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Abstract 

Conditioned medium (CM) from clonal sub-populations of the pancreatic cancer cell line, 

MiaPaCa-2 with differing invasive abilities, were examined for their effect on in vitro invasion. 

Conditioned medium from Clone #3 (CM#3) strongly promoted invasion, while CM from Clone 

#8 (CM#8) inhibited invasion in vitro. 2D DIGE followed by MALDI-TOF MS analysis of 

CM#3 and CM#8 identified 41 proteins which were differentially regulated; 27 proteins were 

down-regulated and 14 proteins up-regulated in the invasion-promoting CM#3 when compared 

to CM#8. Western blotting analysis confirmed the down-regulated expression of gelsolin and 

the up-regulation of aldehyde dehydrogenase 1A1 in CM#3. Down-regulation of aldehyde 

dehydrogenase 1A1 in Clone #3 CM and gelsolin levels in Clone #8 CM by siRNA transfection 

revealed an important involvement of these proteins in promoting and inhibiting invasion in 

these pancreatic cancer cell lines.  
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1.0 Introduction 

Pancreatic cancer is one of the most lethal cancers and is the 8th leading cause of cancer-related 

deaths in Europe [1]. Pancreatic cancer is associated with poor prognosis, the rate of mortality 

being similar to that of the rate of incidence.  

All-stage 5-year survival rate is less than 5% [2, 3]. Conventional approaches including, 

surgery, radiation, chemotherapy and combinations of these therapies, has had little effect on the 

survival rate of patients diagnosed with pancreatic cancer. Pancreatic cancer appears to be 

inherently resistant to a wide variety of chemotherapeutic agents, which can differ greatly and 

are unrelated with respect to molecular structure and target specificity. The malignant 

progression, invasion and metastasis of this cancer is complex and poorly understood. In this 

study, we investigated the proteomic profile of proteins from the conditioned media of two sub-

clones of a pancreatic cancer cell line with varying in vitro invasive characteristics. Proteins 

released by pancreatic tumour cells may be detectable in bodily fluids such as urine, blood, 

serum and pancreatic ductal juice. Such proteins could be useful in early diagnosis, monitoring 

and perhaps even molecular classification of pancreatic tumours [4]. Proteomic analyses of 

pancreatic tissue, pancreatic juice as well as blood plasma and sera have been reported [5]. The 

main biomarker currently available for pancreatic cancer detection, CA19-9, has been 

demonstrated to be quite sensitive and specific in the diagnosis of this malignancy [6, 7], 

however, this marker is not fully specific as false-positive or false-negative findings occur in 

patients with other gastrointestinal malignancies and also in patients with benign disease, 

particularly when associated with obstructive jaundice or cirrhosis, which may contribute to late 

diagnosis of pancreatic cancer. Approximately 10% of the population with the Lewis negative 

genotype are not able to produce CA 19-9, due to a deficiency in a fucosyltransferase specified 
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by the Le gene that is involved in its synthesis [8]. Therefore, in a sub-set of patients, CA 19-9 

expression will be falsely low even in the presence of advanced pancreatic cancer [9]. 

We previously isolated sub-clones of the human pancreatic adenocarcinoma cell line, MiaPaCa-

2. This cell line was chosen as it displays modest invasion through matrigel, and could be easily 

cultured as single cell colonies. Two sub-clones, Clone #3 and Clone #8 displayed the largest 

differences in invasion compared to the parental cell line and were chose for further analysis. 

In this study, we compared proteins in the conditioned media of highly and poorly invasive sub-

clones of the pancreatic cancer cell line, MiaPaCa-2, and identified many novel up-regulated 

and down-regulated proteins in our model. Furthermore, we investigated the functional role of 

aldehyde dehydrogenase 1A1 and gelsolin in invasion by siRNA analysis and determined that 

these proteins may have a novel role in the invasive phenotype of pancreatic cancer. 

 

2.0 Materials and methods 

2.1 Cell lines 

The human pancreatic cell line MiaPaCa-2 was obtained from the European Collection of Cell 

Cultures (ECACC, UK). BxPc-3, Panc-1 and AsPc-1 human pancreatic cancer cell lines were 

obtained from the American Tissue Culture Collection (ATCC, Rockville, MD, USA). Clone #3 

and Clone #8 were obtained by single cell dilution in this laboratory. Briefly the parental cell 

line, MiaPaCa-2 was diluted to a concentration of 3 cells/ml and 100 µl plated onto each well of 

a 96-well plate. After 24 hours each well was studied for single cells, and allowed to grow into 

colonies. The colonies were then screened by invasion assay to assess their invasive abilities. 

Cells were maintained in a humidified atmosphere containing 5 % CO2 at 37 oC in DMEM 
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supplemented with 5 % FCS (Sigma-Aldrich). All cell lines were free from Mycoplasma as 

tested with the indirect Hoechst staining method. 

 

2.2 Collection of pancreatic cancer cell line-conditioned media 

Clone #3 and Clone #8 monolayers were cultured in T175 cm3 flasks until approximately 60% 

confluent in culture medium. Cells were then washed 3× with serum free (SF) DMEM and 

incubated for 1 hr with SF DMEM. Cells were washed 3× again in SF DMEM, then placed in 

SF DMEM for 72 hrs. At the time of collection, cellular debris was removed by centrifugation 

and filtration through 0.22 µm filter; aliquots were frozen at -80 °C until analysed. 

