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Abstract 

Despite a history of games-based research, academia has generally regarded 

commercial games as a distraction from the serious business of AI, rather than as an 

opportunity to leverage this existing domain to the advancement of our knowledge. 

Similarly, the computer game industry still relies on techniques that were developed 

several decades ago, and has shown little interest in adopting more progressive 

academic approaches. In recent times, however, these attitudes have begun to change; 

under- and post-graduate games development courses are increasingly common, 

while the industry itself is slowly but surely beginning to recognise the potential 

offered by modern machine-learning approaches, though games which actually 

implement said approaches on more than a token scale remain scarce. 

 
One area which has not yet received much attention from either academia or industry 

is imitation learning, which seeks to expedite the learning process by exploiting data 

harvested from demonstrations of a given task. While substantial work has been done 

in developing imitation techniques for humanoid robot movement, there has been 

very little exploration of the challenges posed by interactive computer games. Given 

that such games generally encode reasoning and decision-making behaviours which 

are inherently more complex and potentially more interesting than limb motion data, 

that they often provide inbuilt facilities for recording human play, that the generation 

and collection of training samples is therefore far easier than in robotics, and that 

many games have vast pre-existing libraries of these recorded demonstrations, it is 

fair to say that computer games represent an extremely fertile domain for imitation 

learning research. 

 
In this thesis, we argue in favour of using modern, commercial computer games to 

study, model and reproduce humanlike behaviour. We provide an overview of the 

biological and robotic imitation literature as well as the current status of game AI, 
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highlighting techniques which may be adapted for the purposes of game-based 

imitation. We then proceed to describe our contributions to the field of imitation 

learning itself, which encompass three distinct categories: theory, implementation 

and evaluation. 

 
We first describe the development of a fully-featured Java API - the  Quake2 Agent 

Simulation Environment (QASE) - designed to facilitate both research and education 

in imitation and general machine-learning, using the game Quake 2 as a testbed. We 

outline our motivation for developing QASE, discussing the shortcomings of existing 

APIs and the steps which we have taken to circumvent them. We describe QASE’s 

network layer, which acts as an interface between the local AI routines and the 

Quake 2 server on which the game environment is maintained, before detailing the 

API’s agent architecture, which includes an interface to the MatLab programming 

environment and the ability to parse and analyse full recordings of game sessions. 

We conclude the chapter with a discussion of QASE’s adoption by numerous 

universities as both an undergraduate teaching tool and research platform. 

 
We then proceed to describe the various imitative mechanisms which we have 

developed using QASE and its MatLab integration facilities. We first outline a 

behaviour model based on a well-known psychological model of human planning. 

Drawing upon previous research, we also identify a set of believability criteria - 

elements of agent behaviour which are of particular importance in determining the 

“humanness” of its in-game appearance. We then detail a reinforcement-learning 

approach to imitating the human player’s navigation of his environment, centred 

upon his pursuit of items as strategic goals.  In the subsequent section, we describe 

the integration of this strategic system with a Bayesian mechanism for the imitation 

of tactical and motion-modelling behaviours. Finally, we outline a model for the 

imitation of reactive combat behaviours; specifically, weapon-selection and aiming. 
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Experiments are presented in each case to demonstrate the imitative mechanisms’ 

ability to accurately reproduce observed behaviours. 

 
Finally, we criticise the lack of any existing methodology to formally gauge the 

believability of game agents, and observe that the few previous attempts have been 

extremely ad-hoc and informal. We therefore propose a generalised approach to such 

testing; the Bot-Oriented Turing Test (BOTT). This takes the form of an anonymous 

online questionnaire, an accompanying protocol to which examiners should adhere, 

and the formulation of a believability index which numerically expresses each agent’s 

humanness as indicated by its observers, weighted by their experience and the 

accuracy with which the agents were identified. To both validate the survey approach 

and to determine the efficacy of our imitative models, we present a series of 

experiments which use the believability test to evaluate our own imitation agents 

against both human players and traditional artificial bots. We demonstrate that our 

imitation agents perform substantially better than even a highly-regarded rule-based 

agent, and indeed approach the believability of actual human players. 

 
Some suggestions for future directions in our research, as well as a broader 

discussion of open questions, conclude this thesis. 
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1 Introduction 

1.1 Introduction 
This section provides a synopsis of the current state of AI in commercial computer 

games, the traditional attitudes of academia towards games research, and the 

potential advantages offered by machine- and imitation learning to both. We then 

proceed to discuss a number of research questions, before outlining our own 

contributions to the field under three distinct categories; theory (computational 

models of imitation for games), implementation (an API for machine and imitation 

learning in games) and evaluation (a rigorous testing procedure, designed to offer an 

objective, cross-agent measurement of believability). A detailed overview of the 

contents and organisation of this thesis concludes the chapter. 

 

1.1.1 Publications 
 
At the beginning of each chapter, we cite a number of our publications which are 

relevant to the contents of that section. A full list of publications is provided in the 

final chapter; see Section 6.1.1. 

 

For further discussion of some topics covered in this chapter, see “Learning Human 

Behavior from Analyzing Activities in Virtual Environments” (Bauckhage, Gorman et 

al 2007), MMI-Interaktiv Journal, Nr. 12, April 2007, which addresses the role of 

imitation learning in games from a cognitive perspective. 
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1.2 Artificial Game Intelligence 

1.2.1 Games Industry 
 
Despite the exponential growth of the games industry in recent years, and the parallel 

advance of academic artificial intelligence, the majority of computer games continue 

to rely largely upon symbolic AI techniques which were developed several decades 

ago [21, 24, 74, 91, 136]. Here, we briefly summarise the most common of these 

constructs, and their role in commercial game AI. 

 
Perhaps the single most prevalent structure in game AI is the finite-state machine 

(FSM) [21], a concept dating from the Moore and Mealy machines of the 1950s [84, 

89]. Favoured primarily due to their straightforward and logically intuitive design, 

they consist of hardcoded rules which determine the actions of the computer NPCs 

(non-player characters) for each potential state encountered during a game session. 

Modern game FSMs generally possess highly complex topologies, and are thus 

capable of producing a façade of intelligence adequate for their designers’ purposes, 

but their limitations are obvious; the programmer must anticipate and correctly 

account for every scenario which may plausibly unfold in the course of a game 

session - a proposition which, given the complexity of current games, is increasingly 

untenable. A common complaint among experienced gamesplayers are so-called 

exploits - areas of the state-action space which the designers did not foresee, and in 

which NPCs are therefore observed to act in a distinctly non-intelligent, often bizarre 

manner [120]. A simplified first-person combat FSM is shown in Figure 1-1. 

 
Another common technique in commercial game AI is scripting, or scripted 

behaviours. Rather than hardcoding the NPCs’ intelligence into the game itself, many 

games incorporate an interpreter and an accompanying high-level scripting language, 

allowing designers to quickly prototype game objectives and enemy intelligence 

semi-independently of the programmers [21, 102]. This approach serves to abstract 
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and separate NPC intelligence from the game code; changes to the AI can be 

implemented without necessitating a recompile of the entire game engine. Scripts can 

also be used to implement FSMs or other more advanced AI constructs, thereby 

providing a markedly greater degree of flexibility than FSMs alone. Nonetheless, 

they remain largely equivalent - the programmer must still define a set of rules 

accounting for as many in-game states as possible, however creatively these can be 

combined at runtime. The main attraction of scripted behaviours for game companies 

lies, instead, in the ease of development such a system provides; scripts can be used 

to define AI, create movie-like cutscenes, determine character interactions, and 

perform numerous other tasks, while the scripting engine itself can be re-used to 

greatly expedite the development of subsequent games [21]. 

 

 
Figure 1-1 - A simple illustrative FSM for a first-person combat game 

 
A third significant component of commercial AI concerns path-planning - NPCs 

must naturally be capable of negotiating their virtual environments in a believable 

and efficient manner. Often, computer characters navigate by means of a waypoint 

map - a predefined graph whose edges represent legitimate, collision-free paths 

between important positions in the game environment, referred to as nodes or 

waypoints. The A* algorithm is heavily employed in commercial games to traverse 

these environment graphs for the shortest path between the NPC’s current location 

pursue enemy 
within range 

engage enemy 

low health 

find health 

low ammo 

find ammo 

low ammo 

change 
weapon 

full health 

lfull ammo 

lfull ammo 

gun found 



 12

and a desired goal node; in practice, a series of parallel “quick” and “full” path-

planning operations are often used to avoid disturbances in the gameplay experience 

due to excessive processing time [103]. A variety of game-specific optimisations are 

already employed in existing commercial products [103], and additional 

improvements have been proposed in academia [121, 67]. More recently, some 

researchers have demonstrated the effectiveness of probabilistic roadmaps for 

pathfinding in virtual environments [93, 96], though industry has again shown little 

inclination to adopt these advanced methods. 

 
In large part, the computer game industry’s reluctance to embrace more recent 

academic techniques can be attributed to their perceived inscrutability; programmers, 

working under strict schedules and pressured to deliver ever more impressive visual 

and audio experiences, are satisfied to implement shallow AI systems which can be 

easily and directly examined, analysed and altered as necessary, without the tuning 

required by more sophisticated techniques [21, 74]. There are some scattered 

exceptions to this rule - games which do adopt machine-learning approaches in the 

implementation of their AI. Lionhead Studio’s “Black & White” used neural 

networks to control its NPC protagonist, while Codemasters’ “Colin McRae Rally 2” 

used a similar approach to learn the ‘rails’ along which the computer-controlled 

opponent vehicles should travel. Even these games, however, resorted to deliberative 

approaches in more complex situations; Black & White used a BDI (Belief-Desire-

Intent) model to define the NPC’s actual goals and ranges of behaviour [33], while 

Colin McRae used an FSM whenever the computer’s car was required to perform 

manoeuvres such as overtaking a competitor [48]. Millennium Interactive’s game 

“Creatures” used a genetic algorithm approach to evolve the behaviour of its 

characters, devoting approximately 50% of its computational cycle to AI routines. 

These games are, however, highly unrepresentative of the state of commercial game 

intelligence as a whole; indeed, in the cases of both Black & White and Creatures, 

their unique approach to AI was their entire raison d’être - the “gimmick” upon 
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which they were publicised and sold. In most games, only 1-5% of processor time is 

typically dedicated to AI [24]. 

 
The limitations of these AI techniques have, of course, a number of observable in-

game consequences for the human player. Since the actions of each agent are 

generally determined in advance and endowed with only minimal flexibility, they 

represent an expression of the designers’ expert knowledge  - a top-down attempt to 

approximate what the programmer thinks a human would do, by examining his own 

decision-making processes - rather than an intelligence derived from practical 

experience of the game world. As a result, such characters frequently exhibit 

repetitive, mechanical or otherwise non-humanlike behaviour, particularly when 

confronted with uncommon situations, and are often rendered ineffective by the 

human player’s natural aptitude for pattern-recognition within a relatively short space 

of time. This in turn gives rise to another problem regularly encountered by 

gamesplayers - namely, that developers attempt to compensate for their NPCs’ 

limited intelligence not by implementing new and better approaches, but simply by 

granting the computer-controlled protagonists abilities which defy the rules imposed 

by the game upon its human players [21]. Sometimes this involves exploiting the 

artificial players’ direct access to the underlying gamestate, allowing them - in 

combat games, for instance - to determine the precise position and velocity of their 

opponents and strike with pinpoint accuracy. On other occasions, the cheating is 

more blatant; computer enemies in resource-management or real-time strategy games 

may, for example, be able to construct buildings or vehicles at a faster rate than 

human participants. In racing and sports games, opposing characters are often 

observed to acquire an inexplicable burst of speed if they fall too far behind, a 

phenomenon so common that it has entered gaming vernacular as “rubber-band AI” 

[110]. Not only do such ‘shortcuts’ detract from the perception of these characters as 

human, but they  frequently lead to frustrating gameplay, as players find themselves 

pitted against foes with speed, reflexes and accuracy far in excess of their own. 
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Nonetheless, competent players are still capable of regularly defeating these 

superhuman opponents, implying that approaches based on imitating human play 

could ultimately produce both more humanlike and more challenging artificial 

agents. 

1.2.2 Academia 
 
Despite a history of games-based research, including Tesauro’s TD-Gammon [125] 

and IBM’s famous Deep Blue (which began as a research project at Carnegie Mellon 

University [57]), academia has generally regarded commercial games as a distraction 

from the serious business of AI, rather than as an opportunity to leverage this existing 

domain to the advancement of our knowledge. Part of this has been caused by the 

type of games typically used; while chess and its ilk provide a useful testbed for the 

development of efficient searching and pruning techniques, they present problems to 

which computers are inherently suited, and do not offer the potential that modern 

commercial computer games do. Chess is, from the human perspective, a deeply 

strategic game precisely because it requires skills in which humans are not naturally 

adept; the manipulation and mechanical searching of large state trees. From the 

computer’s perspective, on the other hand, the configuration of the chess board is 

easily reducible to a matrix representation, the entire range of potential moves is 

known, and a heuristic value can be applied to each subsequent configuration with 

reasonable accuracy. Choosing the next moves therefore becomes an exercise in pure 

number-crunching - or, as the developer of Deep Blue put it, “brute-force 

computation has eclipsed humans in chess.” [55] Indeed, some now argue that work 

in board-game AI has become so constrained that it not only does a disservice to the 

promotion of games-based research in general, but is barely research at all [91]. 

 
In addition, such games bear little or no relevance to the real world, and it is thus 

difficult to see how they can contribute significantly to an intelligence capable of the 
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broad range and scope of human behaviour. One of the recent pioneers of academic 

game AI, John Laird, argues that the field at large has become so fragmented, 

concerned with the development of ever more specialised algorithms designed to 

work in increasingly narrow problem domains, that the “holy grail” - the 

development of an integrated human-level intelligence - has been all but forgotten 

[74]. It is his contention, given the rich complexity of interactive computer game 

environments and the fact that they are inherently designed to present problems 

whose solutions require human reasoning abilities, that such games represent the 

single best platform upon which to tie the various strands of AI research into a 

cohesive whole and construct new models of artificial intelligence. Laird strongly 

advocates the closer collaboration of academia and industry in pursuit of this goal, 

while the games industry itself is beginning to realise the benefits such a partnership 

could bring; development studios are hiring AI PhDs in increasing numbers [74], and 

some experts predict that home games consoles of the near future may incorporate a 

dedicated AI processor in the vein of the specialised graphics hardware present in 

current systems [21]. All the industry needs, according to Laird, is for academia to 

tell them what is required. 

 
Due in large part to the work of Laird and some others - aided, most likely, by 

increasing numbers of young computer scientists who have grown up playing games, 

and who therefore recognise their potential - there has been a steady increase in the 

volume of research utilising commercial games in recent years. Some illustrative 

examples are presented here. Laird has himself produced extensive work on artificial 

Quake 2 combat opponents using his SOAR architecture [74 - 78, 136], incorporating 

over 800 hardcoded rules which operate by recursively deconstructing high-level 

goals into a series of lower-level operations. Van Waveren [135] wrote a Master’s 

thesis based on his development of an advanced Quake 3 agent; this employed 

largely traditional game AI techniques, with its core intelligence consisting of a fuzzy 

logic module and a highly complex FSM. He also proposed a novel approach to 
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pathfinding using an interconnected network of collision-free 3D volumes, along 

similar lines to the PVS (potentially visible set) visualisation data stored in the game 

world’s geometry files. It is worth noting that Van Waveren was also the author of 

the Quake 2 Gladiator bot [134], which we used as a comparator in our believability 

experiments (see Chapter 5). 

 
Notably, some contributions to academic game research have served to indirectly 

reaffirm the criticisms of rule-based and traditional commercial AI enumerated 

earlier in this chapter. Solinger et al [118], for instance, present a knowledge-based 

approach to creating an agent in Microsoft’s “Combat Flight Simulator”. In 

explaining their decision to use hardcoded rules for decision-making, they observe 

that “the advantage… is that it is easy for people to understand the rules, which 

makes analysing pilot behaviour much easier.” They proceed to describe the agent’s 

difficulties when faced with unfamiliar situations, and foreshadow the increasingly 

unmanageable rule-bases necessary to account for every scenario in modern 

simulations: “the dogfight agent may fail when the human player is creative and 

executes a manoeuvre that is unknown to the agent… the easiest way to overcome 

this problem is to create more situations and rules in the reasoning parts of the 

system.”  Elsewhere, Norling and Sonenberg [94] designed an artificial Quake 2 

player by interviewing expert human players, and incorporating their attitudes 

towards strategic and tactical decision-making into a BDI framework. While their 

work proved promising in its ability to reproduce the behaviours described by the 

interviewees, this premise does evoke a number of obvious conceptual objections, 

and again serves to clarify one of the difficulties raised earlier against top-down rule-

based systems in general - that such approaches add an extra layer of subjectivity 

between the observable game world and the agent implementation. Instead of the 

traditional game-AI scenario, wherein a programmer utilises his expert knowledge to 

project how a human player would behave, Norling’s approach involves 

programmers asking third-party experts to describe their reasoning processes, which 



 17

are then approximated. Considering that games provide us with the ability to obtain 

low-level data recordings of said reasoning processes in action, a more direct and 

rigorous alternative to either of these approaches is surely possible. 

 

1.2.3 Machine Learning 
 

As indicated above, the growing interest in commercial computer games as a 

legitimate area of research has nonetheless centred in large part upon rule-based or 

similar systems, as are already common in industrial game AI. Recent years have, 

however, also witnessed a number of contributions which apply machine learning 

techniques to the problem of game AI. Graepel et al [44], for instance, induced a 

customised agent to learn different combat styles (aggressive/evasive) in the one-on-

one martial arts game “Tao Feng”, by pitting an online reinforcement-learning 

system against the game’s in-built AI. Bakkes and Spronck [9, 10] proposed a 

symbiotic framework for allowing FSM-controlled characters in team-based games 

to evolve co-operative intelligence, and demonstrated that it was capable of 

counteracting the advanced FSM AI in iD Software’s “Quake 3: Team Arena”. 

Björnsson et al [16] described a reinforcement learning approach to creature 

intelligence in a basic mobile/PDA game, using the human controller’s feedback to 

expedite convergence and to develop player-specific behaviour preferences. Spronck 

et al [119] also used reinforcement learning to develop a dynamic scripting approach 

to low-level NPC combat behaviours in the “Baldur’s Gate” role-playing game, 

while Ponsen and Spronck [101] applied the same techniques to global game states in 

the real-time strategy game “Wargus”. These approaches still, however, relied upon 

rulebases of manually constructed state-action pairings; reinforcement learning was 

simply used to progressively weight these rules according to their influence over the 

agents’ subsequent successes or failures. 
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Aside from general machine-learning approaches, there is another subdiscipline 

which holds immense potential as a means of developing intelligent game AI. By 

examining the manner in which gameplay sessions unfold, it becomes clear that a 

wide variety of interesting approaches based on imitation learning - that is, the 

automated acquisition of skills or behaviours via observation of an expert’s 

demonstration - may be possible. Though prominently employed in robotics, 

imitation learning has seen surprisingly little application in games-based AI, and is 

scarcely represented in the literature. Before we discuss the research questions which 

presented themselves in the course of our own work, and the contributions which we 

have made to the field, it is worthwhile to consider some of the advantages which 

computer games offer as research platforms for imitation learning. 
 

1.2.4 Games as Imitation Research Platforms 
 
Every day, millions of people play thousands of games both online and in LANs - 

from frantic first-person shooters to intricate role-playing simulations to 

contemplative traditional games like chess and bridge. Each time they do so, they 

generate vast quantities of raw behavioural data; data which could be of enormous 

use in the development of new and interesting approaches to artificial intelligence, 

but which too often simply vanishes, its potential unrecognised, into the ether of the 

internet. Fortunately for us, many serious gamesplayers routinely save and archive 

their own matches for posterity; but this is only a tiny fraction of the data which 

could be harvested, were a dedicated effort to be made at any LAN conference or 

similar event of the kind shown in Figure 1-2. Aside from the volume of data 

afforded to games-based researchers, there are a number of other advantages in using 

games as an imitation-learning research platform - and indeed, for artificial 

intelligence research in general. We outline some of these below. 
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Figure 1-2 - The biannual DreamHack LAN gives some sense of the sheer volume of data 
potentially available to games-based imitation researchers. Such events represent an 
unrecognised and largely untapped resource. (Photo: DreamHack Winter 2007) 
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In contrast to the fields of robotics and computer vision - wherein data is generally 

derived using expensive motion-capture equipment, or by subjecting video sequences 

to extensive analysis - many modern games allow the recording of entire sessions (in 

the form of network traffic) to comprehensive data files with nothing more than a 

single command. Training samples acquired in this manner are, furthermore - and 

again, in contrast to the aforementioned disciplines - entirely devoid of noise; they 

contain the exact locations of each participant and entity in the game world, their 

motion, internal states and all external influences. There is, therefore, no need to 

process the visual rendering of the game world as seen by the human player in order 

to analyse his behaviour; employing games as an imitation-learning platform allows 

us to essentially skip the considerable effort required for data acquisition in other 

fields, and instead to focus solely on the task of developing cognitive models to 

explain the encoded behaviours. Indeed, in cases where elements of the player’s 

visual perception are required, it is possible to design models which recreate this 

perception from the bottom up - that is, to build a noise-free reconstruction of the 

player’s experience of the virtual environment from the low-level data representation. 

This is precisely the approach we adopt in the development of our reactive imitation 

system, detailed in Section 4.5. 

 

Furthermore, as noted by several researchers [e.g. 13] and discussed in later sections 

of this thesis, much of the robotics literature focuses primarily on the engineering 

challenge of achieving realistic humanoid physical motion. Rather than limb 

movement data or similar, however, recordings of gameplay sessions encode the 

actual behaviours of human players under rapidly-changing conditions and against 

opponents of comparative skill; in many ways, this represents a more attractive and 

fertile domain for AI researchers. Games essentially provide closed environments 

with well-defined, sophisticated sets of competing objectives - they can be viewed as 

the human equivalent of a typical laboratory rat maze. The goal of imitation learning 
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in computer games, expressed in its simplest form, is thus to construct models which 

explain and accurately reproduce behaviours recorded as sequences of network 

messages during human gameplay sessions, thereby 'reverse-engineering' the player's 

decision-making process from its observed results. 

 

A more general advantage of using games as research platforms is that they resemble 

idealised robot navigation worlds. Much of the work in this field is centred upon the 

elimination of noise in the robot’s environment [17, 72], whereas computer games 

guarantee accurate, undistorted information. Furthermore, map editors for such 

games are common, allowing the user to create any environment he desires with 

minimal time and effort. By utilising appropriate games as testbeds, researchers can 

thus easily prototype their navigation techniques without needing to account for 

sensory or other complications, before later adapting them to the additional 

constraints of the real world. In similar fashion, certain game genres represent a 

relatively close abstraction of reality; thus, the mental competencies required to 

negotiate the virtual environment are likely to be quite similar to those required for 

real-world navigation. Games may therefore provide some interesting insights into 

human spatial reasoning and related faculties. 

 

To summarise: employing games as a platform for imitation-learning research gives 

access to almost unlimited training samples, containing no noise or other artefacts, 

and which encode human planning and decision-making behaviours of potentially far 

greater interest than the limb-motion data typically found in robotic imitation. Some 

of these issues will be recounted and further contextualised at relevant junctures over 

the remainder of this thesis; further discussion of the advantages inherent in using 

games as research platforms - more specifically, the first-person shooter genre - can 

be found in Section 2.3. 
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1.3 Contributions 

1.3.1 Research Questions 
 

The pursuit of imitation in games raises a number of immediate questions: 
 

• what game genres are most suited to the task? 

• how can we represent and parse demonstrations of human play? 

• what behaviours are exhibited in the recorded data? 

• how should the data be analysed and used? 

• how can the believability and performance of agents be objectively measured? 

• to what degree, and in what areas, can imitation replace rule-based techniques? 

• can techniques developed to reproduce human behaviour in computer games be 

applied in other fields? And if so, how? 
 
In broader terms, how can human behavioural data, generated during interaction with 

a computer game environment, be collected and used to implement artificial agents 

which act in a similar manner? What testbed game(s) should be chosen to provide the 

best balance between complexity of encoded behaviour, real-world applicability, and 

ease of analysis? What techniques may prove useful in analysing the observation 

data? And how can lessons learned from the development of these agents be applied 

in other domains? Over the remainder of this and the following chapters, we propose 

answers to each of these questions. 
 

1.3.2 Contributions: Our Research 
 
As mentioned earlier, one of the most striking observations to confront us in the 

initial stages of this research was, simply, the lack of existing work. Our 

contributions to the field of imitation learning in games therefore developed in a 

somewhat linear manner, which can be summarised in three stages: 
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1. THEORY: MODELS OF COMPUTATIONAL GAME IMITATION 

Drawing upon biological evidence, approaches from the field of robotics, and 

our own experience in computer games, we developed a number of imitative 

models designed to learn and reproduce various aspects of observed human 

behaviour. These mechanisms fall into three distinct subcategories, closely 

mirroring a widely-used psychological model of human planning (see Section 

2.2.1); strategic long-term behaviours, tactical medium-term behaviours, and 

reactive short-term behaviours. Our models, and the experiments conducted 

in order to validate each of them, are detailed in Chapter 4.  

 
2. IMPLEMENTATION: A MACHINE-LEARNING API FOR GAMES 

One major obstacle encountered early in our research was the lack of an API 

that was suitable for our intended purposes. Existing development platforms 

were incomplete and ad-hoc, often with scattered documentation and 

unintuitive interfaces. Rather than writing a minimal library which provided 

only the specific features we required - thus leaving future researchers in 

exactly the same position in which we had found ourselves - we instead 

decided to develop a comprehensive API, encompassing all the functionality 

that students or researchers would require in order to conduct further work in 

this field. While geared principally towards machine- and imitation learning, 

it would also represent a platform for cognitive agent research in general. The 

resulting QASE API, and details of its adoption by various universities at 

both undergraduate and postgraduate level, is detailed in Chapter 3. 

 
3. EVALUATION: THE BOT-ORIENTED TURING TEST (BOTT) 

As noted above, we present statistical validations of the functionality of each 

imitative model in their respective subchapters. However, given that one of 

our aims was to demonstrate the capacity of imitation learning to produce 

more believable game agents, this alone was not sufficient. We wished to 
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further evaluate the “humanness” of our agents, as perceived by actual 

observers. Here, we again ran into an obstacle; there was no rigorous means 

of evaluating this quality in agents. Some minor investigations of 

believability had been conducted, but these were invariably highly informal, 

and certainly not appropriate for inter-agent comparison. We thus decided to 

design a generalised approach to such testing, which we call the Bot-Oriented 

Turing Test (BOTT). Our proposed system is detailed in Chapter 5; it consists 

of an anonymous online questionnaire, a protocol to which examiners should 

adhere in order to maintain the survey’s integrity, and the formulation of a 

believability index which numerically expresses the respondents’ perception 

of the agent, weighted by experience and the accuracy with which it was 

identified. A series of experiments comparing our imitation agents against 

actual human players and traditional rule-based agents served both to evaluate 

our agents, and as a test-case for the believability survey itself. 

