
Gaussian Normalization: Handling Burstiness in Visual Data

Remi Trichet and Noel E. O’Connor
Insight centre for data analytics

Dublin City University, Glasnevin, Ireland
remi.trichet@gmail.com, noel.oconnor@dcu.ie

Abstract
This paper addresses histogram burstiness, defined as

the tendency of histograms to feature peaks out of pro-
portion with their general distribution. After highlighting
the impact of this growing issue on computer vision prob-
lems and the need to preserve the distribution informa-
tion, we introduce a new normalization based on a Gaus-
sian fit with a pre-defined variance for each datum that
suppresses burst without adversely affecting the distribu-
tion. Experimental results on four public datasets show
that our normalization scheme provides a staggering per-
formance boost compared to other normalizations, even al-
lowing Gaussian-normalized Bag-of-Words to perform sim-
ilarly to intra-normalized Fisher vectors.

1. Introduction

Feature and feature space normalization are important
steps in most multimedia applications [24, 11, 27]. When
carefully tuned, this now de-facto pre-processing step can
substantially boost the application performance. How-
ever, understanding which normalization may work best
for a given application remains almost empirical. Recently
[3, 10], burstiness as been identified has one influential fac-
tor in this direction.

Burstiness is defined as “the property that a given visual
element appears more times in a visual media than a sta-
tistically independent model would predict” [9]. This phe-
nomenon, first stated in text retrieval [3, 10], refers to the
trend of codewords to appear in groups within a given vi-
sual media, leading to a representation biased toward them.
Repetitive patterns of textures [14] and the increasing trend
to use dense features have worsened its impact.

More practically, it characterizes the trend of histograms
to feature peaks out of proportion with their general distri-
bution. Bursty histograms will typically display a few bins
with very high values. Codeword frequency is inherently
linked to the Bag-of-Word (BoW) representation [13]. So,
since visual vocabulary generation is the core component
of any encoding technique, whether you are using a distri-
bution [13] or residuals [8, 20] based encoding, these bins
will strongly influence any comparison metric to therefore

Figure 1. Example depicting the need for the same degree of
burstiness in each data point. The same norm is applied to both,
a flat and a bursty histogram. L1-norm flattens both histograms
whereas L2-norm increases their peaks. Gaussian normalisation
seeks the same optimal variance for each datum, therefore facili-
tating comparisons.

neglect the remaining information. This, of course, has a
major impact on classifier decision.

On the other hand, overly flat histograms will lack dis-
criminative power. Hence, a certain magnitude of peaks,
depending on the dataset and the encoding scheme, is re-
quired to optimize system performance.
One key idea of this article stems from the fact that meth-

ods tackling the issue generally model burstiness as an inde-
pendent component of the data [3, 6, 10, 15, 23, 22]. How-
ever, these techniques often reach their limits in the context
of complex or big data, typically encountered in computer
vision problems. Therefore, in this case, the common prac-
tice is to simply normalize the data accordingly [1, 25, 7].
In both cases, only the burstiness of the overall dataset is
considered.

Consequently, dataset burstiness is reduced or increased
in relation to the needs. If this process improves the over-
all performance over a dataset, it may nevertheless have a
harmful effect on some individual data samples, the peak
magnitudes necessarily varying from one data point to an-
other. For instance, lets assume that a normalization B,
leading to flatter histograms, is more adapted than a normal-
ization A for a given classification task. Normalization B
will certainly harm the proportion of data that were already
displaying rather flat histograms with norm A, making these
data samples even more difficult to classify. Figure 1 illus-
trates this idea.