 

2.3 Invasion assays 

Invasion assays were performed using an adapted method [10]. Matrigel was diluted to 1 mg/ml 

in serum free DMEM. 100 µl of matrigel was placed into each insert (Falcon) (8.0 µm pore size) 

in a 24 well plate (Costar). The coated inserts were incubated overnight at 4 oC. The following 

day, the matrigel was allowed polymerise at 37 oC for 1 hr. The inserts were then washed with 

DMEM, 100 µl of 1x105/100 µl  cells in complete DMEM and 100 µl of CM supplemented with 

5 % serum was added onto the insert. 250 µl of total DMEM: 250 µl CM supplemented with 5% 

serum was added to the 24-well. After 24 hours incubation, the inside of the insert was wiped 

with a wet cotton swab. The under surface was gently rinsed with PBS and stained with 0.25% 

crystal violet for 10 minutes, rinsed again with sterile water and allowed to dry. To determine 

total number of invading cells, the inserts were then viewed under the microscope and the 

number of cells per field in 10 random fields, were counted at 200× magnification. The average 

number of cells per field was then multiplied by a factor of 140 (growth area of membrane/field 
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area viewed at 200× magnification (calibrated using a microscope graticule)). Colorimetric 

quantification of invasion was determined by eluting the crystal violet stain solution with 33% 

acetic acid extraction buffer and the absorbance was read with Bio-Tek plate reader (Becton 

Dickinson Labware) at 570 nm and a reference wavelength of 620 nm. The mean values were 

obtained from a minimum of three individual experiments and were subjected to t-tests. All 

experiments were performed in triplicate. 

 

2.4 Sample preparation and protein labelling 

Three 50 ml of CM#3 and CM#8 (3 biological replicates and two technical replicates/CM of cell 

line) were concentrated using 10,000 molecular weight cut-off (Millipore); samples were 

cleaned-up using ready-prep 2D clean-up kit (BioRad). Protein concentration was determined 

using the BCA protein assay kit (Bio-Rad). CM samples were labelled with N-hydroxy 

succinimidyl ester-derivatives of the cyanine dyes Cy2, Cy3 and Cy5 [11]. Typically, 50 µg of 

the CM was minimally labelled with 200 pmol of either Cy3 or Cy5 for comparison on the same 

2-D gel. Labelling reactions were performed on ice in the dark for 30 min and then quenched 

with a 50-fold molar excess of free lysine to dye for 10 min on ice. A pool containing equal 

amounts of all samples was also prepared and labelled with Cy2 to be used as a standard on all 

gels to aid image matching and cross-gel statistical analysis. The Cy3 and Cy5 reverse labelling 

reactions (50 µg of each) from each CM sample were mixed and run on the same gels with an 

equal amount (50 µg) of Cy2-labelled standard. 
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2.5 Protein separation by 2-DE and gel imaging 

Immobilised 24 cm linear pH gradient (IPG) strips, pH 3-11, were rehydrated in rehydration 

buffer (7 M urea, 2 M thiourea, 4% CHAPS, 0.5% IPG buffer, 50 mM DTT) overnight, 

according to manufactures guidelines. IEF was performed using as IPGphor apparatus (GE 

Healthcare) for 40 kV/h at 20 oC with resistance set at 50 mA. Strips were equilibrated for 20 

min in 50 mM Tris-HCL, pH 8.8, 6 M urea, 30% v/v glycerol, 1% w/v SDS containing 65 mM 

DTT and the for 20 min in the same buffer containing 240 mM iodoacetamide. Equilibrated IPG 

strips were transferred onto 18 x 20 cm 12.5% uniform polyacrylamide gels poured between low 

fluorescence glass plates. Strips were overlaid with 0.5% w/v low melting point agarose in 

running buffer containing bromophenol blue. Gels were run at 2.5 W/gel for 30 min and then 

100 W total at 10 oC. All the images were collected on a Typhoon 9400 Variable Mode Imager 

(GE Healthcare). Statistics and quantification of protein expression were carried out in DeCyder 

software (GE Healthcare). 

 

2.6 Spot digestion and MALDI-TOF analysis 

Excision of protein spots, trypsin digestion and protein identification by MS analysis using an 

Ettan MALDI-TOF Pro (GE Healthcare) was performed. Preparative gels containing 300 µg of 

protein were fixed in 30% v/v methanol, 7.5% v/v acetic acid overnight and washed in water, 

and total protein was detected by post-staining with CBB and Deep purple stain (Molecular 

Probes) for 3 hrs at room temperature. Excess dye was removed by washing twice in water, and 

gels were imaged using a Typhoon 9400 Variable Mode Imager (GE Healthcare) at the 

appropriate excitation and emission wavelengths for the stain. The subsequent gel image was 

imported into the BVA module of DeCyder software and was matched to images generated from 
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DIGE analysis. Spots of interest were selected and confirmed using this software for subsequent 

picking using an Ettan Spot Picker. Gel plugs were placed into a presiliconised 1.5 ml plastic 

tube for destaining, desalting and washing steps. The remaining liquid above the gel plugs was 

removed and sufficient ACN was added in order to cover the gel plugs. Following shrinkage of 

the gel plugs, ACN was removed and the protein containing gel pieces were rehydrated for 5 

min with a minimal volume of 100 mM ammonium bicarbonate. An equal volume of ACN was 

added, and after 15 min of incubation the solution was removed from the gel plugs and the 

samples were dried for 30 min using a vacuum centrifuge. Individual gel pieces were then 

rehydrated in digestion buffer (12.5 ng trypsin per µl of 10% ACN, 40 mM ammonium 

bicarbonate) to cover the gel pieces. Exhaustive digestion was carried out overnight at 37 oC. 