 

1.3.3 Thesis Outline 
 
Although our research conceptually followed the above progression, in practice we 

naturally needed to build an API before we could effectively develop our imitative 

models. In Chapter 3, we therefore describe the first of our contributions - the Quake 

Agent Simulation Environment (QASE). We outline our motivations for developing 

QASE, discussing both the shortcomings of existing APIs and the steps which we 

have taken to circumvent them. We then describe QASE’s network layer, which acts 

as an interface between the local AI routines and the Quake 2 server on which the 

game environment is maintained, before detailing the API’s agent architecture. The 

latter consists of a bot factory which allows agents to be created from any of several 

levels of abstraction, together with a variety of data structures designed to provide 

these agents with additional functionality, including the ability to supply the agent 

with sensory data about its environment, the facilitation of high-level queries about 
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the agent’s condition by transparently amalgamating low-level data, the ability to 

record and parse demonstration of human gameplay, integration with the MatLab 

programming environment, inbuilt AI constructs, and topology-learning / navigation 

faculties drawn from our work in imitation learning. We conclude the chapter with a 

discussion of QASE’s adoption by numerous universities as both an undergraduate 

teaching tool and a research platform. 

 

In Chapter 4, we describe a number of imitative mechanisms developed using QASE 

and its MatLab integration facilities. We first outline a behaviour model based on 

Hollnagel’s hierarchy of human planning [53], as discussed in Section 2.2.1. 

Drawing upon previous investigations, we also identify a set of believability criteria - 

elements of agent behaviour which are of particular importance in determining the 

“humanness” of its in-game appearance. In Section 4.3, we then proceed to detail a 

reinforcement-learning approach to the imitation of the human player’s navigation of 

his environment, centred upon his pursuit of item pickups as strategic goals. This 

involves the derivation of a topological environment map by clustering the set of 

positions occupied by the player in the course of the game session, and drawing 

edges between the resulting waypoints based on the player’s observed motion. We 

then examine the relationship between the items currently possessed by the player 

and his subsequent navigation routes, creating a system of rewards such that the 

agent is drawn along similar paths. We augment this by considering two further 

elements of human strategy; weighted pursuit of multiple parallel goals, and 

recognition of object transience - a feature of Quake 2 games whereby items become 

unavailable for a set period of time after collection. We show that this system is adept 

at capturing the human’s program-level behaviour; in other words, the imitation 

model has the capacity to identify and pursue the human’s goals, without necessarily 

reproducing his precise actions at each timestep. 
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In Section 4.4, we describe the integration of this strategic navigation system with a 

Bayesian mechanism for the imitation of tactical motion-modelling behaviours. We 

note that it is not sufficient for the agent to simply move along the ground in the 

game world; it must often negotiate obstacles such as chasms, lifts, doors, etc in 

order to reach its next goal. Motion-modelling provides the means to achieve this, as 

well as reproducing the smooth aesthetic effects that typify a human player. Our 

approach utilises the concept of action primitives - that is, aggregated representations 

of similar actions performed at different times in different places. We sequence these 

primitives using a heavily adapted version of Rao et al’s model of action sequencing 

in human infants [106], which expresses the next action as a function of the agent’s 

current state, next state and goal state - information which is supplied by the strategic 

navigation system. We also propose a technique, which we call imitative keyframing, 

to combine the consistency offered by absolute orientation primitives with the fine-

grain adjustments provided by relative values. 

 
In Section 4.5, we outline a model for the imitation of reactive combat behaviours; 

specifically, weapon-selection and aiming. Drawing upon previous work which 

found that direct imitation produced excessively accurate aim, our approach was to 

instead learn the inaccuracy of the human player’s aim. This consists both of 

intentional inaccuracy, due to the player aiming ahead of the opponent in order to 

compensate for the speed of his weapon’s projectiles, and unintentional inaccuracy, 

due to straightforward human error. To model this, we first reconstruct the human 

player’s visual perception of his opponent’s motion from the available low-level data, 

and then use it to train a series of three expert networks; one to select the most 

appropriate weapon, one to adjust the agent’s aim, and a third to determine whether 

the agent should open fire. A number of interesting phenomena captured by the 

imitative mechanism are then discussed. 
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In each of the chapters listed above, we conducted experiments to provide a statistical 

validation of the respective models’ functionality. This was, however, not sufficient 

on its own; we also wished to ascertain the degree to which the imitation agent is 

perceived as being “humanlike” by an actual observer. We note the lack of an 

existing means of rigorously gauging the believability of game agents, the few 

previous attempts having been extremely ad-hoc and informal; we therefore propose 

a generalised approach to such testing in Chapter 5 - the Bot-Oriented Turing Test 

(BOTT). This takes the form of an anonymous online questionnaire, an 

accompanying protocol to which examiners should adhere, and the formulation of a 

believability index which numerically expresses each agent’s humanness as indicated 

by its observers. The protocol specifies certain steps which are necessary in order to 

maintain the integrity of the survey. The survey itself first ascertains the experience 

level of the respondent on a strictly defined scale, and proceeds to present him with a 

series of test pages; once complete, the believability index for each category of clips 

can be computed and compared. To both validate the survey approach and to 

determine the efficacy of our imitative models, we then present a series of 

experiments which used the believability test to evaluate our own agents against both 

human players and traditional artificial bots. These tests demonstrate that our 

imitative mechanisms are capable of producing agents which perform substantially 

better than even highly-regarded FSM-based agents such as the Quake 2 Gladiator 

bot [134], and indeed approach the believability of actual human players. 

1.4 Conclusion 
 
This chapter presented a discussion of the current attitudes towards computer game 

AI research, from the perspectives of both industry and academia. We then outlined a 

number of relevant research questions, and described our own contributions to the 

field in three distinct categories; theory, implementation and evaluation. Finally, a 

chapter-by-chapter overview of this thesis was provided. 
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2 Imitation, Behaviour and AI 

2.1 Introduction 
 
In this chapter, we discuss the concept of imitation learning in greater detail, and 

outline the various advantages it offers over more traditional artificial intelligence 

techniques. We ground our later work in a discussion of the biological impetus for 

learning by observation, demonstrating that imitation is a necessary component of 

higher intelligence, that it is a neurologically-supported evolutionary development 

rather than a learned behaviour, and that it is computationally explicable in terms of 

forward and inverse models. We then proceed to describe the adaptation of these 

biological precedents in the field of robotic imitation, highlighting specific 

approaches which are relevant to our own research. Finally, we present an overview 

of imitation as it applies to game AI, justify our choice of Quake 2 as an 

experimental testbed with regard to other game genres, discuss the role of 

believability- and performance-based metrics in our work, and formulate a simple but 

illustrative computational model of imitation learning in games. 

 

2.1.1 Publications 
 
Some of the topics covered in this chapter are also discussed in “Learning Human 

Behavior from Analyzing Activities in Virtual Environments” (Bauckhage, Gorman et 

al 2007), MMI-Interaktiv Journal, Nr. 12, April 2007. 

 

2.2 Imitation Learning 
 
Imitation learning, as the name suggests, refers to an agent’s acquisition of skills or 

behaviours by examining a demonstrator’s execution of a given task. In spite of some 
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movement towards games-based machine-learning research, imitation has thus far 

received surprisingly little attention as a means to enhance the believability of game 

agents. Perhaps even more perplexing is the converse; that the academic AI 

community has neglected computer games as a platform for driving imitation 

learning research. Considering their obvious suitability for the purpose - as will be 

discussed in greater detail later - this dearth of previous work is quite inexplicable; it 

is readily apparent that the potential benefits, both to the games industry and to 

academia, are immense. 

 
In contrast to the lack of existing games-based imitation learning research, imitation 

is heavily employed in the field of robotics, and has amassed a significant literature. 

As with our own work, robotic imitation is grounded - insofar as is possible - in 

biological precedent, drawing upon several strands of psychology, neurology and 

behavioural science. It is therefore instructive to examine some of the approaches 

which have been developed by roboticists, in order both to appreciate the advantages 

offered by employing computer games as one’s research platform, and to examine 

these techniques for possible adaptation in our own work. In the following sections, 

we provide a brief overview of imitation learning as it is understood in nature and 

applied in robotics, before further discussing the potential roles for imitation research 

in computer games, and vice-versa. 

 

2.2.1 Biological Imitation 

2.2.1.1 Imitation and Mimicry in Infants and Animals 
 
There is much evidence from the fields of ethology, neuroscience, psychology and 

linguistics to suggest that imitation is an important component of higher intelligence. 

These disciplines have long been interested in the imitation of movements, 

vocalisations and behaviours; George Romanes [109] proposed a scale of imitative 
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abilities among different animal species as long ago as 1884, and his ideas attracted 

the attention of researchers for several decades afterwards [e.g. 126, 128]. In one of 

the most well-known studies of imitation in children, Jean Piaget [100] argued that 

humans develop their imitative capacities in a progressive manner. Infants, he 

claimed, are capable only of copying actions within their immediate perceptual field 

and of the same sensory modality (for instance, hand gestures where the child's own 

hand is also visible). Cross-modal imitation requiring proprioceptive information, 

such as the replication of facial expressions, follows after the first year of 

development, while deferred imitation - the ability to mentally retain observed 

actions, and reproduce them when the demonstrator is no longer present - does not 

emerge until 18 to 24 months [27]. Since Piaget considered the immediate aping of 

behaviours to be insignificant, and argued that true, deferred replication was a 

learned ability, the study of imitation as a form of intelligence became somewhat 

stigmatised. It remained so until the 1970s, when investigations by Meltzoff and 

Moore found that human neonates between 12 and 21 days of age are capable of 

imitating both facial and manual gestures [86]. As this could not be explained by 

conditioned mechanisms, they concluded that it was an innate faculty, contradicting 

Piaget’s earlier findings. Subsequent results showed that even babies less than an 

hour old were capable of imitation, and went so far as to imply that infants devote 

most of their time to duplicating behaviours. Based on these observations, they 

proposed the “Active Intermodal Mapping” model [85], which posits that infants use 

their visual perception of a demonstrator's state as a target against which to direct 

their own body states, perceived proprioceptively. This subsequently formed the 

foundation of Demiris and Hayes’ model of passive robot imitation [26], as will be 

discussed later. Today, psychologists regard imitation as being central to a child’s 

development of symbolisation and representational skills. 

 
With interest in the mechanisms and significance of imitation galvanised, further 

studies showed that many other animals are incapable of learning in this way, 
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reinforcing the view that imitation is indicative of higher intelligence. Indeed, 

humans are now considered the only species capable of imitation as opposed to 

mimicry - that is, the capacity to acquire and develop novel motor skills which are not 

already part of their repertoire, through observation [3]. Billard [13], in a useful 

primer on biological imitation and its relevance to robotics, distinguishes a number of 

different forms of pseudo-imitation. Simple copying, as seen in species such as rats 

and monkeys, refers to actions which are learned associatively and reproduced when 

the animal is placed in the same social context as that wherein the behaviour was 

originally observed. Copying of this kind is viewed as an example of social 

facilitation; the animals demonstrate the ability to reproduce the correct behaviour 

even when provided with incomplete contextual cues. More complex mimicry is 

observed in species such as apes and dolphins - these animals are capable of 

mastering sequences of manipulations, distinguishable from straightforward copying 

by the animals' ability to reproduce isolated subsections of (or variations upon) the 

imitated behaviours in contexts other than those in which they were learned. 

Dolphins also exhibit the comparatively sophisticated ability to map heterologous 

body structures to their own; for instance, they are capable of replicating a human 

demonstrator's limb movements using their fins and tails. Orca calves learn to catch 

prey by intentionally beaching themselves through a combination of mimicry and 

direct teaching from their parents [98]. 

 

2.2.1.2 Human Imitation and Internal Models 
 

The most complex imitative faculties - facilitating what is generally termed true 

imitation - are exhibited by humans. Human imitation diverges from animal mimicry 

principally in that the range of imitative abilities we possess requires a theory of 

mind; that is, the ability to impute beliefs, desires and intentions to others. Human 

imitation has the capacity to abstract observed motions, parameterising them during 
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reproduction based on the contextual goal or intent of the imitator - the same motion 

can, for instance, be optimised for aesthetic appearance (as in dance), efficiency (as 

in sports) or precision (as in surgery) [13]. Human imitation also extends to verbal 

and facial expressions, and an innate ability to recognise gestures; observers can 

deduce actions from minimalistic point-light representations of the actor's 

extremities, and distinguish both general and specific features of the demonstrated 

movement (e.g. the weight of a lifted object). 

 

Our ability to deduce complex movements from even such minimal visual cues 

strongly suggests that the brain maintains an internal representation of the human 

body’s kinematics and ranges of possible motion; that the central nervous system 

employs forward and inverse model to predict the outcome of observed or replicated 

motor commands. This topic is discussed in greater detail in e.g. Wolpert et al [139], 

wherein the authors note that fast, co-ordinated limb movements cannot be controlled 

by sensory feedback mechanisms alone, since the relatively significant delay incurred 

by sensory processing, sensory-motor coupling and motor execution renders such a 

real-time control system implausible. They instead suggest that the cerebellum acts as 

a form of Smith Predictor; in other words, that the brain maintains separate forward 

models of limb dynamics and of the transport delays involved in sensory afference. 

The former produces a prediction of the limb's next state given the execution of a 

motor command, and this state output is then transformed by the delay model, in 

order to generate a final estimate of the sensory information as it is expected to 

subsequently arrive. Any discrepancies between the estimated state and the actual 

sensory feedback are then used to correct the actor's movement, and to refine the 

predictive models. 

 

Furthermore, they note that the sheer number of contexts under which humans 

operate, and the variety of environmental variables involved even in simple actions, 
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precludes the possibility that the brain relies upon a single controller capable of 

encapsulating every such scenario. Instead, they posit a modularised system of paired 

models [138]. Each module consists of a forward model which captures a particular 

behaviour, and an inverse model controller which generates the motor command 

necessary to enact that behaviour. A responsibility estimator determines the degree to 

which each module's forward model accounts for the current context; each inverse 

model then contributes proportionally in producing the final efferent motor 

command. Errors between the predicted and observed states are propagated back to 

the modules based on their respective contributions, and the inverse models adjusted 

accordingly. Johnson and Demiris [66] propose a similar approach; here, however, a 

hierarchy of coupled forward and inverse models is employed instead of a parallel 

collection of modules. Abstract action representations generated at the topmost levels 

percolate downwards through the model’s strata, where successive constraints are 

applied to produce progressively more specific actions; finally, the lowest level 

outputs an actual motor command. Johnson and Demiris explicitly present this model 

as a computational representation of the mirror neuron system, as is discussed in the 

following section. 

 
A similar system of dividing responsibility proportionally across all known contexts 

is employed as part of our own strategic imitation framework; see Section 4.3.6. 

 

2.2.1.3 Mirror Neurons, Imitation and Language 
 
The ability of even newborn infants to accurately map perception onto action implied 

that certain areas of the brain are optimised for the task of imitation. This intuition 

was substantiated by Rizzolatti, Gallese et al [39] with the discovery of so-called 

mirror neurons in macaque primates, which were found to activate during both the 

observation of certain behaviours in other individuals and their own execution of 

related actions. The presence of a similar system in the human brain was confirmed 
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by Fadiga et al [34], who used magnetic stimulation to show that areas of the 

premotor cortex controlling the muscles involved in performing a given action also 

become excited when the subject witnesses a demonstration thereof. Subsequent 

investigations using PET scans served to clarify the specific pathways which 

activated during observation of a grasping motion, replication of the same action, and 

even when the subject imagines himself doing so [45, 107]. These studies also 

revealed some interesting aspects regarding the manner in which motor tasks are 

represented and executed. Some mirror neurons, for instance, were observed to only 

‘recognise’ actions with highly specific features (e.g. when an object was held in a 

configuration using the thumb and index finger), while certain related brain regions 

appear to predict potential interactions with objects in the near future from sensory 

cues, such as the different ways in which an item can be grasped by the hand 

(“grasping affordances” [4]). These results, among others, strongly suggest that the 

brain’s perceptual and motor systems share a common representational substrate; that 

they are designed in a manner which lends itself perfectly to the task of imitation. 

Billard [13] notes that further evidence for the existence of a human mirror system 

can be found in brain lesion studies. Patients who have suffered lesions on their 

parietal lobes sometimes develop an inability to make gestures or use objects in 

response to an oral command (ideomotor apraxia). These patients are also 

occasionally unable to recognise gestures from a photograph or video, suggesting that 

the role of the parietal lobe in imitation is to translate the mental representation of a 

movement into actual motor commands. Patients who suffer lesions on the frontal 

lobe, by contrast, sometimes exhibit compulsive imitative behaviour; they are able to 

stop such imitation only with considerable effort. This strongly implies the existence 

of a neural subcircuit which continually processes visual information by activating 

the motor patterns responsible for producing the same movements - that is, a mirror 

neuron system - which is modulated and inhibited by the frontal lobe. 
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Billard further observes that our aptitude for imitation - the capacity to recognise and 

project others' states to our own - also provides a powerful mechanism for advanced 

social cognition, endowing us with the ability to infer others' intentions and even to 

estimate, manipulate or deceive their mental states. Indeed, there is substantial 

evidence that imitative abilities may have underpinned the evolution of the most 

complex human social interaction - language. Debate on this question has largely 

centred, over the past several decades, upon two contrasting views of language 

development [14]: the nativist approach, which holds that humans possess innate, 

biologically “hardwired” language-learning faculties independent of other cognitive 

skills, and that evolution has produced a universal grammar underlying all 

languages; and the non-nativist, which proposes that the ability of infants to rapidly 

learn their native tongue is a function of general cognitive learning processes applied 

to a specific task. Nativists point to the fact that infants master language at a far 

greater rate than is possible through simple association, while non-nativists stress the 

importance of both egocentric mental development and external social/behavioural 

cues - learned primarily through imitation - in the process of language learning. In 

recent years, however, mirror neurons have provided some compelling neurological 

basis for the latter view. 

 
Rizzolatti and Arbib [108] note that the F5 area of the macaque brain - where mirror 

neurons were originally discovered, and which exerts control over orofacial actions - 

is generally accepted as being homologous with Broca’s region in the human brain, 

which is responsible for syntactical processing, plays a partial role in comprehension, 

and controls the motor functions necessary for speech production. They observe that 

Broca’s area is also involved in the execution of hand and arm gestures, and in the 

mental imagining of same. Given the concentration of mimetic, linguistic and 

specific motor faculties in this region, and drawing upon studies of animal 

communication, they propose that speech developed as a consequence of the mirror 

system’s progressive evolution. First, they argue, we developed the ability to 
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communicate via imitative facial cues, as is still observed in apes and monkeys - as 

well as humans - today. This highly limited form of one-to-one communication was 

later complemented by manual gestures, allowing for a dramatically wider range of 

expression and combinatorial possibilities; third parties, be they objects or other 

individuals, could now be referenced and described via vocal utterances. Through 

repetition and imitation, these vocalisations gradually assumed semantic and 

symbolic meaning, forming the basis of a simple vocabulary. Rizzolatti and Arbib 

thus posit that the emergence of Broca’s area and its speech-related faculties from an 

F5-like precursor, and the concomitant migration of vocalisation control from the 

primitive brain-stem structures still employed by present-day animals to the higher 

brain, was driven by the increasing necessity for integration of laryngeal motor 

control, mirror properties, and close association with the adjacent premotor cortex as 

prerequisites for spoken language. 

 

2.2.1.4 Motor Primitives 
 
Some years before the discovery of mirror neurons, it had been found that by 

stimulating specific areas of a frog’s spine, complete movement behaviours such as 

reaching or grasping could be generated; these could be further combined to form 

more complex movement sequences [43]. Since stimulation of similar areas of the 

spine in different frogs produced the same results, it was inferred that these were a 

phylogenetic rather than an ontogenetic feature. From these investigations, the notion 

of movement primitives developed - a comparatively small set of combinatorial motor 

programs which represent a substrate of autonomous behaviour. Rizzolatti & 

Gallese’s paper [39] served to provide some further neurological corroboration of 

this concept, and clarified its relevance to imitation; they observed that certain mirror 

neurons became inactive when a task demonstration finished, whereas others 

remained active for a short while thereafter. Demiris [28], in presenting a 

computational model of the mirror neuron system, proposes that this phenomenon be 
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interpreted within the context of composite behaviours - that while a behaviour X 

(which we may view as an action primitive) becomes dormant upon completion, a 

behaviour X* whose initial step is X will remain active, since it is still capable of 

generating predictions about the demonstrator’s future states. Thoroughman & 

Shadmehr [127] found indications that the human brain uses similar primitives to 

generate action sequences, since this approach significantly reduces the parameters 

which need to be learned in order to produce complete movement behaviours. 

 
As will be discussed later, the concept of motor primitives has received significant 

attention in robotic imitation, and we have successfully adapted it for use in our own 

work (see Section 4.4.2). 

 

2.2.1.5 Ethology 
 
The field of behavioural science also provides a number of models which are of use 

in artificial imitation. For instance, Schaal [113] proposes a number of concepts 

derived from cognitive studies of imitation which suggest promising directions for 

agent learning and control. Emulation, where the actions of others serve to make 

goals in the environment more overt, may provide a basis for learning how to direct 

an agent towards favourable objectives. An approach based on priming, where 

environmental stimuli co-occur with the demonstration and increase the observer’s 

recollection - such as Pavlov’s famous salivating dog experiment - could be used to 

bias an agent’s exploration towards similar stimuli. Hollnagel’s COCOM (Contextual 

Control Model) [53, Figure 2-1], which describes a person’s actions as a function of 

his situational context and available information, is often employed to analyse human 

behaviour [132]; as will be discussed later, an adapted version of this model was 

instrumental in the development of our own imitative mechanisms (see Section 4.2). 

Elsewhere, drawing upon their investigations of learning and co-operation in 

primates, Byrne and Russon [20] propose a two-level hierarchy based on differing 
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degrees of imitative abstraction. At the higher level, program imitation involves 

replicating the structural organisation of a complex process, while the low-level 

actions required to perform the task are learned independently; action level imitation, 

by contrast, involves the verbatim reproduction of observed actions. Atkeson and 

Schaal [8], in their adaptation of this model for robotic imitation, note that true 

action-level emulation requires full knowledge of the teacher’s internal state, which 

is not feasible in most scenarios; they therefore propose an intermediate level, task 

imitation, whereby actions are abstracted from the internal state to an observable co-

ordinate frame (for instance, the velocity of a demonstrator’s hand). Again, the 

concepts of and distinction between program-level and task/action level imitation 

played an important role in our own work - our strategic navigation system is 

designed to capture the goal-oriented, program-level behaviour of the human player, 

while our tactical motion-modelling system uses the computer-game equivalent of 

both action-level and task-level motor commands (see Sections 4.3.2 and 4.4.3.4). 

 
Figure 2-1 - Hollnagel's COCOM [53], the hierarchy of imitation proposed by Bryne and Russon 

[20], Atkeson and Schaal’s distinction between task- and action-level imitation [8], and the 

correspondence between their respective layers in terms of planning. We use an adaptation of 

COCOM in our investigations (see Section 4.2 for further details). 
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2.2.2 Application in Robotics 
 

Given the compelling biological basis outlined above, it is little wonder that 

researchers in the field of robotics have turned towards imitation techniques as a 

powerful means of “bootstrapping” the intelligence of their machines. In this section, 

we present an overview of some of the more common techniques in robotic imitation, 

and discuss their applicability to imitation learning in games. 

 

2.2.2.1 Motivation 
 
Robot programming at large can be broadly divided into three approaches; human 

programming, where the human simply writes the sequential program which the 

robot will execute, reinforcement learning [2, 69], where the robot is provided with a 

reward signal or optimization criterion and learns to perform a task through repeated 

attempts, and programming by demonstration or imitation learning, where the robot 

is shown a task a number of times and attempts to reproduce the observed action 

[95]. The first option is obviously extremely labour-intensive, and results in robots 

which can perform a limited repertoire of actions with a high degree of competence, 

but cannot generalise or learn new skills. The Honda humanoid robot [52], which 

utilises this hard-coding of behaviours, took a decade to develop; it is capable of 

locomotion and basic object manipulation, but requires direct human instruction to 

perform more complex tasks. 

 
To alleviate the need for direct programming, reinforcement learning has been 

widely employed to the problem of extrapolating control policies for simple robots. 

Learning proceeds by exploring each action in every state, observing the reward 

received, and updating an evaluation function which assigns expected rewards to 

possible actions. However, as the complexity of these machines increases, there is an 

exponential explosion in the number of actions which can be taken in each state. The 
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Honda robot, for instance, has a total of 30 degrees of freedom - even if each of these 

could only take the values forward, backward or stop on each timestep, this would 

still result in 330 possible actions per state [113], which is an impossibly large space 

to search. A method of reducing such massive searches to a more manageable scale is 

required; imitation learning provides a means to this end. 

 
Demiris and Hayes [27], in describing their own imitative model, give a concise 

summary of some of the main advantages offered by imitation learning: 

 
• imitation provides the ability to cope with dynamic environments, where 

preprogrammed knowledge is unavailable or may become obsolete 

• it increases the robot or agent’s ability to cope with changes in their own state 

• it reduces the cost of programming for specific tasks, and expedites learning 

as compared to a purely reinforcement-based approach 

• imitation provides an impetus for the integration of multiple component 

technologies, a theme echoed by Laird in his arguments that games represent 

an ideal platform for the development of broad human-level intelligence. 

 
The primary advantage of using imitation as the foundation of learning is that it can 

dramatically reduce the state-action space which must be considered, by focussing 

attention on areas which are actually relevant to the task at hand [7, 8, 113]. To build 

on the example above, a classic reinforcement learning agent may need to interact 

with its environment for a protracted period of time, or acquire an extremely large 

number of state-action samples, in order to obtain sufficient knowledge of its task to 

ensure that its policy converges towards the optimal [2, 69]. If the desired behaviour 

is first demonstrated by an expert, however, then the observed policy can be used to 

guide the agent’s behaviour towards that goal. Cottrell et al [25] describe two 

approaches to reinforcement-based imitation using Q-learning [69], employing the 

concepts of action biasing and estimated policy exploration. The former uses a 
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modified ε -greedy policy - that is, a policy which selects a random action with 

probability ε  instead of the current best-known action, to guard against local 

maxima - by weighting actions based on the number of times the observer was seen 

to take them; the weights decay over time, causing the expert’s influence to lessen as 

the learner gains experience, and ultimately converging to a simple ε -greedy policy. 

Estimated policy exploration involves making a maximum-likelihood estimation of 

the demonstrator’s policy, and choosing actions probabilistically according to this; an 

imitation rate is used to specify the probability with which the learner uses the 

expert’s policy as opposed to its own default policy, and again this decays over time. 

