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Abstract 

Thesis Title:  Cost aware decision support for cloud data centres 

Author:  Sergej Svorobej 

Cloud computing became a popular IT and business trend in recent years, due 
to its scalability, reliability, ease of access and low costs. The demand for cloud services 
has led to a steep increase in number and size of data centres around the world with 
more hardware dense, large-scale data centres being build. A modern data centre has 
become a very complex system with a multitude of interconnected hardware resources 
that is hard to manage in an autonomic and cost-effective manner. 

This thesis presents novel techniques, models and software for estimating the 
impact of data centre planning decisions on Total Cost of Ownership. The use of a 
Discrete Event Simulation (DES) framework as a decision support tool is proposed for 
understanding operational efficiencies and the financial implications of different cloud 
resource management techniques and different hardware components.  

Based on a detailed assessment of the current state of cloud simulation tools, 
resource management techniques and cost models available for data centre 
management, an on-the-fly compilation of simulation models for large-scale cloud data 
centres has been proposed and delivered. This enables an automated approach for 
extracting all required simulation modelling parameters from existing data centre 
monitoring tools, improving speed and usability of the simulation approach. A unique 
integration approach between a production grade cloud optimisation framework and an 
offline simulation analysis framework, enables direct simulation of cloud resource 
management policies allowing for experimentation of different “what-if” scenarios using 
existing production tooling. An improved set of cost models were developed alongside 
the simulation framework which are capable of calculating costs based on time series 
data produced by the simulation framework. Thus, taking into account resource 
management policy effects and enabling a more granular overview of costs when 
compared to traditional TCO calculation approaches. The simulation framework 
implementation was validated using real case study data. In addition, the practical use 
of the proposed cloud data centre decision support approach is demonstrated through 
presentation of an extended case example, estimating and planning for the impact of a 
data centre hardware upgrade and resultant system performance and costs. 
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1 Introduction 

In the past half century, significant technological progress has been made in the 

ICT sector (Buyya, Yeo, et al., 2009). Information Technology has proven to be of 

significant value in both scientific and commercial settings, with increasing world-wide 

connectivity, information exchange and data processing speeds. The cloud computing 

paradigm has become a part of a technological and business revolution with continuously 

growing worldwide demand for cloud services and resources. The demand for cloud 

computing is predicted to continue to grow over the years and stay relevant to the cloud 

consumer and cloud providers forming an expanding multibillion euro cloud ecosystem 

(Arizton, 2018). Global cloud IP traffic is predicted to increase from 1.5 ZB in 2017 and 

reach 4.8 ZB by 2022 (Cisco, 2018). This growth in demand translates directly to a 

significant increase in revenue for the cloud sector, where the worldwide cloud computing 

market is forecasted to reach €261 billion by 2021 (Gartner Inc., 2018). As the demand 

for cloud computing grows, so too does the cloud data centre market which is predicted 

to grow at a 28.7% Compound Annual Growth Rate, reaching a total of €58.21 billion by 

2023 (Infoholic Research LLP, 2017).  

 From a business perspective the growth in demand is driven by the key 

advantages of cloud computing, including for example, significant reduction in costs, fast 

access to hardware resources with no upfront capital investment, on-demand scalability 

and new application architecture possibilities (Marston, Li, et al., 2011). From a technical 

perspective the term “cloud computing” describes a pool of shared computing hardware 

resources that can be easily configured to run services which are accessible to users 

remotely via a network connection (Mell and Grance, 2011). Data centres provide 

facilities where computing hardware running cloud services are physically located. As 

such, data centres can be described as dedicated premises that host IT hardware 

equipment in a safe and operational manner. The nature of demand for cloud services 

requires 24/7 uninterrupted accessibility all year round. To meet such demands, a data 

centre is built in such a way so as to provide a constant failsafe power supply to the 

equipment, internet backbone access for fast connectivity, and cooling solutions to 

dissipate heat produced by the equipment in active use (Geng, 2014). Resources 

working at a data centre must ensure equipment is always running as intended, fixing 

any failures that might occur over time, decommission old equipment while provisioning 
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and installing new equipment as required. The size of a data centre varies depending on 

its purpose and location limitations. One of the world’s largest data centres was recently 

built on the Citadel Campus in Northern Nevada, and is set to be 668,902 m2 with top 

power consumption of 650,000 kW (PRNewswire LLC, 2017). To put these figures into 

perspective and to understand its scale, this data centre is the size of approximately 93.7 

football fields (FIFA, 2016), and just one hour operating at its top capacity will consume 

the same amount of power as 60 average households would consume in one year (EIA, 

2015). Increases in user demand for cloud services have resulted in a consequential rise 

in the number of data centres around the world as well as to their size. Efficient 

management of a data centres resources while coping with increasing demand, becomes 

a challenge at such scale. It is also recognised that from an end user perspective ongoing 

cost reduction is one of the most critical success factors for cloud computing adoption 

(Astri, 2015). Thus, modern data centres are expected to deliver high levels of service 

while maintaining cost competitiveness on a consistent basis. As a consequence, data 

centres are going through continual evolution, undergoing between three and four major 

equipment changes every ten years (Mehmi, Sangal, et al., 2016). 

1.1 Cloud resource management challenges 

As already alluded to, the size and scale of cloud data centres is increasing over 

time, due to the continual increase in demand for such services. This scale is leading to 

an increase in the complexity of cloud architecture and to an increase in operational 

costs (Rimal, Jukan, et al., 2011). To control the delivery of vast cloud resources, a cloud 

computing provider uses autonomic mechanisms of resource management available 

through resource virtualisation properties, such as resource provisioning, resource 

allocation and resource adaptation.  

Resource provisioning is defined as the resource assignment to a customer; 

resource allocation refers to an economic distribution of resources among competing 

customers; and resource adaptation is defined as an ability to dynamically adjust 

provided resources based on user requirements (Manvi and Krishna Shyam, 2014). 

Efficiency and robustness of resource management policies play a significant role in 

cloud business models affecting Quality of Service (QoS), energy efficiency, carbon 

dioxide emissions and operational cost. The importance of these data centre dimensions 
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is evidenced by the large body of research that has developed in these domains over 

the last decade. 

Cost savings was identified as the most important factor behind adoption of cloud 

technology by end users, with increasing demands for lower priced access to cloud 

services (Astri, 2015). Hence, cloud infrastructure providers are under continuing 

pressure to minimise data centre capital and operational costs in order to stay 

competitive. However, ensuring expected QoS while keeping costs low in a large scale 

dynamic cloud data centre is a challenging task, with QoS equating to appropriate 

resource delivery which meets user required demand. The QoS specification for an end 

user will vary depending on the needs of different customers and is usually specified in 

an agreed upon Service Level Agreement (SLA). An SLA is part of a binding contract 

between a cloud infrastructure provider and a client and guarantees a range of expected 

technical capabilities. Such capabilities usually include network throughput, service 

availability, processing capabilities, scalability and security standards defining clauses 

(Singh and Chana, 2015a). An SLA breach can result in reparation costs for the cloud 

service provider and in severe cases, to a decrease in trust between the two parties, 

leading to potential business loss (Mistry, Bouguettaya, et al., 2015).  

To address these issues, cloud resource management mechanisms have been 

developed to monitor system QoS, so as to avoid SLA violations by ensuring the 

resources requested by a user are ready and available to meet user demand at the 

required time. However, inefficiency in resource management actions can lead to 

resource overprovisioning which reduces the amount of resources available for the cloud 

infrastructure provider to sell while also negatively impacting energy efficiency. Due to 

the scale and complexity involved in combination with dynamic user workloads, 

developing and fine-tuning a resource management strategy, that is capable of 

maintaining the desired QoS for a cloud computing system, in a cost-efficient manner is 

an intricate challenge, and one that has led to a significant body of research to date (e.g 

Suresh and Varatharajan, 2017; Makrani, Sayadi, et al., 2018; Nadjaran Toosi, Sinnott 

and Buyya, 2018; Ramchand, Chhetri and Kowalczyk, 2018; Zakarya and Gillam, 2018). 

Data centre design plays an important role in achieving an efficient balance 

between QoS and cost of operation. Cost calculations go beyond operational expenses, 

underpinning business economic viability including data centre building construction, 

equipment acquisition, equipment upgrades and cloud resource management strategy. 
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The main decisions that impact costs are the choice of geographical location, size, 

design, equipment, number of staff and cloud resource management efficiency (Barroso 

and Hölzle, 2013). Geographic location dictates the cost of land, construction labour and 

energy to run the data centre after it is built. Size and design decisions go hand in hand 

in determining the space ratios for server hosting, cooling and power supply premises. 

Energy consumption properties of equipment for the server room are important 

considerations for cost recovery through power saving. However, higher capital 

expenditure costs (CAPEX) associated with some equipment might not justify the 

benefits of related energy savings. Cloud data centre cost analysis capabilities can 

reveal the trade-offs and financial benefits behind different design opportunities. 

Understanding cost implications help in supporting day-to-day management tasks of 

cost-effective and competitive business enterprise (Simonet, Lebre and Orgerie, 2016). 

This associated high demand for cloud computing and competitor action drive 

innovation in server hardware equipment design for the hosting of cloud services. New 

equipment is continually being developed, which for the most part is improving in terms 

of functionality, capacity and energy efficiency. This constant evolution becomes a 

challenge for cloud data centre maintenance decisions. A typical data centre servers 

lifetime is short and spans approximately 3 to 4 years after which time the equipment is 

considered depreciated and requires upgrading (Barroso and Hölzle, 2013). Upgrade 

decisions can result in additional cost and if not managed correctly can unknowingly 

have a negative impact on the existing pool of resources by making existing resource 

management policies less efficient (Zakarya and Gillam, 2018). Partial server hardware 

upgrades and data centre expansion through addition of new server equipment creates 

equipment diversity leading to resource pool heterogeneity. Recent studies of well-

known public cloud providers show evidence of significant performance diversity 

between two VMs deployed in the same data centre due to hardware heterogeneity, 

leading to increasing concerns over QoS among its customers (Xu, Liu, et al., 2016). 

Knowing the changes hardware maintenance decisions can have on data centre QoS 

and cost is a favourable advantage. However, it can be a challenging task due to the 

large scale dynamic nature of cloud computing. 

Given the complexity and importance of resource management, understanding 

system wide impact is of paramount importance, prior to deployment in the production 

environment. Due to this complex nature, simulation-based analysis is often used to 
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support decision making in the designing of appropriately balanced resource distribution 

policies that meet the specific system performance goals of a specific enterprise (Sinha 

and Shekhar, 2015). Simulation-based experimentation helps to evaluate and rectify any 

inconsistencies resource management algorithms may have at design stage, before real 

system deployment. Simulation-based modelling is realised as a computer-based 

depiction of the cloud system generated through modelling techniques. This computer-

based model captures all cloud computing data centre parameters and all relationships 

between the relevant entities in the cloud system. Simulation-based approaches are 

advantageous over real world test bed scenarios as they enable full-scale cloud data 

centre system experimentation at a lower cost and faster pace than real time 

(Makaratzis, Giannoutakis and Tzovaras, 2018). Existing simulation tools provide 

estimations of cloud resource utilisation such as CPU, memory storage and network 

combined with power consumption calculations based on the utilisation levels. However, 

research conducted to date shows a lack of automation in system modelling, leading to 

issues in large simulation scenario creation. In addition, cloud data centre cost 

calculation remains largely static by not considering the impact of resource management 

and to date has tended to focus almost exclusively on energy costs. 

Costs associated with service delivery are an essential element in all data centre 

development and change initiatives with a variety of different costing methods utilised. 

One approach that is particularly prevalent is the Total Cost of Ownership (TCO), method 

for calculating the cost of owning and deploying data centre equipment when making 

decisions around IT investments (Ramchand, Chhetri, et al., 2018). Constant innovation 

in ICT leads to cloud data centres continually evolving in the form of new hardware 

functionality, cloud service consumption and resource management approaches. Making 

executive decisions on adjusting resource management policies and equipment upgrade 

procurement requires insights not only on technical hardware capabilities, but also on 

the financial implications, which when combined can be used to identify the most 

appropriate investment options (Geng, 2014).Tools for calculating TCO are composed 

of a mix of approaches, with some researchers delivering implementation frameworks 

for calculating costs (Hardy, Sideris, et al., 2011), while others only provide mathematical 

formulas for calculating different utility costs (Simonet, Lebre, et al., 2016). Such 

formulas can then be used as part of an implementation or simply as part of additional 

spreadsheet calculations.  
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Available TCO calculation approaches focus on a variety of direct and indirect 

costs such as server and cooling equipment, real estate, maintenance and consumed 

energy (Simonet, Lebre, et al., 2016). Research conducted to date has not identified 

TCO estimation procedures which have the capability to take into account specific user 

workload demand, server hardware capability required to process this workload and 

compute resource management decisions for dynamic resource allocation. The absence 

of a direct link between TCO calculations and cloud data centre performance parameters 

significantly limit the decision-making ability of data centre managers, with the primary 

focus on only one component, direct and indirect costs. Although, some research 

suggests that cloud simulation and modelling tools through energy consumption can be 

used for TCO estimations (Stier, Groenda and Koziolek, 2014) the literature review 

conducted in this study shows a lack of defined methodology and implementation of such 

a solution. It is this thesis’s proposition that greater cohesion in analysing data centre 

performance and TCO will lead to more informed decision making. By creating a holistic 

overview of data centre performance and costs, every change in design can be directly 

evaluated, explored and reasoned upon, providing decision support based on the QoS 

and profitability of an enterprise. 

1.2 Problem statement 

The scope of the thesis is focused on data centre management which includes 

the costing of property, hardware and provisioned resources and the delivery of 

appropriate service quality. The challenges of cost and operational efficiency are 

addressed from the perspective of an infrastructure provider, thus the primary focus of 

this thesis is on an Infrastructure-as-a-Service (IaaS) business model. Within this study, 

other cloud computing business models, specifically Software-as-a-Service (SaaS) and 

Platform-as-a-Service (PaaS), which are not managed by an infrastructure owner 

necessarily, are considered as application sets deployed to IaaS. This viewpoint enables 

a direct focus on the specific challenges and opportunities of cloud datacentre 

infrastructure providers rather than on platform or software service issues, 

consequentially narrowing the scope of resource allocation processes. 

Cloud computing is widely used by businesses all around the world as it delivers 

on-demand rapid access to a virtually endless pool of compute resources and services. 

Growth in demand for cloud computing has resulted in growth in the number and size of 
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data centres globally, creating complex large scale interconnected hardware systems. 

Competition and low-cost expectation have driven the need for cloud infrastructure 

providers to manage data centre infrastructure in a lean and effective way, reducing 

costs of capital and operational expenditures. Hence, cloud infrastructure providers 

employ resource management frameworks to strive to ensure QoS and SLAs are met, 

costs are reduced, and profit is increased. 

Although a large body of research exists in the area of cloud resource 

management for IaaS providers, an analysis of the literature in combination with case 

study discussions with companies reveals a real lack of understanding in relation to the 

impact of resource management decisions on data centre costs. IaaS resource 

management policies have the ability to directly influence QoS, resource utilisation and 

energy consumption of the system, hence affecting operational costs including server 

hardware selection. However, cloud infrastructure providers presently do not have 

adequate tools to identify and calculate the dependencies between hardware 

maintenance, resource provisioning policies, daily resource demand and costs.  

Cloud infrastructure providers are under immense pressure to keep resource 

prices at an affordable and competitive range, reduce CO2 footprint, reduce costs and 

increase profitability. This means creating and running lean, a reliable enterprise which 

is capable of fine tuning resource distribution policies to achieve maximum profit while 

keeping clients satisfied through QoS compliance. Because of these low-cost 

expectations from end users, confidence in cost estimation is important. However, cloud 

data centres are an intricate system of interconnected hardware at a large scale where 

interdependencies are hard to understand and quantify. Incorrect cost estimation can 

result in resource under provisioning which can deteriorate QoS, or conversely resource 

under provisioning can lead to revenue loss. This is in essence a balancing act and one 

that requires advanced decision support for optimal performance. In an ever-evolving 

market, there is an expectation of 24/7 cloud infrastructure availability, with many 

business-critical activities included. Strict SLAs are in place to enforce accountability of 

cloud resource providers in such instances, including in some cases severe monetary 

penalties should these SLAs be breached. Therefore, it is essential for business success 

that a data centres resources are provisioned and priced correctly. 
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This thesis looks at the data centre resource management1 challenges of 

infrastructure providers who are not in control of the cloud applications and higher level 

cloud services that are deployed on top of IaaS. In other words, the infrastructure 

provider only leases virtualised hardware resources and is not aware of which type of 

application is deployed by the IaaS user. This assumption feeds into the scope of this 

research by focusing on the challenges of managing data centre resources in a cost-

efficient way, whilst ensuring the QoS for any cloud based application deployed on the 

provided cloud infrastructure. 

To fully understand the range of costs involved and the operational performance 

of a cloud data centre, a holistic approach needs to be adopted, which takes into account 

resource demand and management policies and their impact on QoS. Currently, 

available cost analysis tools are not capable of comprehensively reflecting the level of 

cloud data centre complexity so as to ensure that the full range of system dependencies 

are considered in cost calculations. The scale of cloud data centre operations and the 

fast pace of innovation in the ICT sector also requires a consequential scaled 

improvement in cost/performance calculation speed and accuracy. The following 

hypothesis was formulated based on the arguments made in this thesis: 

“The use of a modelling framework integrated with a data centre 

management environment can enable infrastructure providers to understand 

better the interdependencies between costs and performance, leading to an 

enhanced cost-aware decision support for cloud data centres.” 

 

In summary, given the scale and complexity of cloud data centres it is difficult to 

determine the relationship between costs, resource management and QoS. The demand 

in IaaS is driven primarily by the low-cost of service, which puts pressure on infrastructure 

providers to remain competitive. However, there is a lack of tools available that help to 

make cost-aware decisions for modern cloud data centres to manage the workload, save 

energy consumption, and ensure adequate quality of service. Based on this, the thesis 

research objectives are to:  

                                                           
1 For the purposes of this thesis, data centre resources refer to hardware, energy, real estate and 

employees as the scope of this work extends to the overall costs of data centres. 
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1. Determine the requirements for such a tool. 

2. Develop an execution framework. 

3. Establish the implications of tool usage for real world cost-aware decision 

making. 

This thesis describes the development of an improved methodology and toolset 

for more precise and complete cost estimation of cloud data centre, while taking into 

account associated performance. In completing this research, a number of real world 

case studies are utilised for i) problem definition; ii) data extraction and iii) framework 

deployment. This research was undertaken as part of a European 7th Framework project, 

CACTOS. Details of the project and associated case organisations is presented in more 

detail in Chapter 3. 

1.3 Thesis approach 

As already alluded to, the research in this thesis sets out to present a better 

understanding of cloud data centre management decisions and their associated impact 

on costs. A cloud data centre is viewed as a large, complex system with a multitude of 

interconnected elements. It is proposed that to better address these cloud data centre 

development decisions, cost estimations require a more detailed assessment which is 

linked more explicitly with system performance. A simulation paradigm is proposed as a 

solution methodology which allows for modelling such complex systems and delivering 

an improved degree of TCO accuracy together with an in-depth analysis on system 

behaviour. 

To complete the proposed research, a deep understanding of the inner technical 

workings of a cloud data centre is required, as well as an understanding of associated 

resource management techniques and cost association and calculation approaches. In 

addressing these research tasks, the following research challenges and descriptors 

outline the main direction of the work presented in the remainder of the thesis: 

Domain positioning – To address the problem, the presented work traverses 

across a number of research areas, with the main areas being cloud computing, resource 

management, simulation, and cost estimation. At the outset it is paramount to build a 

clear knowledge foundation for each research domain. A literature review and industry 

engagement activities were used to acquire expertise and compile requirements which 
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fed into solution development. Part of the process was to identify key components, which 

was then used to form a model which captures the core values of a cloud computing 

systems behaviour relevant for the research objective. 

Model development - The current study was concerned with a cloud data centre 

system model that supplies the simulation platform with all the necessary data to make 

estimations on the system behaviour over the time of the simulation experiment. The 

system model can be further divided into two concepts, which include a meta-model and 

model implementation. A meta-model can be described as a schema, or data map 

showing what data is located within a model tree and the data type. A data structure is 

enforced using a meta-model and determines where exactly to write or read certain 

information about the system e.g. id of a rack or frequency of a CPU. The model 

implementation is a method chosen to store system model data which complies with a 

chosen meta-model design. The model development challenge is set to focus on defining 

the type of data required for the simulation i.e. meta-model design. It is important to 

identify the scope of the simulation output in order to successfully identify an essential 

data set for simulation-based estimations. As a first step in the research a list of feasible 

functional requirements need to be derived from the potential use cases in the project. 

Once the list is compiled the data can be linked to address each of the requirements. A 

cloud data centre is a data rich environment that provides an ample amount of metrics, 

therefore it is important to ensure that only required data is included in the meta model 

so as to avoid wasting effort on collection of data unused in the estimations. Model 

development focuses on the technical data capturing hardware and virtual layer 

properties, as well as, accounting for data type attributes for TCO calculations. Once the 

meta-model design is finalised, the next challenge is to acquire data and create a model 

implementation. 

Data acquisition - The nature of a simulation model for data centre evaluation, 

requires that it be a self-contained full set of data describing all system attributes and 

relationships between components, a partial system model is not sufficient for a 

simulation experiment. The large-scale of cloud data centres makes it difficult to collect 

whole data for the purpose of population of a valid simulation model, also making manual 

model creation a less viable option. The data acquisition challenge addresses the issue 

by looking at an integration mechanism between the simulation framework platform and 

a large-scale resource monitoring and cloud data centre metric data collection 
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framework. Cloud data centre telemetry monitoring tools are widely used for probing 

hardware health status and performance. By tapping into available telemetry data flows 

a data centre model for simulation can be created programmatically. However, such an 

operation requires an appropriate technical model implementation method capable of 

being continuously and asynchronously updated to save network traffic, ensuring that 

the latest data is available in the model on demand. Model compression and 

fragmentation are also an important factor in over the network data acquisition 

approaches such as this.  

Simulation of resource management - Virtualisation of hardware in a cloud 

data centre provides hardware resource isolation from running customer services. Such 

loose coupling between software and hardware layers allows for deployment of a VM on 

any server node that has sufficient resources within the cloud data centre. Cloud data 

centre providers use resource management frameworks to deploy, migrate and resize 

VMs in an automated manner due to the scale of resources that are being managed. 

These resource management frameworks are applied to optimise compute resource 

delivery to the services in accordance to the policy chosen by a cloud service provider. 

Reflecting resource management decisions within a simulation experiment is very 

important as it plays a major role in resource distribution and hence system behaviour. 

Moreover, testing resource management algorithms within a simulation environment 

prior to deployment in a real environment is a desired function for the simulation 

framework and a key focus for this research work.  

TCO Estimation - TCO has proven to be a useful decision supporting metric 

when evaluating various design or upgrade options within cloud data centres (Chang, 

Lee, et al., 2013). However, when viewed in isolation, it does not provide detailed insights 

on system performance. In addition, with existing TCO formulas only crude power 

consumption estimations are made. This thesis is focused on connecting a simulation-

based estimation approach to TCO, bringing system performance and cost estimations 

together. By running simulation experiments more fine-grained power consumption of 

compute equipment can be made, contributing to more accurate energy cost estimations. 

An expected output from a cloud simulation platform is time series data showing 

utilisation of server hardware resources over a period of time specified in a simulation 

experiment. Before using simulation results in TCO estimation, the resource utilisation 

must be converted into costs and only then included in the TCO formulas. Large scale 
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cloud data centre systems yield a large amount of simulation output data that require a 

programmatic approach for processing.  

1.4 Chapter outline 

The remainder of this thesis is organised as follows: 

Chapter 2 – Literature Review: This chapter provides a foundation for the 

research presented in this thesis. As the research topic is an amalgamation of cloud data 

centre technologies, resource management techniques, costs estimation methods and 

simulation approach, the review covers concepts and thorough research analysis within 

these areas. 

Chapter 3 – Related Project Background – FP7 (CACTOS): This thesis has a 

bidirectional connection with EU funded CACTOS project. CACTOS chapter describes 

the project concepts, use cases, tooling and modelling approach of the project. The 

project description is framing the thesis concepts in the setting of a wider research area. 

Chapter 4 – Methodology: This chapter outlines research methodology followed 

throughout thesis research. Methodology describes individual steps taken from the 

problem definition, data collection to solution design development validation 

experimentation and result analysis.  

Chapter 5 – Design and Implementation: This chapter defines simulation 

framework requirements based followed by software architecture design and 

implementations decisions. Covering design and implementations details for integration 

between the tooling, cloud data centre runtime and cost models and proposed TCO 

calculation models.  

Chapter 6 – Experimentation and Analysis: The chapter describes the 

validation and “what-if” experiment design, execution and analysis. The first part of the 

chapter compares simulation experiment results to the real system measurements. While 

the second chapter part explores data centre equipment upgrade decision caveats 

demonstrating the usage of the simulation-driven TCO estimation. 

Chapter 7 – Discussion and Conclusions: The chapter provides concluding 

summary of the research findings presented in the thesis, discussion of the presented 

approach and future work in the research area. 
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2 Literature Review 

2.1 Introduction 

As already discussed in the previous chapter, cloud computing has become a 

part of a technological and business revolution which is continuing to evolve and grow 

(Liu, Wang, et al., 2009; Subashini and Kavitha, 2011; Raghavendra and Krishna, 2015, 

Arizton, 2018). To cater for this demand the cloud data centre market is predicted to 

grow at a 28.7% Compound Annual Growth Rate, reaching a total of €58.21 billion by 

2023 (Infoholic Research LLP, 2017). In addition to prolific growth, cloud data centre 

operators also have to contend with ever evolving technological solutions with a typical 

data centre changing technologies three to four times over a ten-year period (Mehmi, 

Sangal, et al., 2016). This rapidly changing environment coupled with the typically large 

scale of a cloud data centre and associated system complexity makes it challenging to 

understand the full extent of management decisions, such as hardware procurement and 

resource allocations, have on costs. From an evaluation of the domain, available cost 

calculation methods used in practice, such as TCO, are limited in their ability to take into 

account the effect of resource optimisation on costs and performance, if at all. Based on 

this rapidly evolving domain, one of the primary aims of this thesis is focused on 

developing a more comprehensive methodology and decision support tool for cloud 

infrastructure providers, which can better account for resource management policies and 

the consequential impact on costs and QoS.  

To address this issue, the following chapter provides a detailed assessment of 

the literature focusing on the modern cloud data centre as a system composed of actual 

hardware equipment and facilities with the adopted concept of resource virtualization to 

avail of resource sharing among provided cloud computing services. Tracing the 

connection between physical hardware and virtualized resources is fundamentally 

important for understanding the costs cloud infrastructure providers leverage. As well as 

highlighting the underlying cloud data centre principles, Section 2.2 emphasises the fast 

evolution of technology and processes underpinning the need for more advanced, up to 

date decision supports approach proposed in this thesis. Section 2.3 provides definitions 

and a breakdown of cloud resource management techniques and challenges. Resource 

management frameworks have a direct impact on QoS and costs making them 
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fundamental to the research being undertaken in this thesis. Section 2.4 assesses the 

literature related to the costs associated with data centres and available calculation 

methods. The role of QoS and its impact on costs is explored within the section making 

clearer the connection with resource management policies. Finally, Section 2.5 describes 

decision support tools and methods available for cloud infrastructure managers. This 

section reviews literature related to cloud optimisation and cloud simulation tools and 

their role in assessing the impact of management decisions e.g. changes in hardware 

configuration and/or changes within the resource managements approaches. 

2.2 Inside the modern cloud data centre 

 

Figure 2-1: Convergence of various advances leading to the advent of cloud 

(Rochwerger, Vázquez, et al., 2011) 

Computing as a utility was defined, well ahead of its time, in 1966 by Canadian 

technologist Douglas F. Parkhill (Parkhill 1966), with the first use of the term “cloud 

computing” traced to 1996 (Regalado 2011). The term “cloud computing” covers a wider 

array of services and technological concepts and can be seen to have many definitions. 

The often used (Marston, Li, et al., 2011; Galante and De Bona, 2012; Zhao, Peng, et 

al., 2012; Aceto, Botta, et al., 2013) and best fitting definition for the presented study 
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comes from the U.S. National Institute of Science and Technology (NIST) (Mell and 

Grance, 2011) stating that: 

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and released 

with minimal management effort or service provider interaction.” 

The NIST provided definition describes cloud computing as an ecosystem of intertwined 

technologies. Rochwerger et al. (2011) identifies a set of new advancements (Figure 2-1) 

in computer hardware, distributed computing, systems management and internet tools 

that formed the cloud computing paradigm. With the increasing availability and 

advancement of technology there has been a phenomenal rise in the use of cloud 

computing systems in recent times (Liu, Wang, et al., 2009; Subashini and Kavitha, 2011; 

Raghavendra and Krishna, 2015). In 2017 cloud services worldwide generated revenues 

of around €133.6 billion and were predicted to increase almost two fold by the end of 

2021 reaching a total of €261 billion (Gartner Inc., 2018). The use of cloud services in 

2016 among enterprises based in EU countries reached 21%, Finland being the highest 

cloud user with a 57% score (Eurostat, 2016). It is also forecasted that by 2019 more 

than four-fifths of compute workloads will be executed in the cloud (Cisco, 2014).  

2.2.1 Bricks and mortar 

Such high demand for computing services has led to extremely large-scale 

commodity-computer data centres. Data centres became the providers of computing 

hardware also known as compute resources. An ability to manage and host computing 

resources on such a large scale served as a necessary enabler for cloud computing 

(Armbrust, Armbrust, et al., 2009). 

Depending on data centre size and various other functional or business decisions 

the actual premises where hardware equipment is placed can be part of a dedicated 

standalone building or a section of a building that also fulfils other functions. For day-to-

day operations, computing equipment inside the hosting space of a data centre requires 

access to a constant power source, reliable cooling, and human personnel for 

maintenance and security. All these vital on premise facilities take up additional space 

proportional to computing capacity. Data centres accommodate auxiliary premises that 

are required to support its main function. For staff these premises might include a control 
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room office area, a canteen, car park and toilet space. As electric power is the primary 

and vital resource for hardware equipment, data centres would typically host power 

transformation and distribution equipment together with batteries and diesel power 

backup generators ready to prevent equipment shutdown in case of main power failure. 

Computing equipment consumes electricity and dissipates heat, with large scale units 

also requiring separate premises for hosting cooling equipment. The data centre building 

must be a secure space. Information that is stored and processed is always considered 

private therefore direct physical access to the equipment must be strictly limited only to 

authorised personnel. Security measures are also taken to prevent possible damage 

from natural disasters such as floods, tornadoes or fire. The building itself should be 

originally designed or modified to withstand or minimise the damage from possible 

dangers of the surrounding environment. For example, the fenced perimeter around 

premises keeps intruders away, raised floors prevent flood damage and various fire 

suppression systems tackle fire outbreaks quickly (Alger, 2012; Barroso and Hölzle, 

2013; Geng, 2014). 

Table 2-1 compiled based on information presented by Alger (2012) lists a 

number of operational data centres built around Europe and the United States and 

illustrates the relationship between overall building size, the actual hosting space, and 

power and capacity expressed in cabinet numbers. As can be seen from the table the 

total building size is on average twice the size of the hosting space itself. This space is 

needed to host the auxiliary gear mentioned earlier to ensure operational conditions for 

the cabinets where computing equipment is located (Geng, 2014). From Table 2-1 it can 

be seen that with the growing number of cabinets, the overall power consumption and 

data centre size also increases. However due to differences in system design it is 

possible to achieve higher density solutions that use less space and provide higher 

cabinet capacity i.e. the Intel data centre in New Mexico, which has more cabinets per 

square meter than the eBay data centre in Phoenix, Arizona. The trend of building large 

data centres continues with the current top 10 largest facilities occupying space ranging 

from 69,677 m2 to the largest one of 668,902 m2 (Mitchell, 2017) 
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Organization Location 
Building Size 

(m2) 

Hosting Space 

(m2) 
Cabinets 

Power avg. 

(kW) 

Barcelona 

Supercomputing 

Centre 

Barcelona, 

Spain 
Undetermined 160 48 1,400 

Bahnhof 
Stockholm, 

Sweden 
1,000 500 140 800 

ACT, Inc. 
Iowa City, 

Iowa, USA 
622.5 371.6 150 900 

Green House 

Data 

Cheyenne, 

Wyoming, 

USA 

882.6 696.8 200 1,000 

eBay 
Phoenix, 

Arizona, USA 
3,901.9 1,300.6 256 4,000 

Intel 

Rio Rancho, 

New Mexico, 

USA 

1,672 623 268 8,000 

Cisco 
Allen, Texas, 

USA 
15,050.3 2,573.4 754 4,901 

IBM 

Research 

Triangle Park, 

North 

Carolina, USA 

14,864.5 9,290.3 960 21,000 

NetApp 

Research 

Triangle Park, 

North 

Carolina, USA 

11,612.9 3,065.8 2136 25,000 

IO 
Phoenix, 

Arizona, USA 
49,981.8 33,445.1 ~3,000 120,000 

Table 2-1: List of existing data centres (Alger, 2012) 

At the core of every data centre is the compute hardware hosting space or server 

room. The hosting space contains a number of cabinets where the servers and 

networking equipment are placed onto the racks. Depending on the performed function 

each server hardware unit typically referred to as a compute node, a storage node or a 

network node. As the name suggests the compute node is responsible for processing 

heavy computational tasks. For that purpose, it will be equipped with more central 

processing units (CPU) containing more processing cores coupled with high capacity 

random access memory (RAM) units. Storage nodes will have the primary objective of 

providing and managing storage space, such nodes will be equipped with arrays of Hard 

Disk Drives (HDD) or Solid State Drives (SSD). Finally, network nodes are responsible 

for handling the connections between servers by providing packet rule-based routing 

mechanisms performing job of a programmable switch, firewall or router device. Network 

nodes are equipped with multiple network connection outlets suitable for 

communications over fibre optic or copper cables. Electric power is required for servers 
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to operate and is managed by power distribution units (PDU) which are also mounted 

onto the racks inside the cabinets. Respectively these different types of hardware nodes 

form the pool of compute resources often referred to as CPU cores, memory, storage, 

and network (Alger, 2012; Barroso and Hölzle, 2013; Buyya, Vecchiola and Selvi, 2013; 

Geng, 2014). 

2.2.2 Hardware virtualization 

Virtualization allows for separation between data centre hardware and software 

layers. Buyya et al. (2013) describes virtualization as a core technology for cloud 

computing that encompasses a collection of solutions allowing for the abstraction of the 

fundamental elements, such as hardware (CPU, memory, I/O devices), runtime 

environments, storage, and networking. Virtualization abstracts the real underlying Host 

system resources and exposes the Guest system(s) via virtual interfaces otherwise 

known as Virtual Machines (VM). Communications between VMs and real hardware is 

performed by the thin software layer called a Hypervisor (Hugos, Michael H.; Hulitzky 

2011). Agnostic to the guest system the hypervisor makes the host system appear as a 

different virtual system to the guest (Smith & Nair 2005).  

Hypervisor technology was first described as a VM manager by R. Goldberg 

(1973). The virtualization abstraction allows the valuable feature of running multiple 

Operating Systems (OS) and software stacks on a single physical platform side by side 

in isolation (Rochwerger et al. 2011). Once the hardware is virtualised it can be shared 

among multiple guests increasing resource utilisation. Virtualisation also allows for 

resource aggregation where multiple hardware node resources are bundled to appear 

as one single virtual machine. This way resource aggregation delivers performance 

unattainable by existing physical configuration. Because virtualisation is essentially a 

representation of hardware employing software logic it also allows for emulation of 

specific hardware behaviour without actually having it (Jennings and Stadler, 2014). This 

feature can be used for example in smartphone application development where specific 

hardware architecture is emulated for testing purposes (e.g. Android emulator (Google, 

2016)). 

The native (bare metal) hypervisor type is used in cloud computing. It is located 

directly between the guest and the host hardware (Figure 2-2). This approach provides 

VM containers with assigned virtualised resources for guest tenants directly without 
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having a host operating system in the way (Younge, Henschel, et al., 2011). In other 

words, a hypervisor serves as middle tier layer for a VM (server) to make resource 

demand calls to the physical hardware. Examples of bare metal hypervisors include 

vSphere ESX/ESXi (VMware, 2016b), Xen (XenProject, 2016) and Hyper-V (Microsoft, 

2016b). On top of deployed virtualised infrastructure cloud services can be built in the 

form of platforms and/or online applications. The services by proxy are managed using 

these virtualisation features.  

2.2.3 Cloud deployment models and services 

 

Figure 2-2: General cloud architecture derived from existing studies (Smith and 

Nair, 2005; Catteddu and Hogben, 2010; Bohn, Messina, et al., 2011; 

Rochwerger, Vázquez, et al., 2011; Buyya, Vecchiola, et al., 2013) 

Cloud deployment models (see Figure 2-2) are created to define properties of the 

cloud physical infrastructure. By a certain model type it is possible to identify to whom 

cloud infrastructure is provisioned, who owns, manages, operates and physically hosts 
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it. Four cloud deployment models as described in the NIST definition of cloud computing 

article (Mell and Grance, 2011) follows:  

• The Private cloud infrastructure is provisioned to be used by a single 

organisation exclusively. The infrastructure can be owned and managed 

by the same organisation or by a 3rd party vendor. It can exist on or off 

premises (Buyya, Vecchiola, et al., 2013). 

• In the case of the Community cloud model the infrastructure is provisioned 

among a specific community of users that might share common 

requirements (e.g. geographical location, security, use of specific 

application (Zissis and Lekkas, 2012)). The infrastructure can be provided 

by one of the community members or a 3rd party organisation. It can exist 

on or off premises. 

• Public cloud deployment model allows access to cloud services to the 

public. Infrastructure commonly owned by cloud provider organisation or 

company and resides on their premises (Jamsa, 2013) (e.g. Microsoft 

Azure (Microsoft, 2016a), Amazon AWS (Amazon, 2016), VMware 

vCloud (VMware, 2016a)).  

• Finally, the Hybrid cloud model enables the composition of private, 

community or public cloud models if they share the same data and 

application portability standards. For example, if the application running 

on a private cloud requires more resources than the local infrastructure 

can provide the load can be scaled out to the public cloud using cloud 

bursting technology if the appropriate interfaces are supported by the 

public cloud provider (Dillon, Wu and Chang, 2010). 

Cloud services provide different levels of computing utilities for cloud users. The 

logical hierarchy of the service stack is shown in Figure 2-2 and also reflects the order in 

which services are virtualised allowing the service user to disregard any management 

tasks below the service hierarchy (Rochwerger, Vázquez, et al., 2011). As defined by 

NIST(Mell and Grance, 2011) three core cloud services are:  

• Software as a Service (SaaS) – can be compared to renting access to 

software packages that can be used remotely. A consumer has access to 
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the remotely running application only via a web browser or program 

interface (e.g., web based email, weather forecast service) (Savolainen, 

2012).The control over the underlying hardware resources such as 

network, servers, operating system or even software execution 

parameters are not accessible. Once a consumer subscribes to SaaS the 

service provider is responsible for managing all the software updates, 

maintenance ensuring sufficient resources are available for requested 

provisioning (Zhu and Wen, 2012). 

• Platform as a Service (PaaS) – can be described as renting the 

programming language environment where a customer can execute their 

own software code (e.g. Apache Tomcat (Apache, 2015), WildFly 

(RedHat, 2015), Google App Engine (Google, 2015)). In this case a 

service consumer has full access rights to the application and hosting 

environment settings (Pardeshi, 2014). However cloud infrastructure 

resources including network, servers, operating systems, and storage are 

strictly managed by the service provider (Hashizume, Rosado, et al., 

2013). 