After digestion, the samples were centrifuged at 12000 x g for 10 min using a bench top 

centrifuge. The supernatant was carefully removed from each sample and placed into clean 

plastic tubes. Samples were stored at -80 oC until analysed by M.S. For spectrometric analysis, 

mixtures of tryptic peptides from individual samples were desalted using Millipore C-18 Zip-

Tips (Millipore) and eluted onto the sample plate with the matrix solution (5 mg/ml CHCA in 

50% ACN/0.1% TFA v/v). Mass spectra were recorded using the MALDI-TOF instrument 

operating in the positive reflectron mode at the following parameters: accelerating voltage 20 

kV; and pulsed extraction; on (focus mass 2500). Internal calibration was performed using anti-

analysis peaks at m/z 842.50, m/z 2211.104 and external calibration was performed using Pep4 

mix. The mass spectra were analysed using MALDI evaluation software (GE Healthcare), and 

protein identification was achieved with the PMF Pro-Found search engine. 
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2.7 Western blot 

Protein concentrations were determined using the Bio-Rad protein assay (Bio-Rad). 35 µg of 

protein was separated by 7.5% SDS-PAGE under reducing conditions. Proteins were transferred 

to nitrocellulose membrane. Membranes were blocked at 4 oC overnight in TBS (25mM Tris-

HCl, pH 7.4, 150mM NaCl, 2.7mM KCl) containing 5% (w/v) lowfat milk powder. Membranes 

were probed with monoclonal antibodies, anti-gelsolin (G4896, Sigma) and anti-aldehyde 

dehydrogenase 1A1 (488-501, Calbiochem). Membranes were washed 3x for 5 min with PBS-

Tween-20 (0.5%) and incubated with secondary antibodies, anti-mouse and anti-goat obtained 

from Sigma for 1 hr at RT and washing step repeated. Detection was performed with Luminol 

reagent (Santa Cruz Biotechnology). 

 

2.8 siRNA transfection 

For each set of siRNA transfections carried out, a non-treated control and a scrambled (SCR) 

transfection control (Ambion, # 17010) were used. SiRNA experiments were set up using 2 µl 

NeoFx (Ambion, AM4511), to transfect 30 nM siRNA at a cell density of 3x105 /well/ml of a 6-

well plate. Cells were transfected with two different GSN siRNAs, both of which target variant 

1, isoform a and variant 2, isoform b of GSN (NM_000177 Exon 5, NM_198252 Exon 6: 

Sequence GCAAUCGGUAUGAAAGACUtt (sense), Ambion, #8127) and (NM_000177 Exon 

2, NM_198252 Exon 3: Sequence GCUGAGGAACGGAAAUCUGtt (sense), Ambion, #8031) 

and with three different ALDH1A1 siRNAs targeting the ALDH1A1 isoform (NM_000689 

Exon 11, 12: Sequence GGAACAGUGUGGGUGAAUUtt (sense), Ambion, #106197), 

(NM_000689 Exon 9: Sequence GGAGUGUUGAGCGGGCUAAtt (sense), Ambion, 

#106196), and (NM_000689 Exon 4: Sequence GGGCCGUACAAUACCAAUUtt (sense), 



 10 

Ambion, #106195). After 32 hrs, the media was removed, washed 3× in SF DMEM and 1 ml of 

SF DMEM was added onto the cells. The effects of siRNA silencing were analysed on the SF 

CM after 48 and 72 hrs. SiRNA transfected SF CM was collected, centrifuged and filtered 

through a 0.22 µm filter. SiRNA transfected SF CM was concentrated using 10,000 molecular 

weight cut-off concentrators (Millipore); samples were cleaned-up using ready-prep 2D clean-

up kit (BioRad) and protein concentration was determined using the BCA protein assay kit (Bio-

Rad). Western blot analysis was then carried out to assess efficient transfection. All experiments 

were repeated in triplicate. 

 

2.9 Statistical analysis 

Student’s t-test was used to identify the difference in mean values between treated and non-

treated samples. In siRNA experiments, siRNA scrambled transfected cells were used as control 

compared to siRNA treated samples. This was to ensure no ‘off-target’ effects of the 

transfection procedure. Non-treated controls were used to ensure scrambled siRNA was having 

no effects and to normalise data. A p value of ≤ 0.05 * was deemed significant, p value ≤ 0.01 

** was deemed more significant, p value ≤ 0.005 *** was deemed highly significant. 

 

3.0 Results 

3.1 Factors in conditioned medium alter invasive abilities of pancreatic cancer cell lines 

CM#3 enhanced invasion of Clone #3 by 1.8-fold (p=0.0008) compared to an invasion assay 

control containing fresh medium. Clone #3 containing CM#8 in the invasion assay showed a 

3.33-fold decrease in invasion (p<0.001) (Figure 1 A). Figure 1 B shows that CM#3 

significantly increased the invasion (4.2-fold (p=0.005)) of Clone #8 compared to an invasion 
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assay control containing fresh medium. CM#8 caused a very slight (1.1-fold) decrease in 

invasion of Clone #8 (p=0.7). 