Using these techniques, Cottrell demonstrates the effectiveness of imitation Q-

learning over exploration by training reinforcement agents to play the game “Pong”. 

 
Similar hybrid systems, which combine the benefits of both imitation learning and 

classic reinforcement techniques, have gained increasing popularity in recent years. 

These typically use imitation to rapidly bring the robot to a reasonable level of 

competence, and then refine its performance using direct reinforcement approaches 

which utilise task-specific expert knowledge [113]. The difference between this and 

our own work lies primarily in the fact that imitation in robotics is generally used as a 

means to drive convergence towards optimal performance of a known task, whereas 

we are faced with the problem of deducing uncertain relationships between the 

player’s state and subsequent behaviour from recorded data, and are just as interested 

- indeed, in many cases more interested - in the various idiosyncratic suboptimalities 

inherent in human behaviour (see Section 2.3.3 for a more detailed discussion). 

Imitation can be further classified as either passive or active [26]; under the former 

approach, the learner perceives the environment and the demonstrated action, 

recognises it, and later attempts to reproduce it, while active imitation involves the 

learner internally generating and testing a series of candidate matching actions during 

demonstration. The passive imitation model is based very closely on Meltzoff and 

Moore’s Active Intermodal Mapping, mentioned earlier [85]. 
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2.2.2.2 Computational Formalisation and Imitation Paradigms 

 
Schaal [112] offers a computational statement of imitation learning in robots. Motor 

control, he observes, requires that commands of the appropriate magnitude be issued 

at the correct time in response to both internal and external stimuli, with a specified 

behavioural objective. Formally, this involves finding a control policy π such that: 

 
),),(()( απ ttztu =  

 
where u is the vector of motor commands, z is the vector of relevant internal and 

external states, and α is the set of parameters which need to be adjusted, e.g. the 

weights of a neural network. Secondly, he defines a generalised evaluation function 

which specifies the level of success achieved by an imitator: 
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He notes that defining J for each particular imitative task is a complex problem. For 

instance, should the evaluation be strictly goal-based - that is, J is small if the 

imitator successfully grasps an object - or should the metric require that the specifics 

of the behaviour - the precise pose and manner in which the object was grasped - also 

be replicated? As part of our work, we will in later sections provide a computational 

formalisation tailored to the requirements of games-based imitation learning, and 

propose approaches to both numerical and perceptual evaluation of imitative agents. 

 
Beyond this generalised formalisation of imitation learning, a number of different 

paradigms can be identified within the robotic imitation literature. Early 

investigations centred upon symbolic imitation, and relied largely upon FSM-like 

deliberative processes; as the field evolved and more modern techniques were 

adapted for imitative purposes, control-based and statistical approaches began to 

emerge, though the choice of paradigm in even contemporary research depends 

largely upon the specifics of the task at hand. Even more recently, biological models 
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have been proposed, which seek to emulate the imitative functions of the human 

brain at a comparatively low level, drawing heavily upon the neurological and 

behavioural precedents discussed in the previous section. These aim to produce more 

general, less task-oriented imitative models; other researchers continue to focus on 

the goal of high-level demonstration learning, abstracting away from biological 

fidelity. The following sections outline these differing approaches, and provide 

examples of how imitation is carried out in each. 
 

2.2.2.3 Symbolic Imitation 
 
Symbolic imitation, as the name implies, involves constructing a symbolic 

representation of the environment, analysing the observed actions in terms of 

subgoals, and deriving a series of if-then rules. Prevalent during the early phases of 

robotic imitation-learning research in the 1980s, early efforts commonly involved 

physically pushing a robot through a movement sequence in order to proprioceptively 

extract the ruleset [112] or utilising industrial robots to perform demonstrated tasks 

[113]. In the latter case, the demonstrator would remotely operate a robotic 

appendage, recording sensor information regarding its orientation, position, velocity, 

etc; the example movements were then manually segmented into subgoals and state-

action transitions, and finally consolidated into graph-based representations - that is, 

FSMs. Despite refinements such as robots capable of processing visual information 

or data-glove input, many approaches to imitation are still based upon similar 

symbolic techniques [112]; Kuniyoshi et al [73], for instance, use symbolic methods 

to teach a robot various block-assembly tasks by visual demonstration, while Demiris 

and Hayes [51]  train an apprentice robot to negotiate a simple maze by following an 

expert robot and constructing a symbolic representation of its actions. Figure 2-2, a 

diagram of their experiment, serves as a typical example of symbolic imitation. 
 
Although symbolic reasoning of this kind is widely employed in imitation, it remains 

a comparatively laborious process, and the benefits of learning by demonstration are 
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attenuated somewhat by the necessity for manual interpretation of the observed data - 

indeed, as detailed earlier, finite-state machines are precisely what we wish to avoid 

in our own work. In addition, many tasks are difficult to describe in purely symbolic 

terms [113]. While relations such as move_forward or above(boxA, boxB) 

are easily captured, how does one describe the dynamics of a tennis serve in such 

neat language? For these reasons, research into non-symbolic imitation techniques 

has become increasingly prevalent. 

 

 
Figure 2-2 - An example of symbolic imitation learning, as presented by Demiris and Hayes [51] 

 

2.2.2.4 Control-Based Imitation 
 
Control-based imitation despatches with the need for a symbolic parsing of perceived 

actions. Here, the control policy is specified in advance - often as a predictive 

forward model - and the observation data is simply used to derive the parameters it 

requires; the demonstrator’s role is thus to shape the behaviour of the control system. 

Atkeson and Schaal [7, 8], for instance, use prior knowledge of point-mass physics to 

learn a model from a single demonstration of the swing-up problem, where the robot 



 45

must swing a pendulum from the inert position to vertical and balance it at that point. 

They found that direct imitation fails due to unavoidable physical constraints, but by 

learning the task-level intent of the demonstrator and using his initial trajectory to 

seed an optimization process, the robot was able to adapt to the task after a number of 

trials. Amit and Mataric [3] present a hierarchical architecture which abstracts 

observation data from a series of forward-inverse control models at the lowest level 

to a probabilistic framework of sequence learners at the top. Grudic and Lawrence 

[46] describe an experiment wherein a robot apprentice equipped with a camera 

learns to mimic the behaviour of a human-controlled demonstrator robot; they 

accomplish this by approximating the multidimensional mapping from raw 1024-

pixel input images to actuator outputs as the sum of a cascade of 2-dimensional 

functions, and show the ability of this approach to generalise from a small training 

set in the presence of considerable noise. Schaal [114] employs a system of nonlinear 

differential equations to describe the actions of a humanoid robot swinging a tennis 

racquet; demonstration data is then used to learn a set of local parameters for the 

control model (see Figure 2-3). Nakanishi et al [90] use a similar approach to 

reproduce humanlike biped locomotion, and succeed in improving upon the “bent 

knee” posture typically generated by standard walking algorithms. 

 
Control-based approaches to the problem of imitation, while efficient in cases where 

the desired behaviour can be naturally modelled as a parameterised function, again 

prove difficult to apply in instances where the agent is required to reproduce a 

broader range of behaviours, or when insufficient information is available to allow an 

a priori specification of the control policy. In our case, it is clearly not feasible to 

describe the complex behaviours exhibited by humans during play as a set of 

formulae; indeed, it is the goal of our research to derive a control policy based on 

observation, rather than imposing one in advance. For this reason, approaches based 

on statistical analysis of the demonstration data would seem to be the best choice for 

imitation in games. 
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Figure 2-3 - Schaal's tennis-swing demonstration and the associated control model, as described 

in [114]. Note that the model parameters obtained from demonstration are termed movement 

primitives; this concept is discussed in Section 2.2.2.7. 
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2.2.2.5 Statistical Imitation 
 
Statistical approaches to imitation learning do not assume an a priori control model; 

instead, they attempt to match perception and action based on statistical analysis of 

the observation data. Dillman et al [29], for example, use fuzzy clustering and an 

automated segmentation algorithm to learn the hand trajectories of a human 

performing simple pick-up-set-down and peg-into-hole tasks, and employ radial-

basis networks to reduce the perception and action spaces to those components which 

were relevant during demonstration. Mataric, Jenkins, Fod et al [37, 60-65] use 

various segmentation, dimension-reduction and clustering techniques to automate the 

derivation of movement sequences from human performance data - see Section 

2.2.2.7 for a further discussion of their experiments with motor primitives. Statistical 

imitation learning has even been used to transfer skills from human experts to lesser-

skilled human apprentices; Nechyba and Xu [92] train neural networks to learn the 

responses of individuals who successfully complete a virtual simulation of the pole-

balancing problem, and use these networks to provide real-time advice to others who 

were unable to perform the task unassisted. 

 
Given its lack of reliance upon expert knowledge, predefined models or manual 

processing, we concentrate on statistical approaches in our own work. 

 

2.2.2.6 Biological Models 
 
Over the past few years, an increasing number of contributions have sought to 

develop artificial models of the cognitive processes which endow humans with their 

imitative faculties, by employing as little abstraction from the original biological 

systems as is feasible. Billard [13] defines three progressive levels of modelling for 

imitation learning: 
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• theoretical modelling - deriving conceptual models of the cognitive 

mechanisms behind imitation, based primarily on behavioural studies; 

• computational modelling - constructing models corresponding to the brain 

areas and neural processes involved in these cognitive mechanisms, thereby 

providing an explicit functional description of the computation required for 

each form of imitation; and 

• robotic modelling - designing hardware-implementable algorithms to realise 

the computational models. 

 
Billard criticises the fact that much of the robotic literature concentrates almost 

exclusively on the engineering challenges inherent in designing machines with 

humanlike ranges of motion, realising their imitative faculties by simply recording 

the movements of the demonstrator’s limbs as a series of torques and angular 

displacements, and utilising straightforward planning techniques to reproduce them. 

Herein lies something of a philosophical parallel with our own work; we have 

already noted that commercial games, often to their detriment, continue to employ 

simplistic approaches to artificial intelligence, and have observed that games - by 

virtue of providing detailed recordings of human cognitive and decision-making 

processes in operation, as opposed to mechanical limb data - are in some ways a more 

interesting platform than traditional robotic imitation learning. Billard argues that the 

objective of computational and robotic modelling should instead be to investigate the 

relationship between neurological studies and the imitative faculties we observe both 

in ourselves and in other animals; in other words, to establish the means by which 

various neurological phenomena contribute to high-level imitative function. 

 
Biological models of imitation have, understandably, drawn heavily upon mirror 

neurons for their inspiration, since these represent the most compelling explanation 

for our imitative capabilities. Demiris [28] proposes a model of the mirror neuron 

system comprising a dual route structure; a generative route which uses a forward 
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model to make predictions about the next state of the system (i.e. the robot’s body), 

and a learning route which activates if the demonstrated behaviour is unknown to the 

imitator. A behaviour controller - basically an inverse model - is used to produce the 

motor commands required to move the robot from one pose to another. In keeping 

with its biological foundation, the same system is capable of both executing a 

sequence of behaviours - by inputting its current state to the behaviour module and 

generating an estimate of the next state, against which the eventual afferent state can 

be compared - and of imitating actions, by inputting the demonstrator’s perceived 

state instead of its own. Johnson and Demiris [66] subsequently extended this 

concept by arranging multiple instances of the system in a hierarchical manner, 

improving the accuracy of imitated behaviours by successively specialising candidate 

actions as they pass from more abstract graph-based representations at the higher 

levels to executable motor commands at the lowest. Oztop and Arbib [97] incorporate 

both mirror neurons and other brain areas necessary for the realisation of grasping 

motor behaviours in their MSN1 model (see Figure 2-4). They demonstrate, using a 

virtual arm simulation, that it is capable of learning a variety of such actions 

(precision grasping, power grasping and side-grasping) from visual demonstrations 

of a human performing the same manoeuvres, using the concept of grasp affordances 

- that is, the subconscious computation from sensory cues of the potential means of 

manual interaction with an object - discussed in the previous section. 

 
Elsewhere, Billard [15] describes a model composed of interconnected modules 

which are explicitly designed to emulate specific regions of the central nervous 

system, following the same neural functional decomposition as found in primates. 

These modules are responsible for visual processing (the temporal cortex module), 

motor control (the primary motor cortex and the spinal cord) and learning (the 

cerebellum and premotor cortex modules, in the latter of which resides an 

implementation of the mirror-neuron system). Billard notes that - with the exception 

of the spinal cord module - the internal construction of each module does not 



 50

precisely duplicate that of the corresponding brain area; the model’s biological 

component instead lies in its modular division, the manner in which said modules are 

connected, and the fact that each module does implement the relevant high-level 

functions of the corresponding brain regions, using abstract neurons as building 

blocks. Billard demonstrates that this model - though prone to low-amplitude and 

incorrectly-paced reproductions of the demonstrator’s behaviour - has the capacity to 

imitate repeating patterns such as walking and dancing, can learn the movements of 

any limb, captures precise manipulations of the extremities, and is capable of using 

video data of a live human performance as its input. 

 
There is one further biologically-inspired technique which has received sufficient 

attention - even in otherwise abstract, non-biological models - to warrant some 

additional discussion; namely, movement primitives. In the following section we 

discuss this concept, its ramifications, and its relevance to our own work 

 

 
Figure 2-4 - The MNS1 model for imitation of grasping behaviours proposed by Oztop and 
Arbib, illustrating how biologically-inspired models of imitation seek to achieve the minimal 
possible deviation from natural systems. 
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2.2.2.7 Movement Primitives 
 

Movement primitives, variously known as motor primitives, action units, and motor 

schemas, are a basis set of modularised motor programs which are sufficient, through 

combination operators, for generating entire movement repertoires [37]. Though 

clearly a biological model insofar as it draws upon evidence of similar schemas in 

humans and animals (see Section 2.2.1.4), approaches to the derivation and 

application of motor primitives span all three of the paradigms mentioned in the 

previous sections; a motor primitive may be something as simple as the symbolic 

“move forward” command from the Demiris & Hayes experiment [51]. As Schaal 

notes, however, such low-level approaches do not scale well to complex systems 

[113]. The more information a movement primitive can incorporate without losing its 

modularity, the better; primitives such as “reach”, “swing” and “grasp” encode 

complete temporal behaviours, but are general enough to allow a degree of 

parameterisation and combination. 

 
Leaving aside symbolic systems in which primitives must be defined manually, there 

are two principal types of motor primitive, reflecting the differing forms of imitation 

outlined earlier: 

 
• Innate primitives, which are implemented using a predefined control model 

• Learned primitives, which are statistically derived from the observation data 

 
Schaal et al [115] describe an approach to innate skill learning based on using 

nonlinear differential equations as dynamic movement primitives; indeed, the robot 

tennis-swing experiment described above [114] used this system as its control model. 

The biped locomotion experiment outlined in [90] adopts the same approach, using a 

set of central pattern generators to drive the walking movement of the robot. 

Movement primitives have also attracted attention in computer vision. Ilg, Giese et al 

[41, 58] describe a system for extracting primitive movements from motion-captured 
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video, and use spatio-temporal morphable models to linearly combine them; they 

show the effectiveness of this technique in reproducing facial expressions and 

synthesizing realistic motion from demonstrations of different martial arts. 

 
From our own perspective, some of the most interesting work in the field of learned 

motor primitives has been carried out by Mataric, Jenkins et al at the Robotics 

Research Lab of the University of South Carolina [31, 37, 60-65, 82]. They present a 

framework for the automated segmentation and derivation of movement primitives 

from recorded limb motion data. Each observation sequence records the relative 

angular positions of four degrees of freedom (DOFs) along the limb at each timestep 

[37]. These sequences are segmented at points where the sum of the squared angular 

velocities falls below an empirically-determined threshold, i.e. 
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&&&&z , and the segments interpolated to a standard length of 100 

elements. The vectors of each DOF are concatenated to give a single 400D vector 

representing the movement within that segment; PCA (principal components 

analysis), a technique which computes a new set of basis vectors for a given dataset 

such that the transformed components are uncorrelated and ordered by decreasing 

variability, is employed to reduce this vector to an 11D representation while retaining 

most of the motion information. Finally, the reduced segments are clustered to 

produce a small set of basis actions, which can be reconstructed by projecting back 

to the input space and temporally resizing the resulting vector to obtain the original 

movement. Each cluster thus represents a motion primitive - when executed in 

isolation, they result in full strokes of the arm from one pose to another. Later 

experiments used spatio-temporal isomap [60] to better capture the nonlinear, 

temporally-depended nature of the observed behaviour. They further discovered that 

applying ST-isomap a second time on the reduced-dimension embedding uncovered 

behaviour units, consisting of sets of individual action primitives. This allowed for 

the sequencing of primitives to reproduce full temporal behaviours; by examining the 

last frame of the current action, a list of valid successor candidates is generated from 



 53

the behaviour unit set, based on whether or not a transition from the last frame of the 

current action to the first frame of the next would require an excessively large change 

in joint position. 

 
A number of the concepts explored by Mataric et al proved useful in the development 

of our tactical imitation subsystem, as described in Chapter 4.4. 

 

2.3 Games-Based Imitation Learning 
 

2.3.1 Motivation and Existing Work 
 
Despite the interest in imitation learning exhibited by the robotics community, very 

little work has been done in applying similar techniques to the field of game AI. 

Furthermore, as is clear from the overview above, much of the robotics literature 

focuses primarily on the engineering challenges of imitating physical human motion. 

Given that the process of generating training data for games is both rapid and 

straightforward compared to robot imitation, that some games already possess large 

online libraries containing vast number of samples, and that - rather than limb 

movement data or similar, as is common in robotics - these recordings encode the 

actual behaviours of human players under rapidly-changing conditions and against 

opponents of comparative skill, computer games would seem to offer huge potential 

for imitation learning and, indeed, the AI community at large. The goal of imitation 

learning in computer games, expressed in its simplest form, is to construct models 

which explain and accurately reproduce behaviours recorded during human gameplay 

sessions, thereby 'reverse-engineering' the player's decision-making process from its 

observed results. 

 
Some scattered examples of imitation learning in games do exist. Sklar et al [117], 

for instance, report on their work in developing a game based on the film “Tron” 

which allows humans to play online against computer-controlled opponents. These 
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matches are recorded, and the data used to train subsequent generations of agents. 

However, this game imposes an extremely limited repertoire of behaviours on the 

player - at each interval, the player can move left, they can move right, or they can go 

straight ahead. Many contributions still persist in using similarly restricted games - 

such as Pong [79, 111] or Pac-Man [140, 141] - which are too simplistic to yield 

much in the way of interesting results, except for highly specific investigations 

(Figure 2-5). Using commercial games for imitation research would seem to be a far 

more profitable enterprise - see Section 2.3.4.1 for further discussion. 
 

   
Figure 2-5 - Pong, Pac-Man and Tron are too simplistic to provide much scope for investigation. 

 

Geisler [40] in his Master’s Thesis, investigates the relative performance of three 

machine-learning approaches - ID3 decision trees, naïve Bayesian classifiers, and 

multi-layer perceptrons - when applied to the task of learning simple actions from 

human demonstration in the FPS (first-person shooter) game “Soldier of Fortune 2”. 

He demonstrates that an MLP performs significantly better than the other approaches, 

at the cost of an increased learning time. However, Geisler imposed a number of 

artificial restrictions on the recorded data used in the experiments; for instance, he 

discretises each of the low-level actions under investigation - move direction, 

accelerate, face direction, and jump - into either binary values or indices of four 90° 

sectors, as appropriate. In other words, the agent can move and aim only at right-

angles, effectively reducing the simulation from a full 3D virtual world to an equally 

limited state as Sklar’s “Tron” game. Additionally, his analysis comprises only an 
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inter-algorithm comparison of learning accuracy and speed of convergence; he does 

not include a discussion of the observable in-game behaviour resulting from each 

approach, and it is therefore difficult to ascertain how successful his agents actually 

were in imitating their human exemplars. 

 
Sukthankar and Sycara [122] propose a means of automatically recognising 

sequences of team behaviours using the game “Unreal Tournament”. They remark 

upon the particular difficulty of determining the exact transition point between 

behaviours, a subject which we will revisit in the concluding chapter of this thesis. 

To circumvent the problem, they employ a series of overlapping time windows 

during which a single behaviour is assumed to be dominant, and train a set of Hidden 

Markov Models to recognise each.  However, their work examined only 3 specific 

behaviours, which they had defined in advance and instructed the human volunteers 

to perform - the HMMs were therefore simply classifying the best-matching 

behaviour from an extremely limited list of known actions. This approach is 

obviously not suitable for bottom-up analysis of a freeform game session, though the 

complexity of distinguishing even between three known behaviours does provide 

some insight into the scope of the problem. 

 
Elsewhere, Zanetti and el Rhalibi [142] employ an evolutionary neural network 

approach to imitation learning in the game “Quake 3”. Feedforward MLPs were 

defined for each of three behaviour categories - combat, combat movement, and 

general navigation - and trained from human gameplay samples using genetic 

algorithms to optimise the network’s weights. Interestingly, they used a waypoint 

system to deconstruct the human player’s navigation routes into sequences of simpler 

paths for learning. Their experiments demonstrated that this architecture was adept at 

capturing certain forms of behaviour, but susceptible to redundant and/or noisy 

sample data in other areas - and, most importantly from our perspective, that the 

resulting bot did not exhibit humanlike behaviour or strategic planning faculties. 
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These results are corroborated by Thurau et al in their early investigations [12], 

wherein they used self-organising maps (SOMs) to identify manifolds within the 

dataset, and trained a neural network at each node; it was found that such holistic 

attempts to imitate human gameplay did not capture the relevant behaviours at a 

granularity sufficient for accurate reproduction. Indeed, Zanetti and el Rhalibi note 

that their approach would likely benefit from a separation of concerns - the combat 

network, for instance, should be “subdivided into three [neural networks] to better 

learn and perform the three managed actions”. 

 
It is for these reasons that we sought to develop separate, specialised approaches 

appropriate to each of the three clearly defined categories of behaviour - long term 

strategic behaviours, mid-term tactical behaviours, and short term reactive 

behaviours - outlined in the discussion of Hollnagel’s COCOM earlier. A further 

discussion of this issue will be presented in Section 4.2. 

 

2.3.2 Believability and Performance 
 
An important issue when considering how best to approach this work concerns the 

relative importance of believability and performance in game agents. Should agents, 

in other words, be designed in such a manner as to maximise the illusion of being a 

human player? Or should they provide the greatest challenge possible for their human 

opponents? The two are not necessarily synonymous. Harnad [49], in discussing the 

wider implications of Turing’s famous paper, notes that his test cannot be passed 

simply by virtue of an artificial participant beating a human - but only if, in the 

process, its opponent or an observer becomes convinced that the AI is itself a human. 

To illustrate this point, Livingstone [79] cites Big Blue’s defeat of Gary Kasparov in 

1997. The feat itself was not evidence that the chess machine had passed the Turing 

test, but Kasparov’s subsequent accusations of duplicity - that he had actually been 

playing a human opponent in the guise of a machine - did raise the question, at least 
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in an academic sense. It is generally understood, however, that Kasparov’s 

allegations arose due to his lack of expertise in the field, and his consequent 

incredulity at having lost to an artificial opponent. 

 
In terms of our own work, we approach the domain first and foremost as artificial 

intelligence researchers. As such, we are more interested in using computer games as 

a research platform - in analysing human behaviour for the purposes of producing 

believable facsimiles - than in providing the player with a challenging opponent. In 

any case, as discussed earlier, it is a comparatively trivial task to write challenging 

game agents; the only drawback being that such agents often rely on repetitive 

patterns of behaviour, direct access to the gamestate, or outright cheating. A third 

factor, relating both to believability and to performance, should also be noted here; 

namely, that - largely due to their utilisation of the exploitative techniques listed 

above - the difficulty involved in defeating traditional agents does not necessarily 

result in a more enjoyable experience for the human participant, and often produces 

precisely the opposite effect. Yannakakis and Hallam [140, 141] demonstrate that as 

a computer opponent approaches optimal behaviour, human players report decreasing 

satisfaction with the game experience; their investigations indicate that fair, diverse 

and strategic behaviours are central to maximising the player’s enjoyment. 

Believability is an infinitely more difficult goal than performance, but an agent which 

can accurately reproduce human motion, behaviour and planning will therefore 

provide a far more engaging experience for the gamesplayer than is currently offered 

by traditional NPCs. In this regard, academia has much the same goal as the games 

industry; Livingstone notes that the principal requirement for modern computer 

games is not unbeatable AI, but believable AI. 

 
At the same time, as we have already mentioned, capable players generally 

outperform even exploitative traditional agents, providing the ultimate challenge for 

other human participants despite exhibiting inescapable human error and 
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suboptimality. In summary, while our primary interest lies in believability, we are 

also of the opinion that adopting imitative approaches to game AI will ultimately lead 

to agents which are less predictable, less repetitive, more adaptive, and thereby more 

enjoyably challenging for human opponents. 

 

2.3.3 Computational Modelling for Games 
 
The intuition behind imitative approaches to game AI is straightforward; an elegant 

(though, as he notes, highly generalised) formulation is provided by Thurau [129], 

deriving in part from Schaal’s formalisation of robotic imitation as discussed earlier. 

Given a situation encountered during a game session, which we view as a state vector 

s, and a collection of environmental factors e, a human player’s behaviour can be 

computationally modelled as the temporally-dependent sequence of meaningful 

actions a which he executes in response to that situation; that is, 
 

),...,,,...,( 111 ntttntttt eeesssfa −−−−+ =  
 
where at+1 is the action to be executed on the next timestep, and st is the observable 

state of the game world at time t. By examining recorded samples of human 

gameplay, it may be possible to derive the mapping f and thus to create an agent 

which can accurately imitate humanlike behaviour even in novel scenarios. 

Alternatively, Thurau notes that imitation can be understood as a classification 

problem rather than the regression outlined above; he proposes using a Bayesian 

approach to choose the action aj at timestep t+1 possessing the highest probability 

among all actions observed in the training dataset, given the current state st : 
 

),...,,,...,|(maxarg 111 ntttntttj
j

t eeesssaPa −−−−+ =  
 

The fundamental premise of our research, then, is to parse the set of states S = 

[s1…sk] and corresponding actions A = [a1…ak] from recorded gameplay samples, 
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and to deduce models which both explain the relationship between them and are 

capable of generating sensible predictions in unseen situations. 

 
There are, of course, some important distinctions which must be drawn between the 

robotic imitation research outlined in the preceding sections and that proposed in this 

thesis. Firstly, the requirements for reproducing the actions of a gamesplayer in an 

interactive environment are obviously quite different; for instance, the player’s 

behaviour is influenced in large part by his location and co-occurring events, whereas 

the majority of the approaches outlined above aim to reproduce isolated humanoid 

motions. Nonetheless, the mental faculties required to navigate a virtual world - when 

issues of actuator/muscle control are removed from consideration - are likely to be 

quite similar to those required in the real world, and games may thus provide some 

interesting insights into human spatial awareness, memory, reasoning, and so forth. 

