
Artificial Intelligence in Computer

Science and Mathematics

Education

David Azcona M.Sc.

Supervised by Prof. Alan F. Smeaton

Supervised by Prof. Sharon Hsiao (Arizona State University)

A thesis presented for the degree of Doctor of Philosophy (Ph.D.)

School of Computing

Dublin City University

August 2019



I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy is entirely my

own work, that I have exercised reasonable care to ensure that the work is original,

and does not to the best of my knowledge breach any law of copyright, and has not

been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.

David Azcona
David Azcona

ID No.: 15212605

August 2019



Acknowledgements

I would like to thank my tireless supervisor Prof. Alan F. Smeaton for his continu-

ous support, patience, knowledge and encouragement over the last four years.

I would also like to thank my wonderful hosts at Arizona State University John

Rome and Prof. I-Han Sharon Hsiao for believing in my potential and guiding me

throughout the year where I conducted research as a Fulbright scholar in the United

States.

I would also like express my deepest appreciation to my family and my girlfriend

Maria for their daily encouragement. Thanks for being always there for me when I

need it the most.

I am also indebted to Dr. Stephen Blott at the School of Computing in Dublin

City University and the Action Lab at EdPlus in Arizona State University for their

support and help.

Finally, I would like to acknowledge support from the following funding sources:

• Irish Research Council in partnership with The National Forum for the En-

hancement of Teaching & Learning in Ireland under project number GOIPG/2015/3497

• Fulbright Ireland

• Science Foundation Ireland under grant number 12/RC/2289 (Insight Centre

for Data Analytics)

i



Artificial Intelligence in Computer Science and Mathematics Education

• Dublin City University’s School of Computing and Faculty of Engineering &

Computing

• Arizona State University’s University Technology Office and School of Com-

puting, Informatics & Decision Systems Engineering

• Young European Research Universities Network

ii



Contents

Acknowledgements i

List of Figures vii

List of Tables x

Abstract xiv

1 Introduction 1

1.1 Introduction to Predictive Modelling . . . . . . . . . . . . . . . . . . 3

1.2 Introduction to Representational Learning and Embeddings . . . . . 6

1.3 Introduction to Adaptive Feedback . . . . . . . . . . . . . . . . . . . 9

1.4 Introduction to Graph Theory and Networks . . . . . . . . . . . . . . 10

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Review 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Machine Learning and Predictive Modelling . . . . . . . . . . . . . . 12

2.2.1 Traditional Machine Learning in Practice . . . . . . . . . . . . 15

2.3 Deep Learning and Embeddings . . . . . . . . . . . . . . . . . . . . . 18

2.4 Adaptive Feedback in Learning . . . . . . . . . . . . . . . . . . . . . 24

2.5 Graph Theory and Networks . . . . . . . . . . . . . . . . . . . . . . . 25

3 Students’ Digital Footprints and the Data Used in the Thesis 27

3.1 Dublin City University . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



Artificial Intelligence in Computer Science and Mathematics Education

3.1.1 School of Computing . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Data from across the Whole University . . . . . . . . . . . . . 32

3.2 Arizona State University . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 School of Computing, Informatics, and

Decision Systems Engineering . . . . . . . . . . . . . . . . . . 33

3.2.2 Global Freshman Academy and ALEKS via EdX . . . . . . . 34

3.3 Feature Importances . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Modelling Students’ Online Behaviour 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Context and Dublin City University Courses . . . . . . . . . . . . . . 38

4.3 Exploratory Data Analysis (EDA) . . . . . . . . . . . . . . . . . . . . 41

4.4 Data Processing and Feature Engineering . . . . . . . . . . . . . . . . 43

4.5 Feature Exploration and Correlations . . . . . . . . . . . . . . . . . . 46

4.6 Splitting Data between Training, Validation and Testing . . . . . . . 49

4.7 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7.1 Empirical Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7.2 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . 53

4.8 Predicting which incoming students are “at-risk” . . . . . . . . . . . 54

4.9 Re-visiting RQ1: Accuracy of Predictive Modelling . . . . . . . . . . 55

4.10 Extra: Retrospective Analysis on Reviewing Behaviours at ASU . . . 59

4.10.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10.3 Classification and Regression Modelling . . . . . . . . . . . . . 62

4.10.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Extra: Retrospective Analysis on All First-years at DCU . . . . . . . 68

4.11.1 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . 68

4.11.2 Data Summarisation . . . . . . . . . . . . . . . . . . . . . . . 69

4.11.3 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . 70

4.11.4 Predictive Modelling and Ablation Studies . . . . . . . . . . . 71

iv



Artificial Intelligence in Computer Science and Mathematics Education

4.11.5 Ablation Study & Mutual Information . . . . . . . . . . . . . 72

4.11.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Modelling Students With Embeddings 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Context and Dublin City University Courses . . . . . . . . . . . . . . 78

5.3 Research Method: Code Vectorisation . . . . . . . . . . . . . . . . . . 79

5.3.1 Program Code as Word Vectors . . . . . . . . . . . . . . . . . 81

5.3.2 Program Code as Token Vectors . . . . . . . . . . . . . . . . . 82

5.3.3 Program Code as Abstract Syntax Tree Vectors . . . . . . . . 84

5.4 Experiment: code2vec . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Code BOW (bag-of-words) . . . . . . . . . . . . . . . . . . . . 87

5.4.2 Code Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Experiment: user2code2vec . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 RQ2 Results: code2vec . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6.1 Code BOW (bag-of-words) . . . . . . . . . . . . . . . . . . . . 90

5.6.2 Code Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 RQ3 Results: user2code2vec . . . . . . . . . . . . . . . . . . . . . . . 96

6 Adaptive Feedback to Students 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Learning Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Feedback to Students . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.2 Feedback to Lecturers . . . . . . . . . . . . . . . . . . . . . . 103

6.3.3 Measuring Students’ Level of Engagement . . . . . . . . . . . 104

6.4 RQ4: Quantitative Effects of Adaptive Feedback . . . . . . . . . . . . 105

6.4.1 Academic year: 2015/2016 . . . . . . . . . . . . . . . . . . . . 106

6.4.2 Academic year: 2016/2017 . . . . . . . . . . . . . . . . . . . . 107

6.4.3 Academic year: 2017/2018 . . . . . . . . . . . . . . . . . . . . 112

v



Artificial Intelligence in Computer Science and Mathematics Education

6.4.4 Comparison with the baseline . . . . . . . . . . . . . . . . . . 114

6.5 RQ5: Qualitative Feedback . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5.1 Students have their say . . . . . . . . . . . . . . . . . . . . . . 115

6.5.2 Lecturers have their say . . . . . . . . . . . . . . . . . . . . . 118

6.6 Extra: Virtual Coding Assistant . . . . . . . . . . . . . . . . . . . . . 120

7 Using Graph Theory and Networks to Model Students 122

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 The Global Freshmen Academy at Arizona State University . . . . . 123

7.3 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4 RQ6: Insights from MOOCs and Sequences of Learning States . . . . 129

7.5 Conclusion on RQ6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Conclusions 139

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Modelling Student Behaviour . . . . . . . . . . . . . . . . . . . . . . 139

8.3 Modelling Students With Embeddings . . . . . . . . . . . . . . . . . 140

8.4 Providing Adaptive Feedback to Students . . . . . . . . . . . . . . . . 142

8.5 Using Graph Theory and Networks to Model Students . . . . . . . . 144

8.6 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Appendices 147

A Publications on Work from this Thesis 148

B Organisational Activities 151

C Presentations on Work from this Thesis 152

D Awards 155

Bibliography 169

vi



List of Figures

1.1 Higher Education Authority’s Report on Overall Completion Rates

by ISCED broad field of study . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Blended Classrooms Combine Traditional Classrooms with Online

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Venn diagram showing how deep learning is a kind of representation

learning, which is in turn a kind of machine learning, which is used

for many but not all approaches to AI. Image taken from [43]. . . . . 19

2.2 Flowcharts showing how the different parts of an AI system relate

to each other within different AI disciplines. Shaded boxes indicate

components that are able to learn from data. Image taken from [43]. . 20

3.1 Screengrab from the Virtual Learning Environment for the Teaching

of Computer Programming at Dublin City University . . . . . . . . . 31

3.2 Instant Feedback Provided to the Student After Submitting a Pro-

gram to the Automated Grading Assistant . . . . . . . . . . . . . . . 32

3.3 Web Programming Grading Assistant Platform When a Student Re-

views Her Graded Response to an Exercise . . . . . . . . . . . . . . . 35

4.1 University Entry Points Correlated with First-Year Precision Mark

for Computing Students at Dublin City University from 2013 - 2014

Academic Year to 2016 - 2017 Academic Year . . . . . . . . . . . . . 42

4.2 Number of Students Enrolled in CA114 over from 2009 - 2010 Aca-

demic Year to 2015 - 2016 Academic Year . . . . . . . . . . . . . . . 43

vii



Artificial Intelligence in Computer Science and Mathematics Education

4.3 CA114’s Numbers per Examination over from 2009 - 2010 Academic

Year to 2015 - 2016 Academic Year . . . . . . . . . . . . . . . . . . . 43

4.4 CA114’s Failure Rates Per Examination from 2009 - 2010 Academic

Year to 2015 - 2016 Academic Year . . . . . . . . . . . . . . . . . . . 44

4.5 Correlations for CA116 2016/2017’s Features in Week 12 . . . . . . . 47

4.6 Correlations for CA116 2016/2017’s Features Every Week . . . . . . . 48

4.7 Empirical Risk for CA116 for the Training Data using Accuracy . . . 51

4.8 Empirical Risk for CA116 for the Training Data using F1-Score . . . 52

4.9 Empirical Risk for CA116 for the Training Data using F1-Score for

the Fail Class Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10 CA116’s Validation Data’s Accuracy after Hyperparameter Tuning . . 54

4.11 Snapshot of Anonymised Predictions for a Sample of 3 Students . . . 55

4.12 Evaluation using F1 for CA116’s Incoming 2018/2019 Cohort Shown

Weekly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.13 Confusion Matrix for Week 4 for CA116’s Incoming 2018/2019 Cohort 57

4.14 Confusion Matrix for Week 8 for CA116’s Incoming 2018/2019 Cohort 58

4.15 Confusion Matrix for Week 12 for CA116’s Incoming 2018/2019 Cohort 58

4.16 Distribution of Students’ Academic Performance for Computing Stu-

dents in a Data Structures and Algorithms Course at Arizona State

University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.17 Feature Importance Across Periods for ASU’s Data Structures Course 65

4.18 Classification Performance using ROC AUC for ASU’s Data Struc-

tures Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.19 Linear Regression Performance using R2 for ASU’s Data Structures

Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.20 Linear Regression Predictions vs. Actual Results Before the Third

Exam for ASU’s Data Structures Course . . . . . . . . . . . . . . . . 67

4.21 Exploring the Parameter Year from DCU’s Dataset . . . . . . . . . . 69

viii



Artificial Intelligence in Computer Science and Mathematics Education

4.22 Scatter Plot between CAO Points and the Precision Mark, color coded

by Faculty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.23 Scatter Plots between CAO Points and the Precision Mark by Faculty 71

4.24 Examples of Mutual Information between Two Variables. Image

taken from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.25 Mutual Information Score between a Feature and the Precision Mark,

for Several Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Abstract Syntax Tree (AST) for Hello World Example . . . . . . . . 84

5.2 AST for Call a Function Example . . . . . . . . . . . . . . . . . . . . 85

5.3 AST for Sum of Two Variables Example . . . . . . . . . . . . . . . . 85

5.4 Performance of code2vec using BOW (bag-of-words). . . . . . . . . . 93

5.5 Performance of code2vec using Embeddings . . . . . . . . . . . . . . 94

5.6 Embeddings for the Top Words & Token Words. These Embeddings

Are Projected from 100 Dimensions to 2 Dimensions for Visualization

Using Principal Component Analysis (PCA). Axis in the Graphs Are

the PCA’s Two Principal Components. . . . . . . . . . . . . . . . . . 95

5.7 user2code2vec applied to CA116 course during 2016/2017 academic

year. These Representations Are Projected from 100 Dimensions to

2 Dimensions for Visualization Using Principal Component Analysis

(PCA). Axis in the Graphs Are the PCA’s Two Principal Components. 98

6.1 Students Struggling with Programming Concepts May Have Different

Learning Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 An Anonymised Customised Email Notification Sent to a Student in

CA117 during the 2017/2018 Course. . . . . . . . . . . . . . . . . . . 103

6.3 Frequency of Access to Material and Labsheets from the Notifications 112

7.1 Number of Students that Took each Type of Assessment for MAT117

and MAT170 in ASU’s GFA via EdX . . . . . . . . . . . . . . . . . . 126

ix



Artificial Intelligence in Computer Science and Mathematics Education

7.2 Number of Students Binned Based on their Completion Percentage

of Each of the Courses . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Total Duration for each Topic Using All Students’ Data, Ordered,

Split and Colour Coded for each Learning State . . . . . . . . . . . . 127

7.4 Number and Percentage of Students Who Worked on Each Section

for Both Courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.5 Screengrab from the Web Application which shows the First Trans-

actions for a Particular Student . . . . . . . . . . . . . . . . . . . . . 129

7.6 Screengrab from the Web Application which shows the Distribution

of Learning States Grouped By Date for a Particular Student . . . . 130

7.7 Screengrab from the Web Application which shows Network Visuali-

sations for the First Three Topics for a Particular Student . . . . . . 130

7.8 Visualizations of Networks for Two Students Going Through Various

Learning States on Two Different Topics . . . . . . . . . . . . . . . . 131

7.9 Network Degree Metrics Extracted from Two Topic Networks and the

Values for Each Learning State. Metrics for One Topic Network are

shown in Blue and for the Other Topic Network in Red. . . . . . . . . 133

7.10 Custom Network Metrics Extracted from the Section Networks Di-

vided by In-coming and Out-going Metrics . . . . . . . . . . . . . . . 135

7.11 Number of Concepts per Section for MAT117 and MAT170 in ASU’s

GFA via EdX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.12 Diagram of Modelling How Students Learn on MOOC Platforms us-

ing Learning States and Hidden Markov Models . . . . . . . . . . . . 136

7.13 Hidden Markov Model trained with Hidden States . . . . . . . . . . . 137

x



List of Tables

3.1 Summary of the Data Used in the Thesis . . . . . . . . . . . . . . . . 28

3.2 Courses in DCU’s School of Computing used in this thesis . . . . . . 31

3.3 Some Math Courses at ASU’s GFA in EdX . . . . . . . . . . . . . . . 35

4.1 List of Feature Names and associated Short Names . . . . . . . . . . 46

4.2 CA116 Split between Training, Validation & Test sets . . . . . . . . . 49

4.3 CA116 Prediction Metrics including passing rates and at-risk rates . . 56

4.4 Feature correlations with the cumulative exam average . . . . . . . . 62

4.5 Number Features per period and Students below the Threshold . . . 63

4.6 Linear SVM Classification Performance throughout the periods for

ASU’s Data Structures Course . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Linear Regression Performance throughout the periods for ASU’s

Data Structures Course . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Count Occurrence Matrix for Listings 5.1 and 5.2 . . . . . . . . . . . 88

5.2 Top-5 Words & Token Categories in terms of Number of Occurrences 91

5.3 Top-5 Token Words & AST Nodes in terms of Number of Occurrences 91

5.4 Performance of the Models Using BOW and Embeddings . . . . . . . 94

5.5 Cosine Distance Between Word Vectors . . . . . . . . . . . . . . . . . 96

5.6 Courses Analysed on user2code2vec . . . . . . . . . . . . . . . . . . . 97

6.1 Demographics and prior information for students in 2015/2016 in

courses CA117 and CA114 . . . . . . . . . . . . . . . . . . . . . . . . 107

xi



Artificial Intelligence in Computer Science and Mathematics Education

6.2 Difference and Normalised Gain Index between the examinations for

CA117 and CA114 in the 2015/2016 academic year . . . . . . . . . . 108

6.3 Demographic information and prior information from the 2016/2017

student groups in CA117, CA114 and CA278 . . . . . . . . . . . . . . 110

6.4 Difference and Normalised Gain Index among the examinations for

CA117, CA114 and CA278 in the 2016/2017 academic year . . . . . . 111

6.5 Difference and Normalised Gain Index between the examinations for

CA117, CA114 and CA278 on 2017/2018 academic year . . . . . . . . 113

6.6 Comparision between 2015/2016, 2016/2017 and 2018/2019 academic

years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.7 2016/2017 Student survey responses from students about the project 116

7.1 Log Data extracted from EdX & ALEKS . . . . . . . . . . . . . . . . 124

xii



Abstract

Artificial Intelligence in Computer Science and

Mathematics Education

David Azcona

In this thesis I examine how Artificial Intelligence (AI) techniques can help Com-

puter Science students learn programming and mathematics skills more efficiently

using algorithms and concepts such as Predictive Modelling, Machine Learning,

Deep Learning, Representational Learning, Recommender Systems and Graph The-

ory.

For that, I use Learning Analytics (LA) and Educational Data Mining

(EDM) principles. In Learning Analytics one collects and analyses data about stu-

dents and their contexts for purposes of understanding and improving their learning

and the environments students interact with. Educational Data Mining applies Data

Mining, Machine Learning and statistics to data captured during these learning pro-

cesses.

My central research question is how we can optimise the learning by students,

of subjects like computer programming and mathematics in blended and online

classrooms by mining and analysing data generated in these environments by the

students. To validate the research question I have implemented several examples of

monitoring student behaviour while learning, I have gathered various forms of stu-

dent interaction data and combined it with demographics and student performance

data (e.g. exam results) in order to test out different predictive models developed us-

ing a variety of AI and machine learning techniques. In these example environments

xiii
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I have used these models not only to predict outcome and exam performance but

also to automatically generate feedback to students in a variety of ways, including

recommending better programming techniques. My research question is explored

by examining the performance of the AI techniques in helping to improve student

learning.
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Chapter 1

Introduction

According to the 1st International Conference on Learning Analytics and Knowledge,

which is an event where the topic really took off, became prominent and started

becoming popular, Learning Analytics is the measurement, collection, analysis and

reporting of data about learners and their contexts, for purposes of understanding

and optimising learning and the environments in which it occurs. Higher education

institutions across the world have been generating an enormous amount of raw data

about students but they have traditionally been very inefficient in their use of this

data and in putting it to good purpose [96]. With the data explosion in many fields

such as Healthcare, Transportation and Business along with new methodologies

now available and emerging to analyse and understand datasets, higher education

institutions should become smarter organisations and should be moving towards

using a data-first approach in their decision-making.

In addition to improving productivity, outputs and their own processes in ed-

ucational institutions, there are strong employment opportunities for graduates in

the Information and Communications Technology (ICT) sector with higher rates

of employment and higher average salaries than most other graduates. In Ireland,

according to the Higher Education Authority’s 2019 report [85], computing courses

have the highest level of student drop out, with close to half of all students in this

area failing to complete their programme, across all third level institutions. Com-

puter Science (CS) presents the lowest rate of completion at 55%, see Figure 1.1,

1
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Figure 1.1: Higher Education Authority’s Report on Overall Completion Rates by
ISCED broad field of study

using the degree classification by the International Standard Classification of Edu-

cation (ISCED). This comprehensive study tracked students who entered the third

level system in 2007. A previous report showed the same trend [70].

A large contributor to these low progression rates in computing degrees is the fact

that students quite often struggle on their first introductory programming course

[102, 82]. The mean worldwide pass rate for introductory programming has been

estimated at 67% [15], a figure revisited in 2014 [102].

Learning to program a computer is challenging for most people and few students

find it easy at first. Moreover, first-year students often struggle with making the

transition into University as they adapt to what is likely to be a very different form

of independent study and learning. For instance, Dublin City University provides

comprehensive orientation programmes and information for first-year students in

order to ease this transition between second- and third-level education, as well as

student support and career guidance for students at risk of stopping out (leave and

2
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return) or dropping out (leave permanently) at any stage.

In this section of this introductory chapter, we will introduce the areas we will be

discussing throughout this thesis, our motivation to work on them and the research

questions we derived for each, which are used to frame the experiments carried out

and reported later.

1.1 Introduction to Predictive Modelling

There are many different types of data which are gathered about our University stu-

dents, ranging from static demographics to dynamic behaviour logs. These can be

harnessed from a variety of data sources at Higher Education Institutions. Combin-

ing these into one location assembles a rich student digital footprint, which can

enable institutions to better understand student behaviour and to better prepare

for guiding students towards reaching their academic potential.

Figure 1.2: Blended Classrooms Combine Traditional Classrooms with Online

Learning

In a recent literature review on learning computer programming, ten years of

survey results highlighted that today’s CS (Computer Sciences) classes still miss

out on the use of diverse forms of Learning Analytics ([51]) to improve student per-

3
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formance in the learning task, in some way. Automated collection of data on com-

puter programming activities, the online activities that students carry out during

their learning process, is typically used in isolation within designated programming

learning environments such as WebCAT ([38]). Yet combining this automatically

collected data with other complementary data sources (i.e. performance in class

assignments or demographic information or information on prior learning) means it

may have to be retrieved and aggregated from different course or University man-

agement systems. As a result, most of the data collection in the reported studies in

CS learning is extremely customised and impossible to replicate and reproduce at

other institutions.

Today, the majority of computer programming classes are delivered via a blended

instructional strategy with face-to-face instruction in classrooms supported by online

tools such as intelligent tutors, self-assessment quizzes, online assignment submis-

sion, and course management systems. New attempts in today’s classrooms seek to

combine multiple modalities of data such as gestures, gaze, speech or writing from

video cameras, lecture recordings, etc. to leverage students’ digital footprints [19,

79].

In this thesis, we propose, build and then evaluate a series of traditional Ma-

chine Learning Predictive Analytics models using student characteristics,

prior academic history, students’ programming laboratory work, and all logged in-

teractions between students’ offline and online resources. We generate predictions of

end-of-course outcome weekly, during the semester. Furthermore, lecturers on the

courses were updated each week regarding their students’ progress.

This theoretical work then contributes to a practical implementation of a Predic-

tive Analytics technique that aggregates multiple sources of students’ digital foot-

prints from blended classroom settings. This is done in order to validate the under-

lying theoretical work. This involves using multimodal data in the sense that it is

derived from multiple sources of information about students and in the remainder

of the thesis we refer to it as the students’ digital footprint. Advanced Data Mining
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techniques are adopted to develop and then create mathematical models to provide

realtime prediction of course outcomes as well as personalised dynamic feedback to

students on their progress. This approach incorporates static and dynamic student

data features to enhance predictive model scalability that can be extrapolated to

other blended classrooms and to other subjects as well as to other higher education

institutions. Additionally, not only is the approach we develop generic, it also per-

mits applicability in the case of only limited data sets being available (e.g. log files

for access to online laboratory material only) in order to be beneficial in helping

students in need. Most importantly, the generated predictions allow us to auto-

matically create and provide adaptive feedback to each student according to each

student’s progression and also to provide guidance when in need.

We explore how the proposed Predictive Analytics models which are developed

here, work in distinguishing students who may be struggling in computer program-

ming courses. We have access to, and we use, two years of groundtruth student

data as training data from which we can learn. To demonstrate the theory and

address research questions, we implemented multimodal models for each course that

aggregates sources of student data including student characteristics, prior academic

history, students’ programming laboratory work, and all the logged interactions

between students’ offline and online resources. Classification models are built by

developing data features and automatically identifying and extracting patterns of

success on these courses. These are then then trained and cross-validated to de-

termine and then refine their accuracy, and finally predictions are generated every

week with incoming student data. This gives us experimental data that we can use

to validate our underlying research questions and hypotheses. A report containing

whether each student is likely to pass or fail their next formal assessment and the

associated confidence with that estimation, is sent to the lecturers for each course.