 

3.2 Proteomic analysis of CM#3 and CM#8 by 2-D DIGE MALDI-TOF MS 

Proteins found in CM#3 and CM#8 were analysed by 2-D DIGE. Triplicate biological repeats 

were reverse labelled with Cy3 and Cy5 dyes. All samples used in the experiment were pooled 

and labelled with the internal dye, Cy2. Each sample was compared internally to the same 

standard, to account for any gel-to-gel variation. DeCyder image analysis merged the Cy2, Cy3 

and Cy5 images for each gel and detected spot boundaries for the calculation of normalised 

protein abundance. All paired images were then matched to generate comparative cross-gel 

statistical analysis. Biological variation analysis of these spots showing greater that 1.2-fold 

change in expression with a t-test score of < 0.05, revealed 41 proteins significantly 

differentially regulated between CM #3 versus CM #8. Protein expression maps (PEM) of all 

identified proteins are shown in figure 2 (position number corresponds to table 1 and 2). For 

protein identification, all proteins were digested and identified at least twice from separate gels 

with MALDI-TOF MS. An expectation value of < 0.002 was used for all reported 

identifications, which indicates a 0.2% chance that the identification is random. Table 1 outlines 

the down-regulated proteins in CM#3 compared to CM#8 and table 2 shows the proteins up-

regulated in CM#3 compared to CM#8. 

 

3.3 Gene ontology enrichment analysis 

Using DAVID gene ID tool software (http://david.abcc.ncifcrf.gov), all the proteins 

differentially regulated in our model were converted to their gene IDs. Gene ontology (GO 
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STAT) (http://gostat.wehi.edu.au/cgi-bin/goStat.pl) was then used to classify the proteins and 

their corresponding genes into gene categories. Enrichment of a particular ontology term, for 

significantly expressed genes in response to the process under study, means that the ontology 

term is likely to be involved in the process. In our study, the process refers to factors involved in 

invasion of pancreatic cancer. Using the over-expression function of the software and false 

discovery rate (Benjamini) statistics, 30 GO terms was found significantly enriched in both the 

up-regulated and down-regulated proteins list in CM#3 versus CM#8. The “glycolysis” term 

achieved the highest degree of significance in both the up-regulated and down-regulated gene 

class (p=0.005, p=0.001). In the up-regulated class, “cytoplasm” (p=0.01), “oxidoreductase 

activity” (p=0.01) and “intracellular part”- (including cytoplasmic and nucleus proteins) 

(p=0.03) were highly significant terms. In the down-regulated class, “cytosol” – (no 

membranous or subcellular components) (p=0.007), “actin filament severing” (p=0.03) were 

also significantly enhanced. Figure 3 outlines the top ten ranked functional categories using GO 

terms in the differentially expressed proteins in the pancreatic cancer model.  

 

3.4 Invasion inhibitory role of GSN by siRNA in CM#8 

GSN, a down-regulated protein in CM#3 compared to CM#8 was analysed to assess its 

functional involvement in pancreatic cancer cell invasion. Figure 4 A shows the successful 

knockdown of GSN in CM#8 by two independent siRNA targets relative to control (untreated) 

and siRNA scrambled CM#8. The addition of CM from Clone #8 GSN-siRNA (1) onto Clone 

#8 cells significantly increased the invasive abilities of the cells by 1.3 fold (p=0.01). CM from 

GSN-siRNA (2) treated Clone #8 cells onto Clone #8 also increased the invasiveness of the cells 

1.5 fold (p=0.2) (Figure 4 B).  
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3.5 Invasion enhancement role of ALDH1A1 by siRNA in CM#3 

ALDH1A1, which is up-regulated in CM #3 compared to CM #8, was knocked down in Clone 

#3 to assess its functional role in pancreatic cancer cell invasion. Figure 5 A shows the efficient 

knock down of ALDH1A1 in CM#3 by three independent siRNAs. CM from ALDH1A1-

siRNA treated Clone #3 cells was added into the invasion assay of Clone #3. Reduction of 

ALDH1A1 expression resulted in a significant decrease in invasion of Clone #3. CM#3 

ALDH1A1-siRNA (1) on Clone #3 reduced invasion 4.2-fold (p=0.01), ALDH1A1 siRNA (2) 

decreased invasion 2.7-fold (p=0.003) and ALDH1A1 siRNA (3) also significantly reduced the 

invasive abilities of Clone #3 2.5-fold (p=0.02), compared to the scrambled control (Fig 5 B). 

 

3.6 GSN and ALDH1A1 expression in panel of pancreatic cancer cell lines  

GSN and ALDH1A1 expression was detected western blot in three other human pancreatic 

cancer cell lines, BxPc-3, Panc-1 and AsPc-1 (Figure 6 A). Figure 6 B. shows the relative 

invasive potential of the cell lines. Both BxPc-3 and Panc-1 expressed low levels of GSN 

compared to AsPc-1, which is less invasive. ALDH1A1 expression was stronger in BxPc-3 and 

Panc-1 than in AsPc-1 which corresponds to the high invasive abilities of BxPc-3 and Panc-1.  