Secondly, while the objective in robot imitation is generally to reduce the time taken 

for the machine to perform an action optimally, the goal of our research is to generate 

game agents with a convincing façade of humanity. A good example of this 

distinction can be found in Dillman et al [29], wherein the authors mention a number 

of inherent problems in robot imitation learning. Since humans naturally tend to 

perform tasks in a competent but suboptimal manner, they can generate a significant 

amount of “noise” during demonstration. The most prominent traits of human 

performance which can lead to imitation problems are: 

 

1. unnecessary actions which do not contribute towards achieving the goal 

2. incorrect actions which must be compensated at a later time 

3. unmotivated actions which cannot be analytically linked to the sensor data 

 

The authors then proceed to describe methods for the removal of these unwanted 

artefacts. From our perspective, on the other hand, these idiosyncratic, suboptimal, 

quintessentially human behavioural traits are an important facet of what we are 
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attempting to capture and must therefore be incorporated into our agents rather than 

being eliminated. 

 

2.3.4 Selecting a Testbed: Quake 2 
 
Our first step, naturally, was to identify a suitable testbed which would allow for the 

analysis of human gameplay and the implementation of artificial agents trained using 

this data. It soon became apparent that iD Software’s Quake 2 was the de facto 

standard in research using commercial games; Laird had started the trend, and it had 

been picked up by others [12, 131, 132]. Laird’s research centred upon rule-based 

systems rather than in learning by imitation, but given that Quake 2 has built-in 

features which permit the player to record himself during a match (to “demo” or 

DM2 files), it remains a viable choice. In addition, the first-person shooter genre - of 

which Quake is a prominent example - is particularly attractive from an imitation-

learning point of view; this is discussed at greater length in Section 2.3.4.2. 

 
Quake 2, first released by ID Software in 1997, is a combat game played from a first-

person perspective - that is, the player sees the game world through the eyes of a 

virtual avatar. Players explore a three-dimensional environment littered with 

weapons, bonus items, traps and pitfalls, with the objective of reaching a particular 

endpoint and/or defeating as many opponents as possible. In the single-player mode, 

these opponents are agents realised using the kind of finite-state machines described 

earlier; more interesting from our perspective is the multi-player mode, where 

humans compete against one another in specially-designed deathmatch arenas. 

 
Quake 2’s multi-player mode is a simple client-server model. One player starts a 

server and other combatants connect to it, entering whatever environment (known as 

a map) the instigating player has selected. These opponents then fight until a 

specified time or kill limit has been reached, at which point the game restarts on the 
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same map or another, as dictated by the server. Thus, in order to realize artificial bots 

(agents), a means of establishing a session with the Quake 2 server, handling 

incoming gamestate information and communicating the bot’s actions back to the 

server must be implemented. Further pertinent details of the Quake 2 environment 

are discussed in Chapter 3. 

 
Quake 2 further facilitates the recording of matches from the perspective of each 

player; these demo files contain an edited copy of the network packet stream received 

by the client during the game session, capturing the player’s actions and the state of 

all entities at each discrete time step. A parser capable of reconstructing the 

gamestate from these files is therefore required. 

 
Full details of the Quake 2 environment, and the QASE API designed to facilitate our 

research using it, are provided in Chapter 3. 
 

2.3.4.1 Why Existing Commercial Games? 
 
Rather than take advantage of commercial games, many researchers - in the fields of 

both machine learning and traditional game AI - have often chosen to work in 

environments which inherently limit the scope of their investigation [91]. While it is 

true that specific aspects of human behaviour learning can be studied in specially-

designed environments such as that presented by Sklar [117], there are a number of 

advantages in choosing an existing game as opposed to creating one. Firstly, Quake 2 

and other commercial games were written to provide players with a compelling, 

challenging experience rather than with research in mind; they therefore represent 

objective models of human interaction, in situations far more complex than those 

faced in traditional robotic imitation learning or most purpose-built environments. 

Secondly, games can be seen - and should be utilised - as mass-produced universal 

testbeds, offering a vast array of genres suited to research of equally divergent 

varieties; researchers working in commercial games who wish to reproduce others’ 
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work, or test it against their own, do not need to acquire testbeds from the original 

authors or attempt to recreate them from scratch. Thirdly, rather than focussing 

attention on a single element of human behaviour, commercial game sessions 

generally comprise a full spectrum of multiplexed reactive, strategic and tactical 

behaviours, executed in real-time competition against opponents of equal skill; data 

harvested from such sessions therefore provides extremely fertile ground for analysis, 

our task being to decouple and uncover the influences which drive the observed 

behaviours and implement algorithms to realise them. Finally, unlike other areas of 

machine learning where the collection of data requires considerable time and effort, 

experimenting with mature and well-established commercial games such as Quake 2 

allows us to utilise vast online libraries of existing demos, and new samples can be 

generated rapidly and inexpensively. 

 

2.3.4.2 Why First-Person Shooters? 
 
One of the primary advantages of using this type of game in preference to others is 

that it provides a rich, but comparatively direct mapping of human decisions onto 

agent actions. This is in contrast to many other genres [21, 74, 91], where the agent’s 

behaviours are determined in large part by factors other than the player’s decision-

making process. In real-time strategy games, for instance, the player typically 

controls a large number of units, directing them in various scheduling and resource 

management tasks. Although the player is responsible for, say, instructing his 

followers to engage in battle against an enemy faction, the specifics of how the 

confrontation unfolds is handled on a per-unit basis by the game’s AI routines. In 

sports simulations, only a single character is usually under the control of the human 

player at any given time; the interactions of his teammates, though perhaps 

influenced by the tactics chosen before play, are managed from one timestep to the 

next by the computer. In adventure games, imitating human performance would first 

require an AI capable of visually recognising everyday objects and comprehending 



 63

their significance, as well as an ability to understand and partake in conversations 

with other characters; this prerequisite level of common-sense reasoning makes the 

genre infeasible for imitation purposes, at least at present. While these games do 

offer many interesting challenges for AI research, as partially enumerated by Laird 

[74] and Fairclough et al [35], the attraction of Quake 2 and other first-person 

shooters - to researchers and gamers alike - lies in the minimal degree of abstraction 

they impose between the human player and his virtual avatar. 

 
Additionally, the FPS genre - while incorporating unrealistic features such as 

invincibility, teleportation, etc - is nonetheless an abstraction of the real world, as 

opposed to a board or puzzle game with no relevance to reality. Thus, the possibility 

exists that techniques developed to imitate in-game human behaviour may be 

adaptable to other areas; indeed, Thurau et al [132] report that they have discussed 

their approach to action primitives with biologists studying the courtship behaviour 

of zebra finches. Further discussion of the potential for real-world application of 

imitative techniques developed in games can be found in Section 6.4.2. 

2.4 Conclusion 
 
This chapter detailed the field of imitation learning in greater detail, outlining its 

various advantages over more antiquated artificial intelligence techniques. A 

discussion of the biological impetus for learning by observation was also presented, 

demonstrating that imitation is a necessary component of higher intelligence, that it is 

a neurologically-supported evolutionary development rather than a learned 

behaviour, and that it is computationally explicable in terms of forward and inverse 

models; these observations serve to ground the work described over the following 

chapters in biological precedent. An overview of robotic imitation was then sketched, 

its adaptation of natural imitative mechanisms explained, and specific approaches 

which are relevant to our own research highlighted. A discussion of imitation 
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learning in game AI, our choice of Quake 2 as an experimental testbed, the role of 

believability- and performance-based metrics in our work, and the formulation of a 

computational model for games-based imitation learning concluded this chapter. 
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3 The QASE API 

3.1 Introduction 
In the initial stages of our research, it became clear that the available testbeds and 

resources for game-based AI research of the kind we were pursuing were often 

scattered, ad hoc and incomplete. We felt that the absence of a unified, low-level yet 

easy-to-use development platform and experimental testbed was a major impediment 

to the adoption of commercial first-person shooter games in both academic research 

and education, as well as representing a major obstacle to our own work. We 

therefore decided to develop an API which would not only allow us to conduct 

investigations into imitation learning, but would also provide others wishing to 

pursue similar work with a solid framework upon which to build. This chapter details 

the result of this development; the Quake Agent Simulation Environment (QASE). 

 
Typically, simulations consist of three principal components; an agent, an 

environment, and an interface between them. This chapter details each of these 

concepts as they relate to QASE. In Section 3.2, we first outline the motivations 

underlying this work, including those shortcomings of existing APIs which we 

sought to correct. Section 3.3 discusses elements of the Quake 2 environment and 

QASE’s network layer, which represents the interface component of the simulation. 

In Section 3.4, we then proceed to describe the most significant elements of QASE’s 

agent architecture, including its provision of a bot hierarchy which allows agents to 

be created from any of several levels of abstraction, its ability to supply the agent 

with sensory data about its environment, its facilitation of high-level queries about 

the agent’s condition by transparently amalgamating low-level data, its ability to 

record and parse demonstration of human gameplay, its integration with the MatLab 

programming environment [83], its inbuilt AI constructs, and its topology-
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learning/navigation faculties, which are drawn from our work in imitation. Some 

further observations on QASE’s potential for application in both games-based AI 

research and education, and a discussion of the various institutions that have already 

adopted QASE in both capacities, conclude this chapter. 

 

3.1.1 Publications 
 
The work in this section was published as  (Gorman et al 2005) “QASE - An 

Integrated API for Imitation and General AI Research in Commercial Computer 

Games” in the proceedings of the 7th International Conference on Computer Games 

(CGAIMS ‘05), where it won the “Best Paper” award. 

 
An extended version was subsequently selected for publication as “The QASE API - 

An Integrated Platform for AI Research and Education Through First-Person 

Computer Games” in the International Journal of Intelligent Games and Simulations, 

Volume 4 Issue 2, June 2007 (Gorman et al 2007). 

 

3.2 Motivation 
In the initial stages of our research, it became clear that the available testbeds and 

resources for game-based AI research were often scattered, frequently incomplete, 

and consistently ad hoc. Existing APIs were unintuitive, unreliable and lacking in 

functionality. Network protocol and file format specifications were generally 

unofficial, more often than not the result of reverse-engineering by adventurous fans 

[42]. Documentation was sketchy, with even the most rudimentary information 

spread across several disjoint sources. Above all, it was evident that the absence of a 

unified, low-level yet easy-to-use development platform and experimental testbed 

was a major obstacle to our own work, and a significant impediment to the adoption 

of first-person shooter games in academic research and education in general. 
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As a result, we decided to adopt a two-track approach. We would develop techniques 

for imitation learning in games, while simultaneously building a comprehensive 

programming interface designed to provide all the functionality necessary for others 

to engage in this work. This interface should be powerful enough to facilitate high-

end machine- and imitation-learning research, while at the same time being suitable 

for use in undergraduate courses geared towards classic AI and agent-based systems. 

 
The Quake 2 Agent Simulation Environment (QASE) was developed to meet these 

requirements. It is a fully-featured, integrated API, designed to be as intuitive, 

modular and transparent as possible. It is Java-based, ensuring an easily extensible 

object-oriented architecture and allowing it to be deployed on any combination of 

hardware platforms and operating systems. It amalgamates and improves upon the 

functionalities of several existing applications, removing the need to rely on ad-hoc 

software combinations or to comb through a multitude of different documentations; 

QASE consolidates all relevant information into a single source. It is geared towards 

machine and imitation learning, but is also appropriate for use with more traditional 

forms of agent-based AI. Put simply, QASE is intended to provide as much of the 

functionality the researcher or student will require in their experiments with cognitive 

game agents as possible. 
 

3.2.1 Existing APIs 
 
In the initial, exploratory phase of our work, we investigated a number of candidate 

APIs, originally intending to adopt one of them for use in our research; ultimately, 

however, we were not satisfied that any of them provided the tools we would need. 

Here, we discuss these APIs. While each has positive elements, we explain why in 

each case we felt that they fell short of our ideal platform, and in what ways we 

designed QASE to be a preferable alternative. 
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3.2.1.1 Quake 2 Bot Core 
 
One of the earliest attempts to facilitate bot programming in Quake 2, the Bot Core 

[123] comprises an implementation of the game’s client-side network protocol 

written in pure C, together with a very basic template for creating an AI cycle. It soon 

became apparent that it was a less than ideal platform for our work; parts of the 

network protocol had been neglected, other parts were not functioning reliably, it 

required that each agent be compiled into a separate executable, and its potential 

extensibility was extremely limited, making it an unsuitable choice for high-end 

research applications in general. 
 

3.2.1.2 GameBots 
 
The GameBots project [1] allows communication between Epic Games’ Unreal 

Tournament and other software, channelling messages to and from the server via a 

socket interface. Messages are both sent and delivered as ASCII strings, adhering to a 

predefined format. While this allows a wide range of programs to interface with the 

server, it is a bare-bones system; the user must write his own parser for the game 

messages, there are no supporting AI structures or logic included in the API, and 

communication is handled exclusively through scripting, with no low-level access 

available. Additionally, the socket interface which exposes the gamestate to external 

control is implemented via a modified version of the game server; it is therefore not 

possible to create an agent and connect it to an arbitrary Unreal Tournament match - 

agents can only communicate with a server running the GameBots mod. 
 

3.2.1.3 Quagents 
 
The Quagents project [19] is intended primarily to propose Quake as a virtual testbed 

for robot and “ant colony”-style agent simulations. Its approach is quite similar to 

that of the GameBots API described above; Quagents is a recompiled modification of 
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the Quake 2 libraries, which exposes the internal workings of the game to external 

manipulation via predefined script commands. Again like GameBots, the 

implementation of the actual agent controller itself is left to the user, although a 

sample application allowing for real-time control of the bot is supplied. However, 

Quagents also modifies the content of the game itself, implementing a stripped-down 

version of the original by eliminating many items, simplifying the agent’s movement 

functions, and reducing the interactivity of the bot with the game world (Quagents, 

for instance, cannot engage in combat against each other). 
 
In the case of both GameBots and Quagents APIs, their respective constraints - the 

elimination of features present in the original game, the limitations imposed by 

requiring the server to have the relevant modification installed, the lack of supporting 

structures and functionality - were among the primary reasons for our ultimate 

decision to reject them as viable candidate platforms for our research. 
 

3.2.1.4 FEAR SDK 
 
The most mature of the pre-existing APIs we investigated, FEAR [23] is once again a 

modification of the game’s shared libraries; unlike GameBots and Quagents, 

however, FEAR also provides a framework for creating the agent controller itself. 

These must be compiled as DLLs and placed in appropriate subdirectories under the 

main FEAR mod folder; bots are then deployed by issuing commands from the server 

console during a game session. This has the drawback, however, of requiring not 

only that the server be running FEAR - as with GameBots and Quagents - but that the 

code for all desired agents be present on the same machine when the game session 

begins. If, for instance, multiple researchers from different institutes wish to compare 

their agents, they cannot simply connect to a common server and deploy them. FEAR 

also includes a variety of in-built AI structures, including FSAs, decision trees, 

neural networks and rule-based systems. While such features are welcome, we felt 

that the inability (or at least, significant difficulty) of allowing external processing 
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during the agent’s AI cycle was highly limiting. MatLab, for instance, provides a 

vastly greater range of functionality than that embedded within FEAR, and is already 

a familiar working environment for many researchers. The SDK is also quite 

unintuitive in certain respects, which attenuates its utility as an educational aid. 

Moreover, the fact that the SDK is inextricably linked to the game engine renders it 

incompatible with other mods, such as the CTF (capture-the-flag) team-based 

modification described in Section 3.4.3, unless the user were to subsume the CTF 

code into FEAR. 
 

3.2.1.5 TIELT 
 
The Testbed for Integrating and Evaluating Learning Techniques [88] is a 

middleware platform designed to act as a generic intermediary between game engines 

and decision systems, similar in concept to QASE’s MatLab integration architecture 

as described later in this chapter. For each game, users employ TIELT’s inbuilt editor 

and scripting language to develop a series of knowledge bases; these consist of XML 

files defining elements such as the objects contained in the gamestate, events that 

may occur, state transition rules, messaging formats for communication with the 

game server and decision system, etc. The majority of applications have thus far 

centred upon real-time strategy games, although a bot has also been created for 

Unreal Tournament as proof-of-concept. While TIELT is an excellent general-

purpose tool for research across different games, it is by necessity removed from the 

low-level details of each; we felt that our work - and that of other groups interested in 

pursuing research in first-person shooter games - would be better served by a 

consolidated API with a wide range of inbuilt functionality. Had we adopted TIELT 

for the purposes of interfacing our decision systems with Quake 2, we would have 

needed to write separate software for reading human behaviour data from demo files, 

dealing with BSP geometry and environmental entities like lifts and doors, 
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constructing navigation graphs, and so forth; this would have resulted in precisely the 

kind of ad-hoc, non-reusable amalgamation of software that we wished to avoid. 

3.2.1.6 QASE: OUR APPROACH  
 

Having examined the platforms outlined above, we concluded that none provided the 

combination of simplicity, power, modularity, reusability and extensibility that an 

educational and research tool of this kind required. We felt, as noted earlier, that the 

lack of such a platform was a major impediment to the adoption of first-person games 

in both areas, and sought to remedy this; it was always our intention that, while 

geared primarily towards our own work in imitation- and machine-learning, the API 

would be appropriate for the widest possible range of applications. As such, QASE 

incorporates not only solutions to the various hurdles we encountered in the course of 

our research, but all the features which occurred to us as being potentially beneficial 

for others. Written in Java, the API itself consists of a single ~160kb JAR library, 

which can run unmodified on any JRE-enabled machine. As detailed later in this 

chapter, it permits low-level access to gamestate and environmental information for 

those who want it, while also supplying high-level interfaces and convenience 

functions which perform the necessary gamestate-handling tasks transparently. It 

provides illustrative built-in AI structures for educational purposes, and draws upon 

our own research in imitation learning to facilitate the automatic generation (or, 

optionally, manual construction) of full navigational systems. Its efficient and flexible 

MatLab integration provides an extremely powerful back-end engine with which 

researches are already intimately familiar. Unlike the approaches adopted by several 

of the APIs described above, its network layer encapsulates a full client-side 

implementation of the Quake 2 network protocol, meaning that it is cleanly decoupled 

from the server implementation; a QASE agent can connect to and be deployed upon 

any arbitrary Quake 2 server, Windows or Linux, modified or otherwise. It allows 

game sessions to be recorded to DM2 files and parsed at a later time, as well as 
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automated loading and querying of local BSP (binary space partition) geometry files 

to provide the agent with sensory information about its environment. It comes with 

full, detailed documentation and a series of articles focussing on the network 

protocol, the BSP file structure, and other subjects which will be of use to researchers 

embarking upon work in this area. Finally, it is worth noting that QASE is still in 

active development, and is evolving in response to the comments of groups and 

individuals who have adopted it; the other APIs mentioned above are, as far as we 

can determine, no longer maintained. 

Over the remainder of this chapter, we will explain each of these QASE features - and 

how they relate to the environment provided by Quake 2 - in detail. 
 

3.3 QASE, Environments and Interfaces 
 

Quake 2, first released by ID Software in 1997, belongs to the genre of first-person 

shooter games. Players explore a three-dimensional environment littered with various 

entities - weapons, bonus items, traps and pitfalls - with the objective of reaching a 

particular endpoint and/or defeating as many opponents as possible. Most interesting 

from the perspective of imitation learning is the multi-player mode, where players 

compete against one another in specially-designed deathmatch arenas. A screenshot 

of the Quake 2 environment and some important features is given in Figure 3-1. 
 

As outlined in Chapter 1, Quake 2 was adopted for a number of reasons. Firstly, it 

was prominent in the literature, having been employed by Laird in his experiments 

using the Soar architecture [75, 76, 78]; it is a mature game, and as such the existing 

resources are somewhat more substantial than for other games. Secondly, rather than 

focussing attention on a single element of human behaviour, Quake 2 matches 

require a full spectrum of ‘multiplexed’ reactive, strategic and tactical behaviours 

from the agent, executed in competition against opponents of equal skill; from the 

perspective of research, this offers a huge number of potential avenues for 
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investigation. Thirdly, the first-person shooter genre - while incorporating unrealistic 

features such as invincibility, teleportation, etc - is nonetheless an abstraction of the 

real world, as opposed to a board or puzzle game with no relevance to reality. 

Techniques developed in the game world may therefore prove applicable in other 

areas, as we discuss at the end of this thesis. Additionally, the major attraction of 

Quake 2 from our perspective lies in the minimal degree of abstraction the game 

imposes between the human player and his virtual avatar; recorded Quake 2 game 

sessions provide very direct mapping of human decisions onto observable agent 

actions. Finally, Quake 2 provides facilities for the recording of game sessions to so-

called demo or DM2 files. This is of great benefit to our work, since the ability to 

capture samples of human gameplay is a prerequisite for imitation learning. 

 
Figure 3-1 - The Quake 2 environment. Weapons are collected to enable the character to fight 

opponents. Ammunition is collected separately; certain guns share common types of ammo. Armour 

reduces damage taken for a period of time. Health packs replenish the local character’s energy, which 

when depleted results in temporary death and the loss of a point to the opponent. 
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As outlined earlier, a simulation typically consists of three components - an agent, an 

environment, and an interface. In our case, the environment component is provided 

by the Quake 2 server. We must supply both the agent and interface elements; QASE 

fulfils both these requirements. In this section, we outline QASE’s network layer and 

its provision of an interface to the Quake 2 environment. We also outline the most 

important features of the environments themselves. The third component, QASE 

agents, will be detailed in Section 3.4. 
 

3.3.1 The Quake 2 Environment 
 
As stated above, the environment component of the simulation is provided by the 

Quake 2 server. But what, exactly, does this environment contain? How are entities 

categorised? What attributes do they possess? How is the game world itself 

represented? Here, we outline some of the more important concepts in the Quake 2 

environment, a knowledge of which will be required for later sections in this 

chapter and, indeed, for the chapters to follow. 
 

3.3.1.1 Maps 
 
Each distinct environment in Quake 2, also called a map, is defined in the same 

manner. Physical obstacles, called brushes, define the outer boundaries and local 

features of the environment, while the agent is free to move in the unoccupied space 

between them. The map itself, and everything contained within it, are projected onto 

a three-dimensional orthogonal co-ordinate system, using a rotation whereby the 

vertical axis is denoted as Z in all game data and communications. Details of the 

maps themselves are not communicated from the server, but are instead stored locally 

on each client machine, as Binary Space Partition (BSP) files. Further details on BSP 

files, and their importance in providing the agent with sensory information on its 

environment, are provided in Section 3.4.5. A wireframe model illustrating Quake 

2’s co-ordinate system and the concept of brushes is provided in Figure 3-2. 
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3.3.1.2 Environment Entities 
 
Aside from the definition of the map itself, the local BSP files also contain 

information on certain fixed entities within the environment. These are not to be 

confused with the dynamic entities discussed below; fixed entities are elements such 

as moving platforms, lifts, teleporters, buttons etc, which the player may in some 

cases be able to interact with, but which nonetheless remain part of the environment. 

QASE’s BSP parser, in addition to allowing sensory perception of the map’s 

topology, also facilitates high-level queries of these fixed entities; for example, the 

agent can tell with a single method call whether or not it is currently standing on top 

of an elevator. This is further discussed in Section 3.4.6. 
 

 
Figure 3-2 - A typical Quake 2 map, demonstrating the "brush" concept and the in-game co-ordinate 

system. Environments are defined by a set of volume boxes; the player is constrained to moving in the free 

space between them (inside3d.com). 
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3.3.1.3 Dynamic Entities 
 
In addition to these environmental features, each Quake 2 map contains numerous 

dynamic entities. These are entities whose original positions are also defined in the 

static BSP files, but which are managed throughout the course of the game session by 

continuous server-client communication, due either to the fact that they are mobile 

(i.e. they may be located at any arbitrary point in the map on each timestep) or that 

they may on some occasions be absent (e.g. when a player collects an item, that item 

vanishes for a certain period of time). On each timestep, the server transmits data to 

each client, specifying which attributes of what entities have changed since the last 

update; this information is then merged into the existing gamestate by the client. 

Dynamic entities fall into one of four main categories, some of which have a number 

of subcategories and other attributes. 
 

• Weapons 

Obviously, this category consists of the various guns scattered throughout the 

environment. There are a large number of distinct weapons in the game; the 

blaster, shotgun, super shotgun, machine gun, chaingun, hand grenades, 

grenade launcher, rocket launcher, hyper blaster, railgun, and BFG10K. Each of 

these guns has different properties - discharge rate, projectile radius and speed, 

damage inflicted, etc - and their usefulness varies depending on the specific 

situation in which the agent finds itself. Combat behaviours involving these 

weapons are discussed in Section 4.5. 
 

• Items 

The Item category encompasses all non-weapon collectible entities in the game 

world. These consist of “power-ups” - items which, when obtained, boost the 

combat abilities of the player. Four subcategories exist: 
 

o Ammunition: five distinct types of ammunition are found in the game 

world, some of which are shared between multiple guns; bullets, cells, 
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shells, rockets, and grenades. Only a certain maximum quantity of 

each type of ammunition can be carried by the agent. 

o Armour: flak jackets, armour shards, combat suits, and body armour 

packs all fall under this subcategory. These items, once collected, will 

reduce the amount of damage taken by the game character. 

o Health: med kits and first aid kits, when collected, will boost the 

remaining health of the game character, undoing any damage it had 

previously taken. 

o Special items: some maps may also contain one or more “special” 

items - collectibles which provide a short but significant boost to the 

character, or which are necessary in order to negotiate certain 

elements of the terrain. These include the “quad damage” pickup, 

which multiplies the damage the character does by a factor of 4, 

“invulnerability”, which briefly makes the agent immune to all 

damage, and the “underwater breathing” suit, which allows the agent 

to stay submerged without losing health due to drowning. 
 

• Objects 

Objects are dynamic entities which are closely associated with the fixed 

environmental entities discussed earlier. They are necessary in cases where 

environmental entities must activate in response to some action by the player, 

e.g. levers, buttons, automatic doors, lifts which only ascend when a player 

stands upon them, etc. Object entities should therefore be seen as “triggers” for 

the underlying fixed entities, rather than entities in their own right. 
 

• Players 

The final type of entity present in the game environment are Player entities, i.e. 

the player himself and the opposing game characters against whom he is 

fighting. Player entities are defined by a set of attributes, as follows: 
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o Name: an identifier, specified by the player upon connection to the 

game server. Can be any combination of alphanumeric characters. 

o Skin: determines the in-game character model of the player, used 

when visualising the environment. 

o Origin: the current XYZ location of the Player entity within the map. 

o Angles: the current orientation of the Player entity; this determines the 

direction in which the player is currently looking/aiming. Yaw and 

pitch are the important quantities from the perspective of data analysis 

- the Roll value is only altered upon events such as a player’s death. 

o Velocity: determines the current trajectory and speed of the player 

along each of the X, Y and Z axes. 