In summary, the single and most important research question derived in this section

can be stated as the following:
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RQ1: When working with new cohorts of University students about whom we
have little historical interaction data, how accurate are the traditional Predictive
Analytics models when used with generic static and dynamic student data features,
in identifying those students in need of assistance in computer programming courses?

In the next section we will look at the technique of embeddings and how it can

be used in this thesis.

1.2 Introduction to Representational Learning and

Embeddings

Online learning tools and platforms including Massive Open Online Courses (MOOCs)

provide a rich mechanism for students to engage and interact with educational ma-

terial based on their individual existing knowledge and requirements for their own

academic development. Such tools also provide a mechanism to support person-

alised learning effectively through the use of customised recommendations. These

recommendations should be developed based on users’ understanding, effort and

their logged interaction with the learning systems to date by interpreting historical

data from previous cohorts of students as well as data from the current students.

Interest in, and the use of students’ digital footprints and, particularly, interactions

on VLE systems have been rising in the last decade because of their advantage in

better supporting individualised learning. However, developing a richer represen-

tation for student digital footprints effectively and efficiently is still a challenging

problem which has been an area of recent research interest, and is the focus of our

work in this thesis.

Machine Learning (ML) is a subset of AI that provides computers with the abil-

ity to learn without being explicitly programmed [17]. That is done by combining

the study of algorithms with statistical models. ML algorithms build a statistical

model based on a collection of existing data with known outcomes such as retail

data, bank loan applications or customer data from telecoms companies [57]. Those

trained models are then used to predict outcomes for unknown data such as new
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customers, new bank loan applications or new telecoms customers. There is a range

of algorithms and ML techniques to do this including Support Vector Machines

(SVM), Naive Bayes, Decision Trees and the recently popular Deep Learning or

Neural Networks. New advances and techniques are being discovered regularly. One

common challenge across all ML techniques and across all ML applications, is de-

ciding what data to use to represent customers, bank loan applicants or telecoms

customers, whatever the application is: which kind of customer data is most impor-

tant, which is of little value and which can be discarded. This is sometimes called

“data wrangling” and involves manual feature engineering including data cleaning

and can take far more time than doing actual data analytics.

Representation Learning is a set of techniques in Machine Learning that allows

a system to automatically discover the representations needed for feature detection

or classification from raw data. This replaces manual feature engineering and allows

a machine to both learn the features and use them to perform a specific task. For

instance, learning richer distributed representations of words has shown to be quite

effective for Natural Language Processing tasks [67, 13].

One of the main objectives of the work in this thesis in the area of learning

analytics is to explore the latent signals or information buried in raw data by building

high dimensional and distributional representations of student profiles and their

programming codes or the outputs of their programming assignments. We propose

a new methodology to profile individual CS students based on their programming

design using a technique called embeddings. An embedding is a mapping from

discrete objects to real number vectors. Such mappings constitute mapping to a

dimension which may not always be meaningful or easily explainable in Machine

Learning. However, the patterns of location and distances between vectors derived

from embeddings may uncover numerous latent factors among the embeddings. In

recent research in Deep Learning and Artificial Intelligence, the value of the amount

of data has surpassed the complexity of the models. Thus, we investigate the use of

hundreds of thousands of code submissions inputted to a Deep Learning model
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using Embeddings as one of our implementation techniquess.

We will investigate different approaches to analyse student source code submis-

sions in the Python language. We will compare the performances of different source

code vectorisation techniques to predict the correctness of a code submission. In

addition, we propose a new mechanism to represent students based on their code

submissions for a given set of laboratory tasks on a particular course. Potentially, we

can make deeper recommendations for programming solutions and pathways to sup-

port student learning and progression in computer programming modules effectively

at a Higher Education Institution.

In further work we will investigate how to effectively represent and compare

students’ source code as submitted for assessment as part of their computer pro-

gramming courses, on our internal online platform. We will investigate different

techniques to represent students’ code (code2vec) and evaluate the performance of

different internal representations to predict the correctness of a code solution. Fur-

thermore, after investigating different representations of user code (code2vec), we

will propose a mechanism to represent students using their code submissions for

given programming exercises for a course as a matrix (user2code2vec). We will in-

vestigate how this methodology can be used to effectively compare and rank students

within in a class, to cluster students who show similar behaviour and to perform

class-based analytics over the cohort of students.

The research questions that we investigate in this particular aspect of the thesis

work can be enumerated as the following:

RQ2: How can students’ programming submissions be encoded into vectors for use
as internal representations of those students?

RQ3: By leveraging the vectorisation of code submissions for a given course, how
can we represent students based on their programming work?

8



Artificial Intelligence in Computer Science and Mathematics Education

1.3 Introduction to Adaptive Feedback

As part of the experimental work in this thesis we conducted several semester-long

classroom studies and collected data from several computer programming courses

that adopted our approach to using predictive analytics in learning applications. In

addition, during the second part of the semesters in which this was used, typically

after students complete their first laboratory computer-based examination, students

were free to opt-in to receive weekly personalised notifications. The feedback con-

tained information regarding their predicted performance, based on the student data

modalities gathered including their progress with laboratory sheets, programming

code solutions, a form of peer feedback from predicted top-ranked students within

the same class and university resources to reach out for help if needed, such as the

University Student Support department, the course’s lecturer or our system.

The feedback has been given via two methods:

• Weekly email notifications

• Virtual assistant (a WhatsApp ChatBot)

The accuracy of our Predictive Analytics models is crucial as students will receive

customised feedback regarding their predicted performance. Then, we were able to

measure the engagement with these customised notifications and how that could

be an indicator of their performance. In addition, students were surveyed for their

views and impressions.

The research questions derived from this subsection are the following:

RQ4: What are the effects of timely automatic adaptive support and peer-
programming feedback on students’ performance in computer programming courses?

RQ5: What are students’ and teachers’ perspectives and experiences after adopting
a predictive modelling and adaptive feedback system into their own classes?
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1.4 Introduction to Graph Theory and Networks

MOOCs are revolutionising education by giving students around the world open ac-

cess to first-class education via the web. Lectures, readings, exercises and discussion

forums are now one click away for anybody with an internet connection and a com-

puter, anywhere. MOOCs gained popularity in 2012, which according to the New

York Times, became “the year of the MOOC”. Since then, the leading providers

have been Coursera, Udacity and edX.

edX’s mission is to increase access to high-quality education for everyone, every-

where and at the same time to enhance teaching and learning on campus and online.

This MOOC provider, founded by Harvard University and MIT, is non-profit and

open source. They offer courses from the world’s best universities and institutions.

On top of that, edX empowers research in education, pedagogy and learning by

working with university partners. Their online environment is a great platform to

explore how students learn and how lecturers can best teach their courses.

We will introduce a methodology to analyse large amount of students’ learning

states on two mathematics courses offered by the Global Freshman Academy pro-

gram at Arizona State University. These two courses utilised ALEKS (Assessment

and Learning in Knowledge Spaces) Artificial Intelligence technology to facilitate

massive open online learning. We will explore network analysis and unsupervised

learning approaches (such as probabilistic graphical models) on these types of Intel-

ligent Tutoring Systems to examine the potential of the embedding representations

that we develop in the thesis, on students’ learning.

The single research question derived in this area is stated as the following:

RQ6: Can we extract valuable insights from massive open online learning platforms
utilising the sequences of learning states?
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1.5 Thesis Structure

This thesis consists of the following eight chapters:

(i) Introduction: the current chapter, which presents some of the context for

the work reported later.

(ii) Literature Review (Chapter 2): this chapter explores state-of-the-art re-

search in Learning Analytics and Educational Data Mining available in the

literature.

(iii) Students’ Digital Footprints and Data Used in the Thesis (Chapter

3): we introduce the datasets used for the studies which we use throughout

the thesis, and these datasets are taken from two institutions.

(iv) Modelling Student Online Behaviour (Chapter 4): this chapter gives

an overview of how to deploy a traditional Machine Learning model in an

educational environment using students’ digital footprints taken from that

education environment.

(v) Modelling Students With Embeddings (Chapter 5): building on the pre-

vious chapter we explore how we can model students using their code submis-

sions by leveraging the technique of embeddings.

(vi) Adaptive Feedback to Students (Chapter 6): we study how students im-

prove their performance in end-of-semester module examinations based on the

feedback provided to them.

(vii) Using Graph Theory and Networks to Model Students (Chapter 7):

we look at graph theory to explore how students learn mathematical concepts.

(viii) Conclusions (Chapter 8): this final chapter summarises the research pre-

sented, revisits the research questions and asks have they been answered and

proposes future directions for further research.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter we examine state-of-the-art literature regarding Artificial Intelligence

techniques and how they may be used to help students to learn Computer Science

programming skills and Mathematical concepts. These methods are broadly divided

into Supervised Learning and Unsupervised Learning.

2.2 Machine Learning and Predictive Modelling

Research has shown that there has been significant interest in searching for the

factors which motivate students to succeed in their first computer programming

module as they master a programming skill set. In particular, researchers have been

trying to identify the so-called “weak” students by looking at their characteristics,

demographics, online and offline behaviour and performance in assessments [48].

Demographics, academic and psychological factors are all examples of static char-

acteristics. When used for predicting computer programming success they include

such things as prior programming knowledge [62], prior academic history like math-

ematics scores, number of hours playing video games and programming self-esteem

[16, 88]. All these have been used in analysis of learning of computer programming,

and with some success.
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However useful these are, these factors do have some limitations [105]. First,

this information has typically been gathered using written questionnaires. Lectur-

ers in University settings have to process them and by the time they finish their

course, some students may already have disengaged with their course. Second, and

more importantly, these parameters do not reflect the students’ actual effort and

their learning progress throughout their course and might discourage students who

are working on the material but possess characteristics like previous mathematics

results, that are likely to present difficulties.

More recently, researchers have shifted their focus to a more data-driven approach

to predicting student outcome by analysing computer programming behaviour, in-

cluding patterns in compilations and programming states associated with the com-

puter programs that students write and submit for assessment. These are substan-

tially more effective at reflecting actual programming ability and competence, as

well as progress in learning, than the characteristics on test performance gathered

prior to the commencement of the course [104, 18].

The two main predictive measures are the Error Quotient [54] and the Watwin

Score [105] which measure a student’s behaviour between compilations and transi-

tions in their learning from compilation errors. These metrics gather snapshots of

the student’s code on compilation using BlueJ or Microsoft Visual Studio with the

OSBIDE plug-in while teaching using the Java or C++ programming languages and

they potentially augment the programming environment to offer dynamic feedback

or pathways.

Based on these predictors, new models, like the Normalised Programming State

Model [23] which focuses on learning transitions, or data-driven approaches using

machine learning, are emerging for these type of courses [1, 8]. In Computer Science

education research, there are further studies to evaluate how students learn and to

identify “at-risk” students by detecting changes in their behaviour as they learn

computer programming, over time [39, 24].

In addition to using the computer programming behaviour of students as they
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learn, students at Universities usually interact with an online Learning Management

System (LMS) or Virtual Learning Environment (VLE) and in doing so they leave

a digital trace or footprint. This has been leveraged previously to predict student

performance in end-of-course exams across a range of subjects, not just computer

programming. The most popular of the online educational systems are Moodle

and Blackboard [25]. Moodle is an open source LMS while Blackboard (formerly

WebCT) is a proprietary system.

Purdue University’s Course Signals project predicts student performance using

demographics, past academic history and learning effort as measured by interaction

with their VLE, Blackboard. The predictive algorithm is run on demand by instruc-

tors and the outcome is fed back to students as a personalised email as well as a

traffic signal which gives an indication of each student’s prediction [7]. The Open

University offers distance learning education and is the largest academic institution

in the UK with more than 170,000 students. The OU Analyse project identifies and

supports struggling students in more than 10 courses at different years of study.

Lecturers may find it difficult to identify at-risk students without the feedback from

face-to-face interactions that distance education has, but with predictive data at

their finger tips they are able to identify, intervene, and support students and im-

prove their virtual learning experience [60, 109]. Lastly, Dublin City University’s

Predictive Educational Analytics (PredictED) project used student interaction with

the university’s VLE, to predict likely performance of end-of-semester final grades

for first year students across a range of topics. This project’s interventions yielded

nearly 5% improvement in absolute exam grade and proved that weekly automated

feedback and personalised feedback to vulnerable first year students has a significant

positive effect on their exam performance [28].

Learning Analytics have proven to provide a good indicator of how students

are doing by looking at how online resources are being consumed. In computer

programming classes and blended learning classrooms, students leave an even far

greater digital footprint we can leverage to improve their experience and help to
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identify those in need [51]. Combining learning analytics engagement features with

programming states or behaviours in large classes can enable Lecturers to automat-

ically identify students having difficulties at an earlier stage [58].

In research into Computer Science Education, based on the granularity, namely

frequency and type of events, different models have been developed for student

programming learning behaviour. The digital footprints used to drive these models

include key strokes, program edits, compilations to executions and submissions [51].

In our work, explained in more detail in the following sections, we leverage an

automated grading system for the teaching of programming. We collect submissions,

a fine-grained footprint about each submission, and web logs regarding students’

interactions with the material. However, we should note, we are limited by the

frequency of the students submitting their solutions and we miss the programming

actions in between.

2.2.1 Traditional Machine Learning in Practice

Machine learning algorithms build a mathematical model based on sample data

(known as “training data”) to make predictions without being explicitly programmed

to perform a task [17]. We will now describe the steps followed in this thesis

(i) Data management and storage: data typically comes from files, databases

or streams (for real time processing of live data). Files are good for distri-

bution, and they can be structured or unstructured data. Databases are a

good choice for centralised information and network access and the structure

can be enforced using schemas. In our research, we sync all the students’

programming file submissions to our own systems and we are also provided

access to other files such as grades and student demographics. These files are

usually in plain text format such as CSV or JSON which are human readable.

Binary formats are also used for storing numeric arrays. In addition, when we

develop web platforms for Faculty to look at we store this type of information

in structured or unstructured databases.
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(ii) Data wrangling and cleaning: datasets typically contain errors, inaccu-

racies, missing values, duplicates, inconsistencies, etc. Data wrangling is the

process of transforming raw data into data we can process for extracting useful

information. Raw data should be kept separate from cleaned data. Typically,

we fix inaccuracies of the data and deal with missing values at this stage of

our work.

(iii) Data summarisation: From the data distributions of each of the variables

in our dataset, we analyse the measures of central tendency (statistics to cap-

ture the middle of the distributions) such as mean, median and mode as well

as measures of statistical dispersion (statistics to measure how stretched each

distribution is) such as variance, standard deviation and inter-quartile range.

In addition, we can measure statistics of association between variables such

as the covariance (how much two variables vary together), the linear (Pear-

son) and non-linear (Spearman) correlation coefficients (normalised version of

the covariance for measuring the relationship between quantitative variables)

and the mutual information (measure of the mutual dependence between two

variables which is also knows as the “correlation for the 21st century” [99]).

In our work, we confirm the predictive power of our features by analysing the

correlation coefficients with a target variable. For instance, the programming

percentage of work done by students is typically highly correlated with their

performance on examinations.

(iv) Data visualisation: exploring the distributions of our variables and their

relationships visually is incredibly useful. This provides us with sanity checks

for our datasets and we can generate or confirm any hypothesis we may have

at this stage. Visualisations are also key to communicate our hypotheses,

conclusions and findings. For that, we typically use histograms for distribu-

tions, scatter plots for relationships between variables or bar charts to compare

quantities.
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(v) Modelling: in traditional Machine Learning a collection of features are hand-

crafted from the parameters or variables extracted from the data. This is a

very manual process. In order to model the behaviour of, for instance students

learning computer programming skills, we can approach it in two different

ways:

• Unsupervised Learning: where we only have unlabelled data. In or-

der to learn structure from the data, we assume the data forms distinct

clusters (clustering) or data lies close to a lower dimensional manifold

embedded in a high dimensional space (dimensionality reduction). Clus-

tering techniques we can use are k-means, agglomerative clustering and

Gaussian Mixture Models (GMM). The most popular dimensionality re-

duction techniques are PCA (Principal component analysis) and t-SNE

(t-distributed stochastic neighbour embedding). In our work, as we will

explain later, how we learned hidden structure from millions of transac-

tions of students learning Mathematical concepts.

• Supervised Learning: here we have labelled examples, also known as

groundtruth. There are two types of scenario:

– Regression: when the output variable to be predicted is a real num-

ber. In our work, that would be equivalent to predicting an average

grade of the year for the first-year university students in our univer-

sity based on behavioural logs.

– Classification: when the output variable to be predicted is a cate-

gorical variable. In our work, we predicted two categories, whether

our students were “at-risk” or not.

Our dataset will be split into three sets: training, validation and testing.

Training will be used to fit the model and the validation data to optimise

the hyperparameters of the learning function. Cross-Validation is a tech-

nique used to validate the model that repeatedly trains it and tests it on
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a subset of the data (also known as folds). The testing set will be used

to calculate the error using a scoring method such as Accuracy or F1-

Score. Some of the more commonly used supervised learning algorithms

are: Linear Regression (regression), Logistic Regression (classification),

Decision Trees (typically classification), Random Forests (typically clas-

sification), Support Vector Machines (typically classification) and many

more. A description of these different algorithms is beyond the scope

of this thesis but can be found in any good online learning material or

textbook such as [43] and [17].

2.3 Deep Learning and Embeddings

Deep Learning (DL) is an approach to designing and building AI systems and a

subfield of of the broader area of machine learning. In ML, computers learn patterns

from experience and past data, as was explained in more detail in the previous

section. DL is a type of ML that represents or models the world as a nested hierarchy

of concepts. More abstract concepts or representations are computed in terms of

less abstract ones [43]. Figure 2.1 shows the relationship between AI disciplines and

gives an example for each. Figure 2.2 is a high-level schematic of the relationship

among some of these, with examples.

In the work in this thesis we are particularly interested in exploiting embeddings

as an AI technique because of their applicability to modelling student behaviour,

but first a little background into the topic. Neural language model-based distributed

representations of text as proposed by [14] and further developed by [66, 67], learn

distributed word representations using Neural Network based methods which are

trained over large collections of text. These representations, commonly referred to

as embeddings, embed an entire vocabulary into a comparatively low-dimensional

vector space, where dimensions are real values. These embedding models have been

shown to perform well on semantic similarity between words and on word analogies

tasks [67, 13].
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Figure 2.1: Venn diagram showing how deep learning is a kind of representation
learning, which is in turn a kind of machine learning, which is used for many but
not all approaches to AI. Image taken from [43].
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Figure 2.2: Flowcharts showing how the different parts of an AI system relate to
each other within different AI disciplines. Shaded boxes indicate components that
are able to learn from data. Image taken from [43].
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In the area of computer programming, predicting code properties or extracting

meaningful features from vast amounts of code data has experienced tremendous

progress recently [4, 83, 6]. Predicting code properties without compiling or running

is used for name prediction of program entities [5], code generation [90], code com-

pletion [91] and code summarisation [3]. In addition, embeddings-based techniques

have been recently applied to learning effective code representations, comparing

source codes and recommending approaches to students.

[71] recently proposed how to successfully develop program vector representa-

tions to be used in conjunction with Deep Learning models for the task of classifying

computer programs. The vector representations learned used the nodes from Ab-

stract Syntax Trees (ASTs) which are a tree representation of the abstract syntactic

structure of source code [77]. The authors explored other granularity levels for rep-

resentations such as characters, tokens or statements. In our work, we also explore

tokens as a way to vectorise code submissions by leveraging the Python Tokeniser

library.

Even more recently, [6] developed a code2vec neural attention network that col-

lects AST paths and aggregates them to extract syntactic information from code

snippets. Their objective was to predict semantic properties such as method names

by representing snippets of code as continuous distributed vectors, also known as

Code Embeddings. In our work, we build similar higher-level distributed vectors to

predict the correctness of code solutions to verify patterns and meaningful informa-

tion is then extracted.

[83] leveraged Code Embeddings to give feedback to students in MOOCs. First,

they captured functional and stylistic elements of student submissions and, then,

they learned how to give automatic feedback to students. This was done by devel-

oping functionality matrices at each point of the syntax tree of the submission.

In terms of providing student feedback, [80] demonstrated a continuous hint

approach can predict what capable students would do in solving a multi-step pro-

gramming task and that the hints built using embeddings can match the edit hints
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that human tutors would have given. Also, [44] proposed feedback strategies and

automatic example assignments using structured solution spaces. More recently,

[86] collected a dataset of rich events streams. Instead of studying artifacts after

they happened, they build FeedBaG, a general-purpose interaction tracker for Vi-

sual Studio that monitors development activities and collected data from software

developers.

Finally, [72] proposed a tree-based Convolutional Neural Network, denoted as

TBCNN, using a convolution kernel designed over programs’ ASTs to capture struc-

tural information. They also used this technique to classify programs based on

functionality and detecting code snippets with particular patterns. In addition, de-

veloping a dataset of syntax trees can be used for recommendations as [87] did for

C# using solutions taken from GitHub.

In our work, code solutions from students are transformed into continuous dis-

tributed vectors, Code Embeddings, to be used as a representation of their program-

ming submissions (code2vec). These vectors are leveraged to construct a matrix that

represents each user in a comparable way (user2code2vec). [93] proposed a Tensor

Factorisation approach for modelling learning and predicting student’s performance

that does not need any prior knowledge. This work outperformed state-of-the-art

approaches for measuring learning and predicting performance such as Bayesian

Knowledge Tracing and other tensor factorisation approaches. We were inspired

by this work [93] to develop a similar representation for users who learn coding at

our University and we use embeddings to learn higher level representations of that

information.

Deep learning methods for machine learning, are representation-learning meth-

ods with multiple levels of representation, obtained by stacking multiple simple but

non-linear layers with weights which are learned from data [61]. These culminate in

an output which may be a category, or a number, or multiples. The way in which the

deep learning architecture operates, we learn increasingly more abstract concepts.

As the amount of data available to deep learning algorithms increases, accuracy of
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the predicted output does as well, substantially outperforming traditional feature

extraction techniques combined with traditional machine learning algorithms [78],

across a range of applications.

We consider the following type of neural networks:

• Feed-forward Neural Networks: where each neuron in the input layer is

connected to every output neuron in the next layer (fully connected layer).

• Convolutional Neural Networks (CNNs): where each layer in a CNN

applies a different set of filters (also known as convolutions) and combines the

result before applying an activation function such as Rectified Linear Unit

(ReLU). In image classification applications, these convolutional layers can

learn edges and shapes and, on top of those layers, higher-level features such

as facial structures.

• Recurrent Neural Networks (RNNs): where the connections between

nodes form a directed graph along a temporal sequence. This method uses its

memory to process sequences of inputs.

In contrast to neural network architectures, mathematical embeddings involve

converting an item from a space with many dimensions to a continuous vector space

with a much lower number of dimensions. The most popular methods to generate

this mapping are neural networks and dimensionality reduction. In our case, we

leverage neural networks. By framing a problem as a prediction, for instance, and

including an embeddings layer with a much lower dimension we force the network

to learn higher level representations. This will be further explored in Chapter 5.