 

4.0 Discussion 

In this study, proteins were analysed from culture medium conditioned by Clone #3 and Clone 

#8 in serum-free conditions (SF) (to reduce the abundance of bovine serum proteins in the 

samples). 2D DIGE followed by MALDI-TOF MS analysis of SF CM#3 and CM#8 resulted in 

identification of 41 differentially expressed proteins. Bio-informatic analysis (GO STAT) was 

applied to all differentially abundant proteins between CM#3 and CM#8. Gene ontology (GO 
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STAT) classified the proteins and their corresponding genes into gene categories. Although 

membrane-bound and secreted proteins are more likely to be cleaved and found in the 

circulation [12], our GO STAT analysis determined that most up-regulated and down-regulated 

proteins were involved in glycolysis, cytoplasm, cytosol and intracellular part. Proteins, such as 

heat shock proteins and actins, generally viewed as cytoplasmic, have been increasingly 

implicated in extracellular functions [13, 14]. Eukaryotic protein secretion normally routes 

through the endoplasmatic reticulum (ER) and Golgi, ending up in a secretory vesicle fusing to 

the cell membrane. In addition, recent studies have shown that the non-classical secretory 

pathway works independently of the ER–Golgi network; the secreted proteins do not enter the 

ER and have not been glycosylated [15]. Non-classical secretion by cell lines of the cytosolic 

green fluorescent protein (GFP) was shown experimentally [16]; export was not hampered by 

inhibitors of the classical secretory pathway, such as monensin and brefeldin A. Martin et al. 

[17] also identified many intracellular proteins from both the cytoplasmic and nuclear 

compartments from proteomics analysis of medium conditioned by the prostate cell line, 

LNCaP. During cell culture in serum free conditions, some cells will die, resulting in the release 

of intracellular proteins into the media. These intracellular proteins could serve as viable cancer-

specific markers as cancer cells undergoing death release proteins which can be detected in 

circulation [18]. During our analysis we observed very little difference in the proliferation rate 

of cells grown in serum-free conditions versus normal cell culture, therefore cell death was not a 

major contributor to the expression of intracellular proteins in the CM. Further analysis into the 

possible “secretion” mechanisms of these intracellular proteins would be of interest. 

Two proteins, GSN and ALDH1A1, were chosen for siRNA silencing based on fold difference 

and p-value. GSN is a calcium-binding protein, which binds to and regulates actin filaments. 
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GSN binds to the barbed ends of actin filaments and prevents capping [19]. Severing and 

capping of actin filament enhances the rate of cell motility and migration [20]. Gelsolin is 

located intracellularly in the cytoplasm and mitochondria [21] as well as extracellularly in the 

blood plasma [22]. The intracellular form, termed cytoplasmic, and the secreted form, termed 

plasma GSN, are derived from a single gene by alternative transcription initiation sites and 

differential sequencing [23]. Plasma GSN differs from cytoplasmic GSN, in that it is larger, 

contains 25 extra amino acids at its NH2 terminus, and is more positively charged [24], 

suggesting that it is synthesised more rapidly or catabolised more slowly [25]. Plasma GSN is 

removed from the cells more rapidly, consistent with a secreted protein, and only the plasma 

form of GSN is secreted in HepG2, a human hepatoma-derived cell line. Expression of GSN 

was lowest in the CM of the high invasive cell line, Clone #3, and highest in the CM of the 

poorly invasive Clone #8. RNAi technology was used to study GSN protein function in CM#8. 

Using two independent GSN siRNA target sequences, GSN protein expression was specifically 

down-regulated in Clone #8 cells, resulting in decreased expression of GSN. Addition of CM 

from GSN-siRNA transfected Clone #8 cells into the invasion chamber, increased invasion of 

Clone #8. Our results suggest that GSN has functional effects on invasion in Clone #8 cells. 

Decreased expression of GSN has been detected in several types of human cancers, including 

urinary bladder carcinogenesis [26], NSCLC [27], prostatic adenocarcinoma [28], breast [29] 

and ovarian cancer [30], suggesting a possible role as a tumour suppressor. Our results suggest 

that the invasion-inhibitory effects of CM#8 may be in part due to GSN expression. GSN 

expression suppresses the activation of phospholipase C (PLC)/protein kinase C (PKCs) 

involved in phospholipid signalling pathways, thus inhibiting cell proliferation and 

tumourigenicity [31]. Furthermore, Tanaka et al. [32] functionally knocked down GSN 
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expression by siRNA in the human mammary epithelial cell line, MCF10A, and suggested that 