More generally, the optimal histogram peak mag-
nitude required for computer vision applications has
never been clearly studied. The recently proposed intra-

1



normalization [1] efficiently deals with the issue by per-
forming component-wise normalization. However, this
strategy is performed at the cost of the codeword distribu-
tion and is restricted to residual-based encoding strategies.
The core assumption of this paper is that this phenomenon

is detrimental to the data representation. After showing
its negative effect, we will introduce a new normalization
scheme that limits its impact and prove its efficiency via
extensive experimentation. Our new normalization scheme
yields the same peak magnitude for every single data point
histogram while preserving the distribution information. It
is simple, handles sparse representations, and always im-
proves performance compared to other normalizations. The
method is grounded on the assumption that every single data
point in the ordered distribution can be represented with the
same Gaussian distribution. The normalization process un-
folds as follows. Histogram bins are reordered to closely fit
a Gaussian. Next, the bin values are modified to display a
predefined variance σ2

0 . Finally, the bins are reassigned to
their original position.
Our normalization scheme has the following advantages:

• It guaranties that every single data point will have the
exact same peak magnitude, therefore avoiding bursty
components.

• It preserve the distribution information.

• To the best of our knowledge, this is the first normal-
ization process that efficiently deals with burstiness
for both, Bag-of-Words and residual based encoding
strategies.

The rest of this paper is organized as follows. Section 2
reviews the state of the art. Section 3 details our Gaus-
sian based normalization. Extensive experimentation is pre-
sented in section 4. Conclusion and future work are dis-
cussed in the final section.

2. Related Work
Few approaches have been proposed to specifically

tackle burstiness. Existing strategies can broadly be divided
in two types. The first one attempts to model burstiness as a
noisy component that can subsequently be discarded. Pois-
son distribution [3], K-mixtures [10], and LDA [4] models
have been proposed and successfully applied in the context
of text retrieval [6], text clustering [15], and spatio-temporal
term mining [28]. [26] utilized feature self-similarity to dis-
card similar features within images. [23, 22] introduced
a penalty weighting scheme to attenuate the visual word
count differences as their raw value grows. However this
type of model cannot reduce the model variance without in-
creasing its bias. In other words it fails to differentiate fea-
ture bursts from the genuine peaks and displays a limited

Figure 2. Peak magnitude influence on mean average precision
performance. Tests are run on the HOHA dataset, varying the pa-
rameter a of the La-norm.

Figure 3. Distribution of histogram standard deviations within the
HOHA dataset.

efficiency as the amount of noise and outliers increases.
Consequently, computer vision applications, which are

significantly prone to these kinds of difficulties, often pre-
fer to use an apt normalization scheme to limit the im-
pact of bursty values. L1 and L2 norms [7] tests are the
typical choices. More recently, with the surge of feature
encoding methods [2], Intra- [1] and power normalization
[25, 21] emerged with VLAD [8] and Fisher vector en-
coding [20] methods. This type of feature representation
is based on residuals, or feature value average difference
with their closest codeword. As such, the overall distri-
bution bears less importance. By square-rooting each bin,
the power-normalization [25] reduces their impact while
keeping the distribution information intact. By perform-
ing component-wise normalization, intra-normalization [1]
successfully deals with the burstiness but at the cost of the
distribution information. [27] chose to detect and suppress
bursts early for faster representation. To sum up, all these
approaches improve the performance but always dealing
with the burstiness to a limited extent or at the cost of some
information (like the distribution), therefore leaving space
for improvement.

3. Gaussian Normalization

The main hypotheses underpinning our work is that (1)
more important than counterbalancing histogram burstiness
impact on performance, a precise peak magnitude must be
set for optimal performance, and (2) that, peak magnitude
varying for each data point, each histogram must be nor-
malized independently. The first assumption can easily be
verified with a simple experiment. Figure 2 plots the event



Figure 4. Gaussian normalization process. 1- (optional) L1-normalized histogram. 2-Re-ordering the bins to fit a Gaussian shape. 3-
Modifying the values so that each bin will have the value of a Gaussian with predefined variance σ2

0 4- Re-ordering the bins to match their
original position in the histogram. 5- L2-normalization to handle data sparsity.