• Infrastructure as a Service (IaaS) – gives the most control over the 

resources by allowing the consumer to rent custom provisioned 

computing resources such as Central Processing Unit (CPU), Network, 

Memory and Storage in a single entity – e.g. a Virtual Machine (Buyya, 

Vecchiola, et al., 2013). This service can be compared to renting a 

remotely running personal computer which can be accessed over the 

network. The consumer can select and configure the type of operating 

system together with deployed software services. In this case the 

consumer is also required to take care of the software stack running on 

the VM. The service provider is only responsible for resource availability 

(Hashizume, Rosado, et al., 2013). 

With cloud technology adoption, the services start to be portioned more 

specifically, reflecting more exactly the type of function they provide. For example Dillon 

et al. (2010) states that the delivery of virtualized storage on demand became a separate 

cloud service naming it Data storage as a Service (DaaS). Recently in a cloud services 

survey, Duan et al. (2015) define cloud services as Everything as a Service (XaaS). The 
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development of services evidently shows the versatility of cloud technology and the 

choice it can offer to the user. 

Thousands of server nodes are hosted inside hyper scale cloud data centres 

forming a concentration of hardware resources reaching up to 10.6 Million CPU cores 

(TOP500.org, 2016). These compute resources are joined by network interconnects and 

virtualization technology into one large heterogeneous pool of shared virtual compute 

resources that needs to be divided among VMs and distributed between the cloud 

services provided to end users. With constantly fluctuating demand for cloud services, 

cloud resource management at such a proportion becomes a complex task that directly 

impacts cost efficiency of the data centre enterprise (Hameed, Khoshkbarforoushha, et 

al., 2016). 

2.3 Data centre resource management 

Separating hardware and software layers using virtualization creates freedom for 

guest systems (VM’s) to be moved seamlessly around data centre physical nodes and 

allowing dynamic physical resource allocation in accordance to actual user demand 

(Bousselmi, Brahmi and Gammoudi, 2014). These virtualization features create finer 

resource management opportunities, which can be tailored to increase compute 

resource utilisation rates, improve energy consumption, increase service performance 

and service reliability. Naturally the cost associated with a data centre is related to the 

resource management approaches and if done correctly financial gains can be achieved 

making a cloud data centre more cost efficient, profitable and more competitive (Shi and 

Hong, 2011).  

2.3.1 Resource provisionning methods 

Service cost has been identified as the most critical success driver for cloud 

computing (Astri, 2015). Dynamic resource allocation is a core cloud feature allowing for 

the cloud user to pay only for the resources they need (Xiao, Song and Chen, 2012). 

Hardware virtualization-based resource provisioning methods such as live migration, VM 

co-location and elasticity are used by cloud infrastructure providers to distribute available 

resources. 

Live migration. The virtualised environments operate as isolated entities. 

Isolation makes it possible to seamlessly migrate VMs to different hardware and separate 
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resources between multiple guests on the same host (Buyya, Vecchiola, et al., 2013). 

Containing the server within a VM also allows for live migration of VMs (Clark, Fraser, et 

al., 2005). During live migration, running VMs can be relocated from one physical node 

to another seamlessly without server downtime. This is a powerful feature that can be 

used to improve fault tolerance, simplify system maintenance and most importantly allow 

dynamic physical resource balancing and development of smart scheduling policies 

(Jennings and Stadler, 2014).  

Co-location. By placing multiple VM’s on the same node cloud providers can 

balance between service performance and resource utilisation. By achieving greater 

resource utilisation cloud providers can for example achieve energy savings when 

consolidating VMs on fewer nodes and essentially have more free resources that can be 

sold (Buyya, Vecchiola, et al., 2013; Ahmad, Gani, et al., 2015). 

Elasticity. The concept of elasticity is one of the main features of cloud computing 

which allows cloud consumers to increase or decrease provisioned resources 

dynamically (Galante and De Bona, 2012). Resource virtualisation allows for more 

dynamic workload management than with traditional configurations, where the 

application is executed directly on the server nodes hardware (Armbrust, Armbrust, et 

al., 2009). The virtualised system can be scaled horizontally and vertically. Horizontal 

scaling refers to the spawning of a parallel array of mirrored VMs and load balancers 

allowing system workload to be seamlessly spread out, thus removing the pressure for 

the single VM instance (Vaquero, Rodero-Merino and Buyya, 2011). Vertical scaling 

refers to the adjustment of resources that are allocated to a single VM. At first this method 

was used mostly for disk space allocation, but now can be seen to be used for memory 

reclamation techniques such as “ballooning” (Rochwerger, Vázquez, et al., 2011; 

VMware, 2011).  

The scale at which resources must be provisioned is too large to be done 

manually by hand, hence the autonomic resource management systems are used to fulfil 

this purpose (Armstrong, Espling, et al., 2015). 

2.3.2 QoS aware autonomic resource management 

The large scale of modern data centres, resource heterogeneity and underlying 

interdependencies make resource management a complex task. In addition, fluctuations 

in user demand render VMs as dynamic entities in their resource requirements and 
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lifecycle. To deal with constant new VM arrivals, existing VM closures or scaling, cloud 

providers must implement efficient self-adaptive resource provisioning policies (Jiang, 

Perng, et al., 2012). 

 

Figure 2-3: MAPE-K feedback loop (IBM, 2005) 

Orchestrated regulation of cloud infrastructure is achieved by following the 

MAPE-K autonomic control feedback loop method (Huebscher and McCann, 2008). The 

concept MAPE-K was introduced by IBM (Bantz, Bisdikian, et al., 2003) and stands for 

Monitor, Analyse, Plan, Execute, and Knowledge. As shown in Figure 2-3 the system is 

being monitored for specific symptoms, for example resource utilisation levels, network 

throughput or application behaviour patterns. Next, this monitored data is being analysed 

against defined policies. If the current state meets the policy conditions a change request 

is sent towards the planning phase. During the planning phase a change plan is 

produced that is then put into action at the execution phase. All of these steps are based 

on knowledge of system inner workings. Knowledge can consist of accumulated 

historical data, system topology or other combinations of sources or known environment 

states (Hariri, Khargharia, et al., 2006).  

Continuous resource management and allocation processes in cloud data 

centres fall under the definition of autonomic self-adaptive systems (Youseff, Butrico and 

Da Silva, 2008). Originally the concept of autonomic systems was taken from human 

biology where the human body self-regulates internal processes according to information 

taken from the central nervous system. For example, heart rate and breathing will 

automatically increase in case of increased physical load to deliver oxygen faster to the 

muscle tissues. However reactions within the human body are involuntary whereas in IT 
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systems they are decided by system administrators (IBM, 2005). The objectives of cloud 

data centre resource regulation are driven by agreed upon quality criteria that provided 

cloud services must meet to satisfy the needs and expectations of their customers. Such 

criteria are frequently referred to as Quality of Service (QoS) or Service Level 

Agreements (SLA) where the latter often represents a legal contractual agreement 

between customer and cloud service provider (Goudarzi and Pedram, 2011). 

Different needs of cloud service consumers require a definition of QoS 

requirements beyond the availability of the service parameter (Quarati, Clematis and 

D’Agostino, 2016). Over the years cloud resource management platforms focused on the 

range of parameters to be improved. In a systematic review of autonomic resource 

management in cloud computing Singh & Chana (2015a) identified an array of QoS 

parameters as shown in Figure 2-4. 

 

Figure 2-4: Taxonomy based on QoS parameters (Singh and Chana, 2015a) 

Based on the QoS parameters identified by Singh & Chana (2015a) the following 

section explores each of these QoS parameters further in more detail: 

Scalability is the requirement for the cloud service to adapt dynamically to the 

increase or decrease in user demand using virtualization elasticity properties. The QoS 

monitored parameters can include the cloud service response time, number of virtual 

machines and time to scale (Kaur and Chana, 2014; Singh and Chana, 2015b).  

Availability parameter defines the ability of system to ensure uninterrupted 

access to the cloud service even in the case of internal hardware failures within the cloud 

data centre. The QoS monitored parameter is service uptime and is measured in 

percentage per amount of time (Emeakaroha, Fatema, et al., 2016). Some business-

critical applications might not tolerate more than five minutes of downtime which makes 

availability a particularly technically challenging QoS target (Lango, 2014). 

Reliability defines the system performance consistency. Cloud data centre 

resources are typically shared among multiple hosts and some performance degradation 
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is expected due to neighbouring VM interference (Ragusa, Robinson and Svorobej, 

2013). System reliability parameter refers to the objective that the same request should 

be processed within an expected timeframe regardless of the workload induced by co-

located VMs (Corradi, Fanelli and Foschini, 2014). 

Security is the QoS parameter defining the data protection within the cloud data 

centre. The measurement of QoS is defined as the number of security features a cloud 

provider guarantees at a different service level. For example at the SaaS level access 

control, communication and software security must be ensured, at the PaaS or IaaS level 

the virtual cloud protection, data security and image security might be important and 

finally at the physical data centre level the network protection and hardware security 

might be important QoS parameter (Zissis and Lekkas, 2012; Singh and Chana, 2015a). 

Cost as a QoS metric is defined by means of the amount of money that can be 

spent on a cloud service per hour (Singh and Chana, 2015a). Sharing resources among 

multiple cloud users can reduce IT costs significantly, compared to the conventional in-

house dedicated server hardware, still costs remain an important QoS indicator (Khajeh-

Hosseini, Greenwood and Sommerville, 2010). 

Execution Time parameter captures the duration of time which is required by the 

system to completely process a particular workload or task. The system must assign an 

appropriate amount of compute resources to meet the target QoS deadline for the job 

execution. This is a challenging task as it is hard to gauge workload requirements in 

advance (Hwang and Kim, 2012).  

Energy constraints depicts the amount of energy consumed by the cloud 

resources to execute the workload (Singh & Chana 2015a). Because energy 

consumption impacts directly upon the operational costs of a cloud data centre and the 

environment, being energy efficient is an important metric to manage (Chihi, Chainbi and 

Ghedira, 2013). Energy efficiency can also be included into an SLA contract. In such 

case the core measurable aspects include energy ensumption (kilowatts per hour per 

VM) and carbon emission (kg CO2 per hour per VM) (Ziegler, 2012). 

Resource Utilisation is defined as the ratio between the time the cloud resource 

spends on processing workload and the resources idle time (Singh and Chana, 2015a). 

On one hand, low resource utilisation is a sign of wasteful overprovisioning, while on the 

other hand high utilisation can be a sign of bottlenecks caused by insufficient resources 
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which might lead to poor QoS in some of the other metrics. Finding a balance in resource 

utilisation is an important task for autonomic resource management (Calheiros, 

Masoumi, et al., 2015). 

SLA Violation is a metric of breaking agreed service parameters. An SLA will 

define constraints to the performance characteristic bounds, created for a specific 

customer application running in the cloud infrastructure. If the SLAs are broken then the 

cloud provider can suffer penalties which were negotiated when the agreement took 

place (Kaur and Chana, 2014; Lango, 2014; Singh and Chana, 2015a). 

In the cloud computing domain, optimisation models should fit the QoS multi-

objective resource allocation constraints that impact distribution of computing power, 

storage capacity, memory size, network bandwidth, power consumption and other 

factors in order to achieve optimal system configuration (Chaisiri and Niyato, 2009; 

Wang, Liu, et al., 2012). Cloud data centres on average consists of tens of thousands of 

physical compute nodes where virtualised services are placed. This composition 

represents a large, heterogeneous system containing thousands of virtual and physical 

components that exhibit stochastic relational behaviour traits. Due to such high 

complexity and loose object dependency, cloud resource management proves to be a 

multifarious task which is usually addressed by using cloud orchestration frameworks 

(Behavior, Copil, et al., 2011). 

2.3.3 Cloud resource orchestration frameworks 

To address cloud resource management challenges, the related research 

community has invested a significant amount of effort in creating cloud orchestrating 

frameworks (Ahmad, Gani, et al., 2015). Common approaches of cloud resource 

orchestration frameworks that follow MAPE-K feedback loop were analysed. The most 

recent literature associated with this topic is presented in the following analysis. 

Resource orchestration originated in grid computing where computing resources 

were used to process large amounts of incoming user requests identified as jobs 

(Krauter, Buyya and Maheswaran, 2002). These incoming jobs needed to be distributed 

efficiently to available resources. The load balancing purpose in cloud computing 

remained the same, the incoming user requests were required to be distributed onto an 

array of VM’s in the most efficient manner, while keeping the resource utilisation high to 

reduce costs (Shams, Powell., et al., 2010). A number of survey studies have also been 
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presented with a focus on particular types of resource management layers. For example 

the cloud services orchestration study of Bousselmi et al. (2014) focused on cost-efficient 

decisions of hardware level orchestration of IaaS and software level orchestration of 

SaaS. Firstly, they compared SaaS resource scheduling, provisioning and deployment 

algorithms. Secondly, cloud resource management systems were compared as part of 

IaaS orchestration solutions. The survey of Ahmad et al. (2015) looks specifically at the 

VM migration and consolidation frameworks. They state that circumscribed resource 

utilisation leads to high operational costs of cloud data centres. They review the inner 

workings of consolidation frameworks by reviewing the architecture, resource 

assignment policies and VM co-location criteria. Furthermore, resource scheduling is 

also analysed by comparing the improvements made in network bandwidth, energy 

efficiency and storage migration overhead reduction. A survey on cloud computing 

elasticity by Galante & De Bona (2012) presents comprehensive information on the state 

of the art and classifications on elasticity mechanisms, based on an analysis of both 

commercial and academic solutions. This classification identifies the benefits of elasticity 

solutions as cost, performance, energy and increase in infrastructure capacity. Coutinho 

et al. (2014) presents a systematic review that addresses definitions, metrics and tools 

for measuring, evaluation of elasticity, and existing solutions. This study identified the 

main groups of metrics that are related to elasticity as: allocation, capacity cost, QoS, 

resource utilisation, scalability and time. Next, it classified elasticity solutions by the 

method (i.e. horizontal scaling, vertical scaling, migration) and by model (i.e. reactive, 

proactive/predictive).  

There is a broad array of academic papers presenting different orchestration 

frameworks. To further probe the research directions for cloud resource optimisation 

Table 2-2 has been compiled. The purpose of this table is to present a study of 

publications describing orchestration frameworks and evaluate these orchestration 

frameworks under the headings of monitoring, heuristics and algorithms, and validation. 

The headings were chosen to reflect steps of the earlier described MAPE-K control loop 

i.e. Monitoring, Analyse, Plan, Execute. The monitoring heading is divided into utilisation 

and profiling subheadings, which refer to the data types that orchestration frameworks 

base actions on. The utilisation data type implies that there is no additional data 

processing, just the raw monitoring resource utilisation data extracted from the system. 

The profiling section indicates that some monitored data processing and profiling is being 
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completed to predict future workload direction. The section for heuristics and algorithms 

is classified according to the type of resource management function the framework is 

performing i.e. workload load-balancing, VM scaling, initial VM placement and VM 

consolidation. Lastly, the validation column shows the orchestration framework 

deployment environment that authors chose to demonstrate the viability and 

performance of their approach. The simulation method refers to use of a cloud simulation 

framework for deploying resource management algorithms and the test bed refers to a 

real system that consists of physical hardware. The test bed is usually a small subset of 

virtualized nodes joined together by the network which is capable of running cloud 

services. 
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DMA on IBM Director (Khanna, 
Beaty, et al., 2006) 

X     X  X 

pMapper (Verma, Ahuja and 
Neogi, 2008) 

X    X X X X 

Polyphony (Shams, Powell., et 
al., 2010) 

  X     X 

vManage (Kumar, Talwar, et al., 
2011) 

X    X X  X 

DMF (Liu, Mao, Van der Merwe, et 
al., 2011) 

X   X1 X1 X  X 

COPE (Liu, Loo and Mao, 2011) X     X X  

TROPIC (Liu, Mao, Chen, et al., 
2011) 

X    X   X2 

VM Scheduler (Xiao, Song, et al., 
2012) 

X X  X   X X 

LiveCloud (Wang, Liu, et al., 
2012) 

X  X     X 
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An Adaptive Hybrid Elasticity 
Controller (Ali-Eldin, Tordsson 

and Elmroth, 2012) 

X X  X   X2  

A Coordinated Reactive and 
Predictive Approach (Moore, 

Bean and Ellahi, 2013) 

X X  X    X2 

ACDC (Svärd, Li, et al., 2014) X    X X X X 

A Resource Elasticity 
Framework for QoS-aware 

Execution of Cloud Applications 
(Kaur and Chana, 2014) 

X X  X    X 

OpenStack Neat (Beloglazov and 
Buyya, 2014) 

X X   X3 X  X 

Apex Lake (Metsch, Ibidunmoye, 
et al., 2015) 

X X  X1 X1 X1  X 

CWMF (Singh and Chana, 2015b) X X X    X  

Profiling-Based Workload 
Consolidation and Migration  

(Ye, Wu, et al., 2015) 

X X   X X  X2 

Cool Cloud (Zhang, Hsu and 
Chang, 2015) 

X    X  X X 

Open NFV (Krishnaswamy, 
Krishnan, et al., 2015) 

X X X     X 

A General and Practical 
Consolidation Framework in 
CloudNFV (Pham, Tran, et al., 

2015) 

X X   X3 X X  

UMA (Chen, Chen, et al., 2015)  X    X X X  

Energy-Efficient Resource 
Allocation and Provisioning 

Framework (Dabbagh, Hamdaoui, 
et al., 2015) 

X X X    X  

Experimental Analysis on 
Autonomic Strategies (Dupont, 

Lejeune, et al., 2015) 

X X  X    X 

RPM (Sedaghat, Hernández-
Rodriguez and Elmroth, 2016) 

X X    X X  
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Dynamic Software 
Consolidation (Tchana, De 

Palma, et al., 2016) 

X     X  X 

Auto-healing Service Framework 
(Li, Li, et al., 2017) 

X   X1 X1   X 

CMS (Awada and Barker, 2017) X X   X X  X 

ETSO (Mechtri, Ghribi, et al., 
2017) 

X    X  X X 

Agent-based Workflow 
Monitoring, Prediction and 
Adaptation Framework (El-

Kassabi, Serhani, et al., 2018) 

X X   X X  X 

The Big Data On Cloud Agile 
Provisioning Framework (Lu and 

Zhou, 2018) 

X   X X X  X 

1 – No orchestration algorithms are presented within the publication, but are possible to integrate 
2 – Workloads induced using replayed traces 
3 – Bin packing best fit used, possible other heuristic integration 

Table 2-2: Identified cloud computing orchestrator frameworks taxonomy from relevant 

literature analysis 

Cloud orchestration frameworks rely on live resource data monitoring, where 

pooled data is then analysed to make a decision in relation to any resource adjustment 

action that might be needed. As per Table 2-2 the monitoring abilities are divided into 

two subsections: utilisation and profiling. Such distinction is made to differentiate 

between orchestration frameworks that act only upon live monitoring data (Svärd, Li, et 

al., 2014) and resource orchestration frameworks that also predict system behaviour by 

collecting, analysing and profiling historical data (Xiao, Song, et al., 2012). Some 

monitoring frameworks deploy custom data collection and monitoring agents on each 

node to monitor the resource consumption of physical nodes and each VM running on 

that node. The locally collected information is then aggregated at the node cluster level 

or at the global data centre level depending on the centralised or decentralised 

framework architecture design (Beloglazov and Buyya, 2014; Metsch, Ibidunmoye, et al., 

2015; Sedaghat, Hernández-Rodriguez, et al., 2016). Other frameworks integrate 

seamlessly with the existing cloud managing tools providing the additional level of 

decision support. In order to do that the event triggers are created in the form of certain 

resource thresholds or periodic time based reoccurrence (Khanna, Beaty, et al., 2006). 
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The workflow management technique described by Singh et al. (Singh and Chana, 

2015b) uses monitored data for machine learning to regulate decisions based on specific 

rules. By predicting system behaviour using historical monitoring data one can take 

proactive measures in avoiding delays in resource assignment. This approach is 

dominant in the resource elasticity governing frameworks. For example the QoS-Aware 

Resource Elasticity (QRE) framework (Kaur and Chana, 2014) has separate component 

application behaviour which is used to predict arrival rates of different task classes for 

the upcoming time interval. Ali-Eldin et al. (2012) also relies on these proactive methods 

to estimate the future cloud service load based on historical application behaviour data. 

From the analysis presented in Table 2-2 it can be seen that the resource 

orchestration frameworks are developed to address resource management at different 

levels of cloud architecture by using specific heuristics and algorithms. Internal cloud 

data centre management can be performed by controlling the following resource 

allocation policies: 

• Workload allocation policies 

• Application allocation policies 

• VM scaling policies 

• VM placement and relocation(consolidation) policies 

The cloud orchestration framework heuristics and algorithms presented in Table 2-2 are 

represented visually in Figure 2-5 as allocated to their respective layers of workload 

manipulation. On the top layer, the workload allocation policies effecting load balancer 

decisions can influence which application instance will receive jobs to execute, thus 

keeping the overall workload evenly distributed (Shams, Powell., et al., 2010; Wang, Liu, 

et al., 2012; Krishnaswamy, Krishnan, et al., 2015). One layer down the application 

allocation policies decide which VM in the cloud data centre is most suitable for hosting 

a new application instance. A single VM can host multiple applications without 

compromising the performance as long as there are enough resources for all co-located 

application instances (Jennings and Stadler, 2014). In the example applications shown 

in red and green were co-located where application instances in blue were deployed to 

a separate VM. Another layer down is the orchestration policies that control vertical and 

horizontal scaling of VM to allow additional resource provisioning if the workload increase 
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and resource de-provisioning if the workload decreases (Ali-Eldin, Tordsson, et al., 2012; 

Xiao, Song, et al., 2012; Moore, Bean, et al., 2013). Lastly, VM placement and relocation 

policies decide which physical hardware equipment will host the VM which was just 

created or provide the VM relocation decision and destination (Liu, Loo, et al., 2011; 

Beloglazov and Buyya, 2014; Svärd, Li, et al., 2014). By orchestrating resources at each 

level the focus of each orchestration policy is to satisfy QoS constraints of the cloud 

services (Singh and Chana, 2015a). 

 

Figure 2-5: Generic example diagram of resource orchestrating policies application 

points in DC 
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To study the performance of the proposed resource orchestration frameworks an 

evaluation exercise is performed to ensure that the framework behaves in an expected 

manner. During the validation experiments the system behaviour metric is collected and 

measured against desired QoS parameters (Ahmad, Gani, et al., 2015). From the 

resource orchestration framework analysis presented in Table 2-2 the validation step can 

be executed in two ways by using simulation or by deploying the orchestration framework 

to the real system. From a total of 25 analysed frameworks fourteen were validated using 

only test bed deployment, seven were validated using simulation and the remaining four 

were validated using both simulation and test bed deployment methods. The individual 

choice between using simulation and/or the physical system was not explicitly stated in 

all 25 presented studies, but the implied reasoning behind choosing simulation over the 

test bed was due to following reasons: (1) faster experimentation processing times 

(Verma, Ahuja, et al., 2008) (2) ability to test orchestration within a large system setup 

with at least 1000 VMs or more representing a real data centre size (Liu, Loo, et al., 

2011) (3) inability to access a real cloud data centre (Singh and Chana, 2015b). Benefits 

of using a real system for running experiments was expressed as the need for real 

hardware or service behaviour measurement data as it was also an unknown part of an 

experiment. For example, with Polyphony resource orchestration frameworks (Shams, 

Powell., et al., 2010) where the focus is on the I/O bound job execution within the public 

Amazon cloud where cloud storage service performance is a key for the frameworks 

success and thus needs to be measured in the real system. 

Low cost is one of the anticipated benefits cloud computing offers to its end users. 

Reduction in service costs comes from virtualized compute resource sharing among 

multiple cloud users where unused capacity can be utilized more effectively, reducing 

wasteful idle time (Bobroff, Kochut and Beaty, 2007). The more resources a cloud 

provider is able to sell, the more potential profit can be generated. Cloud resource 

orchestration frameworks play a significant role in distributing resources, hence choosing 

the right resource management framework is important for “squeezing” the maximum 

use of available resources, generating income and meeting QoS constraints (Hameed, 

Khoshkbarforoushha, et al., 2016). However, before putting up a price tag on any of the 

cloud services and coming up with the pricing strategies, cloud service providers should 

know how much it costs to acquire and operate all the data centre infrastructure 
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(Thanakornworakij, Nassar, et al., 2012). The following section discusses the types of 

costs and methods for costs calculations available for cloud data centre.  

2.4 Data centre costs 

The 1990’s IT revolution created concerns over IT cost containment, justification 

and effectiveness measurement (Drury, 2001). A Gartner report published in the 1990’s 

had shown that the total cost of an IT asset over its entire lifetime will often exceed the 

original asset procurement costs. These revelations made the pre-existing Total Cost of 

Ownership (TCO) methodology a discipline that became increasingly relevant to the IT 

sector (Lycette and Lowenstein, 2010). Calculating TCO consist of direct and indirect 

cost variables that incur during the life cycle of the of an IT asset. These costs include, 

but are not limited to process of asset acquisition, deployment, maintenance, support 

and operation (Bailey and Heidt, 2003). TCO figures can also be split into the notion of 

Capital Expenditure (CAPEX) and Operational Expenditure (OPEX). The CAPEX costs 

are made upfront and account for the acquisition of permanent physical assets that can 

benefit business for a significant period of time e.g. a computer, while OPEX is a 

reoccurring periodical expense for running (operating) the asset e.g. the electricity cost 

consumed by the computer (Maguire, 2008).  

Electric power is a crucial resource of data centre operation. Maintaining constant 

energy flow is a significant cost for the enterprise and challenge for the infrastructure 

provider. For example, infrastructure overhead can consist of large-scale generators, 

transformers and battery based uninterruptible power supplies (UPS) (Greenberg, 

Hamilton, et al., 2008). To ensure service availability in an event of power loss, a network 

of onsite power generators and uninterrupted power supplies are often deployed to 

ensure failsafe service operation all year round. Studies show that even a temporary 

downtime can lead to serious revenue loss, thus availability is a core metric for 

infrastructure providers (Coutinho, De Carvalho Sousa, et al., 2014). Energy 

consumption is immense, due to the large scale, with cloud data centres required to 

handle high voltage connections directly from the national power provider. For this 

reason, cloud data centres deploy onsite transformer stations to consume high voltage 

energy flow, which, in some cases, stems from alternative energy suppliers (Choi, Lee, 

et al., 2015). Deploying and maintaining these additional power management solutions 

generates extra overhead for the cloud data centre. 
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At the Initial cloud data centre build planning stage precise TCO cost calculation 

plays an important role for budgeting (Drury, 2001). Building a cloud data centre from 

scratch is a huge undertaking and the incorrect estimation of funds needed to build and 

sustain work of a cloud data centre can result in costly delays or a complete halt of the 

whole project due to its infeasibility (Geng, 2014). Later, after successful data centre 

release into production, the periodic evolution of hardware gradually will provide new 

opportunities for cloud services and will introduce changes of cloud user demands. In 

order to stay competitive and to provide relevant levels of services by meeting changing 

user demands, data centre management must periodically evaluate new products 

introduced by hardware manufacturers. It is estimated by experts that on average every 

ten years a cloud data centre will undergo between three and four major equipment 

changes (Mehmi, Sangal, et al., 2016), therefore TCO calculation plays an important, 

continuous role in providing a solid base for building a business justification case when 

choosing between a range of new available IT implementation options (Geng, 2014). 

In the modern age the size of the data centre varies according to the needs of 

the enterprise it is built to support. The hardware infrastructure installation can reach 

significant proportions, for example where a large and complex network could consist of 

a hundred thousand nodes occupying a building on their own (Mitchell, 2017). To 

accurately calculate the cost of acquisition, provision and management of a data centre 

for any involved party is a demanding task especially when applied to large-scale 

environments (Pandi and Karthick, 2016). In recent years, different TCO models have 

surfaced specifically aimed at the data centre management sector.  

The common direct cost metric components that prevail within available TCO 

calculation frameworks in the literature are presented in Table 2-3. The top three cost 

components for cloud data centres shared amongst six publications are: depreciation, 

compute power cost and cooling power cost. Furthermore, five TCO calculation models 

also include server equipment cost and personnel cost parameters. Fewer TCO models 

separately include costs for cooling and network equipment acquisition, facilities, 

software, real-estate and server spares. Even fewer account separately for possible loan 

repayments and the cost of power equipment. From Table 2-3 it can be concluded that 

general cost metrics remain the same for most of data centre TCO calculation cases, 

however some of the methods have a more detailed breakdown of the cost components. 
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Therefore, before adopting one or other TCO framework one must closely examine if the 

selected framework covers the required cost components on a case by case basis. 

Direct Cost Metric 
Number of 

Publications 
Source Publication(-s) 

Depreciation (Amortisation) Cost 6 

1(Li, Li, et al., 2009), 2(Hardy, Sideris, et al., 2011), 

3(Greenberg, Hamilton, et al., 2008), 4(Patel and Shah, 

2005), 5(Simonet, Lebre, et al., 2016), 6(Barroso and 

Hölzle, 2013) 

Compute Power Cost 6 

1(Li, Li, et al., 2009), 2(Hardy, Sideris, et al., 2011), 

3(Greenberg, Hamilton, et al., 2008), 4(Patel and Shah, 

2005), 5(Simonet, Lebre, et al., 2016), 6(Barroso and 

Hölzle, 2013) 

Cooling Power Cost 6 

1(Li, Li, et al., 2009), 2(Hardy, Sideris, et al., 2011), 

3(Greenberg, Hamilton, et al., 2008), 4(Patel and Shah, 

2005), 5(Simonet, Lebre, et al., 2016), 6(Barroso and 

Hölzle, 2013) 

Server Equipment Cost 5 

1(Li, Li, et al., 2009), 2(Hardy, Sideris, et al., 2011), 

3(Greenberg, Hamilton, et al., 2008), 5(Simonet, Lebre, 

et al., 2016), 6(Barroso and Hölzle, 2013) 

Personnel Cost 5 

1(Li, Li, et al., 2009), 2(Hardy, Sideris, et al., 2011), 

4(Patel and Shah, 2005), 5(Simonet, Lebre, et al., 2016), 

6(Barroso and Hölzle, 2013) 

Cooling Equipment Cost 3 
2(Hardy, Sideris, et al., 2011), 3(Greenberg, Hamilton, et 

al., 2008), 5(Simonet, Lebre, et al., 2016) 

Network Equipment Cost 3 
1(Li, Li, et al., 2009), 3(Greenberg, Hamilton, et al., 

2008),  5(Simonet, Lebre, et al., 2016) 

Facilities Cost (cables, KVM, etc.) 3 
1(Li, Li, et al., 2009), 4(Patel and Shah, 2005), 

5(Simonet, Lebre, et al., 2016) 

Real-Estate Cost 3 
1(Li, Li, et al., 2009), 2(Hardy, Sideris, et al., 2011), 

4(Patel and Shah, 2005), 

Software Cost 2 1(Li, Li, et al., 2009), 4(Patel and Shah, 2005) 

Server Spares Cost 2 2(Hardy, Sideris, et al., 2011), (Sousa, Lins, et al., 2015) 

Loan Interest Rates Cost 1 6(Barroso and Hölzle, 2013) 

Power Equipment Cost 1 3(Greenberg, Hamilton, et al., 2008) 
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Table 2-3: Core TCO calculation variables mentioned in the literature 

The work of Patel & Shah (2005) summarizes in a broad sense the key drivers 

behind every TCO model as the sum of space, hardware power, cooling and operation 

(Equation 1). Cost of space refers to the physical space acquisition or rental of all the 

data centre facilities. The cost of hardware power includes energy consumption for both 

network and compute resources. However, the cost of cooling with related power 

consumption is calculated as a separate group. The cost of operation variable covers 

expenses incurred in relation to day to day operation demands such as personnel, 

compute equipment depreciation and software licenses. 

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑠𝑡𝑠𝑝𝑎𝑐𝑒 + 𝐶𝑜𝑠𝑡𝑝𝑜𝑤𝑒𝑟 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 + 𝐶𝑜𝑠𝑡𝑐𝑜𝑜𝑙𝑖𝑛𝑔 + 𝐶𝑜𝑠𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛  (1) 

To account for cloud virtualisation and resource elasticity Li et al. (2009) proposes 

a similar TCO model that calculates costs based on eight parameters: server, software, 

network, support and maintenance, power, cooling, facilities and real estate. But, 

because cloud resources are virtualised the basic unit of cloud is no longer physical 

hardware resources, instead the virtualized resources assigned to the services by 

hypervisors should be considered. Hence, the study proposes a three-layer model to 

calculate utilisation costs as depicted in Figure 2-6.  

 

Figure 2-6: Three-layer model to calculate utilisation cost (Li, Li, et al., 2009) 
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The first level of the model takes two additional measurements of the number of 

VMs and VM density to derive the utilisation costs. The number of VMs is obtained from 

an estimation of the amount of cloud service customers that will be using the system, 

and VM density depends upon the capacity of the hosted servers which can be obtained 

from the manufacturer’s manual or by in-house testing. Then the VMs are assigned to 

servers using the function of bin packing algorithms (Brown, 1979). Finally, in the second 

and third model levels, costs are calculated according to the time fraction hardware is 

utilised for supporting functions of assigned VMs. 

The data centre equipment can fail or experience age related performance 

degradation. Since both aspects directly influence the costs of a cloud data centre, Hardy 

et al. (2013) created the TCO model and framework to account for these additional costs. 

Their model introduces the notion of Mean-Time-To-Failure (MTTF), hot spares and cold 

spares. The cold spares are various system hardware components that are put aside to 

be used for repairs when the active component fails. The number of cold spares is 

estimated by using the MTTF value which stands for the operational time estimation for 

each product group. The number of hot spares is estimated based on the system 

workload where for some of the equipment performance degradation needs to also be 

accounted for. Figure 2-7 shows the logical impact of the cost of spares on TCO forming 

cost parameters. The authors argue that their TCO model can evaluate different data 

centre design options, helping to reduce costs and reduce the impact on environment by 

reducing power consumption. 
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Figure 2-7: Kernel framework overview (Hardy, Kleanthous, et al., 2013) 

 Greenberg et al. (2008) divides a cloud data centre TCO into server, power, 

network and infrastructure costs. The work is focused on indirect TCO improvement 

through better design decisions in network agility, resource allocation and geo-

distribution. According to the authors computing resource fragmentation into few smaller 

geo-distributed data centre sites can be more performance and cost beneficial 

comparing to traditional large monolithic cloud data centre site. Following the same geo-

distribution narrative, Simonet et al. (2016) introduces a cost model for distributed cloud 

computing which accounts for servers and storage, network, power, cooling, 

maintenance and facilities costs. What is unique for this TCO model is that it calculates 

the total cost of network as the sum of intranet costs and the internet costs, where the 

internet costs consist of amortized price of the backbone infrastructure (Equation 2). The 

cost of the internet backbone is a logical addition to the distributed cloud data centre 

TCO model because the element of connectivity between different sites plays an 

important role in such setup. 

𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑡 = 𝑃𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 ∗ 𝐴𝑚(𝐴𝑠)   (2) 
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Calculating TCO allows for an understanding of the cost distribution within the 

cloud data centre and can be used to derive a cost saving strategy that will be beneficial 

over the longer term. However, when managing compute resources the TCO metric must 

be used with caution to avoid overall system performance deterioration (Bailey and Heidt, 

2003).  

2.4.1 QoS impact on costs 

The primary objective for Cloud providers is to rent out as much resources as 

possible to its customers at a reduced operational cost while still providing adequate 

service performance guaranteed by QoS or SLA metrics (Aceto, Botta, et al., 2013). 

However, imbalance between system performance and resource provisioning can result 

in higher costs for cloud computing providers having a knock-on effect on revenue and 

competitiveness in the market. 

Servers with subcomponents of CPU, Memory, and Storage are estimated to 

contribute towards approximately 45% of total data centre costs. Given such a steep 

server lifetime cost it is more beneficial for cloud computing providers if all servers are 

utilised by customers and producing revenue (Greenberg, Hamilton, et al., 2008). 

However, if a customer’s workload is spread thinly over the server nodes this leads to 

low server utilisation rates and in a data centre low resource utilisation is one of the main 

factors responsible for power inefficiency (Goudarzi and Pedram, 2012). 

To combat power inefficiency and low server utilisation rates, resource 

orchestration frameworks employ VM consolidation policies to saturate physical nodes 

with VMs (Chen, Chen, et al., 2015). Such dynamic virtual resource allocation allows for 

power savings by switching off unused servers and increasing utilisation per server 

(Goudarzi and Pedram, 2012; Jennings and Stadler, 2014). Unfortunately, VM 

consolidation can also lead to service performance degradation resulting in QoS and 

SLA violations (Lin, Chen and Lin, 2014). 

If the agreed SLA constraints are violated the cloud service provider is liable to 

pay large sums of penalties to the customer in the wrong (Goudarzi and Pedram, 2011). 

It is a sensitive topic as the service performance can have a significant impact on 

customer revenues. For example, Google reported an experimentation incident where 

an increase in its search results display time by 500 ms led to a 20% loss in revenue. 

Similarly, Amazon noticed a correlation where an additional delay of 100 ms led to 1% 



 

 

 - 43 -  

decline in sales (Greenberg, Hamilton, et al., 2008). Hence, the SLA also serves as one 

of the input constraints for resource provisioning strategies and needs to be accounted 

for in cloud data centre cost calculations. 

To summarise, for cloud data centre cost management it is crucial to have in 

place an effective resource provisioning policy that balances resource utilisation, energy 

efficiency and QoS. Estimating cloud computing system behaviour under different 

management strategies can be a challenging task due to the large size and high 

complexity of the system (Singh and Chana, 2015a). To help conduct such analysis 

simulation and optimisation decision support tools can be used to provide estimations on 

QoS performance (Becker, Becker and Meyer, 2013) and are further examined in the 

following section. 

2.5 Simulation and optimisation decision support tools 

Cloud computing is a self-adjusting autonomous system consisting of many 

different elements, where interactive behaviour influences overall system behaviour 

(Calheiros, Ranjan and Buyya, 2011). Optimisation policies for VM placement and VM 

consolidation must be tested and tuned for different scenarios before deployment in the 

production environment. These tests must be carried out to make sure that expected 

optimisation objectives are met and that the QoS and agreed SLAs will not be broken 

(Lin, Chen, et al., 2014). To conduct the tests a small subset of isolated compute nodes, 

called test beds, can be used to observe the optimisation effects. However, the size of 

test beds is usually very small when comparing to real cloud data centre scale, which 

makes it difficult to extrapolate test results in a reliable manner (Garg and Buyya, 2011; 

Sotiriadis, Bessis, et al., 2013). Also, it takes a lot of time to perform optimisation 

experiments using a test bed, as these experiments require significant amounts of time 

to be setup and executed in real time. For example in the study of the resource 

orchestration framework pMapper, the 60 different experiments required for the study 

were estimated to run for four months in a real system (Verma, Ahuja, et al., 2008). In 

order to address the shortcomings of test beds, simulation frameworks can be used for 

cloud data centre behaviour evaluations (Son, Dastjerdi, et al., 2015). Cloud optimisation 

in this chapter is presented in the context of resource optimisation algorithms that are 

used within cloud management frameworks. These algorithms can be adopted to use 
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with simulation data making it possible to integrate cloud optimisation decisions within 

cloud simulation frameworks (Calheiros and Ranjan, 2011). 

2.5.1 Cloud optimisation 

The process of cloud resource optimisation takes its roots from the branch of 

applied mathematics and numerical analysis. The purpose of global optimisation is to 

reach a system state where the minimum of effort would yield maximum possible results, 

the so-called discovery of optimum system parameters. Finding the optimum is the task 

of optimisation algorithms that are subject to a set of constraints or criteria defined by a 

function with single or multiple objectives (Fonseca and Fleming, 1995; Horst and Tuy, 

1996; Weise, 2009). 