GSN functions as a switch that controls E- and N-cadherin conversion via the transcription 

factor Snail. GSN knockdown led to an epithelial to mesenchymal transition, characterised by 

fibroblastic morphology, loss of contact inhibition, focus formation in monolayer growth and 

enhanced motility and invasiveness in vitro. Therefore, silencing GSN expression could 

possibly lead to tumour progression. However, GSN over-expression in 56% of breast cancers 

was shown to be associated with over-expression of EGFR and HER2, as well as a more 

aggressive phenotype [33]. High GSN levels have also been identified as a negative prognostic 

factor in pulmonary carcinomas, stage I non-small cell lung carcinomas [34], where they have 

been linked to enhanced cellular motility. In pancreatic cancer, Ni et al [35] found reduced GSN 

expression in 71% (30/42) of pancreatic cancer cases compared to matched control tissues by 

immunohisochemistry. This reduction seemed to be dependent on the ubiquitin-proteasome 

dependent degradation of GSN. However, GSN expression was higher in lymph node positive 

pancreatic cancers compared to lymph node negative tumours. Thompson et al [36] reported 

that high levels of nuclear GSN correlated with reduced patient survival time, signifying re-

emergence of GSN during the most aggressive metastatic stages of pancreatic cancer. Reduction 

in the level of GSN in pancreatic cancer cells decreased the motility of the cells, which differs 

from our results; the up-regulation of motility-modulating actin-capping proteins in pancreatic 

cancer cells may have different consequences for the motility of these cells at different stages of 

the metastatic process [36]. This study found GSN expression in the MiaPaCa-2 cell line, and 

showed that down-regulation of GSN decreased motility. In our model, both cytoplasmic and 

plasma GSN were detected by western blot and 2D-DIGE from the conditioned media of Clone 

#8, the less invasive clonal population of MiaPaCa-2. Clone #8 is a clonal population of 
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MiaPaCa-2, with very different properties from Clone #3, isolated at the same time. 

Furthermore, we found that down-regulation of plasma GSN expression in CM#8 increased 

invasion of Clone #8 cells. Thompson et al [36] detected cytoplasmic/nuclear expression of 

GSN in pancreatic cancer tissue specimens and cytoplasmic GSN in pancreatic cancer cell lines. 

The differences in the GSN isoforms detected between the two studies may explain why 

differing effects on invasion and migration were observed, however further studies are required 

to specifically clarify the roles of cytoplasmic and plasma GSN on migration and invasion in 

pancreatic cancer. A study detailing antibody microarray profiling of combined serum proteins 

associated with pancreatic cancer, showed a significant reduction of plasma GSN in pancreatic 

cancer serum compared to healthy controls [37], and plasma GSN expression was also 

decreased in lung cancer serum by proteomic profiling [38]. The mechanism by which GSN 

stimulates invasion by interacting extracellularly with cancer cells as detailed is not known. To 

further characterise function of GSN in this system, experiments involving addition of 

recombinant GSN protein into CM#3 would be valuable, but highly purified GSN would be 

needed to generate useful results.  

A novel protein identified as promoting the invasive abilities of pancreatic cancer cells is 

aldehyde dehydrogenase 1A1 (ALDH1A1). ALDH1A1 is an enzyme, belonging to the aldehyde 

dehydrogenase family of proteins which are involved in the conversion of aldehydes to their 

corresponding acids by NAD(P)+ dependent reactions [39]. ALDH1A1 is a cytosolic enzyme 

found in many tissues, including brain [40] and red blood cells [41]. ALDH1A1 expression has 

also been implicated in drug resistance, as ALDH1A1 levels were higher in metastatic tumours 

that did not respond to cyclophosphamide-based treatment than those that did respond to the 

regime [42]. ALDH1A1 expression has also been reported in the lung cancer cell line, A549, 
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where its expression along with ALDH1A3 was knocked down by RNAi and implicated in 

cyclophosphamide resistance [43]. Jelski et al. [44] also found that ALDH is expressed in 

pancreatic cancer cells and furthermore ALDH could also be detected in the sera of pancreatic 

cancer patients, although not significantly different between pancreatic cancer patients and 

healthy controls [45]. 

ALDH1A1 is highly expressed in CM#3 compared to CM#8. ALDH1A1 expression was 

reduced in CM#3 through siRNA targeting three independent sequences of the ALDH1A1 gene. 

Addition of CM from ALDH1A1-siRNA transfected Clone #3 cells into the invasion chamber 

reduced invasion of Clone #3 cells. This is the first time that ALDH1A1 has been reported as a 

protein involved in pancreatic cancer cell invasion. Further research will be required to 

determine its role in the clinical setting.  

The expression of GSN and ALDH1A1 determined by western blot in the human pancreatic 

cancer cell lines, BxPc-3, Panc-1 and AsPc-1 corresponded to the invasive properties of the 

cells. A larger panel of pancreatic cancer cell lines would be required to confirm the link 

between expression of these proteins and invasion status in pancreatic cancer. Han et al [46] 

found that GSN mRNA is expressed at low levels in a panel of nine pancreatic cancer cell lines 

compared to normal pancreas using cDNA microarrays. 

In conclusion, identification of released proteins from cancer cell lines may serve as an efficient 

method in the establishment of a panel of potential therapeutic targets and biomarkers 

correlating to invasion/metastatic cascade of pancreatic cancer. Future work will include 

examining the sera of pancreatic cancer patients to further demonstrate if GSN and ALDH1A1 

have a diagnostic potential as biomarkers for pancreatic adenocarcinoma. 
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Figure legends 

Figure 1 A. Invasion assays of Clone #3 under control conditions and containing CM#3 and 

CM#8 in the invasion insert. B. Invasion assays of Clone #8 under control conditions and 

containing CM#3 and CM#8 in the invasion insert. The total number of invading cells was 

determined by counting the number of cells per field in 10 random fields, at 200× magnification. 

The average number of cells per field was then multiplied by a factor of 140 (growth area of 

membrane/field area viewed at 200× magnification (calibrated using a microscope graticule)). 