This section has presented a fairly high level overview of deep learning but there

is much more that we could describe, including gradient descent, different kinds

of activation functions, initialisation of the network, regularisation, and more, but

these are outside the scope of this thesis where we want to use these techniques

rather than develop new ones. The reader is referred to the well-cited book by

Goodfellow et al., for details on this topic [43].
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2.4 Adaptive Feedback in Learning

Feedback is an effective way to motivate novice programmers and an important

research avenue for teaching computer programming. Recently, researchers have

been working on augmenting the IDE or programming environment by crowdsourc-

ing code solutions. Students are suggested error corrections or solutions that their

peers have applied before. Java has been the programming language initially tar-

geted for this approachwith systems such as BlueFix [103] and HelpMeOut [46].

This latter social recommender system was also applied to learning on the Arduino

platform. In addition, Crowd::Debug [73] was presented as a similar solution for the

Ruby programming environment, a test-driven development language.

In terms of notifying students as to how they are progressing throughout the

semester, Purdue University’s Course Signals [7] sent a personalised mail and posted

a traffic signal as an indication of their performance and Dublin City University’s

PredictED [28] project notified students how they were doing and where they were

rated in terms of progress within their own class. Both systems yielded impressive

improvement in first-year retention rates. In our work, our programming grading

system provides real-time feedback on computer program submissions by running

a suite of testcases but it does not provide code suggestions or solutions for errors

that the programs may have.

Feedback has always been one of the most effective methods in enhancing stu-

dents’ learning [47]. There is an abundance of factors that affect educational achieve-

ment. Some factors are more influential than others. For instance, feedback types

and formats and the timing of providing feedback [95] are both important. Stud-

ies have reported that positive feedback is not always positive for students’ growth

and achievement [47]; “critical” rather than “confirmatory” feedback is the most

beneficial for learning regardless of whether feedback was chosen or assigned [31].

Content feedback achieves significantly better learning effects than progress feed-

back, where the former refers to qualitative information about the domain content

and its accuracy, and the latter describes the quantitative assessment of the stu-

24



Artificial Intelligence in Computer Science and Mathematics Education

dent’s advancement through the material being covered [53]. Several of the different

feedback factors were explored at the intersection with the learner’s variables (i.e.

skills, affects) and reported to support personalised learning [75]. For instance, cog-

nitive feedback was found to make a significant difference in the outcomes of student

learning gains in an intelligent dialogue tutor [21]. Students’ affects were adapted to

improve motivational outcome (self-efficacy) in work reported in [21, 32] while using

student characteristics as input to tutoring feedback strategies to optimise students’

learning in adaptive educational systems was reported in [76]. While a large body of

empirical studies investigate the feedback impacts in the context of learning [110],

we focused on researching educational technology to support delivering adaptive

feedback for computer programming courses.

Recommender systems have provided numerous novel applications in industry in-

cluding recommendation of books, movies, music and more. Recommender systems

can offer the education sector a new direction of research into technology enhanced

learning [64] by including recommender technology in learning platforms. In the

context of learning computer programming, several studies implemented resource

recommendation or best next-item or step recommendation (i.e. the next best item

to be viewed in the navigational sequence) [49], and these have reported promis-

ing approaches and results. For instance, CodeReco [97], CodeBroker [111] and

SnipMatch [107] all use similarity measures to recommend partial source code to

facilitate problem solving while OOPS recommends relevant worked examples [98].

In this work, we focus on recommending relevant resources based on learner’s needs.

2.5 Graph Theory and Networks

In the final topic for our literature review, we briefly summarise work in the area

of graph theory and networks. The reason for including this topic is that a system

called ALEKS (Assessment and Learning in Knowledge Spaces), which we describe

in the next Chapter in Section 3.2.2, leverages AI techniques in order to map stu-

dents’ knowledge. ALEKS is based on knowledge spaces, which was introduced in
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1985 by Doignon and Falmagne, who describe the possible states of knowledge of a

learner [35]. In order to develop a knowledge space, a domain like Algebra or Chem-

istry is modelled and divided into a set of concepts and feasible states of knowledge

where the student’s knowledge is at any given point in time. This technology adapts

and navigates the students by determining what the student may know and may

not know in a course and guides her to the topics she is most ready to learn. It as-

sesses the student’s knowledge periodically to ensure topics are learned and retained

[36]. Recent research has shown that using ALEKS for learning Mathematics has a

positive learning impact on an after-school program for more than 200 sixth graders

[29, 30].

Related to our use of data from the ALEKS system, recent research has shown

that Network Analysis measurements can be used as predictive features for machine

learning models in addition to generic content-based features [26]. Moreover, se-

quential modelling (i.e. Hidden Markov Models (HMMs)) can be useful to uncover

student progress or students’ learning behaviours [84, 83, 50]. We hypothesise that

modelling the evolution of a large number of students’ working behaviours with so-

cial network features, will allow us to uncover students’ progression. This, in turn,

will allow the possibility to enhance the student experience with further personalised

interventions in these Intelligent Tutoring Systems as they gather rich information

about concepts, topics and learning states.
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Chapter 3

Students’ Digital Footprints and

the Data Used in the Thesis

In the work reported in this thesis, we leveraged data from two Higher Education

Institutions, namely Dublin City University (DCU) and Arizona State University

(ASU).

Higher Education Institutions collect data about their students at multiple points

during the student journey and they store this in different locations and on different

institutional systems. This data includes information on students’ background and

demographics at the time of initial registration, interaction with the institution’s on-

line learning environments and other online resources like WiFi access, online library

resources and student support services, geolocated data from physical locations like

lecture attendance or library accesses, and some aspects of their social activities like

memberships of clubs and societies. Leveraging all these sources of information and

many more, if they were integrated together, could shape a picture of the students’

engagement and involvement on campus.

Moreover, in learning discipline-specific subjects such as computer programming,

students spend a considerable amount of their time in laboratory sessions. While

learning computer programming, students typically interact with a platform to de-

velop and submit their program code for specified assignments problems leaving an
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even greater digital footprint than learning in other disciplines [51, 52]. Some of

these platforms are: Web-CAT [38], CloudCoder [81], CodeWorkout [37], Blackbox

[22] using the BlueJ plugin [59] and many more.

These types of computer program submission platforms are often used to eval-

uate the correctness of the students’ computer programming work which acts as a

measure of their progression through the course, and the effectiveness of their learn-

ing. Analytics platforms could be used to make use of this information in order

to understand students’ engagement and behaviour, which could, in turn, be an

indicator of their learning experience. Unfortunately, these automated assessment

systems are not the only tools that the students and the instructors will use, espe-

cially when students take multiple courses or modules in the computer science area,

and they often have to switch among several online educational platforms for each

course. Therefore, without collecting all the diverse interaction data, plus all the

other data on students that an institution has, it is challenging to establish reliable

groundtruth data in order to train predictive models.

In summary, at Dublin City University, we collected student data from Computer

Science students learning how to code in programming modules and, in addition,

from first-years at the whole university. In Arizona State University, we collected

student data from reviewing behaviours in a programming course and from Math-

ematics MOOCs taught at the EdX platform. Table 3.1 shows a summary of the

data used in the thesis.

Table 3.1: Summary of the Data Used in the Thesis

University School Type Source

Computing Programming DCU’s Grading Assistant
DCU

All Usage of Resources Various

Computing Programming ASU’s Grading Assistant
ASU

Online Learning States EdX & ALEKS
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3.1 Dublin City University

Dublin City University is a university based on the Northside of Dublin, Ireland.

Created as the National Institute for Higher Education, Dublin in 1975, it enrolled

its first students in 1980, and was elevated to university status in September 1989

by statute. The university has 17,000 students and around 1,200 online distance

education students.

3.1.1 School of Computing

Dublin City University offers two honours Bachelor degrees in Computer Science

through its School of Computing, a B.Sc. in Computer Applications (CA) and a

B.Sc. in Enterprise Computing (EC). CA prepares students for a career in com-

puting and information technology by giving them in-depth knowledge of software

engineering and the practical skills to apply this knowledge to develop the tech-

nology behind computing-based products. EC prepares students to use computing

technology to help organisations to work together and give companies a competitive

edge in the marketplace. The EC degree is more focused on topics like managing

information technology and developing and using systems to improve and even to

re-design the way organisations do business. It is safe to say, CA teaches students

deeper computer programming skills and EC is more business and project manage-

ment oriented.

The data used in this thesis from DCU was drawn from students registered in

the CA and EC degree programs. Specifically, the data sources we made use of in

order to model student interaction, engagement and effort in computer programming

courses in DCU consists of:

• Student Characteristics: gender, date of birth, citizenship and domicile.

• Prior Academic history: prior-to-university test scores: Irish CAO points

and Leaving Certificate exam scores (equivalent to GPA and SAT exams in

the US) and prior academic history at the university if there is any.
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• Interaction logs: Students interact online with the custom VLE developed

for computer programming courses and every instance of a student’s access to

a page of any kind is recorded and stored. These are web logs from an Apache

web server for the resource or page requested, the date and time of access, the

unique student identifier, and the IP address of the device used for access.

• Programming submissions: A custom Virtual Learning Environment (VLE)

for the teaching of computer programming has been developed by Dr. Stephen

Blott 1. This automated grading platform is used in a variety of computer pro-

gramming courses across the Faculty including students in both the CA and

EC degree programmes. Using this VLE, students can browse course material

(as on any LMS) and submit and verify their computer programming labora-

tory work. Figure 3.1 shows how students are able drag and drop their program

files onto the platform. Figure 3.2 shows the real-time feedback students get

when verifying a program by running a suite of pre-specified testcases on the

grading server. The analytics information extracted for each submission is the

program name, code, laboratory sheet that it belongs to, whether the submis-

sion is correct or incorrect according to the lecturer’s testcases, and the date

and time of the submission.

Table 3.2 presents a list of the courses we used to test our various research

questions and hypothesis that will be discussed in the following sections. Some of

these courses were delivered multiple times and we use data gathered from multiple

runnings of these courses.

These courses use the custom VLE for the teaching of computer programming

which allows us to capture a fine-grained digital footprint of students interacting

with computer programming learning material and submitting their code solutions.

1Dr. Stephen Blott is an Associate Professor at the School of Computing in Dublin City
University http://www.computing.dcu.ie/~sblott/
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Figure 3.1: Screengrab from the Virtual Learning Environment for the Teaching of
Computer Programming at Dublin City University

Table 3.2: Courses in DCU’s School of Computing used in this thesis

Course Title Degree Year Semester Language

CA116 Programming I CA 1st Fall Python

CA117 Programming II CA 1st Spring Python

CA114 Enterprise Computer Systems EC 1st Spring Shell

CA177 Programming Fundamentals I EC 1st Spring Python

CA277 Programming Fundamentals II EC 2nd Fall Python

CA278 Programming Fundamentals III EC 2nd Spring Python
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Figure 3.2: Instant Feedback Provided to the Student After Submitting a Program
to the Automated Grading Assistant

3.1.2 Data from across the Whole University

In addition to log and interaction data from the custom VLE for learning computer

programming, a range of other sources have been used to extract data on all first-year

undergraduate students at the university. This was gathered in order to model their

behaviour and chances of success at the university, and it includes the following:

• Student Characteristics: gender, date of birth, citizenship and domicile.

• Prior Academic history: prior-to-university test scores and prior academic

history at the university.

• Registration: date of first registration and date of cancellation if applicable.

• Clubs and Societies: membership to any organisation run at the university.

• Funding: receipt of any SUSI (Student Universal Support Ireland) funding.

• Library: dates of borrowing instances (books) and dates and times of each

occasion entering library building.

• Computer resources: occasions students use the on-campus computer labs.

• Printers: usage of printing services around campus.
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• Student Support (CRM): records of student interaction with the Student

Support office for the school attended.

• General VLE usage: students at Dublin City University use Moodle as their

main VLE and records associated with assignment submission were recorded

and extracted.

• WiFi: Eduroam access logs of students logging in to different hotspots on

campus.

• Sports Centre: records of students using the sports facilities on campus.

Approval for access to this confidential non-anonymised student data was granted

by DCU Research Ethics Committee, reference DCUREC/2014/195.

3.2 Arizona State University

Arizona State University (ASU) is a public research university ranked number 1 in

the U.S. for innovation, and dedicated to accessibility and excellence. ASU has five

campuses spread across the Phoenix metropolitan area, and four regional learning

centres throughout Arizona. ASU is one of the largest public universities by enrol-

ment in the U.S. with 80,000 students attending classes across its metro campuses

and 30,000 students attending online.

3.2.1 School of Computing, Informatics, and

Decision Systems Engineering

Arizona State University’s Web Programming Grading Assistant (WPGA) 2 was

developed by the University to serve as a platform that connects the physical and the

digital learning spaces in learning computer programming. This system enables the

digitization, grading, and distribution of paper-based assessments. Further details

regarding the rationale and the design of the platform can be found in [50]. All events

2https://cidsewpga.fulton.asu.edu/
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(which mostly are students’ clickstreams) are logged along with their timestamp.

Examples of the clickstream data which is logged include logging in and out, clicking

on a question to review, bookmarking a question, navigating through an exam, and

taking of notes.

The data used in this thesis was collected from a classroom study conducted

in a Data Structures and Algorithms course offered during the Fall 2016 semester.

This class had a total of 3 exams and 13 quizzes. Among the 13 quizzes, only 6

were graded while the remaining 7 were recorded only for attendance (full credit

was given regardless of the answers). There were 283 students enrolled in the class

but only 246 (86.93%) were included in the study as those who dropped the course

in the middle of the semester, did not take the three exams, or did not use the

reviewing platform at all had to be removed. In the study presented in this thesis,

we analysed review actions performed by students. A review action is an event where

a student examines his or her graded answer. It includes reading the question, the

answer, the assigned score and the feedback provided by the grader (see Figure 3.3

for an example). These review actions are collected via the web logs. We consider a

student reads a question or answer when he or she clicked on the material resource.

3.2.2 Global Freshman Academy and ALEKS via EdX

In 2016, Arizona State University (ASU) launched the Global Freshman Academy

(GFA) where they provide first-year university courses through the EdX platform

allowing students to earn transferable ASU credits from anywhere. GFA makes

university education available to anybody, from high school students to retirees

going back to study at college. ASU currently offer 13 courses and our analysis will

focus on two Mathematics modules: “College Algebra and Problem Solving I”, and

“Precalculus”.

These courses leverage the Assessment and Learning in Knowledge Spaces (ALEKS)

technology, which is a web-based artificially intelligent assessment and learning sys-

tem owned by McGraw-Hill Education. This technology was developed at New York
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Figure 3.3: Web Programming Grading Assistant Platform When a Student Reviews
Her Graded Response to an Exercise

Table 3.3: Some Math Courses at ASU’s GFA in EdX

Course Title

MAT117 College Algebra and Problem Solving I

MAT170 Precalculus

University and the University of California, Irvine supported by a National Science

Foundation research grant. The two aforementioned Mathematics courses taught by

ASU use this ALEKS technology.

ASU’s GFA Mathematics courses combined with ALEKS technology is ASU’s

effort to get students prepared for college-level mathematics. The effectiveness and

adaptiveness of this Artificial Intelligence (AI) tutoring systems have the potential

to motivate and help students acquire these skills so their experience when they do

reach college, is improved because of this grounding in mathematics.

An anonymized dataset of 15,000+ students learning on the two Mathemat-

ics courses in EdX with the ALEKS technology was collected between April 2016

and October 2017. Students were assessed continuously while navigating through
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ALEKS and daily aggregates of the topics learned and retained were generated. We

tracked 40,000+ assessments and 8+ million daily aggregates in this work. In addi-

tion, 5+ million transactions of students navigating through the concepts have been

extracted from the EdX logs. Each timestamped transaction contains information

on the student, the concept being studied and a learning state. The learning states

are the following, and final states are determined automatically by the system:

• L: Initial state for each concept where a student reads the Lesson

• C: Intermediate state where a student gets an exercise Correct

• W: Intermediate state where a student gets an exercise Wrong or Incorrect

• E: Intermediate state where a student asks for a working Example

• S: Final state where a student has Mastered a particular concept

• F: Final state where a student has Failed to master a particular concept

In the next chapter we will describe how we used established machine learning

techniques to model students’ learning based on their digital footprints.

3.3 Feature Importances

In order to determine which features have more importance we used two approaches:

• The first one is an extra trees classifier, a type of forest that fits a number of

randomized decision trees [41]. We utilized this technique for the predictive

models developed for Dublin City University’s computing courses, explained

in more detailed in Chapter 4. We fitted an extra trees classifier with 250

estimators to measure the importance of each feature. Interestingly, we can

observe how static features such as previous university scores or the entry-to-

university Mathematics score are important in the first week of the semester

while the dynamic programming work features and the effort students put in
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increasingly gain importance throughout the semester relegating static features

to the end of the ranked list of features.

• The second one is an ablation study, which refers to removing some feature of

a model from the algorithm and seeing how that affects performance [65]. We

leveraged this approach for determining the most meaningful features for all

first-year students at Dublin City University, also explained in more detailed

in Chapter 4. We excluded each of the feature from a linear model in order

to measure how much variance the feature contain. The top features were

considered the most meaningful ones.

Finally, in our projects we can reduce the number of features in our models by

selecting the most meaningful parameters. In addition, we can also reduce this di-

mensionality by using techniques such as Principal Component Analysis (PCA) [56]

which projects the data into a subspace maximizing the variance retained. These are

areas of great interest in ML, either selecting important features or dimensionality

reduction, but are out of the scope of this thesis.
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Chapter 4

Modelling Students’ Online

Behaviour

4.1 Introduction

This chapter introduces a new research methodology to automatically detect stu-

dents “at-risk” of failing a computer-based examination in computer programming

modules (courses). By leveraging historical student data from previous cohorts, we

built predictive models using students’ offline (static) resources including student

characteristics and demographics, combined with online (dynamic) resources using

programming and behavioural logs. Predictions are generated weekly during the

semester.

4.2 Context and Dublin City University Courses

Dublin City University’s academic year is divided in two semesters with one week of

inter-semester break in between. Semesters are comprised of a 12-week teaching or

classes period, a 2-week study period and a 2-week exam period. Laboratory sessions

and computer-based examinations are carried out during the teaching period. We

have developed predictive models for a range of computer programming modules

including the following:
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• Computer Programming I, CA116: This course is a core and fundamen-

tal subject taught during the first semester of the first year of the honours

Bachelors degree in Computer Applications. Students learn the fundamen-

tals of computer programming, and how to write, run and debug their own

programs. Students also learn the fundamentals of computational problem

solving. Lectures are taught for four hours on three different days each week

for 12 weeks. The course also involves four hours of supervised laboratory

work on two different days each week using the Python language. A previ-

ous version of CA116 was taught using Java before it was redesigned for the

2015/2016 academic year.

• Computer Programming II, CA117: This course introduces first-year

students to more advanced programming concepts, particularly object-oriented

programming, programming libraries, data structures and file handling and is

taught during the second semester of the first year. Students are expected to

engage extensively in hands-on programming with the Python programming

language. CA117’s lectures are taught for four hours on three different days

each week for 12 weeks and the course also involves four hours of supervised

laboratory work on two different days each week using the Python language.

Similar to CA116, a previous version of CA117 was taught using Java before

it was redesigned. The current version with Python has been taught since

2015/2016 academic year. The course is a continuation of CA116, Computer

Programming I, the introductory programming course.

• Managing Enterprise Computer Systems, CA114: This course equips

first-year Enterprise Computing students with the basic skills necessary to

administer modern enterprise operating systems and shows students how to

manage Unix and Unix-like systems. Specifically, they study the Unix shell

and work shell scripting programming exercises using tools like test, find or

grep and concepts like loops, pipes and file handling. CA114’s lectures are

taught for two hours on two different days each week and the course also
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involves two hours of supervised laboratory work each week using the Bash

Unix shell and command language. This course has been taught for the past

seven academic years since 2010/2011. Students work with the Bash Unix

shell and the command language.

• Programming Fundamentals II, CA277: In this course second-year En-

terprise Computing students learn to design simple algorithms using structured

data types like arrays (known as lists in some programming languages) and

dictionaries (also known as hash-maps) using the Python language. Students

will be able to design simple algorithms using these structures, and write and

debug computer programs requiring these data structures. Students will also

learn how to write functions. This is a new course that has been taught for

the first time the academic year 2016/2017.

• Programming Fundamentals III, CA278: This course teaches second-

year Enterprise Computing students fundamental data structures and algo-

rithms in computational problem solving. The material includes linked lists,

stacks, queues or binary-search trees; and other techniques, like recursion. The

language chosen is Python. CA278 is a continuing course of CA277. Lectures

and labs are taught for four hours on two different days each week and is

typically split between two hours of lectures and two of laboratory work. It

emerged along with CA177 (Programming Fundamentals I) and CA277 for a

need for Enterprise Computing students to have deeper computer program-

ming skills in the workplace.

CA116 and CA277 are taught in the first semester (Fall). CA117, CA114 and CA278

are taught in the second semester (Spring). In all courses, students are assessed by

taking two laboratory computer-based programming exams, a mid-semester and

an end-of-semester assessment, during the teaching period. In CA278, instead of an

end-of-semester lab exam, students demonstrate a working project. Each laboratory

exam or demo contributes equally to their continuous assessment mark; 15% in
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CA117, 25% in CA114 and 20% in CA278. Students are not required to submit

their laboratory work for CA114 or CA277. In contrast, laboratory work count

towards their final grade of the course for CA117 and CA278, both count as 10% of

the overall grade for the course.

The university also provides in-lab peer-mentoring for some courses as well as the

lecturer attending the laboratory sessions. In CA116 and CA117 around eight CA

second-year students give tutoring support during laboratory sessions. In CA114

and CA278 a postgraduate student has been providing support to students during

laboratory sessions. The automated grading platform, introduced earlier in Sec-

tion 3, is currently used in a variety of programming courses across computing at

DCU including CA116, CA117, CA114, CA277 and CA278. Students can browse

course material, submit and verify their laboratory work.

4.3 Exploratory Data Analysis (EDA)

We know that students’ digital footprints commence prior to their arrival at the

university as demographics and GPA (CAO points) are collected at the time of

application.

We analysed 950 first-year Computer Science (CS) entrants across a seven year

period through the Leaving Certificate entry route. Early analysis showed a high

correlation between the entry level GPA equivalent and first year final exams aggre-

gate as shown in Figure 4.1. CAO (Cantral Applications Office) points can max at

600 and while there is no theoretical minimium, there is a minimum number of CAO

points required for entry into each University course in Ireland and generally this

is above 300 points. The Precision Mark shown on the y-axis in Figure 4.1 is the

overall percentage aggregated across all subjects in first year, including computer

programming modules.

In addition to Precision Marks, we looked at the number of enrolled students and

pass rates for all modules in CS over the years. This was done to understand where

students were having the most trouble in terms of module performance and, hence,
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Figure 4.1: University Entry Points Correlated with First-Year Precision Mark for
Computing Students at Dublin City University from 2013 - 2014 Academic Year to
2016 - 2017 Academic Year

where our work would have the most impact. For instance, Figure 4.2 shows the

number of students enrolled in one of these courses, CA114, since it was introduced

in the CS curriculum in 2010/2011 academic year.

Figure 4.3 shows the number of examinations taken in May with respect to the

resit examinations which are taken in August, from 2009 - 2010 Academic Year to

2015 - 2016 Academic Year.