In general, optimisation algorithms can be classified as deterministic or 

probabilistic. Deterministic algorithms are used to solve problems where clear 

relationships between system components exist. However, when the relationships are 

not straightforward, and the search space dimensionality is high, the probabilistic 

approach is preferred. Due to system complexity the non-deterministic algorithm families 

such as Monte Carlo (Mak, Morton and Wood, 1999) do not guarantee global optima, 

instead they focus on finding the best option within a given time. A technique called a 

heuristic function is used to guide the probabilistic optimisation algorithms in deciding 

which solution candidate to test next. Heuristics are designed to be aware of specifics of 

the domain and are integrated as part of the algorithm. This domain “knowledge” allows 

it to pick the most likely search space candidate routes reducing wasted computational 

effort (Fonseca and Fleming, 1995; Horst and Tuy, 1996; Weise, 2009; Li and Guo, 

2011). 
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Figure 2-8:Optimisation algorithms classification summary (Weise, 2009)  

Different decision speed requirements further divide the optimisation techniques 

into: Online and Offline optimisations. Online optimisation is applied to address tasks 

that require quick decisions within milliseconds or minutes (e.g. load balancing). These 

types of optimisation operations are carried out repetitively, focusing on the operation 

speed instead of optimality. In other words providing “good enough” solutions due to 

severe time constrains (Li and Guo, 2011; Li, Xu, et al., 2011). Offline optimisations, on 

the other hand, have more time for calculations and are executed rather rarely (e.g. 

creation of a class schedule for an upcoming semester) focusing on obtaining optimal or 

close to optimal result (Weise, 2009). A cloud data centre on average consists of tens of 

thousands of physical compute nodes where virtualised services are placed 

(TOP500.org, 2016). This composition represents a large, heterogeneous system 

containing thousands virtual and physical components that is classified as a NP-hard 

optimisation problem (Li, Xu, et al., 2011). Given the nature of such a nondeterministic 

environment it can be implied that cloud optimisation algorithms belong to the 

probabilistic algorithm class and the MAPE-K autonomic control method adoption require 

remediation actions to be executed with online speed. 

When it comes to the cloud computing domain, optimisation models are required 

to fit the multi-objective resource allocation constraints which includes computing power, 

storage capacity, memory size, network bandwidth, power consumption and other 

factors in order to achieve an optimal system configuration defined by QoS (Chaisiri and 

Niyato, 2009; Wang, Liu, et al., 2012). Cloud resource management allows for major 

benefits of global virtualized resource scheduling and on demand elastic resource 

provisioning within short periods of time (Ali-Eldin, Tordsson, et al., 2012; Jennings and 
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Stadler, 2014). Further the literature presents examples of recent algorithms and a broad 

analysis of existing optimization algorithms and frameworks (Jennings & Stadler 2014; 

Manvi & Krishna Shyam 2014; Coutinho et al. 2014; Ahmad et al. 2015). 

The area of global virtualized resource scheduling covers the admission control 

and migrations over time within the cloud data centre (Jennings and Stadler, 2014). The 

core of which is to be able to reduce resource overprovisioning by improving resource 

utilisation and using fewer hardware resources to perform the same tasks. For example 

the work of Tchana et al. (2016) focuses on optimizing dynamic VM consolidation to 

achieve greater energy efficiency and cost saving by combining software consolidation 

and VM consolidation. Their software relocation algorithm dynamically provisions 

resources for the application running within the VM, but in a case where the resources 

are insufficient on the current VM the application is migrated to another suitable. 

Compared to the baseline use case where average CPU utilisation was 12% their 

optimized scheduling approach reduces the number of VMs from 101 to 85 and number 

of hardware hosts from 66 to 9. The virtualized resource optimisation approach of 

Sedaghat et al. (2016) proposes a topology-aware placement scheduler framework 

which discovers favourable VM placement locations within cloud data centre. The 

proposed resource discovery algorithm as an input receives the lists of events that need 

to be processed and admits these events according to their priority on the best ranked 

placement candidates. The authors compared their frameworks performance against the 

First Fit Decreasing Sum (FFD-sum) of (Lee, Prabhakaran, et al., 2010) and found that 

their solution improved the average CPU and Memory utilisation and reduced the 

computational cost of finding a placement candidate. The process of migrating VMs from 

one host to another can significantly decrease its performance as it requires additional 

system resources and time to be completed (Xu, Liu, et al., 2014). The work of Chen et 

al. (2015) uses a dynamic consolidation technique to reduce power consumption, 

guarantee QoS and reduce power consumption while taking into account migration 

overhead. The proposed Utilisation-based Migration Algorithm (UMA) identifies stable 

hosts for VM migrations while reducing migration time and power consumption. In their 

method, at first migration the candidates list is created using the Best Fit with Decreasing 

bin packing algorithm (Yue, 1991), then using Tabu Search (Glover, 1989) to prune the 

candidate list. The experiment results of the UMA performance were compared with the 
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performance of the MinPower policy (Beloglazov and Buyya, 2012) showing a 77.5%-

82.4% drop in VM migrations which led to 39.3%-42.2% reduction in power consumption. 

Global VM allocation policies are deliberately built to address particular resource 

awareness such as: network aware placement (Wang, Meng and Zhang, 2011; Ilkhechi, 

Korpeoglu and Ulusoy, 2015; Lee and Park, 2015); cost aware placement (Sharma, 

Shenoy, et al., 2011); energy aware placement (Biran, Corradi, et al., 2012; Goudarzi 

and Pedram, 2012; Jing, Ali, et al., 2013; Quang-Hung and Thoai, 2015). The latter two 

(cost and energy), being indirect resources that are derived from system utilisation data 

(Jennings and Stadler, 2014). 

Cloud applications are typically composed of multiple components, each of which 

can be individually horizontally or vertically scaled to meet user demands (Coutinho, De 

Carvalho Sousa, et al., 2014; Jennings and Stadler, 2014). The biggest challenge lies in 

modelling large-scale distributed application behaviour based on the diverse needs of 

user demands. Once the application model is created it can then be used to meet QoS, 

by applying the right scalability method at the right time (Kaur and Chana, 2014).  

To create dynamic resource provisioning a combination of a proactive and 

reactive elasticity approach was taken by Ali-Eldin et al. (2012). They introduce adaptive 

hybrid controllers that dynamically change the number of VMs that are assigned to a 

running service. The actions of the controllers rely on the service capacity estimations 

based on the constructed queuing theory model (Bause and Dortmund, 1993). The 

authors compare their results with the results of a regression-based elasticity engine and 

report that proposed hybrid elasticity controller performs better by over allocating from 

32% to 15% less resources and reducing SLA violation rates in the range of 2.1 to 1.48 

times. 
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Figure 2-9: Per-tier resource elasticity "MT-ResElas" algorithm (Kaur and Chana, 

2014) 

The work of  Kaur et al. Kaur & Chana (2014) demonstrates the application of a 

QoS aware resource elasticity framework. Their approach is based on analytical models 

of multi-tiered application behaviour that also accounts for user workload variability. 

Underpinning this research is the queueing network based Multi-Tier Performance Model 

(MT-PerfMod) and Multi-Tier Resource Elasticity (MT-ResElas) algorithm. At first, the 

MT-PerfMod calculates the application response time and resource utilisation, then, the 

MT-ResElas algorithm (shown in Figure 2-9) calculates the number of VMs required at 

every tier of the application. The authors measured the proposed approach by comparing 

the total amount of VMs with other related techniques, and the time it took to make 

scaling decision and costs. These comparative results indicate a lower amount of VMs 

used to satisfy the QoS constraints, in turn leading to the lower costs in almost all 

conducted experimentation.  

The above cloud data centre resource optimisation algorithms demonstrate 

significant gains in energy efficiency, resource utilisation and QoS compliance. However 

measuring the performance of an optimization algorithm in the live environment testbed 

is not always feasible due to the small size and time constraints (Verma, Ahuja, et al., 
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2008). Therefore cloud simulation tools are becoming increasingly important for 

determining the effects of optimisation strategies on the systems QoS performance 

(Buyya, Ranjan and Calheiros, 2009). 

2.5.2 Cloud simulation 

Discrete Event Simulation (DES) software has evolved from complex procedural 

language algorithms used in the 1960s to high level multi-application oriented simulators 

with graphical model building capabilities. These technological advancements made 

simulator platforms easy to use, but less flexible often fitting only specific domains 

(Bowden, 1998; Kelton and Law, 2000). Cloud computing simulators fall under the 

“Application oriented simulator” category, meaning they are developed most specifically 

for the cloud application domain (Zhao, Peng, et al., 2012; Ahmed and Sabyasachi, 

2014). Modern cloud simulation frameworks are built with a focus on performance 

prediction of cloud data centres. The model elements within such simulators already 

include pre-built elements and their defined interdependencies pertinent only to cloud 

(e.g. VM, elasticity policies, hypervisor) (Calheiros and Ranjan, 2011; Núñez, Vázquez-

Poletti, et al., 2012; Long, Yuqing and Qingxin, 2013).  

 

Figure 2-10: Updated spectrum of simulation software 

A cloud computing data centre can be classified as a complex system and is 

defined by a large number of mutually interacting parts that behave in complex ways. To 

understand the behaviour of the system one must understand the behaviour of individual 

parts and how they act together forming the behaviour of the whole. These relationships 

between interacting parts possess distinct properties, for example, emergence, 

interdependence, and nonlinearity (Corrado, 2019).  

Emergence refers to the relationship between the individual details and the larger 

view of the system. Specifically, determining the individual details that are more 
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important for the larger view of the system from those that are not (Bar-Yam, 1997). 

Complex systems exhibit properties that are not easy to predict by analysing the 

behaviour of their individual component properties in isolation. These emergent 

properties become more important in software systems as complexity grows in input 

variation, connection pattern and number of tiers in the system (Szabo and Teo, 2012). 

Understanding the interdependence between interacting objects in the system aids 

recognition of indirect effects, which can then be included in the model description (Bar-

Yam, 1997). For example, an interdependence between software and infrastructure 

layers of cloud computing can be used for enhancing security features of the system 

(Muñoz, Gonzalez and Maña, 2012). Nonlinearity describes the phenomena of 

disproportionate relationships between cause and effect, or in other words when the 

same input can produce different output due to a change in the underlying system state 

(Marinescu, 2016). Complex systems are usually made by combining multiple 

heterogenous components together and therefore are difficult to test and troubleshoot 

(Carrozza, Loffreda and Manetti, 2012). To predict behaviour of such sophisticated 

systems, techniques of modelling and simulation can be employed to analyse 

interactions of individual events within the complex system (Patelli, Feng, et al., 2017). 

Development of simulation solutions for cloud has been influenced by the 

distributed-computing paradigm termed grid computing. Grid computing also consists of 

multiple connected compute nodes and is used for non-interactive processing of batch 

workloads (Foster and Kesselman, 1998). Earlier DES efforts in this domain focused on 

simulation tooling support which was provided for uniformly aggregating and sharing 

distributed heterogeneous resources within large-scale applications, such as in the fields 

of science, engineering and commerce (Sulistio, Cibej, et al., 2008). Simulation of grid 

computing involved modelling of hardware resource topology and evaluating effects of 

workload (job) scheduling algorithms (Krauter, Buyya, et al., 2002; Li and Lan, 2005; 

Umale, 2013). Various grid computing simulators have been developed (Sulistio, Cibej, 

et al., 2008) and are presented in literature, such as OptorSim (Bell, Cameron, et al., 

2002), MONARC (Legrand and Newman, 2000), SimGrid (Legrand, Marchal and 

Casanova, 2003), GridSim (Buyya and Murshed, 2002) and MicroGrid (Song, Liu, et al., 

2000). However, these alone cannot provide an environment which can be directly used 

by the cloud computing community (Zhao, Peng, et al., 2012). In an extension, 
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Ostermann et al. (2011a) created the GroudSim platform which is capable of 

experimenting with grid and cloud environments.  

To better understand the current cloud simulation landscape a systematic review 

of cloud simulation platforms was conducted using the IEEE Xplore digital library (IEEE, 

2017). During the review a total of 256 papers were reviewed - 45 papers relate to the 

design, development and extension of simulation platforms with the remaining 211 

describing the simulation platform research application. It is interesting to note that 218 

papers relate to CloudSim, extensions or derivative simulators which equates to 85% of 

the total papers reviewed.  

The first publication on cloud computing simulation research using open source 

platforms appears in 2009 with the introduction of the CloudSim toolkit (Buyya, Ranjan, 

et al., 2009). From 2009 onwards, publications on the topic have increased consistently, 

largely driven by papers relating to CloudSim or the introduction of new cloud simulation 

platforms. By 2015, cloud simulation papers using open source platforms had become a 

regular topic in computer science publications having grown from only two in 2009, 

peaking at 78 in 2015 and remaining steady at around 50 yearly publications in 2016, 

2017 and 2018 to September (see Figure 2-11). Presented scientific publication trends 

reflect the interest in cloud computing generally (Markets and Markets, 2016) and the 

growth of cloud computing simulation tool adoption. 
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Figure 2-11: Cloud simulation research using open source platforms by publication 

outlet and year 

The review identified 39 distinct cloud simulation platforms (see Table 2-4), 22 of which 

are presented in publications as extensions of CloudSim. Other cloud simulation 

platforms are built on top of existing DES engines, for example ICanCloud and 

CloudNetSim++ are built on top of the Omnet++ (OpenSim, 2015) DES engine, 

GreenCloud uses NS-2 (NS-2, 2014) as its underlying DES platform and CactoSim is 

using the Palladio simulator (Rathfelder and Klatt, 2011). Cloud simulation frameworks 

like CloudSched, CloudSim, DCSim1 GDCSim, and SimGrid were all built from first 

principles explicitly for the purpose of cloud computing simulation. 

Bazaar Extension* (Pittl and Schikuta, 2016) DISSECT-CF (Kecskemeti, 2015) 

CACTOSim (Ostberg, Groenda, et al., 2014) EMUSim* (Calheiros, Netto, et al., 2012) 

CDOSim* (Fittkau, Frey and Hasselbring, 
2012) 

GDCSim (Gupta, Banerjee, et al., 2014) 

CEPSim* (Higashino, Capretz and 
Bittencourt, 2015) 

GreenCloud (Kliazovich, Bouvry, et al., 
2010) 

Cloud2Sim* (Kathiravelu and Veiga, 2014) GroudSim (Ostermann, Plankensteiner, et 
al., 2011b) 

CloudAnalyst* (Wickremasinghe, Calheiros 
and Buyya, 2010) 

ICanCloud (Castañé, Núñez, et al., 2013) 

CloudEXP* (Jararweh, Jarrah, et al., 2014) iFogSim* (Gupta, Dastjerdi, et al., 2016) 

CloudNetSim++ (Malik, Bilal, et al., 2015) MDCSim (Lim, Sharma, et al., 2009) 

CloudReports* (Sá, Calheiros and Gomes, 
2014) 

MR-CloudSim* (Jung and Kim, 2012) 
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CloudSched (Tian, Zhao, et al., 2015) NetworkCloudSim* (Garg and Buyya, 
2011) 

CloudSim (Calheiros and Ranjan, 2011) SimGrid (Legrand, Marchal, et al., 2003) 

CloudSimDisk* (Louis, 2015) SimIC (Sotiriadis, Bessis, et al., 2013) 

CloudSimSDN* (Son, Dastjerdi, et al., 2015) SPECI (Sriram, 2009) 

CMCloudSimulator* (Alves, Batista, et al., no 
date) 

TeachCloud* (Jararweh, Alshara, et al., 
2012) 

DartCSim* (Li, Jiang, et al., 2012) Ucloud* (Sqalli, Al-saeedi, et al., 2012) 

DCSim1 (Tighe, 2012) WorkflowSim* (Chen and Deelman, 2012) 

DCSim2 (Chen, Liu and Chang, 2012) DBCOF* (Kumar, Malik, et al., 2017) 

RecapSim* (Byrne, Svorobej, et al., 2017) Edgenetworkcloudsim* (Seufert, Kwam, et 
al., 2017) 

IsV2C (Kim, Han, et al., 2017) EdgeCloudSim* (Sonmez, Ozgovde and 
Ersoy, 2017) 

CloudSim Plus* (Filho, Oliveira, et al., 2017)  
* Derivatives or extensions of CloudSim 
1 This refers to DCSim by (Tighe, 2012) 
2 This refers to DCSim by (Chen, Liu, et al., 2012) 

Table 2-4: Identified cloud computing simulation tools 

To give an insight into each of the available simulation frameworks, in regards to 

their abilities to estimate cloud computing QoS parameters, each of the identified 

simulation platforms was analysed according to the Singh & Chana (2015a) QoS 

taxonomy discussed earlier in section 2.3.2. Findings of the analysis are summarized in 

Table 2-5. 

Although security is an important QoS parameter, it is not directly addressed in 

the identified cloud computing simulation tools in Table 2-4 and is thus not evaluated in 

Table 2-5. Although not included directly in this analysis security plays a key QoS role. 

For further details the reader is referred to Fernandes et al. (2014), which provides a 

comprehensive survey of security issues in cloud computing environments listing top 

threats such as data breaches, data loss, and account service traffic hijacking. To 

mitigate security risks Al Morsy et al. (2010) derives general recommendations to be 

implemented for the cloud computing solutions, such as identity and access 

management, secure software development lifecycle, encryption key management. 

Because networking is a big part of cloud computing some of the network security 

simulators can be used to test network-based attacks. For example, the NeSSi2 network 

security simulator can be used to generate attack data for the purpose of evaluating the 

effectiveness of detection algorithms (Grunewald, Bye, et al., 2011). 

Table 2-5 presents the (Singh and Chana, 2015a) QoS parameters and identifies 

which are supported by each of the different simulation platforms with the exception of 
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security which has not been included in this table. Each of these individual parameters 

are discussed in more detail in the sections following the table. 

Simulation 

Framework 

QoS Parameters§ (Singh and Chana, 2015a) 
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CACTOSim 

(Ostberg, 

Groenda, et 

al., 2014) 

YES NO YES YES YES YES C, M, S NO 

CloudNetSim

++ (Malik, 

Bilal, et al., 

2015) 

YES NO YES YES YES YES C, M, S, N YES 

CloudSched 

(Tian, Zhao, 

et al., 2015) 

YES NO YES YES YES YES C, M, S, N NO 

CloudSim* 

(Calheiros 

and Ranjan, 

2011) 

YES YES YES YES YES YES C, M, S, N YES 

DCSim1 

(Tighe, 2012) 
YES NO YES YES YES YES C, M, S YES 

DCSim2 

(Chen, Liu, 

et al., 2012) 

NO NO YES NO YES NO S NO 
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SPECI 

(Sriram, 

2009) 

NO YES YES NO YES NO N NO 

SimIC 

(Sotiriadis, 

Bessis, et al., 

2013) 

NO NO YES YES YES YES C, M, S YES 

SimGrid 

(Legrand, 

Marchal, et 

al., 2003) 

YES NO YES NO YES NO C, N NO 

MDCSim 

(Lim, 

Sharma, et 

al., 2009) 

YES NO YES YES YES YES C, S, N NO 

ICanCloud 

(Castañé, 

Núñez, et al., 

2013) 

NO NO YES YES YES YES C, M, S, N NO 

GroudSim 

(Ostermann, 

Plankenstein

er, et al., 

2011b) 

NO NO YES YES YES NO C, N NO 

GreenCloud 

(Kliazovich, 

Bouvry, et 

al., 2010) 

NO NO YES YES YES YES C NO 

GDCSim 

(Gupta, 
NO NO YES YES YES YES C YES 
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Banerjee, et 

al., 2014) 

DISSECT-

CF 

(Kecskemeti, 

2015) 

NO NO YES YES YES YES C, M, S, N NO 

Utilisation short codes: C – CPU, M – memory, S – storage, N – network 
1 This refers to DCSim by (Tighe, 2012) 
2 This refers to DCSim by (Chen, Liu, et al., 2012) 

* CloudSim with all its extensions 

§ - Security parameter was excluded from the table as it is not part of identified cloud simulation frameworks 

Table 2-5: QoS parameters addressed by existing simulation platforms 

Scalability. Simulation of cloud computing scalability properties is largely 

addressed by introducing the opportunity of custom scheduling for user generated tasks. 

The concept is to employ an algorithm which will load balance workload among VMs in 

the cloud data centre, adding or removing VMs accordingly i.e. CloudNetSim++ (Malik, 

Bilal, et al., 2015), CloudSched (Tian, Zhao, et al., 2015), CloudSim (Calheiros and 

Ranjan, 2011) and  SimGrid (Legrand, Marchal, et al., 2003). Simulation platforms like 

CACTOSim (Ostberg, Groenda, et al., 2014) and DCSim1 (Tighe, 2012) introduce the 

notion of an application model as an additional workload separation layer between user 

generated requests and VMs. The application consists of a load balancer and one or 

more identical application instances that can be spread across multiple VMs in a cloud 

data centre (Tighe, 2012). The presence of an application model in simulation allows for 

more detailed application component interdependency exploration.  

Availability. The problem of system availability is addressed by simulating fault 

occurrence. By simulating component failures, one can explore system behaviour and 

introduce appropriate remediation actions. For example the FIM-SIM (Nita, Pop, et al., 

2014) is an extension for the CloudSim (Calheiros and Ranjan, 2011) platform which 

allows for the modelling of fault events and injecting them during the simulation 

experimentation run. The types of events include failure of the physical host, VM failure 

and job failure and can be injected using different types of distributions. The SPECI 

(Sriram, 2009) cloud simulation framework focuses solely on hardware failure generation 

and self-recovery through autonomic resource orchestration.  
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Reliability. System reliability is modelled by accounting for variations in system 

behaviour using empirical probability distributions. The distributions are used to model 

application behaviour expressed as variation in resource demand and component 

failures (Castañé, Núñez, et al., 2013; Jararweh, Jarrah, et al., 2014) Probability 

distributions introduce stochastic element to that is useful for seeing trade-offs between 

execution time and costs (Ostermann, Plankensteiner, et al., 2011b) 

Cost. Cloud computing simulation cost estimation research can be divided into 

two major groups: calculation of cost per kW/h of energy used and calculation of cost per 

cloud resource unit used. Cloud simulation platforms such as CACTOSim (Ostberg, 

Groenda, et al., 2014), CloudNetSim++ (Malik, Bilal, et al., 2015), CloudSched (Tian, 

Zhao, et al., 2015), CloudSim (Calheiros and Ranjan, 2011), DCSim (Tighe, 2012), 

SimIC (Sotiriadis, Bessis, et al., 2013), MDCSim (Lim, Sharma, et al., 2009), ICanCloud 

(Castañé, Núñez, et al., 2013), GreenCloud (Kliazovich, Bouvry, et al., 2010), GDCSim 

(Gupta, Banerjee, et al., 2014) and DISSECT-CF (Kecskemeti, 2015) calculate costs 

based on data centre hardware energy consumption. To view costs of cloud computing 

from the user perspective GroudSim (Ostermann, Plankensteiner, et al., 2011b) allows 

for the simulation of pricing policies that calculate cost per gigabyte of file transfer and 

the time interval costs per used cloud resources. Similarly CloudNetSim++ (Malik, Bilal, 

et al., 2015) simulation platform allows for calculation of cloud service costs for users, 

based on pricing policies i.e. Lowest Pricing, Deadline based and Energy based. The 

billing is calculated based on the resource usage time and any SLA penalties violated by 

the user. Apart from energy costs, CloudSim (Calheiros and Ranjan, 2011) also supports 

modelling of cloud market components where different resource trading policies of cloud 

providers can be simulated. The market cost model consists of two layers PaaS and 

SaaS. The PaaS layer calculates customer expenses associated with renting of CPU, 

Memory, Storage and usage of network bandwidth. The SaaS model calculates the price 

per number of application service requests. Interesting to note, that discussion of 

GreenCloud (Kliazovich, Bouvry, et al., 2010) simulation platform also mentions the 

possible beneficial cost trade-offs between different types of network cables for 

designing cloud data centre infrastructure, but these costs are not included in the 

simulation models. 

Execution Time. As shown in Table 2-5 all of the available cloud simulation 

platforms support calculation of how much time it will take to execute a task. Each task 
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submitted by users requires a certain amount of compute resources to be completed, 

hence the required processing time duration is calculated with relation to available 

resources. For example, if CPU can process 1,000 Million Instructions per Second 

(MIPS) and a task consumes 10,000 MIP the time needed to execute the task is 10 sec 

(Calheiros and Ranjan, 2011; Núñez, Vázquez-Poletti, et al., 2012).  

Energy. Energy consumption is an important cost factor that greatly impacts 

resource management decisions in cloud data centre (Malik, Bilal, et al., 2015; Singh 

and Chana, 2015a). As shown in Table 2-5 most simulation tools support estimation of 

energy consumption. The typical power consumption model includes weighted sum of 

CPU, Memory, Disk and Network utilisation where CPU workload intensity impacts the 

overall  power draw and therefore calculated as an integral of energy consumption 

function over the period of time (Tian, Zhao, et al., 2015). 

Resource Utilisation. Estimation of resource utilisation plays an important role 

in the insights of cloud data centre performance. From Table 2-5 it is evident that cloud 

simulation frameworks have different granularity levels when it comes to modelling cloud 

data centre resources. CloudNetSim++ (Malik, Bilal, et al., 2015), CloudSched (Tian, 

Zhao, et al., 2015), CloudSim (Calheiros and Ranjan, 2011), ICanCloud (Castañé, 

Núñez, et al., 2013) and DISSECT-CF (Kecskemeti, 2015) include models for all 

available resources i.e. CPU, Memory, Storage and Network. The next largest group is 

the simulation frameworks that model CPU, Memory and Storage utilisation i.e. DCSim1 

(Tighe, 2012), CACTOSim (Ostberg, Groenda, et al., 2014) and SimIC (Sotiriadis, 

Bessis, et al., 2013). Then, the GroudSim (Ostermann, Plankensteiner, et al., 2011b) 

and SimGrid (Legrand, Marchal, et al., 2003) provide models for simulation of CPU and 

Network resources. The GDCSim (Gupta, Banerjee, et al., 2014) and GreenCloud 

(Kliazovich, Bouvry, et al., 2010) simulate the utilisation of CPU, DCSim2 (Chen, Liu, et 

al., 2012) simulates only the Storage components with SPECI (Sriram, 2009) focusing 

only on simulation of Network utilisations.  

SLA Violation. Breaking the threshold of an SLA is modelled within 

CloudNetSim++ (Malik et al. 2015), CloudSim (Calheiros & Ranjan 2011), DCSim1 

(Tighe, 2012), SimIC (Sotiriadis, Bessis, et al., 2013) and GDCSim (Gupta, Banerjee, et 

al., 2014) simulation frameworks. The workload execution time calculation is the main 

metric for estimating the breach of SLA where the cloud provider guarantees a certain 

level of performance for its services. If the workload cannot be completed within certain 



 

 

 - 59 -  

amount of time defined by the SLA due to the shortage of resources, or a failure then an 

SLA breach is detected (Tighe, 2012; Gupta, Banerjee, et al., 2014). In case of 

CloudNetSim++ (Malik et al. 2015) the roles are reversed and SLAs are enforced by the 

cloud service provider onto the cloud user. The model assumes that each user will 

purchase a certain amount of resources and anything used extra will trigger an SLA 

violation which will be billed for using separate pricing rates.  

The cloud data centre system models can be adjusted to correspond to the actual 

scale of a large data centre, where equipment properties within models can also be 

changed to evaluate new equipment capabilities without making an actual purchase. 

Experimentation in a simulated environment is typically far less expensive economically 

than using a real testbed (K. Preston White and Ingalls, 2011). Additionally, such 

experimentation is repeatable and potentially scalable in terms of addressing the 

simulation of larger-scale systems (Núñez, Vázquez-Poletti, et al., 2012). In addition, 

experimentations can be performed in a more timely fashion, and risks with respect to 

stochastic inputs can be taken into account (Maguluri, Srikant and Ying, 2012; Sedaghat, 

Hernández-Rodriguez, et al., 2016). However it is noted by Sakellari and Loukas (2013) 

that while simulation offers a number of advantages especially in terms of such scalability 

and experiment repeatability, it is still based on assumptions and simplifications that 

might not fully represent an actual cloud. For this reason, it still might be preferable in 

some circumstances to use real cloud testbeds in place of simulation or to validate results 

developed in simulated environments. Sakellari and Loukas (2013) provide an overview 

of such testbeds and software frameworks for setting up such cloud testbeds. 

2.6 Conclusions 

This chapter set about providing a comprehensive overview of the cloud 

computing domain with a particular focus on the role of the data centre. As can be seen 

from the analysis there has been and will continue to be continued rapid growth in the 

demand for cloud computing services into the future. As described by Arizton (2018), the 

demand for cloud computing is predicted to continue to grow over the years and with 

cloud providers forming an expanding multibillion euro cloud ecosystem. The success of 

cloud computing can be attributed to overall technological progress in the ICT sector, but 

one of the major user adoption drivers is the significantly lower price of computing 

resources in public clouds, when compared to hosting an in-house infrastructure. Astri 
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(2015), recognised this when suggesting that that for an end user, ongoing cost reduction 

is one of the most critical success factors for cloud computing adoption. Such 

unprecedented demand in cloud services has led to the construction of many large cloud 

data centre facilities consisting of thousands of nodes (servers) all around the world. 

Cost control in such intricate environments plays a very important role allowing cloud 

operators to compete on service pricing while maximising profits. However, the scale 

and complexity of cloud data centres combined with innovation pace in ICT makes this 

a challenging task. As an indicator of the pace of change Mehmi, Sangal, et al., (2016), 

suggest that a typical data centre will change technologies three to four times over a ten-

year period.  

Where data centres struggle, is in obtaining a comprehensive understanding of the trade-

offs between data centre costs (e.g. CAPEX and OPEX) and performance. For example, 

cloud computing infrastructure providers use resource virtualization which delivers a 

bundle of resource provisioning methods (e.g. VM migration, VM co-location) which can 

be used for resource management. These tasks are typically managed by cloud resource 

orchestration frameworks due to the typical scale and complexity of cloud computing 

data centre resource management. Efficient cloud resource management should lead to 

increases in resource utilisation rates, reduced costs and increased revenue, hence 

giving a competitive edge to the cloud infrastructure provider. However, inefficient 

resource management can lead to service performance degradation and potentially profit 

loss. Hence, performance parameters (such as QoS and SLAs) must be adhered to 

requiring the data centre operator to find the correct balance between optimal cost 

effectiveness and appropriate service levels. As mentioned in the literature, both over 

and under provisioning can have negative consequences on costs. Obtaining the correct 

balance between these two positions is a challenge that has been identified in the 

literature. In an attempt to address this challenge, cloud simulation and optimisation has 

proven to be an effective decision support method for fine tuning resource management 

frameworks. Optimisation algorithms can deliver resource allocation decisions and 

simulation can be used to predict the QoS impact of these decisions prior to deployment 

on a live system. This is evidenced by the increasing number of simulation based 

solutions presented in the literature from 2015 onwards. However, following a detailed 

review of the literature it can be seen that although it is known that QoS parameters 

directly impact data centre costs (CAPEX and OPEX) there is a clear disconnect 
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between this and the existing cloud simulation platforms cost analysis capabilities. In 

particular, there is a deficit in the suit of tools in the provision of a more comprehensive 

overall cost estimation for a cloud data centre based on its specific technologies and 

logical setup. This is an issue that is under review in this thesis. 

In assessing the literature, the TCO method was identified as an approach which 

has been utilised in relation to data centre costing. Upon review it can be seen to allow 

for the capture of the full costs of a data centre, accounting for both operational and 

capital expenditure costs for example energy cost, cost of equipment, cost of building 

and labour. However, a significant limitation of the available TCO calculation methods 

presented to date in the literature is that they address data centre costs in isolation and 

of those identified, none account for the impact of resource management on costs and 

QoS. Furthermore, it was found that the reviewed TCO frameworks still rely on manual 

data entry using web-based interfaces or spreadsheet software which is propositioned 

as a significant drawback for dealing with the complexity of large scale heterogeneous 

systems like modern cloud data centre, which are continuously evolving. The presented 

data centre TCO frameworks are more applicable to once off analysis and less 

appropriate for use on an ongoing basis.  

The remainder of this thesis sets about addressing these research challenges 

both as presented in this chapter and also confirmed by the industrial partners with whom 

this research was conducted. More specifically the remainder of the thesis sets out to 

address the research gap in current data centre decision support methods by the 

development of a unique methodology and associated application framework for data 

centre cost/performance impact analysis. The methodology will address the complexity 

of cloud data centre design, resource management and cost, providing a reliable 

decision support information for real world cloud infrastructure operators. As identified in 

the literature there are issues associated with the use of testbeds to evaluate data centre 

cost/performance. Given the ever increasing data centre scale, complexity and rate of 

change, the creation of granular models of such entire systems would not be feasible 

without automation. As such, the proposed methodology in this thesis contributes 

significantly to the possibility of conducting full data centre simulation based analyses 

due to a focus on model build aspects that can be automated. With up-to-date models of 

the ‘as-is’ situation readily available (through automated model build), data centre 
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managers can then potentially make and evaluate parameter changes and ultimately 

make better informed decisions.  
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3 Related Project Background – FP7 (CACTOS) 

3.1 Introduction 

The research presented in this thesis was conducted in conjunction with the 

European Union research project, CACTOS. This chapter provides both the background 

of the CACTOS project and a description of how this thesis fits within the broader agenda 

of the CACTOS project, including its contribution to the research direction of the 

European Union (EU) (European Commission, 2007, 2013, 2015). While a description 

of the overall CACTOS project is provided for completeness, it should be noted that parts 

of what are presented in this chapter (in particular work relating to CactoSim) have been 

developed partly as an outcome of work presented in this overall thesis.  

Featuring within the remit of software engineering, services, and cloud 

computing, the CACTOS proposal won funding during the FP7-ICT-2013-10 competitive 

call for research. This FP7 project ran for three consecutive years (October 2013 to 

October 2016) as a multi-national collaboration between Germany, Sweden, the UK and 

Ireland (European Union, 2017). The acronym “CACTOS” stands for Context-Aware 

Cloud Topology Optimisation and Simulation. The project examines cloud computing 

from a data centre operator perspective and, as the name suggests, is based around 

three core concepts:  

1. Context–awareness. The models of system behaviour, expressed through 

cloud services and compute resource demand interdependencies, allows 

individuals to assess the impact of co-located placement and scheduled 

application workload. These models enable individuals to predict the future 

resource requirements at both virtual and hardware levels, which in turn, 

enhances the understanding of the quality of service and application service 

level agreement adherence demands.  

2. Topology optimisation. Cloud data centre topology optimisation mechanisms 

are employed to create a self-managing system (Kephart and Chess, 2003) 

that is able to map compute resources to the VMs to satisfy user demand 

within other quality of service constrains. This includes objective driven VM 

placement and VM consolidation vertical and horizontal resource elasticity 

controls. 
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3. Simulation. The discrete-event simulation (DES) platform provides a means 

to evaluate the impact of topology optimisation strategies against the set 

quality of service and cloud service level agreement goals. DES techniques 

are used to model the large-scale heterogeneous data centre infrastructure 

and then simulate system behaviour creating the decision support 

foundations for evaluation and fine-tuning of resource optimisation 

parameters. 

 

CACTOS addresses the challenge of managing modern cloud systems at its 

scale and complexity while taking into account different cloud workloads and 

infrastructure heterogeneity. The types of cloud applications vary from a simple single 

VM deployment to complex multiple VM deployments where the application is comprised 

of a cohort of geographically distributable logical components. Determining the 

behaviour of an individual application component and overall application performance in 

such complex configuration becomes an issue because of the non-linear relation of low-

level system monitoring data (e.g. CPU utilisation, memory availability) to the high level 

QoS objectives (e.g. response time, cost, reliability). In addition, the cloud workloads and 

hardware heterogeneity play main roles in the cloud system behaviour modelling. 

Different types of applications utilise cloud resources in different manners; one can have 

short bursts of resource demands to serve large quantities of user requests, whereas 

another might have fewer users, yet job size can be significantly larger and require a 

greater amount of resources to process. Similarly, the demand of different types of 

resources will vary per cloud user as different types of computational tasks will require 

different proportions of CPU, storage, memory and network bandwidth. All these cloud 

system non-linear interdependencies must be considered when simulating and 

optimising cloud topology. 

CACTOS creates an integrated framework that has the ability to effectively 

capture and analyse dynamic workloads; optimise virtual and physical resources (e.g. 

increase utilisation, reduce energy consumption); deploy management decisions into the 

cloud data centre; and provide comprehensive “what-if” decision analysis using 

simulation. When combined the project goals, ethos, and integrated tools provide rich 

research data sources that are used for both energy and cost analysis, the latter of which 

is the main research focus of this thesis. The context-awareness delivers real cloud data 
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centre system behaviour information derived from raw monitoring data. The topology-

optimisation techniques demonstrate the direct effect of management decisions on QoS 

parameters. And finally, the simulation framework provides a mechanism for designing 

and building experiments for broader use case analyses. This scholarly work has direct 

research relevance due to its association with CACTOS as an EU approved ICT research 

project. 

As mentioned, the work presented in this thesis was conducted as part of a 

collaborative initiative, known as the CACTOS project. The thesis author led work which 

focused on the tasks for simulation framework creation, such as extracting system 

requirements, software design and development, integration and result validation. 

Hence, the system infrastructure models (Section 3.6), overall software architecture 

design, tools development and integration (Sections 5.3.1, 5.3.2, 5.3.3 and 5.3.4) were 

completed collaboratively with CACTOS project partners. The thesis author participated 

in work across the project in order to deliver essential integration between project 

components, and obtain access to the data and tools, which were paramount to the 

research. For example, the simulation framework integrates with the data collection 

framework. The collaboration enabled the collection of data that was sufficient for 

building simulation models, thus ensuring the progress of simulation framework 

development. The same applied to integration with the optimisation framework; it was 

crucial to agree the format and synchronisation points of bilateral data exchange for 

simulation to “understand” optimisation steps and for optimisation to read simulation 

outputs. To summarise, the work presented in this thesis is intertwined with the overall 

CACTOS project tasks and final software artefacts, which largely focused on the work of 

simulation framework development. Acquired data and jointly developed tools from the 

project were then used in the thesis to fulfil the research hypothesis and objectives listed 

in Section 1.2. 

3.2 Use cases 

Cloud data centres are being used to host a wide variety of services, each of 

which has unique design and resource demand requirements. To capture such cloud 

application diversity CACTOS addresses requirements of three different scenarios: 

business analytics, scientific computing, and enterprise grade applications.  
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The business analytics use case presents a challenge by way of public cloud 

infrastructure providers optimising resource distribution when the type of the applications 

executed in the rented VMs is unknown. The challenge for the CACTOS project is to 

manage such systems by constructing resource demand prediction models via a 

monitored data analytics approach.  

The scientific computing scenario provides an obstacle in managing workloads 

with high resource demand. CACTOS focuses on quantum chemistry software Molpro 

(Werner, Knowles, et al., 2012) that is used for advanced molecular electronic structure 

calculations. These calculations can take hours and there is a risk of loss in the case of 

insufficient memory or storage availability. Fear of re-running experiments and losing 

time due to insufficient resources causes scientists to oversupply resources which 

reduces system usability. CACTOS aims to optimise resource provisioning for such 

workloads in order to free up unused resources for other users.  

The enterprise application scenario looks at the resource management for large, 

multi-tiered cloud applications with functions distributed across multiple VMs. Such 

applications would have a load balancing component that distributes the load across 

multiple nodes eliminating bottlenecks due to lack of resources. CACTOS’ role is to 

provide dynamic scale to enterprise application components depending on user demand 

and according to the SLAs in place. 