recognition performance on the HOHA dataset [12], while
varying the a value of La normalized histograms encoded
using a dictionary of 4K Bag-of-Words. By changing a,
we directly tune the histogram peak magnitude. It confirms
that low peak magnitude (i.e. L1-norm) as well as bursty
ones (i.e. L3-norm) both lead to sub-optimal performance.
The best score is obtained for a = 1.6, close to the L2-
norm, commonly utilized with BoW. To validate the second
assumption, we have plotted the distribution of histogram
standard deviations within the HOHA dataset [12]. Results,
presented in figure 3 show the discrepancy. 29.2% of the
data have a standard deviation different from the bulk of
the dataset, which is 0.075. Any normalization that aims
to optimize the dataset histograms altogether will harm the
histograms of this subset.
The main idea of this paper is that this damaged data repre-

sentation will harm the final results. So, we introduce a new
normalization that prevents this shortcoming by optimizing
each histogram burstiness independently.
Our Gaussian normalization process, assumes that any data

point distribution should match a normal distribution. Lets
define the burstiness B(H) of a histogram H as its variance
σ2(H):

B(H) = σ2(H) =
1

n

n∑
i=0

(hi − µ)
2 (1)

Probing further, we aim for any histogram undertaking our
Gaussian normalization process to have the same burstiness
σ2
0 . Therefore, our normalization N(.) over a histogram H

of n bins [h1 . . . hn] should have the following 3 properties:

• It sums to 1.
n∑

i=0

N(hi) = 1 (2)

• It preserves the bin value ordering.
N(hi) < N(hj) ⇔ hi < hj ∀hi, hj ∈ H (3)

• It endows all histograms with the same burstiness.
B(N(H1)) = B(N(H2)) = σ2

0∀H1,H2 (4)

As we cannot expect a given distribution of histogram
H to closely match a normal distribution, we deal with its
re-ordering O(H) in descending order:

O(hi) = j|j1 < j2 ⇔ hi1 > hi2 ∀O(hi1) = j1, O(hi2) = j2

O(hi) ∈ [0 . . . n− 1] with i ∈ [1 . . . n] (5)

with n the number of bins and O(hi) the bijective function
outputting the position of a bin i, with value hi, after re-
ordering histogram H . We want to fit this distribution to a
normal distribution of mean 0 and variance σ2

0 :

N(hi) =
1

σ0

√
2π

e
− 1

2

(
xi
σ0

)2

(6)

In our case, we have xi = hi/n. Moreover, since we are
dealing with a reordered distribution in descending order,
we only consider one half of the Gaussian. Hence, the best
fits to a Gaussian formalizes as:

N(hi) =
1

σ0

√
2π

e
− 1

4

(
O(hi)

nσ0

)2

(7)

To make this normalization independent of the histogram
size, the bin indexes hi, and therefore their re-ordereing
O(hi), are rescaled to fit the same range.
In practice, since the same n values N(hi) will be assigned

to all histograms, those are pre-computed to save on the
costly exponential calculations. Therefore, the only com-
putation involved in the process is the sorting of the values.
For a better understanding, the normalization can be broken

down into the following five steps, illustrated in figure 4:
Taking as input a pre-normalized histogram to insure their
variance will be learned on the same basis (Fig. 4.1.), we
first re-arrange the bins to fit a Gaussian distribution (Fig.
4.2.). This also indirectly fits a Gaussian to it. Then, the bin
values are modified to match a Gaussian function of pre-
defined variance σ2

0 with the same mean (Fig. 4.3.). Note
that we are not rescaling the values according to this up-
dated variance σ2

0 , as this would only limit the influence of
bursty or flat values. Instead we actually assign the Gaus-
sian function value to the bin. Therefore, at this point, any



histograms should have the same values, but distinct bin or-
derings. Fourth, we order the bins back to their original
positions (Fig. 4.4.).

3.1. Handling sparsity

This normalization scheme wouldn’t be efficient with-
out a mechanism to handle data sparsity. Indeed, in this
case, Gaussian value assignment (in phase 3.) leads to in-
formation loss by artificially and unnecessarily increasing
the near-zero values.