Figure 4.4 shows how CA114 is one of the courses with the highest failure rates

in some past years and where students were having the most issues. This module

along with the others mentioned earlier in first and second year were then added to

our studies.
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Figure 4.2: Number of Students Enrolled in CA114 over from 2009 - 2010 Academic
Year to 2015 - 2016 Academic Year

Figure 4.3: CA114’s Numbers per Examination over from 2009 - 2010 Academic
Year to 2015 - 2016 Academic Year

4.4 Data Processing and Feature Engineering

For each course, a number of features were extracted from the data in a weekly

basis. A combination of static and dynamic student features was used for a weekly
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Figure 4.4: CA114’s Failure Rates Per Examination from 2009 - 2010 Academic
Year to 2015 - 2016 Academic Year

learning function we will introduce in the next section. A set of static features was

extracted before the start of the semester for each course and each student based

on their characteristics and prior academic performance. Then, each week, a set

of dynamic features was collected for each student by building engagement and

progression features based on their interactions and submissions to the platforms.

The data sources we leverage in order to model student interaction, engagement and

effort in computer programming courses are student characteristics, prior aca-

demic history, interaction logs and programming submissions, as explained

in Chapter 3.

The following set of static features were extracted before the start of the

semester for each course and student:

• Student characteristics:

– Age in years based on their date of birth and registration date.

– Travel distance in Km from home to university based on their domicile.

– Route to university: Irish Leaving Certificate, Athletic scholarship, Dis-

44



Artificial Intelligence in Computer Science and Mathematics Education

advantaged background, Mature entry, etc.

• prior academic performance:

– Irish CAO points and Leaving Certificate exam scores (equivalent to High

School GPA and SAT exams in the US)

– Prior academic history at the university.

– Final laboratory exam grades from prior courses in CS.

Then, each week, a set of dynamic features were extracted for each student based

on raw log data, interaction events for students accessing material and corresponding

computer programming submissions. For instance, in [69] it was found that high

level of VLE activity was a good indicator and, in particular, evening activity was

a indicator of good performance. See the following dynamic features extracted:

• programming effort:

– Computer programming laboratory work completed that week: percent-

age of correct exercises on that week’s labsheets.

– Cumulative computer laboratory work completed since the start of the

semester.

• engagement:

– Lab attendance: whether the student attended the laboratory sessions or

not.

– Time spent on the online platform.

– Ratio of during-laboratory to non-laboratory time accesses.

– Resources clicked with respect to all resources made available each week.

– Average time of the day the course material is accessed.

– Average lapse time between a resource being made available and the

student accessing it for the first time.
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– Ratio of on-campus to off-campus accesses based on IP address.

– Ratio of weekday to weekend accesses.

Table 4.1 lists the features with an associated short name that we will use for graphs

and tables in the remainder of this chapter.

Table 4.1: List of Feature Names and associated Short Names

Feature name Short name

Travel distance to university Distance

Irish CAO points (High School GPA) CAO points

Leaving Certificate Math Exam Score (SAT exams) Math LC

Average grade on previous formal assignments Avg. Grade

Laboratory assignment Course Year Exam Course Year

Computer programming work completed in week x Program Correct Wx

Cumulative programming work completed in week x Cum. Programs Wx

Ratio of on-campus to off-campus accesses in week x Campus Rate Wx

Ratio of weekday to weekend accesses in week x Week Rate Wx

Resources clicked over all resources made available in week x Coverage Wx

Laboratory attendance week x Lab Attendance Wx

Time spent on the platform in week x Time Wx

Ratio of during-lab to non-lab time accesses in week x Lab Access Wx

Average time of the day material is accessed in week x Hour Access Wx

Average lapse time to access resources in week x Checking Wx

At this point in the thesis, we will focus on just one of the modules in order

to make the research methodology understood better. The module we choose is

CA116, Programming I, for first-year Computer Applications students.

4.5 Feature Exploration and Correlations

In order to identify the predictive power of the various features in our student

model, we measured the linear and non-linear relationships between their values
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and our predicted target, the next laboratory exam results. We used the Pearson

and Spearman correlation coefficients and p-values (to indicate the probability of

uncorrelation and the null hypothesis to be incorrect).

For instance, in the last week of the teaching period (week 12), see Figure 4.5,

the cumulative programming work and the grade are highly correlated (correlation

coefficient of 62% with an associated p-value less than 0.01).

Figure 4.5: Correlations for CA116 2016/2017’s Features in Week 12

For each week in the academic year 2016/2017, we measured the correlation

among features of the same week for CA116, see Figure 4.6, the labels for each graph

are in the same order as in Figure 4.5: Campus Rate, Coverage, Cum. Programs,

Programs Correct, Week Rate (all of them for each week) and the Grade (the target

of our predictions and the parameter we use to calculate the correlation coefficients).

This analysis confirms the predictive power of our features and the programming

weekly and cumulative progress features increasingly gain importance throughout

the semester as students put more effort into the module and the module learns
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Figure 4.6: Correlations for CA116 2016/2017’s Features Every Week

more about each student because it has more data on each student to learn from.
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4.6 Splitting Data between Training, Validation

and Testing

Over the last few years, at Dublin City University, we have been developing pre-

dictive models to identify students struggling or having issues with course material

that they are studying. We do this by training these models with past student data

from previous cohorts of students and running these in pseudo real-time (running

them every week) with incoming new student data on the present cohort of students

based on their engagement activities during the previous week.

For the course CA116 and the academic year 2018/2019, we trained weekly

predictive models leveraging student data from student cohorts in 2016/2017 and

2017/2018. See Figure 4.2 for details. This module had three laboratory examina-

tions during the semester which took place during weeks 4, 8 and 12. The results of

those exams will be the target of our predictions. The proportion of students that

passed vs. failed in the training and validation sets is roughly the same so we have

a balanced training set.

Table 4.2: CA116 Split between Training, Validation & Test sets

Academic Year Number of Students Data Use

2016/2017 126 Train & Validation

2017/2018 156 Train & Validation

2018/2019 130 Test

We use a threshold of 40% to consider when a student passed an examination.

This is the minimum grade in our university to pass a module. The target was

to predict whether each student would pass or fail their next laboratory exam,

i.e. to get more or less than 40%. Programming modules are quite dynamic and

programming laboratory exercises vary considerably from year to year. However,

the underlying programming concepts and knowledge being taught should remain

the same.

49



Artificial Intelligence in Computer Science and Mathematics Education

4.7 Model Selection

4.7.1 Empirical Risk

A set of binary classifiers, one per week, were built to predict a student’s likelihood

of passing or failing the next computer-based laboratory exam based on their data.

CA116 had three laboratory exams every semester so in that case, to clarify, classi-

fiers from week 1 to 4, were trained to predict the laboratory exam outcome (pass

or fail for each student) on week 4; from 5 to 8, the laboratory exam outcome on

week 8; and from week 9 to 12, the end-of-semester’s laboratory exam outcome in

week 12.

At a given week, the dynamic features mentioned above were extracted from that

week’s activity log and programming submissions. Then, every week, a classifier was

built by concatenating the static student data, the dynamic features from previous

weeks’ classifiers and that week’s dynamic ones in order to account for each student’s

progression throughout the course.

In terms of implementation, the empirical error minimization approach was em-

ployed to determine the learning algorithm with the fewest empirical errors from

a bag of classifiers C [33]. The bag of classifiers consists of the following learning

algorithms:

(a) Logistic Regression: statistical algorithms that models the probability of a

class and transforms that into a class using the logistic function.

(b) Decision Tree: interpretable model where a tree is built by splitting the train-

ing data using the classification features.

(c) Random Forest: ensemble classifier that fits a number of decision tree classi-

fiers and uses averaging to improve accuracy and control overfitting.

(d) K-Neighbors (k-NN): algorithm that memorizes the labelled data during train-

ing and makes a decision on classification by looking at the k closest training

examples. k is a hyper-parameter.
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(e) Multilayer perceptron (MLP): feedforward Artificial Neural Network (ANN)

with at least one hidden layer and each node uses a nonlinear activation func-

tion.

These models were trained every week with the training data and evaluated on the

validation data for several scoring metrics including receiver operating character-

istic area under the curve (ROC AUC), accuracy (see Figure 4.7), F1 score (see

Figure 4.8), precision and recall. In addition, instead of just taking the learning

algorithm with the lowest empirical risk or the highest metric (namely accuracy or

F1-score), we also looked at these metrics per class. Generally, the results on the

next laboratory exam, our target variable, is quite imbalanced as on some courses

there are more students that pass than fail the exams. The resulting accuracy of a

learning algorithm could be misinterpreted if we weight the predictions based on the

numbers per class. Our goal is to identify weak students as we would rather classify

students “on the edge” as likely to fail than not flagging them at all and miss the

opportunity to intervene and help them.

Figure 4.7: Empirical Risk for CA116 for the Training Data using Accuracy

We should note that we only have two years of archival data from previous student
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cohorts and thus not many samples of past student data for a machine learning

algorithm. Hence, most classifiers perform very similarly.

Figure 4.8: Empirical Risk for CA116 for the Training Data using F1-Score

Figure 4.9: Empirical Risk for CA116 for the Training Data using F1-Score for the
Fail Class Only

Following this approach, we chose to use the learning algorithm which minimized
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the empirical risk on average for the 12 weeks which was then used in deployment for

each weekly classifier. Figure 4.8 and Figure 4.9 shows how some of these classifiers

are not doing a good job at detecting students that are likely to fail. Classes are

typically imbalanced as there might be more students passing a particular exam than

failing it. Hence, F1-Score is an appropriate metric that shows the MLP classifier

is not learning at all and predicting all students would pass for some of the weeks.

Random Forest is the chosen algorithm from the bag of classifiers as it minimized

the empirical risk on average for the 12 weeks and keeps a good balance for both

classes. Random Forest has proven to outperform other classifiers by mining student

data for predicting performance [68]. Other algorithms in our bag of classifiers such

as MLP might have poor initializations and does not reach a global minima.

4.7.2 Hyperparameter Optimization

In the hyperparameter optimization or tuning phase we choose the optimal hyper-

parameters for a learning algorithm. A hyperparameter is a parameter whose value

is used to control the learning process. The search for these parameteres is guided

by some performance metric, typically measured by cross-validation on the training

set or evaluation on a held-out validation set [27]. The two most common ways of

performing hyperparameter optimization are:

• Grid Search: an exhaustive searching through a manually specified subset of

the hyperparameter space of a learning algorithm

• Random Search: replaces the exhaustive enumeration of all combinations by

selecting them randomly

In our study, we chose a Random Forest classifier and, for instance, one of the

hyperparameters that has to be tuned is the number of trees. So, for every week,

using the validation data we held out, we optimized these hyperparameters for a

Random Forest classifier using Grid Search. Then, we stored these weekly learned
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models to be used with incoming student data. Figure 4.10 shows how this trained

model performs on the validation data we held out.

Figure 4.10: CA116’s Validation Data’s Accuracy after Hyperparameter Tuning

4.8 Predicting which incoming students are “at-

risk”

For the incoming cohort of 2018/2019 students taking the CA116 module, we lever-

aged the models trained on previous cohorts to predict whether each incoming

student would pass or fail the next laboratory examination, every week, and the

associated probability of doing so. A summary report was sent to the lecturers

of the module and other faculty associated with the classes. See Figure 4.11 for

an anonymized example of the feedback on (in this case just 3) student predicted

outcomes. This information was also posted on our web application accessible to

lecturers. Reports were also posted on a web application where the retrospective

analysis, the feature values tabulated for each student and more analysis in detail

could be found, similar to [34].
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Figure 4.11: Snapshot of Anonymised Predictions for a Sample of 3 Students

4.9 Re-visiting RQ1: Accuracy of Predictive Mod-

elling

In section 1.1 the first research question in the thesis was introduced and it is re-

stated here for convenience:

RQ1: When working with new cohorts of University students about whom we
have little historical interaction data, how accurate are the traditional Predictive
Analytics models when used with generic static and dynamic student data features,
in identifying those students in need of assistance in computer programming courses?

We analysed the preliminary results obtained and their impact on the first research

question proposed in this chapter. In order to evaluate how the predictions per-

formed in terms of accuracy, we compared the corresponding weeks’ predictions

with the actual results of the three laboratory exams that took place in weeks 4,

8 and 12 for CA116. This meant we were able to investigate how our predictions

worked with respect to the actual 2018/2019 students’ grades and the details are

shown in Table 4.3. As the semester progresses, the pass rates for the three labo-

ratory exams reduce. We only show the weeks where there was a laboratory exam

in this case, but we could also have a look at the rest of the weeks and see how our

model performed on new incoming data.

For each of those exam weeks we created a confusion matrix with the expected

pass/fail and the actual results by looking at the true positives, true negatives,
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Table 4.3: CA116 Prediction Metrics including passing rates and at-risk rates

Exam

Week

Pass

Rate

Predicted

At-risk
Accuracy F1 Score Precision Recall

Correlation

Coeficient

4 84% 1% 0.85 0.92 0.85 1.00 57%**

8 64% 58% 0.72 0.74 0.94 0.61 69%**

12 47% 60% 0.81 0.78 0.84 0.72 72%**

** p− value < 0.001

false positives and false negatives and from this we are able to calculate accuracy,

precision, recall and F1-score as shown in the Table. Also, for each laboratory exam,

we looked at the passing rate to compare it with the percentage of students at-risk

predicted by our models. These metrics were also shared with the lecturer. The

evaluation metrics are now further explained:

• Accuracy: (True Positives + True Negatives) / Total

• Precision: True Positives / Predicted Condition Positive = True Positives /

(True Positives + False Positives)

• Recall: True Positives / Condition Positive = True Positives / (True Positives

+ False Negatives)

• F1 Score: 2 * (Precision * Recall) / (Precision + Recall)

Figure 4.12 shows how accurately the predictions worked for each week of the

semester using the F1 measure (not only the exam weeks). We chose F1 as the

main evaluation metric as classes might be imbalanced. Generally, the number of

students that pass is not the same as the number of students that fail and we can

not rely on accuracy.

In addition to the above, we looked at the probability associated with failing

the laboratory exam that the classification algorithm gives us and linearly and non-

linearly correlated that with the actual result the students obtained. This allows us
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Figure 4.12: Evaluation using F1 for CA116’s Incoming 2018/2019 Cohort Shown
Weekly

to have a deeper look at the confusion matrices for each of the exam weeks.

Figure 4.13 shows the confusion matrix for Week 4 while Figure 4.14 shows the

confusion matrix for Week 8 and Figure 4.15 shows the confusion matrix for Week

12.

Figure 4.13: Confusion Matrix for Week 4 for CA116’s Incoming 2018/2019 Cohort

Condition Positive means students passed the examination and Condition Negative

means students failed the examination. Predicted Condition Positive means students

were predicted as they were going to pass the examination and Predicted Condition
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Figure 4.14: Confusion Matrix for Week 8 for CA116’s Incoming 2018/2019 Cohort

Figure 4.15: Confusion Matrix for Week 12 for CA116’s Incoming 2018/2019 Cohort

Negative means students were predicted as they were going to fail the examination.

Moreover, True Positives means students passed the examination and were predicted

to do so. True Positives means students failed the examination and were predicted

to do so. False Positives means students were predicted or expected to pass the

examination but in reality they failed. False Negatives means students were expected

to fail the examination but in reality they passed.

The analysis carried out on CA116, as a usecase for this chapter1, showed we

were successfully able to:

(i) gather student data about the student’s learning progress by combining static

with dynamic information regarding their characteristics, prior academic re-

1The code for this work has been made available as a GitHub repository at
https://github.com/dazcona/edm-modelling
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sults, behavioural analysis and programming effort

(ii) leverage that digital footprint for predicting how new incoming students are

likely to perform reaching a usable accuracy

In short, predictions worked quite well and we could automatically distinguish

in a better way who is going to pass or fail as the exams in weeks 4, 8 and 12 were

getting closer. We showed that extracting limited data from students learning how

to program, we can develop accurate predictive models to identify student in need

of support using traditional Machine Learning techniques. Hence, RQ1 has been

answered. Emails with feedback were sent to students which might have changed

their behaviour, this is further explained in Chapter 6. This approach has been

deployed in a variety of programming modules described at the beginning of this

chapter and their lecturers were notified weekly with this type of information.

4.10 Extra: Retrospective Analysis on Reviewing

Behaviours at ASU

During my stay at Arizona State University, we collaborated with the School of

Computing, Informatics, and Decision Systems Engineering which is part of the

Ira A. Fulton Schools of Engineering. In this work, we developed predictive models

based on students’ reviewing behaviours in a Data Structures and Algorithms course

during the Fall 2016 semester. The platform where we extract our data is ASU’s

WebPGA educational technology that students used to review their graded paper-

based assessments. The system is further described in Chapter 3.

The instructor administered a total of 3 exams and 13 quizzes throughout the

semester. Among the 13 quizzes, only 6 were graded while 7 were for attendance

only (full credit regardless of the correctness of answers). A total of 283 students

were enrolled in the course. However, in this study, only 246 (86.93%) students were

included as we excluded those who dropped out of the course in the middle of the
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semester, did not take the three exams, or did not use the research platform. In this

study, review actions performed by students were analyzed. A review action is an

event where a student examines his or her graded answer.

Predictive models were trained after extracting patterns and tested with the goal

of identifying students’ academic performance and those who might be in need of

assistance. The results of the retrospective analysis show a reasonable accuracy. This

suggests the possibility of developing interventions for students, such as providing

feedback in the form of effective reviewing strategies.

4.10.1 Data Processing

The students were labelled according to their overall academic performance. To

achieve this, we computed the average of the three exams of each student (see

Fig. 4.16 for the distribution). Using Jenks natural breaks classification method

[55], the break-point of 77.60% was obtained and used as a threshold to divide the

students into two groups, namely higher performers and low performers. This was

done as only a few students fail the course on average and mastering the subject is

only considered if students get a high grade.

4.10.2 Features

A student’s digital footprint is shaped to combine the different modalities of student

data and leverage that information to analyse the behaviour of the students on

these courses using Artificial Intelligence techniques. In this study, logs captured by

WebPGA as students browse through their digitized paper-based assessments have

been leveraged to model their reviewing behavior.

First, a set of features was extracted based on the students’ interaction within the

system and the different actions they performed. For each assessment, the following

were gathered:

1. their grades
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Figure 4.16: Distribution of Students’ Academic Performance for Computing Stu-
dents in a Data Structures and Algorithms Course at Arizona State University

2. whether they reviewed the assessment or not

3. when they reviewed it for the first time (after being posted online)

General engagement features were also collected. This includes:

1. number of distinct days when the system was used by each student

2. the number of interactions or how many assessments were reviewed per student

The predictive power of these features is measured by correlating their values with

the cumulative exam average (target). Table 4.4 shows a few of those features and

the corresponding correlation coefficient.

Students were more likely to obtain a better score on the average exam grade as

they:

1. reviewed more assessments; or

2. accessed the system regularly on different days; or
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Table 4.4: Feature correlations with the cumulative exam average

Feature name Correlation coefficient

Number of assessments covered 34%*

Average time to review −0.14%

Distinct Days 28%*

Distinct Actions 12%

Number of web interactions 24%*

Quiz 6 Mark 38%*

Quiz 10 Mark 35%*

* p− value < 0.01

3. obtained higher scores on their quizzes.

On the other hand, the later the student reviewed the assessments (on average), the

lesser the chance he or she had of getting a high grade. This analysis indicates the

high correlation of some of the features such as the number of assessments covered

or the number of distinct days. In contrast, other parameters such as whether the

students reviewed specific assessments or how long it took them to review particular

assessments were individually not correlated with the average grade target.

4.10.3 Classification and Regression Modelling

A bag of learning algorithms was trained retrospectively using the students’ digital

footprint and their observed behavioural patterns. We analyzed their power to pre-

dict the students’ performance and their generalizability. We used cross-validation

to train and test on the same dataset. The target was to predict whether a student

will score above or below the threshold of each cumulative exam average. Note that

the cumulative exam averages (our target for each period) include: (1) the first

exam score before it took place, (2) an average between the first and second exam

before the second exam, and (3) an average of the three exams before the third

exam was taken by students. The threshold, 77.60%, was used to divide high and
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low performers, which is derived in Section 4.10.1.

The three exams divided the entire semester into four periods, namely Before

Exam 1, Exam 1 - Exam 2, Exam 2 - Exam 3, and After Exam 3. For each period,

a learning function is trained to predict a student’s likelihood of scoring above or

below the performance threshold on their cumulative average grades. For instance,

the first classifier was trained to predict the first exam outcome (above or below

the threshold), the second one was to predict the average outcome between the first

two exams, and so on. In a given period, the features mentioned above (Table 4.4)

were extracted from the student’s interactions with the system along with their

reviewing patterns. A classifier was built by concatenating all the features from

previous assessments, such as scores and reviewing times.

Table 4.5 shows how more features were concatenated as students were being

assessed throughout the semester. The percentage of students below the threshold

was also checked. It shows that the two target classes (above and below) were

balanced.

Table 4.5: Number Features per period and Students below the Threshold

Period No. of features Students below threshold

Before Exam 1 15 160 (65.04%)

Exam 1 - Exam 2 33 153 (62.20%)

Exam 2 - Exam 3 51 158 (64.23%)

In terms of the features’ importance, their weights were plotted in Figure 4.17

using a heatmap. The general engagement features, such as the number assessments

reviewed by students or the number of distinct days students logged in, were used

individually in the model. Their weights were calculated per period and plotted on

the graph. In addition, features developed which were specific for each assessments

were grouped (mark or score, whether they reviewed these assessments and how

early they reviewed them) into three single parameters: Mark, Reviewed and Time.

Those three parameters aggregated the importance for each of those categories. For
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instance, the features that capture the time students review each assessment for the

first time were clustered into one parameter, Time, that adds up the weights of all

of them for the importance graph. Therefore, Figure 4.17 shows the following:

• Across all periods, these three parameters (the mark of the assessment, the

review patterns and the time to attend to review) consistently remained the

key predictors among all the classifiers.

• The feature importance converged over time. There were more diverse pre-

dictors for the first classifier. It could possibly be due to the relatively fewer

items that could be reviewed and/or students were learning how to use the

system.

• The parameters review patterns and the time to attend to review gradually

increased their importance over time until the third exam, which highlighted

the nature of programming as accumulative. Students relied on studying past

assessments and attended to review them sooner.

• Another key parameter the mark of the assessment gained importance from

the first to the second exam and maintained it from the second to the third.

It become equally important how and when students had reviewed, and their

previous scores in quizzes and exams.

The empirical error minimization approach was employed to determine the learning

algorithm with the fewest empirical error from a bag of classifiers C [45]. Cross-

validation was utilised to train and test the bag of classifiers using 10 folds. Figure

4.18 shows a visual comparative analysis between classifiers using the Receiver Op-

erating Characteristic Area Under the Curve (ROC AUC), a well-known metric to

evaluate binary classifiers, and the number for each classifier on each period is an

average of the metric per fold.

In addition, Table 4.6 shows the chosen learning algorithm, SVM with a linear

kernel, and the results for the weighted average precision and F1-metric, which
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Figure 4.17: Feature Importance Across Periods for ASU’s Data Structures Course

Figure 4.18: Classification Performance using ROC AUC for ASU’s Data Structures
Course

combines precision and recall, for each period. The values for the metrics shown are

the mean and the standard deviation for the cross validation folds.
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Table 4.6: Linear SVM Classification Performance throughout the periods for ASU’s
Data Structures Course

Period Precision F1-score

Mean (SD) Mean (SD)

Before Exam 1 65.05% (2.83%) 74.43% (2.27%)

Exam 1 - Exam 2 83.89% (4.58%) 86.71% (2.96%)

Exam 2 - Exam 3 90.00% (7.73%) 90.58% (6.08%)

In addition, a regression model was built to predict the precise cumulative exam

average grade for each students on these periods. In a similar manner, a linear

regression functions was constructed retrospectively per period. Cross-validation

was employed using 10 folds. The performance of the linear regression function can

be found in Figure 4.19.