 
The local Player can, of course, also obtain information on various other elements of 

his status; he can query his inventory to find out which items he is carrying, 

determine which weapon he is currently wielding, track how much health/armour he 

has remaining, and so on. Opposing player entities as reported by the server are 

distinct from the local bot, in that only a reduced set of their attributes are visible 

from the network communication stream. Only the Name, Skin and Origin attributes 

of enemy players are visible; their inventories, health etc are hidden from view. 

 

3.3.1.4 Inventory 
 
The set of all items and weapons currently possessed by the player is called his 

inventory. Each time the player dies, his inventory is reset to its default contents. The 

local client does not maintain a continuous record of the player’s inventory; it is 

retained on the server-side, and the full listing is only transmitted to the client when 

the user requests it. This is problematic from the perspective of data analysis, since 

many models will naturally require knowledge of the player’s inventory at each 

timestep, and recorded game sessions will not contain this data. QASE, as will be 
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discussed in Section 3.4.2, circumvents this problem by constructing the complete 

inventory listing in real-time as the agent picks up and uses items. 

 

3.3.1.5 Respawning 
 
As noted earlier, one of the attractions of first-person shooters from the perspective 

of imitation learning is that they represent an abstraction of the real world; and 

consequently, that techniques developed in-game may be adapted for a wider range 

of applications. However, certain phenomena exist in the game world which have no 

identifiable real-world counterpart. The most important of these is the concept of 

respawning, which refers to the spontaneous regeneration of dormant entities. If an 

item is collected by a player, it vanishes for a fixed interval; when that period 

elapses, the item respawns at its original position, ready to be collected again. 

Similarly, if a player is killed, he need only press a key to reappear at one of the 

random player spawn points around the arena. The purpose of the respawning 

mechanic is to ensure that the game world does not become starved of item 

resources, which would cause the session to come to a premature stalemate. While 

respawning is obviously not applicable to real-world scenarios, it does present a 

valuable additional element of human strategic thinking from the perspective of 

imitation learning research - a human player will intuitively track the times at which 

he collected various items, and if one such item is due to respawn in the near future, 

will adjust his pursuit of strategic goals accordingly. This topic is dealt with in 

greater detail in Section 4.3.7. 

 

3.3.2 QASE Network Interface 
 
We have described how the Quake 2 environment and its constituent entities are 

represented; we must, however, still develop a means of communication between 

the environment and agent. QASE’s network layer provides this interface. 
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Quake 2's multi-player mode is a standard client-server model. One player starts a 

server and other combatants connect to it, entering whatever environment (map) the 

instigating player has selected. These opponents then fight one another until a 

specified time or kill limit has been reached, at which point the game restarts on the 

same map or another, as dictated by the server. The standard Quake 2 game client 

also incorporates a rendering engine, which is responsible for visualising the map and 

the various entities within it during human play; this is, naturally, unnecessary from 

the perspective of artificial agents. The network protocol itself, including the format 

of each message exchanged between client and server in the course of a game 

session, has already been reverse-engineered from recorded DM2 matches by Uwe 

Girlich [42]. In order to both manifest agents (or bots) within the game world and to 

provide the interface component of the simulation, a means of establishing a UDP 

session with the Quake 2 server, handling incoming state information, and 

communicating the bot's actions back to the server must be implemented. 

 
The current incarnation of QASE achieves this via a network layer which 

incorporates a full implementation of the Quake 2 client-side protocol. This was, 

however, not originally the case, as we discuss below. 

 

3.3.2.1 Early Development 
 
QASE’s network layer originated as a project at Blekinge Institute of Technology, 

written by Martin Fredriksson in 1999, which we discovered during the initial phase 

of our research. In its original form, it consisted only of a skeleton implementation of 

certain parts of the Quake 2 client network protocol. Unfortunately, since it had been 

written as an experimental teaching aid and had not been maintained, it also 

contained several major bugs, possessed the bare minimum of functionality - indeed, 

substantially less functionality than even the Quake 2 Bot Core discussed earlier - 

and was certainly not ready for deployment in research work. Nonetheless, we felt 
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that it would provide a decent and (as a Java-based application) extensible starting-

point, while its lack of existing functionality would enable us to mould it into an API 

of the kind we had envisioned. We therefore contacted Mr. Fredriksson and proposed 

that we should assume development of the API, to which he agreed. 

 
Given the presence of the aforementioned bugs, and the obvious requirement that 

agents should have a clean, stable, comprehensive interface to the game world, our 

first task was to rewrite the network interface from the ground up, eliminating 

problems and improving its efficiency, while extending it to cover the full client 

protocol. Some of the issues which were encountered during QASE’s early 

development are enumerated below. 

 
• Incorrect gamestate handling. As further discussed in Section 3.3.2.2 later, 

Quake 2 uses a system of delta coding to minimise the amount of information 

transmitted at each interval. As such, the client API needs to be capable of 

handling this information correctly, merging the gamestate updates with the 

current representation to produce a complete view of the game world. QASE 

did not originally do so; it was found that the API was “dropping” updates, 

meaning that the client was only receiving an accurate view of the game 

world - including its own position and direction data - once every 12 frames, 

when the server defaulted to baseline mode. Clearly, a 92% loss of sensory 

information was untenable, and needed to be rectified. To achieve this, the 

gamestate-handling code was rewritten so that every entity was propagated 

forward from the previous to the current gamestate at each interval, before the 

specific changes are merged in. The actual merging process was also 

rewritten, to prevent updates from overwriting existing entity attributes in 

cases where the update does not include new values. Finally, the process was 

made vastly more efficient by eliminating the redundant duplication of 

component objects from one timestep to the next. 
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• Missing entities. Calls to the gamestate requesting a list of the entities in the 

environment generally returned only a tiny subset of the actual entities 

present. Opposing players were found, while all other entities - weapons, 

ammunition, various collectible items - were not. This was due to QASE’s 

incorrect handling of the PacketEntities message, which together with 

PlayerInfo represents the core of the gamestate information updated by 

the server on each timestep; as such, the bug was quite debilitating from the 

agents’ perspective. To remedy this problem, both the PacketEntities 

class and the associated message-handling routines were rewritten, such that 

the entities are correctly decoded and added to the gamestate on each update. 

 
• Unimplemented messages. Originally, QASE’s network layer did not 

implement many of Quake 2’s server messages at all, simply ignoring them 

whenever they were received. These included the Inventory message, 

which is used to pass a list of the player’s current item possessions from the 

server to the client, the Reconnect message, which is used to indicate that a 

new map has been chosen by the server, the TemporaryEntity message, 

which represents irregular entities (projectiles, etc) when they are active in the 

game world, the ServerSound message, which provides information about 

auditory effects, and the ServerDownload message, which allows the 

client to download content from the server if it does not possess it locally. As 

a result, agents were unable to perform such basic tasks as determining which 

items they were carrying and in what quantities, and were incapable of 

successfully moving from one environment to the next when the server 

invoked a change of map. All messages in the Quake 2 protocol have now 

been implemented, allowing the bots to perform these and other such tasks 

without user intervention. The Inventory message - which represents most 

of the agent’s internal state - was a particularly crucial omission, both in 
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relation to our own work and to models of Quake agent AI in general. See 

Section 4.3 for an example of its importance in imitation learning. 
 

• Thread safety. Originally, QASE agents had to be written from scratch, 

using a simple polling mechanism. Under the initial implementation, this 

meant that the Proxy - running on a dedicated thread - could write to the 

gamestate while it was being read from elsewhere, or vice-versa. The only 

effort to counteract this was a series of class-scope booleans designed to 

prevent multiple threads from calling the accessor and mutator methods of the 

Proxy and World objects simultaneously. As this was a rather haphazard 

and inefficient approach, which was often observed to result in deadlocks and 

consequent game freezes, we replaced the boolean pseudosemaphores by 

synchronizing each of the relevant methods. Furthermore, the bots can now 

operate in a new high thread-safety mode, whereby the Proxy will 

synchronize on the World object when updating the gamestate, and the agent 

will do likewise when reading it; this guarantees that the agent’s view of the 

gamestate cannot be compromised by intervening write operations. As 

detailed in Section 3.4.1, we also added a second approach to agent 

implementation using the observer pattern. Each of these has their respective 

advantages, as will be discussed later. 
 

• Client ID conflict. This bug prevented multiple QASE agents from entering 

the same server. On connection, the client is asked to provide a unique ID 

number to the server; in the original QASE implementation, the same number 

was used by every agent, meaning that only the first connection attempt 

would be accepted. This was solved by maintaining a list of all previously 

allocated client IDs, and randomly assigning an exclusive number to each bot. 
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• Incorrect byte-stream translation. It was discovered that QASE was 

incorrectly converting numerical data to the byte-stream format required for 

network transmission. For instance, Quake 2 clients send their movement 

information to the server in the form of a forward velocity and a right 

velocity, with negative numbers indicating motion to the back or left; as a 

result of the bug, the agents’ movements were restricted to the 90o quadrant 

directly in front and to their right, which was obviously not acceptable. This 

error also affected all other similar numerical conversions, leading in many 

cases to erratic and unpredictable behaviour. 

 
• Spontaneous crashes. The agents were found to crash under numerous, 

incongruous circumstances; for instance, if any opposing player disconnected 

from the server while the bot was active, it would trigger a crash. This was 

traced to the original code’s handling of the Config table, a global 

repository of data on each entity in the game world. 

 
As is clear from the above list, these issues - and several other similar problems - 

needed to be addressed before the API could be considered usable, let alone stable. 

Beyond this, it contained no functionality, not even a framework for the creation of 

game agents; users were required to write bots from scratch each time, and to 

manually handle menial tasks such as defining the bot’s profile, detecting when it has 

been killed, re-entering the game, etc. In Section 3.4, we describe our development of 

a formal agent-creation hierarchy, and numerous associated features.  

 
First, however, we detail the operation of QASE’s rewritten network interface. 
 

3.3.2.2 QASE Network / Agent Interface 
 
In its simplest form, QASE’s network layer represents an intermediary between the 

server and the QASE agent’s AI routines on the local machine (see Figure 3-3). All 
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two-way communication is handled via the Proxy class, which is responsible - 

through delegation to the CommunicationHandler and various Message 

classes - for establishing the session, sending the agent’s movement on each timestep, 

and receiving and correctly processing data about the environment. On each update, 

all incoming information is amalgamated into a World object, which represents the 

current gamestate (that is, the status of every entity within the virtual world). This 

gamestate can then be accessed and queried by the agent’s AI cycle; once done, the 

Proxy is instructed to transmit the desired agent actions back to the server for 

application on the next timestep. A simplified illustration of this process is shown in 

Figure 3-6 towards the end of this section. 

 
 

 
 

Figure 3-3 - QASE implementation of agent (bot) and interface components 

 
 
Network communication between a QASE client and the Quake 2 server takes three 

forms: session setup, wherein the client engages in a series of exchanges with the 

server in order to gain the permissions necessary to manifest a character in the game 

world, irregular messages, which the client can send to the server at any arbitrary 

time in order to perform actions such as changing weapons or using an item, and 

game messages, which the client and server exchange at regular 100ms intervals, and 

which keep the agent apprised of changes to the environment’s state. Below, we 

detail the most important concepts in each of these three categories. 
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3.3.2.3 Session Setup 
 
Each game session is established using connectionless packets, a special type of 

datagram which can be sent to the server in the absence of a proper connection. 

These packets consist simply of a header containing the sequence number -1, 

followed by a text string indicating the desired command. The session setup 

procedure is as follows: 

 
• The client issues a message containing the string getchallenge 

 
• The server replies with a message containing the string 

 
o challenge 12345 

 
where 12345 is a code used to ensure that the client is not using a spoofed IP 

 
• The client responds with 

 
o connect 34 789 12345 <userdata> 

 
where 34 is the network protocol revision, 789 is a unique client ID, 12345 

is the code sent by the server earlier, and <userdata> is a text string 

containing information about the player’s desired character model, name, etc. 

 
• The client then receives a ServerData message providing global 

information about the game world and entities, as well as a series of 

SpawnBaseline messages which provide details of the various entities’ 

initial (baseline) attributes. 

 
• Finally, the client receives a StuffText message indicating that it is ready 

to enter the game world. One last connectionless packet is sent to the server: 
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o begin <levelkey> 
 

where levelkey is an identifier for the current map, received in 

ServerData. Once all this is complete, the character is spawned into the 

world and can now interact with the other entities using the in-game protocol 

described below. 
 

3.3.2.4 Irregular Messages 
 
Connectionless packets are also used to send irregular queries and commands to the 

server, as distinct from the standard movement and aiming information transmitted 

on every frame update. These include requests for a listing of the client’s inventory, 

to talk to other players, to use inventory items, or to switch weapons. The QASE bot 

hierarchy (Section 3.4.1) provides convenience methods for all these features, hiding 

the actual message construction from the user; direct calls to the sendCommand 

methods of the Proxy class are also facilitated for added low-level control. 
 
 

3.3.2.5 In-Game Protocol 
 
Once the session has been established and the agent has entered the game, the server 

and QASE client begin exchanging messages. Every tenth of a second, the server 

sends updates to each connected client; unless exceptional circumstances are 

encountered, these updates consist of two sequence numbers and three messages: 
 

• ServerFrame, which specifies the current and delta reference frames 

• PlayerInfo, which contains information about the client’s current 

position, velocity, aim, weapon, score, etc. 

• PacketEntities, which contains information about all game entities.  

 
Upon receiving a frame, the client must merge the updated information into its 

existing gamestate record (see below). This done, QASE issues a ClientMove 
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message to the server, indicating its desired velocity 

( ]400,400[,, −∈uprightforward ), aim ( ]90,90[],180,180[ −∈−∈ pitchyaw ), and 

whether or not it is firing its gun. These values together define the scope of the 

agent’s legal in-game movement. 

 
 

Figure 3-4 - Server’s view of the in-game character’s range of actions 
 
An important point to note is that the client and server interpret these values 

differently. From the server’s perspective, the forward velocity corresponds to 

velocity along the global x-axis, right velocity is velocity along the global y-axis, and 

angular measurements are absolute. From the client’s perspective, the forward 

velocity is velocity in the direction towards which the agent is currently facing, the 

right velocity is perpendicular to this, and the angular measurements are relative to 

the agent’s local axes. 
 

Figure 3-4 shows the server’s perspective of the character, Figure 3-5 shows the 

client’s. The significance of this is that recorded DM2 demo files use the server 

format to represent the character’s movement, and so the API must be capable of 

moving back and forth between local bot co-ordinates and global server co-ordinates. 
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Figure 3-5 - Client’s view of the in-game character’s range of actions 

 
Since Quake is a real-time game in which potentially several dozen participants need 

to be updated every hundred milliseconds, it is important that network latency be 

minimised. As such, the UDP protocol is used for communication in preference to 

TCP; this means that packets may arrive out of order, or be lost altogether. This 

approach is not as reckless as it may first appear - the loss of a player update message 

(for instance) can be compensated in subsequent updates, whereas using TCP would 

cause any lost packets to hold up the data stream while the client waits for resent 

information which is, by that point, out of date. Given a suitably low-overhead 

mechanism for acknowledging and ordering incoming packets, the integrity of the 

gamestate can be ensured while simultaneously maximising the available bandwidth.  
 
Quake 2 implements such a scheme by means of sequence numbers and delta coding. 

Both the QASE client and the server store old frame updates to allow for packet loss; 

the server stores the previous 12 frames, while the client stores the previous 16. To 

reduce bandwidth consumption, the server only transmits information on entities 

within a certain viewable distance of the client, and will only send the specific entity 

attributes which have changed since the last frame received by the client. Each 

update packet sent from client to server has two sequence numbers as its header; the 
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first specifies the number of the current frame, while the second specifies the number 

of the last frame received from the server. Using this information, the server can 

determine which packets were lost, and what cumulative changes have occurred in 

the game world since that point. On the next update, the server will transmit those 

changes, along with the reference frame against which the client should delta code; 

QASE then merges the updates into its stored copy of the reference frame to produce 

a complete gamestate representation. If the number of lost packets exceeds the 

number of stored frames, then the server enters a special mode where it transmits 

entity updates based on the baseline (initial) values established during the client’s 

connection. It will continue to do so until the client indicates that it has re-

synchronized itself and is ready to resume delta coding. 
 
Figure 3-6 shows a highly simplified outline of the relationship between the QASE 

network interface and the Quake 2 server environment. Some elements of QASE’s 

agent architecture (Section 3.4) are also shown for reference, most notably the 

BasicBot class, which represents any agent derived from one of the base classes in 

the bot hierarchy (Section 3.4.1). See the caption which accompanies the diagram for 

further details of the interface’s operation. 
 
Finally, an interesting point to note is that, because the network layer is largely 

decoupled from the higher-level classes in the QASE architecture, it is highly 

portable. Adapting the QASE API to games with similar network protocols, such as 

Quake 3 and its derivatives, therefore becomes a relatively straightforward exercise; 

by extending the existing classes and rewriting the data-handling routines, they could 

conceivably be adapted to any UDP-based network game. Thus, QASE’s network 

structures can be seen as providing a template for the development of artificial game 

clients in general. See Section 6.3 for further discussion. 
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3.4 QASE Agent Architecture 
 
In this section, we describe QASE’s final simulation component; the agent 

architecture. This consists both of a formal agent factory, with pre-built base agents 

which require the programmer to provide nothing more than a single-point-of-

insertion AI cycle, and structures which provide the faculties necessary to construct 

said cycle. The latter includes the ability to record and parse demonstration of human 

gameplay, the facilitation of high-level queries about the agent’s condition by 

transparently amalgamating low-level data, integration with the MatLab 

programming environment, inbuilt AI constructs, and topology-learning / navigation 

abilities drawn from our work in imitation learning. 
 

 
 

Figure 3-7 - The QASE Bot Hierarchy 
 

3.4.1 Bot Hierarchy 

The interface methods described earlier operate at too low a level to be practical for 

general use; they do not provide a structured, formal mechanism for the creation of 

game agents. Indeed, requiring that agents be constructed using only basic network 

functions - a laborious, inefficient and inherently ad-hoc process - runs contrary to 
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the core design principles of our proposed API; the network layer alone is, therefore, 

clearly inadequate. To address this, we develop a comprehensive bot hierarchy - an 

agent-factory framework allowing users to build bots from any of a number of levels 

of abstraction, while automating menial tasks such as defining the bot’s profile, 

respawning when it has been killed, managing the detection of gamestate updates 

from the Proxy, and so forth. The framework ranges from a simple interface class to 

full-fledged bots incorporating an exhaustive range of user-accessible functions. The 

bot hierarchy comprises three major levels; these are summarised below. 
 

3.4.1.1 Bot Interface 
 
A template which specifies the interface to which all bots must conform, but does not 

provide any functionality. The programmer is entirely responsible for the actual 

implementation of the agent, and may do so in any way he chooses. 
 

3.4.1.2 BasicBot 
 
An abstract agent which provides most of the basic functionality required by Quake 2 

agents, such as the ability to determine whether the bot has died, to respawn (re-enter 

the game after the agent has been defeated), to create an agent given minimal profile 

information, to set the agent’s movement direction, speed and aim and send these to 

the server with a single method call, to obtain sensory information about the virtual 

world, and to record itself to a demo file. All that is required of the programmer is to 

write the AI routine in the predefined runAI method, and to supply a means of 

detecting and handling server updates according to whatever paradigm he wishes to 

use. The third level of the hierarchy (see below) provides ready-to-use 

implementations of two such paradigms. 
 
BasicBot provides embedded access to the BSPParser class for environment 

sensing (see Section 3.4.5), and the WaypointMap class for navigation (see Section 
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3.4.8), by incorporating pass-through methods which relay calls to the appropriate 

object. Some of these pass-through methods automatically set parameters to the most 

useful default values; for instance, the bounding-box used to perform collision 

detection is set to the size of the agent’s in-game character. BasicBot will 

transparently find, load and query the BSP file associated with the current game level 

when one of the environment-sensing methods is invoked for the first time. Users can 

also obtain a pointer to the underlying objects, allowing full access to their facilities. 

 

3.4.1.3 ObserverBot & PollingBot 
 
The highest level of the Bot hierarchy consists of two classes, ObserverBot and 

PollingBot, which represent fully-realised agents. Each of these implements a 

method of detecting changes to the gamestate as indicated by their names, as well as 

a single point of insertion - the programmer need only supply the AI routine to be 

invoked on each update in the runAI method, while all other communication and 

data-manipulation requirements are handled by the API. Thus, the agent is notified of 

each update as it occurs, and a copy of the gamestate is presented to it. The user-

defined AI routines then set the required movement, aiming and action values for the 

next update, and the API automatically transmits the changes. 

 
The ObserverBot uses the observer pattern to register its interest with a Proxy, 

and is thereafter notified whenever a game update takes place. Since this approach is 

single-threaded, a separate thread is created to check whether the bot has been killed, 

and to respawn as necessary. The advantages of this approach are twofold: 

 
• it guarantees consistency of the gamestate; since the Proxy thread invokes a 

method call in the ObserverBot, it must wait until the agent’s AI routine is 

complete before receiving any further updates. This means that the gamestate 

cannot be written in mid-AI cycle. 
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• it allows multiple observers to connect to a single Proxy. This can be useful if 

the programmer wishes, for instance, to have a second observer perform some 

operation on the incoming data in the background. 
 
The PollingBot operates by continually polling the Proxy and obtaining a copy of 

the gamestate World object. If a change in the current frame number is detected, the 

agent knows that an update has occurred, and will enter its AI routine. Because the 

Proxy and agent are operating on separate threads, the Proxy is free to receive 

updates regardless of what the agent is currently doing; this ensures that no server 

frames will be lost, but may result in changes to the gamestate while the agent is 

executing its AI cycle. To prevent this, the bot can be set to high thread safety mode, 

in which the agent and Proxy both synchronize on the gamestate object; the agent 

therefore cannot read the gamestate while it is being written, and the Proxy cannot 

write the gamestate while it is being read. 

 

3.4.1.4 Miscellaneous Bots 
 
Beyond this, several convenience classes are available, which provide extended bot 

implementations tailored to specific purposes. The NoClipBots allow the user to 

move the agent through otherwise solid walls to any point in the environment before 

starting the simulation, which we have found to be extremely useful in the course of 

our own research; indeed, this bot category was added specifically to address our 

need for such functionality. The MatLabBot branches facilitate integration with the 

MatLab programming environment, and will be explained later. 

 

3.4.2 Gamestate Augmentation 
 

Rather than simply providing a bare-bones implementation of the client-side 

protocol, QASE also performs several behind-the-scenes operations upon receipt of 
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each update, designed to present an augmented view of the gamestate to the agent. In 

other words, QASE transparently analyses the information it receives, makes 

deductions based on what it finds, and exposes the results to the agent; as such, it 

may be seen as representing a virtual extension of the standard Quake 2 network 

protocol. 

 
For instance, the standard protocol has no explicit item pickup notification; when the 

agent collects an object, the server takes note of it but does not send a confirmation 

message to the client, since under normal circumstances the human player will be 

able to identify the item visually. QASE compensates for this by detecting the sound 

of an item pickup, examining which entities have just become inactive, finding the 

closest such entity to the player, and thereby deducing the entity number, type and 

inventory index of the newly-acquired item. Building on this, QASE records a list of 

which items the player has collected and when they are due to respawn, 

automatically flagging the agent whenever such an event occurs. QASE detects and 

flags a number of other implicit events in similar fashion; it alerts the agent when an 

enemy dies, determines how long it can remain underwater before drowning, and so 

forth. 

 
Similarly, recordings of Quake 2 matches do not encode the full inventory of the 

player at each timestep - that is, the list of how many of which items the player is 

currently carrying. For research models which require knowledge of the inventory, as 

is the case in our own work, this is clearly untenable. QASE circumvents the problem 

by monitoring item pickups and weapon discharges, ‘manually’ building up an 

inventory representation from each frame to the next. This can also be used to track 

the agent’s inventory in online game sessions, removing the need to explicitly request 

a full inventory listing from the server on each update. 
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3.4.3 Team-Based Play 
 

QASE is fully compatible with the popular Threewave CTF modification for Quake 

2, in which players join either a Red or Blue team and attempt to capture the enemy 

faction’s flag, by collecting it and returning it to their own base. Methods are 

provided which enable the agent to join a specific team, or to join randomly; further 

methods allow the agent to determine whether a particular player is a member of its 

own or the opposing force. In cases where the server type is not known in advance, 

the API will automatically determine the game mode, and if necessary will join an 

arbitrary team. QASE is, therefore, well suited to researchers whose interest lies in 

investigating team-based behaviours and interactions. 

 

3.4.4 DM2 Parser & Recorder 
 

One of the most fundamental requirements of the API from the perspective of our 

own research was that it should allow demo (DM2) files to be parsed; these are saved 

recordings of the network packet stream received during a game session, which 

thereby encode a full account of the human player’s observed movements and 

actions. QASE facilitates this via its DM2Parser class. Demo files are organised into 

blocks, each of which consists of a header indicating the length of the block followed 

by a series of concatenated messages, as described in Section 3.3.2.5. The DM2 

parser operates by treating the file as a virtual server, sequentially reading blocks and 

updating the gamestate as if it were receiving data online.  

 
Furthermore, QASE incorporates a DM2 recorder which enables each agent to save a 

demo of itself during play; this actually improves upon Quake 2’s standard recording 

facilities, by allowing demos spanning multiple maps to be recorded in playable 

format. This is done by separating the header information (ServerData and 

SpawnBaseline) received when entering each new level from the stream of 
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standard packets received during the course of the game. The incoming network 

stream is sampled, edited as necessary, and saved to file when the agent disconnects 

from the server or as an intermediate step whenever the map is changed. 

 

3.4.5 Environment Sensing 
 

The network packets received from the Quake 2 server do not encode any 

information about the actual environment in which the agent finds itself, beyond its 

current state and that of the various game entities. This information is contained in 

files stored locally on each client machine; thus, in order to provide the bot with more 

detailed sensory information (such as determining its proximity to an obstacle or 

whether an enemy is currently visible), a means of locating, parsing and querying 

these map files is required. 

 
As discussed earlier, each Quake 2 map is constructed from a number of brushes, a 

generic term for any convex polyhedron such as a pyramid, cuboid, cylinder, etc; the 

term “convex” here means that any line through the object will have precisely one 

entry point and one exit point, the importance of which will be seen later. The planes 

formed by the faces of these objects divide the environment into a set of convex 

regions, or the areas of open space within (some of) which the actual gameplay takes 

place. Because Quake 2 levels are often very large and encompass a vast number of 

brushes, an efficient means of representing them and the convex regions they enclose 

is required; for this purpose, a Binary Space Partition Tree is used. 

 

3.4.5.1 Binary Space Partitioning 
 
The concept of a Binary Space Partition Tree, devised by Fuchs, Kedem, and Naylor 

[38], provides an economical way of representing a virtual scene by specifying which 

other polygons lie in front of and behind the plane formed at the surface of a given 
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polygon. The resulting tree structure can then be used to perform collision detection 

or to determine the order in which the polygons should be rendered, given the 

position of the viewer. A BSP tree is created by first selecting a polygon to act as the 

root node, with an associated splitting plane; all remaining polygons are then 

classified as being in front of or behind this plane, and are added as its left and right 

children of the root node, respectively. In cases where a polygon intersects the plane, 

that polygon is divided in two at the point of intersection and both are added to the 

binary tree. The process is recursively applied to each of the child lists, gradually 

creating a series of subtrees until the list is exhausted. An example of BSP tree 

construction is shown below. 