3.3 Test beds 

To aid the design and testing of CACTOS proposed resource management 

solutions, two independent testbeds were made available to the consortium members. 

The first testbed was divided into two clusters containing 3 and 8 compute nodes 

respectively and operated by Flexiant Cloud Orchestrator (FCO) (Flexiant, 2017) cloud 

management platform. The second testbed was comprised of a single cluster containing 

20 compute nodes managed by OpenStack (OpenStack, 2017) cloud platform.  

3.4 Methodology overview 

CACTOS uses resource utilisation indicators out of monitored data and applies 

management actions for controlling distribution of cloud resources. Thus, the cloud data 

centre is modelled by using a sensor-actuator approach where the monitored sensor 
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data is contained within the infrastructure topology and the resource load models and 

the actuator model represents optimisation plans that consist of recommended 

optimisation actions that are being passed onto the system. Such a modelling approach 

is used to create a closed Observe-Plan-Act control loop, shown in Figure 3-1. This 

approach corresponds to the MAPE-K control loop described by IBM (please refer to 

section _ of the literature review) where the cloud data centre running applications and 

resources are being continuously monitored. Based on this monitored data, optimisation 

actions are derived and then enacted to meet certain QoS objectives. 

 

Figure 3-1: CACTOS closed Observe-Plan-Act control loop 

Within CACTOS the observation step can be divided into two actions: monitoring 

and data analysis. During the monitoring phase cloud data centre data is being captured 

using infrastructure topology and load models. Infrastructure topology models describe 

the location and attributes of hardware, virtual machines, and applications. Load models 

contain the current system utilisation data at the hardware and virtual levels, capturing 

fine grained individual resource utilisation and capacity (e.g. CPU, memory, storage) as 

well as indirect properties like energy consumption. The data analysis creates application 

behaviour models using historical monitoring data or the benchmarking techniques to 

annotate application-level resource demand patterns. When building a cloud application 

behaviour model, it is important to capture the relation between application performance 

and the available resource capacity plus the dimension of the deployment characteristics 
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that is part of the cloud system. The CACTOS application models are built by analysing 

resource request patterns in the context of cloud environment deployment and execution.  

The essence of optimisation planning is within intelligent arrangement of atomic 

cloud scheduling actions that lead to the intended system behaviour. However, planning 

complexity is significantly increased by the scale of the cloud computing system and the 

conflicting objective functions which should be satisfied at the same time. For example, 

one might want to maximise computational throughput, resource utilisation and cost 

efficiency, but at the same time minimize energy consumption, heat emission, application 

response time and cloud service SLA violations. To deal with these challenges, CACTOS 

breaks down cloud system topology optimisation into multiple levels. The employed 

optimisation solution is applying application level fine tuning whilst also taking a holistic 

view of the current and predicted system performances. Optimisation actions can be 

triggered during routine periodic system inspections as well as in reaction to failure or 

other QoS threshold indicators. To complement the real time self-organising decision 

support system, CACTOS also includes a simulation toolkit as means to further fine tune 

its algorithms and estimate system performance during various edge cases (e.g. power 

outage, resource demand bursts, resource failures). Simulation allows individuals to 

gauge the resilience of the cloud data centre optimisation strategy in different 

circumstances via “what-if” analyses before real system deployments. 

Hypervisors offer full management controls that allow to dynamically start, pause, 

resume, scale, reconfigure, migrate and terminate virtual machines without high 

performance penalties over the exposed network API. CACTOS creates optimisation 

plan actions using the hardware-enabled virtualization techniques provided by the 

hypervisors (e.g. XEN, KVM). The optimisation plans are then submitted by the 

optimisation engine to the appropriate middleware implementation components, which 

in turn, integrate with cloud platforms like OpenStack (Open Stack, 2017) and Flexiant 

Cloud Orchestrator (Flexiant, 2017).  

Planned project methodology was executed in three distinct steps: development 

of tools, definition of cloud infrastructure models, and integration. Tools were created to 

fit the Observe-Plan-Act control loop which allowed for system continuous monitoring 

analysis and self-management through optimisation objectives. The cloud infrastructure 

models were created to serve as a data exchange standard among all the software 

components. After defining the infrastructure system models, tools could be integrated 
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with each other and used within third party environments for data collection and cloud 

platform control. 

3.5 Tools 

The CACTOS project methodology is designed to ensure cloud data centre 

resource autonomic management by employing the Observe-Plan-Act control loop. To 

execute these control steps, bespoke software components (tools) were designed i.e. 

data collection framework - CactoScale, optimisation framework - CactoOpt and 

simulation framework – CactoSim (see Figure 3-2). Integration of all three frameworks 

provides a coherent cloud data centre context-aware topology optimisation solution. 

 

Figure 3-2: CACTOS tooling overview 

As shown in the high-level tooling overview diagram in Figure 3-2 the cloud data 

centre is constantly monitored by CactoScale. The monitored data, such as system 

performance, virtualization configuration, and services behaviour, is being collected and 

analysed in real time. From the data analysis, models of the system are created. These 

models then can be used by CactoSim and CactoOpt. CactoOpt periodically retrieves 

system models to decide whether any optimisation actions are needed and, if so, 

optimisation suggestions are produced for the data centre as a resource management 

strategy. CactoSim uses system models to build simulation experiments and can use 
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CactoOpt optimisation policies within these experiments to analyse system performance 

impact. 

Cloud computing data centres are complex systems with multiple interconnected 

hardware and virtual components that create service critical interdependencies. To 

manage such intricate systems cloud data centre operators must have access to highly 

scalable tools allowing collection and processing of information on vital system 

components. 

3.5.1 Data collection framework (CactoScale) 

The data collection framework, CactoScale, was designed to address the need 

for a scalable solution capable of processing live data streams and system logs that 

describe the state of every vital system resource i.e. measurements of CPU, memory, 

I/O devices, network and energy. 

Different types of resources have different approaches to measurement and 

measurement metric characteristics. CPU utilisation is measured within time intervals by 

looking at the percentage of time the allocated CPU core spends on processing 

instructions. For example, if the measured time interval is 1sec and within this time probe 

0.5sec CPU was busy processing tasks then it can be said that CPU utilisation is 50%. 

Memory performance indicator characterises the amount of memory available and the 

memory used by the running applications. Memory bandwidth can also be determined 

using integrated memory controllers that count the number of bytes that is written or read 

to the memory modules. Storage performance is measured in I/O operations per second 

(IOPS). The metric captures the number of reads and writes that storage locations can 

handle per second while also accounting for seek time delay of the non-contiguous data 

location. Network performance is measured by clocking the time it takes for the packet 

to reach its destination, which is referred to as latency. Each network link has its 

bandwidth capacity and if it is highly utilised higher latencies can occur resulting in delays 

of service delivery. Power consumption data can be extracted from the system by using 

external digital multimeters that measure voltage and current, or by probing embedded 

sensors of different components. For example, Intel introduced Average Power Limit 

(RAPL) (David, Gorbatov, et al., 2010) sensors that allow low level measurement of CPU 

and memory power consumption. 
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Figure 3-3: CactoScale Chukwa monitoring tool (Papazachos, Bharbuiya, et al., 2015) 

CactoScale is based on the Apache Chukwa and Hadoop Distributed File System 

(HDFS) and so inherits all its functional features such as distributed processing of large 

datasets across multiple computer clusters; the ability to scale from one to thousands of 

machines; and the provision of high availability by detecting and remediating any 

occurring failures within the Hadoop cluster (Apache Software Foundation, 2017). 

Chukwa provides flexible data monitoring, analysis and display capabilities. The design 

of Chukwa, as shown in Figure 3-3, enables capturing system performance data from 

multiple sources at each monitored node within the cloud data centre. Next, the Chukwa 

agent sends the aggregated data to the available collector. Finally, collectors then send 

the data to the HDFS for processing and storage. 

3.5.2 Optimisation framework (CactoOpt) 

CactoOpt is a scalable, real-time cloud data centre optimisation framework. 

CactoOpt is designed to fulfil optimisation goals such as decreasing operational costs of 

the cloud data centre, increasing data centre generated profits, and keeping customers 

satisfied with the provided service. These high-level goals are broken down into more 

detailed objective functions that are implemented within CactoOpt: 
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• The Load Balancing function seeks to minimise the load of the specific 

node in the data centre and the overall average load of all nodes by 

distributing workload evenly across all available compute infrastructure. 

This function was designed to ensure that quality of service is met and 

VMs’ access to resources is not contended. 

• The Consolidation function seeks to minimise the number of physical 

nodes used for hosting VMs without overbooking existing physical 

resources and maximise number of free hardware nodes to accommodate 

future system load.  

• The Energy Efficiency objective function seeks to minimise power 

consumption of the cloud data centre. On par with consolidation this 

function minimises the number of nodes being used by the system while 

also considering the energy consumption properties of the available 

hardware. This means choosing more energy efficient hardware to run 

the workload while other nodes can be shut down or put to sleep. 

• The Resource Fragmentation objective function strives to minimise 

resource underutilisation by reducing amount of stranded resources (e.g. 

where all the CPU cores on a node are booked by hosted VMs but some 

free memory remains). The function merges the resource leftovers to form 

bigger resource chunks suitable for other VMs to use. 

• The QoS Violations objective function seeks to minimise the number of 

QoS violations that occur for the delivered cloud service. Demands of 

running services can be translated into amount of resources they need to 

possess to achieve desired performance. The function ensures that the 

appropriate resources are provided to minimise QoS violation numbers. 

To achieve the set objective functions, the optimisation framework must 

continuously balance resource provisioning to cater for the planned events, predict re-

occurring events, and react to unpredicted events. The planned events are known events 

that are initiated by a data centre operator usually strategically scheduled at the time of 

lower workload. Planned events can include, but are not limited to, hardware 

maintenance, hardware upgrade, and software updates where the nodes need to be 

taken completely offline. Given the known time of such events, the optimisation 
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framework can prepare and react in advance. The predicted events such as weekly 

workload pattern change can also be managed proactively. Knowing the workload 

patterns, CactoOpt can gradually provide or remove resources in advance to meet the 

demands without QoS degradation. The unpredicted events, such as hardware failures, 

flash crowd resource demands and requests for new VM admission from IaaS 

customers, can only be handled in a reactive manner. CactoOpt is designed to detect 

unpredicted events early and apply appropriate system remediation or reconfiguration 

actions. 

 

Figure 3-4: Actuators taxonomy (Krzywda, Rezaie, et al., 2015) 
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To fulfil the objective functions while simultaneously dealing with the described 

events, the optimisation framework has access to a list of actuator actions shown in 

Figure 3-4 in a form of hierarchical taxonomy. CactoOpt has control over three main 

categories of actuators within the cloud data centre: Physical Machine (PM) 

configuration, VM configuration, and VM to PM mapping. PMs can be powered up or 

down for maintenance, put in or out of sleep mode for energy saving and its CPU and 

peripherals performance can be adjusted via Dynamic Voltage and Frequency Scaling 

(DVFS) to avoid overprovisioning also saving energy. VM configuration actuators allow 

to change between VM states, add more resources via vertical scaling, and load balance 

cloud services by adding more VM instances via horizontal scaling. The actions of VM 

to PM mapping govern the initial VM placement actuators such as booting or cloning 

VMs, migrating VMs from one PM to another, and managing access to CPU cores by 

adding and pinning specific cores to VMs.  

3.5.3 Simulation framework (CactoSim) 

As state previously, the part-development and use of CactoSim as well as 

integration with other components form part of the main outcomes/objectives of this 

thesis, and CactoSim presented in this section for completeness as part of the overall 

CACTOS project. CactoSim is built on top of two open source solutions, a software 

architecture simulation tool called Palladio (Palladio, 2017) and its plugin called 

SimuLizar (Becker, 2016) which adds support for self-adaptation rules modelling. 

Palladio is a toolkit for modelling and testing software architecture implemented 

in Ecore using the Eclipse Modelling Framework (EMF) (Brosch, Koziolek, et al., 2012). 

The core of this approach is Palladio Component Model (PCM) which allows for the 

modelling of entities for component-based software systems that can be linked together 

as complex complete software solutions and tested for performance and reliability. The 

performance and reliability predictions are made using a resource demanding service 

effect specification (RD-SEFF) which includes dependencies between provided and 

required services of a component, notions of resource usage, data flow and parametric 

dependencies (Reussner, Becker and Happe, 2011). 

Palladio bases the performance of the component-based software system upon 

four factors: 

• Implementation of the component 
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• Required services 

• Deployment platform (i.e. hardware, middleware, networks)  

• The way components are used 

Each of above factors can be modelled in specific sub-models and commutatively 

form a PCM instance as shown in Figure 3-5. The Component Model consists of 

component specifications including a model of their behaviour. The Composition Model 

describes the structure of the system by the composition of the components to be used. 

In the Deployment Model the components of the system are allocated to physical 

resources. Finally, the Usage Model contains the workload induced by the system’s end-

users.  

 

Figure 3-5: Palladio overview (Palladio 2017) 

As a simulation output, PCM produces analysis information which supports the 

evaluation of different modelled system performance attributes including response time, 

maximum throughput, resource utilisation, and Quality of Service (QoS) levels which 

align with the previously listed four performance factors (Rathfelder and Klatt, 2011). 

SimuLizar is a Palladio plug-in under development with a self-adaptive system 

modelling approach based on the PCM. It introduces two new modelling artefacts: 

• Palladio Measurement Specification (PMS) – domain specific language 

describing the data collection points called sensors. 

• Self-adaptation rules – used to define conditions and actions for model 

adaptations. 
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Implementation and functions of SimuLizar can be explained via the diagram 

given in Figure 3-6. 

 

Figure 3-6: SimuLizar architecture (Becker et al. 2013) 

During each step of the simulation process, PMS defined data from sensors is 

being written to the Palladio Runtime Model (PRM) container. The update of PRM 

executes a planning phase by launching self-adaptive rules. If the conditions defined in 

self-adaptive rules are met, then the PCM adaptations are executed. After the PCM 

transformation, the next simulation step commences using a new adapted model version 

(Becker, Luckey and Becker, 2013). 

Apart from the detailed software modelling capabilities, PCM provides the means 

to model a nested hardware environment. This is an important feature for cloud 

computing data centre modelling because in a real environment, hardware nodes are 

placed into physical racks and divided into clusters, while PCM provides a logical 

resource division or grouping based on resource types i.e. a cluster containing only ARM 

processors. 
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Figure 3-7: Palladio hardware topology model 

Figure 3-7 shows a simplified example of a hardware topology model of a single 

rack inside the data centre. The “Rack1” model consists of three nodes, “Node1”, 

“Node2” and “NAS_Node”, which are interconnected by the “Internal_Infiniband” 

network. In similar fashion, the hardware topology model can be scaled to mirror 

configuration of thousands of nodes inside the large data centre. 

CactoSim plays an important role within the CACTOS project by providing an 

analysis tool that is capable of forecasting system behaviour beyond the scale of 

available testbeds. In such a manner, the cloud data centre operator is able to have a 

simulation based wholesome system analysis to determine possible performance 

bottlenecks under various controlled experimental conditions e.g. unforeseen spike in 

user demand, critical hardware failures. Simulation data can help to pinpoint weaknesses 

in the system configurations ahead of real system deployments, thus minimising the 

chance of a system performance and QoS degradation.  
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3.6 Cloud infrastructure models 

The CACTOS cloud infrastructure models capture configuration, properties and 

attributes of cloud data centre infrastructure physical and virtual (logical) components. 

The models describe the content and dependencies of the physical hardware layer and 

the virtualised layer and capture resource utilisation measurements of both physical and 

virtual layers. Further, models are used to communicate system state information across 

all three tools - CactoOpt, CactoScale and CactoSim; using the same data structure 

allows avoidance of data inconsistencies during information exchange and reduces 

integration efforts. 

The CACTOS Infrastructure models were developed continuously throughout the 

project using a Model-Driven Software Development (MDSD) process and implemented 

using an Eclipse Modelling Framework (EMF) (Eclipse Foundation, 2018). The MDSD 

approach allows individuals to define the meta-model of the system, which contains 

relationships between model components and attributes, similarly to class diagrams 

used in software design. 

As alluded to earlier, the scale of the system requires a large degree of 

automation to populate and update data contained within the models. Also, the use of 

simulation framework output is fed to the optimisation framework to substitute real 

system data flow. However, it is human agents that are expected to extend, parameterise 

and make decisions on the final experimentation results. The model implementation 

decision using MDSD and EMF technologies allows for models to be used both by 

human agents and software driven agents like CactoOpt and CactoScale through the 

integration interfaces. 

3.6.1 Physical data centre model 

The Physical Data Centre Model (PDCM) holds the structure of the cloud data 

centre physical infrastructure. The model components are arranged in the same 

hierarchical order where the root of the model is a definition of a single data centre entity 

that contains nested racks under which lies the node entities. Network components are 

realised in the form of switches that contain a list of links between other connected 

entities. Switches can be positioned at any level of the model to allow flexibility in line 

with the different networking options available in real systems.  
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Figure 3-8: CACTOS core Physical Data Centre Model (PDCM) (Groenda, Stier, 

Östberg, et al., 2014) 

As shown in the architectural model blueprint in Figure 3-8 the focus of the model 

lies in capturing processing capabilities of physical nodes inside a data centre. The main 

cloud resources i.e. CPU, memory and storage are described respectively as 

MemorySpecification, StorageSpecification and ProcessingUnitSpecification classes. 

MemorySpecification holds attributes of available memory size and the read and write 

bandwidth. The StorageSpecification class holds the same attributes as 

MemorySpecification plus attributes for capturing the metric of read delays and write 

delays that are relevant to Hard Disk Drives (HDD). The hardware capabilities of a CPU 

are contained in the ProcessingUnitSpecification class which captures CPU frequency, 

number of available cores, turbo boost support, and type of architecture e.g. X86, 

X86_64, ARM. 
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3.6.2 Logical data centre model 

The Logical Data Centre Model (LDCM) captures the configuration of a logical 

layer of cloud data centre which is created by infrastructure virtualisation. LDCM also 

maps hardware resources described in PDCM to the virtual resources linked through the 

hypervisor component. 

 

Figure 3-9: CACTOS Logical Data Centre Model (LDCM) (Groenda, Stier, Östberg, et 

al., 2014) 

The LDCM has a dual purpose: first is the description of VM characteristics and 

second is the description of virtual components overlay over physical hardware. The 

class diagram in Figure 3-9 portrays the LDCM structure that centres around the 

VirtualMachine class objects and its attributes. Real system VMs can be linked to one or 

more physical CPU units as reflected in the model where the 

ProcessingUnitSpecification from PDCM is linked by using PuAffinity model class. 

Virtualized CPU, however, is modelled as VirtualProcessinUnit class with the assigned 

frequency attribute. The bootable image of VM is described using VMImageInstance 

class that defines the size of the storage, the location of execution, and the link to the 
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StorageSpecification of PDCM. The virtual network components are also covered by the 

logical model in a similar fashion which describes logical links between the virtualized 

components and the relation between the virtual network and the physical network 

topology. 

3.6.3 Physical load model 

CACTOS Physical Load Model (PLM) captures the load levels of physical 

processing resources via the utilisation metrics. The PLM also overlays the hardware 

components described in the PDCM, meaning that every single recorded measurement 

has to have an underlying hardware resource. 

 

Figure 3-10: CACTOS Physical load model (Groenda, Stier, Östberg, et al., 2014) 

As shown in Figure 3-10, the PLM focuses on the hardware resources by having 

model class entities for CPU, memory, storage, network and power measurements. The 

measurement classes are all linked to the Utilisation entity that has a Value attribute 

capable of holding different types of dimensions e.g. MB/s, GB, MIPS. 

3.6.4 Logical load model 

Similar to the PLM, the CACTOS Logical Load Model (LLM) captures the 

utilisation of virtual system resources within each VM. These virtual resources consist of 

virtual memory, virtual processing units, storage volumes, and virtual network 

connections topology between VMs.  
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Figure 3-11: CACTOS Logical load model (Groenda, Stier, Östberg, et al., 2014) 

The LLM diagram shown in Figure 3-11 captures resource measurements using 

class components of VirtualMemoryMeasurement, VirtualProcessingUnitMeasurement, 

VolumeMeasurement, and VirtualNetworkInterconnectMeasurement. These mentioned 

model classes contain links to Utilisation class which holds the actual corresponding 

resource utilisation value. 

3.7 Integration 

As described in chapter 3.5, the CACTOS project delivers three tools for cloud 

data centre management – CactoScale, CactoOpt and CactoSim. The CactoScale tool 

is designed for collecting information about cloud data centre physical and logical 

infrastructure topology and current utilisation state. CactoOpt optimizes cloud physical 

and virtual system layers based on a set of objectives. Finally, CactoSim is able to 

simulate large scale system behaviours by estimating cloud data centre QoS 

performance, energy, and cost efficiency beyond testbed size limitations.  
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Figure 3-12: CACTOS tooling integration landscape overview (Groenda, Stier, 

Krzywda, et al., 2014) 

From the beginning of the CACTOS project, the CactoScale, CactoOpt and 

CactoSim tools were built with mutual integration in mind which was enabled by the use 

of Runtime toolkit and Prediction toolkit. Both Runtime and Prediction toolkits rely on the 

data collection framework to provide information about the system that is being optimised 

or simulated.  
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Figure 3-13: Optimisation plan model (Krzywda, Ali-Eldin, et al., 2014) 

The CACTOS Runtime Toolkit is designed to be integrated into the live cloud 

data centre system and operate in real-time. As shown in Figure 3-12, CactoScale 

periodically measures system load and collects system configuration data. The collected 

information is then populated in adherence with the structure cloud infrastructure models 

(i.e. PDCM, LDCM, PLM and LLM) and managed via the Eclipse Connected Data 

Objects (CDO) (Eclipse Foundation, 2017) model repository. CactoOpt pulls the 

infrastructure models from the CDO repository and calculates whether optimisation 

actions are needed based on the selected optimisation objective. If the optimisation 

algorithm deems optimisation actions necessary, the optimisation plan, which contains 

optimisation action steps, is created. The optimisation plan is also realised as an EMF 

model (as shown in Figure 3-13) and is designed to correspond to the actuators 

taxonomy described earlier in Figure 3-4. To translate the optimisation actions into 

corresponding cloud management system commands, the Virtual Middleware Integration 

(VMI) adapters were developed for FCO and OpenStack testbed deployments available 

within the project. In such a way, CACTOS Runtime Toolkit is able to create a control 

loop capable of autonomous cloud data centre infrastructure optimised management. 

The CACTOS Prediction Toolkit which is based on CactoSim simulation 

framework is designed to be used offline and in concurrence with the running cloud data 

centre system. As shown in Figure 3-12, the simulation can be used seamlessly to run 
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optimisation policies as if they were executed in a real data centre environment. This is 

achieved by seamless integration between the data collection framework CactoScale, 

optimisation framework CactoOpt and simulation framework CactoSim. CactoSim is able 

to fetch system models (PDCM and LDCM) from the CDO repository populated by 

CactoScale and use them to build the simulation experiment. Since CactoSim is based 

on the Palladio simulation framework, the model-to-model transformations are 

dynamically executed between CACTOS cloud infrastructure models and Palladio 

Component Models which ensures seamless model continuity (Stier and Groenda, 

2016). Since the optimisation framework is running in real time and simulation running in 

the simulated time there must be a synchronisation stop performed while optimisation 

algorithms are executed. Hence, during a simulation run, the CactoSim is using 

SimuLizar “Check and Execute” method which allows the simulation to be paused and 

all the simulated results at that particular simulation time to be accessed. During the 

pause, CactoSim creates load prediction models (LLM and PLM) based on these 

simulated measurements and sends these models to CactoOpt. Since CACTOS uses 

the same infrastructure models in runtime and during design-time, CactoOpt produces a 

runtime identical optimisation plan (shown in Figure 3-13) based on the simulated data. 

Next, the optimisation plan is enacted within simulation by using CactoSim VMI adapter. 

Finally, the simulation, which now reflects the implemented optimisation decisions, is 

resumed. This data exchange between CactoSim and CactoOpt is performed 

periodically within the duration of the simulation experiment, as it would be executed in 

the real system. This way, CACTOS Prediction Toolkit is able to simulate large scale 

self-adaptive cloud data centre systems by taking into account resource management 

decisions solicited by the optimisation framework. This allows the efficiency of different 

optimisation policies in regard to the costs, energy efficiency and QoS constraints to be 

determined during design-time and before physical deployment. 

3.8 Conclusions 

CACTOS is an ICT (software engineering, services and cloud computing) themed 

project founded by the EU. The project, which ran over a three-year period (2013 to 

2016), aimed to create context-aware cloud topology optimisation and simulation 

solutions for improving cloud data centre resource management. This aim was achieved 

by generating integrated Runtime and Prediction toolkits which can interface with the live 
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data centre. The runtime toolkit is tasked with executing real-time optimisation actions in 

order to improve cloud resource management. Whilst the Prediction toolkit is designed 

to execute design-time simulation based “what-if” analysis experiments in order to predict 

system behaviour under different optimisation policies prior to real system deployment. 

The CACTOS project is integral to this study as it provided access to real data, 

tools, experiment testbeds, and most importantly, to the experts within this area. By 

collaborating with the industry partners of the CACTOS consortium, the issues of cloud 

data centre resource management are formulated into use case requirements. The 

requirements contain detailed data about system set-up and monitoring data extracts 

which form the basis of the project and of this study. During the project lifetime, a set of 

tools were created and integrated in order to address the issues earlier defined by use 

case owners. Series of test scenarios were then executed using project testbeds to 

ensure the legitimacy of provided solutions, enriching existing datasets with the 

experimental results. The project was accomplished through close collaboration between 

industrial and academic partners who are experts in the cloud computing area and who 

have generated a substantial number of academic peer reviewed application papers. 

More so, project progress was closely reviewed on a yearly basis by the EC assigned 

expert panel in order to ensure the quality of the produced output. The use of CACTOS 

as a platform for this study ensured its relevancy to current issues within the cloud 

computing industry, its validity in regard to used data and tools output, and its quality as 

evidenced by continuous evaluation of field experts. 

The thesis research is based on the tools and models collaboratively developed 

within the CACTOS project by consortium members. The proposed simulation-based 

framework integrates tightly with the data collection and optimisation framework, hence 

a large degree of joint effort was needed to align system models and software 

architecture of project components.  
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4 Methodology 

4.1 Introduction 

This chapter outlines the steps taken to address the research challenges outlined 

in Chapter 0. A research methodology provides a plan for solving the proposed research 

problem (Rajasekar, Philominathan and Chinnathambi, 2014). Section 4.2 provides an 

overview of the research method used within this thesis and Section 4.3 describes the 

data collection approach that was implemented at different steps of the methodology. 

4.2 Research methodology 

The primary objective of this thesis is to demonstrate how cost analysis of 

resource allocation policies can benefit cloud data centre management decisions. The 

contribution of the thesis is the development of an advanced simulation framework 

followed by the introduction of an innovative aspect of cloud data centre cost modelling. 

This chapter describes the methodology which underpins the research presented in this 

thesis.  

 

Figure 4-1: Research method 
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As illustrated in Figure 4-1, the methodology represents a process that is defined 

by a number of key process steps as outlined hereafter:  

1. Problem Definition. The problem definition phase is required to collect all 

the relevant information about the issue that needs to be addressed. By 

analysing the collected information, the problem can be clearly described 

in detail which enables the identification of a research gap. The research 

challenges were identified by the literature review and case study 

analysis. The literature review of the cloud computing self-aware resource 

management domain is presented in Chapter 2. This literature review 

serves as a source of concept definition while also providing a state-of-

the-art overview of the field. The case studies are defined by engaging 

with the industry stakeholders through CACTOS project collaboration 

(see Chapter 3). The case study data collection elicitation effort and 

techniques are described in Section 4.3. 

2. Data Collection. The data collection step was executed in parallel with 

most of the research stages. As shown in Figure 4-1 each of the related 

methodology steps have a bidirectional connection with the data 

collection procedure. Based on the stage of the research, different types 

of data were collected about the use case and the cloud data centre 

environment. The received data then shaped the work direction taken in 

each thesis step. More information on the elicitation techniques and the 

collected data is provided in Section 4.3. 

3. Solution Design. This step represents a blueprint of the simulation 

framework design, including its methods, system architecture and the 

action plan needed to resolve the defined problem. It also outlines the 

information format and direction flow between components as defined 

within the proposed architecture design. Since the simulation study is at 

the core of this thesis, the solution design step also includes an overview 

of key simulation model development stages outlining the conceptual 

system model design. More detailed description of the solution design 

step is presented in Chapter 5.3. 
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4. Development and Implementation. During the development and 

Implementation step, the designed solution was created in the form of a 

prediction toolkit. The toolkit components can be divided into three distinct 

software artefacts: programmed model, simulation framework and 

integration with data collection, and optimisation frameworks. The 

programmed model refers to the implementation method of the system 

model that holds the components and attributes of the designed 

conceptual model. The simulation framework refers to the implemented 

software stack representing a coherent DES platform capable of 

simulating cloud computing data centre behaviour. The creation of 

integration pathways between data collection and optimisation toolkits 

was also a crucial step in the solution development process by connecting 

simulation with real-system data and resource management approaches. 

The development and implementation phase also describes the software 

development methodology and code management tools used throughout 

the process. Created software artefacts are required to comply with 

certain scalability requirements in order to be able to simulate large scale 

cloud data centre systems; such tests are also carried out as a quality 

control procedure. Further details on software artefacts and the chosen 

software development and implementation process can be found in 

Chapter 5.4. 

5. Model Validation. This step provides an evaluation of how accurate the 

simulation models are compared to real-world system behaviour. The 

validation is performed by designing a set of controlled experiments that 

represent actions defined within the problem definition stage. These 

experiments are then executed in the controlled environment of available 

testbeds and subsequently also in the simulated environment. Collected 

results from both real-system and simulation are then validated side-by-

side to determine if simulation results are accurate enough to represent 

real system behaviour (See Chapter 6.2 for more details).  

6. Experimentation. During the experimentation phase, multiple simulation-

based experiments are designed and carried out to test representative 

scenarios. Firstly, the validated simulation models are extrapolated to fit 
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the proportions of a real cloud data centre size; and secondly, different 

resource optimisation policies are applied within each designed 

experiment. By keeping all the cloud computing data centre physical and 

virtual infrastructure system configurations consistent, and varying only 

the optimisation techniques, the optimisation effects can be isolated and 

compared.  

7. Result Analysis. At the final stage, the findings are then analysed through 

side-by-side performance comparison. The performance is presented as 

QoS measurements such as energy efficiency, cost and resource 

utilisation. The results are presented in Chapter 6 and the final 

conclusions of the thesis can be found in Chapter 7. 

This academic work is based on an in-depth understanding of the cloud 

computing data centre domain, management tools, costs, and the associated 

challenges. The data collection effort serves as a foundation upon which the whole study 

lies and shapes the direction of work throughout the thesis. To assure study validity, it is 

important to describe the data collection approach underlining the elicitation techniques 

more comprehensively. This is presented in the following section. 

4.3 Data collection approach 

The primary case study data sources for the thesis were provided by the 

CACTOS project (described in Chapter 3). The challenges within the thesis came from 

the presented project case studies’ requirements, toolkit development, and integration 

requirements. The initial high-level description of concepts and issues, encountered by 

practitioners in operating a cloud data centre, were defined during the CACTOS project 

proposal writing phase. The consortium was formed with an intention to solve the defined 

problems by proposing a work plan and a general approach for solving defined issues. 

After the project proposal was accepted and funding was granted by the EU, a deeper, 

more detailed definition of the challenges and solutions had to be defined in order for 

project work to commence. The initial project proposal, literature review (see Chapter 2), 

and further data collection techniques manifested into a solid foundation for the thesis 

problem definition. Later, more detailed and case study specific data was obtained using 

a list of elicitation techniques during solution design, development and implementation, 

and model validation stages. 
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The list of elicitation techniques and data capturing formats were chosen based 

on the requirements elicitation survey by Zowghi & Coulin (2005) and techniques’ 

descriptions by the International Institute of Business Analysis (2015). The chosen 

elicitation techniques include: 

• Interviews 

• Brainstorming 

• Sequence Diagrams 

• Data Modelling 

Data capturing formats: 

• Data Flow Diagrams 

• Use Cases 

• User Stories 

• Metrics and Key Performance Indicators (KPI) 

• Interface Analysis 

• Time Series 

• Programmatic System Models 

Part of the CACTOS project was the set-up of collaboration channels among 

partners i.e. mailing lists, a document sharing repository, weekly teleconferences, and 

quarterly partner face-to-face meetings. Structured interviews were conducted over 

internal email where an established set of questions were aimed at the specific partner 

or a group of partners and direct answers to such emails were provided in-line with the 

question. Semi-structured interviews were conducted over the Voice over IP (VoIP) 

online collaboration platform and in person during the face-to-face meetings. Although 

there was an agenda for each encounter, free discussion around the topics on the 

agenda or any other business occurred. Face-to-face meetings would be scheduled for 

a duration of 3 to 4 days and often during this time period partners would be divided into 

groups to work on a specific task. The summaries of interviews were recorded as meeting 

minutes and information provided was used to inform the research questions and other 

elicitation actions. 
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Figure 4-2:CACTOS consortium face-to-face meeting, Umea, Sweden, March 2015 

The stakeholders within the CACTOS project provided user stories which 

captured the current system setup and users’ issues and needs going forward. Metrics 

and KPIs such as response time, energy consumption, and cost were included in each 

user story as important business drivers. As an output, the documents defining the full 

range of validation goals and metrics was compiled (Jelden, Domaschka, et al., 2014; 

Hauser, Domaschka, et al., 2016). 

Once the stakeholders’ expectations and requirements were defined, 

brainstorming sessions occurred. These sessions were used to share ideas among the 

consortium partners in an effort towards solving an issue identified by a stakeholder 

interview or user story. All of the ideas were recorded and rated by session participants 

who selected the most appropriate, feasible idea. During the brainstorming sessions, 

data flow diagrams were constructed and used to define the scope of the system, the 

data sources, and the transformation and movement within the different system 

components. A blackboard was used to draft system components, in the shape of boxes 

or circles, and arrows indicating the direction of data flow. At the end of the sessions the 

final diagram picture was taken and then digitised using vector graphic software. 

Elicitation technique Purpose 

Interviews Interviews were used to develop understanding of use cases 

and system constraints. The information obtained was further 
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used to create system functional and non-functional 

requirements. 

Brainstorming Brainstorming among research stakeholders was used to tap 

into collective domain knowledge and discuss multiple 

methods and techniques available to address the tasks at 

hand. These sessions allowed stakeholders to analyse and 

select from solution approaches in a fast and concise 

manner. 

Sequence Diagrams 

and Interface Analysis 

Due to the large degree of integration between project 

components, and the use of some standalone processes, 

sequence diagrams were used to document the 

communication path for certain tasks. These diagrams 

served as a way of identifying the flow of data and data types 

within the system, thus aiding system architecture design. 

Data Modelling  This approach was used to create a unanimous system 

model representation used as a single point of data collection 

and description. The model represented conceptual system 

behaviour and physical system features and boundaries, as 

well as behaviour constrains between system elements. 

These models were built by combining previously mentioned 

elicitation techniques and by collecting monitoring data 

directly from the system. 

Table 4-1: Elicitation techniques used in the thesis 

As a requirement, different software components of the project must 

communicate with each other by exchanging data and control instructions. The elicitation 

technique of interface analysis was applied to determine the data interfaces between the 

components and to define actual application programming interfaces (APIs). Interface 

analysis helped to identify the number of interfaces needed in the system, their purpose, 

data types and volumes, and the method of interface implementation. The technique of 

sequence diagram was used in conjunction with interface analysis to visualise the 

information passed between the objects. The diagram was used to represent the type of 
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the call made to the interface (synchronous or asynchronous) in chronological order. 

Visualising the interaction between API components makes it easy for other project 

participants to understand the functionality and improve API approval and adoption. A 

summary of each elicitation technique purpose is presented in Table 4-1. 

During the development and implementation stage, a monitoring tool 

(CactoScale) was deployed into the testbeds. The toolkit allowed for live data collection 

which involved capturing cloud data centre behaviour and topology. The collected data 

was periodically stored to a database, which then could be used to create detailed 

system models. The database served as a source of information which facilitated further 

understanding of the cloud system component dependencies using time series data 

analysis. Further information on the implemented solution can be found in Chapter 5. 

This thesis focuses on quantitative cost and performance analysis of cloud 

resource allocation policies. Challenges in extracting costs related to cloud resource 

allocation policies can be divided into two main categories: one, addressing the issues 

that industry is facing in the area of efficient cloud resource management; and two, 

integrating the need between data extraction and resource management tools. The 

elicitation techniques used in the CACTOS project allowed for extraction of all the 

necessary information from the consortium partners needed for the methodological steps 

of solution design, model development, model validation and experimentation. 

4.4 Conclusions 

The methodology chapter describes the steps undertaken in order to address the 

research aims. These steps include: Problem definition, solution design, development 

and implementation, experimentation, model validation, and result analysis. Each of 

these steps was carefully planned and executed during the study and was chosen as the 

most appropriate methodology for solving the issues at hand.  

The CACTOS project and its partners served as a data source by providing 

access to case studies and tools for the work within this thesis. Project objectives were 

used to drive data acquisition using an array of elicitation techniques including interviews, 

brainstorming, sequence diagrams, data flow diagrams, use cases, user stories, KPIs 

and interface analysis. Use of these techniques offered mechanisms to define the 

research problem and gap for this thesis. Furthermore, throughout the thesis there was 
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constant contact with consortium partners which allowed for instant feedback and 

collaboration in solving some of the challenges encountered. 
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5 Design and Implementation 

5.1 Introduction 

As has been presented in Chapter 2, there has been a clear growth in the 

popularity of optimisation policies available for cloud data centre resource management 

in recent years. However, it is difficult to fully understand the impact proposed 

optimisation policies can have on a cloud data centre costs and QoS metrics. Every cloud 

data centre is unique in its hardware configurations, software setup and user resource 

demand requirements, hence, the same optimisation policy can deliver sub-optimal 

results if it is implemented across different data centres. In addition, the optimisation 

goals can be different for different business models of cloud data centres. For example, 

one might strive to save costs and energy by taking a hit on service performance speed, 

while another may wish to operate under strict SLAs whereby service performance speed 

is a crucial metric. Taking elicited requirements into account, the solution presented in 

this chapter aids in the understanding of optimisation policy effects on existing and newly 

proposed hardware configurations for an individual cloud computing data centre system. 

It takes the form of a discrete event simulation framework that integrates directly with the 

CACTOS cloud optimisation and cloud data collection frameworks (as presented in 

Chapter 3) enabling the simulation model build process to be automated as well as taking 

into account optimisation policies during the execution of a simulation run.  

Following the data collection approach using methods and techniques described 

in Chapter 4, requirements were elicited, analysed and specified through interaction with 

key stakeholders. These requirements, presented in Section 4.1, were then used as the 

main input parameters into the overall simulation framework solution design decisions. 

Referring to Figure 5-1, the key simulation framework components presented in this 

chapter are the system models, the simulation engine and the simulation results. The 

system models represent the cloud data centre hardware and software configurations 

captured within the infrastructure models, where application models depict resource 

demand constraints for different operations within a running application (service). The 

workload model captures the user arrival rates and interaction patterns with the 

applications running inside a cloud data centre. Integration with the data collection 

framework makes it possible to automatically build a cloud data centre system model 
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using real, current, and historical data saving effort when modelling a large system. With 

this model in place, alternative scenarios can be modelled and what if analysis can be 

performed based on different decisions that require support. 