Figure 4.19: Linear Regression Performance using R2 for ASU’s Data Structures
Course

Table 4.20 shows the means and the standard deviation of the folds for each

66



Artificial Intelligence in Computer Science and Mathematics Education

period using the Coefficient of Determination (R2) and the Mean Absolute Error

(MAE).

Table 4.7: Linear Regression Performance throughout the periods for ASU’s Data
Structures Course

Period R2 MAE

Mean (SD) Mean (SD)

Before Exam 1 0.0 (0.0) 0.0854 (0.0017)

Exam1 - Exam 2 0.28 (0.57) 0.0560 (0.0011)

Exam 1 - Exam 3 0.78 (1.56) 0.0286 (0.0057)

In Figure 4.20, the predicted cumulative target grades were plotted with respect

to the actual results for each of the students before the third exam period.

Figure 4.20: Linear Regression Predictions vs. Actual Results Before the Third
Exam for ASU’s Data Structures Course
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4.10.4 Conclusions

This retrospective analysis managed to demonstrate:

1. the gathering of student data, which tells us their reviewing learning process

2. the extraction of features

3. the identification of patterns which could be used for predictions

RQ1 was answered, these predictions reached a usable accuracy for potential in-

terventions and feedback to students. Both models worked well and increased their

performance every week and period as students completed and reviewed more as-

sessments and more timing and engagement features were extracted.

After the last exam was finished, the three exam scores could be utilised to

calculate the average exam score and, therefore, the classification and regression

models made no mistake. It is now possible to leverage the patterns extracted from

this reviewing data to predict how a new incoming cohort of students will perform

in next versions of this course, intervene and provide personalized help to those in

need to follow desired reviewing strategies2.

4.11 Extra: Retrospective Analysis on All First-

years at DCU

As part of a DCU internal project, we were provided with a dataset of data on 16,799

first-year students over a 5-year period. Each student has up to 138 data columns

(mostly categorical). This data was compiled using a variety of data sources at our

university which is explained in more detail in Chapter 3.

4.11.1 Exploratory Data Analysis

We explored each of 138 parameters individually, to see how their values are dis-

tributed and to verify that the dataset given to us was valid. The number of students

2The code for this work can be shared on request given approval of the governing parties
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whose data was made available to us, is explored as in Figure 4.21.

Figure 4.21: Exploring the Parameter Year from DCU’s Dataset

4.11.2 Data Summarisation

As an initial exploration of this data, we measured the correlation between these

parameters and each student’s precision mark. The precision mark is a percentage

representing the student’s overall performance across the whole year. Its is computed

as a weighted sum of the student’s grade in each of his/her modules, the weights

varying according to the number of credits awarded to each module. See Figure 4.22

for a scatter plot that shows the relationship between the CAO Points (the student’s

performance in the national examinations in which performance is used to select

entry to University courses) and the Precision Mark colour coded by Faculty.

Figure 4.22 shows there is a correlation between CAO marks and precision mark.

However, students can still do well even if they enter University with low points. If

we divide this data up by Faculty, Figure 4.23 shows how there are differences in

this correlation across Faculties. For instance, the Institute of Education has a small

variance and most students score between 50% and 75%. This ”flat“ distribution

may happen because the work they do in college is more important than their

previous studies. In the Engineering and Computing faculty, students can perform

very well and not so well even if they come with high points. However, students

near the 600 points mark do excel. In Science and Health, there is a high correlation

between CAO marks and precision mark but, some students still perform very well

coming with low CAO points.

69



Artificial Intelligence in Computer Science and Mathematics Education

Figure 4.22: Scatter Plot between CAO Points and the Precision Mark, color coded
by Faculty

4.11.3 Feature Engineering

The 138 parameters (mostly categorical) were encoded into 891 features for a ML

algorithm to use this information in building a model to predict the precision mark

of students. It is worth to note the resulting matrix was very sparse, with lots of

non-applicable values and gaps to do with repeat students and students transferring

across courses. Students were split between Training (80%) and Testing (20%) sets

by keeping a balance between students that passed or failed the first assessment.
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Figure 4.23: Scatter Plots between CAO Points and the Precision Mark by Faculty

4.11.4 Predictive Modelling and Ablation Studies

Training a Decision Tree or a Random Forest or any machine learning algorithm to

predict which students may be “at-risk” (achieving a result below the 40% threshold

of the Precision Mark) is not a difficult data analytics task. For the Random Forest

we trained, the accuracy using the Testing dataset for our evaluation metric shows

95% accuracy and if we were to use the data for this we would be quite happy with

this level of performance.

However, we are interested in other usages of the student data, in particular in

determining the importance of different features. In order to measure how much
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variation or impact each feature had on a predictive model, we leverage the concept

of ablation studies. An ablation study typically refers to removing some feature of

a model from the algorithm and seeing how that affects performance [65]. In our

work, we excluded each feature from a linear model in order to measure how much

variance the feature contain.

The result shows that the most impactful features which removed the greatest

amount of variance for the model generated, are quite noisy as most of them only

refer to repeat students and are blank for the rest. This is because there are a small

number of repeat vs. non-repeat students so there is a bias in that aspect of the

data.

4.11.5 Ablation Study & Mutual Information

An ablation study typically refers to removing some ”feature“ of the model developed

and then measuring how that affects performance [65]. This technique has been

recently used in Deep Learning Research and Computer Vision [42].

In addition, to explore the importance of the features in this student dataset,

we looked at different metric, Mutual Information. The Mutual Information of two

random variables measures their mutual dependence (how they vary together) [74].

Mutual Information is more general than the correlation coefficient, it can cover

categorical variables and it determines how similar the joint distribution of the pair

(X, Y) is to the product of the marginal distributions of X and Y. See Figure 4.24

for a number of graphical examples to illustrate what the shapes of the graphs of

mutual information between two variables looks like [2].

In our work, we trained a linear model using all the features given to us from

first-year students. Then, we trained models by removing features individually to

understand which features impacted the most to the performance of the model indi-

vidually. After discarding features that are only relevant to students that repeated

the year, the most meaningful features from the ablation studies are the following:

• NUM EARLY LOANS: Number of early loans (to end Nov). Number of items
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Figure 4.24: Examples of Mutual Information between Two Variables. Image taken
from [2].

borrowed from the library (from September to November)

• EARLY Q3 SUBS PC: Number of early Third Quartile Submissions. When

compared with fellow students submitting same assignment, relative quartile

ranking of when assignment was submitted (irrespective of due date), due date

in September, October and November

• FIRST ASSIGN GRADE: Max Grade for First Assignment

• NUM GRANTS: SUSI Grants. Number of grants received in year (2015 on)

• NUM EARLY LATES: Number of Late Submissions September, October and

November. Submissions after Due Date (only where non-ambiguous Due Date

given) in September, October and November.

• NUM SUBJECTS: Total Number of subjects taken

• NUM MEMBERSHIPS: Total number of Club / Society memberships. Mem-

berships as recorded for year in question
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• NUM CLUBS: Number of Club memberships

• NUM SOCIETIES: Number of Society memberships

• NUM M5 FAILS: Number of subjects failed in semester 2 (May). Number of

failures for any fail / defer / absent reason.

• STUDENT TYPE: Student Type, 1-9 depending on year of leaving cert and

if Irish / non Irish.

• DAYS TO FIRST LAB: Days to First Lab Session (full year). If null, set to

360

• CAO POINTS: Leaving Cert points (student type 9 only)

• LEAV CERT MATHS: Leaving Cert Maths points. Points from best maths

result (may be from resit), excludes bonus points

• YEARS SINCE LC: Years elapsed since Leaving Cert year

Then, we measured the mutual information between each of the meaningful fea-

tures extracted from the ablation studies and the Precision Mark. The Precision

Mark is an average grade from all first year courses. Figure 4.25 shows the mutual

information analysis between these features and the Precision Mark. Each graph

shows the Pearson correlation coefficient (and p-value) along with the Mutual In-

formation coefficient.

4.11.6 Conclusion

Based on our work in exploring the longitudinal student data from DCU that we

have access to, we could not identify a single independent feature of student data

that stands above others in predicting how students are going to perform in their

first-year examinations as determined by their overall Precision Mark. From this

we conclude that there has to be a combination of features that will model how

students behave using different data sources.
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Figure 4.25: Mutual Information Score between a Feature and the Precision Mark,
for Several Features

The challenge is twofold, firstly to develop more sophisticated multi-features

models which would be as accurate but which would allow feature importance to

be determined and this is outside the scope of this thesis and secondly to integrate

the systems in the university where student data is gathered. In order to set up
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a continuous stream of student data to feed systems like we have developed, a

Data Lake or Data Warehouse infrastructure is needed [108]. Collecting, cleaning,

crunching and aggregating student data parameters and features is viable for short-

term projects or retrospective analyses. However, in order to set up production

machine learning pipelines, a more time efficient infrastructure is needed. That

way, our models can be re-trained in a continuous fashion, a single access to all

student data will be needed and even a workflow can be developed for sending

recommendations to students in an automated way.

Finally, RQ1 was answered as true by gathering a student digital footprint of

parameters combining several data sources at our university and a predictive model

was built and tested retrospectively3. Novel techniques such as ablation studies or

mutual information coefficients were used to discern meaningful parameters. How-

ever, a rich combination of the parameters should be used for representing how a

student behaves.

3The code for this work can be shared on request given approval of the governing parties
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Chapter 5

Modelling Students With

Embeddings

5.1 Introduction

In this chapter, we develop a new approach to profiling and modelling individual

students who are studying computer programming based on their programming de-

sign using a technique called embeddings. We investigate different approaches to

analysing users based on their source code programming submissions in the Python

language. We compare the performances of different source code vectorisation tech-

niques to predict the correctness of a code submission. In addition, we propose a

new mechanism to model and to represent students within our AI-based prediction

system based on their code submissions for a given set of laboratory tasks, on a par-

ticular course. In this way, we can make deeper recommendations for programming

solutions and personalised pathways to support student learning and progression in

computer programming modules at a Higher Education Institution.

The main contributions of this chapter are as follows:

(i) Several approaches to representing students’ source code submissions are in-

vestigated, describing the merits associated with each approach;

(ii) The performance of different source code representations for predicting the
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correctness of student’s source code are then evaluated;

(iii) A mechanism for representing student programming profiles is developed based

on their vector representations and leveraging the code submission for a given

course.

We begin by describing different methods for source code representation and

vectorisation that were investigated. Then we discuss different ways for transforming

tokenised source code into real vectors to be used for predicting the correctness of a

program. This is achieved using different code representations and also our proposed

method in order to represent a user or student using all their programming code

submitted for exercises during a course. In effect, this is a richer representation

or model of a student, being based on their actual computer coding practice. In

section 5.6 we discuss the results of our experiments on predicting the correctness

of a computer program. Section 5.7 presents an analysis of students for two courses

based on this richer user representation, using all their program submission for a

course.

5.2 Context and Dublin City University Courses

In Dublin City University, students learn how to code by taking a variety of pro-

gramming modules. Students develop code algorithms for problems proposed by

Faculty. Many of these courses or modules are delivered through the Virtual Learn-

ing Environment (VLE) built for the purpose of teaching and learning computer

programming introduced earlier in chapter 3. This custom VLE enables students to

access course information, material and slides for each module. In addition, the sys-

tem integrates an automatic grading platform where students can verify their code

submissions for various programming exercises. Students typically develop solutions

locally for what are called laboratory sheets or sets of exercises and programming

tasks for the computer programming courses. Then, they submit their individual

programs online to the automatic grading platform which runs a number of test-
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cases specified by the Lecturer on each exercise. This provides instant feedback to

students based on the suite of testcases run and ultimately tells the student whether

the program is considered correct or incorrect based on whether any of the testcases

fail. This information is invaluable to students’ learning and such a platform as this

is very beneficial in order to verify the students’ programs work as expected.

In this chapter we explore different mechanisms to represent students’ code to

predict its correctness and to better analyse students’ progress in learning using their

interactions. This can then be exploited to provide effective feedback and to support

better personalised recommendations on further learning material to show to each

student. Every time a student submits a code solution for verification, the system

stores the code submission, the student identifier, the IP address of the computer

used for the upload, the results of the testcases run with inputs and outputs, the

course the submission belongs to, the exercise and the task name the student is

attempting by using the submission’s filename. In total, we collected more than

half a million programming submissions (591,707) for 666 students from 5 Python

programming courses over 3 academic years.

5.3 Research Method: Code Vectorisation

Machine Learning (ML) extracts patterns from data and learns rules without being

explicitly programmed [17]. In Chapter 4 we introduced ML and covered how it can

be used for predictive modelling. Data used by ML algorithms has to be structured

information. For instance, images are processed into matrices of numbers before

inputting them to a ML algorithm. However, data is rarely presented in a straight-

forward structured way. ML algorithms generally need to find a way to process text

information like Natural Language or multimedia such as images and videos.

In order for a ML algorithm, like a Logistic Regression Model or a Support Vector

Machine, to understand text, it needs to be converted into vectors of numbers. In

short, text has to be encoded as numbers to be used as input or output for Machine

Learning and Deep Learning models. For that, a suite of natural language processing
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(NLP) techniques are employed. In our case, code submissions or programs cannot

be considered as natural language and need to be parsed and analysed in a different

way. We explored the following representations of programming submissions by

tokenising the code:

1. Code as Word Vectors;

2. Code as Token Vectors;

3. Code as Abstract Syntax Tree Vectors.

In the following sections we dig deeper into vectorised representations within a math-

ematical model based on using student programming code. For that, we support our

narrative with Listings 5.1, 5.2, and 5.3. These examples are code snippets similar

to students’ submissions in our programming courses.

Listing 5.1: Hello World Example

#!/ usr / b in /env python

print ” Hel lo , World ! ”

Listing 5.2: Call a Function Example

#!/ usr / b in /env python

def s a y h e l l o ( ) :

print ( ” Hel lo , World ! ” )

s a y h e l l o ( )

Listing 5.3: Sum of Two Variables Example

#!/ usr / b in /env python

# read from input

a = int ( raw input ( ) ) # f i r s t

b = int ( raw input ( ) ) # second

print a + b
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5.3.1 Program Code as Word Vectors

A straightforward and simple approach to representing computer programs as ob-

jects in a machine learning model is to leverage the words from the code solutions as

input into a machine learning algorithm. For each programming submission, we split

the submission using only the space, tabular (\t) and new line (\n) characters. A

typical tokeniser uses characters such as exclamation marks and other operands and

operators. In a coding scenario, these characters play a key role in code submissions

and we do not use them as filters for our tokeniser.

Listings 5.4, 5.5 and 5.6 show how such word vectors are extracted, prepared

and made ready to use for some of our snippets.

Listing 5.4: Array of Words for Hello World Example

[ ’ p r i n t ’ , ’ ” he l l o , ’ , ’ world ” ’ ]

Listing 5.5: Array of Words for Call a Function Example

[ ’ de f ’ , ’ s a y h e l l o ( ) : ’ , ’ p r i n t (” Hel lo , ’ ,

’ World ! ” ) ’ , ’ s a y h e l l o ( ) ’ ]

Listing 5.6: Array of Words for Sum of Two Variables Example

[ ’ a ’ , ’= ’ , ’ i n t ( raw input ( ) ) ’ ,

’ b ’ , ’= ’ , ’ i n t ( raw input ( ) ) ’ ,

’ p r i n t ’ , ’ a ’ , ’+ ’ , ’b ’ ]

These word vectors may not represent a programming submission in a very com-

parable way to other submissions that have, for instance, different variable names.

Even though the special characters like operands carry important information re-

garding these code programs, splitting the words only using spaces may not give a

useful representation.
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5.3.2 Program Code as Token Vectors

As we are working with the Python programming language, we leverage Python’s

own Tokeniser1 library for source code analysis. This module provides a lexical scan-

ner for Python source code and is itself also implemented in Python. For instance,

Listings 5.7 and 5.8 show operators and delimiter tokens are clearly identified and

are assigned the generic OP token category in our example code snippets. We hy-

pothesise this fine-grained tokenisation such as the generalisation of operands (OP),

strings or names can help determine a more representable vectorisation of a code

submission.

Listing 5.7: Token Categories for Hello World Example

Characters Category Token

1 ,0−1 ,5: NAME ’ p r i n t ’

1 ,6−1 ,20: STRING ’ ” Hel lo , World” ’

2 ,0−2 ,0: ENDMARKER ’ ’

Listing 5.8: Token Categories for Call a Function Example

Characters Category Token

1 ,0−1 ,3: NAME ’ de f ’

1 ,4−1 ,13: NAME ’ s a y h e l l o ’

1 ,13−1 ,14: OP ’ ( ’

1 ,14−1 ,15: OP ’ ) ’

1 ,15−1 ,16: OP ’ : ’

1 ,16−1 ,17: NEWLINE ’\n ’

2 ,0−2 ,4: INDENT ’ ’

2 ,4−2 ,9: NAME ’ p r i n t ’

2 ,9−2 ,10: OP ’ ( ’

2 ,10−2 ,25: STRING ’ ” Hel lo , World ! ” ’

2 ,25−2 ,26: OP ’ ) ’

1For Python 3: https://docs.python.org/3/library/tokenize.html
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2 ,26−2 ,27: NEWLINE ’\n ’

3 ,0−3 ,1: NL ’\n ’

4 ,0−4 ,0: DEDENT ’ ’

4 ,0−4 ,9: NAME ’ s a y h e l l o ’

4 ,9−4 ,10: OP ’ ( ’

4 ,10−4 ,11: OP ’ ) ’

4 ,11−4 ,12: NEWLINE ’\n ’

5 ,0−5 ,0: ENDMARKER ’ ’

These token categories or types have an associated identifier that can also be used

for vectorisation, as shown in Listing 5.9.

Listing 5.9: Token IDs for Call a Function Example

Characters Category Token

1 ,0−1 ,3: 1 ’ de f ’

1 ,4−1 ,13: 1 ’ s a y h e l l o ’

51 ,13−1 ,14: 51 ’ ( ’

51 ,14−1 ,15: 51 ’ ) ’

51 ,15−1 ,16: 51 ’ : ’

4 ,16−1 ,17: 4 ’\n ’

5 ,0−2 ,4: 5 ’ ’

1 ,4−2 ,9: 1 ’ p r i n t ’

51 ,9−2 ,10: 51 ’ ( ’

3 ,10−2 ,25: 3 ’ ” Hel lo , World ! ” ’

51 ,25−2 ,26: 51 ’ ) ’

4 ,26−2 ,27: 4 ’\n ’

54 ,0−3 ,1: 54 ’\n ’

6 ,0−4 ,0: 6 ’ ’

1 ,0−4 ,9: 1 ’ s a y h e l l o ’

51 ,9−4 ,10: 51 ’ ( ’

51 ,10−4 ,11: 51 ’ ) ’
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0 ,0−5 ,0: 0 ’ ’

Although these tokens appear to represent code solutions more meaningfully than

word vectors do, information regarding the structure, design and flow of the program

is still not captured and to do this requires an even more complex representation,

as we shall see in the next sub-section.

5.3.3 Program Code as Abstract Syntax Tree Vectors

In order to preserve the structure of the source code in a student submission, we

also analyse the code submissions using Abstract Syntax Trees (ASTs). An AST is

a tree representation of the abstract syntactic structure of source code, independent

of what programming language the code is written [77]. An AST is an abstract

representation as there are no details regarding the correctness of the implementation

but only the structure and content of the code. For instance, operands are implicit

in the AST and IF or While expressions are denoted with a tree node. Figures 5.1,

5.2 and 5.3 are custom visualisations2 after recursively traversing the nodes from

the AST trees generated from our example code snippets. Green nodes represent

terminal nodes or leaves. Nodes that have children are coloured in blue.

Figure 5.1: Abstract Syntax Tree (AST) for Hello World Example

2https://github.com/hchasestevens/show_ast
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Figure 5.2: AST for Call a Function Example

Figure 5.3: AST for Sum of Two Variables Example

After traversing the ASTs, nodes can be represented using their parents in a

pair-wise way. See Listings 5.10 and 5.11 for two of the example snippets. The

ASTs are traversed using a Breadth-first search (BFS) approach.

Listing 5.10: AST Pairs for “Hello World” Code Example

Parent Node Child Node

’ Module ’ ’ Pr int ’
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’ Pr int ’ ’ Str ’

’ Pr int ’ ’ True ’

’ Str ’ ’ He l l o \tWorld ! ’

Listing 5.11: AST Pairs for “Call a Function” Code Example

Parent Node Child Node

’ Module ’ ’ FunctionDef ’

’ Module ’ ’ Expr ’

’ FunctionDef ’ ’ s a y h e l l o ’

’ FunctionDef ’ ’ arguments ’

’ FunctionDef ’ ’ Pr int ’

’ Expr ’ ’ Ca l l ’

’ Pr int ’ ’ Str ’

’ Pr int ’ ’ bool ’

’ Ca l l ’ ’Name ’

’ Str ’ ’ He l l o \tWorld ! ’

’Name ’ ’ s a y h e l l o ’

’Name ’ ’ Load ’

5.4 Experiment: code2vec

We now investigate how student code submissions can be transformed into mean-

ingful vectors as a form of representation of the program code, and implicitly as a

representation of the student who submitted that code. As mentioned earlier, com-

puters do not understand text data and text needs to be represented and encoded

into vectors of numbers as the input into a Machine Learning algorithm. For that,

we use the following two approaches:

1. Code BOW (bag-of-words)

2. Code Embeddings
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The number of words extracted after running the tokeniser on our data are

231,659 which was fitted with 591,707 code submissions. A lot of computer mem-

ory is required to generate the large sparse matrices for learning code2vec and

user2code2vec representations. Although our experiments are run on a GPU for

faster computation, running a classification algorithm for more than half a million

source code files is computationally expensive, hence we set a limit to the number of

Words, Python Categories, Python Tokens Words and AST Nodes to 2,000. Overall,

there are fewer Token Words than Words.

5.4.1 Code BOW (bag-of-words)

The bag-of-words (BOW) model, also called the vector space model, is a simple

representation of documents and queries used Information Retrieval for almost 50

years [94]. According to this model, a text (such as a sentence or a whole document

or a user query) is represented as a bag of its words, disregarding grammar and even

word order but keeping multiplicity. In our work, we leverage the BOW model to

represent code submissions by looking at either:

(a) Words

(b) Python Token Categories

(c) Python Token Words

(d) AST Nodes

The ordering of these items in each of the alternatives is ignored and only their

frequency is stored in a large sparse matrix. This matrix can be populated using

one of the following operations:

• Count: count of each word in the document.

• Frequency: frequency of each word as a ratio of words within each document.

• Binary: presence, whether or not each word is present in the document.
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• TF-IDF: Term Frequency times Inverse Document Frequency (TF-IDF) scor-

ing for each word in the document [94].

Table 5.1 shows a simple BOW example using the count of each Token Word for

Listings 5.1 and 5.2 as the corpus. This BOW approach can be used for classification

methods where the count, frequency, presence or TF-IDF of occurrence of each item

(Word, Token Category, Token Word or AST Node) is used as a feature for training

a classifier.

Table 5.1: Count Occurrence Matrix for Listings 5.1 and 5.2

UNK ‘(’ ‘)’ ‘print’ ‘”Hello, World!”’ ‘say hello’ ‘def’ ‘:’

0 1 1 1 1 0 0 0

0 3 3 1 1 2 1 1

5.4.2 Code Embeddings

The BOW model provides an order-independent representation of computer program

source code, where only the counts of either (a) Words, (b) Python Categories, (c)

Python Tokens Words or (d) AST Nodes matter. In contrast, embeddings are a

different type of feature learning technique in NLP where items, words (or even

phrases) from the vocabulary are mapped to vectors of real numbers [66]. It in-

volves a mathematical embedding from a space with one dimension per word to a

continuous vector space with a much lower dimensionality.