To limit the information loss, it is, in theory, possible to
extend this single Gaussian fitting scheme to a mixture of
Gaussians, utilizing a maximum-a-posteriori parameter es-
timation method (like expectation-maximization [17] for in-
stance). This strategy would lead to a closer fit to the data.
However the bin value modification phase will lead to the
violation of property (3), if based on more than one Gaus-
sian. Consequently, we discontinued our investigations in
this direction.
An alternate way to deal with information loss is to leave

the small values untouched. Indeed, these values mostly
represent noisy codeword presence within the analysed me-
dia and the purpose of this normalization is mainly to bring
the bursty ones to a reasonable level. Therefore, our nor-
malization does not modify values inferior to ϵ. This last
step gives more flexibility to our Gaussian normalization,
allowing it to preserve sparsity and deal with distributions
similar to Dirichlet ones. However, our normalization vi-
olates property (2). Therefore, the final histogram is L2-
normalized to cope with this issue.

The only known failure case is the uniform distribu-
tion. However, such distributions already lead to bad per-
formance and are highly unlikely in machine learning tasks.

4. Experiments
We indirectly measure the benefits of our burstiness han-

dling strategy by using the Gaussian normalization for an
event classification task. This section is divided in 5 subsec-
tions that respectively detail our datasets, testbed, results,
analyses on the influence of the main parameter σ2

0 , and a
discussion on possible variations.

4.1. Datasets

We use 4 different datasets of various complexities to as-
sess the Gaussian normalization with 2 different multimedia
applications: Event and object recognition.
The YouTube dataset [14] contains 1600 sequences divided

in 11 action categories. We follow the original setup [14]
using leave-one-out cross validation for a pre-defined set of
25 folds.
The Hollywood2 dataset [16] has been collected from 69

different Hollywood movies and includes 12 action classes.

It contains 1,707 videos split into a training set (823 videos)
and a test set (884 videos), coming from different movies.
It is a challenging dataset, featuring unrelated footage, sig-
nificant background, intra- and inter-classes variations, and
camera motion.
The HOHA dataset [12] considers 8 human actions gath-

ered from 32 movies. The dataset is divided into test and
train sets, respectively containing 211 and 219 video clips
from different movies. Even though they are different, the
clips have been gathered from the same videos as the Holly-
wood2 dataset. So, it can roughly be considered as a subset
of it. However, this benchmark is more challenging than
hollywood2. We essentially tested on this dataset to study
how our normalization responds to dataset scale changes.

The PASCAL VOC 2007 object recognition dataset [5]
contains about 10000 images split into train, validation,
and test sets, and labelled with 20 object classes. Signifi-
cant noise, small objects, intra category variation, and inter-
category similarities (ex: motorcycle and bicycle) make this
dataset a challenge.

A one-vs-all SVM classifier is learned and evaluated
independently for each category. Average accuracy ac-
cross all classes is reported as performance measure for the
Youtube dataset, and mean Average Precision (mAP) for
other datasets.

4.2. Experimental setup

For these experiments, feature and encoding techniques
were selected to allow the comparison with the most
common normalization schemes: Intra-normalization [1],
power normalization [25, 21] with Fisher vector coding,
as well as typical L2 normalization with Bag-of-Words
(BoW) [13].

Videos are first rescaled to a 640 × 480 resolution, as
applicable. We then employed DT features [29]. PASCAL
2007 images used with PHOW [18] features, following
[2] setting. Features are encoded utilizing Bag-of-Words
(BoW) [13] or Fisher vector (FV) coding [20]. BoW
is based on k-means clustering with hard-assignment.
The codebook size is 4K or 10K, determined over 500K
randomly sampled feature vectors. The final histograms
are determined using ANN [19] and then normalized.
SVMs with χ2 kernels are further employed for BoW. Our
normalization scheme is compared with the L2-norm under
this setting.