Insert: Colorimetric relative quantification of invading cells was also determined by elution of 
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inserts with 0.33% acetic acid and spectrophotometrically quantified. All experiments were 

performed in triplicate. Statistics; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.005 Student’s t-test. 

 

Figure 2 Protein expression map (PEM) of differentially regulated proteins in the comparison of 

CM#3 versus CM#8. All protein numbers correspond to table 1 and 2. 

Figure 3. Term-ranking GO categories. Representation of the 10 top-ranked functional 

categories, using GO terms that are enriched in all significantly differentially expressed proteins 

identified between CM#3 and CM#8.  

 

Figure 4 A. Western blot of two independent target siRNA-GSN knockdown in CM#8. Bip 

antibody was used to demonstrate even loading between the samples. B. Invasion assay of Clone 

#8 cells with the addition of CM#8 untreated control, CM#8 scrambled siRNA , CM#8 treated 

with GSN-siRNA (1) and CM#8 treated with GSN-siRNA (2) (n=3).  The total number of 

invading cells was determined by counting the number of cells per field in 10 random fields, at 

200× magnification. The average number of cells per field was then multiplied by a factor of 

140 (growth area of membrane/field area viewed at 200× magnification (calibrated using a 

microscope graticule)). Insert: Colorimetric relative quantification of invading cells was also 

determined by elution of inserts with 0.33% acetic acid and spectrophotometrically 

quantified.Experiments performed in triplicate. Statistics; * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.005. 

 

Figure 5 A. Western blot of ALDH1A1 knockdown in CM#3 untreated control, scrambled, 

siRNA ALDH1A1 (1), siRNA ALDH1A1 (2) and siRNA ALDH1A1 (3). B. Invasion assay of 

Clone #3 with addition of CM#3 media (control), CM#3 media with scrambled siRNA, CM#3 



 27 

treated with ALDH1A1 siRNA (1), CM#3 treated with ALDH1A1 siRNA (2), CM#3 treated 

with ALDH1A1 siRNA (3) (n=3).  The total number of invading cells was determined by 

counting the number of cells per field in 10 random fields, at 200× magnification. The average 

number of cells per field was then multiplied by a factor of 140 (growth area of membrane/field 

area viewed at 200× magnification (calibrated using a microscope graticule)). Insert: 

Colorimetric relative quantification of invading cells was also determine by elution of inserts 

with 0.33% acetic acid and spectrophotometrically quantified. The total number of invading 

cells were stained with 0.25% crystal violet, eluted with 0.33% acetic acid and 

spectrophotometrically quantified, to determine the relative number of invading cells. 

Experiments performed in triplicate. Magnification, 200x. Scale bar, 200µm. Statistics; * ≤ 0.05, 

** ≤ 0.01, *** ≤ 0.005. 

 
Figure 6 A. Western blot of GSN and ALDH1A1 expression in pancreatic cancer cell lines, 

BxPc-3, Panc-1 and AsPc-1. β-actin was used as loading control. B. Invasion assay of BxPc-3, 

Panc-1 and AsPc-1. The total number of invading cells was determined by counting the number 

of cells per field in 10 random fields, at 200× magnification. The average number of cells per 

field was then multiplied by a factor of 140 (growth area of membrane/field area viewed at 200× 

magnification (calibrated using a microscope graticule)). Insert: Colorimetric relative 

quantification of invading cells was also determined by elution of inserts with 0.33% acetic acid 

and spectrophotometrically quantified. Experiments performed in triplicate. 
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Table 1. 2D DIGE and MALDI-TOF MS identification of down-regulated proteins in the conditioned media of the invasive Clone #3
No Protein name Gene 

symbol

Protein AC 

number

Theoretical 

pI/Mw

% 

Coverage

Fold 

change

Molecular function

1 Gelsolin isoform b (a) GSN gi|38044288| 5.6/80.9 17.9 -21.0 *** Structural constituent of the 

cytoskeleton

2 Gelsolin isoform b (b) GSN gi|38044288| 5.6/80.9 24.4 -15.2 *** Structural constituent of the 

cytoskeleton

3 Gelsolin isoform b (c) GSN gi|38044288| 5.6/80.9 18.6 -10.7 *** Structural constituent of the 
cytoskeleton

4 Gelsolin isoform b (f) GSN gi|38044288| 5.6/80.9 15.2 -6.4 *** Structural constituent of the 
cytoskeleton

5 Gelsolin isoform b (d) GSN gi|38044288| 5.6/80.9 18.3 -3.8 *** Structural constituent of the 
cytoskeleton

6 Gelsolin isoform b (g) GSN gi|38044288| 5.6/80.9 18.5 -3.4 *** Structural constituent of the 
cytoskeleton

7 Gelsolin (amyloidosis: Finnish type) GSN gi|55960299| 5.9/86.0 9.5 -2.5 *** Structural constituent of the 
cytoskeleton