We generate embeddings for code submissions from our students by transforming

them into vectors in a continuous vector space. In a similar manner, we leverage

the vectorisation of the code solutions proposed in Section 5.3. We hypothesise

that embeddings extract patterns using contextual information and when used in

combination with a Neural Network can predict the correctness of the code solu-

tions more effectively. Embeddings typically uncover really interesting properties

or relationships between items or words such as neighbourhoods of items or classes,
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relationships between items or constant vector differences, which we describe in the

next section.

5.5 Experiment: user2code2vec

user2code2vec is a novel idea and mechanism for representing student programming

profiles developed entirely by us. It is based on vector representations leveraging

the code submissions from students for a given course.

Students typically submit programming versions of the same exercise proposed

in the labsheets to the grading platform until they either get it correct, or they give

up. There is no limit on the number of student submissions per exercise. Then, for

each user and each proposed exercise or task, the grading platform contains a set of

versions. In our work, we only leverage the latest version per task for the vectorised

representation of the user. In a similar manner, if we wanted to keep all versions,

we would add another dimension and develop a tensor with all the submissions.

For each course and academic year, a User Representation Matrix is con-

structed for each student using the code vectors of the submissions to the proposed

labsheets by the Lecturer. Having a vector representation of code submissions allows

researchers to generate a higher-level representation for each student or user. This

User Representation Matrix is built by vectorising the submissions. Submission are

vectorised using either:

1. Word Tokeniser

2. Token Word Python Tokeniser

This results in a User Representation Matrix of shape (number tasks, MAX LENGTH).

MAX LENGTH is the limit for each sequence that we use for padding the code sub-

mission after tokenisation. MAX LENGTH is set to 50. The User Representation

Matrix for each student is flattened out as a long vector. Principal Component

Analysis (PCA) [101] is leveraged as the dimensionality reduction technique to vi-
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sualise the 100-dimension vectors or user embeddings into 2 dimensions. In short, a

student is represented as a vector of her submissions.

5.6 RQ2 Results: code2vec

In this section, the results of the code2vec technique will be discussed for both ap-

proaches: BOW and Embeddings. We train the models and learn representations

using all the Python programs submitted by students from previous cohorts in our

University over a number of years, and we use these representations to predict the

correctness of code submitted by a student from the present cohort. As a reminder

to the reader, in section 1.1 the second research question in the thesis was introduced

and it is re-stated below:

RQ2: How can students’ programming submissions be encoded into vectors for use
as internal representations of those students?

This will help the reader to understand the context of the experiments we now

present.

5.6.1 Code BOW (bag-of-words)

First, we build four tokenisers constructed and fitted with the code submissions

using either (a) Words, (b) Python Categories, (c) Python Token Words or (d) AST

Nodes, respectively. The dictionary of items and their counts are shown in Tables 5.2

and 5.3. It is interesting to see the differences between the top occurrences for each

tokenisation, where Token Words are a generalisation of Words, Token Categories

are a generalisation of Token Words and the AST nodes are at an abstract level

which contain items regarding the structure of the code submission.

By processing student data in this way, we can construct matrices where each

row is a code submission and we count the number of occurrences for each (a) Word,

(b) Token Category, (c) Token Word and (d) AST Node. Figure 5.4a shows details
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Table 5.2: Top-5 Words & Token Categories in terms of Number of Occurrences

Word Occurrences Token Category Occurrences

‘=’ 2,440,154 51: ‘OP’ 20,368,593

‘i’ 910,221 1: ‘NAME’ 18,075,194

‘+’ 575,607 4: ‘NEWLINE’ 5,886,806

‘if’ 552,539 2: ‘NUMBER’ 2,317,086

‘def’ 522,536 54: ‘NL’ 1,996,531

Table 5.3: Top-5 Token Words & AST Nodes in terms of Number of Occurrences

Token Word Occurrences AST Nodes Occurrences

‘)’ 3,556,931 ‘Name’ 10,005,368

‘(’ 3,556,907 ‘Load’ 9,607,682

‘=’ 2,581,991 ‘Store’ 2,665,169

‘:’ 2,248,901 ‘Call’ 2,205,672

‘.’ 2,011,442 ‘Assign’ 2,186,523
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of the performance of these model combinations (a), (b), (c) and (d) just using the

count of items. In addition, we look on the (a) Words (as they work better) and

perform a similar analysis looking at the count, presence (binary), frequency and

TF-IDF of the Words instead of the pure count only. Figure 5.4b does not show a

meaningful difference between them except that the frequency model works slightly

worse than the others. These models are trained using a Naive Bayes classification

algorithm [63] holding out 20% of the data as the testset. The models are trained

using around half a million code submissions (less for the Tokens or AST Trees as

some code submissions could not be tokenised using the Python Tokeniser library or

an AST could not be extracted when the programs are incorrectly constructed). The

classes for this classification problem are well balanced. For instance, for the model

that uses the Words, 194,451 submissions were correct and 296,369 were incorrect

based on the output of the grading platform. That is the target of our predictions

for training the models.

Interestingly, the least generalised model that uses the Words instead of Tokens

or AST Nodes is the one that performs slightly better than the rest using BOW.

The less generalised the model is, the better it performs, and using Words performs

better than Tokens and Tokens perform better than AST Nodes.

5.6.2 Code Embeddings

In a similar manner and in order to feed vectors to a Neural Network, we vectorise

our code submissions by tokenising for (a) Words, (b) Python Categories, (c) Python

Token Words and (d) AST Nodes. In addition, as a pre-processing step, we pad our

sequences up to our limit of 50 words, tokens or nodes. A simple model is developed

using an embeddings layer, flattening the output of that layer on the next one and

condensing it on the final one using a softmax function. The embeddings are the

representation extracted after learning from the embeddings layer and contain 100

dimensions. This forces the Neural Network to learn patterns as we are inputting

2,000 words that will be 2,000 dimensions using one-shot encoding.
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(a) Words vs. Token Categories vs. Token Words vs. AST Nodes Using Count

(b) Words Using Count, Binary, Frequency & TF-IDF

Figure 5.4: Performance of code2vec using BOW (bag-of-words).

The performance of the models using (a) Words and (b) Token Words is shown

Figure 5.5. These models are trained using Cross Validation with 20% of the dataset

as the holdout set. Utilising Neural Networks with an embeddings layer allows us

to learn better patterns and representations of the code solutions submitted to the
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Figure 5.5: Performance of code2vec using Embeddings

grading platform. The models perform better than the baseline BOW and the Word

Tokens are better able to distinguish between correct and incorrect programs. We

expect that incorporating the structure of the program using ASTs will create a

richer model.

Table 5.4 shows the results from the different BOW and embeddings models in

a comparable way.

Table 5.4: Performance of the Models Using BOW and Embeddings

Model Accuracy F1 Score

Naive Bayes using BOW & Words 59.44% 59.84%

Naive Bayes using BOW & Category Tokens 58.29% 46.95%

Naive Bayes using BOW & Word Tokens 57.63% 57.93%

Naive Bayes using BOW & AST Nodes 56.91% 56.18%

Neural Network using Embeddings & Words 73.25% 64.11%

Neural Network using Embeddings & Category Tokens 74.93% 19.64%

Neural Network using Embeddings & Word Tokens 74.93% 67.18%
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(a) Embeddings for the Top 20 Most Common
Words

(b) Embeddings for the Top 20 Most Common
Token Words

Figure 5.6: Embeddings for the Top Words & Token Words. These Embeddings Are
Projected from 100 Dimensions to 2 Dimensions for Visualization Using Principal
Component Analysis (PCA). Axis in the Graphs Are the PCA’s Two Principal
Components.

After the models are trained using the code submissions with the correct or in-

correct target for each, the learned embeddings can be extracted. Figure 5.6a shows

the embeddings of the top 20 most common words. It is interesting to note how

operands are clustered together as are numbers. This confirms that the network is

learning efficient representations. Similarly, we can explore the top 20 most common

tokens in Figure 5.6b.

These vectors contain really interesting properties similar to word embeddings. Ta-

ble 5.5 shows some cosine similarities between pairs of words that are very close to

other pairs. Neighbors of these embeddings can also be checked out, and numbers

can be found besides other numbers in String format, but in general, our learned

embeddings have noise such as variable names and Strings that prevents us to from

seeing other relationships as would be found in word2vec [67].

RQ2 is answered by implementing code2vec. We encoded the programming

submissions using either bag-of-words or embeddings. The power of embeddings are

proven with respect to bag-of-words based representations of source code. In addi-

tion, embeddings contain interesting properties that enable us to compare between
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Table 5.5: Cosine Distance Between Word Vectors

Tokeni Tokenj Cosine Distance

‘(’ ‘)’ 0.9136

‘¡’ ‘¿’ 0.9241

‘[’ ‘]’ 0.9792

‘if’ ‘elif’ 0.9732

‘}’ ‘]’ 0.8857

‘+’ ‘-’ 0.8846

items.

5.7 RQ3 Results: user2code2vec

user2code2vec has been performed on students of two of the computer programming

courses at Dublin City University for a full academic year. Course details can be

found in Table 5.6. To remind the reader, in section 1.1 the third research question

was introduced and it is re-stated below for convenience:

RQ3: By leveraging the vectorisation of code submissions for a given course, how
can we represent students based on their programming work?

User Representation Matrices were constructed using the code submissions for each

student. Then, we flattened them to input them to a Deep Learning Network

similar to code2vec with an embeddings layer that learns representations of users

in a continuous space with reduced dimensionality. User embeddings are given 100

dimensions. The input data are very large and sparse vectors with the indexes of

the vocabularies for the code submissions.

In CA116 (Computer Programming) during 2016/2017, these student vectors

have 13,800 dimensions as there are 276 tasks to be completed in the course and the

limit of the submission sequences is 50. Figure 5.7a shows the input to the Neural
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Network and Figure 5.7b shows how difficult it is to distinguish among a few hundred

students with such a large sparse matrix of code submissions. Unfortunately, we

cannot add more data as there were no more students in that cohort, unlike other

domains which allow downloading of more tweets or crawling more websites when

a similar situation with insufficient data occurs. The vectors are transformed to 2

dimensions using PCA. The variance retained is very low (between 2% and 6%).

Each dot in the graphs represents a student based on the projection of their student

vector. The colour used represents the average grade of the exams that student took

that year on that course3.

Table 5.6: Courses Analysed on user2code2vec

Course Year Code Submissions Tasks Students

CA116 2016/2017 68,313 276 126

CA117 2016/2017 74,065 132 140

In this section, we answered RQ3 and proved a student can be represented as a

large vector of her submissions. However, profiling students based on this informa-

tion is a much more challenging task which requires more data. Deep Learning is

known to work well when more training data is available and it is expected that more

data will result in improved performance across most domains. Due to the curse of

dimensionality, in a high-dimensional feature space with each feature having a range

of possible values, typically an enormous amount of training data is required to en-

sure that there are several samples with each combination of values. A typical rule of

thumb is that there should be at least 5 training examples for each dimension in the

representation [100]. However, the constraint for Learning Analytics in Education

using VLEs, but not necessarily in MOOCs, is the number of students enrolled in

a course. Thus instead of representing each student using the concatenation of all

their submission made in a course, it would be better to identify important features

3Code developed in this thesis has been made publicly available as a repository on Github at
https://github.com/dazcona/user2code2vec where further details such as PCA graphs for the
learned embeddings can be found.
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(a) User Raw Representations Using Word To-
kens

(b) User Learned Embeddings Using Word To-
kens

Figure 5.7: user2code2vec applied to CA116 course during 2016/2017 academic
year. These Representations Are Projected from 100 Dimensions to 2 Dimensions
for Visualization Using Principal Component Analysis (PCA). Axis in the Graphs
Are the PCA’s Two Principal Components.

from each submission and to concatenate key features across the code submissions.

In short, the approach is to keep the number of features small in order to effectively

learn from constrained data. These user2code2vec representations can then be used

to identify student neighbours for programming recommendations.
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Chapter 6

Adaptive Feedback to Students

6.1 Introduction

This chapter builds on the work developed in chapter 4 where we built models to

distinguish higher-performing students from lower performers, in semester exami-

nations. Students who are struggling with understanding course material may be

doing so for a variety of reasons and each student may not have the same issues

in understanding, as the others. In order to personalise the way our students learn

programming skills and to support adaptive feedback in the computer programming

modules, we started sending customised weekly notifications via email. We provided

this feedback typically after week six (mid-semester) of the teaching period. This

chapter then presents a study on students’ engagement with the weekly personalised

performance notifications. Overall, the predictive and personalised feedback helped

to reduce the gap between the lower and higher-performing students. Furthermore,

students praised the prediction and the personalised feedback, conveying strong rec-

ommendations for future students to use the system. We also found that students

who followed their personalised guidance and recommendations performed better in

subsequent examinations.
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6.2 Learning Context

Students have different needs for support at different times during their learning

periods. Understanding which students are finding difficulties with course material

at different stages is a potentially great resource to help improve learning and ul-

timately success in passing a course. However, students are likely to have different

knowledge gaps from one another (Figure 6.1).

Figure 6.1: Students Struggling with Programming Concepts May Have Different
Learning Issues

As mentioned earlier, in Chapter 3, computer programming modules in our in-

stitution are delivered through the custom VLE platform which allows students to

access their learning material online. In addition, students are able submit and to

verify the correctness of their computer programming work in real-time on the VLE

where a suite of unit test-cases are run on their assignment submissions. The stu-

dents’ digital footprint gathered can then be leveraged using Artificial Intelligence

and Machine Learning techniques and combining them with other student data in-

formation to identify students having issues, as described in our published work

[10].
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In order to adapt to students’ learning on this VLE platform, in the middle of the

semester, a feature is enabled on the VLE for students to opt-in or opt-out of receiv-

ing weekly personalised notifications on their progress, relative to other students.

These include a performance message based on the predictions being run on the

class of students to which they belong which has been trained with a combination

of historical student cohorts data, recommended learning material and laboratory

sheets resources to review based on their progress and finally programming code

solutions from among the top-ranked students in their class as well as additional

support resources.

We describe the details of this in this chapter.

6.3 Research Methodology

6.3.1 Feedback to Students

Feedback was sent to students who decided to opt-in to receive these feedback noti-

fications via email. The feedback to each student was personalised in the following

ways:

• By leveraging our weekly predictions and based on the associated probability of

failing the next laboratory exam, students were ranked and divided into deciles.

Hence, there were 10 custom messages we sent based on their performance.

From “For the last week our records show that you are engaging really well

with the courseware and are well on top of module {{ course }}. Well done

you.” This was sent to those in the top 10% of the class while “For the last

week our records show that you are not engaging enough with the courseware

for module {{ course }} and you really need to work harder. Please try to

make more effort to keep up this week and if you are finding this difficult then

do contact the Lecturer.” was sent to those in the lowest 10% of the class, with

other 8 custom messages in between.
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• If a student did not spend any time logged onto the platform and active, we

added the message “Remember, computer programming is a skill that requires

practice and this module is no exception.” in bold.

• For each student we checked whether (s)he attended any of the lab sessions

the week before and regardless of the predicted probability we acknowledged

if they did or we added the message Try to make it to the next lab session so

the lecturer and tutors can help you resolve any issue.” if they did not.

• In addition, as a form of peer feedback, for each notification that was sent we

included one computer programming suggestion if the student had submitted a

program that failed any of the testcases and was thus incorrect. We developed

a knowledge graph and based on the concepts the lecturer considered more

important each week for the course, we started suggesting computer programs

for those gaps in knowledge. Typically, the most recent labsheet exercises were

suggested first, then the previous labsheet exercises and so on. The order of

the exercises selected from a particular labsheet is the normal order in the lab.

The first exercise in the labsheet will be offered before the second if both were

failed submissions for that particular student. The solution suggested is the

closest program from a top-rated student in the class that week who got that

program working as expected. The top students are the 10% highest-ranked

in that class from our predictions each week. We recommended the closest

submission by text similarity between the programs after removing comments

in the program.

• Students were given an explanation about this project which included sending

them alerts, and how the predictions are computed. They were also provided

with support resources to reach out to the Lecturer of the module, this project

or the Support Services at the University if they needed assistance.

• At the end of the note, students could find links to read the Terms and Con-

ditions for this project, or to unsubscribe from these notifications if desired.
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Figure 6.2: An Anonymised Customised Email Notification Sent to a Student in
CA117 during the 2017/2018 Course.

Nobody unsubscribed from these notifications throughout the semester.

See Figure 6.2 for a sample of an anonymised notification sent to a student.

6.3.2 Feedback to Lecturers

Lecturers were sent an associated weekly email indicating the following:

• The percentage of students who attended any of the laboratory sessions that

week. This was computed by examining the web logs, the IP associated with

those log entries and whether that IP belong to the university or not;
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• The percentage of students who had opted-in up to that week to receive cus-

tomised notifications;

• The average laboratory work completed by students up to that week;

• The amount of time spent on the platform by students on average that week;

• The distribution of the predicted performance for students using the associated

probability of our predictions;

• The top-5 most recommended programming submissions that students failed

to submit and were recommended by our system;

• Similarly, the top-5 most suggested learning resources;

• Similarly, the top-5 the most suggested laboratory sheets associated to the

learning resources.

6.3.3 Measuring Students’ Level of Engagement

In this study, we explore how students engaged with the system notifications that

include personalised performance messages and resources to focus on based on the

students’ progression with laboratory work. The recommended resources are sug-

gested by creating a knowledge map with labsheets that are associated to concepts

and those concepts are in turn associated with slides to review. For instance, Fig-

ure 6.2 recommended that the student work on the first labsheet from week 2 and

also to revise the associated material on lists and files.

A difference index for each student i, shown in Equation 6.1, measures the dif-

ference between the second examination mark and the first one for a particular

student.

di(e1, e2) = e2 − e1 (6.1)

A gain index was developed to measure each student’s improvement between two
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examinations, as shown in Equation 6.2, and normalised to output values between

-1 and 1 on Equation 6.3:

gi(e1, e2) =
(e2 − e1)

e1
(6.2)

normgi(e1, e2) =



0 e1 = 0, e2 = 0

1 e1 = 0, e2 6= 0

1 gi(e1, e2) > 1

gi(e1, e2) otherwise

(6.3)

It is important to note, we should be careful in using our own Equation 6.3 for

measuring the impact of our interventions. A student going from an examination

grade of 1% to 2% improves 100% with respect to the first examination mark which

gives a normalised gain index of 1. However, a student going from 60% to 100% will

not have such a high normalised gain index or a student going from 1% to 100% will

have its normalised gain index truncated to 1. Results may be skewed due to this

approach. An alternative approach to calculate the normalized gain for assessing

students’ performance in pre- and post-examinations is the g-factor [12].

6.4 RQ4: Quantitative Effects of Adaptive Feed-

back

We will now analyse the results obtained by running predictions on an incoming

cohort of students along with the feedback sent to them and we will examine what

this means for the fourth research question proposed in this thesis, RQ4. The type of

feedback provided to students has been sent by us across a variety of programming

modules including CA116, CA117, CA114, CA277 and CA278 over a period of three

academic years.

Earlier in the thesis, in section 1.3 the fourth research question in the thesis was
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introduced and it is re-stated here for convenience:

RQ4: What are the effects of timely automatic adaptive support and peer-
programming feedback on students’ performance in computer programming courses?

We will now examine the impact of this feedback for the three academic years

2015/2016, 2016/2017 and 2017/2018.

6.4.1 Academic year: 2015/2016

In 2015/2016 academic year, students using our system did not receive any notifi-

cations. We leverage the data from that year to train our student models. CA278

had not been formed and did not exist at that point as it was taught for the first

time in the 2016/2017 academic year. This data from this year is however, used as

a baseline to compare to the levels of engagement that happened among students in

the following academic years. Even though these would be different actual students

form year to year, we believe that because of the size of the classes, the behaviour

of students would be acceptably consistent.

Table 6.1 shows some basic characteristics of students who passed and who failed

the first assessment in that year. We see that the first assessment had a high failure

rate for both courses but there is little differences in terms of age and CAO Points

between students that passed or failed this assessment. “Students CAO Route”

means how many of the total students for each group that came via their CAO

application rather than other routes such as Dare, Access or Sports scholarship.

Table 6.2 shows how students who failed then subsequently improved more than

students who passed the first assessment with respect to our normalised gain index.

This is usually the case as these students who failed their first assessment have more

room for improvement. Note the number of students that passed and failed for each

course in Table 6.2 are fewer than the number of students that passed and failed in

Table 6.1. That is because for some of the students, their demographics and prior
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Table 6.1: Demographics and prior information for students in 2015/2016 in courses
CA117 and CA114

Course Group
Number

Students

Mean

Age

Students

CAO Route

Mean

CAO Points

Passed 66 18.77 49 445.31
CA117

Failed 83 19.07 61 430.08

Passed 22 18.45 18 387.50
CA114

Failed 49 18.31 42 388.93

information such as route to university could not be retrieved. For instance, that

is the case for exchange students. We worked with the university quality office to

collect this data but it was not possible for some of the students.

In Table 6.2’s normgi difference column and in subsequent tables, we calculate

a t-test [106] for the means of two samples of scores: either marks of students that

passed the first assessment and marks of students that failed, or marks of students

that followed an intervention and marks of students that did not, and so on. If we

observe a small p-value, we can reject the null hypothesis of equal averages.

6.4.2 Academic year: 2016/2017

In 2016/2017, we trained models using one year of groundtruth data and generated

predictions for incoming students that year, that is we trained on data from the year

2015/2016.

In the second part of the semester, we sent customised notifications to students

who decided to opt-in to receiving alerts.

We now analyse the effect this type of notification had on students in the

2016/2017 academic year for CA117, CA114 and CA278. For that, we extracted

several groups from the students who were enrolled in each course, namely . . .

(a) Students who Opted-IN vs. students who Opted-OUT to receive who cus-

tomised notifications;
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(b) Students who Fixed vs students who Did-not-fix the programs they were sug-

gested in the notifications.

(c) Students who Passed vs students who Failed their first laboratory exam.

On the last division, students who passed or failed the first laboratory exam,

contains all the students in the class. However, the other two divisions do not.

Students had to opt-in or opt-out before they could submit any more programs to

be analysed in the grading platform, but some of them were not engaged and did

not reply. In addition, there are some students who were not sent notifications, were

deemed to have failed in their programming submissions as they did not have any

to submit, so they were not in the fixed nor in the did-not-fix group.

Table 6.3 shows some characteristics of those students in the different groups for

the courses being analysed. There are no major differences in between the groups.

In general, students who passed the first assessment for all courses have higher CAO

points if they came to University through that route. Also, in general, most students

would opt-in and would not fix the programs suggested in their notifications.

Table 6.4 shows the differences among the groups with respect to examinations.