We encode FV based on a mixture of 256 Gaussians.
Linear SVMs are further utilized for all these runs. We
experimented with Gaussian normalization solely and
Gaussian normalization before intra-normalization. We
compared with power- and intra-normalization. A final
L2-normalization is performed in every case.



Table 1. Comparison of our normalization method with the state-of-the art. The best value of σ2
0 is in bold. We report average accuracy

over all classes for the Youtube dataset, mean average precision over all classes for other datasets. BoW - Bag of Words. FV - Fisher vector
encoding. G - Gaussian normalization. I - Intra normalization. P - Power normalization. L2- L2-normalization.

Encoding type codebook size Norm HOHA Holywood2 Youtube PASCAL2007

BoW 4K L2 40.82% 58.3% [29] 87.3% 53.42% [2]
4K G(σ2

0)+L2 44.12% (0.8) 61.51% (0.8) 91.61%(0.4) 56.12%(0.5)
10K L2 41.77% 59.69% 87.65% 54.98% [2]
10K G(σ2

0)+L2 44.86% (0.1) 62.22% (0.6) 91.01%(0.2) 57.33%(0.5)

FV 256 I+L2 45.39% 61.45% 90.89% 61.79%
256 P+L2 44.51% 60.1% [30] 90.35% 61.69% [2]
256 G(σ2

0) + L2 46.03% (0.9) 65.14% (1.5) 92.82%(1.5) 63.85%(1.4)
256 G(σ2

0)+I+L2 46.57% (0.5) 65.45% (1.6) 93.2%(1.4) 64.06%(1.4)

4.3. Results

Results are presented in table 1. Note that our baseline
for the Youtube dataset (with a 4K codebook) is 3.1% higher
than the one provided in [29]. We assume this difference is
due to the recent dataset update. Also, we assume that sim-
ilar Fisher vector base results on the PASCAL 2007 chal-
lenge are due to the original PCA performed on the PHOW
features by authors in [2].
Results on the HOHA dataset show a considerable perfor-

mance boost for our normalization scheme compared to the
L2-norm. Performance increases from 40.82% to 44.12%
with a 4K codebook and from 41.77% to 44.86% with a 10K
codebook. Applied jointly with Fisher vector encoding,
Gaussian normalization and Gaussian intra-normalization
respectively score 45.83% and 46.57%, that is 1.32% and
1.18% above power- and intra- normalization.
Similar improvement is stated on the Hollywood2 dataset.

Performance increases from 58.3% to 61.51% with a 4K
codebook and from 59.69% to 62.22% with a 10K code-
book. These results are higher than intra-normalized Fisher
vector, scoring 60.1% on this dataset. Applied jointly
with Fisher vector encoding, Gaussian normalization scores
65.45%, that is 4% more than intra-normalization.

Performance on the Youtube dataset increases from
87.3% to 91.61% with a 4K codebook and from 87.65%
to 91.01% with a 10K codebook. These results are also
higher than intra-normalized Fisher vector, scoring 90.89%
on this dataset. Applied jointly with Fisher vector encoding,
Gaussian normalization and Gaussian intra-normalization
respectively score 92.82% and 93.2%, which represents a
2.47% and 2.13% increment over power- and intra- normal-
ization.

Finally, performance on the PASCAL 2007 challenge
increases from 53.42% to 56.27% with a 4K codebook
and from 54.98% to 57.33% with a 10K codebook. Ap-
plied jointly with Fisher vector encoding, Gaussian nor-
malization scores 64.06%, which is 2.33% more than intra-
normalization.

Overall, the Gaussian normalization leads to a consider-
able improvement, when combined with the Bag-of word
model, allowing similar performance to intra-normalized
Fisher vectors. While still producing the best results our

normalization scheme leads to a more modest boost when
combined with Fisher vector encoding, with the exception
of the Hollywood2 dataset.
Five conclusions can be drawn from these numbers. First,

this work shows that keeping the histogram representa-
tion under the control of a predefined distribution model
is paramount for better classification performance. Despite
the obvious success of the Gaussian based model for this
purpose, further work may be required to assess if other dis-
tribution models, like the Weibull distribution for instance,
may be a better fit.