 

Figure 5-1: Simulation components 

The discrete event simulation engine is responsible for organising and deploying 

different events during the simulation experiment. The main part of the simulation engine 

is an event queue which represents events within a simulated experiment, with different 

events being triggered at specific points in time. Within a simulation run, the time frame 

is not related to the wall clock time as it is a simulation of the time progression. Depending 

on the number of occurring events (the scale of the model), the difficulty of calculations 

and the hardware where simulation is executed, simulation time might be faster or slower 

than wall-clock time. During a simulation run (as the simulation is integrated with the 

optimisation framework) optimisation decisions based on simulated data can be included 

in a simulated scenario. In this case optimisation decisions are executed as events within 

the simulation framework as part of the running experiment. When an event is triggered, 

its impact on the whole system is calculated and later outputted to the simulation results. 

Various types of simulation events trigger different calculations in order to estimate key 

cloud data centre operation metrics such as resource utilisation, power consumption and 

costs.  
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Through the use of an integrated simulation framework, the impact of resource 

management optimisation policies can be evaluated at the design time without the need 

to deploy alternative configuration options into the real system. Such an approach can 

save time and allow for head-to-head evaluation of multiple optimisation strategies on 

the design of the specific system. What-if analysis can be used on an existing system or 

on systems that are yet to be built, allowing for the support of some of the design and 

configuration decisions around available hardware and software options. The cost 

calculation component allows for direct translation of IT metrics into business operation 

terms allowing for better, more intuitive, understanding of decision impact.   

The following sections describe the requirements, the simulation framework 

design, its methods, system architecture and the implementation decisions. They also 

outline the information format and direction flow between components as defined within 

the proposed architecture design. These designs have been realised in a prototype 

implementation of the software which is also described at both a component level as well 

as at the user interface level in the form of a structured walkthrough. Finally, conclusions 

are presented with a lead-in to the following chapter (experimentation and analysis) 

which utilises this implementation. 

5.2 Requirements 

After the initial data collection phase which used elicitation techniques with key 

stakeholders as described in Chapter 4, a number of requirements were identified and 

specified as given in Table 5-1. These requirements were used as input parameters into 

the overall simulation framework solution design decisions.  

Number Type Requirement name 

F. 1.0 Functional Ability to model data centre entity 

F. 1.1 Functional Ability to model a cluster 

F. 1.2 Functional Ability to model a rack 

F. 1.3 Functional Ability to model a node 

F. 1.4 Functional Ability to model physical resources i.e. CPU, RAM, I/O, Network, Power 

F. 1.5 Functional Ability to model a VM  

F. 1.6 Functional Ability to model a hypervisor 

F. 1.7 Functional Ability to model virtual resources i.e. CPU, RAM, I/O, Network, Power 

F. 1.8 Functional Ability to model a cloud application 

F. 1.9 Functional Ability to model a cloud user 

F. 1.10 Functional Ability to model workload induced on cloud application by a user 

F. 2.0 Functional Ability to integrate with runtime cloud resource management framework 

F. 2.1 Functional Ability to simulate self-organising resource management policies 
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F. 2.2 Functional Ability to deploy additional VMs at any time during a simulation 

experiment 

F. 2.3 Functional Ability to migrate VMs to different nodes during a simulation experiment 

F. 2.4 Functional Ability to simulate node power management i.e. shutdown, suspend, sleep   

F. 3.0 Functional Ability to integrate with data collection framework 

F. 3.1 Functional Ability to acquire cloud virtual and physical simulation models based on 

historical data 

F. 3.2 Functional Ability to acquire cloud application models based on historical data 

F. 4.0 Functional Ability to produce simulation results 

F. 4.1 Functional Ability to calculate cloud resource consumption while processing user 

requests 

F. 4.2 Functional Ability to calculate TCO of cloud data centre 

F. 5.0 Functional Ability for user to interact with the system  

F. 5.1 Functional Ability to create a simulation experiment 

F. 5.2 Functional Ability to start or stop a simulation experiment 

F. 5.3 Functional Ability to view simulation results 

NF.1 Non-

Functional 

Reliability: stable simulation framework performance able to produce results 

within the expected system constraints. 

NF.2 Non-

Functional 

Performance: non-exponential resource demand which is increased as 

expected according to the simulation model size 

Table 5-1: List of functional and non-functional requirements for simulation framework 

The functional requirements describe technical features of the software and non-

functional requirements describe secondary design requirements. Collectively these 

requirements serve as a feature checklist for the software product. Referring to Table 

5-1, the functional requirements of group F.1 reflect the need for the simulation 

framework to include a model that describes the cloud computing data centre system. 

As mentioned in Chapter 2 the cloud data centre consists of physical hardware and 

virtualised resources. The physical components such as CPU, memory, disks and 

network interface cards (NIC) are located within nodes that are stacked in racks, divided 

in clusters and placed in the server room within data centre building. The simulation 

model must be able to capture hardware components characteristics, layout, and 

network topology, which is noted under F.1.1, F.1.2, F.1.3 and F.1.4 entries.  

Given the large scale of cloud data centre operations, manual resource 

management is deemed by stakeholders not to be a feasible solution. In order to simulate 

cloud data centre system behaviour, resource management system decisions need to 

be reflected within the simulation experiment (F2.1) to more accurately determine the 

impact of an optimisation policy on system performance and costs. Direct integration with 

an operational optimisation framework would allow for a simulation to make use of 

already existing resource management policies. In turn, the decisions based on 

optimisation outputs enacted on a real system should also be realised in the simulation 
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environment. Such decisions include intelligent deployment of VMs (F2.2) during the 

simulation experiment, whereby decisions regarding VM deployment location should be 

made depending on the ongoing simulation state thus enabling the mimicking of real 

system behaviour, such as the consolidation of VMs onto fewer physical hosts potentially 

affecting QoS, energy and costs. In a real system, the resource management framework 

also monitors the system performance periodically and in the case of unsatisfactory 

performance, results can take corrective actions by migrating VMs and/or adjusting 

power states of the hardware. Requirements F2.3 and F2.4 reflect the need for the 

simulation framework to have the ability to model both of these aspects. 

As stated previously, a cloud computing data centre is a large-scale system with 

complex interdependencies between components and modelling such a system by hand 

is a prohibitively time consuming and complex task. Requirement F3.0 reflects this 

through specifying the need to integrate with the data collection framework thus 

significantly reducing the required effort through automation. The simulation framework 

should acquire models of physical and virtual infrastructure based on the data from the 

data collection framework (F3.1). Services or applications that are running within a data 

centre are unique in their resource demands and their user interaction patterns, hence 

in order to simulate their behaviour, an application model needs to be derived based on 

historical data where available. The simulation is required to also be capable of retrieving 

application models in programmatic manner from the data collection framework (F2.2). 

After the simulation of an experiment has been executed, results based on the 

simulated system behaviour need to be produced (F4.0). The outputs deemed important 

to track relate to CPU, memory, storage and network consumption over time. As such 

the simulation framework should have the capability to provide time series resource 

consumption data based as outputs (F4.1). Due to the elicited focus on holistic data 

centre costs as a key output metric, an additional requirement is the ability to calculate 

overall data centre costs relating to resource consumption as given in F4.3. 

The simulation framework users (humans and software components) should be 

able to interact with the framework (F5.0). This should allow for simulation experiment 

interaction (F5.1) which entails the system model creation, modification, storage and 

viewing. The simulation experiment itself requires parameters such as duration, 

granularity, optimisation intervals and optimisation policy selections. All of these settings 

also should be accessible for the user. Once all of the desired experiment parameters 



 

 

 - 101 -  

are set the user should be able to start the simulation, monitor the simulation progress 

and stop the simulation (F5.2). After the simulation has completed running, the simulation 

framework user should be able to view and compare simulation results in a visual manner 

(F5.3) through the use of charts, thus enabling decisions to be taken on the outputs of 

the simulation.  

The delivered software should also possess certain non-functional qualities that 

ensures adequate reliability and performance when used. The simulation platform should 

have the capability to reliably execute experiments without simulation results being lost 

or corrupted (NF.1). The performance of the simulation framework (i.e. experiment 

execution speed and compute resource demand) depends largely on the size of the 

simulated system model (NF.2). The resource demand should increase gradually with 

the increase in the number of elements in the model as opposed to, for example, 

exponential increases in the resource demand which is a cause of errors (memory leaks). 

In addition, the performance should be comparable with other cloud simulation 

frameworks identified in Chapter 2. 

Taking into account these functional and non-functional requirements, the 

following section details the architectural design for the software. The software 

architecture depicts the logical layout of the software routines through breaking them 

down into smaller components. Each component is responsible for performing specific 

tasks and together these interconnected logical components deliver the identified 

requirements to the end-user. 

5.3 Software architecture design 

The software architecture design presented in this section describes a high-level 

depiction of functional parts of software. Such design allows for the logical separation of 

concerns between different software components and gives the breakdown of tasks each 

component can perform. This architectural design is broken down further into class and 

flow diagrams containing a description of methods and datatypes used to directly feed 

into the development of the software.  
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Figure 5-2: Architectural diagram of the simulation platform 

The simulation framework architectural design given in Figure 5-2 is based on 

requirements outlined in the Table 5-1. This design complies to the general simulation 

components diagram flow presented earlier in Figure 5-1 and therefore the architecture 

components can be also divided into 3 groups i.e. “Data Collection Integration”, 

“Simulation Framework” and “Optimisation Integration”. Referring to Figure 5-2, the 

highlighted component Correspondence Model provides a central integration point 

between the cloud system models used by data collection, simulation and optimisation 

frameworks.  

5.3.1 Data collection framework integration design 

Referring to Figure 5-2, The Data Collection Framework component refers to 

an external software solution that continuously collects and stores monitoring data from 

the whole data centre. The relevant monitored data is composed of time series resource 

utilisation metrics of the physical hardware and virtual machines as well as topology, 

hardware and software specifications. It is assumed that the collected data is available 
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to be accessed directly via either a network API specific to the data collection framework 

or via a database where data being stored. Based on this data that captures data centre 

state over time, simulation models are automatically built. 

The Model Extractor (shown in Figure 5-2) is a function with a graphical user 

interface component that enables users to connect the historical database provided by 

the data collection framework and compose models that describe cloud data centre 

behaviour based on the data within selected time period. These models include 

application models, power models and runtime infrastructure models. An application 

model describes cloud deployed application behaviour through resource demand 

patterns. A runtime model includes current hardware and virtual layer configuration, 

including a CPU, memory, storage and network description for physical and virtual hosts. 

Large scale data centres consist of thousands of nodes therefore automatic model 

creation can significantly reduce modelling effort through the use of the model extractor. 

The Model Viewer and Editor component provides a GUI for viewing and editing 

the simulation models. Representing a model graphically aids in the understanding of 

system design and provides a mechanism for visually checking for inconsistencies. While 

model creation from scratch is not recommended due to the typically prohibitively large 

size of a model in this domain, the editing function can aid in testing what-if scenarios 

that require small scale changes to be made in the models. Apart from the system model, 

the simulation platform itself requires auxiliary parameters such as the simulation 

experiment duration time and random seeds to be defined.  

The Simulation Experiment Configuration is a GUI based component that 

provides a joint configuration point for the simulation engine. It specifies the location of 

models, simulation runtime configuration parameters and the location for the serialised 

simulation output results.  

The Experiment Generator component is used to generate experiment 

scenarios that are either fully synthetic or which are partially based on the real data from 

a data collection framework. The use of fully synthetic models can aid in the theoretical 

exploration of resource provision strategies under alternative anticipated scenarios. This 

approach is beneficial at an early prototyping stage where real data might not be 

available. Mixed types of experiment scenarios can also be created where (for example) 

the hardware configuration models are taken from a real system, but user interactions 
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are synthetically generated to fit a specific pattern of higher demand. Such functionality 

allows for the simulation of resource allocation policy behaviour in situations that can 

occur but have not been captured yet by the data collection framework. Finally, the 

experiment generator can be used to extrapolate models and simulate large scale 

behaviour based on the smaller sized models. This functionality is particularly of use in 

cases whereby a resource allocation policy is tested on a smaller set of nodes (i.e. in a 

testbed), but it is not clear how it will perform in an actual size data centre. In this case a 

simulation experiment can be created using extrapolated system behaviour models 

based on the results gained from the initial testbed deployments, in order to test such a 

policy at a larger scale.  

5.3.2 Simulation framework design 

The design of simulation framework in Figure 5-2 is presented as five abstract 

components: Simulation Models, Simulation Engine, Progress Console, Simulation 

Results Output and Cost Model. 

The Simulation Models component represents models that capture cloud data 

centre resource configuration and resource demand relationships in a programmatic 

way. This component is comprised of an infrastructure model, workload model and 

application model. The infrastructure model describes the configuration and topology of 

resources like CPU, memory, storage and network within the cloud data centre. The 

workload model defines the amount and type of requests that are being submitted by 

users to the applications (services) which are running inside the cloud. The application 

model is a link between compute resources and user requests. It translates user requests 

into resource demands based on the type of request that is being made. The designed 

application model captures resource demand behaviour of VM as a whole, hence the 

simulation model assumes one-to-one mapping between the application model and VM. 

Such a modelling approach allows for aggregated behaviour representation of the 

resource utilisation based on type, amount and frequency rate of user requests. 

The Simulation Engine component is a discrete event simulation (DES) engine 

which manages the creation and timely execution of events that represent behaviour of 

the cloud data centre. The DES engine is comprised of standard components: a state 

engine, a system clock and an event queue. The state engine manages the state of 

variables within the simulation model during the simulation execution. The system clock 
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keeps track of simulation time needed for simulation event coordination. The event 

queue holds a list of all of the main events that will be executed during the simulation 

run. The events are arranged by their execution time and are required to proceed in the 

exact specified order. The simulation engine embodies the “brain” of the simulation 

framework whereby all of the event-based system behaviour calculations are made. 

The Progress Console diagram component represents the command line 

prompt type of user interface whereby the information about simulation progress is 

written. This information includes the stage of the simulation process, simulation time, 

and any errors or warnings that might occur during simulation execution run. The 

information in the console serves as a feedback mechanism to the user which aids in 

both understanding the progress of the simulation run and in debugging any errors that 

might occur. 

The Simulation Results component represents the final output of the cloud data 

centre behaviour calculations made during a simulation experiment execution. The 

calculations are stored in the format of time series data for each metric. It also provides 

a User Interface (UI) for human readable viewing and analysis. 

The Cost Model component provides a cost calculation method and a model 

implementation that 1) stores data centre cost related data, 2) is able to read time series 

simulation results based on which costs are calculated, and 3) generates a cost report 

based on the combined cost data (see Chapter 5.3.5 for more details). 

The format of data collected from the monitoring framework differs from the 

models used by the simulation engine. The Correspondence Model contains reference 

bindings between the simulation engine models and the monitored data models (Stier 

and Groenda, 2016). With the help of the correspondence model a translation of 

monitored data can be made to create simulation input, and in the same way simulated 

data can be translated back into the monitored data format. Such an operation is 

necessary in order to integrate the simulation framework with both the data collection 

framework and the optimisation framework. 

5.3.3 Optimisation framework integration design 

In a real cloud system an optimisation framework is responsible for placement 

decisions of newly arriving VMs, and continuous VM consolidation through migration 
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from one host to another. When a user submits a request to admit a VM to a cloud 

management platform (e.g. OpenStack), the optimisation framework is called for the 

decision on which hypervisor in a data centre the VM should be placed. In addition, the 

optimisation framework polls the cloud system monitoring data periodically to check 

whether any VM migration actions are needed according to the workload. In order to 

reflect the effects of such a runtime resource management platform within a simulation 

experiment, the simulation framework is required to be integrated with the cloud 

optimisation platform. 

Referring to Figure 5-2, since the simulation framework does not operate in real 

time, a Check and Execute routine is needed to call the optimisation framework via the 

Optimisation Framework Connector. This routine is executed periodically using the 

simulated time frame, pausing the simulation for the duration of the optimisation 

framework execution. Outside of the periodic checks, New VM Arrival Events are 

executed at a particular time specified in an input model. The rest of the VM admission 

procedure remains similar - the simulation process is paused, and the VM provisioning 

configuration is sent together with the simulated infrastructure load models. Next, the 

optimisation framework based on the given data generates an optimisation plan that 

contains VM placement instructions.  

The Optimisation Framework component represents an external resource 

management framework (described in Chapter 3.5). The Optimisation Framework 

component represents an external resource management framework (as described in 

Chapter 3.5). The framework is a single management entity that is deployed in a data 

centre as an additional service which makes decisions on VM placement, scaling and 

migration. In a runtime mode it makes decisions based on the incoming data from the 

data collection and monitoring framework. However, while in the offline mode, the 

monitored data is substituted by the simulation outputs. The external framework is 

required to have an API that can be called via the Optimisation Framework Connector 

specifically designed for such integration. 

The Simulation VMI Controller component is another optimisation framework 

integration auxiliary component that is able to parse optimisation instructions and 

transform the correspondence model based on these instructions. For example, if 

instructions received from the resource management framework stated that a VM needs 



 

 

 - 107 -  

to be migrated from one hypervisor to another, the VMI controller should apply these 

suggestions to an existing model. 

Note that in the live runtime environment the resource management framework 

works in an asynchronous way with the cloud management system, since both systems 

run in real time. However, when coupled with the simulation platform the simulation has 

its own time counting mechanism whereas the optimisation framework runs on wall clock 

time, therefore the simulation needs to be paused until the response from the 

optimisation framework is received.  

5.3.4 Runtime model design 

Creating a common cloud data centre system description format is vital for 

integration between data collection, optimisation and simulation frameworks. Having 

standard system models both reduces the effort of integration and increases the 

reliability of each individual component. By having an agreed central model data format, 

the system monitoring framework “knows” what data to collect, the resource 

management framework “knows” what data is available to use by the optimisation 

algorithms and the simulation framework “knows” what data is available for building 

simulation models. 

Entity Attributes 

Data Centre Name, ID, List of Clusters 

Cluster Name, ID, List of Racks 

Rack Name, ID, List of Nodes, List of PSUs 

Node Name, ID, List of CPUs, List of Memory, List of Storage, 

List of Network Switches 

CPU Name, ID, Frequency, List of Cores 

CPU Core Name, ID 

Memory Name, ID, Capacity 
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Storage Name, ID, Capacity, Read/Write Speed 

Network Switch Name, ID, Bandwidth, Connected Entities  

Power Supply Unit (PSU) Name, ID, Maximum Wattage, Connected Entities 

Table 5-2: List of components of physical data centre model components 

Referring to the list of requirements in Table 5-1, a hardware infrastructure model 

should include the following components: Data Centre, Cluster, Rack, Node, CPU, 

Memory, Storage, Network and Power. Each of these components has a list of attributes 

describing the configuration and topology compiled in Table 5-2. Each of the components 

has to have a unique identification assigned for programmatic processing and a Name 

attribute for human readability. The hardware model is hierarchical in nature – a data 

centre includes a list of clusters, a cluster can include a number of racks and each rack 

is comprised of a number of nodes and power supply units. For each node a hardware 

configuration is captured by describing available resources i.e. CPU, memory, storage, 

network and power. A CPU is described as a unit that operates at a certain frequency 

and has a certain number of available cores. A memory module has a certain capacity 

that is available for provisioning. A storage unit is described as an entity which has an 

available capacity and reading and writing speeds. A network switch is described as an 

entity in which the network connections are made and has network bandwidth and list of 

connected entities as attributes. 

Entity Attributes 

Hypervisor Name, ID, Node ID, Type, List of VMs, List of Network 

Switches 

Virtual Machine (VM) Name, ID, List of CPUs, List of Memory, List of Storage 

vCPU Name, ID, Number of Cores 

vMemory Name, ID, Capacity 

vStorage Name, ID, Capacity 
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vSwitch Name, ID, Bandwidth, Connected Entities 

Table 5-3: List of components of virtual data centre model components 

The hardware layer is then complimented with virtual layer entities such as 

Hypervisor, Virtual Machine, vCPU, vMemory, vStorage and vSwitch. The purpose of the 

model is to capture the configuration for each virtual machine in terms of required 

resources, model entities and attributes are shown in Table 5-3. The hypervisor entity 

provides a link between physical and virtual resources with direct link to a specific 

hardware node in the data centre. Since a VM in reality creates virtual environment which 

emulates real hardware, the resource configuration remains similar to the one shown in 

the hardware model. 

Entity Attributes 

CPU Core Name, ID, Utilisation level 

Memory Name, ID, Utilisation level 

Storage Name, ID, Utilisation level 

Network Switch Name, ID, Utilisation level 

Power Supply Unit (PSU) Name, ID, Utilisation level 

Table 5-4: Resource utilisation model components 

The infrastructure model can be separated into two parts – the hardware layer 

and the virtual layer. The hardware model describes a configuration of a physical 

infrastructure while a virtualised layer captures resources assigned to VMs. The resource 

demand data within a cloud data centre is dynamic and changes with the fluctuation of 

user demand, therefore the utilisation data should be captured using a separate set of 

models that contain only utilisation rates for hardware and virtual resource models. The 

utilisation model design, shown in Table 5-4, focuses on including only resources and 

their utilisation data. Each resource is then linked by a unique ID to the hardware and 

virtual model components. Separation of utilisation data from rarely changing 

configuration data makes models lighter and therefore faster to generate, store and pass 

around the services.  
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A workload model describes the amount and frequency of user requests sent to 

a cloud application and can be seen as part of the application model itself. The 

assumption is that each application has a usage pattern that reflects user demand for a 

particular simulation experiment. Such workload information can be captured by the data 

collection framework from the live system or generated by the Experiment Generator 

component for describing against corner cases that occur rarely but need to be 

anticipated. 

An application model defines the resource demand of an application deployed in 

a cloud data centre. Depending on the nature of the application, its behaviour will exhibit 

different resource demand patterns. Application types can range from a simple single 

VM deployment to a more complex distributed multi-tier software design spanning across 

multiple VMs. Different user interactions can trigger different application components 

resulting in a different resource demands depending on the user request path through 

the application components. An application model in simulation creates a link between 

user requests and cloud resource demand requirements. 

Entity Attributes 

Application Component Name, ID, Execution probability 

CPU demand Million Instructions (MI) 

Storage demand Amount of data read/written 

Inputs List of application components 

Outputs List of application components 

Table 5-5: Application model components 

Each application can be broken down into different interconnected components, 

the design shown in Table 5-5 describes these. Each application component has an 

execution probability attribute which determines how likely it is that this component will 

take part in processing a user request. To process a user request within a component, a 

certain amount of resources is required shown in the attributes of CPU and storage 

demand. A CPU demand is expressed in Million Instructions (MI) and storage demand 

is expressed in the amount of data that require to be written or read. The last two entities 
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(input and output) contain a list of other application components that are connected to 

this component forming a path that a user request can traverse. 

5.3.5 Cost model design 

By simulating the impact of resource provisioning policies on cloud system 

behaviour, better power consumption demands and equipment utilisation levels taking 

into account performance variability can be estimated. Power consumption is a direct 

operational metric that data centre operators typically try to reduce in order to save on 

costs and become more eco-efficient. From a cost perspective, underutilised compute 

resources are also considered to be wasteful through the loss of value from depreciation 

over time. 

The cost models described here are aimed at providing data centre Total Cost of 

Ownership (TCO) calculations based on a combination of data obtained from a cloud 

data centre hardware infrastructure configuration, overtime resource utilisation data and 

financial data on the cost of the equipment, energy, property, labour and other expenses. 

The hardware infrastructure and time series utilisation models (shown in table Table 5-2, 

and Table 5-4) provide the foundation for cost calculations. Additional data relating to 

cost may typically be obtained from the accounts payable department, financial reports 

extracted from an Enterprise Resource Planning (ERP) system or inferred from market 

research in cases where no real cost data is available.  
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Figure 5-3: Cloud data centre cost model design 

The cloud data centre cost model given in Figure 5-3 is designed by mapping 

overlapping features of TCO models (presented in the literature review in Chapter 2) on 

top of hardware infrastructure entities (presented in Table 5-2). Referring to Figure 5-3, 

the cost model separates the data centre as a whole physical location and the data hall 

where the compute nodes and subsequently virtualised resources are located. The data 

centre represents a whole physical space that is taken not just by a server room, but also 

other auxiliary utility space needed to host data processing and hosting equipment. For 

example, personnel who works on site require additional facility space such as office 

room, a canteen, meeting rooms and parking lots. Also, additional equipment such as 

cooling solutions, emergency electricity generators and firefighting gear all requires 

additional space. A data hall is an area where compute nodes and network switches are 

placed inside racks. Apart from space, equipment in a data hall also requires technical 

staff, power and cooling to operate. The cost model enables the calculation of TCO 
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based on the direct expenses of operating a data hall and the secondary expenses 

associated with running a whole data centre premises. 

 

Figure 5-4: Cost model data flow diagram 

The data flow diagram shown in Figure 5-4 illustrates the inputs and output 

components together with the direction of data exchange. Based on the use case 

(experiment) to be simulated, data from human resources (HR) personnel cost records 

and asset data such as asset age and cost is being collected into the cost model. Within 

the cost model HR and asset data is mapped onto runtime models that describe an 

internal configuration of hardware. In the next step the simulation is executed based on 

the cloud data centre runtime models and selected resource optimisation strategy. 

Simulation results also are then parsed inside the cost model alongside the runtime 

model assets. Once all of the data has been obtained the cost model can be used to 

produce a cost report containing: TCO, Servers cost, Server Power cost (Power 

consumption), Cooling power cost, Personnel cost and Maintenance cost. 

5.3.6 TCO calculation 

To calculate TCO using information provided within a cost model, specific 

mathematical formulas are required to transition from individual expense items and 

compute resource utilisation data to a TCO figure. The TCO calculation formulas 

presented in this section are based on a modified version of the work of Simonet, Lebre, 

et al., (2016) which calculates cloud data centre TCO in a clear and logical manner. 

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑠𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 𝐶𝑜𝑠𝑡𝑠𝑒𝑟𝑣𝑒𝑟𝑠 + 𝐶𝑜𝑠𝑡𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 
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+𝐶𝑜𝑠𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘 + 𝐶𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦 (1) 

As shown in Equation 1 the authors define TCO as a sum of cost of facilities, servers, 

maintenance, network and energy. However, in the course of this research some of the 

underlying formulas were modified to incorporate simulation results and different 

methods of labour and facilities cost estimations. New calculation methods proposed in 

this thesis enable the use of simulation derived energy consumption data to be included, 

in turn providing more precise energy consumption estimation within TCO. Formulas for 

calculating the cost of labour and facilities were altered include cost information in 

relation of size of the physical site of a data centre. Standard amortization constants, 

shown in the Table 5-6, were used to account for resource depreciation over time, 

however these can be adjusted depending on the best practices of an individual 

enterprise. 

Constant Type Value 

As Servers, routers and switches 5 years 

Am Racks and cables 10 years 

Al Buildings 20 years 

Table 5-6: Amortization constants (Simonet, Lebre, et al., 2016) 

It is worth noting that the Time Value of Money (TVM) concept can be considered 

when performing amortization calculations. The TVM calculates the interest that can be 

earned over the period of time. For example, if money is lodged into a savings bank 

account that earns interest, the sooner the lodgement occurs the more interest value can 

be earned. The fundamental TVM formula is:  

FV = PV × (1 +
𝑖

𝑛
)(𝑛×𝑡) 

where FV - is future value of money, PV - present value of money, i - interest rate, n - 

number of compounding periods per year and t – number of years (Investopedia, 2019). 

While the TVM can be used to increase the precision of cost calculation, it is not used 

within the presented work to be consistent with the existing TCO models. 

Facilities 

Facilities are all of the auxiliary premises and equipment outside of a data hall 

needed to keep servers running. Examples of premises can include staff offices, 

canteens, parking or any other functional space. Auxiliary equipment can include voltage 
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transformers, diesel electricity generators, cooling equipment and fire supressing 

system. The proposed TCO model estimates the overhead cost of facilities per number 

of racks hosted inside a data hall. In such a way an estimate of cost can be obtained for 

a part of the data centre without the need to model and simulate the full infrastructure 

stack inside the data hall. 

𝐶𝑜𝑠𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑠𝑞𝑚
=

𝐶𝑜𝑠𝑡𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑆𝑖𝑡𝑒𝑎𝑟𝑒𝑎

(2) 

𝐷𝑎𝑡𝑎ℎ𝑎𝑙𝑙𝑎𝑟𝑒𝑎 = 𝑅𝑎𝑐𝑘𝑎𝑟𝑒𝑎𝑠𝑞𝑚
× 𝑁𝑟𝑎𝑐𝑘 × 𝐾𝑠𝑝𝑎𝑐𝑒 (3) 

The connection between the cost of facilities and the number of racks is made 

through the area of space the rack occupies within the data centre. First the cost of whole 

building facilities is divided by the total site area where the data centre is built.  

𝐶𝑜𝑠𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝐶𝑜𝑠𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑠𝑞𝑚
× 𝐷𝑎𝑡𝑎ℎ𝑎𝑙𝑙𝑎𝑟𝑒𝑎 × 𝐴𝑡 (4) 

Second, the rack base area is multiplied by number of racks and then by the square 

meter facilities cost. However, in the data hall racks are spaced out to form corridors for 

access and air flow, therefore a space coefficient (Kspace) is added to the multiplication to 

account for additional space requirements beyond the base of rack area. Finally, the 

amortisation multiplier is added to establish the yearly cost according to predicted 

depreciation. 

Support and Maintenance 

The function of support and maintenance is performed by employees that are 

involved in running the data centre. On-site job positions typically include the facilities 

technicians, hardware operations engineers and mechanical engineers. These roles 

would also range in seniority from an assistant to a managerial level. The number of 

employees would vary from site to site depending primarily on the size of the site. 

𝑁𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑠𝑞𝑚
=

𝑁𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠

𝑆𝑖𝑡𝑒𝑎𝑟𝑒𝑎

(5) 

To get an estimation of the labour cost for a fracture of a data hall area, firstly the 

number of employees per square meter is determined by dividing the total number of 

data centre employees and the area of the data centre.  

𝐶𝑜𝑠𝑡𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 𝐷𝑎𝑡𝑎ℎ𝑎𝑙𝑙𝑎𝑟𝑒𝑎 × 𝑁𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑠𝑞𝑚
× 𝑆𝑎𝑙𝑎𝑟𝑦𝑎𝑣𝑔 (6) 
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Secondly, the annual cost of support and maintenance (Costmaintenance) is estimated by 

calculating the data hall area (Datahallarea) multiplied by the number of employees per 

square meter (Nemployees_sqm) and multiplied by the average salary of all of the employees 

(Salaryavg). 

Servers 

Racks contain server nodes and switches that compose the core function of a 

cloud data centre. The controller nodes are responsible for hosting VM management 

software, compute nodes are responsible for hosting VMs and providing computing 

power in form of CPU and memory, whereas storage nodes host a multitude of solid 

state or hard drives to provide reliable storage that can be attached (mounted) to the 

compute nodes. 

𝐶𝑜𝑠𝑡𝑠𝑒𝑟𝑣𝑒𝑟𝑠 = 𝐶𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑟 + 𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝 + 𝐶𝑜𝑠𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (7) 

The total cost of servers (Costservers) hosted in the data hall can be expressed by 

a total cost sum of controller(Costcontr), compute (Costcomp) and storage (Coststorage) 

nodes. 

𝐶𝑜𝑠𝑡𝑐𝑜𝑛𝑡𝑟 = 𝑁𝑐𝑜𝑛𝑡𝑟 × 𝑃𝑐𝑜𝑛𝑡𝑟 × 𝐴𝑠 (8) 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝 = 𝑁𝑐𝑜𝑚𝑝 × 𝑃𝑐𝑜𝑚𝑝 × 𝐴𝑠 (9) 

𝐶𝑜𝑠𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑁𝑠𝑡𝑜𝑟𝑎𝑔𝑒 × 𝑃𝑠𝑡𝑜𝑟𝑎𝑔𝑒 × 𝐴𝑠 (10) 

The yearly total cost for each node type can be calculated by multiplying the 

number of nodes by price per node and amortisation value. 

Network 

The switches are responsible for network traffic routing between server nodes 

and are calculated separately as part of network equipment. 

𝐶𝑜𝑠𝑡𝑖𝑛𝑡𝑟𝑎𝑛𝑒𝑡 = 𝑁𝑠𝑤𝑖𝑡𝑐ℎ × 𝑃𝑠𝑤𝑖𝑡𝑐ℎ × 𝐴𝑠 (11) 

The total costs per year of network equipment (Costintranet) inside data centre 

racks are calculated by multiplying the number of switches (Nswitch) by the price of each 

switch (Pswitch) and equipment amortisation (As). 

𝐶𝑜𝑠𝑡𝑐𝑎𝑏𝑙𝑒𝑠 = 𝑁𝑠𝑤𝑖𝑡𝑐ℎ × 𝑃𝑐𝑎𝑏𝑙𝑒𝑠 × 𝐴𝑚 (12) 
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The total yearly network cable costs are calculated by multiplying the number of 

switches (Nswitch), price of cables (Pcables) per switch and the appropriate amortisation 

value (Am) which is different to the equipment amortisation As. 

Power 

The cost of power consumed by the compute nodes in a cloud data centre is 

calculated by the use of the simulation framework. The employed linear power model 

(Fan, Weber and Barroso, 2007) relies on the measured minimum and maximum node 

power consumption values and the CPU utilisation. Through the use of a linear formula 

the power consumption P(u) can be obtained by adding a gradient difference in power 

consumption calculated using the CPU utilisation factor u. 

𝑃(𝑢) =  𝑃𝑖𝑑𝑙𝑒 + (𝑃𝑏𝑢𝑠𝑦 − 𝑃𝑖𝑑𝑙𝑒) × 𝑢 (13) 

The Pidle value corresponds to a measured power draw of an idle system and 

Pbusy value corresponds to the measured maximum power consumption at 100% of CPU 

utilisation. 

𝑃𝑐𝑜𝑚𝑛𝑜𝑑𝑒
= ∑ 𝑃(𝑢𝑡) ∗ 𝑡𝑖𝑛𝑡

𝑠𝑖𝑚𝑒𝑛𝑑

𝑡=𝑡𝑖𝑛𝑡

(14) 

Each P(u) calculation is made at a certain time interval depending on the 

simulation granularity setting. The total power draw for the whole compute node within 

the duration of a simulation experiment would be the sum of all of the measured intervals 

with the assumption that the power draw remains constant for the duration of the whole 

interval until the next measurement takes place. The calculated value of Pcomp_node 

measures power consumption in Watts per second or Joules. 

𝐸𝑐𝑜𝑚𝑝𝑛𝑜𝑑𝑒
=

𝑃𝑐𝑜𝑚𝑝𝑛𝑜𝑑𝑒

1000 × 602
 (15) 

To convert Joules into more a domestically common kWh value, Pcomp_node is 

divided by the number of seconds in an hour, 3600, and 1000. The value Ecomp_node 

represents the cumulative energy consumption of a single compute node for the duration 

of a simulation experiment measured in kWh. 

𝐸𝑐𝑜𝑚𝑝 = ∑ 𝐸(𝑥)𝑐𝑜𝑚𝑝𝑛𝑜𝑑𝑒

𝑁𝑐𝑜𝑚𝑝

𝑥=1

(16) 
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Total energy consumption is expressed by the Ecomp value which is the sum of 

cumulative energy consumption Ecomp_node for every compute node in the cloud data 

centre. 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝 = 𝐸𝑐𝑜𝑚𝑝 × 𝑃𝑘𝑊ℎ (17) 

To translate the energy into cost, the total energy Ecomp is multiplied by the kWh 

cost obtained from the local energy provider. The Costcomp value is the total monetary 

value of the energy consumption for the all compute nodes in the cloud data centre within 

the duration of simulation experiment. 

Aside from the compute nodes the power in cloud data centre racks is also 

consumed by the switches, controllers and storage nodes. Simulation of the behaviour 

and power consumption of mentioned auxiliary entities is outside the scope of the 

research in this thesis.  

𝐸𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐸𝑠𝑤𝑖𝑡𝑐ℎ × 𝑁𝑠𝑤𝑖𝑡𝑐ℎ + 𝐸𝑐𝑜𝑛𝑡𝑟 × 𝑁𝑐𝑜𝑛𝑡𝑟 + 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 × 𝑁𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (18) 

However, it would be impractical to completely dismiss other node energy 

demands, therefore these calculations are estimated b static power consumption data 

defined in the equipment specification. The formula shows Estatic being calculated 

multiplying number of nodes by type and summation of all of the results. 

𝐶𝑜𝑠𝑡𝑠𝑡𝑎𝑡𝑖𝑐 =
𝐸𝑠𝑡𝑎𝑡𝑖𝑐

1,000
× 𝐻𝑜𝑢𝑟𝑠𝑠𝑖𝑚 × 𝑃𝑘𝑊ℎ (19) 

The conversion of all static energy estimation into costs is expressed by Coststatic 

value where total estimated static power consumption is converted to kWh energy value 

and multiplied by PkWh price per kilowatt hour. 

The cost of cooling is modelled by using a PUE measure and equals the 

multiplication of total energy consumption by the PUE value. 

𝐶𝑜𝑠𝑡𝑐𝑜𝑜𝑙𝑖𝑛𝑔 = 𝐶𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦 × 𝑃𝑈𝐸 (20) 

The PUE value shows the relative energy needed to cool nodes inside a rack 

inside a data hall area. The detailed cooling energy estimation is outside the scope of 

this work and PUE value is used as an indicator. 

𝐶𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑝𝑠𝑖𝑚 + 𝐶𝑜𝑠𝑡𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐶𝑜𝑠𝑡𝑐𝑜𝑜𝑙𝑖𝑛𝑔 (21) 
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Finally, the total compute node simulated costs are added to the static estimated 

costs to form the total figure of the energy draw from the operational racks in a cloud 

data centre. The Costenergy value represents a monetary cost of energy consumed within 

the data hall area of cloud data centre. 

The described new TCO calculation methods provide new features through the 

use of power measurement time series data for calculating data hall energy costs and 

estimates of maintenance and facilities costs based on the data hall general area size. 

New features enable the use of simulated time series data directly with the TCO 

calculation making it easy to use simulation generated data together with costs. Data hall 

size bound maintenance and facilities cost estimations allow for the generation of 

approximations based on cost per square metre. These approximations can be used 

when granular cost data is not available for a particular data centre but is available for 

an alternative one that can be mapped via a size conversion.  

5.4 Implementation 

The implementation of the simulation framework inclusive of integration with the 

data collection framework and optimisation framework was accomplished via the 

CACTOS FP7 project, presented in Chapter 3. The three tools developed during the 

project (CactoScale, CactoOpt and CactoSim) serve as data collection, resource 

provisioning and simulation frameworks respectively. This section re-iterates some of the 

implementation decisions made during project across all the toolkits, with a specific focus 

on the simulation framework (CactoSim) implementation. 

5.4.1 Simulation framework implementation 

The CactoSim simulation platform developed and used for this thesis is based on 

the Palladio simulator (Rathfelder and Klatt, 2011). The Palladio simulator is purposely 

designed to support improvement in software quality at design stage, which it 

accomplishes through simulating the behaviour of software component-based 

architectures. The simulator is written in the Java language as a series of plugins for the 

Eclipse Integrated Development Environment (IDE) (The Eclipse Foundation, 2018b). 

Palladio features are based on the Eclipse Modelling Tools (The Eclipse Foundation, 

2018c) collection as a UI platform for aiding in model development, visual model design, 

simulation experiment configuration and simulation result visualisation. An actual Eclipse 
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based Palladio UI example screenshot is given in Figure 5-5. The left-hand side panel 

represents a list of projects containing a list of files that contain models and their visual 

representation. The middle panel shows an interactive model visualisation, and the right-

hand side panel shows available elements that can be used with the particular model 

type. 