Examinations happened in Week 6 (mid-semester) and Week 12 (end-of-semester

classes). Again, students who failed the first assessment had more room for im-

provement than students who passed that assessment, for all courses. In general, for

this course and this academic year, there are only significant differences for those

students who opted in for CA117’s notifications and not for the other courses with

respect to the opt-outs. However, students who fixed the programming submissions

that were suggested in the notifications, improved more using the normalised gain

index with respect to students who did not fix their programs for all courses: CA117,

CA114 and CA278. Again, we do not have demographics and prior information for

all the students. This can be seen as there are fewer students in the pass and fail

groups for Table 6.3 with respect to Table 6.4.
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Table 6.3: Demographic information and prior information from the 2016/2017
student groups in CA117, CA114 and CA278

Course Group
Number

Students

Mean

Age

Students

CAO Route

Mean

CAO Points

Passed 81 18.88 62 438.79

Failed 56 18.75 41 399.15

Opted-IN 119 18.82 91 427.25

Opted-OUT 11 18.82 9 446.67

Fixed 16 18.62 12 438.75

CA117

Did-not-fix 51 18.53 38 398.16

Passed 56 18.34 47 410.32

Failed 16 18.25 14 396.79

Opted-IN 62 18.31 51 401.37

Opted-OUT 7 18.14 7 457.14

Fixed 18 18.44 13 415.00

CA114

Did-not-fix 34 18.15 29 405.86

Passed 52 18.13 42 411.79

Failed 5 18.00 5 404.00

Opted-IN 41 18.24 36 414.17

Opted-OUT 9 17.78 6 393.33

Fixed 7 18.29 4 450.00

CA278

Did-not-fix 27 18.30 25 403.20
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Figure 6.3: Frequency of Access to Material and Labsheets from the Notifications

6.4.3 Academic year: 2017/2018

In 2017/2018, we trained models using two years of groundtruth data and we gen-

erated predictions for incoming students in that year. Again, in the second part of

the semester, we sent customised notifications to students who decided to opt-in. In

addition, in this 2017/2018 academic year, we measured whether a student would

click the material resources suggested on the notifications. Figure 6.3 shows how

we tracked when students accessed the material or labsheets from the links in the

notifications.

Table 6.5 shows that students who clicked on any resource (which were not a

majority) showed a greater normalised gain than students who did not click on those

resources between examinations. Examinations happened in Week 6 and Week 12 as

in previous years. The normalised gain difference between the two groups is found

to be statistically significant.
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6.4.4 Comparison with the baseline

Table 6.6 shows a comparison between students that passed and failed the first

laboratory exam in 2015/2016, 2016/2017 and 2017/2018 academic years. Recall,

in 2015/2016, there were no interventions to students; in 2016/2017 and 2017/2018

there were customized notifications sent to students. The normalized gain index

difference between students that passed and failed the first examination is reduced

for CA114 and slightly increased in CA117. We can not state students that are

lower performers in the first examinations get their difference reduced with respect

to the higher performers unless they engage with these notifications by fixing their

suggested failed submissions or clicking on the resources suggested.

Table 6.6: Comparision between 2015/2016, 2016/2017 and 2018/2019 academic
years

Course
Academic

Year

Group

(Number)

normgi

Difference

Passed (66)
2015/2016

Failed (83)
-0.54**

Passed (82)
2016/2017

Failed (58)
-0.56**

Passed (90)

CA117

2017/2018
Failed (58)

-0.59**

Passed (24)
2015/2016

Failed (51)
-0.6**

Passed (57)
2016/2017

Failed (16)
-0.55**

Passed (53)

CA114

2017/2018
Failed (16)

-0.38*

* p− value = 0.01
** p− value < 0.001

In terms of addressing RQ4, re-stated earlier at the start of this section, the

effects of engaging with these personalised notifications by fixing programming sub-
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missions or clicking on learning material might have a positive effect on the progres-

sion from one examination to the next one1. This means the research question is

addressed with a positive answer.

We believe it is worth the effort of making this type of interventions and putting

our predictive modelling work to practice. We feel morally compelled to implement

this type of interventions and we can potentially guide, help and motivate our stu-

dent body. In the future, we could explore how students engage with the program-

ming code solutions from higher performers and how it affects their programming

design learning.

6.5 RQ5: Qualitative Feedback

In section 1.3 earlier in this thesis, the fifth research question in the thesis was in-

troduced and it is re-stated here for convenience:

RQ5: What are students’ and teachers’ perspectives and experiences after adopting
a predictive modelling and adaptive feedback system into their own classes ?

6.5.1 Students have their say

In any student intervention, it is important to capture students’ opinions regarding

the feedback shared with them, to understand how it affects their behaviour within

the modules and whether it encourages them to try new solutions to their program-

ming assignments or to revise course material. Thus, we gathered students’ opinions

about our system and the notifications sent to them via a written questionnaire at

the end of the semester. The questions on the form were listed as follows:

• Q1: Did you opt-in ? [Yes / No]

• Q2: If you opted-out, could you tell us why ? [Comment]

1The code for this work has been made available as a GitHub repository at
https://github.com/dazcona/edm-engagement

115

https://github.com/dazcona/edm-engagement


Artificial Intelligence in Computer Science and Mathematics Education

• Q3: How useful did you find the weekly notifications ? [1 to 5 star rating]

• Q4: Did you run any of the working programs suggested to you ? [Yes / No

/ I was never suggested any]

• Q5: Would you recommend the system to a student taking this same module

next year ? [Yes / No]

• Q6: Would you like to see weekly the system notifications for other modules ?

[Yes / No]

• Q7: How could we improve the system for next year ? Any other comments.

[Comment]

Overall, feedback from students in these student surveys was very positive from stu-

dents and a summary of the responses can be found in Table 6.7 for the 2016/2017

academic year. The survey results were anonymised. Most students would recom-

mend this system to other students attending the same module next year or would

like to see this system included in other modules as shown in answers to questions

5 and 6 respectively.

Table 6.7: 2016/2017 Student survey responses from students about the project

Course Response Rate Q1 Q3 Q4 Q5 Q6

CA114 80.25% 84.60% 3.82 ? 40.40% 91.33% 91.38%

CA117 75.71% 93.40% 3.49 ? 33.70% 85.15% 83%

CA278 53.33% 87.50% 3.45 ? 21.88% 100% 90.00%

For first-year courses, the questionnaire was completed on the second-last day

of the semester classes during an evaluation for another module where all CA and

EC first-year students should have attended. We could gather a good number of

responses. The response to the first question shows the percentage of students who

opted-in and the fourth shows whether they ran any of the suggested programs. The

responses in both questions are inaccurate as, for instance, some students claimed
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they opted-in when they did not or they were not suggested any program when

in reality they were. That indicates that some students may not check their mail

regularly or they opted-in without realising what they were signing up for or what

the system would do with their digital footprint. Notifications via email may not

be the best way to communicate with students as some of them pointed out in the

improvements and comments section of the survey and a better way to measure how

they interact with these customised messages should be tried.

The final question regarding how students would like to improve the system re-

ceived some really interesting comments. However, students who were doing well

or very well, were getting a similar response every week and the notifications might

seem monotonous. In general, students demanded a more personalised notification

as well as some additional learning resources. Finally, the following are some posi-

tive and negative quotes, comments and suggested improvements from students in

response to this last question of the survey:

A significant number of students demanded more personalised feedback:

• “More detailed responses, where you can improve”

• “More varied responses”

• “Give more personalised feedback”

• “Maybe more detailed feedback”

• “More in depth analysis of progress, more precise areas to focus on”

Some students also asked for other features:

• “Feedback on each step of each task would be good, such as, better ways to

do things”

• “Have it from the start of the year”

• “Send a(n) end of module feedback of the whole module”
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• “Maybe more suggested working programs”

• “Give advice in what the student is performing poor in”

Others did not enjoy the notifications that much as they could be very repetitive

for students who are well on top of the module and do not have any failed programs

for which they could receive suggestions:

• “Less repetition / automation. (It) would be nice to receive other feedback

besides ”you are doing OK”.”

• “Always said the same thing”

• “More information relevant to how you are doing, it is too vague”

Overall the feedback was very positive and some students were motivated with the

weekly notifications:

• “It gave me confidence about the module. It gave me reassurance as to how I

was getting on.”

• “Good service, very helpful and effective way to manage your module”

6.5.2 Lecturers have their say

In addition to providing feedback directly to students, we enabled a discussion among

the lecturers of the modules that adopted this system and formal feedback was sent

to researchers via email.

CA116 and CA114’s lecturers also completed a survey and indicated the follow-

ing:

1. “With large class sizes for our programming modules, it is practically im-

possible for the Lecturer to monitor each student personally. Therefore, an

automated approach is useful”.
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2. “Simply seeing the list of students marked red or green each week gives a sense

for how things are going”.

3. “Perhaps I’m mistaken, but the predictions seem too negative”.

4. “I calibrate the difficulty of mid-semester lab exams depending on what has

been taught, when and how the students are doing. PredictCS doesn’t do a

great job of talking this “human factor” into account”.

5. “Most students respond positively to some of the gamification aspects of the

system, e.g. progress graphs. PredictCS doesn’t (yet) take advantage of that

aspect of how students engage”.

CA117’s lecturer said “(He) would be happy for you to run further experiments

in future deliveries of CA117”. “(He) liked the fact you could tailor the release

of concepts to students in order to keep pace with the delivery of the module e.g.

avoiding sharing solutions by advanced students that used lambda expressions not

yet covered”. The following year, he indicated that “(He) likes the fact it does its

thing without my input. He does use it for checking overall interaction by students

with lab exercises and that information he finds valuable.”.

CA278’s lecturer said “I found the PredictCS to be a nice complement to the

lectures and worksheets. The feature which suggests similar programs to a student’s

attempt is good although it would probably work better in situations where there

isn’t a weekly deadline for the exercises and where the solutions aren’t provided

after the deadline (as was the case with CA278)”.

As a summary for addressing RQ5, the platform was well received by students

and lecturers. Students would like to see their feedback in other modules and would

recommend it to other students taking those courses in the following year. Lecturers

show the recommendations as an extra help to automate the personalisation of the

experience of hundreds of students.
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6.6 Extra: Virtual Coding Assistant

Conventionally, Learning Analytics are used to process student data for a variety of

possible applications including feedback to University administrators, or to notify

students regarding their predicted performance and available further resources using

email or via a university’s Learning Management System.

In the 2018/2019 academic year, to support students to engage in learning and

to become more pro-active and responsible about their own learning, we designed

and tested a system called CoderBot. CoderBot is an Artificial Intelligence Chatbot

service deployed on WhatsApp2 as a coding assistant to support learning of computer

programming. CoderBot3 was deployed in CA116. Students were able to interact

with the assistant and find out the following:

• Personalised messages about their predicted performance in examinations and

assessments: A Predictive Machine Learning classification model is built by ag-

gregating multiple sources of student data (academic, programming work, and

logged interactions with offline and online resources), handcrafting features

and extracting patterns of success on the course leveraging Artificial Intelli-

gence techniques. The model is trained with two years of ground-truth data

and cross-validated on the training data. Predictions are generated weekly for

the new cohort of incoming student data. Using the classification probabilities,

we divide students into deciles and designed a message for each group.

• Recommended material: Students are suggested material to help their learning

such as slides and exercises they might want to check out based on their

progression and effort on the course.

• Short code snippets: Students can avail of code snippets that showcase func-

tionality such as slicing lists, reading from files or printing arguments. 100+

2WhatsApp Messenger is a freeware and cross-platform messaging and Voice over IP service
owned by Facebook

3Code assistant has a separate repository at https://github.com/dazcona/code-assistant
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snippets have been hosted on GitHub’s gists, as that website is already opti-

mised for easy reading of programming code on smartphones.

In addition to the above, students can ask for further help from the Lecturer or

the University’s support services, consult the terms of the project and opt-out at

any time. Phone numbers used for WhatsApp are deleted at the end of the semester.

Efforts are now being made to include Natural Language Understanding so students

can ask questions in natural language such as “How am I doing?” or “What can I

learn next?”

In 2018/2019, in terms of RQ4, after running the same quantitative analysis

between students that engaged and talked to the virtual assistant (52 students)

showed a greater normalised gain than students that did not talk to the chatbot

(80 students). The normalised gain difference between the two groups is not found

to be statistically significant. Engaging witht these type of feedback was found to

have an effect and many more students engage with the chatbot than with previous

email notifications.
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Chapter 7

Using Graph Theory and

Networks to Model Students

7.1 Introduction

In this chapter, in order to address the final of the 6 research questions which are

the basis of this thesis, we collected a unique dataset of college student learning

states and navigation traces from student access logs to a large MOOC. We present

a straightforward way for researchers and lecturers to quickly follow up on a par-

ticular student’s progression using networks. Students have different strategies to

study concepts and that can be exploited to personalise each student’s learning. The

potential application of unsupervised machine learning approaches such as HMMs

using deep learning might showcase hidden and higher level representations of learn-

ing states that can be applied to Intelligent Tutoring Systems and online courses,

and we explore that further in this Chapter.
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7.2 The Global Freshmen Academy at Arizona

State University

Arizona State University (ASU)’s Global Freshman Academy (GFA)1 provides first-

year university courses through the online MOOC platform, EdX. EdX is a massive

open online course (MOOC) provider which supports access to online courses from

numerous Universities worldwide. It was formed by a coalition of MIT and Harvard

University but has opened up to host courses from many other Universities, in a

range of topics. The GFA was launched in 2015 in partnership with EdX and since

its launch it has enrolled more than 230,000 students from more than 180 countries.

The GFA offers a wide range of courses in Business, Engineering and General

studies and in our analysis we will focus on only a small subset of these, specifically

the following two Mathematics modules:

• College Algebra and Problem Solving I, MAT117: this online alge-

bra course equips students with the skills to effectively solve problems using

algebraic reasoning. Students learn about systems of linear equations, ratio-

nal functions, quadratic functions, logarithmic functions, general polynomial

functions, and exponential functions.

• Precalculus, MAT170: this online calculus course focuses on quantitative

reasoning and functions. Students develop the skills to describe the behaviour

and properties of linear, exponential, logarithmic, polynomial, rational, and

trigonometric functions. Before taking this course, students should already

have a strong understanding of algebraic skills such as factoring, basic equa-

tion solving, and the rules of exponents and radicals, which can be mastered

through the college algebra course.

Additionally, both the Algebra and Precalculus courses uses the cutting-edge adap-

tive technology ALEKS. ALEKS is a personalized math tutor that helps students

1https://gfa.asu.edu/
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learn mathematics skills at their own pace. The courses tailor content and person-

alizes the learning experience around the student’s skill level, allowing the student

to achieve mastery in a certain concept before moving on to the next. Utilizing the

ALEKS learning system, students expect to be instructed on the topics they are

most ready to learn. Further details regarding the ALEKS platform for this study

can be found in Chapter 3. The log data we extracted when students are assessed

continuously while navigating through ALEKS is summarized in Table 7.1.

Table 7.1: Log Data extracted from EdX & ALEKS

Number of Occurrences Description

16,022 students

40,356 assessments

8,808,675 daily aggregate events of the topics learned and retained

186,224 students mastering topics

5,022,091 transactions of students navigating through the concepts

As a further breakdown into this dataset, the following is the information which

was provided to us for this analysis and this stored by us in a non-relational (NoSQL)

database for easy access to explore and analyse:

• Assessments: records of students being assessed, the number of topics mastered

and the reason of the examinations; the reasons for being assessed are the

following:

– Initial Knowledge Check;

– Progress Knowledge Check;

– Objective Completion;

– Login Time Knowledge Check;

– Periodic Knowledge Check;

– Class Completion Knowledge Check;
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– Skipped Knowledge Check.

For instance, a student is assessed when she first comes onto the platform as

an Initial Knowledge Check, as a pretest given at the beginning of the course,

and the content shown afterwards depends on the topics the student already

knows. Also, students are assessed periodically with a Progress Knowledge

Check to see how many new topics have been mastered by them. See the

numbers for each reason of assessment in Figure 7.1;

• Daily rollup: a daily progress record regarding the topics mastered by each

student and the percentage goal towards completion of the course. For in-

stance, for a student that has some activity on a particular day a list of topics

retained and learned are calculated and stored as a daily row in this collection;

• Concepts: topics students work on, each of which belong to sections. For

instance, topic “Evaluating functions: Linear and quadratic or cubic” which

belong to Section 4 of the course MAT117x;

• Transactions: fine-grained records of students navigating through the various

concepts and sections of the courses showing the activity types and duration

for each. For instance, a student is reading the Lesson for 25 seconds for the

topic “Evaluating a quadratic expression: Integers” which belongs to the first

section of the course MAT117x. We will dig deeper into this transactional

data.

We carried out a range of sanity checks to ensure the data we are working with

did not have any gaps. The data provided was from 13th. April 2016 to 1st. October

2017. However, we discovered there were no transactions or assessments data in the

Summer of 2017. We believe there could have been a data breach at that time but

it is unclear and the end result is that we can not make any inferences of what

happened during that time or even after when the data collection was resumed. In

order to progress with our analysis, we removed the data we have after the data
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Figure 7.1: Number of Students that Took each Type of Assessment for MAT117
and MAT170 in ASU’s GFA via EdX

breach for the retrospective analysis. This the actual dataset that we used was until

August 2017.

7.3 Exploratory Data Analysis

We explored the data sources provided such as assessments, transactions or mastery

of concepts. Figure 7.2 shows the number of students and the percentage of com-

pletion for each course. This graph has been developed by looking at the mastery

of concepts data source collection. Most students in our dataset were enrolled in

MAT117. As in other MOOCs, many students dropped out in the beginning after

completing only a small percentage of course content. Fewer and fewer students

complete the subsequent parts of the course. For MA117, around 400 students

completed the course entirely.

In a student’s learning journey on the MOOC the system navigates them to dif-

ferent concepts or topics based on their understanding and performance in previous

topics. For instance, some of the topic names are “Distributive property: Integer

coefficients” or “Writing and evaluating a function modeling continuous exponential

growth or decay given two outputs”. In any topic, students generally start with the

initial learning state of reading the lesson (marked with an L), then their under-
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Figure 7.2: Number of Students Binned Based on their Completion Percentage of
Each of the Courses

standing and mastery is evaluated via some exercises that they can get correct (C)

or wrong (W). They could also request a working example of the concept (E). After

some work, the system marks the understanding of the students as a provisional

mastery (S) or a failure to learn a concept (F). The student is then redirected to

another concept.

There are a total of 797 topics in the 2 courses and Figure 7.3 shows the time

spent by all students in each learning state, shown in seconds using the transactional

data, ordered by the total time spent by all students on that topic.

Figure 7.3: Total Duration for each Topic Using All Students’ Data, Ordered, Split
and Colour Coded for each Learning State
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In both courses, we encounter 8 different sections. Each topic corresponds to

one of these sections (also known as slices). Sections are higher level representations

of topics. Figure 7.4 shows the numbers of students who progressed and worked

through each section. This graph shows only 40.07% reached to the second section.

Based on the student’s understanding in each of the concepts belong to a particular

section and the assessments taken, students are able to progress between sections.

Only 0.44% of the students that started reached to the final section, section 8.

Figure 7.4: Number and Percentage of Students Who Worked on Each Section for
Both Courses

We developed a web application to explore this dataset and, specially, the trans-

actions recorded while students move from one learning state to another, one topic

to another and one slice or section (higher-level representations of concepts) to

another. The EdX and ALEKS log data was stored and then indexed in a non-

relational database. This information was made available using our web application

where Faculty can explore individual students and how they are redirected through

the material, concepts and their underlying difficulty based on completion and likely

sequence patterns around concepts and slices.

The application uses D3.js and NetworkX to visualise transactions interactively

for each student and in between concepts and slices2. For instance, the first trans-

2The code used for this project has been made available as a GitHub repository in
https://github.com/dazcona/edm-networks
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actions for a particular student are shown in Figure 7.5. We can explore all this

student’s transactions grouped by the dates. Figure 7.6 which shows the time dis-

tribution for each learning state for this student with respect to the other states. In

addition, we can create an interactive visualization for each of the topic’s transac-

tions using networks. See Figure 7.7. We can appreciate differences between simpler

concepts such as “Ordering integers” (shown in Figure 7.6) and more challenging

ones such as “Evaluating a linear expression: Integer multiplication with addition

or subtraction” (shown in Figure 7.7). This will be further analysed in the next

section utilizing graph theory.

Figure 7.5: Screengrab from the Web Application which shows the First Transactions
for a Particular Student

7.4 RQ6: Insights from MOOCs and Sequences

of Learning States

In section 1.3 the sixth research question in the thesis was introduced and it is re-

stated here for convenience:

RQ6: Can we extract valuable insights from massive open online learning platforms
utilising the sequences of learning states?
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Figure 7.6: Screengrab from the Web Application which shows the Distribution of
Learning States Grouped By Date for a Particular Student

(a) Network Visualisation
for Topic “Ordering inte-
gers”

(b) Network Visualisation
for Topic “Evaluating a
linear expression: Integer
multiplication with addi-
tion or subtraction”

(c) Network Visualisation
for Topic “Exponents and
integers: Problem type 1”

Figure 7.7: Screengrab from the Web Application which shows Network Visualisa-
tions for the First Three Topics for a Particular Student

Of the 6 research questions posed in this thesis, this one is probably the most open-

ended in that the question does not have an obvious yes/no answer and requires us

to experiment with, and find, the so-called “valuable insights”. This requires a dif-

ferent approach to what we have done in earlier chapters, namely building predictive

models of student outcomes and deploying them in practice, or using them as a form

of factor analysis to explore features which influence student performance. What
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we did here is to try to learn useful structure but without labelled classes as we had

in the previous chapters (student exam performance being the labels). This is also

known as unsupervised learning and we proceeded in this work by deriving graph

representations of the transactional data logs from the MOOC. The 5 million trans-

actions contain the following information: student, timestamp, concept, learning

state and duration of the activity and this formed the basis for the investigation.

Through the ALEKS platform, we are able to observe the learning states students

will go through as they consume content through the GFA platform. We analysed

how students transition from one learning state to another and as an example,

Figure 7.8 shows how a particular student traversed through the learning states for

two particular topics: “Ordering integers” and “Exponents and integers: Problem

type 1”. Even for the same student, there are different learning paths being taken

for different topics and we can see this by examining the learning states. Figure 7.8

shows two very different learning paths, a linear learning path versus the student

failing to master the concept at the beginning but being brought back to that concept

later on and mastering it eventually.

Figure 7.8: Visualizations of Networks for Two Students Going Through Various
Learning States on Two Different Topics
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Topic Networks

Students are navigated through topics, also known as concepts, by using the ALEKS

technology. We developed directed networks for each topic by using the data from

all students. There are 413 topics in MAT170 and 384 in MAT117. For instance, a

student can follow the learning path “LWCEWCECS” for a particular topic such as

“Ordering integers”.

For each topic, a graph was developed using the following parameters:

1. Between pairs of learning states (pair-wise and including states to themselves):

• Count: number of edges between two learning states;

• Sum: adding up the duration of time spent between two learning states;

• Average: the average duration of time spent between two learning states

e.g. L-C-avg duration;

• Std: standard deviation of the durations between two learning states.

2. For each learning state we extracted the following in-coming and out-going

metrics:

• Total Count of in-coming or out-going edges;

• Total Sum of the duration of the in-coming or out-going edges;

• Weighted Average of in-coming or out-going durations e.g. in-coming-L-

avg;

• Weighted Standard Deviation of in-coming or out-going durations.

Once this data had been extracted, metrics were derived for each learning state in a

topic network based on the in-coming and out-going metrics. These metrics derived

for a topic network can be compared with other topic networks using the network

or graph topology alone. We select two topic networks to illustrate this point:

1. Topic “Rewriting an algebraic expression without a negative exponent”: has

a high number of edges to the correct learning state (Node C). We can denote

it as a “simple topic” for this example
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2. Topic “Determining if graphs have symmetry with respect to the x-axis, y-

axis, or origin”: has a high number of edges going to the wrong learning state

(Node W). We can denote it as a “challenging topic” for this example

We can compute and plot the differences between these two topic networks based

on their metrics, as shown in Figure 7.9. Degree centrality measures popularity of the

learning states for these topic networks. Reading is more popular for the “easy topic”

with respect to the exercises which are more important for the “challenging topic”.