 
 

  

  
Figure 3-8 - Initial and final stages in the construction of a 2D BSP tree. Image from 3dtechdev.com. 
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3.4.5.2 Quake 2 BSP Format 
 
Quake 2 BSP files consist of a directory indexing a series of lumps, each of which 

contains information about a different element of the environment (entities, textures, 

models, etc). From the perspective of obtaining sensory input about the game world, 

the most important of these are: 

 
• the Node and Leaf lumps, each of which represents a single element in the 

BSP tree. Each Node contains an index to the plane equation used to split the 

tree at that point; this is stored as a normal with an associated distance. The 

Leaf object, representing a convex region within the level (including the 

spaces within objects), indexes each brush which bounds the empty space. 

 
• the LeafBrush lump, which indexes the brushes surrounding each hull. 

 
• the Brush lump, which contains information about each brush in the level. 

This includes the number of sides the brush has and its content, that is, 

whether it is a solid object (as a wall) or may be passed through (water). 

 
• the BrushSide lump, which indexes each brush side’s associated plane 

 
• the Plane lump, which provides the coefficients of each plane equation; 

these will later be used to determine the side of the associated face on which 

the player’s avatar is currently located. 

 
QASE’s BSPParser class is used to load the contents of a Quake 2 BSP file, and to 

build the tree it represents. It also provides methods to perform collision detection, by 

sweeping a line, box or sphere through the environment between two specified points 

and reporting the first instance of a collision with a solid object; as an extension of 

this, visibility detection may be performed by checking whether there are any opaque 
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surfaces between the player’s position and a given point. For convenience, the 

BasicBot class in the agent hierarchy provides embedded access to BSPParser - 

calls to various environment-sensing functions are passed through to the appropriate 

BSPParser methods. The actual BSP file corresponding to the active map in a 

given game session may be stored in the default game directory, a custom directory, 

or in any of Quake 2's PAK archives; its filename may or may not match the name of 

the map, which is the only information possessed by the client. If the user sets an 

environment variable pointing to the location of the base Quake 2 folder, BasicBot 

will automatically find the BSP file by searching each location in order of likelihood. 

This is done transparently from the agent's perspective; as soon as any environment-

sensing method is invoked, the map is silently located, loaded and queried. 

 

 
Figure 3-9 - A 3D Quake BSP tree from van Waveren [ 135]. Each  leaf is an area - possibly within one of 
the brushes - bounded by a set of planes, and is known as a convex region or hull. Note that RU and RD 
nodes subsume the splitting planes for YU, YD, GU, GD, etc, as these are coplanar. 
 

3.4.5.3 Collision Detection 
 
Collision detection is performed by tracing the course of a line through the BSP tree 

and determining the first solid brush with which the line makes contact. The 
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algorithm used to implement this is a pruned depth-first search; given a start and end 

point, and letting the first node be the root node, it proceeds as follows: 

 
1. At the current node, compute the dot product of the start and end points with 

the splitting plane’s normal, and subtract the plane’s distance from this. If the 

result is positive, then the point is in front of the plane; if it is negative, it is 

behind the plane. Points that lie on the plane are treated as being in front of it. 

This gives two possible scenarios: 

 
a. both points are on the same side of the plane. In this case, we need 

only traverse the front or back child of the current node. 

b. the line between the two points is intersected by the plane. In this 

case, we must split the line into two segments at the point of 

intersection, and continue to trace the relevant segment down the front 

and back children of the current node. Generally, we decide which to 

check first by choosing either the side closest to the start of the trace, 

or the one on which most of the divided line now lies. 

 
2. If the newly-chosen node is a leaf, then proceed to step 3. Otherwise, 

recursively perform step 1 with the new node and (possibly) line segment. 

 
3. Upon reaching a leaf, we know that the current trace segment resides within 

one of the convex subspaces of the map, possibly inside a particular brush; it 

now remains to check whether a collision has occurred. Each Leaf node is, 

as mentioned earlier, associated with a (possibly empty) set of Brushes 

which bound it. Each brush is further associated with a number of 

BrushSides, representing the different faces of the brush, and each of 

these brush sides itself indexes one of the splitting plane equations. By 

computing the dot product of the full line’s start and end points with these 

planes for each brush side, it can be determined whether the line crosses one 
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of the brush’s polygons, and how far this collision lies from the start of the 

trace. If this distance is less than the current minimum collision distance 

found, it is adopted as the new collision distance. 

 
4. Return back up the tree to the point at which the last branching decision was 

made, and continue with step 1 until all leaf nodes at which a collision may 

have occurred have been visited. The final result of the algorithm is the 

shortest distance between the start point and a collision with a solid subspace. 

 
The above algorithm outlines the procedure for tracing a line through the game 

world; however, this may produce misleading feedback if the space through which 

the line passes is not large enough to accommodate the player, such as a window. To 

account for this, QASE also provides the ability to perform collision detection using 

a bounding box or sphere of customisable size. The process is much the same, but 

collision detection is extended in each dimension to the outer extents of the volume. 

Thus, line-tracing can be used for visibility checks, while the bounding box approach 

determines the maximum distance which the player can travel in a given direction. 

The sphere-tracing function can be used to determine whether a projectile will 

successfully reach a given point, or will strike an intervening surface. 

 

 
Figure 3-10 - BSP traces with line, sphere and box. Collision occurs at different points. 

 

The environment-sensing faculties of QASE illustrate another advantage of using 

computer games in research; they represent idealised robot navigation worlds, as 

discussed earlier. A great deal of work in this field is centred upon the elimination of 
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noise in the robot’s environment [17, 72]; by contrast, computer games guarantee 

accurate, undistorted sensory information. Furthermore, map editors for such games 

are common, allowing the user to create any environment he desires. By using Quake 

or other appropriate games as testbeds, researchers can easily prototype their 

navigation techniques, before adapting them to the constraints of the real world. 

 

3.4.6 Fixed Entity Sensing 
 

Aside from pure geometric data, the BSP files also contain information about certain 

active features within the game environment. These entities, which include doors, 

lifts, teleporters and buttons, should not be confused with the entity information 

received from the server on each update, which relates primarily to player 

movements and weapon spawns / despawns. The QASE API transparently parses and 

extracts the details of all such entities upon the first BSP query, and performs 

additional processing in order to allow the resulting data to be queried from high-

level contexts. For instance, graph-style edge links are created between teleporters 

and their destination portals, while methods within the BasicBot class can be used to 

easily determine whether the player is currently standing on a moving platform. 

QASE can also return a list of the locations in the game environment at which certain 

potentially hazardous features - lava, poison, etc - are found. 

 

3.4.7 Inbuilt AI Constructs 
 

For education purposes, QASE incorporates implementations of both a neural 

network and a genetic algorithm generator. These are designed to be used in tandem 

- that is, the genetic algorithm controller gradually causes the neural network’s 

weights to evolve towards a given fitness function. The main classes involved in this 

process are found in the soc.qase.ai.gann package: 
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• NeuralNet 

Builds a neural network given design parameters, controls the retrieval and 

updating of its weights, facilitates output using logsig or tansig functions, and 

computes the net's output for given input. Also allows the network to be 

saved to disk and loaded at a later time. 

 
• Genetic 

A genetic algorithm (GA) generator class, which maintains the gene pool, 

records fitness stats, controls mutation and recombination, and generates each 

successive generation when prompted. The class also provides methods to 

save and load Genetic objects, thereby allowing the genetic algorithm process 

to be resumed rather than restarted. 

 
• GANNManager 

Provides the basic template of a 'bridge' between the GA and NN classes, and 

demonstrates the steps required to evolve the weights of a population of 

networks by treating each weight as a nucleotide in the GA's genome. The 

class provides two modes of operation. For offline experiments - that is, those 

performed outside a live Quake 2 match - the GANNManager can be run as a 

thread, continually assessing the fitness of each network according to a user-

defined function, recombining the associated genomes, and evolving towards 

an optimal solution for a specified duration of each generation and of overall 

simulation time. For online experiments, the class can be attached as an 

Observer of one or more Proxy objects, providing direct feedback from the 

Quake 2 game world. The class is abstract; it must be subclassed to provide 

the necessary fitness and observer functions, and to tailor its operation to the 

specific problem at hand. The class also allows the user to save an entire 

simulation to disk, and resume it from the same point later. 
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A k-means calculator package (soc.qase.ai.kmeans) is also included, to serve 

as an illustration of clustering techniques; it is also used extensively in QASE’s 

waypoint map generator, to derive the graph nodes from raw observation data. The 

k-means facilities are composed of two classes, KMeansCalc and KMeansData. 

The latter acts as a wrapper for the data output by the algorithm, whereas the former 

performs the actual clustering according to the following formulae: 
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where k is the number of clusters, x is a point in the dataset, and c is a cluster centroid 

 
These features are intended primarily to allow students to experiment with some AI 

constructs commonly taught in undergraduate classes - for more demanding research 

applications, QASE allows MatLab to be used as a back-end (see Section 3.4.9). 
 

3.4.8 Waypoint Maps 
 

One of QASE’s most useful features, particularly from an educational point of view, 

is the waypoint map generator. The most important requirement of any agent is that 

it be capable of negotiating its environment. Although this can be done using the 

environment-sensing facilities outlined above, to rely exclusively upon BSP tracing 

would be a cumbersome and computationally expensive solution. Most traditional 

methods of navigation instead employ waypoint maps - topological graphs of the 

level, indicating the paths along which the agent can move. With this in mind, QASE 

provides a package, soc.ai.waypoint, specifically designed to facilitate the 

rapid construction of such maps. 
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While the two principal classes of this package, Waypoint and WaypointMap, 

can be used to manually build a topology graph from scratch, QASE also offers a far 

more elegant and efficient approach to the problem - the 

WaypointMapGenerator. A prime example of how our research in imitation 

learning has guided the development of the QASE API, 

WaypointMapGenerator draws on concepts developed in the course of our work 

in strategic navigation imitation (see Section 4.3). Users need only present the 

WaypointMapGenerator with a pre-recorded DM2 file; it will then 

automatically find the set of all positions occupied by the player during the game 

session, cluster them using the inbuilt k-means classes to produce a smaller number 

of indicative waypoints, and draw edges between these waypoints based on the 

observed movement of the demonstrator. The items collected by the player are also 

recorded, and the Floyd-Warshall algorithm [36, 137] is then applied to find the 

matrices of distances and shortest paths between each pair of points. Given an NxN 

edge matrix E specifying the adjacency between the N waypoints, this algorithm 

proceeds as follows: 

 
 

pathMatrix(i,j)={NIL if (i,j) ∉ E | i=j, i if (i,j) є E & i!=j} 

cost(i,j)={0 if i=j, ∞ if i!=j & (i,j) ∉ E, dist(i,j) if i!=j & (i,j) є E} 

 
for b = 1 : N 

 for a = 1 : N 

   for c = 1 : N 

     if cost(a,b) != ∞ & cost(b,c) != ∞ 

       if cost(a,b) + cost(b,c) < cost(a,c) 

         cost(a,c) = cost(a,b) + cost(b,c) 

         pathMatrix(a,c) = pathMatrix(b,c) 

Figure 3-11 - The Floyd-Warshall algorithm 
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The shortest distance between two points can be determined directly from the final 

cost matrix, while the shortest path is found by “backtracking” through the path 

matrix from the end node to the start. The map returned to the user at the end of the 

process can thus be queried to find the shortest path from the agent’s current position 

to any needed item, to the nearest opponent, or to any random point in the level. 

Rather than manually building a waypoint map from scratch, then, all the student 

need do in order to create a full navigation system for their agent is to record 

themselves moving around the environment as necessary, collect whatever items 

their bots require, and present the resulting demo file to QASE. 

 

Figure 3-12 - A waypoint map, generated automatically by QASE from recorded human data 
and exported to MatLab for visualisation. Green squares indicate item pickups. 

 
 
The waypoint map functionality is again embedded into the BasicBot class - that 

is, it provides shortest-path methods which the agent transparently passes on to an 

underlying WaypointMap object. The ability to retrieve the map as raw positional 

and edge data is also provided; this is particularly convenient for reading the map 
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into MatLab, as shown in Figure 3-12. Additionally, WaypointMap permits 

instances of itself to be saved to disk and reloaded, thereby enabling users to generate 

a map once and use it in all subsequent sessions rather than recreating it each time. 

 

3.4.9 MatLab Integration 
 
For the purposes of our work in imitation learning, we need a way to not only obtain, 

but also statistically analyse the observed in-game actions of human players. Rather 

than hand-coding the required structures from scratch, we opted instead to integrate 

the API with the Mathworks MatLab programming environment [83]. Given that it 

provides a rich set of built-in toolboxes for neural computation, clustering, 

classification and countless other techniques - in addition to its status as one of the 

most widely-used research platforms available - MatLab was an ideal choice to act as 

an optional back-end for QASE agents. 

 
In order to use MatLab’s functions to create Quake bots, a means of linking QASE to 

MatLab was required. Initial experiments involving a JNI interface to the MatLab 

DLL engine proved to be extremely sluggish, and certainly not feasible for the 

demands of an agent in a real-time game. A different approach was needed; one 

which would allow MatLab to quickly and efficiently obtain the specific gamestate 

information necessary to carry out its computations, thereby optimizing the agent’s 

performance. QASE provides two different mechanisms whereby agents can be 

instantiated and controlled via MatLab. 

 
For simple AI routines, one of the standalone MatLabGeneralBots shown in 

Figure 3-7 is sufficient. A MatLab function is written which creates an instance of 

the agent, connects it to the server, and accesses the gamestate at each update, all 

entirely within the MatLab environment. The advantage of this approach is that it is 

intuitive and very straightforward; a template of the MatLab script is provided with 
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the QASE API. In cases where a large amount of gamestate and data processing must 

be carried out on each frame, however, handling it exclusively through MatLab can 

prove quite inefficient. 

 
For this reason, we developed an alternative paradigm designed to offer greater 

performance. As outlined earlier in Section 3.4.1, QASE agents are usually created 

by extending either the ObserverBot or PollingBot classes, and overloading 

the runAI method in order to add the required behaviour. In other words, the agent’s 

AI routines are atomic, and encapsulated entirely within the derived class. Thus, in 

order to facilitate MatLab, a new branch of agents - the MatLabBots - was created; 

each of these possesses a three-step AI routine as follows: 

 
1. On each server update, QASE first pre-processes the data required for the task 

at hand; it then flags MatLab to take over control of the AI cycle. 

 
2. The MatLab function obtains the agent’s input data, processes it using its own 

internal structures, passes the results back to the agent, and signals that the 

agent should reassume control. 

 
3. This done, the bot applies MatLab’s output in a postprocessing step. 

 
This framework is already built into QASE’s MatLabBots; the programmer need 

only extend MatLabObserver / Polling / NoClipBot to define the handling 

of data in the preprocessing and postprocessing steps, and change the accompanying 

MatLab script as necessary. By separating the agent’s body (QASE) from its brain 

(MatLab) in this manner, we ensure that both are modular and reusable, and that 

cross-environment communications are minimised. The preprocessing step filters the 

gamestate, presenting only the minimal required information to MatLab; QASE thus 

enables both MatLab and Java to process as much data as possible in their respective 

native environments. This framework has proven very successful, both in terms of 
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computational efficiency and ease of development; its advantage lies in the fact that 

custom bots can be written for each task, minimising the amount of work that both 

QASE and MatLab need to perform on each update. In contrast, the 

MatLabGeneralBots do not pass any information to MatLab or expect any 

results - the bot’s entire AI cycle must be implemented from within MatLab. 
 

 
Figure 3-13 - MatLab - QASE integration. MatLab acts as a back-end in the agent's AI cycle. 

 

3.5 Conclusion 
In this chapter, we proposed our QASE API as a comprehensive tool for developing 

first-person agents in Quake. We outlined our motivation in undertaking this work, 

providing illustrative comparisons between the functionality of QASE and that of 

existing APIs. We detailed the most relevant concepts in the Quake 2 environment, 

and how they relate both to QASE and the work described later in this thesis. We 

described the network layer of QASE, and how it provides an interface between the 

agent and its environment, noting that its modular design provides a generic 

framework for the creation of agents in other games. We then detailed QASE’s agent 

architecture, including its bot hierarchy which allows agents to be built from various 

levels of abstraction, its ability to supply the agent with sensory data about its 

environment, its facilitation of high-level queries about the agent’s condition by 

transparently amalgamating low-level data, its ability to record and parse 

demonstration of human gameplay, its integration with the MatLab programming 

environment, its inbuilt AI constructs, and its topology-learning / navigation faculties 

drawn from our work in imitation learning. 
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3.5.1 Adoption in Academia 
 
Since its release on the Sourceforge software development site, QASE has attracted 

attention from several quarters. From regular correspondence, we know that it is 

currently used in work being conducted at Bielefeld University, Germany; it has been 

adopted by researchers at China’s Huazhong University, and at Deutsche Telekom; it 

is used at both under- and post-graduate level at Blekinge Institute in Sweden, where 

it has also been employed as the experimental platform for at least one Master’s 

Thesis [22]; and it is used as both a teaching aid and research tool at the University of 

Las Palmas de Gran Canaria. Agents developed by other researchers using QASE 

have also been demonstrated at DreamHack 2008, the largest LAN gaming 

convention in the world [30]. It is our hope that QASE’s continued adoption will help 

to foster interest in game-based machine learning and general AI research/education, 

by providing an intuitive, integrated development framework. 
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4 Imitation Learning 

4.1 Introduction 
 
In this chapter, we describe the models and mechanisms which we have developed to 

imitate human gameplay from recorded Quake 2 sessions. Section 4.2 introduces a 

hierarchy - or more accurately, a gradient - of observable in-game behaviours, based 

on Hollnagel’s contextual control model of real-world human planning; this identifies 

strategic long-term planning behaviours, tactical mid-term planning behaviours, and 

reactive short-term stimulus-response behaviours. We further identify, based on 

previous work by Laird/Duchi and Livingstone/McGlinchey, a number of core 

criteria for agent believability. Building upon this theoretical foundation, we proceed 

to outline imitative models for each major level along the gradient, noting instances 

wherein some overlap exists between the different layers. 

 
In Section 4.3, we first detail an approach to long-term strategic imitation and 

navigation, modelling the human player’s observed navigation strategies as a Markov 

Decision Process and applying reinforcement-learning techniques to discern the 

relationship between his current situation and subsequent behaviour. The system 

further incorporates such features as the human’s ability to account for dynamic 

changes in the local and global environment, the weighting and pursuit of multiple 

objectives in parallel, and the derivation of a goal-oriented topology of the game 

environment from recorded data.  

 
In Section 4.4, we then outline the integration of this system with a Bayesian 

approach to tactical motion-modelling based on the concept of action primitives; this 

allows the agent to imitate a human player’s characteristically smooth motion, 
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behaviours such as environment-relative weapon selection, and complex medium-

term actions such as Quake’s signature rocket jump. 

 
Finally, in Section 4.5 we present an approach to the imitation of reactive weapon-

selection and combat behaviours using an interconnected series of expert neural 

networks. This involves first reconstructing the human player’s visual perception of 

his opponent’s motion from the available low-level data, and then emulating the 

inaccuracy - both intentional and unintentional - demonstrated in his aiming 

behaviours with varying weapon, angle, elevation and range. 

 
For each of the imitative subsystem enumerated above, we also describe experiments 

designed to statistically validate their functionality. 

 

4.1.1 Publications 
 
The strategic navigation system detailed in Section 3.1 was published as “Towards 

Integrated Imitation of Strategic Planning and Motion Modelling in Interactive 

Computer Games” (Gorman & Humphrys 2005) in Proc. 3rd ACM Annual 

International Conference in Computer Game Design and Technology (GDTW 05), 

where it won the “Best Presentation” award 

 

This paper was subsequently selected for publication in the ACM Computers in 

Entertainment Journal, Volume 4, Issue 4 (October-December 2006). 

 

The integrated strategic planning and Bayesian tactical/motion-modelling system 

detailed in Section 3.2 was published as “Bayesian Imitation of Human Behavior in 

Interactive Computer Games” (Gorman, Thurau et al 2006) in Proc. Int. Conf. on 

Pattern Recognition (ICPR'06), volume 1, pages 1244-1247. IEEE, 2006. 
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The reactive combat system detailed in Section 3.3 was published as “Imitative 

Learning of Combat Behaviours in First-Person Computer Games” (Gorman & 

Humphrys 2007) in Proc. 10th International Conference on Computer Games: AI, 

Mobile, Educational & Serious Games, 2007. 

 

4.2 Behaviour Model 
 
One of the first questions to arise when considering the problem of imitation learning 

in games is, quite simply, “what behaviours does the demonstration encode?” 

Recorded Quake 2 matches, as with most modern games, typically comprise a wide 

variety of simultaneous, multiplexed activities; a well-structured model of the human 

player’s behaviour is therefore needed, to facilitate an orderly analysis of the 

observation data. To this end, Thurau et al [131] propose a three-level hierarchy of 

in-game behaviour based closely on Hollnagel’s Contextual Control Model [53]. Our 

visualisation of Thurau’s model, with slight modifications, is shown in Figure 4-1. 

 
In this model, strategic behaviours refer to actions the player takes with long-term 

goals in mind. Goals may include maximising the number of weapons or items he 

possesses (thereby also preventing opponents from obtaining them), controlling 

certain areas which offer an advantage in terms of position or cover, and cycling 

around the map in an efficient manner. Strategic goals will shift as the situation 

warrants; if a player is low on ammunition but has plenty of health, then he will 

naturally attempt to find an ammunition refill or a different weapon in preference to 

an armour upgrade. 

 
Tactical behaviours encode a degree of planning, but are more localized than the 

global strategies. Tactical behaviours can take two main forms; environment-relative 

and opponent-relative. Environment-relative tactical behaviours include jumping in 
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order to cross a ravine, looking around while moving in order to spot enemies, or 

executing more complex manoeuvres such as rocket jumps (see later). Opponent-

relative tactical behaviours concerns the manner in which a player reacts to an 

opponent in his immediate vicinity - how he moves to minimise the danger to 

himself, how to evade or engage the opponent in a premeditated fashion, and so 

forth. Tactical behaviours, particularly of the environment-relative kind, are closely 

linked to motion modelling. 

 

 
 
Reactive behaviours are those which involve little or no planning; the player simply 

reacts to stimuli in his immediate surroundings. An unexpected close-quarters 

encounter with an opponent would give rise to such behaviours, as would auditory 

input such as the sound of nearby gunfire. Basic aiming and firing behaviours also 

fall under this category. 

 

 
Figure 4-1 - Thurau’s adaptation of Hollnagel's COCOM [131] 
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Motion modelling refers to the imitation of human movement as the agents execute 

their AI routines. This serves three functions; firstly, it manifests a smoother, more 

nuanced, more humanlike motion between points on the bot’s path. Secondly, it 

prevents the artificial agents from performing actions which would be impossible for 

the human player’s mouse-and-keyboard interface. Thirdly, it has an important 

functional aspect which overlaps with tactical behaviours; motion modelling allows 

the agent to actually perform the tactical manoeuvres - jumping, strafing, etc - 

necessary to navigate certain areas of its environment. 

 
It is important to note that the behaviours encoded in a typical game session often 

cannot be strictly classified as belonging to a single category. For instance, while 

weapon selection and aiming behaviours would generally be considered reactive, 

they involve a distinct tactical component as well; in Section 4.5, we note that our 

imitative agents were observed to behave reactively when aiming at a fast-moving 

opponent in close proximity, whereas its aiming behaviours became more deliberate 

and tactical at longer ranges. The behaviour hierarchy should thus be viewed as a 

gradient along which the human’s behaviours fall. 

 

4.2.1 Behaviour and Believability 
 
A number of previous contributions have examined the specific elements of agent 

behaviour which contribute most heavily towards their perceived ‘humanness’. Laird 

and Duchi [78] define a set of such parameters - decision time, tactical complexity 

and aiming skill - which they expected to have a noticeable impact upon the agent’s 

believability; for each of these, they instantiate agents at different values of the 

relevant parameter, and have them play against a human expert. They then showed 

recordings of these game sessions to a panel of judges, and analysed the relationship 

between the varying parameter values and the observer’s perception of the agent. 

They found that the agent was judged most humanlike when it exhibited noticeable 



 118

strategic and tactical planning behaviours, and was least believable when its aim was 

excessively accurate. Elsewhere, McGlinchey and Livingstone [111] perform a series 

of similar experiments using the game Pong as a testbed, while Livingstone [79] 

extends the concept to consider Non-Player Character (NPC) agents, before 

providing a summary of the most important components of agent believability. With 

respect to our own work, the relevant believability criteria are as follows: 

 
• the agent should not be merely a reactive bot; specifically, it should 

o exhibit strategic planning in the medium- to long-term 

o exhibit tactical planning in the short- to medium-term 

• the agent should react to changes in its local environment 

• the agent should act and aim with human-level precision and reaction times 

 
In the following sections, we describe imitative mechanisms which fulfil each of 

these criteria. Further discussion on the importance of believability studies can be 

found in Chapter 5. 

 

4.3 Strategic Behaviour Imitation 
 
In a number of contributions [75, 78], the ability of agents to exhibit long-term 

strategic planning consistently emerges as a key factor in determining its 

“believability”. In order to learn strategic behaviours from human demonstration, we 

develop a model designed to emulate the notion of program level imitation discussed 

by Byrne and Russon [20]; in other words, to identify and imitate the demonstrator’s 

goals and intent, rather than simply reproducing his precise actions. On each 

timestep, the human player evaluates his current status, exercises his knowledge of 

the game environment, and makes a strategic decision to pursue a particular goal. 

Our task, then, is to identify and define the principal goal-states within the recorded 

game session, and to derive those factors which caused the player to move towards 
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them. In the context of Quake, strategic planning is mostly concerned with the 

efficient collection and monopolisation of items and the control of certain important 

areas of the map; we therefore define the goal-states as being the locations within the 

game world at which the agent collected a new item. 

 
Thurau et al [131] present an initial approach to emulating such behaviours based on 

artificial potential fields; here, we instead apply a combination of reinforcement 

learning and fuzzy clustering to the problem, while adding a number of mechanisms 

designed to imitate other important aspects of strategic planning. 