Second, applying this normalization to residual based
encoding strategies leads to a significant improvement,
though, on average, moderate compared to distribution-
based encoding techniques. This makes sense as the com-
peting normalizations share some properties with the Gaus-
sian normalization: Power normalization preserves the orig-
inal distribution, and, by normalizing each component in-
dependently, intra-normalization also keeps each histogram
burstiness similar. However, and in contrast to Gaus-
sian normalization, intra-normalization discards the code-
word distribution information, therefore resulting in slightly
lower performance.

Third, applying Gaussian normalization alone performs
favourably, always resulting in better performance than
intra-normalization. This further emphasizes the impor-
tance of the distribution when properly handled.

Fourth, intra-normalization remains useful. Used after
Gaussian-normalization, it still brings an additional 0.31%
to 1.44% performance increment.
Finally and more importantly, intra-normalization of Fisher

vectors and Gaussian normalization of Bag-of-Words his-
tograms lead to similar performance. This calls into ques-
tion the predominance of residual-based representation over
the codeword distribution one. These two strategies may
be complementary and their fusion may lead to further im-
provement.

4.4. Parameter influence

The main parameter influencing the normalization is of
course σ2

0 . We ran extensive experiments to evaluate the ex-
tend of the affect of this parameter. Results are presented in
figures 5 to 8.



Figure 5. Mean average precision results on the HOHA dataset in relation to σ2
0 for Bag-of-Words strategy using 4K and 10K codebook

sizes (left) and for Fisher vector encoding (right). Best viewed in colour. G - Gaussian normalization. I - Intra normalization. P - Power
normalization. L2 - L2-normalization.

Figure 6. Mean average precision results on the Hollywood2 dataset in relation to σ2
0 . for Bag-of-Words strategy using 4K and 10K

codebook sizes (left) and for Fisher vector encoding (right). Best viewed in colour. G - Gaussian normalization. I - Intra normalization. P
- Power normalization. L2 - L2-normalization.

Figure 7. Average accuracy results on the Youtube dataset in relation to σ2
0 . for Bag-of-Words strategy using 4K and 10K codebook sizes

(left) and for Fisher vector encoding (right). Best viewed in colour. G - Gaussian normalization. I - Intra normalization. P - Power
normalization. L2 - L2-normalization.

Overall, the smooth curves show the reliability of the nor-
malization. Applied to both, BoW and Fisher vector en-
codings, the Gaussian normalization performs better than
its competitors for a wide range of σ2

0 values on the Hol-
lywood2 and Youtube datasets. It scores similarly or better

for most values of σ2
0 on the HOHA dataset. This further

demonstrates the effectiveness of the method.
As the curves show a global maxima that differs from

one dataset to another, parameter estimation is required for
optimal classification results. As shown in table 2, cross-



Figure 8. Mean average precision results on the PASCAL 2007 dataset in relation to σ2
0 . for Bag-of-Words strategy using 4K and 10K

codebook sizes (left) and for Fisher vector encoding (right). Best viewed in colour. G - Gaussian normalization. I - Intra normalization. P
- Power normalization. L2 - L2-normalization.

Table 2. Gaussian normalization results with estimation of σ2
0 through cross validation. The estimated value of σ2

0 is in bold. We report
average accuracy over all classes for the Youtube dataset, and mean average precision over all classes for other datasets. BoW - Bag of
Words. FV - Fisher vector encoding. G - Gaussian normalization. I - Intra normalization. L2 - L2-normalization.