8 Pro-MMP-2TIMP2 complex TIMP2 gi|22218678| 6.5/22.4 30.9 -1.8 *** ECM structural constituent

9 Beta actin (a) ACTB gi|15277503| 5.6/40.5 36.6 -1.7 *** Structural constituent of the 
cytoskeleton

10 Nucleoside-diphosphate kinase 2 isoform NDPK2 gi|66392203| 9.3/30.5 21.7 -1.7 ** Transcription factor 

activity

11 Beta actin (c) ACTB gi|15277503| 5.6/40.5 24.4 -1.6 *** Structural constituent of the 
cytoskeleton

Table



12 Proteasome activator Reg(Alpha) PSME1 gi|2780883| 7.1/16.3 44.3 -1.5 *** Ubiquitin-specific protease 

activity

13 Beta actin (b) ACTB gi|15277503| 5.6/40.5 24.2 -1.5 *** Structural constituent of the 
cytoskeleton

14 Heat shock protein 90-alpha (HSP86) HSP86 gi|92090606| 4.9/85.0 24.5 -1.5 *** Chaperone activity

15 Phosphoglycerate kinase 1 (a) PGK1 gi|48145549| 8.6/44.9 25.7 -1.4 *** Catalytic activity

16 Thioredoxin peroxidase PRDX2 gi|9955016| 5.7/21.6 28.4 -1.4 *** Peroxidase activity

17 Phosphoglycerate kinase 1 (b) PGK1 gi|48145549| 8.6/44.9 25.7 -1.4 *** Catalytic activity

18 Phosphoglycerate kinase 1 (c) PGK1 gi|48145549| 8.6/44.9 27.3 -1.4 *** Catalytic activity

19 Heat shock 70kDa protein 8 isoform 2 (b) HSPA8 gi|62896815| 5.6/53.6 16.8 -1.3 *** Heat shock protein activity

20 Beta actin (d) ACTB gi|15277503| 5.6/40.5 27.3 -1.3 *** Structural constituent of the 
cytoskeleton

21 NM23-H1 NME1 gi|29468184| 5.4/19.8 27.1 -1.3 *** Catalytic activity

22 Triosephosphate isomerase TPI1 gi|999893| 6.5/26.8 29.0 -1.3 *** Isomerase activity

23 Heat shock 70kDa protein 8 isoform 2 (a) HSPA8 gi|62896815| 5.6/53.6 28.8 -1.3 *** Heat shock protein activity

24 S-adenosylhomocysteine hydrolase AHCY gi|178277| 6.0/48.2 10.6 -1.3 *** Hydrolase activity

25 Malate dehydrogenase cytosolic MDH1 gi|7431153| 5.9/36.6 20.1 -1.2 *** Catalytic activity

26 Heat shock 70kDa protein 8 isoform 2 

variant (c)

HSPA8 gi|62896815| 5.6/53.6 19.7 -1.2 *** Heat shock protein activity

27 Nucleoside phosphorylase NP gi|58176568| 6.5/32.2 36.1 -1.2 *** Phosphorylase activity



Table 2. 2D DIGE and MALDI-TOF MS identification of up-regulated proteins in the conditioned media of the invasive Clone #3
No Protein name Gene 

symbol

Protein AC 

number

Theor

pI/Mw

% 

Coverage

Fold 

change

Molecular function

28 Capping protein, muscle Z line, alpha 1 CAPZA1 gi|12652789| 5.4/33.0 39.9 1.2 *** Structural molecule activity

29 Beta actin (g) ACTB gi|15277503| 5.6/40.5 30.6 1.2 * Structural constituent of the 
cytoskeleton

30 Beta actin (f) ACTB gi|15277503| 5.6/40.5 24.4 1.2 * Structural constituent of the 
cytoskeleton

31 Glycerate-3-phosphate dehydrogenase GAPDH gi|31645| 8.4/36.2 19.4 1.2 ** Catalytic activity

32 Beta actin (e) ACTB gi|15277503| 5.6/40.5 24.5 1.2 * Structural constituent of the 

cytoskeleton

33 Galectin-1 LGALS1 gi|56554350| 5.1/14.8 38.1 1.3 *** Receptor binding

34 Mu-protocadherin isoform MUCDHL gi|62020550| 4.8/88.4 18.2 1.3 *** Cell adhesion molecule 

acitivity

35 Pi glutathione transferase GSTP1 gi|34811304| 5.7/23.4 36.4 1.3 *** Glutathione transferase 

activity

36 Elongation factor EEF1A1 gi|15277711| 9.3/46.5 12.1 1.4 *** Translation regulator 

activity

37 Alpha enolase (b) ENO1 gi|2661039| 7.0/47.4 28.6 1.5 *** Catalytic activity

38 Peroxiredoxin 1 PRDX1 gi|55959887| 6.4/19.1 53.2 1.5 *** Peroxidase activity

39 Alpha enolase (a) ENO1 gi|2661039| 7.0/47.4 15.5 1.5 *** Catalytic activity



40 Mitochondrial malate dehydrogenase MDH2 gi|12804929| 9.4/35.9 37.0 1.6 *** Catalytic activity

41 Aldehyde dehydrogenase 1A1 ALDH1A1 gi|2183299| 6.3/55.4 18.4 21.0 *** Aldehyde dehydrogenase 

activity

The theoretical isoelectric point (pI) and molecular weight (Mw) were calculated from the sequence of the protein in the database. Isoforms of 

the same protein are referred to as (a), (b) etc. The percentage coverage is the amount of the protein sequence covered by the matched peptides. 

Statistical analysis between replicates is referred to as; * p ≤ 0.05, *** p ≤ 0.01, *** p ≤ 0.005.