 

Figure 5-5: Palladio UI example running on Eclipse IDE 

As mentioned in Chapter 3, at the core of the Palladio simulation framework is 

Palladio Component Model (PCM) which consists of specific sub-models: component 

model, composition model, resource environment model, deployment model, and usage 

model. The PCM is implemented using Eclipse Modelling Framework (EMF) which 

allows for the separation of the meta-model design and the model code implementation 

through automatic code generation. For event orchestration uses the SimuCom 

simulation engine which is based on Desmo-J, a general purpose DES engine (Lechler 

and Page, 1999).  

Similar to Palladio the CactoSim simulation framework is written also as a 

collection of plugins for an Eclipse IDE using Eclipse libraries for creating UI components 

for experiment handling operations such as project creation, model creation, serialisation 
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and maintenance (see Chapter 5.5). CactoSim extends existing Palladio functionalities 

by introducing cloud data centre specific runtime models, integration with a data 

collection framework and integration with the resource management framework. 

5.4.2 Runtime model implementation 

While PCM has a notion of nested hardware components within the Resource 

Environment model, it lacks model entities and attributes that specifically describe 

compute hardware configuration (e.g. CPU frequency, memory capacity, I/O speed) and 

virtual layer of cloud computing (e.g. Hypervisor, VM). To address that, a lists of 

components describing the cloud data centre system presented in Table 5-2, Table 5-3 

and Table 5-4 were implemented as the following models: Physical Data Centre Model 

(PDCM), Logical Data Centre Model (LDCM), Physical Load Model (PLM) and Logical 

Load Model (LLM). As the names suggests, PDCM describes hardware configuration 

and topology, LDCM describes VM configuration and placements, PLM captures 

utilisation of physical hardware and LLM captures utilisation of virtual hardware 

monitored from inside of each VM (See Chapter 3 for more detail). These models were 

created by using a Model-Driven Software Development (MDSD) process which consists 

of a meta-model definition stage which formalises model entities, their attributes and 

dependencies, and an actual model source code generation based on mentioned meta-

model. The MDSD model is essentially a generated software code that can be used to 

programmatically create model instances as programming class objects, their methods 

and their attributes. The MDSD technique is used to create a central model definition 

instance that enables the avoidance of any discrepancy between an abstract model 

design and an actual implementation. The Java language-based Eclipse Modelling 

Framework (EMF) was chosen as an implementation medium that supports the MDSD 

approach, and also due to compatibility with PCM. EMF consists of three main 

components: a meta model (Ecore), EMF.Edit and EMF.Codegen. Ecore provides a core 

framework functionality for defining a meta model description, model persistence through 

XMI serialisation and reflective API for managing EMF objects. The EMF.Edit is a 

framework that enables integration through reusable classes with the editors of EMF 

models. Finally, the EMF.Codelgen represents a code generation facility that creates the 

Ecore metamodel automatic translation into the source code (Eclipse Foundation, 2018). 
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Due to its intentional component design the CACTOS runtime model serves as a 

standard data exchange format across all of the tools. CactoScale gathers data from the 

live system in accordance with the requirements of a runtime model, CactoOpt 

implements resource optimisation policies using the data in the runtime model and 

CactoSim bases the simulation experiments on the same data. Since the data format is 

shared amongst all of the CACTOS tools, the implementation is made in a form that can 

be used by all the tools, supporting the functional requirements of the project as a whole. 

5.4.3 Data collection framework integration implementation 

CactoScale was used as a data collection framework to create runtime models 

and effectively simulation models based on both immediate and historical data. The 

implementation of CactoScale was based on polling data from Chuckwa agents into a 

distributed Hadoop Distributed File System (HDFS) placed on dedicated data storage 

and processing nodes. 

 

Figure 5-6:CactoScale architecture  

As shown in Figure 5-6, the data flows from agents collecting hardware, VM 

configuration and topology information to HDFS nodes, where further it is queried by the 

EMF Instance Creator component and pushed into the CDO Runtime Model Storage. 

The Eclipse CDO (Connected Data Objects) Model Repository allows for “on-the-fly” 

EMF model creation and persistence by providing 3-tier architecture that includes 

support for EMF client, model storage and pluggable backend database solutions (The 
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Eclipse Foundation, 2018a). The CloudScale HDFS data collection plays a role of the 

backend data base which is parsed through CDO and exposed in the format of CACTOS 

runtime models (discussed in Section 3.6 and Section 5.4.2).  

 

Figure 5-7: Sequence diagram of interaction between CactoSim and CDO runtime 

model storage 

In order to obtain these CDO based EMF runtime models, CloudSim implements a CDO 

client whose sequence diagram is given in Figure 5-7. The CactoSim CDO client is first 

required to establish a connection through providing a CDO server address and 

credentials. Once the connection is established the CDO View object is returned, using 

this object the client can get both Physical and Logical data centre models. Once the 

model retrieval operation is finished the connection is closed and the models are 

serialised inside the Eclipse project workspace. A full UI walkthrough on how to retrieve 

runtime models from a CDO repository using CactoSim can be found in the User 

interface Section 5.5. 

5.4.4 Optimisation framework integration implementation 

The CactoSim simulation framework is integrated with the optimisation 

framework, CactoOpt, so as to simulate the self-managing properties of an autonomous 

cloud system. CactoOpt is a resource management framework that uses optimisation 

techniques in order to achieve certain objectives such as cost, energy efficiency and 
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performance given certain QoS constrains. In addition, the CactoOpt framework can be 

seen as a wrapper around optimisation functions that are used for the VM placement 

and continuous VM location optimisation at real time inside real system deployment. For 

example, when a user creates a VM, CactoOpt decides to which node in a cloud data 

centre this VM will be assigned. The continuous optimisation polls the cloud system state 

from the data collection framework and decides if any VMs need to be migrated to other 

nodes in order to assure optimal system performance, within the set optimisation goals.  

 

Figure 5-8: Continuous optimisation interface API  

The simulation framework can mimic the continuous optimisation method by 

calling the optimisation framework and specifying an optimisation policy and the set time 

interval within the simulation experiment configuration. In Figure 5-8 a Java code 

interface snippet is shown which is extended by every continuous optimisation algorithm 

to make a call standard across every algorithm implementation. The interface expects to 

receive runtime system models consisting of a physical data centre model, a logical 

model and the load of physical and logical hardware at the time of the call. These models 

are populated with the simulated data using the same format as the real system. 
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Figure 5-9: Sequence diagram of interaction between CactoSim and resource 

management framework CactoOpt 

The sequence diagram shown in Figure 5-9 shows the calls stack occurring 

inside the integration logic between CactoSim and CactoOpt. Once the periodic stop time 

occurs the simulation framework is paused, and the simulated load data is extracted from 

PCM and populated as CACTOS runtime models instances. Then the optimisation 

algorithm is evoked using the interface data structure presented in Figure 5-8. Once the 

request is processed the optimisation plan is returned back to the CactoSim and is 

implemented in both CACTOS runtime models and PCM by using the CactoSim VMI and 

PCM VM components respectively. After the optimisation plan is enacted onto both 

models the simulation process is resumed using the updated models.  

 

Figure 5-10: CactoOpt VM placement API 

During the regular day to day cloud data centre operation the new and existing 

users typically create new VMs and close running VMs. In reality, during these new VM 
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admission requests the cloud management system (such as OpenStack) would send a 

request to CactoOpt to ask for decision support as to where the new VMs need to be 

admitted. To reflect this in the simulation environment the model of new VMs is submitted 

to CactoSim containing new VM configurations and starting times. The VM placement 

functionality of CactoOpt is then triggered using the VM placement API shown in Figure 

5-11. During the placement call the simulation data is converted into the CACTOS 

runtime model. This is sent to a selected placement policy together with the list of VMs. 

Once the placement policy has processed the request, an optimisation plan is sent back 

with the placement decisions for the new VMs.  

 

Figure 5-11: Sequence diagram of placement algorithm execution 

The sequence of steps shown in Figure 5-11 includes calls within CactoSim to 

the placement connector to determine the placement algorithm to use based on the 

information specified by the user in the simulation experiment. The optimisation plan is 

then pushed to the CACTOS runtime models and PCM using the VMI as shown in Figure 

5-9. 

place(vm)

:PlacementSettings
placementAlgo: 

Placement 
Algorithm

:Placement 
Connector

Optimisation Plan 
Optimisation Plan containing VM Placement Steps

Enact Placement Steps

:Runtime 
Management 

Simulation



 

 

 - 127 -  

 

Figure 5-12: Optimisation Plan model (Krzywda, Ali-Eldin, et al., 2014) 

The Optimisation Plan model is also implemented using EMF technology which 

helps to enforce data standardisation and integrates with other EMF based CACTOS 

runtime models. As given in Figure 5-12 the optimisation plan consists of optimisation 

steps that can be executed sequentially or in parallel with no particular order. Each 

optimisation step can be expressed as VM placement, VM migration, VM vertical scaling 

and VM start/stop/suspend action. The VM placement action contains information on VM 

resource configurations such as vCPU, storage, memory and information about the 

hypervisor where the VM should be placed. The VM migration action contains a source 

host where a VM is currently located and a target host where a VM should be moved. 

The remaining actions contain the attribute updates for a VM object that need to be 

enacted in the system.  

5.4.5 Cost model implementation 

The cost model is implemented in conjunction with the CACTOS runtime model 

to get the list of the equipment in the data centre data hall area and the utilisation time 

series data. For consistency and ease of integration the EMF technique was used to 

produce an Ecore based meta model. 
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Figure 5-13: Cost model root element class diagram 

Referring to Figure 5-13, the root model element CostModel has two attributes: 

a unique, generated identifier, and a human readable name. In addition, the model 

includes six repository elements: ActivityRepository, RentCostRepository, 

EnergyCostRepository, EmployeeRepository, DataHallRepository and 

ProjectRepository. Each “repository” element represent a collection of elements and their 

attributes that used within the cost model. 

The employee records their working time spent on different tasks in the data 

centre. Time entries would be then recorded against an ongoing project denominator. By 

using this arrangement, costs are separated by type of task and by the project allowing 

for more granular reporting and cost analysis. This data structure was chosen to fit the 

commonly followed ERP timesheet recording pattern, to allow for easy mapping with the 

cost model elements. 

 

Figure 5-14: Employee repository class diagram 

The EmployeeRepository, shown in Figure 5-14, contains a list of people that are 

working on the tasks related to data centre operations. Each Employee object contains 

a unique ID number, name and their pay per hour rate. 
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Figure 5-15: Activity repository class diagram 

The ActivityRepository object, shown in Figure 5-15, contains the list of tasks that 

an employee can perform. The task type contains ID attribute and a Name attribute and 

are further branched into more detail activity types. The ActivityType object contains also 

an ID and a Name attributes plus an additional attribute of additional cost per hour. The 

additional cost is available for accounting for activities that result in complimentary cost 

compensation to an employee, such as night shift, overtime or working during holidays.  

 

Figure 5-16: Project repository class diagram 

The ProjectRepository object, shown in Figure 5-16, contains the list of ongoing 

projects in context of operations inside a cloud data centre. Each Project object inside 

the repository has an ID and Name attribute and also a time spent by employees working 

on the project recorded by a list of TimeEntry objects. The TimeEntry contains 

information on how much time each employee spent working on a particular project 

performing what task. Each TimeEntry provides a link between Employee, Project and 

TaskType enabling labour cost to be broken down to report on a project and task type 

level. 
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Figure 5-17: Energy cost repository class diagram 

Apart from labour, the cost of hardware must be accounted for by taking into 

account the costs of energy and property. To capture a range of prices and price plans 

offered by a number of suppliers the EnergyCostRepository object, shown in Figure 5-17, 

enables the maintaining of a list of electricity providers by hosting a collection of 

EnergyPrices objects that has ID, Name and CostPerKw attributes. In addition, to 

account for overtime price fluctuations, the EnergyCostTimeSeries can capture price 

variations over the time of a single energy price plan and incorporate that with the 

simulation model.  

 

Figure 5-18: Rent cost repository class diagram 

Similar to the energy cost repository, the RentCostRepository captures a list of 

rent prices per square meter. Each entity of RentPrices can reflect the property price for 

a specific geographical area or a quote received from different lenders. Also, as rent 

prices can fluctuate time series data can be created to account for drops and rises in 

costs.  

 



 

 

 - 131 -  

 

Figure 5-19: Data hall repository class diagram 

The DataHallRepository object, shown in Figure 5-19, contains a collection of 

DataHall objects that represent an area within a data centre premises where the compute 

resources are situated. The DataHall object contains ID, Name, AreaSqMeters, 

RentLocation and EnergySupplier attributes. The area estimation is used for the rent 

cost calculation and the data of an energy supplier is used for electricity bill calculations. 

The cooling equipment energy consumption is not part of simulation, but estimated costs 

can still be accounted for by using Power Usage Effectiveness (PUE) ratio coefficient or 

if the cooling system or a direct measurement of power consumption for a specific period 

of time. The cost model provides a Cooling object that contain both PUE and 

TotalWattsUsed attributes to hold such data if it is available.  



 

 

 - 132 -  

 

Figure 5-20: Rack repository class diagram 

The RackRepository object, shown in Figure 5-20, is also a part of the DataHall 

object. It contains information on the number of physical racks and the number of 

physical nodes within each rack. Each Rack element has an ID and Name, base аrea 

measurements, corridor assignment, a total of slot number, an occupied slot number and 

a collection of nodes. The base area measurement, corridor assignment, and slot 

capacity information is available for spatial layout planning variations where nodes 

information is used for hardware acquisition and exploitation cost estimation. The Node 

model object contains the cost information for depreciation, energy, resource utilisation 

and software licence calculations. The energy and resource utilisation metrics are 

contained in a form of time series data that is taken from the CACTOS runtime models.  
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Figure 5-21: Cost model EMF based implementation UI screenshot 

The implemented cost model also is available to view through a standard EMF 

graphic user interface. An example of populated cost model is shown in Figure 5-21, 

which shows a hypothetical Dublin based data centre instance. The “Dublin DC” consists 

of two data halls “EastWing” and “WestWing” each having its set of racks, VMs and 

cooling configuration. Each data hall can be assigned to an electricity provider and can 

be placed in “Dublin 24” or “Dublin 9” district rent price range. There are also four 

employees “John”, “Brian”, “Maria” and “Aoife” that can perform tasks of “Software 

Engineering” or “Hardware Replacement/Maintenance” for either “Daily Operation” 

project or the “Data Hall Upgrade” project.  
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5.5 User interface  

The CactoSim simulation platform is designed for offline user interaction in the 

form of model acquisition, model design/modification, simulation experiment 

parameterisation and result analysis. The User Interface (UI) plays an important role in 

providing access to all of the previously mentioned functionality as well as to overall user 

experience and simulation framework adoption. The following section provides an 

illustrated step-by-step structured walkthrough describing the core UI functionality of the 

CactoSim implementation. 

CACTOS Runtime model acquisition 

 

Figure 5-22: Acquire runtime model - import 

The model is acquired from the data collection framework (CactoScale) through 

a CDO powered API using the standard Eclipse project import functionality. To access 

this option in the UI, a user must navigate to the “File-Import” menu and from the “Import” 

dialog window select the CactoSim import function section and select “Runtime Model 

Storage to Workspace” option and click “Next”, as shown in Figure 5-22. 
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Figure 5-23: Acquire runtime model – CDO connection 

In the next screen, shown in Figure 5-23, the user is prompted to supply the address and 

access credentials required to establish a connection with CDO server. The connection 

details include the address name and the port number of CDO server, name of CDO 

repository and name of the folder on the server where the models are located. The 

credentials consist of username and password. Both credentials and CDO repository 

configuration details must be provided by the CDO server administrator with a minimum 

of a Read access level. 
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Figure 5-24: Acquire runtime model – final result 

If the configuration details and credentials were correct the session will be 

established with the CDO server and models will be serialised in form of EMF core files 

to the newly created Eclipse project. Each model can then be viewed and modified if 

needed or used directly “as-is” to perform simulation experiments. Figure 5-24 shows the 

final result of model acquisition from the CactoScale framework running inside of a live 

testbed environment. 

Creating model elements 

Each model can be modified or created completely from scratch using the UI. To 

add a model element the user can right click on an element and add a new child element 

or add a new sibling element. 
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Figure 5-25: Adding new VM element to the runtime model 

The screenshot shown in Figure 5-25 illustrates the means of adding an 

additional VM to a Hypervisor object within the Logical DC model. Once the Virtual 

Machine element is added it also requires parameterisation of other composite elements 

within the VM object such as application model, image instance, memory and processing 

unit elements. 
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Figure 5-26: Logical data centre model VM parameters 

Figure 5-26 illustrates an implementation example for the VM model instance 

content. Each element’s attributes are displayed in the “Properties” UI panel and can be 

modified at the same location. In the example the added VM configuration consists of a 

local storage allocation of 30 GB, 512 MB memory, 2 GHz CPU and is mapped to a 

“Wikipedia” type of application model. 
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Figure 5-27: Physical data centre model node parameters 

Similar to a VM, a compute node also can be added or modified within the model. 

The example shown in Figure 5-27 shows a new node entity being added to the CACTOS 

physical data centre model implementation. The added node has a hardware 

configuration provided which describes available storage, memory, and CPU 

capabilities. Since the hardware node energy consumption can be measured the energy 

bindings of hardware resources are also captured within the model. 

Simulation Engine Parameters 

After the cloud data centre models are created the simulation experiment can be 

executed. In addition to the simulation models, a simulation engine also requires 

additional configuration parameters for running the simulation experiment. 
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Figure 5-28: Simulation engine configuration 

The Simulation engine parameters for CactoSim were implemented using the 

standard Eclipse UI library for creating a run configuration. The user is able to access 

this functionality from the top menu option by clicking on “Run -> Run Configurations”, 

right click on the “CactoSim” menu entry and selecting the “New” option. As shown in the 

Figure 5-28 a user is required to specify the type of simulation engine, the persistency 

framework for results storage, the storage location and simulation termination conditions. 

“SimuLizar” and “EDP2” are the only options available for CactoSim for the simulator and 

the persistence framework respectively. However, the result location can be saved in a 

specific file on disk in the Eclipse workspace or held temporarily in Random Access 

Memory (RAM). There are two available simulation termination conditions, the amount 

of measurement or the simulation time limit. If the user only requires one of these to be 

used, the other field must be set to “-1” to be ignored by the simulator. 
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Figure 5-29: Simulation information console 

During the simulation process execution, the Eclipse console functionality is 

implemented to provide user information about the progress of the simulation 

experiment. As shown in Figure 5-29, the user is provided with the information on model 

creation, simulation duration, task execution and memory management. 
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Figure 5-30: Simulation result analysis 

After the simulation experiment run completes the simulation results are available 

under the PCM Results view which is part of Palladio and implemented using Eclipse UI 

libraries. The experiment results are available as a list of nested resource utilisation data 

over simulation time. The example provided in Figure 5-30 shows a CPU utilisation rate 

over time until the end of simulation experiment. Each graph can be also exported as a 

CSV file for visualisation and analysis using third party tools.  

5.6 Conclusions 

The chapter provides an overview of the design and implementation process, 

from the initial simulation system functional requirements specification through to a 

structured walkthrough of working implementation. The existing Eclipse IDE based 

simulation platform (Palladio) has been extended to form a new cloud data centre 

simulation framework (CactoSim). Eclipse IDE UI framework elements have been used 

and built upon to create the new CactoSim user control elements such as cloud data 

centre model retrieval, creation, and modification through the integration with the 

CactoScale CDO powered storage and EMF. The EMF also provides a mechanism for 

meta-modelling and automatic code creation for the CACTOS runtime models, 

optimisation plan models and cost models. The Palladio simulator functionality provides 
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access to the PCM models, the simulation engine and the simulation result viewer 

implementation through code integration and model transformations between PCM and 

CACTOS model components. As a result, the CactoSim simulation framework contains 

a foundation for an established simulation platform extended to fit cloud data centre 

simulation requirements. 

The following chapter uses this CactoSim implementation to provide a range of 

experiments and demonstrates the tool working in an applied research cloud data centre 

scenario in order to provide enhanced cost estimations. 
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6 Experimentation and Analysis 

6.1 Introduction 

The previous chapter described the design, implementation and integration of the 

data collection, optimisation and simulation frameworks. These integrated components 

form a “simulation-driven toolkit” which provides decision-making support for data centre 

operators. The design of this toolkit is focused towards enhancing cost estimation for 

cloud data centres. It does this by providing the user with a deeper understanding of 

complex system behaviour under various experimental scenarios with a focus on the 

trade-offs of cost and QoS. As part of the solution, a user interface allows for the 

alteration of simulation models and new scenario development to assess different data 

centre design options and resource demand conditions. Such experimentation allows for 

resource distribution to be modelled under different usage scenarios, which aids in the 

selection of the closest-fitting hardware, equipment and resource management policies 

that satisfy QoS requirements and cost trade-offs for an enterprise. In order to assess 

the designed and implemented solutions capability for modelling such scenarios, the 

following chapter presents a range of experiments to demonstrate the validity of results 

in comparison to the real-world systems. Further, cost analysis experimentations 

demonstrating the methodology in an applied research scenario are described. In 

carrying out this demonstration, case scenarios from two real case companies were used 

Company X and Company Y.  

Company X is a communication and information centre of a large educational 

provider, which delivers their IT function to external clients as well as supporting the 

organisation internally. Company X provides a catalogue of IT-related services such as 

document storage, backup and delivery, IT security, network and connectivity, and 

resources for scientific experimentation. For the purposes of experimentation, Company 

X provided access to their cloud data centre as well as related financial data, and a range 

of experiments were executed on this platform. Company Y is a software SME which 

provides proprietary cloud computing management and orchestration software, 

essentially enabling hosting companies to become cloud providers. The company 

provides some hosting internally to their clients for both live deployments and for testing 

purposes via the data centre based on site. Company Y provided access to an isolated 
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part of the data centre and range of cloud applications to use for validation scenario 

execution. Validation scenarios from both companies were used to build simulation 

experiments and compare simulation results against the real system results. 

Two sets of experimentation are described in this chapter. The first set of 

experiments (Section 6.2) provides simulation model development and validation against 

real data. The purpose of these experiments is for model content verification, to ensure 

accurate model descriptions have been created, followed by simulated and measured 

results comparison to assess the precision and reliability of the simulation outputs. The 

second set of experiments (Section 6.3) uses these validated models to provide further 

experimentation and cost analysis in order to offer a more detailed understanding of how 

such models can be applied in the making of real-world decisions.  

A day-to-day task of a cloud infrastructure provider in the IaaS scenario is to give 

access to compute resources requested by users. The users specify a number of CPU 

cores, memory and storage needed to be assigned to the VM which will host the cloud 

application. Different resource combinations are also pre-defined by the cloud resource 

provider as VM “flavours”. Once VM configuration is selected, the VM is then deployed 

onto virtualised hardware by a cloud resource management framework. It is then up to 

the resource management framework to identify which hardware is suitable to use for 

hosting new VMs. Resources allocated to the VM serve as maximum capacity indicators 

that are managed by the hypervisor. However, resource utilisation levels depend on 

different cloud applications and application usage patterns. For example, compute 

resource demand for downloading a web page will be different if it contains just plain text 

or returns a large database query. In the same way resource demand will also differ 

depending on the number of concurrent users of a cloud application. Considering 

application resource utilisation patterns and available virtual resource distributions 

across the data centre, the resource management framework can also migrate existing 

running VMs e.g. to minimise resource contention or improve resource consolidation. 

Resource management frameworks employ resource optimisation policies for VM 

admission and migration to effectively improve QoS, save costs and maximise profit. 

However, different optimisation policies can yield different results depending on 

individual data centre configuration and differences in the cloud applications resource 

demands. In Section 6.2 two such cloud data centre management scenarios are 
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presented using Company X and Company Y test beds. The real data was extracted 

from a controlled environment created within the cloud data centres of Company X and 

Company Y, in which a range of system test scenarios were executed. Company X 

scenarios were based on the quantum chemistry software “Molpro” (Werner, Knowles, 

et al., 2012) taking the role of a cloud application in line with the “CACTOS scientific 

computing use case” (Section 3.2). Company Y experiments were based on a variety of 

web applications in accordance with the “CACTOS business analytics use case” (Section 

3.2). Based on the analysis, simulation models were developed using real cloud data 

centre hardware implementations including resource demand patterns and resource 

management policies. These cloud data centre models were then used in simulation 

experiments and simulation results were validated via statistical and visual comparison 

techniques against real system scenarios measurements. The validation work presented 

in Section 6.2, firstly, demonstrates the accuracy and reliability of the implemented 

framework through the use of real field studies and secondly, demonstrates applicability 

to the wider array of scenarios by experimenting with distinctively different case studies 

from two companies. 

Equipment acquisition is a common task which is at the core of a cloud data 

centre business model. Cloud data centre operators are responsible for maintaining 

hardware in running order and compliant with modern user demands. New equipment 

can be bought as replacements for old equipment or as part of a data centre capacity 

expansion plan. Hardware equipment depreciation time can vary from 3 to 5 years 

depending on the type of hardware and its function. At the end of the depreciation period 

the old equipment is sold (if possible) and the new equipment is acquired. Brand new 

equipment can offer better processing capacity, greater energy efficiency and smaller 

form size. The processing capacity allows for faster user workload processing which can 

directly improve QoS and the number of users that can be served. Better energy 

efficiency allows for reductions in energy costs and while being more environmentally 

friendly through lower CO2 footprint. Smaller equipment form size can lead to space 

savings, increasing the density of cloud data centres without the need to invest in building 

expansions to increase compute resource capacity.  

However, there are multiple equipment vendors offering a multitude of hardware 

configurations at different price points. To select the right configuration of new equipment 

one must consider how it will impact existing users; if existing resource management 
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policies function as intended with the new equipment and if the cost of new equipment 

will be recovered, justifying the investment in the first place. Section 6.3 describes 

experiments focused on the use of the proposed methodology for a scenario evaluation 

relating to the upgrade of data centre hardware in an existing data centre of Company 

X. In this scenario, the effects of a partial data centre equipment upgrade on QoS and 

costs under different resource management strategies were explored. Simulation models 

that were previously developed during the modelling and validation stage given in 

Section 6.2 are used as the basis of this experimentation in order to build a realistic 

system representation in response to real-world cost-related decisions being taken.  

The aim of the experimentation presented in this chapter is to cross theory into 

practice through focusing on an actual usage of the developed components together in 

a single methodology using real-world case study data. This is carried out firstly, to obtain 

and build cloud data centre system models using real data in an automated manner; 

secondly, to simulate and validate system behaviour including decisions relating to 

optimisation; and thirdly, to support cost-aware decision making through results gained 

from further what-if analysis. The outcome of this chapter is a number of analysed 

empirical results that provide evidence of the applicability and value of the use of the 

proposed methodology as part of a cloud data centre management approach.  

6.2 Validation 

Simulation model validity and credibility was undertaken throughout the proposed 

methodology with an emphasis placed on model content relevance in relation to 

representing real system attributes and behavioural traits. The model was designed and 

developed via a continuous collaboration cycle with the CACTOS projects subject matter 

experts, in this instance Company X and Y stakeholders. From the problem definition 

stage through to result analysis, simulation model components and outputs were verified 

on a continuous basis within the consortium and critically reviewed by a panel of experts 

appointed to the CACTOS project by the EU commission. “The most definitive test of a 

simulation model's validity is to establish that its output data closely resembles the output 

data that would be expected from the actual (proposed) system” (Kelton and Law, 2000).  

In carrying out the validation process, use case analysis scenarios were designed 

and executed on the real cloud data centre testbeds of Company X and Y. Each scenario 

input consisted of a script that defined VM lifecycles and the resource management 



 

 

 - 148 -  

optimisation configuration settings (shown in Figure 6-1). The VM lifecycle script imitates 

VM creation and termination requests including the information of VM resource and 

application configurations. Optimisation configuration settings define the choice for VM 

admission and migration policies used within the test scenario. In summary, the test 

scenarios were designed to show system resource management capabilities under 

different optimisation policies, handling VM admission to the data centre and migration 

decisions. 

During the real system scenario, execution data on system configuration and 

behaviour was automatically collected, and simulation models based on this data were 

created automatically using the modelling tools developed within the simulation toolkit. 

Simulation models include the physical infrastructure, logical infrastructure and 

experiment scenario models. The physical infrastructure model contains a description of 

the data centre compute hardware and its specifications such as number of nodes, CPU 

cores, memory and storage. The logical infrastructure model contains workload 

information for executed applications, VM configurations and hypervisor relations to 

hardware components. The experiment scenario models contain information on the VM 

admission and termination times having the same function as real system VM lifecycle 

execution scripts. The models obtained are an exact replica of the system and user 

resource demand patterns and are used without modification for validation. To increase 

confidence in the simulation model two different cloud data centre systems were 

modelled and simulation outputs compared side by side.  

The presented research looks at the problem of resource provisioning and cost 

estimations from the IaaS provider viewpoint. The infrastructure is provided on-demand 

and can be used for any application and workload processing depending on the need of 

a customer. Such business models lend themselves towards the infrastructure provider 

being agnostic as to what cloud application is deployed in a VM or how it might be 

connected to other VMs in the data centre. To model IaaS resource demand a Black-

Box application modelling technique developed as part of the CACTOS project was used 

in the validation exercise (Groenda and Stier, 2015). The Black Box model captures 

individual VM resource demand patterns and then allows for a “replay” of these demands 

in the simulation, replicating resource demand over time for each admitted VM. 

As shown in Figure 6-1 the real system scenarios and simulation experiments 

were both executed using the same inputs of VM lifecycle and optimisation 
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configurations. The automated simulation models describing testbeds were created to 

represent the real system environments. In addition, during the real scenarios and 

simulated experiments the same resource management policies were used via the 

resource management framework. This setup allowed for the creation of a mirror image 

of the real system and associated scenarios in the simulated environment, meaning that 

the outputs of the simulated and real systems if designed correctly should be comparable 

given that the experiments represent the same real system scenarios. Hence, the 

simulation results can be directly compared to the real system measurements in order to 

validate the simulation models accuracy and reliability. It is generally understood that 

simulation data will not be exactly equal to the real-world measurements due to high 

abstraction levels. In recognition of this and based on past experience the project 

consortium agreed that the simulation results will be successfully validated if the average 

error rate is equal to or lower than 10%. 

 

Figure 6-1:Validation flow 

The validation exercise was performed to ensure that the developed methodology 

and toolkit operated as intended and produced results that can be trusted to support 

decision making. In order to ensure that the simulations experimental results are both 

accurate and reliable, visual and statistical validation was carried out where a 

comparison was made between the simulation results and the outputs from two field test 

experiments executed in the real case environments. To distinguish between real and 

simulated environments, the tests executed in the real system are called “scenarios” and 
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tests in completed using the simulation models are called “experiments” as also depicted 

in Figure 6-1. 

6.2.1 Company X 

In the initial step of validation, system testing scenarios are designed and then 

executed in a real data centre according to the design specification. During the 

execution, dedicated hardware remains isolated from other data centre users to create 

a controlled environment reducing any external factor influence on the experiment 

readings. During the scenario execution phase, data related to VM configuration, VM 

lifecycle and resource demand was being recorded by the data collection framework for 

later use in the modelling and experimentation stages.  

ID 
CPU 

RAM Disk 
Make Cores Frequency 

Cloud Controller 
2x Intel Xeon 6-
Core Westmere  

12 2920 MHz 48 GB 
2x 1TB 
HDD 

Network Controller 
2x Intel Xeon 6-

Core Sandy 
Bridge 

12 2000 MHz 64 GB 
2x 1TB 
SATA 
HDD 

NAS Node 
2x Intel Xeon 6-

Core Sandy 
Bridge 

12 2000 MHz 64 GB 

2x 500GB 
HDD 

6x 2TB 
HDD 

computenode02 
2x Intel 8-Core 
Sandy Bridge 

32 2600 MHz 128 GB 190 GB 

computenode05 
2x Intel 8-Core 
Sandy Bridge 

32 2600 MHz 64 GB 190 GB 

computenode08 
2x Intel 8-Core 
Sandy Bridge 

32 2600 MHz 64 GB 
No local 
storage 

computenode11 
2x Intel 8-Core 
Sandy Bridge 

32 2600 MHz 128 GB 190 GB 

computenode12 
2x Intel 8-Core 
Sandy Bridge 

32 2600 MHz 128 GB 866 GB 

computenode14 
2x Intel Haswell 

8-Core 
32 2400 MHz 128 GB 

No local 
storage 

computenode15 
2x Intel Haswell 

8-Core 
32 2400 MHz 128 GB 

No local 
storage 
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computenode16 
2x Intel Haswell 

8-Core 
32 2400 MHz 128 GB 

No local 
storage 

Table 6-1: Allocated experiment testbed infrastructure at Company X 

The infrastructure of the Company X testbed is shown in Table 6-1, consisting of 

11 nodes in total. However, the nodes marked as “Cloud Controller”, “Network Controller” 

and “Network Attached Storage (NAS)” are not used for VM deployments. The cloud and 

network controller nodes are used to host OpenStack and CACTOS Runtime 

components to manage compute resources of the cluster. The NAS node is used for 

hosting non-volatile storage which can then be mounted over the network to deployed 

VMs. Compute nodes available in the data centre are equipped with Intel (Intel 

Corporation, 2018) manufactured CPUs, which come from two different 

microarchitectures Haswell and Sandy Bridge. While both CPU types have the same 

number of cores the Newer Haswell CPUs come with a lower nominal frequency of 2400 

MHz. Most of the compute nodes are equipped with 128 GB of memory with the 

exception of “computenode05” and computenode08” which only have 64 GB available. 

Also, half of the compute nodes have no local disk storage attached, relying on NAS 

virtual storage containers to be used over the network when provisioning VMs. 

Scenario  Placement Policy Migration Policy 

OS-A System default none 

OS-B Memory based load balancing Load balancing 

OS-C Memory based consolidation Consolidation 

OS-D Consolidation 
Constraint programming-based 

consolidation 

OS-E Fragmentation Fragmentation 

OS-F Energy efficiency Energy efficiency 

Table 6-2: Experiment list with optimisation policies 

During the experimentation phase, a total of six isolated experiments were carried 

out on the Company X testbed using different workload optimisation policies. All six 

experiments with their associated optimisation policies are shown in the Table 6-2. As 

can be seen in the table, the first experiment “OpenStack-A” (OS-A) is executed to 

develop a baseline system performance estimation without introducing any optimisation 

decisions from the resource optimisation framework - CactoOpt. During the OS-A 
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experiment the default OpenStack VM admission policy was used which is controlled by 

the default policy which strives to admit workload using a round robin approach. As no 

optimisation policies were used this means that the VMs were not migrated, remaining 

at all times on the node on which they have been initially placed during the experiment 

run. The remaining five experiments were executed with the CactoOpt optimisation 

framework fully engaged and taking over VM placement and periodic migrations for the 

purpose of enhanced resource management. Each tuple of the optimisation policies was 

selected to work together using the same optimisation goals: 

• Load balancing – aims to spread VMs among all compute nodes taking 

proportion of their sizes into account.  

• Consolidation – aims to reduce number of compute nodes used by VMs by 

placing and migrating VMs as compactly as possible.  

• Fragmentation – aims to reduce compute resource wastage caused by division 

in demand between CPU and memory by grouping VMs with certain flavours 

together depending on user demand and hardware specification. 

• Energy efficiency – aims to reduce total power consumption for cloud data 

centre by combining power saving features of hardware and managing VM 

distribution. 

As shown in Table 6-2,  VM placement and migration policies were implemented 

in tuples in order to complement each other and not be counterproductive. The first 

scenario (OS-A) was executed with OpenStack default configuration which only has a 

VM admission policy. The default admission policy picks a first node in the rack and 

places VMs there until all CPU cores are assigned. After that the same procedure is done 

on the next node in the rack. The second experiment (OS-B) was executed with 

CactoOpt framework using the memory-based load balancing algorithm for VM 

placements and load balancing algorithm for VM migrations. The newly created VMs 

were admitted to the system on the node that has the largest amount of free memory, 

and if the resource utilisation reached peak measurements, VMs were migrated to the 

nodes with more free resources available. The third scenario (OS-C) is the complete 

opposite to the load balancing approach, which means that instead of spreading VMs 

evenly across all available nodes, the policies are placing VMs on as few nodes as 

possible. The memory-based consolidation uses memory utilisation measurements to 
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determine suitable nodes where VM can be placed. The consolidation migration policy 

ensures that VMs are co-located as tightly as possible and if a VM was shut down, 

creating a resource gap on the node, the policy will migrate a fitting VM from another 

node.  

Experiment OS-D was executed using  constraint programming (Rossi, Van Beek 

and Walsh, 2006), an optimisation based consolidation approach which is able to take 

multiple constraint parameters and consider multiple parallel VM migrations at the same 

time. The approach is using the constraint programming solver which is able to obtain 

multiple data centre resource provisioning options and evaluate them using a set of 

global functions. Based on the evaluation results, the best suited option for resource 

allocation is selected. The resource fragmentation/stranding avoidance algorithm was 

used for scenario OS-E testing which tries to keep utilisation across CPU and memory 

at even levels. This approach allows for the avoidance of large “pockets” of resources 

which cannot be used for VM deployments. For example, when all CPU cores are already 

assigned to VMs, but large quantities of memory remain unused or vice versa. The 

energy saving optimisation approach used in the final scenario OS-F estimates energy 

consumption of the whole data centre and makes the resource distribution decision 

based on the lowest predicted configuration (Krzywda, Rezaie, et al., 2015). 

VM Sizes CPU Cores RAM (GB) HDD (GB) 

XSmall 1 8 80 

Small 2 8 80 

Medium 1 12 168 

Large 2 12 168 

XLarge 4 12 168 

Table 6-3: Admitted VM configurations and quantities for Company X 

During the system testing scenarios VMs are deployed to the testbed to recreate an 

operational users load on the system. The flavours of VMs (shown in Table 6-3) are 

divided into 5 categories – extra small, small, medium, large and extra large. Each flavour 

requires a specific amount of resources for successful deployment ranging from 1 CPU 

core, 8GB of memory and 80GB of storage to 4 CPU cores 12GB of memory and 168GB 

of storage. The amount of VMs admitted is restricted by the capacity of the testbed 

infrastructure, for example more extra small VMs can be hosted than extra large. The 
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VMs are admitted using deployment scripts with five minute intervals in a round robin 

fashion. Once each VM is deployed, the Molpro application task is executed inducing 

workload on the assigned resources. During the execution of the test scenarios, resource 

demand is measured periodically over the duration of each scenario in the form of CPU, 

memory storage and power consumption. The quantity of provisioned resources is 

directly proportional to the number and flavours of admitted VM’s. 

 

Figure 6-2: Company X testbed VM admission experiment scenario 

Figure 6-2 shows the recorded VM admission patterns for all experiments. From 

the graph it can be seen that the experiments OS-A, OS-D, and OS-E have a similar, 

steeper, VM admission curve due to the shorter experiment times and a higher amount 
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of admitted VMs. The experiments OS-B, OS-C and OS-F, on the other hand, have a 

longer duration and lower total amount of VMs submitted during the execution. Different 

VM admission patterns were created specifically to investigate different types of 

scenarios testing system behaviour under demand spikes (e.g. OS-A, OS-D, and OS-E) 

and steady operation. The experiment OS-A has a value of “-1” for VM admission which 

means that the VM was admitted outside a monitored time interval. 