Encoding type codebook size Norm HOHA Holywood2 Youtube PASCAL2007

BoW 4K G(σ2
0)+L2 42.87% (0.73) 61.45% (0.54) 90.99%(0.34) 55.87%(0.52)

10K G(σ2
0)+L2 43.75% (0.09) 61.98% (0.56) 90.51%(0.37) 56.42%(0.48)

FV 256 G(σ2
0) + L2 45.85% (0.81) 64.84% (1.44) 92.56%(1.4) 63.58%(1.32)

256 G(σ2
0)+I+L2 45.96% (0.63) 64.12% (1.41) 92.96%(1.36) 63.77%(1.36)

validation can reliably be used for this purpose. The average
performance drop is 0.53%, with a slight trend to underesti-
mate σ2

0 optimal value. A strategy to limit the performance
loss in this case could be to segment the dataset in k clus-
ters, learn a separate σ2

0 for each one of them, and apply the
appropriate one at testing time.
Based on these experiments, our findings concerning this

optimal value of σ2
0 are the following:

• Sparsity significantly impacts σ2
0 . It can be linked to two

factors. First the codebook size. Indeed, more codewords
means more histogram bins with low values. Sparser his-
tograms having a lower variance, the optimal value of σ2

0

will decrease as the codebook size increases. Second, the
video clip sizes. Short clips often having a smaller raw
feature count. For example, the HOHA dataset has rather
short clips and sees the optimal value of σ2

0 plummeting as
the codebook increases from 4k to 10K.

• Fisher vectors require a higher value of σ2
0 . Typically

σ2
0 > 1. It is sensible as strong peaks usually deserve

residual based encodings that also have few values close
to zero. This leads to a flatter distribution than BoW en-
codings.

• Preliminary experiments did not reveal any correlation be-
tween the average variance of a dataset’s histograms (be-
fore normalization) and its optimal value σ2

0 .

• Moreover, The optimal value of σ2
0 does not seem to be

only dataset dependent but also category dependent. In-
deed, if the optimal mAP grows steadily toward the op-

Figure 9. Mean average precision results on the HOHA dataset
of the fusion of L2- and Gaussian-normalized histograms with
σ2
0 = 0.8. Histograms are encoded with the Bag-of-Words strat-

egy. The horizontal axis represents the Gaussian normalization
fusion percentage from 0 (i.e. L2 − norm) to 1 (i.e. Gaussian-
norm).

timum value, there is a significant discrepancy of the per
category best value for σ2

0 . Therefore automatic parameter
estimation may also lead to a gain in performance.

• Finally, σ2
0 or the normalization performance are not

dataset size, nor application dependent. Indeed, HOHA
and Hollywood have video clips extracted from the same
original movies but share the same optimal variance σ2

0

for a 4K codebook and display approximately the same
performance boost. Similarly, object and event recogni-
tion applications share the same performance boost and
parameter values.



4.5. Possible variations

This subsection discusses two straightforward variations
on our normalization scheme. It aims at discarding invalid
future research directions.

First, an alternate way to deal with information loss is
to interpolate the bin values of the Gaussian normaliza-
tion with a typical L2 one. Experimentation and analy-
sis of this variant on quantized histograms of codewords
for the HOHA dataset is provided in figure 9 with σ2

0 =
0.8 and shows lower performance compared to Gaussian-
normalization solely. We assume this is due to the big dif-
ference between the two norm independent performance.

Second, the combination of Gaussian- and intra-
normalization, aiming to take the best of these two strate-
gies, can also be considered. But, applying it after intra-
normalization does not increase the results. This makes
sense as the intra-normalization destroys the distribution in-
formation and therefore the benefits of the Gaussian nor-
malization.

5. Conclusion
In this paper, we presented a new normalization scheme

dealing with histogram burstiness. Our normalization, har-
nessing a Gaussian fit on reordered histogram bins, is easy
to implement and leads to considerable performance boost.
Our future work first priority is to find a way to automati-

cally calibrate σ2
0 . Fusion of residual and distribution based

histograms also looks like a promising research direction.

6. Acknowledgment
This publication has emanated from research conducted

with the financial support of Science Foundation Ireland
(SFI) under grant number SFI/12/RC/2289.