 

4.3.1 Reinforcement Learning 

 
Markov Decision Processes [2, 69] are based on the idea that a problem can be 

modelled as a set of states, actions which may be taken in each, transitions which 

result from taking a particular action in a particular state, and rewards associated 

with certain states. Formally, an MDP consists of: 

 
• a set of states, S 

• a set of actions, A 

• a transition function T, which defines AaSssassP ∈∈∀ ,',),|'(  

• a reward function R, which defines AaSsasR ∈∈∀ ,),(  

 
On each timestep, the agent determines its current state, decides upon an action, 

transitions to a successor state, and receives a corresponding reward from the 

environment. Since we know the desired goal but not the correct actions to take, 

rewards are typically given upon reaching a particular state rather than for taking a 

particular action. 
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The objective is to find a optimal policy, that is, a mapping from states to actions 

which defines the agent’s behaviour in a each state, )(,: tt saAS ππ =→ . The value 

)( tsV π  of a policy π  is the expected cumulative reward that will be received while 

the agent follows the policy from state st. The optimal policy *π  is thus the policy 

such that 

 
SssVsV ttt ∈∀= ),(max)(* π

π
 

 
Depending on the application, the amount of knowledge we possess about the world 

may vary. Typically, we do not know the values of ),|'( assP  and ),|( asrP ; we 

must therefore explore the world in order to construct a valid policy, which we can 

then exploit to find the best route to the desired goal. One of the best-known 

exploration algorithms is Q-Learning [69], which operates by summing the rewards 

of future actions to build up a table of quality values associated with each (s, a) pair. 

The update rule generally used in Q-Learning is as follows: 

 
))','(max(),()1(),(

'
asQrasQasQ

Aa∈
++−= γαα  

 
where γ  is the discount factor used to reduce the value of future rewards, s’ is the 

state to which the agent transitions upon taking action a, and the learning rate α  is 

generally taken as (1/t ), where t is the current timestep. The control policy of the 

agent is defined using a soft-max function such as the Boltzmann distribution: 
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where T is the temperature of the system. By starting with a high value of T and 

decreasing it as learning progresses, the agent gradually moves from a stochastic 
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explorative policy when the Q-values are at their most inaccurate, to a deterministic 

exploitative policy as its knowledge of the states and actions improves. 

 
Unfortunately, it is not feasible to apply these techniques in an environment such as 

Quake 2; given the number of states - a Q2 map can, at maximum, be a 32k x 32k x 

32k grid - and the fact that significant changes in the rewards can potentially occur 

every hundred milliseconds, the exploration time would be prohibitive. While an 

approach similar to that employed by Cottrell [25] might prove beneficial in adapting 

reinforcement learning to imitation, a more direct solution does present itself. Since 

we can compute the values of  ),|'( assP  and assign rewards to produce ),|( asrP  

based on the observed actions of the player, one of two iteration techniques can be 

adopted to learn the optimal policy without needing to perform exploration. 

 
The value iteration algorithm [69, Figure 4-2] is used to compute the value V(st) of 

each state, and has been shown to converge to the correct V* values. The algorithm 

operates by storing the maximum Q-values of each state across all actions, updating 

them on each iteration; convergence occurs when the maximum variation between 

two successive updates falls below a given threshold. Once the values have been 

computed, the policy can be defined by simply choosing the transition which leads to 

the successor state with the highest utility value. 
 

For all s in S 

 For all a in A 

  ∑
∈

+←
Ss

sVassPasRasQ
'

)'(),|'(),(),( γ  

 ),(max)( asQsV
a

←  

Until δ<−+

∈
)()(max 1 sVsV ll

Ss
  

 

Figure 4-2 - The Value Iteration algorithm 
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A second algorithm, policy iteration [69] is used to obtain the optimal policy directly 

rather than indirectly over the utility values. Though very similar in form, policy 

iteration is not detailed here, since the value iteration algorithm is sufficient for the 

purposes intended. 

 

 
Figure 4-3 - More than one path exists through each environment. The player chooses his route 
in such a manner as will maximise his arsenal - and thus, his advantage over opponents - based 
on his current health, armour, weapon, ammunition and other inventory contents. Experienced 
players also attempt to maintain control over particularly important areas of the map. 
 

4.3.2 Goal-Oriented Strategic Navigation 

 
In Quake 2, experienced players traverse the environment methodically, establishing 

control over important areas of the map and collecting items to strengthen their 

character (see Figure 4-3). Thus, we define the player’s long-term strategic goals to 
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be the items scattered at fixed points around each level. By learning the mappings 

between the player’s status and his subsequent item pickups, the agent can adopt 

observed strategies when appropriate, and adapt to situations which the player did 

not face. A strategic imitation system must therefore implement: 

 
• a means of deducing the map’s topology from demonstration 

• a means of mapping the agent’s current state (inventory) to the appropriate 

goal state (item pickup location) and actions (movement path) 

• a means of allowing the agent to adapt to unseen states when deployed 

• a means of allowing the agent to react to dynamic changes in its environment 

 
Our system, designed to meet all these criteria, is described in the following sections. 
 

4.3.3 Topology Learning 
 

Learning the human player’s strategic navigation of his environment first requires a 

means of building a representation of that environment’s topology. Traditional AI 

bots in first-person shooter games generally employ waypoint maps - graphs of 

interconnected nodes, whose edges specify the paths along which the agent is free to 

move - which are manually constructed by the game designers. In keeping with our 

focus on imitation learning, we would prefer to deduce a topology from recorded 

game sessions. Adopting this approach has an additional advantage from the 

perspective of strategic imitation: by deriving a topological representation of the map 

from human demonstration, we implicitly discard those areas which the player did 

not visit, and which we can therefore infer were of little or no strategic value. 

 
To learn the topology of the environment, we first read the set of all player locations 

{ }zy,x,=l
r  from the recording, and cluster these points to obtain a reduced set of 

prototype player positions. By examining the sequence of player positions, we also 

construct an n x n matrix of edges E, where n is the number of clusters, and Eij = 1 if 
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the player was observed to move from node i to node j and 0 otherwise. Thus, we 

derive a waypoint map based on the demonstrator’s traversal of his environment. 

 
We quickly discovered, however, that naïve clustering often resulted in a topological 

map which was of insufficient granularity to capture the most important points in the 

dataset - that is, the points at which the player was observed to collect an item. Figure 

4-5 provides an illustration of this phenomenon. Here, the agent may inadvertently 

miss certain items which it was supposed to collect, since the placement of the 

waypoint nodes is such that the graph’s edges - that is, the agent’s traversable paths - 

do not intersect with the item collection points, represented as green squares. 

 
We address this using a custom modification of the k-means algorithm. This involves 

introducing a collection of immutable “anchor” centroids, which specify points of 

particular importance in the dataset; in our case, these are the positions at which the 

player’s inventory (list of items) changed. The process operates by adjusting the set 

of initial cluster centroids, such that each anchor replaces the centroid nearest to it. 

Once done, the algorithm runs as normal, with the added stipulation that the anchors 

remain fixed throughout. In this manner, the points at which items pickups occurred 

stay constant, while the remaining clusters are distributed around them - in effect, 

providing us with an inherently goal-oriented discrimination of the level’s topology. 

 
Formally, the algorithm proceeds as follows: 
 

1. A set of initial centroids is first derived from the data; various approaches to 

the selection of these centroid positions are given in [18]. In our case, since 

the data encodes the near-continuous motion of an avatar through its 

environment with time, we sample the datastream at evenly-spaced intervals 

to produce the set of initial centroids. 
 

2. The initial centroid which lies closest to the position of each anchor centroid 

(as defined above) is removed, and replaced by that anchor. 
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3. For each non-anchor centroid, recompute the cluster centre positions c1…cn as 

the centroids of the set of data vectors they currently represent, i.e 
 

)(∑= ji xavgc  
anchorsci ∉  

icxdistj kj
k

=∀ )),((minarg|  

4. If the algorithm has converged (i.e. no change occurs in the assignment of 

input vectors to reference vectors for two successive iterations), then stop. 

Otherwise, go to step 2. 
 

In practice, we also employ Elkan’s fast k-means modification [32] to greatly 

expedite the clustering process. An illustration of how the waypoint map would 

appear if visualised in-game is shown in Figure 4-4 below; the effectiveness of our 

approach in capturing item collection points is shown in Figure 4-5 and Figure 4-6. 

 
Figure 4-4 - An illustrative projection of the topological waypoint map onto a visualisation of an 
in-game scene. Nodes are blue, edges are red, nodes at which items reside are green. 
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Figure 4-5 - A naive clustering of the player's positions reveals the topology of the level using the 
unmodified fast k-means algorithm. Note that several items (green) are not ‘captured’ by the waypoints 
(blue) and the edges between them (red). 
 
 

 
Figure 4-6. The modified algorithm produces a clustering which arranges itself around important points 
(i.e. strategic objectives) in the dataset, rather than treating them incidentally. It proves effective in 
capturing all item collection events. 
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4.3.4 Deriving Movement Paths 

 
Typically, traditional agents use shortest-path methods to navigate from their current 

location to a desired waypoint node. From the perspectives of both imitation learning 

and humanlike behaviour, this is unacceptable. Firstly, human behaviour is inherently 

sub-optimal; while an experienced player will generally pursue a good path to his 

objective, it will not necessarily be the best. Secondly, an imitative approach to 

learning movement patterns has the effect of co-opting elements of human strategy 

that would be either difficult to achieve with a traditional agent, or would be 

overlooked entirely. A human player, for instance, may deliberately choose to take a 

longer path to his ultimate objective if it offers other benefits; a particular corridor 

may be poorly illuminated in the game world, and will thus make it more difficult for 

an opponent to spot and kill his avatar. A more circuitous route may permit him to 

collect ammunition for a weapon situated at the end of his current movement path, 

allowing it to be used immediately. Though the imitation agent will naturally not 

know that it is pursuing a specific path for these reasons, it will nonetheless gain the 

benefits of the human’s strategic thinking. This ability to subsume elements of human 

reasoning, by deducing relationships between state and behaviour from observable 

outputs - without requiring that the reasoning processes themselves be manually 

coded - is what makes imitation such a powerful mechanism. 

 

To capture this, we view the topological map of the game environment as a Markov 

Decision Process [54], with the clusters corresponding to states and the edges to 

transitions. We also read the player’s inventory from the demo at each timestep - that 

is, the list of weapons and ammunition currently in his possession. We construct an 

inventory state vector specifying the player’s health and armour values together with 

the weapons he has collected and the amount of ammo he has for each. The set of 

unique state vectors is then obtained; these state prototypes represent the varying 
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situations faced by the player during the game session. We can now construct a set of 

paths which the player followed while in each such situation. These paths consist of a 

series of transitions between clusters: 
 

],...,,[ ,2,1, kiiii ccct =  
 

where ti is a transition sequence (path), and ci,j is a single node along that sequence. 

Each path begins at the point where the player enters a given state, and ends where he 

exits that state - in other words, when an item is collected that causes the player’s 

inventory to shift towards a different prototype. Figure 4-7 illustrates a typical path 

followed in one such prototype. 

 

 
Figure 4-7 - An example of a path followed by the player while in a particular inventory state 

 

4.3.4.1 Assigning Rewards 
 
Having obtained the different paths pursued by the player in each inventory state, we 

turn to reinforcement learning to reproduce his behaviour. In this scenario, the 
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MDP’s actions are modelled as the choice to move to a given node from the current 

position. Thus, the transition probabilities are 

 

ijEjaisjsP ==== ),|'(  
 

where s is the current node, s’ is the next node, a is the executed action, and E is the 

edge matrix. Since each action in each state leads unambiguously to a single 

successor state, this produces a deterministic mapping of the form 

 

', sas →  

 

This has an added advantage in that each entry of the probability matrix can be 

represented as a single bit, offering a significant reduction in storage overhead. To 

guide the agent along the same routes taken by the player, we assign an increasing 

reward to consecutive nodes in every path taken under each prototype, such that 

 

jcpR jii =),( ,  
 

where pi is a prototype, and ci,j is the jth cluster in the associated movement sequence. 

Each successive node along the path’s length receives a reward greater than the last, 

until the final cluster (at which an inventory state change occurred) is assigned the 

highest reward. If a path loops back or crosses over itself en route to the goal, then 

the higher values will overwrite the previous rewards, ensuring that the agent will be 

guided towards the terminal node while ignoring any non-goal-oriented diversions 

along the way. Thus, as discussed earlier, the agent will emulate the player’s 

program-level behaviour - that is, it will identify and pursue the human 

demonstrator’s strategic goals, rather than simply duplicating his precise actions. An 

example of such behaviour is shown in Figure 4-8 below. 
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Figure 4-8 - A quiver plot illustrating program-level imitation. Pictured above are the player’s (blue) 
performance of an item collection sequence, and the agent’s reproduction of same (red); starting positions 
are given by their respective coloured squares, items are in green. In the middle of the sequence, the player 
descends and re-ascends a staircase, with no objective benefit. The agent ignores this non-goal-oriented 
movement, bypassing the stairs and heading directly towards the final item pickup at the near-right. 
 

 
4.3.5 Learning Utility Values 
 

With the transition probabilities and rewards in place, we can now run the value 

iteration algorithm in order to compute the utility values for each node in the 

topological map under each inventory state prototype. The value iteration algorithm 

iteratively propagates rewards outwards from terminal nodes to all others, 

discounting them by distance from the reward signal. Once complete, these utility 

values will represent the “usefulness” of being at that node while moving to the goal.  
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Figure 4-9 - Rewards (red & blue) and learned utility values (magenta & green) shown on the 
vertical axis. Note that every node has a nonzero utility value; the agent will be drawn towards 
the goal from any point on the map. The program-level approach effectively abstracts the 
agent’s situation from the implementation of its solution - if the agent encounters this particular 
inventory state while at position X, for instance, it will follow an alternate route to the terminal 
node 4 rather than copying the human demonstrator’s path (1-2-3-4). 
 

 

Generally, the algorithm’s stopping criterion is based on the variation of the utility 

values between consecutive iterations; however, in a complex world such as that 

presented here, convergence may be prohibitively slow. In our case, it is important 

that every node in the map should possess a utility value under every state prototype 

by the end of the learning process, thereby ensuring that the agent will always receive 

strong guidance towards its goal. We therefore adopt the game value iteration 

approach outlined by Hartley et al [50]; the algorithm is applied until all nodes have 

been affected by a reward at least once - that is, until every node has a non-zero 
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utility value. Figure 4-9 shows the result of applying value iteration to one particular 

path through the environment. 

 
Furthermore, the value iteration algorithm itself can be greatly expedited by 

exploiting the deterministic nature of this particular MDP. Using the INRA MDP 

Toolbox 2.0 for MatLab, the main value iteration code appears as follows: 

 
     for s = 1:S 

        for a = 1:A 

            Q(a) =  R(s,a)  +  discount * P(s,:,a) * V;  

        end; 

 

        V(s) = max(Q); 

     end; 
Figure 4-10 - Standard value iteration code 

 

where R is a two-dimensional reward matrix, and P is a three-dimensional transition 

matrix. In an example run of 442 nodes, this takes 139 seconds to affect every state 

for a particular path around the map. In our scenario, however, each action inherently 

implies a movement to the associated state; the code can thus be rewritten as follows: 

 

     for s = 1:S 

        V(s) =  max(R(s, :)  +  discount * (P(s, :) .* V)); 

     end; 
Figure 4-11 - The rewritten value iteration code 

 

The transition matrix is reduced to two dimensions, and inner loop is vectorized so 

that the rewards of all actions in a given state are computed simultaneously. On the 

same dataset and machine, this code produces the same results as above in just 1.016 

seconds. 
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4.3.6 Multiple Weighted Objectives 
 

Beyond the mapping of inventory status onto navigation decisions, a number of other 

features of human planning behaviour must also be taken into account. Faced with a 

situation where several different items are of strategic benefit, for instance, a human 

player will intuitively weigh their respective proximities and importance before 

deciding on his next move. To model this, we adopt a fuzzy clustering approach. On 

each update, the agent’s current inventory is expressed as a membership distribution 

across all prototype inventory states. This approach produces an aggregated set of 

utility values which reflect the similarity of the agent's current state to each of those 

experienced by the player, thereby allowing the agent to utilize its knowledge of the 

human’s actions across the entire game session rather than considering only the 

single most analogous situation. For instance, in cases where item A is less attractive 

than item B given the agent’s current status, but item A is located closer to its current 

position, the agent will be drawn towards the goal state associated with A. This is 

computed as follows: 
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where s is the current inventory state, p is a prototype inventory state, P is the 

number of prototypes, and mp(s) is the degree to which state vector s is a member of 

prototype p, relative to all other prototypes. 
 
This approach has the advantage of increasing the agent’s adaptability when 

deployed. In the case of the recorded human data, we can determine the player’s 

precise objective on every timestep, simply by reading ahead in the packet stream 

and determining which item he eventually collected. When the imitation agent is 

deployed, however, it will likely be required to begin its navigation from a different 

point on the map, and its inventory states will therefore be markedly different to 
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those observed during the learning process. Weighting across all objectives in this 

manner ensures that the agent will pursue consistent behaviours even in such cases. 

 

4.3.7 Object Transience 
 
Another important element of planning behaviour is the human’s understanding of 

object transience - that is, a collected item will be unavailable until the game 

regenerates it after a fixed interval. A human player intuitively tracks which items he 

has collected from which areas of the map, can easily estimate when they are 

scheduled to reappear, and adjusts his strategy accordingly. To capture this, we 

introduce an activation variable in the computation of the membership values; 

inactive items are nullified, and the membership values are redistributed among items 

which are still active: 
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where a, the activation of an item, is 1 if the object o at the terminal node of the path 

associated with prototype state p is present, and 0 otherwise. The utility 

configurations associated with each prototype are then weighted according to the 

membership distribution as described above, and the adjusted configurations 

superimposed; we also apply a discount to prevent backtracking. The formulae used 

to compute the final utility values and select the next position cluster is thus: 

 

∑ =
=

P

p pp
ce smcVcU

1
)( )()()( γ  

}1|{),(max1 =∈=+ xcyt t
ExyyUc  

 
where U(c) is the final utility of node c, γ is the discount, e(c) is the number of times 

the player has entered cluster c since the last state transition, Vp(c) is the original 

value of node c in state prototype p, and E is the edge matrix. Imitating the human’s 
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comprehension of object transience allows not only the adjustment of long-term 

strategies as items respawn in distant areas of the map, but also fulfils the 

believability criterion as outlined in Section 4.2.1 that an agent should react to 

changes (in this case, item respawns) in its immediate environment. 

 
Further discussion, and detailed examples, of both the objective-weighting and 

transience mechanics are presented in the Experiments section and Figure 4-12. 

 
4.3.8 Deployment 
 

When deployed, the agent passes its current location and inventory to MatLab via the 

QASE interface on each timestep. MatLab then determines the closest-matching 

topological node, computes the similarity of each state prototype to the given 

inventory state, weights the utility values accordingly, finds the set of nodes 

connected to the current node by examining the edge matrix, and selects the 

successor node with the highest utility value. As the agent traverses its environment, 

item pickups and in-game events will cause its inventory to change, resulting in a 

corresponding switch in the utility configuration and attracting the agent towards its 

next objective. 

 

4.3.9 Experiments 
 

Here, we present a statistical validation of the strategic planning system. A 

comprehensive evaluation of the mechanism as it pertains to the agent’s perceived 

believability or humanness is presented in Chapter 5. 

 
To evaluate the agents’ ability to learn the human’s strategic behaviour, we first 

conducted 150 separate tests on 30 sequences of simple item pickups spanning four 

different game levels. For each set of five tests, the first attempt placed the agent at 
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the same starting position as the player; the four subsequent tests placed the bot at a 

random position along the sequence. When starting at the same location as the player, 

the agent was expected to reproduce the exact sequence of pickups. When starting at 

each of the random positions, it was expected to attempt to reproduce the sequence if 

possible; however, if its starting location caused it to collect an object while en route 

to the first item in the sequence, the agent was expected to deal with this 

unencountered situation appropriately. Each topological map was constructed at a 

cluster ratio of 35%; that is, the number of waypoints was 35% of the total number of 

positions encoded in the underlying dataset. Because these samples represented 

isolated pickup sequences rather than continuous gameplay, the agent did not take 

item respawns into account - this was tested separately on more extensive samples, as 

described later. Also, to account for the random positioning of the agent, we made 

each internodal link in the topological map bi-directional. For each test, the number 

of seconds taken for the bot to complete its task was recorded, and can be compared 

with the human player’s time. These results are summarized in Table 4-1 below. 

 
Dataset Player Bot (Same SP) Rand 1 Rand 2 Rand 3 Rand 4 
1 24.8 14.2 25.4 36.7 23.6 20.1 
6 12.0 11.8 16.1 15.3 21.4 18.1 
7 15.8 10.8 11.1 10.8 12.6 15.9 
9 79.2 51.0 76.9 72.1 61.3 76.9 
10 60.8 47.1           46.8 71.7 50.9 72.5 
11 32.8 43.1 56.0 68.7 58.2 65.7 
18 54.4 20.6 31.2 22.7 20.4 37.2 
19 20.8 12.7 43.3 12.9 43.5 20.7 
20 50.4 29.3 76.9 31.0 33.4 31.2 
21 20.0 17.3 15.8 13.5 11.2 12.2 
22 38.4 51.3 43.0 40.1 59.8 47.4 
27 28.8 37.9 55.8 35.2 35.6 52.1 
30 24.8 29.6 28.3 30.0 34.0 35.1 
Table 4-1 - Illustrative results of human navigation reproduction using strategic imitation. 
Numbers are the time taken for the agent to complete the human’s pickup sequence from the 
same starting position and each of four random positions. Results were chosen for varying 
complexity, duration and agent performance. 
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As can be seen, the agent successfully completed each task, although with greatly 

varying times. When the agent started at the same point as the human, the times are 

generally quite similar; in some cases, the agent actually manages to complete the 

collection sequence faster than the demonstrator, since it will (as noted above) ignore 

any non-goal-oriented movements present in the gameplay sample. The deviations 

recorded in the random-spawn tests are due primarily to the fact that the agent often 

started around the midpoint of the sequence, requiring it to either collect all 

subsequent or all previous items before doubling-back to pick up the remainder. 

Certain samples also saw noteworthy differences in the time taken for the agent to 

complete its task when starting from the same position as the human player. In these 

cases, it was observed that the bot tended to move in rough, circuitous motions 

between what should have been adjacent points; this was found to be caused by a 

concentration of complex paths through relatively small spaces, the slightly high 

(35%) number of clusters used, and the resulting dense placement of nodes within the 

topological map. Subsequent experiments would clarify the detrimental effects of 

high waypoint densities on agent navigation (see Section 4.4.4). Some other minor 

issues also contributed to the observed time differences - most notably the occasional 

repetition of paths, caused by the artificial addition of bidirectional edges - but 

overall the bot showed impressive performance and adaptability, as evinced by its 

successful completion of pickup sequences when starting from artibrary locations. 

 

While useful for the purposes of numerical comparison, however, these isolated 

pickup sequences do not fully test the agent’s planning abilities. A more instructive 

examination of its performance can be made by supplying more extensive gameplay 

samples, wherein the player is observed to cycle continuously around the map in 

accordance with his changing state. We therefore trained the agent on four extended 

demonstrations across two different levels, where the human player had more scope 

to develop the kind of elaborate strategy typically seen in a live game session. Here, 
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the direction in which the player traverses the map is often an important element of 

his strategy, allowing him to collect weapons before their relevant ammunition, or to 

build up armour reserves before entering the open areas of the level; consequently, 

edges in the topological map are taken as being unidirectional, except in cases where 

the player was explicitly observed to move along them in both directions. The 

objective-weighting and item transience mechanisms resulted in the emergence of a 

noticeably more complex, more involved long-term planning behaviour. Rather than 

simply cycling the map from one pickup to the next, the agents were instead 

observed to react dynamically to changes in an object’s activation, to concentrate on 

areas of the map which were favoured by the human player over the course of his 

demonstration, and to give added significance to regions which were more heavily 

populated with beneficial items. For instance, in several samples the player was 

observed to first obtain a full complement of weaponry, after which he would patrol 

specific areas of the map which contained many of the most useful items; the agent 

took this into account by concentrating on those same areas throughout its test run. 

 

One issue noted during these tests was an occasional ‘indecisiveness’ at points where 

multiple paths intersected - the agent would sometimes move among several 

neighbouring nodes, due to local maxima caused by overlapping utility values. In 

such cases, however, this problem was quickly resolved by the discount factor 

applied to recently-visited position clusters; this acted to push the bot away from 

such intersections and towards more attractive areas of the map, resulting in little 

overall disruption to the agent’s movement. 

 

Illustrative examples of the goal-weighting and object transience mechanisms are 

shown in Figure 4-12 on page 140. These demonstrate how the object transience 

approach fulfils the believability criterion, outlined in Section 4.2.1, that the agent 

should react to changes in its local environment. It is important to note, however, that 
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these microcosmic examples are not the sole effects of the system. While it is 

fortunate that some items happened to respawn in the bot's immediate vicinity, thus 

providing ideal visualisations of the mechanism in operation, the very fact that the 

agent was able to resolve these reappearances in the short-term negates their long-

term planning importance. It bears re-stating that the agent is internally tracking the 

times at which the inactive items are scheduled to respawn, and therefore perceives 

these reappearances no differently than it does the reactivation of items in other, 

more distant areas of the map. The strategic implications of this mechanism occur 

when the agent realizes that items at medium or greater distances from its current 

position have respawned, leading it to adjust its long-term goals accordingly. The 

navigation system, while primarily a strategic mechanism, therefore incorporates 

situation-dependent elements of both reactive (when items at close range respawn) 

and strategic behaviour (when items at longer ranges respawn). 

 

Finally, it is instructive to note that the agent was out of line-of-sight of these items 

as they respawned. In the case of a human player in the same scenario, he would 

enter the area knowing that the items were due to respawn in the near future, but not 

the precise time. When the items respawn, however, they emit a distinctive noise; this 

would alert the human player that they had reappeared, even if he had already moved 

past them and could no longer see them in his field of vision. From an observer's 

perspective, then, the imitation agents in the sequences below would be perceived as 

exhibiting reactive behaviours in response to an auditory stimulus. Along with the 

strategic imitation of the human's tendency to opt for poorly-lit corridors discussed 

earlier, this is an excellent example of how imitation learning can serve to co-opt 

aspects of human perception, and their influence upon behaviour, which would not be 

evident in a traditional rule-based agent. 
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Figure 4-12 - Four sequences showing the objective-weighting and item transience mechanisms. Top, the agent 
(white circle) comes across two shotgun ammunition pickups (red circles) for the first time (1.1, 1.2), and 
collects them (1.3) before moving on (1.4). Having cycled around part of the level, the agent returns before the 
items have respawned (2.1), and since their inactivity nullifies the associated utilities, the bot initially passes by 
(2.2); however, their sudden re-emergence (2.2) causes the utilities to reactivate, and the agent is drawn to collect 
them (2.3) before continuing (2.4). Later, the agent returns once again (3.1). The items are now active, but since 
the agent has already collected several shotgun pickups, it has moved away from the prototype states associated 
with these items. The relevant membership values are thus insignificant; as a result, the agent ignores the pickups 
(3.2, 3.3), and continues on towards more attractive objectives (3.4). Finally, in a different session, the agent is 
moving along a path (4.1) as a row of armour shards respawns behind it (4.2). It reacts at once, turning around to 
collect the items (4.3), before resuming its course (4.4). 
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A full gameplay example is visualised via QASE/MatLab in Figure 4-13 above. 