Name 

CPU        
provisioning (%) 

Memory 
provisioning (%) 

Storage 
provisioning (%) 

Avg. Peak Avg. Peak Avg. Peak 

OS-A 8.2 16.8 13.2 30.7 0.1 0.3 

OS-B 4 6.6 6.4 10.6 0.5 0.7 

OS-C 4.2 7.8 6.8 12.3 0.5 0.8 

OS-D 7.4 14.8 12 24 1.4 2.8 

OS-E 7.2 14.8 11.7 23.8 1.3 2.8 

OS-F 4.3 7.4 6.3 11.4 0.4 0.8 

Table 6-4: Experiments resource provisioning summary 

In certain cases of resource shortages, compute resource double booking can 

occur, meaning the same compute resource can be assigned to multiple VMs e.g. CPU 

core. From the resource provisioning summary presented in the Table 6-4 it can be seen 

that the dedicated testbed has sufficient capacity to cater for all of the experiment VM 

admission demands without double booking. The highest rates of demand for the Molpro 

application were observed under the memory component relative to the available 

resources within compute nodes on the testbed. The highest peak memory amount 

provisioned was during the OS-A experiment of 30.7% which corresponds with the 

highest number of VMs admitted when comparing to other experiments. Peak CPU core 

demand was observed at 16.8% also for the OS-A experiment and peak for storage 

demand at 2.8% was captured during OS-D and OS-E experiments. The Company X 

testbed contains a sufficient quantity of nodes to spread the VMs, hence resource 

shortage is not observed. However, memory demand is noticeably higher than CPU, 

suggesting that memory shortage prior to CPU shortage should the demand grow in the 

same manner. 
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Figure 6-3: Company X testbed measured power consumption 

For each real system test scenario data on power consumption was collected by 

reading power meters which were connected to compute nodes 5,8,11,12,14 PDUs, 

every 10 seconds. Due to physical constraints compute nodes 2 and 16 had no power 

meter attached and were therefore excluded from validation comparison datasets, 

presented later. Figure 6-3 shows the power consumption fluctuation of all experiment 

results, the magnitude of power draw can be directly correlated with the workload 

increase created by arriving VMs. As expected, the highest power draw spikes adhere 

to the experiments with higher admitted VM count i.e. OS-A and OS-E with the exception 

of the OS-D experiment. This discrepancy for the OS-D experiment arises from the 
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placement policies extensive use of nodes 2 and 16 which are not power monitored and 

therefore not included in this analysis. 

Scenarios were executed sequentially one-by-one on the assigned test bed 

hardware. During each execution, resource utilisation was monitored continuously, and 

polled data was stored within the CACTOS data collection framework. Further, the 

collected data was then specifically used as a direct input into the simulation model 

creation. Therefore, each real system scenario, has a corresponding simulation 

experiment created. The following section describes the simulation experiment models 

for Company X which are then used to produce simulation output results for overall 

model validation. 

Automated Simulation Model   

As described earlier, modern cloud data centres are expected to have a lot of 

interacting components which when modelled translate to large complex simulation 

models. In such circumstances manual model building is not a viable option. The 

presented toolkit described in this thesis is centred on automated model building working 

in unison with an integrated data collection framework. This integration allows for the 

simulation toolkit to query the data collection framework for historical data and to use this 

data to build representative real-world models which can be used for simulation 

experimentation. During the model build process models capturing physical and logical 

components of the cloud data centre system are used. Model design details previously 

presented in Chapter 3.6 are then followed by implementation described in Chapter 

5.4.2. This section describes simulation model content that was built using the data 

collection framework integration method. Details on the data collection framework 

integration was presented earlier as part of the methodology (Chapter 4), software 

architecture design (Chapter 5.3) and software implementation (Chapter 5.4) 

discussions. 
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Figure: 6-4: Extracted physical data centre model of Company X 

The Physical Data Centre Model (PDCM) was built to represent hardware 

components inside the data hall in the data centre of Company X. Figure: 6-4 presents 

a screenshot of the user interface from the model, which includes racks which host 

compute nodes, power distribution units (PDU) and network interconnects. Each 

compute node includes processing unit specifications, storage specifications and 

memory specifications. PDUs contain peak power information and ids of connected 

nodes. Network interconnects carry information of available bandwidth for each node.  

The acquired model data was verified against the hardware inventory list shown 

in Table 6-1 to ensure the right information was extracted from the data monitoring 
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system and that the data matches the standards for hardware specifications one would 

expect to find. However some small deviations are expected from the factory data, for 

example model data shown in Figure: 6-4 lists the CPU frequency to equal “3018.75 

MHz” as opposed to “3000 MHz” listed in the specifications (shown in Table 6-1). Such 

value fluctuations can be attributed to the dependency on the operational conditions, for 

example device temperature or motherboard voltage control.  
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Figure 6-5: Extracted logical data centre model of Company X 

The Logical Data Centre Model (LDCM) is designed to capture the cloud data 

centre virtualisation layer. This includes hypervisor deployments, virtual disk volumes, 

VM images, application models and VM flavours. The automatically composed model is 

shown in Figure 6-5. It includes hypervisor elements mapped to every physical compute 
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node where VMs can be deployed. Every compute node storage is exposed through a 

virtual interface to be available to be mounted over the network from VMs running on 

different nodes. VM image instances represent available configured operating system 

environments for VMs and VM flavours corresponding to the VM resource configurations 

presented in Table 6-3. 

 

Figure 6-6: Extracted application model of Company X 

The captured LDCM also contains “Black Box Application Template” instances 

where application workload sequence models are stored. The Black Box application 

template is used because the infrastructure provider is usually not aware of the 
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application type running inside a VM, having access to just resource demand data per 

VM. Due to the Molpro application nature, which is running large molecular simulation 

calculations, it requires a large amount of resources and subsequently long job 

processing times. The captured CPU sequence shown in Figure 6-6 can be logically 

divided into 4 different calculation phases executed sequentially. Each phase requires a 

certain amount of CPU processing power for the duration of an application run. The 

mentioned sequence of resource demand is started as soon as the VM is deployed to 

the cloud and terminates after the VM is shutdown or once the sequence time is finished. 

 

Figure 6-7: Extracted experiment scenario model of Company X 

The purpose of the experiment scenario model is to capture the lifecycle of the 

VMs arriving and departing the cloud data centre shown in Figure 6-2. The experiment 
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scenario is extracted from the cloud monitoring framework database by specifying its 

start and end time. The retrieved model will contain a list of the time events defining when 

the VM is deployed and the time event when the VM should be terminated within the 

simulation experiment. As shown in Figure 6-7 the VM start request contains a link to the 

application template and VM flavour to use. The application template (shown in Figure 

6-9) is assigned to the deployed VM executing the resource demand sequence defined 

in the application model. Via the link to VM flavour (shown in Figure 6-5) the starting 

request identifies the amount of virtual resources needed for the VM to be provisioned. 

The VM termination request just has the ID of the start request so that the associated 

running VM can be identified and shut down. 

Experiment VMs admitted Admission duration (s) Monitored time (s) 

OS-A 25 6015 6360 

OS-B 15 30840 30840 

OS-C 18 31440 31560 

OS-D 24 4556 4739 

OS-E 24 3892 3900 

OS-F 17 21387 21540 

Table 6-5: Experiments workload summary 

Table 6-5 compliments the VM admission overview presented in the Figure 6-2 

and Figure 6-7 by showing the exact figures of the total number of recorded VM 

admissions, the duration of VM admission sequences and the monitored time covering 

each of the experiment. The presented figures confirm experiment equivalences making 

experiment OS-A the most workload intensive with 25 VM admissions and experiment 

OS-C the longest duration with a duration of 8.8h (31,560s). The time period for which 

the data was collected is shown as monitored time and is equal to or longer when 

compared to the actual VM lifecycle duration. Some slight extensions to the monitored 

time provides a time buffer allowing for any time synchronisation inconsistencies. The 

difference in the admission patterns between the experiments does not impact the 

validation exercise since the simulation experiments are modelled to mirror each real 

system test scenario. 
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The following section presents the comparison between the real system test 

scenario results and corresponding simulated experiment results, thus validating the 

proposed simulation-based framework output against real system output. 

Simulation result validation 

This section compares the real system scenario results side by side with the 

results of the same scenarios replicated in simulation, for the purpose of validation. All 

six experiments were compared side by side in the same manner using visual 

comparison and statistical result analysis. Experiment OS-B is used to illustrate the 

validation process in detail here within the thesis. While the step by step for each of the 

other five scenarios is not presented in detail in this chapter, each has undergone the 

same process and the overall results are presented in summary in Table 6-7. 

Statistical experiment validation was performed by comparing real system power 

measurements collected during test scenarios with the simulation experiment results. 

Both data consisted of time series information, sharing the same time axis. Each real 

system measurement and simulated counterpart values were treated as a corresponding 

data sample pair. For experiment OS-B a total of 21,587 data pairs were observed and 

analysed using Student’s two tail paired T-test (STUDENT, 1908). Additionally, the 

difference between the measured and simulated data was statistically analysed in order 

to gain insights about data distribution and correlation metrics. From the histogram 

shown in Figure 6-8 the distribution of difference between measured and simulated 

results shows data normality with most results gravitating towards the centre. The 

highest two ranges of the results differences are located on both sides from zero, 

between -14 and 1 W and between 1 and 16 W. Amalgamation of data points close to 

zero provides further evidence that the difference between the simulated and measured 

data are also converging close to zero.  
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Figure 6-8: Difference spread between simulated and measured data (OS-B) 

Statistical analysis results presented in Table 6-6, show that the average (mean), 

difference between measured and simulated data is 2.73 W and analysis shows 95% 

confidence of the mean being distributed between -3.4 to -2.06 based on difference 

analysis. These low values show the close proximity of the average data set values for 

the whole population, meaning that future experimentation results should also remain 

within the same rage. This is also confirmed by a high Pearson correlation score of 0.87, 

meaning that the measured and simulated data pairs follow similar patterns. However, 

the T-test shows significant differences between the two data sets with a low probability 

of 1.75*10-15. According to Kelton and Law (2000) the low probability of simulation results 

being almost the same as measured results, or in other words, rejection of null 

hypothesis, is an expected outcome of data analysis as high precision is rarely achieved 

in simulated systems.  
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Attribute Value 

Observations No. 21587 

Mean 2.73 

Confidence level (95.0%) (margin of error) 0.67 

Standard deviation 50.34 

Pearson correlation 0.87 

Lower bound -3.40 

Upper bound -2.06 

P (T-test (two-tail)) 1.75*10-15 

Table 6-6: Statistical difference analysis between measured and simulated data (OS-B) 

To compliment this statistical data analysis, a visual data comparison is also 

performed to compare the two datasets. Figure 6-9 shows both predicted and simulated 

power consumption measurements plotted on the same graph within the duration of the 

experiment. It was generated using a moving average of 250 records in order to smooth 

out the curves. From the figure it can be seen that the power demand peaks at 

approximately 830 W for all of the monitored compute nodes in the beginning of the 

experiment and then reduces to 630 W and then towards the nominal 480 W when all of 

the running VMs are terminated and the workload drops. It is seen that the simulated 

power curve closely follows the measured power curve, reacting in the same way to the 

induced workload by drawing more power at the beginning of the experiment and 

reducing the draw once the workload has been gradually reduced. 
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Figure 6-9: Measured and simulated power consumption for OS-B experiment 

To compare the deviation between the simulated and the measured data Figure 

6-10 shows the time series difference between measurements taken at the 

corresponding timestamps and converting to percentages. Throughout the experiment 

the average error rate is 5.6%. This falls within the set 10% average error limit and the 

results of the model are deemed valid. However, it is important to note that an increasing 

error rate can also be seen towards the end of the experiment with a spike error of 

approximately 12%. The spike in the results deviation can be linked to the excluded two 

nodes due to the absence of power measurement equipment and use of a simplistic 

linear power estimation model.  
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Figure 6-10: Simulation energy cost error for OS-B experiment 

Full statistical comparison results for all validation experiments are presented in 

Table 6-7. The null hypothesis was rejected for all experiments meaning that the 

measured system values are unlikely to be exactly the same as the simulation results, 

synchronised at the same points in the experiment time. This is as expected when 

comparing real world and simulated results. A similar pattern of results as observed in 

the OS-B results was confirmed across each of the other five experiments. Linear 

relationships between measured and simulated variables expressed in Pearson 

correlation shows ascending strong correlation coefficients for all of the experiments with 

the exception of OS-A. As a reminder, OS-A was executed to develop a baseline system 

performance estimation without introducing any optimisation decisions from the resource 

optimisation framework - CactoOpt. During the OS-A experiment the default OpenStack 

VM admission policy was used which is controlled by the default policy which strives to 

admit workload using a round robin approach. As no optimisation policies were used this 

means that the VMs were not migrated, remaining at all times on the node on which they 

have been initially placed during the experiment run.  Since OS-A is an experiment which 

was executed with a set of mismatched resource management policies for the real and 

simulated environments it demonstrates an anticipated behaviour by having a poorer 
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correlation in output results. The corresponding experiment correlation levels for all 

others range from 0.75 in OS-D to 0.93 in OS-E which means that simulation generated 

results are reflecting resource management decisions made by the optimisation 

framework. However, experiment OS-E while having the highest correlation rate, also 

has the highest average difference of 159.36 W which alludes to a discrepancy in the 

model data for that experiment.  

To put the validation results into perspective the average error percentage 

column shows the ratio of inaccuracy of simulation results to the measured readings. 

From the results Table 6-7, it can be concluded that the average simulation error rate for 

OS-B to OS-F is less than or equal to 6.9 for all five experiments. Each of these five 

experiments were run with a matching optimisation policy being used in both the testbed 

and simulated scenarios. These all fall below the set 10% average error limit and the 

results are all deemed valid. The mismatched optimisation policy experiment OS-A 

shows an average error rate of 20.5%. Experiment OS-A highlights the negative 

influence of a lack of detailed resource management policies on system outputs and the 

value of developing simulation-based models which explicitly includes such policies. 
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OS-A 4,417 85.48 171.22 ~0 9.72*10-216 20.5 

OS-B 21,587 -2.73 50.34 0.87 1.75*10-15 5.6 

OS-C 22,077 -55.76 68.1 0.81 0 5.6 

OS-D 3,316 -38.18 104.57 0.75 2.97*10-92 5.7 

OS-E 2,729 159.36 72.25 0.93 0 6.9 

OS-F 15,076 -25.69 50.5 0.78 0 4.0 

Table 6-7: Measured and simulated energy comparison 

Following validation steps outlined in Figure 6-1 the real system scenarios were 

replicated in simulation experiments and then real system measurements were 

compared to simulation outputs to see the accuracy of the proposed simulation-based 

decision support framework. Validation steps were demonstrated by showing a walk-

through of OS-B experiment. These steps included a detailed statistical comparison 
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(Table 6-6), visual power data analysis (Figure 6-9) and visual error rate analysis (Figure 

6-10). Finally, a summary of all experiments is presented in Table 6-7. The presented 

analysis demonstrates the practical application of the cloud simulation framework with 

variable success rates where the average difference between simulated and measured 

results fluctuates from -2.73 to 159.36. In conclusion, based on achievement of the 

targeted average error rate for OS-B to OS-F the simulation model has been deemed 

valid.  

 

6.2.2 Company Y  

In recognition that cloud data centres host a variety of different application types 

to accomplish different tasks for a variety of different users, this section introduces a 

second real case scenario, from Company Y. As was already seen in Section 6.2.1, 

simulation experiments were carried out to mirror real system scenarios comprised of 

Molpro application deployments which characterize a HPC cloud application. However, 

a Molpro application workload represents only one type of service running in the cloud. 

To expand and diversify the validated model pool of cloud applications, further analysis 

is now presented for the Company Y case study which includes a broader range of cloud 

applications.  

The goal of this additional modelling exercise is to demonstrate the proposed 

methodology and frameworks usability in a different use case setting. This case study 

presents the use of the developed automated modelling framework in a different data 

centre setting, demonstrating the modelling frameworks ability to be applied to different 

cloud applications seamlessly. The tested cloud application contains a web frontend and 

data base backend components imitating website setup which is a popular application 

setup in public clouds.  

Validation exercises are presented in this section following the same processes 

outlined in Figure 6-1:  

1. Test scenario execution in the real cloud data centre (Company Y) 

2. Scenario measurement data recorded and used to produce simulation 

models of the cloud data centre infrastructure and workload 

3. System models are used to run simulation experiments 
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4. Simulation results compared with measured real system data for 

validation purposes 

The test scenario described in this section was conducted in the data centre of 

Company Y using the CACTOS business analytics use case approach (see Chapter 

3.2). As with the previous example, scenarios were setup in an isolated controlled 

environment to avoid any external interference for the duration of the testing phase. 

Deployed VMs were pre-provisioned with a web-application and immediately after VM 

deployment user workload was emulated for each VM, creating demand for cloud 

resources. Data collected during the real system scenario was then used to automatically 

create and later to validate simulation models via comparison with the simulation output. 

Scenario design and execution 

The scenario is set in a physical testbed containing a subset of nodes 

representing the cloud data centre infrastructure. The aim is to recreate a real case 

scenario where VMs are being admitted to the data centre and workload is being induced 

on each VM, representing a user workload as in day-to-day operations within an actual 

large-scale data centre. The test scenario setup can be divided into three parts: 1) 

infrastructure configuration, 2) admitted VMs and 3) the workload running within these 

VMs. 

The test scenario is setup to represent a public cloud provider set-up where an 

internal structure and distribution of the web application is unknown to the cloud provider. 

The cloud infrastructure provider only can monitor each VMs resource demand patterns 

but is unaware of any application details such as application type, number of requests or 

the request types the application serves. Such application representation is generally 

termed a Black Box model and it includes only resource demand (utilisation) data for 

each VM. The resource utilisation collected from system monitoring data is then 

translated into resource demand bindings within the simulation models. 

 

ID 
CPU 

RAM Disk 
Make Cores Frequency 

10.157.128.30 
AMD Opteron 

6366 HE 
16 1800 MHz 

128 GB 
DDR3 

4 x 1TB 
HDD 
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10.157.128.31 
AMD Opteron 

6366 HE 
16 1800 MHz 

128 GB 
DDR3 

4 x 1TB 
HDD 

10.157.128.32 
AMD Opteron 

6366 HE 
16 1800 MHz 

128 GB 
DDR3 

4 x 1TB 
HDD 

Table 6-8: Allocated experiment testbed infrastructure for web services at Company Y 

data centre 

The infrastructure available for the experiment (shown in Table 6-8) consists of 

three identical compute nodes running an AMD Opteron 6366 HE 16 cores @1800MHz 

make CPU with 128GB of memory and 4 1TB HDDs as storage. Each node has a 

hypervisor deployed, ready for VM deployment. These nodes are part of a larger cluster 

that are interconnected by a switch and managed by a separate dedicated management 

node in the cluster. The management node is running a proprietary Flexiant Cloud 

Orchestrator (FCO) implementation for managing cloud computing platform integrated 

with CactoScale data collection framework and CactoOpt optimisation framework. Since 

the management node resources are not part of the public cloud infrastructure offered to 

customers, management node is excluded from the infrastructure model. 

During the scenario execution two optimisation policies were used: one for VM 

placement and another one for VM consolidation. The VM placement policy is 

responsible for determining hardware resource allocations for the arriving new VMs. 

When the user defines VM configuration and requests VM creation, a placement 

algorithm will make a decision based on available resources as to where to place the 

VM. The VM consolidation policy is deployed on a periodic basis reviewing the resource 

demand patterns to determine if VM placement could be better adjusted when compared 

to the initial placement decisions. If an algorithm suggests that VMs should be 

rearranged the migration command is issued to the management system. 

Company Y’s testbed is managed by the FCO system which was integrated with 

the CactoOpt optimisation framework. However, FCO is a proprietary cloud management 

solution with limited outside access possibilities. Hence, due to the FCO design 

subtleties VM placement decisions were not managed by CactoOpt despite its 

integration, but still remained within the FCO platform (see Table 6-9). This mean that 

when new VM request arrived from a cloud user the FCO used its own proprietary 

algorithm to determine the resource allocation for the VM. This is typical in many real-

world scenarios where proprietary solutions are being used. The consolidation policy 
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was fully operated by the CactoOpt framework being in control on which policy to use for 

the scenario. The load balancing algorithm which spreads VMs equally among compute 

nodes was selected to be used with the test scenario to avoid system resource bottle 

necks as much as possible.  

Scenario Placement Policy Migration Policy 

FCO-A FCO Proprietary Load balancing 

Table 6-9: Company Y experiment list with optimisation policies 

To emulate user demand for public cloud services an automatic script is 

developed to provision 57 new VMs within a duration of 3.5 hours. To represent realistic 

scenarios the VM configurations are divided into three categories Small, Medium and 

Large. Small VMs require 1 CPU core, 512MB memory and 1 GB storage (shown in 

Table 6-10). Every VM is pre-provisioned to run a certain popular web service such as 

web frontend, SQL and an intense calculation backend service. Once a VM is deployed, 

the service is then put under a load that represents user demand, for the web frontend 

JPetstore website implementation is used and MySQL database engine provisioned to 

represent SQL type storage services. Custom scripts are executed to create user 

requests for accessing web pages and reading and writing database entries. To mimic 

the calculations of an intensive custom proprietary cloud application a synthetic workload 

is induced using a Stress framework on the remaining VMs. 

VM Sizes 
CPU 

Cores 
RAM 
(GB) 

HDD 
(GB) 

SQL 
Server 
VMs 

Web 
Sever 
VMs 

Unknown 
(Stress) VMs 

Small 1 0.5 1 15 15 15 

Medium 4 4 2 10 10 10 

Large 8 8 4 5 5 5 

Table 6-10: Admitted VM configurations and quantities 

To imitate a steady increase of workload demand in the cloud system VMs, were 

gradually admitted to the testbed. The admission delay was programmed in the script to 

be evenly timed between each VM deployment, however in the real system there were 

some delays (as seen in Figure 6-11) due to the FCO internal processing intricacies. 

After VMs were admitted, the system was left running for approximately one hour before 
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terminating all the VMs at once. The test scenario was designed to allow the resource 

management framework to handle the growing VM admission rate and then give an 

opportunity for further optimisation via VM migration during an hour of system steady 

state.  

 

Figure 6-11: Company Y testbed VM admission experiment scenario 

To summarise, resource provisioning demand, Table 6-11 presents averages 

and peak resource assignments during the FCO-A scenario execution. Because there 

were only 3 compute nodes available within the testbed to host VMs the provisioning for 

CPU cores goes to 118.8% on average and 255% at the peak of VM saturation, with 

both values above 100% of system capacity. These figures mean that the deployed VMs 

had a higher demand for CPU cores than the system can provide which resulted in VMs 

sharing CPU cores between each other. When it comes to memory the average demand 

over the experiment was 22.8% with a peak of 54.6%, which indicates sufficient 

resources to serve demand. The storage was in demand the least with an average of 0.2 

% and 0.4% peak respectively comparing to CPU cores and Memory. These results 

indicate a sharp shortage of CPU cores most likely hindering the performance of the 

CPU bound workloads. Such situations should be avoided in the production system by 

expanding hardware capacity. 
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Name 

CPU   
provisioning (%) 

Memory 
provisioning (%) 

Storage 
provisioning (%) 

Avg. Peak Avg. Peak Avg. Peak 

FCO-A 118.8 255 27.8 54.6 0.2 0.4 

Table 6-11: Experiment resource provisioning summary 

During the test scenario two compute nodes 32 and 30 had a power meter device 

connected in between the Power Distribution Unit (PDU) and the physical node. This 

was used to measure the power consumed by each node over the duration of the 

experiment. Figure 6-12 presents the measured time series graph of power consumption 

for both nodes. As can be seen, the power demand increases as more VMs are admitted 

to the system and decreases again once VMs become idle when the generated workload 

running inside each of these VMs is being completed. It is worth noting that the measured 

power consumption reflects only the power draw of the compute nodes without taking 

into account the cooling effort needed for the server room. 

 

Figure 6-12: Company Y testbed measured power consumption 
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As shown in Table 6-12, the duration of the scenario was set for 12717 seconds, 

with system performance being monitored for 9045 seconds which is the cut off point for 

the load induced by the workload.  

Name VMs admitted Admission duration (s) Monitored time (s) 

FCO-A 57 12717 9045 

Table 6-12: Experiment workload summary 

During the test scenario 57 VMs were gradually admitted to the test bed and a synthetic 

load was induced on the VMs emulating different resource demand patterns. Resource 

management was shared between the proprietary FCO system and the CACTOS 

optimisation framework - CactoOpt. Decisions on where to place arriving VMs were 

handled by the FCO, but VM migration options were executed by CactoOpt. This power 

sharing agreement between optimisation systems limited the degree of control over 

resource distribution. After the scenario was executed the measured system data was 

collected to be used further in simulation experiments.  

Automated Simulation Model 

The model build process for Company Y follows the same steps as previously 

described for the build process for Company X. Experiments were executed in the 

relevant testbed and models were compiled automatically based on the data obtained 

from the data collection framework. 
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Figure 6-13: Extracted physical data centre model of Company Y 

The collected data centre infrastructure model shown in Figure 6-13 consists of 

a tree element topology. The top node in the topology represents the data centre element 

named “Company Y Testbed” which consists of one rack element named “rack01”. The 

rack itself has three nodes named “10.157.128.30”, “10.157.128.31” and 

“10.157.128.32”. Hardware specification seen in the model was obtained from data 

collection framework and verified against manufacturers specifications shown in Table 

6-8. Apart from the node resources information model contains PDU unit and network 

interconnect information for each node. Each node is connected to two PDU units for 

redundancy purposes, but since node “10.157.128.31” does not have a power meter 

attached there is no power data supplied to the model, hence only four PDUs are shown. 
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Figure 6-14: Extracted logical data centre model of Company Y 

The logical model captures three hypervisor entities each deployed on three 

compute nodes respectively (Figure 6-14). Three virtual storage devices are listed in the 

model representing virtualised storage physically located at each node. Two types of VM 
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images and pre-configured VM flavours corresponding with VM flavours shown in Table 

6-10. 

 

Figure 6-15: Extracted logical data centre model of Company Y 

The extracted application models reflect the time series notation of resource 

demand captured per monitored VM within the duration of the whole experiment. Figure 
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6-15 is an example of a single VM resource demand. It presents the CPU resource 

demand over time expressed in Millions of Instructions (MI) and the storage resource 

demand expressed in Input Output (IO). Such metrics are captured for every deployed 

VM in the cloud data centre by the CactoScale data collection framework. Within the 

simulation model, CPU and Storage hardware components have a processing speed 

defined in Million Instruction Per Second and Input Output (operations) Per Second 

(IOPS). By combining the application resource demand and hardware processing 

capacity expressed in such a way, the processing time can be calculated. For example, 

if the application requires 1,000 MI CPU power to process a user request and CPU core 

assigned to VM has 2,000 MIPS processing speed then the request will be processed in 

0.5 sec. Each of the “Black Box Application Template” elements shown in Figure 6-15 

contains a unique resource demand trace that was captured through the data collection 

framework monitoring capabilities during the execution of the real system 

experimentation. 
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Figure 6-16: Extracted experiment scenario data centre model of Company Y 

The workload model is captured in terms of VM arrival and termination within the 

experiment duration. Once a VM has been deployed to the data centre the workload 

captured in the application model is being executed simulating resource demand of a 

particular application on the cloud infrastructure. Figure 6-11 shows VM starting times 
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within the duration of the experiment together with the total amount of active VMs in the 

system. The extracted data shown in Figure 6-16 is in line with the experiment setup of 

3.5 hour VM admission cycle with an average 2.2 min delay between VM deployments 

up until maximum of total 57 VMs deployed to the system. 

Simulation results validation 

Once the test scenarios were executed on the real system, next, the simulation 

models were derived using the monitored experiment data. At this stage no change to 

the simulation models are applied and the exact scenario setup is transferred to the 

simulation experiment, executed using the CactoSim simulation framework. This 

exercise is performed in order to compare simulation results and actual monitored results 

side by side, thus, validating the simulation platform accuracy.  

As described earlier in the validation of the Company X case, simulation result 

validation is achieved by comparing the difference between monitored real system data 

against simulated data via statistical and visual analysis. As shown in table Table 6-13 

statistical validation was carried out using 1441 tuples of data, each tuple consisting of 

measured and simulated power values in Watts. On average each simulation data point 

was 40.42 W higher than measured data with a 95% confidence that mean will not 

deviate more than 2.7 as a margin of error. This means that based on the data analysis, 

there is a 95% confidence that the simulation is expected to produce power consumption 

estimations in the range from 38.35 W to 42.49 W higher than the actual system 

measurements. 

Attribute Value 

Observations No. 1441 

Mean 40.42 

Confidence level (95.0%) (margin of error) 2.07 

Standard deviation 40.19 

Pearson correlation 0.71 

Lower bound 38.35 

Upper bound 42.49 

P (T-test (two-tail)) 6.89*10-223 

Table 6-13: Statistical difference analysis between measured and simulated data (FCO-

A) 
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A standard deviation of 40.19 suggests that 68% of the data collected has a difference 

between the simulated and measured data clustered around ±40.19 W from the average 

of 40.42. Figure 6-17 presents a more detailed ranges of data comparisons. The 

conducted T-test shows significant difference in the data with a very low probability that 

the difference between the simulated and measured data is zero. As discussed earlier, 

this is in line with expectations. An overall strong correlation coefficient of 0.71 was 

observed between the simulated and measured data sets meaning that values from both 

sets are following similar patterns. 

 

 

Figure 6-17: Difference spread between simulated and measured data (FCO-A) 

A strong correlation can also be observed via the visual comparison shown in Figure 

6-18 where both simulated power demand and measured power demands are plotted 

side by side. The compared power data follows a similar pattern of gradual increase 

when the VMs are admitted into the system and decrease once the user workload 

decreases.  
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Figure 6-18: Simulation predicted vs measured Company Y testbed power 

To facilitate further validation analysis the absolute error percentage between the 

measured and simulated energy consumption data was calculated and presented in 

Figure 6-19. The average error rate time series analysis serves as a useful way to 

visualise data deviation that was presented via the statistical analysis. If data trends 

shown in Figure 6-18 are compared to the error rate presented in Figure 6-19, both 

graphs follow a logical trend with a small error percentage rate in the beginning of the 

experiment and higher error rate towards the end of the experiment when measured data 

shows higher readings than simulated. As the average error rate (7.57%) for the 

experiment remains below the set threshold of 10% the results are deemed acceptable 

and the model considered valid. Again, as before it is important to note that there are 

some deviations from this average rate with the highest peak reaching a maximum error 

rate of just over 20%.  
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Figure 6-19: Simulation cost error for FCO-A experiment 

Based on the analysis the presented validation shows that the simulation 

framework, CactoSim has been successfully integrated with the optimisation framework 

CactoOpt and is capable of executing provided placement and consolidation policies in 

a representative manner. This statement is backed up by the strong Pearson correlation 

score and visual comparison of both the simulated and measured power results. 

However, it can be also seen that in the second part of the experiment the deviation is 

increasing in error rate reaching a peak of just over 20%. Such behaviour is also echoed 

in the presented statistical data distribution analysis showing a large spread of results on 

both sides of zero in Figure 6-17. Due to the proprietary nature of the FCO placement 

policy within the simulated experiment the experiments were only using the placement 

policies supplied by CactoOpt. Even though a load balancing policy was used for the 

experiments, it would not guarantee the exact decisions for the VM placement when 

compared to the real system testbed experiments meaning that the real system setup 

was not fully replicated into the simulation environment. Hence, the discrepancy between 

the optimisation placement policies is reflected in the presented simulation results 

analysis. Again, while highlighting the usefulness of the methodology and framework, 
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one limitation is the presence of proprietary components being used within data centres. 

In such instances complete data is not available to the modelling framework. 

Web application models from the business analytics use case were used by the 

simulation toolkit to estimate the cloud data centre power consumption for the FCO-A 

experiment with an average deviation error of 7.8%. These validated application models 

are added to the pool of cloud application models together with the Molpro application 

models obtained in the experimentation process shown earlier in Section 6.2. The 

application model pool is used to assemble simulation experiments for the hardware 

acquisition cost analysis exercise demonstrated in Section 6.3. 

6.3 Hardware acquisition cost analysis 

The core proposition of this thesis is that simulation can be effectively used to aid 

and improve the TCO estimation process for cloud data centres by calculating the effects 

of resource management policies on QoS and cost. This section demonstrates the 

benefits of using the proposed approach for determining typical objectives for cloud data 

centre planning and operations. The main advantage of simulation is the ability for users 

to carry out offline experiments with representative system models. The experimentation 

can include change in model structure or attributes to understand system behaviour and 

its limits. By combining a cloud simulation framework and TCO models a user is able to 

conduct “what-if” analyses which can help in finding a desired balance between 

operational efficiency and a financial value for cloud data centre planning and 

management. This section provides a detailed, practical example of such an approach 

for the existing testbed of Company X described in Section 6.2.1 and Table 6-1. 

The scenario presented in this chapter is a real hardware upgrade scenario that 

Company X underwent in early 2018. The case arose that Company X wanted to sell 

part of their old hardware from 2013 and invest partially recouped money into new, more 

efficient server hardware. In consultation with Company X they shared a hardware 

configuration that was under investigation and financial data of the acquisition cost quote. 

As expected, the proposed acquisition option of new computer equipment had 

significantly different energy, design and performance properties all of which had 

unknown implications on QoS and costs of the data centre. To better understand the 

effect the new hardware upgrade will have on the data centre performance and costs the 

methodology and modelling techniques proposed in this thesis were used for analysis. 
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The hardware acquisition analysis logical design is shown in Figure 6-20. The 

idea is to simulate the same workload and resource management decisions for old and 

new hardware and then analyse results. Experiment scenario models remain the same 

for both experiments only the hardware models change. The experiment scenarios 

consist of application models which were acquired earlier during validation phase (see 

Section 6.2), a generated VM lifecycle model and range of costs obtained from Company 

X invoices and public sources.  

 

Figure 6-20: “What-if” experiment scenario design 

A number of experiments are then executed using different combinations of optimisation 

policies for new and old hardware models. Results from all simulation experiments are 

then compared side by side to better understand the potential difference in costs and 

QoS. 

6.3.1 Data centre TCO analysis 

As a demonstration for the proposed approach the following work shows the 

application of simulation for TCO calculation. The supported “what-if” analysis takes the 

TCO and performance calculations of an existing data centre and evaluates the effects 

of a hardware upgrade.  

The data centre setup shown in Table 6-14 represents an actual cost quote 

docket from an equipment vendor for Company X’s data centre presented earlier in Table 

6-1. The whole data centre is mounted in a single rack and consists of a network switch, 
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three controller nodes, a file server (storage) node, four Intel Haswell CPU based 

compute nodes and twelve Intel SandyBridge CPU based nodes. The offer came in a 

bundle at a cost of €100k and was acquired and installed in 2013. 

Nr Qty Equipment description 

1 1 SDN Switch NEC Programmable Flow UNIVERGE PF5240 (1U) 

2 1 Controller Server NEC HPC 144Rc-1 (1U), 2x Nodes:  

-Open Flow Controller Node 

- 2x Intel Xeon X5670 6-Core Westmere Processor (2.93 GHz) 

- 12 GB ECC Reg. DDR3 Memory (6x 2GB) 

- 2x Gigabit Ethernet Controller, onboard 

- 2x 250GB SATA HDD, 7.2k rpm, Raid-1 

-Cloud Controller Node 

- 2x Intel Xeon X5670 6-Core Westmere Processor (2.93 GHz) 

- 48 GB ECC Reg. DDR3 Memory 

- 2x Gigabit Ethernet Controller, onboard 

- 2x 1TB SATA HDD, 7.2k rpm, Raid-1 

3 1 Cloud Network Node NEC HPC 124Rd-1 (1U): 

- 2x Intel Xeon E5-2620 6-Core SandyBridge Processor (2.0 GHz) 

- 64 GB ECC Reg. DDR3 Memory 

- 2x 1TB SATA HDD, 7.2k rpm, Raid-1 

4 1 Fileserver Node NEC HPC 1212Rd-2 (2U): 

- 2x Intel Xeon E5-2620 6-Core SandyBridge Processor (2.0 GHz) 

- 64 GB ECC Reg. DDR3 Memory 

- 2x 500GB SATA HDD, 7.2k rpm, configured as Raid-1 

- 6x 2TB SATA HDD, 7.2k rpm 

5 1 Cloud Worker Server NEC HPC 1812Rf-2 (2U) with 4 Nodes: 

- 2x Intel Xeon E5-2630v3 8-Core Haswell Processor (2.4 GHz) 

2 Nodes equipped with: 

- 64 GB ECC Reg. DDR4 Memory 

- 2x 1TB SATA HDD, 7.2k rpm 

2 Nodes equipped with: 

- 128 GB ECC Reg. DDR4 Memory 

- 2x SSD SATA, 240 GB 

6 3 Cloud Worker Server NEC HPC 1812Rd-2 (2U) with 4 Nodes: 

- 2x Intel Xeon E5-2670 8-Core SandyBridge Processor (2.6 GHz) 

6 Nodes equipped with: 

- 64 GB ECC Reg. DDR3 Memory 

6 Nodes equipped with: 
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- 128 GB ECC Reg. DDR3 Memory 

2 Nodes equipped with: 

- 2x SSD SATA, 240 GB 

3 Nodes equipped with: 

- 2x 1TB SATA HDD, 7.2k rpm 

Total Bundle Cost: €100,000 

Table 6-14: Baseline data centre configuration acquired in 2013 

To calculate the TCO of the data centre the general formula shown in Equation 

1 is used. However, because the installation of the data centre is housed inside the large 

organisations total premises some of the costs i.e. maintenance, facilities and cooling 

energy are absorbed by already existing internal amenities and agreements and 

therefore are not available explicitly to this study. However, in a bid to present the 

complete view for the TCO calculation method these costs are estimated based on 

information from secondary sources. In addition, the presented equipment quote, which 

includes both network and server equipment, reflects a bundle deal meaning that the 

sum of the Costservers and Costnetwork is combined into one variable - Costracknodes.  

𝐶𝑜𝑠𝑡𝑟𝑎𝑐𝑘𝑛𝑜𝑑𝑒𝑠 =
(𝑃𝑠𝑒𝑟𝑣𝑒𝑟𝑠 + 𝑃𝑛𝑒𝑡𝑤𝑜𝑟𝑘) − 𝑃𝑠𝑎𝑙𝑣𝑎𝑔𝑒

𝑌𝑒𝑎𝑟𝑠
(23) 

𝐶𝑜𝑠𝑡𝑟𝑎𝑐𝑘𝑛𝑜𝑑𝑒𝑠 =
100𝑘 − 23𝑘

5
= 15.4𝑘 (24) 

The annual equipment cost is calculated using equation (23) with the standard 

linear depreciation set over five years with a salvage value of €23k as the four Haswell 

based nodes were sold in 2018. By using formula (24) the total annual cost of assets, 

including depreciation, equals €15.4k for the Company X data centre.  

The cost of employees who provide support and maintenance services for the 

data centre equipment is estimated using equations (5) and (6). The exact data is not 

available to us as Company Y’s data centre maintenance costs are absorbed by staff 

spread across the broader organisation, therefore, these calculations are based on data 

derived from external sources. To complete this estimation the comparable area 

measurements and number of employees of a typical data centre was used with specific 

estimations based on a standalone data centre project in Ireland with plans to employ 

150 people in a 31,000sq.m data centre building (O’Brien, 2016) . Next, the average 

employee salary comes from mapping advertised job roles i.e. Operations Manager, 
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Hardware Operations Engineer, Facilities Technician, Hardware Operations Quality 

Assurance lead and Data Centre Technician Assistant (Google, 2018) where salaries 

range from €74,287 to €50,226 per year (Glassdoor, 2018). The additional area 

estimation coefficient K value was set to 2.5 as an estimation of extra additional non-

data hall space needed to host auxiliary employee facilities and cooling equipment. 

Finally, the rack area measurements were derived by using actual measurements of the 

width and the length of the rack unit (42U, 2018). 