References
[1] R. Arandjelovic and A. Zisserman. All about vlad. CVPR,

2013.
[2] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman.

The devil is in the details: an evaluation of recent feature
encoding methods. BMVC, 2011.

[3] K. W. Church and W. A. Gale. Poisson mixtures. Natural
Language Engineering, (1):163–190, 1995.

[4] G. Doyle and C. Elkan. Accounting for burstiness in topic
models. ICML, 26:281–288, 2009.

[5] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool.
The pascal visual obiect classes challenge 2007 (voc2007)
results. Technical report, Pascal Challenge, 2007.

[6] Q. He, K. Chang, and E.-P. Lim. Using burstiness to im-
prove clustering of topics in news streams. IEEE Interna-
tional Conference on Data Mining, 2007.

[7] R. A. Horn and C. R. Johnson. Norms for vectors and matri-
ces. Ch. 5 in Matrix Analysis. Cambridge, England: Cam-
bridge University Press, 1990.

[8] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregat-
ing local descriptors into a compact image representation.
CVPR, 2010.

[9] H. Jgou, M. Douze, and C. Schmid. On the burstiness of
visual elements. IEEE Computer society, 2009.

[10] S. M. Katz. Distribution of content words and phrases in
text and language modeling. Natural Language Engineering,
(2):15–59, 1996.

[11] D. Kotsakos, T. Lappas, D. Kotzias, D. Gunopulos, N. Kan-
habua, and K. Nrvg. A burstiness-aware approach for docu-
ment dating. SIGIR, 2014.

[12] I. Laptev, M. Marszaek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. CVPR, 2008.

[13] D. Lewis. Naive (bayes) at forty: The independence assump-
tion in information retrieval. ECML, pages 4–15, 1998.

[14] J. Liu, J. Luo, and M. Shah. Recognizing realistic actions
from videos in the wild. CVPR, 2009.

[15] R. E. Madsen, D. Kauchak, , and C. Elkan. Modeling word
burstiness using the dirichlet distribution. ICML, 2005.

[16] M. Marszaek, I. Laptev, and C. Schmid. Actions in context.
CVPR, 2009.

[17] G. McLachlan and D. Peel. Finite mixture models. Wiley,
2000.

[18] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. PAMI, 27(10):1615–1630, 2005.

[19] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithmic configuration. VISAPP,
2009.

[20] F. Perronnin and C. Dance. Fisher kenrels on visual vocabu-
laries for image categorizaton. CVPR, 2006.

[21] F. Perronnin, Y. Liu, J. Sanchez, , and H. Poirier. Large-scale
image retrieval with compressed fisher vectors. CVPR, 2010.

[22] D. Qin, Y. Chen, M. Guillaumin, and L. V. Gool. Learning to
rank bag-of-word histograms for large-scale object retrieval.
BMVC, 2014.

[23] J. Revaud, M. Douze, and C. Schmid. Correlation-based
burstiness for logo retrieval. ACM multimedia, pages 965–
968, 2012.

[24] S. Ross, P. Mineiro, and J. Langford. Normalized online
learning. UAI, 2013.

[25] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Im-
age classification with the fisher vector: Theory and practice.
IJCV, 105(3):222–245, 2013.

[26] F. Schaffalitzky and A. Zisserman. Automated location
matching in movies. Computer Vision and Image Under-
standing, (92):236–264, 2003.

[27] M. Shi, Y. Avrithis, and H. Jegou. Early burst detection for
memory-efficient image retrieval. CVPR, 2015.

[28] T.Lappas, M. R. Vieira, D. Gunopulos, and V. J. Tsotras.
On the spatiotemporal burstiness of terms. ACM multime-
dia, 2012.

[29] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Action recog-
nition by dense trajectories. CVPR, 2011.

[30] H. Wang and C. Schmid. Action recognition with improved
trajectories. ICCV, 2013.


