 0.687 2.470 0.448 0.358
0.1 0.886 0.690 2.495 0.450 0.360
0.2 0.885 0.688 2.476 0.446 0.358
0.3 0.884 0.685 2.451 0.442 0.356

Table 4: Sensitivity of SalEMA30 toa on DHF1K validation.

in which the provided ground truth focuses in the center, although different faces appear in
the image. In these examples, SalEMA captures these salient objects better, while SalCLSTM
seems to focus on the center.

Finally, we experimented with thea hyperparameter by varying its value and also by
making it trainable. Table 4 shows relatively stable performance despite the variations on the
value. We also had our model learn alpha on its own by introducing a trainable parameterp.
To ensure that the resulting update equation represents a convex combination of the current
features and previous state,p is passed through a sigmoid so that the �nal value is constrained
to [0;1]. The resulting recurrence is:

Et = s (p)St + ( 1� s (p))Et� 1 (8)

Whereas all other parameters of the model are set to a learning rate of10-7, the learning
rate of alpha was set to 0.1 and was trained separately for 3 epochs on SalEMA pretrained
with a = 0:1. We sets (p) to 0.5 at the start of this tuning and by the end, it converges to
0.1477. The �nal performance was found to be approximately the same as the best model in
Table 4.