𝐶𝑜𝑠𝑡𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 𝐷𝑎𝑡𝑎ℎ𝑎𝑙𝑙𝑎𝑟𝑒𝑎 × 𝑁𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑠𝑞𝑚
× 𝑆𝑎𝑙𝑎𝑟𝑦𝑎𝑣𝑔 =

0.70 × 2.5 × 0.005517946 × 62,257 = 601 (25)
 

The cost of facilities which are used to host the data centre equipment similarly 

to the maintenance costs are estimated based on the space taken by the number of 

racks in a data hall area and the depreciation of the building over 20-year period. Firstly, 

the cost of facilities per square meter is calculated by dividing the total cost of building 

construction by the total area of the site where the building is located (2). Estimating this 

presents a value of 𝐶𝑜𝑠𝑡𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠
 as €200m (O’Brien, 2016) and 𝑆𝑖𝑡𝑒𝑎𝑟𝑒𝑎as 

31,000sq.m with a cost of facilities per square meter set at: 

𝐶𝑜𝑠𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑠𝑞𝑚
=

𝐶𝑜𝑠𝑡𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑆𝑖𝑡𝑒𝑎𝑟𝑒𝑎
=

200,000,000

31,000
= 6,452 (26) 

Our 𝐷𝑎𝑡𝑎ℎ𝑎𝑙𝑙𝑎𝑟𝑒𝑎amounts to the space estimation of a single rack which equals 1.75 

sq.m. Estimated yearly facilities cost over a 20 year depreciation period using formula 

(3) is calculated as: 

𝐶𝑜𝑠𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝐶𝑜𝑠𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑠𝑞𝑚
× 𝐷𝑎𝑡𝑎ℎ𝑎𝑙𝑙𝑎𝑟𝑒𝑎 × 𝐴𝑡 =

 6451.612903 × 1.75 ×
1

20
= 565 (27)

 

Full annual TCO value also requires calculating energy consumption of the data 

centre. As shown in Equation 21 a Costenergy value is a combination of static energy 

consumption calculations and simulated dynamic energy calculations. Static energy is 

calculated by using manufacturer specifications for the auxiliary equipment which is not 

used for hosting VMs, such as network switches, controller and storage nodes. 

The power draw values in Table 6-15 for each individual asset were obtained 

from manufacturers component specifications and consolidated using equation (18), 

bringing the estimated Estatic value to 9,960.12 kWh/year. An estimated energy cost for 
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this exercise was taken as €0.091 per kWh, which was calculated by using the average 

of day and night tariff rates taken from a large electricity supplier and was valid as of 

August 2018. 

Asset name Power draw (W) Energy (kWh/year) Cost Per Annum (€) 

NEC PF5240 264 2,312.64 210.45024 

NEC HPC 144Rc 281 2,461.56 224.00196 

NEC HPC 124Rd 269 2,396.59 218.08969 

NEC HPC 1212Rd 323 2,829.48 257.48268 

Total (Coststatic) 1,137 9,960.12 906.37092 

Table 6-15: Static energy consumption calculation 

To simulate power consumption and performance data for the VM hosting 

compute nodes the simulation model of the data centre was implemented using PDCM 

and LDCM meta models. To reflect a larger range of application types both types of 

application presented in the validation experiments in Section 6.2 were used to create a 

pool of application templates and VM flavours. The merged application pool (shown in 

Figure 6-21) is then used to generate an experiment scenario workload which represents 

a VM lifecycle i.e. VM admission and VM termination events.  
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Figure 6-21: LDCM of Company Y with merged application models 

During the experiment scenario execution, a total of 500 VMs were deployed to 

the system reaching a peak of just under 200 VMs running simultaneously (shown in 

Figure 6-22). The workload was designed to gradually peak resource demand of the 

compute nodes of the data centre but avoiding CPU core sharing among VMs. 
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Figure 6-22: VM admission experiment scenario 

For the energy consumption prediction four different resource management 

policies were simulated by conducting four separate simulation runs, changing only the 

policy settings, shown in Table 6-16. First experiment EO-1 was executed with a simple 

VM admission algorithm that attempts to spread the VM workload evenly inside the cloud 

data centre. Every new VM is deployed to a compute node with the least VMs deployed. 

No migration policy is implemented meaning that VMs remain on the initially selected 

node throughout the lifecycle. No energy saving actions are implemented, meaning that 

the compute nodes always remain ON even when there are no VMs deployed. The 

second experiment, EO-2, uses the same VM admission policy, however in this instance 

the nodes are switched off when there are no VMs deployed. Experiment EO-3 changes 

the admission policy to CPU core based consolidation, which admits VMs to a node until 

the CPU cores resource is fully depleted, then it moves to next node to “fill it up” until no 

free CPU cores remain available. EO3 also keeps nodes switched off if no active VMs 

are deployed. Finally, the EO-4 experiment in addition to CPU based consolidation 

admission policy adds a dynamic migration policy which is also based on available CPU 

cores. The migration policy periodically checks if already running VMs could be 

consolidated into fewer nodes based on the CPU cores availability. If the CPU resources 
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are available, then VMs are moved to increase node utilisation and keep fewer nodes 

running. 

ID Admission Policy Migration Energy Saving 

EO-1 Load balancing No No 

EO-2 Load balancing No Yes 

EO-3 Consolidation (CPU) No Yes 

EO-4 Consolidation (CPU) Consolidation (CPU) Yes 

Table 6-16: Simulated resource management policies 

Simulation results were used to calculate power consumption based on estimated 

compute resource utilisation using equation (13) and (14). Figure 6-23 presents the time 

series data side-by-side for experiment power demand using different resource 

management policies as per Table 6-17. Experiment EO-1 and EO-2 power demand is 

almost identical with the exception of the beginning of the experiment where EO-2 starts 

VM admission with all compute nodes switched off and EO-1 starts with all compute node 

running in idle state taking slightly more power. Experiment EO-3 cuts across EO-1, EO-

2 and EO-4. EO-3 is using a CPU core based consolidation VM admission policy, at the 

beginning of the experiment when the bulk of the VMs arrive to the data centre, where 

the trend matches EO-4 consolidation levels. However, further into the experiment it can 

be seen at around the 5,000th second mark, power consumption continues to grow until 

it reaches a similar level of EO-1 and EO-2 experiments. This behaviour can be explained 

by the lack of a consolidation policy, hence as some VMs are being terminated nodes 

are still hosting spread out VMs and cannot be shut down to save power. Power 

estimation for experiment EO-4 yields the lowest results. By continuous VM consolidation 

through VM admission and migration policies fewer nodes are being used to process the 

workload leading to more efficient resource utilisation and fewer powered on nodes to 

process the same workload. 
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Figure 6-23: Power demand estimation for different resource management policies 

Aggressive VM consolidation policies can lead to service performance drop 

caused by VM resource contention, leading to response delays, longer processing times 

and in severe cases requests drops. By looking at the CPU utilisation data for the EO-4 

experiment, shown in Figure 6-24, a CPU utilisation peak is observed for the 

SandyBridge07 (blue) and SandyBridge02 (light green) nodes. The peak duration 

appears to be short under current workload conditions, but still can cause service 

performance problems for mission critical applications. 

Name Energy (kWh) Cost (€) Cost Per Annum (€) 

EO-1 15.4 1.5 2,240 

EO-2 15.2 1.5 2,212 

EO-3 13.2 1.3 1,914 

EO-4 9.3 0.9 1,348 

Table 6-17: Energy demand and costs estimation per policy 

The energy cost is calculated by firstly, using the power conversion formula (15) 

applied to the time series simulation power consumption to calculate kWh consumed 

during the experiment time by all the compute nodes (16) and then multiplied by cost per 

kWh acquired from power supplier (17). The cost per annum value was calculated by 
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dividing the number of seconds in a year to the experiment duration and then multiplying 

it by the cost per experiment. 

 

Figure 6-24: CPU utilisation of EO-4 experiment 

By processing workload, the nodes emit heat and are required to be cooled off to remain 

in an operational state. Cooling solutions are setup to regulate the temperature inside a 

server room. In the current experiment, data on cooling systems and their power demand 

is not explicitly available. Therefore, the Power Usage Effectiveness (PUE) metric is used 

to calculate additional power expenditure outside the data hall. For every experiment the 

sum of the Costcompusim and Coststatic is taken and multiplied by the average PUE value of 

1.8 (Avgerinou, Bertoldi and Castellazzi, 2017) as shown in equation (20). The PUE of 

1.8 means that for every Watt consumed inside the data hall 1.8 Watt is used for cooling. 

The results of energy estimation costs consumed by cooling and total data centre energy 

costs (Costenergy) per each experiment are presented in Table 6-18. The calculation 

results show the lowest power consumption cost comes from network switches and 

controller nodes and the highest for cooling energy estimation with the lowest total 

energy cost estimated result for EO-4. 
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Name 𝑪𝒐𝒔𝒕𝒄𝒐𝒎𝒑𝒔𝒊𝒎 (€) 𝑪𝒐𝒔𝒕𝒔𝒕𝒂𝒕𝒊𝒄 (€) 𝑪𝒐𝒔𝒕𝒄𝒐𝒐𝒍𝒊𝒏𝒈 (€) 𝑪𝒐𝒔𝒕𝒆𝒏𝒆𝒓𝒈𝒚 (€) 

EO-1 2,240 

906 

5,663 8,809 

EO-2 2,212 5,614 8,732 

EO-3 1,914 5,077 7,898 

EO-4 1,348 4,059 6,313 

Table 6-18: Energy cost estimation for each experiment 

Summing together estimated annual energy costs, data hall equipment cost, 

maintenance cost and facilities cost the TCO of the data centre was calculated with 

results presented in Table 6-19. Results show that by using different resource 

management policies cloud data centre energy cost can be reduced, yielding up to ~10% 

yearly savings in TCO figures.  

Name 
𝑪𝒐𝒔𝒕𝒆𝒏𝒆𝒓𝒈𝒚 

(€) 

𝑪𝒐𝒔𝒕𝒓𝒂𝒄𝒌𝒏𝒐𝒅𝒆𝒔 
(€) 

𝑪𝒐𝒔𝒕𝒎𝒂𝒊𝒏𝒕𝒆𝒏𝒂𝒏𝒄𝒆 
(€) 

𝑪𝒐𝒔𝒕𝒇𝒂𝒄𝒊𝒍𝒊𝒕𝒊𝒆𝒔 

(€) 

𝑪𝒐𝒔𝒕𝒕𝒐𝒕𝒂𝒍 
(€) 

Saving
s (%) 

EO-1 8,809 

15,400 601 565 

25,375 0 

EO-2 8,732 25,298 0.3 

EO-3 7,898 24,464 3.6 

EO-4 6,313 22,879 9.9 

Table 6-19: TCO component summary and calculation 

The proposed TCO estimation method calculates a fraction of cost for maintenance and 

facilities based on the rack occupied space in the data hall of a large-scale cloud data 

centre allowing estimation of costs based on a single rack. If data centre size is 

extrapolated by adding additional racks the cost relationship should hold making it 

possible to estimate TCO at a larger scale. Current estimation results also show that the 

equipment cost (𝑪𝒐𝒔𝒕𝒓𝒂𝒄𝒌𝒏𝒐𝒅𝒆𝒔) is the highest variable in TCO calculation equation 

making it an important consideration point when expanding or upgrading cloud data 

centre. 

6.3.2 Hardware upgrade TCO analysis 

In the following section the proposed TCO estimation method is used to analyse 

the data centre equipment upgrade decision. The aim of this exercise is to demonstrate 

the value of using simulated data to gain insights on operational efficiency and costs in 

relation to the data centre under investigation. Firstly, TCO is estimated and the 

performance of the data centre assessed if the new equipment were to be installed by 
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creating new data centre simulation models and executing the same workload 

experiments as shown in Table 6-16. Secondly, the new simulation-based results are 

compared with the previous initial data centre setup to identify differences in system 

behaviour and cost assessment. 

In early 2018 Company X had the opportunity to upgrade existing data centre 

equipment described in Table 6-14 by partially replacing it with new equipment described 

in Table 6-20. The plan was to replace the existing 2U form factor “Cloud Worker Server 

NEC HPC 1812Rf” containing four Haswell CPU compute nodes with 3U form factor 

“MicroBlade MBI-6118G-T41X” installation containing 14 compute nodes. During the 

upgrade, to increase network throughput new network switch NIC’s (Network Card 

Interfaces) and cabling would be added to the system. To understand the impact on QoS 

and costs the proposed modelling methodology was used for the upgrade option 

evaluation. 

Nr Qty Equipment upgrade description Price (€) 

1 1 Mellanox SN2100 Switch (1U)  9k 

2 23 Mellanox MCX4131A-GCAT ConnectX-4 Lx EN Network 
Interface Card 50GbE  

9k 

3 1 Cabling 2k 

4 1 MicroBlade MBI-6118G-T41X (3U) with 14 Nodes: 

- 1x Intel Xeon D-1541 8 Core Processor (2.6 GHz) 

- 128 GB ECC Reg. DDR4 Memory 

- 2x 2TB SATA HDD, 7.2k rpm 

-2x512GB SATA SSD 

50k 

Table 6-20: Data centre upgrades asset list made in 2018 

As also shown in Table 6-20, a MicroBlade server is a high-density installation of 

14 compute nodes that fit in a small space of 3U form factor. Each node contains 128 

GB DDR4 Memory and 2x2TB HDD and 2x512GB SSD disks, additional memory and 

storage capacity is significant improvement comparing to the older NEC HPC 1812Rf 

server. The CPU performance of the new MicroBlade nodes have only one Intel Xeon 

D-1541 CPU with 8 (16 virtual) cores comparing to two Intel Haswell CPUs with a total 

of 16 (32 virtual) cores. 
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𝐶𝑜𝑠𝑡𝑟𝑎𝑐𝑘𝑛𝑜𝑑𝑒𝑠 =
(𝑃𝑠𝑒𝑟𝑣𝑒𝑟𝑠 + 𝑃𝑛𝑒𝑡𝑤𝑜𝑟𝑘) − 𝑃𝑠𝑎𝑙𝑣𝑎𝑔𝑒

𝑌𝑒𝑎𝑟𝑠
=

(50,000 + 20,000) − 7,000

5
= 12,600 (28)

 

The annual cost of the new equipment upgrade is calculated as the sum of compute and 

network equipment minus the arbitrary 10% salvage value. As shown in equation (28) 

the annual equipment cost equals €12,600. 

 

Figure 6-25: Intel Haswell (Xeon E5-2630) vs new Intel Xeon D-1541 comparison 

(PassMark Software, 2018) 

From more detailed CPU data shown in Figure 6-23 it can be seen that the new CPU 

replacement produces a similar CPU Mark benchmark performance at almost half of 

Thermal Design Power (TDP) of 45W meaning also much lower actual power 

consumption per CPU. From the power consumption experiments presented by the 

MicroBlade manufacturer Supermicro and 3rd party benchmarks of a similar configuration 

system using Intel Xeon D-1541 processors the idle minimum power demand per node 

equals 36W and maximum power demand at a maximum CPU load reaches 90W per 

node. Both values are used when constructing our simulation linear power models as 

𝑃𝑖𝑑𝑙𝑒 and 𝑃𝑏𝑢𝑠𝑦 values respectively, as shown in equation (13). 
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Figure 6-26: PDCM of Company Y with new hardware substitution 

The changes included the addition of 14 new MicroBlade nodes with a new switch 

while also removing 4 Haswell CPU based nodes from the physical infrastructure model 

(shown in Figure 6-26). It also required an adjustment to the power binding models with 

new power consumption bracket information and the addition of a new range of 

hypervisors to the logical infrastructure model to make the connection to new available 

compute nodes. Next, the simulations EOU-1,2,3 and 4 (U-for upgrade) were run using 

the same resource management policies shown in Table 6-16, the same applications 

shown in Figure 6-21 and the same workload demand shown in Figure 6-22. 
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Figure 6-27: Power demand comparison with upgraded data centre 

From the simulated power demand results shown in Figure 6-27 similar trends 

are observed for each policy, with the lower power demand profile. The hardware 

upgrade increases compute resource capacity at lower power demand rates. Interesting 

behaviour is observed during comparison of EOU-4 and EO-4, where both experiments 

are using CPU core based VM admission policies and VM migration (consolidation) 

policies. Where other experiments have almost identical power demand trends the EOU-

4 results show a significant difference in demand patterns with sharp drops in power 

consumption. Through closer analysis of the simulation experiment logs the power 

demand drops appear because of termination of large VMs on SandyBridge nodes 

making it possible to free up and shut down completely the MicroBlade nodes. This effect 

is occurring because of the lower CPU core quantity on the newly installed MicroBlades 

making them more modular allowing them to switch off unused capacity leading to better 

power efficiency under the current experimental circumstances. 



 

 

 - 202 -  

 

Figure 6-28: CPU utilisation of EOU-4 experiment 

To better understand the trade-off in experiment EOU-4, between power saving 

and resource availability, the CPU utilisation shown in Figure 6-28 is examined. From 

this figure it can be seen that the MicroBlade compute nodes Nr. 01, 11, 12 and the 

SandyBridge 10 nodes reach lengthy periods of 100% utilisation. By using the particular 

VM consolidation policy the lower CPU core capacity MicroBlade nodes are filling up 

quicker leading to the increased workload contention and performance bottlenecks. Even 

though the new equipment upgrade consists of higher overall CPU core numbers, the 

performance is hindered by the migration policy which is not considering new hardware 

properties.  

Name Energy (kWh) Cost (€) Cost Per Annum (€) 

EOU-1 13.6 1.3 1,966 

EOU-2 13.2 1.3 1,915 

EOU-3 10.4 1 1,505 

EOU-4 6.5 0.6 941 

Table 6-21: Energy demand and cost estimation per policy of upgraded data centre 
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To proceed with the TCO calculation, firstly annual energy demand and cost is 

estimated by using the power demand simulation results. The results shown in Table 

6-21 as expected show a significant drop in power consumption for the EOU-4 

experiment which is using a CPU core based VM consolidation policy.  

Asset name Power draw (W) Energy (kWh/year) 

Mellanox SN2100 Switch 248  2,172.48 

Table 6-22: Static power estimation of upgraded switch (Mellanox Technologies, 2018) 

To estimate static equipment power consumption for the existing hardware listed 

in Table 6-15 a newly acquired Mellanox switch is added and its yearly energy 

consumption estimation shown in Table 6-22. This brings the total static energy 

consumption to 12,132.6 kWh/year and 𝐶𝑜𝑠𝑡𝑠𝑡𝑎𝑡𝑖𝑐 value to €1,202. 

Name 𝑪𝒐𝒔𝒕𝒄𝒐𝒎𝒑𝒔𝒊𝒎 (€) 𝑪𝒐𝒔𝒕𝒔𝒕𝒂𝒕𝒊𝒄 (€) 𝑪𝒐𝒔𝒕𝒄𝒐𝒐𝒍𝒊𝒏𝒈 (€) 𝑪𝒐𝒔𝒕𝒆𝒏𝒆𝒓𝒈𝒚 (€) 

EOU-1 1,966 

1,202 

5,703 8,872 

EOU-2 1,915 5,611 8,729 

EOU-3 1,505 4,873 7,580 

EOU-4 941 3,857 5,999 

Table 6-23: Energy cost estimation for each experiment on upgraded hardware 

All three types of energy cost i.e. simulated compute nodes, static equipment 

estimations and cooling are summed to calculate total estimated energy cost with results 

presented in Table 6-23. From the presented estimations it can be seen that the increase 

in static costs also increases cooling costs which makes the gap in overall power 

consumption smaller when comparing to results shown in Table 6-18. Even when 

comparing total energy cost between EO-1 and EOU-1, the older equipment is more cost 

efficient under the tested VM allocation policy. 

Name 
𝑪𝒐𝒔𝒕𝒆𝒏𝒆𝒓𝒈𝒚 

(€) 

𝑪𝒐𝒔𝒕𝒓𝒂𝒄𝒌𝒏𝒐𝒅𝒆𝒔 
(€) 

𝑪𝒐𝒔𝒕𝒎𝒂𝒊𝒏𝒕𝒆𝒏𝒂𝒏𝒄𝒆 
(€) 

𝑪𝒐𝒔𝒕𝒇𝒂𝒄𝒊𝒍𝒊𝒕𝒊𝒆𝒔 

(€) 

𝑪𝒐𝒔𝒕𝒕𝒐𝒕𝒂𝒍 
(€) 

Savings 
(%) 

EOU-1 8,872 

12,600 601 565 

22,638 0 

EOU-2 8,729 22,494 0.6 

EOU-3 7,580 21,346 5.7 

EOU-4 5,999 19,765 12.8 

Table 6-24: TCO component summary and calculation 
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Yearly values are added for the estimated energy consumption to calculate the 

TCO for each experiment, equipment costs, cost of maintenance and facilities. Since the 

size of the data centre remains unchanged the estimated costs for maintenance and 

facilities remain the same. The variables for each experiment are presented in Table 

6-24. TCO comparison shows that from the cost benefit point of view a potential 12.8% 

savings can be made by choosing different VM admission and migration policies. 

However, such a finding comes with a warning from the resource utilisation analysis 

shown in Figure 6-28 which identifies bottlenecks in CPU demand. 

𝑅𝑂𝐼 =  
𝑆𝑎𝑣𝑖𝑛𝑔𝑠

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
× 100% (29) 

The investment in new equipment is made to ensure service competitiveness and 

better cost efficiency. Both of these improvements should result in profit growth of the 

data centre. The Return on Investment (ROI) metric allows for the calculation of the 

percentage of recovered funds from the investment i.e. new hardware purchase in the 

given case. The ROI is calculated by dividing achieved savings by the investment 

amount and multiplied by 100% to get the percentile value, the formula is shown in (29)2.  

Name TCO Saving ROI (%) 

EO-1 25,375 
2,737 22 

EOU-1 22,638 

EO-2 25,298 
2,804 22 

EOU-2 22,494 

EO-3 24,464 
3,118 25 

EOU-3 21,346 

EO-4 22,879 
3,114 25 

EOU-4 19,765 

Table 6-25: Energy and cost comparison across data centres 

In the final analysis, TCO estimations from all eight experiments are presented in 

Table 6-25. The findings are compared by calculating yearly cost savings and the ROI 

that new equipment brings. Taking into the account that the presented savings are 

achieved based only on superior power efficiency of the new proposed equipment, the 

result appears favourable. However, when analysing the ROI, the saving in energy only 

                                                           
2 It should be noted, that because amortization costs were already subtracted this assumption will lead to 

an underestimation of actual costs for longer-lived assets. 
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amounts to a maximum of 25%. This means that to recover the rest of the new equipment 

investment costs other means of revenue has to be considered. However, since the new 

equipment also has more CPU cores, memory and storage an additional increase in 

revenue could be obtained by selling more services to utilise more available compute 

resources.  

6.4 Conclusions 

This chapter presented two test cases of different types of cloud applications, a 

Business Analytics case and a Scientific Computing case. For both of the case 

applications a testbed environment was created to enable controlled, isolated 

benchmark experiments. During these experiments the data was collected which served 

as an input for the automated generation of parallel simulation models. Identical 

experiments, as far as was possible were then run on both the testbed scenario and in 

simulation to verify accuracy, and thus were used for validating the simulation platform 

and associated results.  

During the Business Analytics validation experiments the average error rate was 

estimated at 7.8%, but due to a proprietary VM migration algorithm implemented in the 

real system, simulation results began to lose accuracy towards the experimentation 

finish. In identifying this, these experiments have shown the importance in system 

behaviour and the impact different resource management policies have and the 

importance of understanding the logic of cloud management systems for building 

simulation experiments. 

The Scientific Computing use case experiments were more diverse allowing for 

the testing of multiple different resource management policies against real application 

behaviour. Since the CACTOS optimisation framework was fully integrated with an 

OpenStack installation on the Company X testbed, both VM admission and VM 

consolidation policies were controlled by CactoOpt. Full integration allowed for the 

simulation of system behaviour with more precision when compared to the Business 

Analytics experiments. During the comparison of simulation experiments and real results 

the average error rate was found to be 5.6%. In both validation exercises the simulation 

experiments average error rate fell below the 10% threshold, as set by the consortium, 

thus validating the simulation framework as a suitable decision support tool for data 

centre management. 
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The latter half of the chapter demonstrates the application of the simulation based 

TCO estimation method proposed in this thesis. A full physical data centre simulation 

model was created using the hardware specification obtained directly from an equipment 

purchase quote. The application model templates were copied over to the logical data 

centre model from both the Business Analytics and Scientific Computing validation 

experiments. The workload (VM lifecycle) model was generated to admit VMs to the data 

centre using the full application template range. Based on these system models the 

simulation experiments were executed to estimate system performance and TCO. The 

proposed method allows for the simulation of the cloud data centres behaviour under 

different VM admission and consolidation policies, estimating energy consumption and 

compute resource utilisation. A simulation-based energy prediction enables more 

precise TCO estimation based on actual resource demand patterns collected from real 

deployed cloud services while also taking into account cloud resource management 

policies. The presented experiments have shown the difference in energy consumption 

and costs, associated with various resource management policies. In addition, resource 

consumption prediction analysis can help to identify possible bottlenecks, some of the 

power saving techniques can create which may impact upon overall service 

performance. It was also interesting to note the different system performance results 

when analysing hardware upgrade decisions. The CPU consumption in the EOU-4 

experiment was too high raising a concern in relation to the performance of running this 

service. By identifying such scenarios at a simulation stage, using the proposed 

technique, adjustments can be made to the resource management policy so as to better 

suit new hardware features when deployed to the production system. 

In summary, this chapter has shown the practical application of the designed 

application framework developed in this thesis. What is presented here is a proof of 

concept analysis which demonstrates the successful validation of the developed 

approach and demonstrates its usefulness in a small-scale data centre technology 

upgrade scenario. The models developed within this chapter were at times restricted due 

to the proprietary nature of a number of the resource management techniques being 

used within the case study data centres. While this is a slight drawback the results 

presented in such scenarios were easily identifiable. What this helped to confirm was the 

value of a fully integrated approach, whereby all data is represented in the modelling 

platform.  
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7 Discussion and Conclusions 

Cloud computing is a growing trend with an increasing number of users choosing 

to run their workloads on remote hardware in cloud data centres globally. With this trend 

for cloud users to avail of cost effective, on demand cloud services, this puts pressure 

on cloud infrastructure providers to run data centres in a more efficient, cost competitive 

and reliable manner. To keep up with these demands and technology trends, 

infrastructure providers need to update their infrastructure and resource management 

approaches on a regular basis. Constant change in system composition increases the 

chances of misalignment between user resource demand, hardware capabilities and 

resource management approaches. This can potentially lead to service quality 

degradation and cost inefficiency. Hence, comprehensive planning of data centre 

changes is key to avoiding such issues. However, to date there has been a lack of 

research that assists infrastructure providers in holistically assessing the impact that 

different hardware acquisition options and resource management solutions can have on 

their core business metrics i.e. TCO and QoS. 

The growth in cloud computing demand has led to an increase in scale of cloud 

data centres. Data centre management requires a thorough planning approach that takes 

into account key aspects of performance and cost. Although there are methods available 

to aid data centre operators, they are limited in the functionality they offer. The issue of 

efficient cloud resource management is particularly lacking in the cost estimation area 

that can operate at the scale of modern cloud data centres. Existing solutions rely on 

manual user data input which is no longer feasible for a system consisting of thousands 

of different entities, thus highlighting the need for the development of an automated 

approach. 

Cloud computing data centres form a complex environment that consist of virtual 

and physical layers which require constant monitoring, frequent maintenance and 

efficient management at scale. Design and evaluation of configuration options of such 

complex systems is a challenging task due to the dynamic and nonlinear relations 

between user demand, infrastructure capacity and costs. Existing research in the area 

of decision support tools addresses system performance, resource management and 

costs in a disjointed way, often requiring the use of separate tools for each aspect. Such 

an isolated approach leads to duplication of effort and generalisation in estimations. To 
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address shortcomings of existing methods, a solution is required which provides a united 

approach that is capable of providing cost estimations, system performance and 

resource management policies. 

Findings from literature analysis and formal interaction with CACTOS project 

industry research partners who manage cloud infrastructure suggests that one of the 

main goals is to provide a high quality of service while remaining cost competitive. 

According to Astri (2015) low cloud services costs are also expected from customers, 

making cost an important topic from infrastructure provider and consumer point of view. 

However, existing TCO approaches do not take into account the effects of resource 

management policies resulting in an incomplete cost estimation. Literature shows that 

TCO is calculated in an isolated process using static formulas in a spreadsheet or in an 

embedded user interface implementation. Existing disjointed approach might be 

considered sufficient for a small in-house server room, but for a modern cloud data centre 

such processes becomes simply infeasible due to the large scale and complexity of the 

systems. Existing approaches require users to provide manual data entry of cost items, 

but large-scale cloud data centres have thousands of units of heterogenous server 

hardware, hence manual data entry can become a very lengthy task. Hence, a research 

gap was identified in the lack of decision support approaches for cloud data centre TCO 

estimation connecting core cloud data centre management areas such as hardware 

capacity planning, resource optimisation and QoS. 

7.1 Conclusions 

The aim of this thesis was to review and analyse existing cloud data centre 

decision support techniques and tools with the prospect of advancing current state of the 

art in order to provide better insights on data centre performance and costs. Essentially 

creating an enhanced cost-aware decision support approach to aid cloud infrastructure 

providers. The aim of this work was formulated in the hypothesis and supporting research 

objectives presented in Chapter 1. In the process, a methodology and set of tools were 

developed which address the problem. The proposed methodology is capable of 

delivering more precise cost estimations as it is taking into account user demands, 

hardware configuration and resource management policies. By linking TCO estimation 

with resource monitoring and utilisation data, one can gauge cost-based decision impact 

on the provided services and vice versa. This unique cost calculation approach enables 
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access to holistic decision base information that provides assistance for end-to-end data 

centre planning, initial procurement and upgrade decisions. 

From the theoretical literature exploration and related research analysis a DES 

approach was identified as best fitting for task at hand, resulting in simulation framework 

development and implementation. The framework requirements and design were drawn 

from the CACTOS project collaboration based on use cases described in the project. 

This collaboration allowed for deeper simulation-based tooling integration with data 

collection and resource management frameworks, leading to direct access to data 

describing the real system and related resource optimisation algorithms. Through the 

integration with a data collection framework, the work in this thesis proposes autonomous 

model generation improving user experience with simulation adoption and leading to 

advancement in the current state of the art. Similarly, integration with the cloud resource 

management framework allows for direct use of resource management policies from a 

production environment within simulation experiments. Currently available simulation 

frameworks require a custom implementation of resource scheduling policies logic, whilst 

in this improvement the resource management policy needs to be implemented once for 

the resource management framework only, simplifying the process and saving users 

effort. 

The CACTOS project collaboration also gave access to real cloud infrastructures 

and data from the test scenarios of Company X and Company Y. Based on these 

scenarios, simulation models containing infrastructure configuration and cloud 

application behaviour were created. Since simulation models are generally considered 

an approximation of real system behaviour it is important to measure both how accurate 

the approximation is and if simulation delivers results that can be reliable enough to 

support a decision. Validation methods are quite common in cloud computing simulation 

with the examples such as iCanCloud validation by Castañé, Núñez, et al. (2013) or 

MDCSim validation by Lim, Sharma, et al. (2009). To demonstrate the accuracy of the 

simulation results, the presented work followed recognised validation procedures such 

as visual validation and an adopted version of statistical validation developed by Sargent 

(2010). The results of this statistical comparison aid in the understanding of differences 

between simulated and measured data in a more granular way, which in turn can be 

used to aid in future system model development. 
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Preliminary results from the proposed methodology presented in Chapter 6.3 

have received a positive feedback from Company X. Further collaborative research 

touch-points were identified, and the presented research methodology is planned to be 

improved through collecting further data and extending applicability in the area of 

distributed infrastructure systems. 

In carrying out this research the following conclusions were drawn:  

o The literature review revealed a strong research interest in cloud 

computing, particularly in resource management algorithms and 

framework development carried forward from the predecessor paradigm 

of grid computing. Cloud simulation and modelling frameworks were 

identified as available decision support tools for compute resource 

utilisation prediction under different experiment scenarios. TCO 

calculation frameworks and models were also identified as mechanisms 

for cost-based decision support aiding cloud data centre management.  

o Literature review findings confirmed absence of a single solution that joins 

resource consumption estimation and TCO estimation, making it difficult 

to analyse the impact of resource management on costs. To address the 

issue, an integration between cloud data centre simulation and TCO 

calculation processes has been proposed as an approach to support the 

decision-making process, combining cloud data centre performance 

estimations and related costs. This novel approach uses simulation 

models and simulation experiment outputs to improve TCO calculation 

accuracy uniting hardware specification, resource demand patterns and 

costs attributes into one process. The proposed integration delivers a 

holistic view of cloud computing data centre performance enriching crucial 

decision information points.  

o From literature analysis and case study evaluation it has been noted that 

the current approach requires manual data entry for model creation. Since 

existing approaches do not cater for large scale systems, a software 

solution has been developed for simulation model creation automation 

that significantly reduces cloud data centre infrastructure modelling effort. 

Manual data input to the model of thousand nodes would take too much 
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time and therefore is no longer considered a feasible solution given the 

scale of a modern data centre. The software uses a data centre 

monitoring and data collection framework and a pre-defined simulation 

meta model to pull data from a real environment and construct a snapshot 

infrastructure model of the environment.  

o Cloud discrete event simulation integration with a TCO model allows for 

the estimation of cost implications related to a selected resource 

management strategy. Resource management policies play a significant 

role in cloud data centre performance and cost. Conducted 

experimentation results demonstrate the difference in resource utilisation 

and energy costs between different resource management algorithms. 

The significance becomes even more apparent when cost estimations are 

projected over long periods of time, for example over an asset useful life 

span. 

o Simulation models allow users to experiment with a large range of 

scenarios going beyond test bed capabilities. Such scenarios can include 

modelling outlier experiments with spikes in resource demands or 

hardware failures. Simulation also makes it possible to explore design 

options of hardware topologies using the hardware specification of 

existing equipment or equipment that has not yet been acquired. 

Simulation models allow for the impact on QoS and costs to be quickly 

assessed, inclusive of alternative equipment options and design 

decisions. 

o The simulation results validation process can be challenging when 

working with real system data. Presented research showed discrepancies 

of various degrees in simulation results when compared to real system 

measurements particularly when unknown resource management 

policies were used. This means that while dealing appropriately with 

resource demand some of the proprietary cloud resource management 

solutions were difficult to simulate due to undisclosed behaviour 

algorithms. However, the majority of cloud management solutions would 

allow for resource distribution policies to be changed in order to fulfil the 
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goals of cloud infrastructure providers. Hence resource management 

behaviour can be moved to a simulation environment. 

o Through experimenting with alternative resource management policies, 

experiments show up to a 12.8% difference in costs that can be achieved 

when using different resource management techniques. These findings 

provide strong justification in favour of the use of the presented 

simulation-based methodology for the TCO calculation of cloud data 

centres.  

o When in a process of acquiring new hardware for a data hall expansion 

or replacement of assets at the end of their life span, it is important to 

experiment with different hardware profiles. Presented findings (Chapter 

6.3) show an indication of possible bottlenecks due to resource 

overbooking when using existing resource management approaches on 

new computing hardware. Inbuilt cost models provide estimated cost 

information alongside hardware performance data creating a more 

complete information base for decision making. Such experimentation 

findings can be used to anticipate the issue at a design stage and come 

up with a solution prior to asset acquisition. 

o Simulation modelling requires additional expertise which is not typically 

part of the knowledge base of a cloud data centre operator. In order to 

stimulate simulation adoption, the following steps were taken: 

▪ Integration with a data centre monitoring framework to aid in 

automated model creation 

▪ Direct integration with a cloud optimisation framework for the 

simulation of resource management policies 

▪ Development of a user interface for model retrieval, model editing 

and simulation parameterisation 

Overall, the development of the application framework, and its associated testing 

with the two case organisations, have helped to address a number of research gaps in 

the literature, which include the following contributions to knowledge: 

o Automation of cloud data centre simulation model creation 
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o Production grade resource management policy analysis 

o TCO calculation method improvement to account for resource 

management decisions 

o A decision support methodology that integrates TCO and QoS data in 

single output. 

 

 

7.2 Future research 

A number of areas touched by the work presented in this thesis can be developed 

further forming standalone research bodies. Future work recommendations are in the 

areas of software engineering, simulation modelling and further integration. 

Current work is built on simulation experiments using the two real data centres of 

Company X and Company Y as access was provided through the CACTOS project 

collaboration. The scenarios executed using these data centres were used to collect real 

environment data on hardware specification and performance to validate the proposed 

thesis approach. Future research can be carried out to advance the scale of cloud data 

centre models in the simulation experiments. Scale would be an interesting research 

avenue to explore as one of the benefits of simulation techniques. The existing research 

can easily be extended to cover large scale scenarios provided that detailed information 

about data centre configuration can be obtained.  

The linear energy estimation model (Fan, Weber, et al., 2007) was used for a 

CPU utilisation-based power draw calculation, however other power estimation models 

exist. The study of Makaratzis, Giannoutakis, et al. (2018) identified also cubic, square 

and linear interpolation models that have also been applied within other tools. Since 

power estimation was not the focus of the thesis, the linear model was considered to be 

sufficient for purpose. However, the existing model implementation can be updated if 

needed. This way the developed simulation-based framework can be extended to test 

existing power consumption models or used for further work in developing new power 

estimation approaches. 
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The proposed simulation framework was integrated with specific data collection 

and optimisation frameworks as part of the CACTOS project. Using the simulation 

framework on its own with another environment would require additional software 

development effort in order to obtain data for populating simulation models. The adoption 

of the proposed solution would benefit greatly from wider integration across industry 

standard monitoring systems. Development effort can be reduced by complying with the 

existing CACTOS meta-model structure as it can be re-used during other system 

integrations. In this way the proposed simulation framework can be adopted for use 

outside of the CACTOS project tooling for the wider compatibility. 

Each test scenario presented in the validation work was executed only once. For 

the duration of every scenario, the infrastructure was isolated from any external 

interference, however future work can be carried out to improve the accuracy of 

measurements if the same scenario was to be executed multiple times. Collecting a 

higher number of measurements would also ensure there are no outliers in the data due 

to some unforeseen system behaviour. The same logic is applicable to the simulation 

application model composition where more data would create more natural behaviour. 

The application model proposed in this work can be further extended to adopt this 

approach. 

While there was an adequate amount of technical data that formed the basis for 

the cloud data centre hardware infrastructure and workload models, financial data was 

difficult to obtain. This opens another research avenue of simulation modelling 

integration with accountancy systems such as ERP and EBP systems. Such work would 

bridge the gap for cost data acquisition, automating this process and potentially greatly 

improving simulation application adoption rate. 

With annual global IP traffic predicted to triple from 1.5 ZB per year in 2017 to 4.8 

ZB per year by 2022 (Cisco, 2018) the use of a distributed compute infrastructure as part 

of future Edge and Fog computing paradigms unveils additional opportunities for faster, 

more cost-efficient content delivery that compliments a traditional centralised cloud data 

centre. Edge computing is tightly coupled with mobile cloud architectures that provide 

cloud services at the edge of the network locations (Mahmoudi, Mourlin and Battou, 

2018). In comparison Fog computing is referred to as a paradigm that resides between 

smart-end devices and traditional cloud devices (Iorga, Feldman, et al., 2017). 

Compared to centralised cloud computing, the nature of such geographically distributed 
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systems comprised of heterogeneous infrastructure and smart devices creates additional 

compute resource management challenges for infrastructure and service providers as 

well as service consumers. The research presented in this thesis can serve as a basis 

and support future work moving into area of distributed infrastructure performance and 

cost estimation. Presented models and calculation methods can be extended to be able 

to reflect behaviour of Edge and Fog based systems investigating the domain of virtual 

Content Delivery Networks (vCDN), Internet of Things (IoT) and Network Function 

Virtualisation (NFV). 
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