This might mean, coming back to reading is more important for the “easy topic”

with respect to re-attempting exercises being more important for the “challenging

topic”.

Figure 7.9: Network Degree Metrics Extracted from Two Topic Networks and the
Values for Each Learning State. Metrics for One Topic Network are shown in Blue
and for the Other Topic Network in Red.

In graph theory, Eigenvector centrality, also called Eigen Centrality, is a measure

of the influence of a node in a network [20]. We see similar behaviour as reading

is very influential for the “easy topic” with respect to re-attempting exercises being

influential for the “challenging topic”.
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In a connected graph, closeness to centrality of a node is another measure of

centrality in a network which is calculated as the reciprocal of the sum of the length

of the shortest paths between the node and all other nodes in the graph. Thus, the

more central a node is, the closer it is to all other nodes. We can observe the “easy

topic” having higher closeness values than the “challenging topic” as the easier topic

might have more linear paths and the challenging one having more non-linear paths

(as shown in the network examples in Figure 7.8).

In the ASU GFA MOOC, topics belong to sections, also known as slices, which

are higher level abstractions of topics. We also develop directed networks for each

section by using all the transactional data for the topics that belong to each section

(or each slice). Figure 7.10 shows metrics for the in-coming and out-going metrics

calculated for each of the slices.

• The first figures, in both Figure 7.10a and Figure 7.10b, show the number of

edges when students move from one learning transaction to another, in-coming

and out-going respectively. It is clear that the number of students decrease

considerably from one section to a more advanced section. From Figure 7.4

shown earlier, we know that only 0.44% of students who started, progressed

to Section 8 and only around 5% of students completed 90% of the online

content.

• The second figures, for both graphs again, show the sum of all the durations

for each of the edges for one transaction learning state to another. Again, in

Figure 7.10a we look at the in-coming edges and in Figure 7.10b we look at

the out-going edges. The first one shows there are only a few in-coming edges

for the Lesson learning state and the second figure illustrates there are only a

few out-going edges from the Failed state. We should note that section 4 has

a higher number of edges from the transactions, that is because that section

contains more concepts than other sections such as section 3, see Figure 7.11

for details.
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• The third figures, for both graphs, show the average duration for each of the

edges for one transaction learning state to another. These are the most inter-

esting figures. For both in-coming and out-going figures, the more advanced

the sections, as measured by graph traversal distances, students will take longer

to move to the next learning state, on average. That could mean that either

(1) students will take longer on each learning state for more advanced sections,

or (2) students who advance further through a course have different learning

strategies.

(a) In-coming Network Metrics

(b) Out-going Network Metrics

Figure 7.10: Custom Network Metrics Extracted from the Section Networks Divided
by In-coming and Out-going Metrics

The learning states extracted from the transactions and the underlying naviga-

tion through the course for which we have presented graph network statistics above,

can be modelled using a Markovian procedure [40] by assuming the future learning
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Figure 7.11: Number of Concepts per Section for MAT117 and MAT170 in ASU’s
GFA via EdX

states depend only on the current learning state. This could be further developed

by looking at sequences of learning states and topics learned in order to model the

likelihood of future learning states. In our case we consider the learning states as

observable states and we can model their learning using an HMM, see Figure 7.12.

In this, the unobserved or hidden states can be estimated from the sequence of

learning states students follow and are navigated on the system [89].

Figure 7.12: Diagram of Modelling How Students Learn on MOOC Platforms using
Learning States and Hidden Markov Models

Figure 7.13 shows how the observable states can be mapped to two hidden states.
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Figure 7.13: Hidden Markov Model trained with Hidden States

7.5 Conclusion on RQ6

Considering the transactional learning states as nodes of a network enables us to

analyse their centrality and measure their importance in the learning of these con-

cepts and disciplines. By creating a network for each topic based on all student

transactional data, we are measuring the degree centrality of the learning states and

discovering where students are most likely to struggle or to succeed by examining

the final states and the pathways to those final states. Moreover, we can develop a

network with all the learning states and their corresponding topics and analysis the

students’ progression, searching for centrality hubs, hypothesising whether further

interventions may be added, measuring Eigenvector centrality and how important

are the neighbours of the nodes, using the geodesic distance to measure the closeness

and betweenness between topics for each slice, discovering which slices take more

effort from students and how to help them succeed. In addition, we could cluster

the nodes and see if the groupings correspond with the sections of the topics.

With this level of analysis possible on log data from learning state transitions on

a MOOC, some of which we have actually demonstrated on log files from a MOOC at

ASU, we have demonstrated that we can learn useful structure of the transactional

learning data using unsupervised approaches, potentially learn valuable insights from
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it, and so RQ6 has been addressed.
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Chapter 8

Conclusions

8.1 Introduction

This chapter concludes the thesis by examining each area studied previously, in turn,

re-stating some of the conclusions from earlier and enabling some discussion from

those outcomes. The central thesis hypothesis was subdivided into smaller areas

that were tackled. I have focused on automatically modelling students, automati-

cally detecting students having difficulties in their computer programming modules,

automatically offering them assistance and measuring how that aids their learning.

Good progress was made towards identifying good predictors of student outcomes

and developing interventions for students in computer programming modules.

8.2 Modelling Student Behaviour

Predictive models of student outcome in assessments, using students’ characteris-

tics, engagement and programming effort as drivers have proven to contain useful

information about their learning progress and understanding. Overall predictions

of outcome worked relatively well with only a few years of previous student train-

ing data and in the near future we will be able to generalise better across different

student cohorts by following a similar approach.

We are eager to add more features to our prediction algorithms which would
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enrich the models’ representation of students and their activities. These additional

features could include the use of the laboratory resources or physical access to build-

ings in our university. Not only would this better describe our students’ digital foot-

prints but it would also allow us to select a subset of the most discriminating features

per week or even daily that provides us with an overview of student behaviour to

improve the predictive functions early in the semester.

It is important to note we are not tracking every time the student runs a program

locally which would be similar to source code snapshots used by other research

studies that are being carried out elsewhere. However, we could look at programming

states and behaviours between submissions to the platform as additional features.

The techniques developed in the thesis have been deployed in a variety of com-

puter programming modules including CA116, CA117, CA114, CA277 and CA278

at Dublin City University. In general, models were trained using past student data

from previous years of the same module and have worked well. However, there were

times we used data from a different course or even all data captured in the platform.

In those instances, we were not expecting the predictions to work as well as the

other models with better training data as the courseware in different modules would

not be the same, but they did a good job. The concepts taught are similar but more

advanced across different computer programming modules, and utilising patterns

from other courses as training dat has surprisingly resulted in good outcomes. The

more data there is means classifiers are usually better even if the material and pro-

gramming exercises are different. This approach could be applicable to other courses

not only in computer programming but even Mathematics and other courses with

a significant amount of laboratory material or programming work which students

need to check and complete on a weekly basis.

8.3 Modelling Students With Embeddings

In this chapter of the thesis, Chapter 5 we explored in some depth, a range of Ma-

chine Learning algorithms and techniques including Deep Learning, as we gathered
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more student data. Recent work using Deep Learning tends to work better when

more and more data is provided. However, in Learning Analytics, the number of

students taking a course is an unavoidable limit. Thus we cannot simply generate

more data as is done in other domains such as FinTech or Social Network Analysis.

Our findings indicate there is a need to learn and to develop better mechanisms to

extract and learn effective data features from limited amounts of student data so as

to analyse = students’ progression and performance effectively.

Our code2vec implementation and results confirm the power of code embeddings

as a technique in this application and the latent learning analytics properties in

student code submissions. Code embeddings are an alternative to using bag-of-

words based representations of source code. In future work we will explore combining

Tokens and Abstract Syntax Trees (ASTs) for creating an even richer model of a

student that factors in code details from their computer programming assessments

including structure and context. In addition, we will explore Concrete Syntax Trees

which are parse trees, typically built by a parser during the source code translation

and compilation process, adding subsequent processing to ASTs such as contextual

information.

User2Code2vec is a novel technique that was developed and used in the thesis to

represent students in a high-dimensional space, i.e. when there are many features

forming the students’ digital footprints. It uses distributional representations of

student profiles and their programming code. Other techniques such as Matrix

Factorisation can be used to find and to group students with similar coding patterns.

In addition, a User Representation Matrix could be built as as a Tensor with a new

dimension using all the submissions instead of the last one or one at random. Any

of these might give us a better representation of student learning and progression

that we could use.

Embeddings have been shown to successfully identify hidden or latent patterns

for code submissions and user representations. Measuring the quality of these vec-

tors, however, doing this is not straightforward. Several factors influence the quality
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of the vectors such as the amount and quality of the training data, the size of the vec-

tors and the learning algorithm used. The quality of these vectors is crucial for the

representations but trying out different hyper-parameters takes a lot of computation

and time. Developing and then using pre-trained vectors with a large corpus is a

standard approach in other domains such as word vectors developed using Google’s

News dataset. The Learning Analytics community should make the effort to develop

good Code Embeddings that can be used to learn higher level abstracts like User

Embeddings.

The use of Embeddings for source code submissions and student code represen-

tations is still at an early stage of development but has potential to change how we

understand learning to program, recommend code and peer learning of programming

using higher level abstractions.

In our future work in this specific area we plan to focus on two main aspects,

to learn better distributional semantics using abstract trees to capture syntactic

structure effectively following recent work proposed in [83, 6] and to use the rec-

ommendation learned using the user2code2vec representation proposed in this work

and to evaluate how this representation helps students to improve their learning.

8.4 Providing Adaptive Feedback to Students

In addition to the predicting student outcomes in module assessment, we were also

keen to provide a more personalised education to our students by identifying knowl-

edge holes based on their progress in computer programming and the concepts taught

in those courses. Such a more personalised education should engage with them more

and allow us to automatically redirect them to suitable and appropriate learning ma-

terial based on their program submissions. This issue of personalised feedback has

to be handled with caution as we do not want to redirect students to learning re-

sources where they will not find a solution for a particular submission failure, or to

material with which they are already familiar and knowledgable.

Recently, research in Learning Analytics that we have published has focused on
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Predictive Modelling and identifying those students having difficulties with course

material, also in programming courses [11], and offering remediation, personalised

feedback and interventions to students using Machine Learning techniques [9, 10].

Notifying the Lecturers or Professors who deliver computer programming modules

and sending personalised assistance to students helped those students at-risk to learn

more and reduced the gap in performance in examinations between them and the

higher-performing students. It is important to note that higher-performing students

do not have the same room for improvement than lower-performing students so for

higher-performing students, maintaining their grade is an accomplishment in itself.

However, we are trying to measure learning and we expect that lower-performing

students tend to learn more in our blended classrooms and complete more assessment

programs with mentoring and further assistance.

In terms of the notifications automatically sent to students alerting them about

their performance and trajectory, after enabling the feature to opt-in or -out on the

module courses, students had to log in to the submission platform to select either

option. Most of the students who replied to our survey did sign up and opt-in in the

first or second week, specially on the laboratory sessions where they use the platform

to verify their work. A few “tardy” students chose to do this opting in later in the

module and they did not receive the notifications from weeks they had missed even

after they had opted-in. Others were completely disengaged and never got to reply.

We should improve the opt-in approach and be more vocal about the project so that

every student has the chance to get notifications about their progress.

The approach chosen for the programming recommendations was to pick the

closest text program from among those submitted by the top-ranked students in the

class that year. This could be further advanced by identifying variables and choosing

the closest program syntactically and semantically as we studied in the embeddings

chapter, chapter 5. Other approaches tested and deserving of further exploration are

Collaborative Filtering as used in recommender systems, by looking at the closest

student to a given student, taken from within in the class or from within the top-
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students and recommend one of their programs. Netflix recommends movies and

Amazon recommends products from people with the same tastes assuming they

are constant. It is reasonable to assume that learning computer programming is a

stable process and to recommend sample computer programs from those students

from their closest person. Last semester, we were more interested in the students

being able to identify what is wrong with their programs and the closest solution

from a top-student worked very well specially for shorter programs, like the ones

suggested in CA114. We also want to explore the use of crowdsourcing and to

recommend the program uploaded the most by using previous years solutions if

most of the programs remain the same in the future.

In addition, eventually, we would like to go a step further and solve programs for

students by suggesting a solution that will fix or improve their own submitted code

and that would meet the lecturer’s learning criteria. This could be done by tokenising

the student’s programs to identify the variables used, calculate the similarity and

differences with the solutions stored and actually solve the student’s program instead

of just offering an alternative solution. We need to be cautious with this approach

and use it in moderation. However, research shows students also learn by example

[92] and a good number of them were demanding more solutions and explanatory

guided code in our survey.

8.5 Using Graph Theory and Networks to Model

Students

A research visit to Arizona State University (ASU) during the time of this PhD

study enabled collaboration in the area of Educational Analytics, a field where both

institutions have demonstrated expertise. I was involved with ASU’s Action Lab,

a dedicated digital teaching and learning laboratory. They are engaging in deep

learning analytics, providing continuous program improvement, ultimately resulting

in student success. As part of this visit I was able to collect a distinct dataset of
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digital footprints from students learning Mathematics at ASU Online via EdX.

To analyse this data, we followed a network analysis approach to investigate the

structure of the students’ learning on a MOOC system by mapping their learning

footprints onto network and graph theory. Network analysis can give us insights

into the properties of the learning states including how students progress from one

learning state to another. A network of the observed learning states was developed

for each student and each topic and posted on a web application.

Some of the findings we encountered in an analysis of this data included the

following:

• Students spend the most time working on programs they get correct, than

they spend on reading the lessons and then on problems they get incorrect;

• The first slices of learning material and in particular the first that contains the

introductory topics is the one that students spent the greatest amount of time

on. This is evidence that many students drop out at the beginning of these

online courses. However, the topic more students have worked on corresponds

to the fifth slice (out of seven) and is called“Adding or subtracting complex

numbers”. ALEKS technology which is an AI-based recommender system used

by students at ASU, redirects students where the students should learn from

in the next step of their learning journey, and that concept seems to be very

connected to other components in the knowledge space;

• In a similar manner, the two most taken assessment types are the Initial Knowl-

edge Check and the Progress Knowledge Check that are carried out in the be-

ginning and continuously, respectively. However, one of the assignment types

taken least by students is the Class Completion Knowledge Check.

What all these findings give us is an insight into student progress, and the high

number of drop-outs that are a characteristic of online MOOCs.
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8.6 Final thoughts

The main contribution of this thesis, apart from answering a specific set of re-

search questions, is in providing a set of tools that help Lecturers and Professors

and encourage students’ learning and interest in computer programming by using

cutting-edge data mining techniques. I believe computer programming is an ability

but also a skill that needs work to help it develop.

As our students demanded in the questionnaire responses they provided, I am

eager to provide them with more detailed programming recommendations, suitable

material and other actions to fill the knowledge programming holes they may have

when learning CS programming in blended classrooms at our university.
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Publications on Work from this

Thesis

A.1 Journal Publications

1. Azcona, D., Hsiao, I.-H., & Smeaton, A. F. (2018). Detecting Students-In-

Need in Programming Classes with Multimodal Learning Analytics. Special Is-

sue on Multimodal Learning Analytics & Personalized Support Across Spaces.

Journal of User Modeling and User-Adapted Interaction. International Jour-

nal of Artificial Intelligence in Education (IjAIED).

2. Azcona, D., & Casey, K. (2015). Micro-analytics for Student Performance Pre-

diction. International Journal of Computer Science and Software Engineering

(IJCSSE), 4, 218–223.

A.2 Conference Publications

3. Azcona, D., Arora, P., Hsiao, I.-H., & Smeaton, A. F. (2019). user2code2vec:

Embeddings for Profiling Students Based on Distributional Representations of

Source Code. In Proceedings of the 9th International Learning Analytics &

Knowledge Conference (LAK’19). ACM.
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4. Azcona, D., Hsiao, I.-H., & Smeaton, A. F. (2018). PredictCS: Personalizing

Programming learning by leveraging learning analytics. In Companion Pro-

ceedings of the 8th International Learning Analytics & Knowledge Conference

(LAK’18). ACM.

5. Azcona, D., Hsiao, I.-H., & Smeaton, A. F. (2018). Modelling Math Learning

on an Open Access Intelligent Tutor. In The 19th International Conference

on Artificial Intelligence in Education (AIED 2018).

6. Azcona, D., Hsiao, I.-H., & Smeaton, A. F. (2018). Personalizing Computer

Science Education by Leveraging Multimodal Learning Analytics. In Frontiers

in Education (FIE 2018).

7. Azcona, D., Hsiao, I.-H., & Smeaton, A. F. (2018). An Exploratory Study on

Student Engagement with Adaptive Notifications in Programming Courses. In

European Conference on Technology Enhanced Learning (EC-TEL’18). NY,

USA: Springer.

8. Vance, Y., Azcona, D., Hsiao, I.-H., & Smeaton, A. F. (2018). Predictive

Modelling of Student Reviewing Behaviors in an Introductory Programming

Course. In Educational Data Mining in Computer Science Education Work-

shop (CSEDM’18).

9. Vance, Y., Azcona, D., Hsiao, I.-H., & Smeaton, A. F. (2018). Learning by

Reviewing Paper-based Programming Assessments. In European Conference

on Technology Enhanced Learning (EC-TEL’18). NY, USA: Springer.

10. Azcona, D., Corrigan, O., Scanlon, P., & Smeaton, A. F. (2017). Innova-

tive learning analytics research at a data-driven HEI. In Third International

Conference on Higher Education Advances (HEAd’17). Editorial Universitat

Politècnica de València.

11. Azcona, D., & Smeaton, A. F. (2017). Targeting At-risk Students Using En-

gagement and Effort Predictors in an Introductory Computer Programming

149



Artificial Intelligence in Computer Science and Mathematics Education

Course. In European Conference on Technology Enhanced Learning (EC-

TEL’17) (pp. 361–366). NY, USA: Springer.

A.3 Demos

12. Azcona, D., Moreu, E., Hsiao, I.-H., & Smeaton, A. F. (2019). CoderBot:

AI Chatbot to Support Adaptive Feedback for Programming Courses. Com-

panion Proceedings of the 9th International Learning Analytics & Knowledge

Conference (LAK’19). ACM.
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Organisational Activities

B.1 Workshops

I co-organised the following international workshops:

1. Educational Data Mining in Computer Science Education (CSEDM) Work-

shop at the University at Buffalo, New York, USA (CSEDM 2018).

https://sites.google.com/asu.edu/csedm-ws-edm-2018/

2. Educational Data Mining in Computer Science Education (CSEDM) Work-

shop at Arizona State University, Arizona, USA (CSEDM 2019).

https://sites.google.com/asu.edu/csedm-ws-lak-2019/

3. Educational Data Mining in Computer Science Education (CSEDM) Work-

shop at Chicago, USA (CSEDM 2019).

https://sites.google.com/asu.edu/csedm-ws-aied-2019/

B.2 Proceedings

I was the Proceedings Editor for the 9th International Learning Analytics & Knowl-

edge Conference (LAK 2019) at Arizona State University, Arizona, USA.

https://dl.acm.org/citation.cfm?id=3303772
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Appendix C

Presentations on Work from this

Thesis

C.1 Selected presentations

1. User2Code2Vec: Embeddings for Profiling Students Based on Distributional

Representations of Source Code at Arizona State University, Tempe, AZ, USA

(LAK Conference, March 2019)

2. How to win a Hackathon with AI at the Insight Seminar Series (April 2019)

3. Data Mining & Embeddings to Offer Fresh Insights on Irish Politics at the

Insight Student Conference 2018 in Unversity College Dublin, Ireland (ISC

2018)

4. Predictive Modelling of Student Reviewing Behaviors in an Introductory Pro-

gramming Course at the Educational Data Mining in Computer Science Edu-

cation Workshop at EDM 2018 at the University at Buffalo, New York, USA

(CSEDM 2018)

5. PredictCS: Personalizing Programming learning by leveraging learning an-

alytics at the International Workshop on Orchestrating Learning Analytics

(OrLA): Learning Analytics Adoption at the Classroom Level in conjunction
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with LAK 2018 at The University of Sydney, Australia (LAK 2018)

6. Research & Learn at Arizona State University: Predictions, Recommenda-

tions, Embeddings & Networks at Arizona State University’s EdPlus in Phoenix,

Arizona, USA

7. Targeting At-risk Students Using Engagement and Effort Predictors in an In-

troductory Computer Programming Course in European Conference on Tech-

nology Enhanced Learning in Tallinn University, Estonia (EC-TEL 2017)

8. Innovative learning analytics research at a data-driven HEI at the Third Inter-

national Conference on Higher Education Advances in Valencia, Spain (HEAd

2017)

9. Presented at the 1st Ireland’s National Symposium on Learning Analytics:

Bringing People Together, Exploring LA in Irish HE, 2017

10. Crowdsource Programming Recommendations in Educational Analytics at the

3rd Insight Student Conference, Dublin City University, Dublin, Ireland (ISC

2016)

C.2 Other events

11. Demoed at the Learning Analytics & Knowledge 2019 conference in Arizona

State University

12. Presented a poster at the 2019 Insight Review in NUI Galway

13. Presented at the Dublin City University’s Teaching & Learning Day 2018

14. Presented a poster at the International Conference on Artificial Intelligence in

Education (AIED 2018)

15. Demoed about Educational Analytics in Computer Science at the 1st. Insight

Augmented Human Demonstrator Event in March 2017
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16. Attended the Fulbright Enrichment April 2018 Seminar Philadelphia, Penn-

sylvania, USA

17. Attended the Amazon’s AWS re:Invent 2017 in Las Vegas, Nevada, USA

18. Presented a poster at the Ireland’s Data Summit where I met Leo Varadkar

the Taoiseach (Prime Minister) in Ireland, 2017

19. Attended the Big Data and Analytics Summer School at University of Essex

in September 2016 as a YERUN awardee

20. Presented posters at Dublin City University’s Faculty of Engineering and Com-

puting Research Day in 2017 and 2018
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Awards

• Government of Ireland Doctoral Awardee (2015-2019) by the Irish Research

Council in partnership with the National Forum for the Enhancement of Teach-

ing and Learning in Ireland (2015-2019)

• Fulbright Visiting Researcher at Arizona State University, USA during the

2017/2018 academic year

• Winner of the Ulster Bank Hackathon (2019) at Dogpatch Labs Dublin, Ireland

• Winner of the Geek Challenge (2018) by Novicell at Denmark

• Special Mention at StartUp Weekend Dublin (2018) by Bank of Ireland in

Google, Dublin, Ireland

• Huawei’s Future of Vision Challenge Awardee (2018) at Trinity College Dublin,

Ireland

• Microsoft Imagine Cup Awardee (2018) in San Francisco and Seattle, USA.

National Awards: Best Use of Artificial Intelligence & 4th place at USA Na-

tionals. World Awards: Top-6 in Artificial Intelligence & Semifinalists at

World Finals

• Grant for a coding non-profit at Arizona State University (2018) by ASU

Changemaker
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• Invited scholar at Data Science Conference (2017) by Open Data Science Con-

ference in San Francisco, CA, USA

• Invited scholar at Analytics Summer School (2017) by Young European Re-

search Universities Network (YERUN) in University of Essex, UK

• Postgraduate Accommodation scholar by Faculty of Engineering and Comput-

ing, DCU, (2015-2016)
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