Here, the agent (red) successfully reproduced the observed human behaviour (blue) 

having started at a different point (red diamond) than the demonstrator (blue 

diamond). Because of this, it was not possible to simply reproduce the exact 

sequence of pickups - instead, the agent was forced to rely on its objective-weighting 

mechanism to attract it towards each successive item location. 

 
Further evaluation of the strategic navigation system, both in terms of imitative 

accuracy and in the context of its contribution to the perceived “humanness” of the 

agent, is detailed in Chapter 5. 

 

4.4 Tactical Behaviour Imitation 
In this section, we first outline the relationship between motion modelling and 

tactical imitation, and discuss the importance of their role in creating a believably 

 
Figure 4-13 - A continuous gameplay samples; the agent (red) successfully reproduced the observed 
behaviour (blue) from a different starting position. Item locations are represented as green squares. 
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humanlike agent. We then describe the development of our approach to integrating a 

motion modelling and tactical imitation mechanism with the strategic navigation 

system described above, based on the theory of action primitives. 

 

4.4.1 Motion Modelling and Tactical Behaviours 
 
While the strategic navigation approach described in the previous section does 

provide an accurate reproduction of the recorded player’s long-term planning and his 

traversal of the environment, the agent’s movement between nodes in the topological 

map appears jerky and stilted - it does not capture the aesthetically smooth motion 

which human players typically exhibit. Since the illusion created by even the most 

intricate planning behaviours will be shattered if the agent is observed to move in an 

unconvincing manner, it therefore becomes imperative to implement a mechanism 

capable of imitating the human player’s motion. We refer to this requirement as 

motion modelling. In addition, human players often exhibit behaviours which serve 

no observable purpose during game sessions; unnecessary jumps, arbitrary weapon 

discharges and other such actions are commonplace. Even simple actions, such as 

standing in place while looking around for enemies or turning the camera to visually 

inspect an upcoming obstacle, are distinctively human behaviours; these are 

generally not exhibited by traditional agents, since visual examination of the 

environment is redundant from their perspective. While emulating such behaviours 

will not contribute towards the agent’s effectiveness, their absence would greatly 

detract from the perception of the agent as a human player; thus, by imitating such 

idiosyncrasies, it may be possible to make the artificial opponent appear more 

lifelike. As discussed in Chapter 1, this is in marked contrast to most applications of 

robotic imitation learning, where these unmotivated and unnecessary actions are 

considered nuisances which detract from the optimality of the solution [29]. 
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Figure 4-14 - A player (white circle) wishes to collect an item (red circle) located on top of a high 
platform. Directional navigation alone is not sufficient to reach all strategic goals; a 
complementary tactical imitation system is required to negotiate obstacles such as this. 
 

Beyond this, motion modelling has an important functional role in the realisation of 

environment-relative tactical behaviours; an example is shown in Figure 4-14. As 

discussed earlier, tactical behaviours are those which operate over a shorter term than 

strategic behaviours, but nonetheless encode a degree of localized planning. The 

virtual environments manifested in Quake, as with most modern games, are highly 

complex; simply navigating along the environment surface from one point to another 

is not sufficient. Players may need to jump across a ravine, stand on an elevating 

platform, use doors or switches, and so forth. They perform tactical weapon-

switching behaviours, such as drawing their rocket launcher as they approach an 

obstacle in order to perform a rocket jump, or choosing the Hyperblaster and firing at 

the entrances to an open area to cover their movements from potential enemy 
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encroachment. In many cases, the player can only reach certain areas of the map and 

attain certain goals by performing one or more such actions at the appropriate time. 

The goal-oriented navigation system, in other words, can be interpreted as 

determining where the agent needs to go, while the tactical motion model provides 

the means to get there. 

 
For the purposes of our agent, then, an ability to imitate the behaviours discussed 

above is essential. To do so, we draw on the theory of action primitives. 
 

4.4.2 Action Primitives 
 
Our initial attempts to integrate tactical motion modelling with the strategic 

navigation system utilised an adaptation of an approach proposed by Thurau et al 

[132], based on the theory of action primitives as described in Chapter 2. Action 

primitives are sets of modularised motor commands which are capable, via 

combination, of generating entire movement repertoires [37]; they are widely 

documented in the behaviour, biological and robotic literature [28, 43, 60, 127]. 

 
To extract primitives from the recorded Quake 2 data, we first read the sequence of 

actions executed by the player at each interval during the game session. This results 

in a set of four-dimensional vectors as shown below: 

 
a = [yaw, pitch, fire, jump] 

 
That is, the angular orientation of the player in each plane, whether he is firing his 

weapon, and whether he is jumping. We then cluster the set, thereby aggregating 

similar actions executed at different times or locations, and reducing the data to a 

smaller set of prototypical actions, otherwise known as primitives. 
 
In order to reconstruct the human player’s motion, the agent must also learn how to 

sequence these primitives. To this end, we employ a series of probability functions 
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similar to Thurau [132]. In that case, however, the primitives were used in isolation; 

they were not underpinned by a dedicated navigation system. We must therefore 

adapt the approach, such that the strategic planning system outlined earlier is 

responsible for navigation around the environment, and the motion modelling system 

is layered on top. 
 
Since the player’s action depends on his current location in the environment, the 

probability of executing a particular action primitive aj when the agent is within the 

Voronoi region of waypoint wk - that is, closer to wk than to any other node in the 

topological map - was originally written as 

 
)()( kjjt waPaaP ==  

 
However, in our new model, this could lead to situations where an incongruous 

primitive is chosen if the agent is currently at a node with more than one possible 

successor; for instance, if the navigation system chooses to move left, but the motion-

modelling system chooses a primitive which the player executed while moving to the 

right. To constrain the motion model such that it adheres to the paths chosen by the 

navigation system, we choose primitives based not on the current node w, but rather 

on the edge e along which the agent is travelling; that is, 
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The conditional probabilities can be computed by re-examining the recorded data. 

Each action in the training set can be associated with an edge in the topological map, 

and it can be associated with an action primitive. By counting the number of times a 

particular action primitive is observed to be executed on a given edge, an m x n 

matrix is formed where m is the number of edges and n is the number of action 

primitives; the probabilities are then deduced by normalising the rows of the matrix. 

An entry at position (k, j) thus indicates the probability P(aj | ek ) as above. 
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We must also consider the fact that not every action primitive can be executed as the 

successor of every other; there is a constrained ordering of primitives, imposed 

largely by the limitations of the player’s physical interface (see Section 4.4.3.4). As 

such, it is necessary to introduce a condition which expresses the probability of 

performing a particular action given the previously-executed action: 
 

)()( 1−== tjjt aaPaaP  
 

where at-1 is the action which was executed on the last time step. These probabilities 

are computed in a similar manner to the above; an n x n transition matrix is 

constructed, and populated by observing the sequence of actions from the demo. 

Since the conditional probabilities at-1 and ek are independent - the current state 

(edge) affects only the next action, not the previous one - the overall probability of 

executing action primitive aj is therefore given as 
 

)(

)()(
),()( 1

1
j

kjtj
ktjjt aP

eaPaaP
eaaPaaP −

− ===  

 
While this system proves capable of manifesting humanlike motion while pursuing 

the agent’s strategic goals, it is a less than satisfactory solution. One of its primary 

shortcomings is its inherently disjoint nature - that is, the motion modeling system is 

layered on top of the strategic-planning system, with no communication and only 

minimal relation between them. The planning module picks the next edge to traverse, 

and the motion module picks the actions on that basis, with no regard for the agent’s 

condition or objectives. For this reason, we continued to investigate alternative 

approaches, with the aim of developing a more robust integration. 
 

4.4.3 Bayesian Imitation 
 
During a research visit to Bielefeld University, we discovered that Thurau et al were 

developing an improved approach to primitives based on Rao et al’s Bayesian model 
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of action sequencing in infants and robots [106]. This formulates the choice of action 

at each timestep as a probability function of the subject’s current state st, next state 

st+1 and goal state sg, as follows: 
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where the normalisation constant is computed by marginalising over actions: 
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It was immediately apparent that, by viewing these states as the waypoints in our 

topological map, Rao’s model was an ideal fit for the strategic navigation approach 

described in Section 4.3; the position states st and st+1 are defined by the utility 

values, while the current goal(s) are defined by the inventory membership 

distribution. We therefore decided to develop a unified model of strategic and tactical 

imitation, by integrating these two systems. 
 

4.4.3.1 Primitives Extraction and Sequencing 
 
As with the approach to primitives detailed in Section 4.4.2, we first read the 

sequence of actions executed by the player on each timestep. This results in a set of 

extended action vectors a such that 

 
a = [yaw, pitch, walkstate, jump, weapon, firing] 

 
where yaw є [-180, 180] and pitch є [-90, 90] define the player’s view orientation, 

walkstate є [0, 2] determines whether the player is stationary, walking or running, 

jump є [-1, 0, 1] indicates whether the player is crouching, standing or jumping, 

weapon є [1, 11] signifies his current weapon, and firing є [0, 1] determines whether 
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or not the player is discharging his weapon. As before, we cluster these action vectors 

to produce an aggregated set of basis behaviours. 

 
According to Rao’s model, the probability of executing each action at a given 

timestep can be computed according to: 
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where w is used to denote a waypoint in the topological map, to avoid confusion 

between the states in Rao’s model and the strategic imitation system’s inventory 

states. However, a familiar problem confronts us. In the original model, Rao assumes 

that each action is independent of the last; in Quake 2, by contrast, each action is 

constrained by its predecessor, due to the limitations of the human player’s interface 

(see Section 4.4.3.4 for further discussion). To account for this, we must introduce an 

extra conditional probability in our calculations. Since, as noted by Thurau [130], the 

action observed on the previous timestep at-1 is independent of wt, wt+1, and wg - 

sequencing of actions due to the human’s external input modality does not affect in-

game environmental conditions - the new probabilities are computed as: 
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Therefore, 
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4.4.3.2 Adaptations of the Rao/Shon/Meltzoff Model 
 

Despite the suitability of Rao et al’s model [106] for our work, the requirements of a 

game agent navigating a virtual environment are naturally quite different than those 

of a behavioural model of infant imitation (see Chapter 1). Several further 

adaptations were required before this approach could be used in the game world. 

 
Firstly, Rao’s model assumes that transitions between states are instantaneous upon 

execution of the chosen action; in the context of our waypoint map, however, 

multiple actions may be performed while moving between successive position states. 

The importance of this distinction became clear in our initial tests, as a direct 

implementation of the model resulted in only a single action having a non-zero 

probability for each (wt , wt+1, wg ). This, in turn, meant that the agent only executed a 

new primitive upon reaching each waypoint along its path. The result in the game 

world was that the agent was observed to make a sharp change in orientation as it 

passed each waypoint, and would then “lock” to this orientation while moving along 

the edge towards the next node. This was particularly pronounced in areas of the map 

with sparse waypoints and long edges, and had the effect of rendering the agent’s 

appearance highly artificial. To rectify this, we instead express P(wt+1|wt ,at) as a 

probability distribution across all actions on edge Ewt,wt+1 in the topological map. 

 
Second, Rao assumes a single unambiguous goal, whereas we deal with multiple 

weighted goals in parallel. As discussed in Section 4.3.6, we thus derive the player’s 

specific goals during the learning process, and perform a weighting across all active 
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goal clusters when the agent is deployed. With this in mind, the probabilities are 

restated as follows: 
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where mg is the weighting of the current inventory with respect to goal state g. 
 
Finally, while the above is sufficient to produce an accurate imitation of the human’s 

behaviour, a further optimisation presents itself. In the course of our initial 

investigation, some features of the action representation became apparent: 

 
• the range of possible values of the latter four elements is quite limited in 

comparison to that of the orientation variables; the total  state space of 

[walkstate, jump, weapon, firing] consists of only (3 * 3 * 11 * 2) = 198 

distinct states. Indeed, this is small enough to make clustering largely 

unnecessary, particularly due to the fact that the number of actual observed 

states will typically be much smaller. 

 
• while the player’s firing and jumping are in some cases dependent upon his 

position, goal and orientation (for instance, performing a rocket jump, firing 

at a particular point, jumping through a narrow gap), his orientation is 

dependent only on his position and goal state. 

 
Therefore, we can decouple the yaw and pitch elements of the action vector from the 

remainder, add a dependency upon the former to the computation of the latter’s 

probabilities, and sequence them individually. The action vectors are now rendered 

as separate orientation and interaction vectors, where 

 
ao = [yaw, pitch] 

ai = [walkstate, jump, weapon, firing] 
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The corresponding probabilities are calculated as: 
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This serves both to produce a more fine-grain clustering of the orientation primitives, 

and to more accurately model their sequencing; an additional clustering optimisation 

will be discussed in Section 4.4.3.4. 

 

4.4.3.3 Probability Computation and Deployment 
 
With the model defined, we can now examine the demonstration data to extract the 

probabilities P(wt+1|wt,a), P(a|wt,wg), and P(a|at-1). The first term is a forward model 

of the player’s future state given his current action, as Rao et al discuss in the context 

of infant behaviour [106]. They propose that neonates learn the equivalent model 

through body babbling - that is, the proprioceptive development of an internal 

correspondence map between muscle commands and resulting limb configurations, 

acquired via trial-and-error experimentation with random body movements. Our task 

is somewhat simpler; a set of probability matrices are constructed based on the 

observed incidence of each primitive in the gameplay sample, indexed by position, 

goal and previous action in accordance with the formulae given above. 

 
Once deployed, the strategic navigation system determines the agent’s current 

position wt, obtains the goal membership distribution m, computes the utility values 

for each waypoint in the topological map, and chooses the highest-valued successor 
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node wt+1. The tactical subsystem then assumes control, using the data supplied by 

the navigation module - in addition to its own knowledge of the actions executed on 

the preceding timestep - to extract the relevant values from the probability matrices. 

Finally, it computes the likelihood of each primitive and selects the action with the 

maximum a posteriori probability. Note that it is an entirely valid alternative to 

choose the primitive by roulette-wheel selection over candidate actions; we use 

maximum a posteriori simply because it maximally exploits the knowledge gained 

from the human player’s demonstration. 
 

4.4.3.4 Imitative Keyframing 
 
With respect to the orientation primitives, there is still one issue to resolve regarding 

their precise representation. Two options present themselves: 

 
• relative primitives. Under this approach, the vector extracted from the 

gamestate on each timestep consists of the change in orientation from the 

preceding timestep, i.e. 

 
ao = [∆yaw, ∆pitch] 

 
• absolute primitives. Using this approach, the orientation vector extracted 

from the gamestate consists of the absolute yaw and pitch values of the player 

at that timestep, i.e. 

 
ao = [yaw є [-180, 180], pitch є [-90, 90]] 

 
These two are somewhat equivalent to the action space and task space representation 

of state data discussed by Schaal [8] in the context of robotic motor control; that is, 

relative primitives require knowledge of the agent’s internal state, whereas absolute 

primitives are specified in observable game co-ordinates. In the case of relative 

primitives, the comparatively small range of observed values of ∆yaw and ∆pitch - 



 153

due both to the constraints of the human’s physical interface and the short (100ms) 

period between samples, which preclude exaggerated actions such as turning 180° in 

a single timestep - means that action primitives derived from the demonstration data 

are highly accurate, even at low cluster densities. Agents trained using this approach 

exhibited the ability to make very fine adjustments to their orientation while 

navigating, as is typical of human players. However, our initial tests identified a 

problem. In cases where the agent adopted a different trajectory through the 

environment compared to its human exemplar - as is inevitable given the complexity 

of the game world and our adoption of program-level navigation - it would 

occasionally traverse the distance between two waypoint several timesteps faster or 

slower the human player had. Thus, a primitive that the human was observed to 

execute on edge B would be appended to the agent’s current orientation when it had 

only completed (to exaggerate for illustrative purposes) half of the observed player’s 

motion from edge A. Since relative primitives encode no self-corrective information 

and implicitly depend upon all previous primitives, these transition errors tended to 

accumulate as the agent traversed successive edges. The observable result of this 

phenomenon was that, while the agent’s modelling of the human would initially 

appear very accurate, after a period of time its orientation became increasingly 

incongruous with its direction of movement. 

 
Absolute primitives, by contrast, are not vulnerable to this effect, since they encode 

the full yaw and pitch of the player on every timestep. However, since the state space 

of absolute actions is far larger than that of relative actions, primitives derived from 

absolute data tended to produce significantly coarser orientation adjustments than 

relative primitives, even at higher cluster densities; this had the effect of rendering 

the agent’s in-game motion substantially less humanlike. Given that one of the 

principal objectives of our work is to improve the believability of game agents, an 

alternative is clearly needed. 
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Our solution, which we call imitative keyframing, allows us to borrow the strengths 

of both the relative and absolute approaches. The central concept is analogous to 

keyframing in computer animation, whereby the artist specifies a set of start and end 

positions within an animation sequence, and the computer creates the smooth 

transitions between them - although naturally in our case, the inter-keyframe actions 

are derived from observation data rather than being generated artificially. More aptly, 

it is similar to the action primitive sequencing system proposed by Fod, Mataric and 

Jenkins [37], as discussed in Chapter 2. In that contribution, they derived movement 

primitives from human limb-motion data, and sequenced them by generating a list of 

potential successor candidates observed at the end of each discrete action; they then 

selected the primitive which would result in the least perturbation of the robot’s limb 

trajectory between movements. 
 
In our case, we record a set of initial primitives for each (Ect,ct+1, cg) pair in the 

recorded data - these are absolute primitives which the player was observed to 

execute upon first entering each new edge in each goal state. Depending on the 

topological complexity of the map, these can either be used directly or clustered to 

form a smaller set of primitives; a slight improvement in the smoothness of the 

agent’s motion can also be achieved by recording the minimum and maximum 

observed perturbations for each edge-goal pair, which can later be used to clamp the 

bot’s orientation on each edge. Aside from these initial actions, we record the relative 

changes in orientation on every timestep. The relative actions are clustered to derive 

a set of primitives and the probability matrices are constructed as above, with the 

addition of an extra matrix representing the valid relative successor primitives for 

each initial absolute primitive in each edge-goal state. 
 
When the agent is deployed, the mechanism employs relative primitives and operates 

exactly as before while the bot is moving along the edges of the topological map. 

Upon reaching a node, however, a slight alteration is introduced. The agent consults 

the initial primitives’ probability matrix, selects the highest-valued action, and 
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applies it. Then, it generates a list of all possible relative successor primitives, 

chooses the one which will minimise the change in orientation upon the next 

timestep, executes it, and reverts back to normal operation. Thus, the relative 

primitives are used when traversing the edges of the topological map, while the 

absolute primitives are used to keyframe a single timestep at each waypoint. In this 

way, the ability of the relative primitives to manifest fine-grain orientation 

adjustments is retained, while the absolute primitives ensure that no error accrued 

during traversal of a particular edge can propagate to the next. 
 

4.4.4 Experiments 
 
Here, we present a statistical validation of the unified strategic and Bayesian tactical 

system, and examine the effect of different cluster densities upon the accuracy of the 

resulting imitation. A comprehensive evaluation of the mechanism as it pertains to 

the agent’s perceived believability or humanness is presented in Chapter 5. 

To test the model, we utilized 35 recorded gameplay samples of varying length and 

complexity, spread across three distinct environments. In each case, the agent 

attempted to reproduce the human’s behaviour with cluster densities of 20%, 30% 

and 50% of the total number of samples, both for constructing the topological map 

and for deriving the action primitives. In each case, the gameplay samples included 

features which would require the Bayesian motion-modelling system to learn and 

reproduce certain tactical actions - jumping, interaction with environmental features 

such as elevating platforms, etc - in order to successfully complete the human’s 

traversal. Because, as mentioned in Section 4.3, the agent’s task was not to simply 

copy the human - but rather to deduce his objectives and pursue them independently - 

a frame-by-frame comparison of the bot’s actions against the demonstrator’s was not 

appropriate. Instead, we compute the error between the agent’s position and actions 

while traversing each edge and those of the human while moving along the same 

edge in the same goal state. 



 156

Cluster density 20% 30% 50% 
Position MAE (Units) 21.32 19.22 17.76 
Position MAPE (%) 2.69 2.42 2.32 
Yaw RMSE (°) 4.78 3.84 2.71 
Pitch RMSE (°) 0.30 0.17 0.11 

Table 4-2 - Variation of mean error with cluster density 
 

 

 

The results are summarized above. As can be seen from Tables 4.2-4.4, the model 

produced a very accurate reproduction of the human player’s behaviours, even at low 

cluster densities. The MAPE (mean absolute percentage error) between the agent’s 

position and that of the human, calculated from the centroid of the dataset, did not 

exceed 7.25% at 20% density, and was generally much lower; the highest recorded 

Sample Position 
MAPE (%) 

Yaw 
RMSE (°) 

Pitch 
RMSE (°) 

1 0.93 3.83 0.16 
5 1.63 10.3 0.16 
10 1.26 1.55 0.07 
15 3.28 3.93 0.10 
20 3.56 8.75 1.34 
25 4.15 8.06 1.36 
30 7.25 3.45 0.33 
35 3.33 1.98 1.09 

 

Table 4-3 - Representative error rates for 20% cluster density 

Sample Position 
MAPE (%) 

Yaw 
RMSE (°) 

Pitch 
RMSE (°) 

1 0.71 1.52 0.10 
5 0.91 0.20 0.16 
10 0.98 1.63 0.03 
15 2.88 2.29 0.07 
20 2.23 7.23 0.09 
25 3.21 4.85 0.09 
30 5.83 2.06 0.13 
35 2.11 0.71 0.09 

 

Table 4-4 - Representative error rates for 50% cluster density 
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RMSE (root-mean-square error) in the agent’s yaw was 10.3° at the lowest density, 

while its pitch stayed within 1.36° of the demonstrator’s. The low pitch error reflects 

the fact that the agent was engaged in imitating the player’s strategic navigational 

behaviours - variations in the horizontal plane were therefore greater (moving around 

corners, etc) than those in its vertical, which would be more pronounced in a combat 

scenario. The numerical results correlated with the very humanlike visual appearance 

of the imitation agents. 
 

While the choice of cluster densities revealed itself to be highly dependent upon the 

complexity of the environment and the size of the gameplay sample, the results 

demonstrate an expected trend towards greater accuracy with more clusters. In 

certain cases, however, this did not hold true. We found this to be caused by the 

overcrowding of the topological map with waypoint nodes, which forced the agent to 

make significantly more course corrections than were necessary for accurate 

reproduction of the player’s navigation; this, in turn, often had a negative impact on 

the accuracy of the action primitives. Given the relatively small error reduction that 

results from increasing the topological density versus the more significant error 

reduction when the number of primitives is increased (see Table 4-2), and 

considering that higher topological cluster densities are undesirable in any case since 

they increase the duration of the learning process, a useful guideline derived from 

these experiments is to use the minimum number of topological clusters required to 

provide a sufficiently detailed representation of the environment while maximizing 

the number of action primitives in accordance with any relevant resource 

considerations. In general, we found that cluster densities of less than approximately 

20% were not sufficient to capture the topology of the environment, while densities 

of greater than 50% often resulted in a decrease in performance, both numerically 

and perceptually. 
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Figure 4-15- Examples of the aesthetic (top) and functional (middle) aspects of the tactical 
motion-modelling system; the bottom sequence demonstrates a combination of both. 
 
Recall that, in Section 4.4.1, we discussed the role of the motion-modelling system in 

reproducing both the aesthetic qualities of the human player’s motion - a vital 

component in the perceived humanness of the agent, as will be further detailed in 

Chapter 5 - and its functional elements, which comprise the environment-relative 

tactical behaviours necessary for the agent to negotiate its environment. Some 

examples of both the aesthetic and tactical aspects of the Bayesian system are shown 

in Figure 4-15 above. 
 
The top sequence shows the agent leaning into and strafing (pivoting) around a 

corner, turning its view towards the corridor into which it is about to move. From the 

agent’s perspective, such aesthetic motion is pointless; to an observer, however, it 

immediately conveys the impression of a human player, who needs to actually look 

towards his destination in order to ensure that (for instance) no opponents are lying in 

wait. 
 
In the middle sequence, the agent’s next goal is an item on top of the large box. As it 

approaches, it switches weapon to the rocket launcher, looks downwards, jumps, and 



 159

fires a rocket into the ground to propel itself upwards. This so-called rocket jump is 

considered one of the most advanced moves in Quake 2, and is commonly employed 

by experienced players to reach otherwise inaccessible areas. 

 
The bottom sequence shows the agent interacting with a lift by stepping onto it, 

standing still as it ascends (functional) and then jumping off at the top, an 

unnecessary action which is nonetheless common among human players (aesthetic). 

 

4.5 Reactive Behaviour Imitation 
 
In this section, we describe our work in imitating reactive behaviours; these are 

actions which involve very little planning, which the human takes in response to 

stimuli in his or her immediate environment. In the context of Quake, reactive actions 

principally refer to the aiming behaviour of the agent while in combat with an 

opponent. We first briefly recap the problems with existing agent aiming behaviours, 

and some related work in this field, before describing our imitative approach. A 

series of experiments is then detailed to demonstrate its effectiveness in capturing 

humanlike weapon-manipulation behaviours. 

 

4.5.1 Reactive Combat Behaviours 
 

In Quake 2, as in all first-person shooter games, players employ a wide variety of 

different weaponry while engaging in combat against one another. Though the 

specific weapons vary from game to game, a number of common characteristics 

prevail; certain guns fire slow-moving but powerful projectiles, others fire quick but 

weak bursts. Some are ideally suited to ranged combat, whereas others are more 

useful in close quarters (Figure 4-16). Depending on the situation, the player may 
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need to “lead” his opponent - that is, deliberately aim ahead of the enemy - in order 

to give the projectile sufficient time to meet its target. Experienced human players 

utilise these weapons in such a way as to maximise their effectiveness, instantly 

weighing an array of variables (proximity to opponent, remaining ammunition, etc) 

before deciding upon their course of action. In comparison to this lucid play style, the 

performance of traditional rule-based artificial agents leaves much to be desired. 

Designed top-down, they exhibit at best a crude approximation of the human player’s 

context-sensitive weapon handling; often, they will simply retain whichever gun they 

happened to last pick up, or whichever the game designer has specified as being the 

most powerful. To compound this problem, developers often compensate for their 

agents’ lack of intelligence by endowing them with superhuman capabilities far 

beyond the constraints imposed upon the human player by his mouse-and-keyboard 

interface, enabling them to read the position of their human opponent from the 

gamestate and strike with pinpoint accuracy. 

 

Figure 4-16 - Examples of different weapon types in Quake 2. The Rocket Launcher (left) fires a single 
slow but powerful projectile, which explodes on impact. The Hyperblaster (middle) rapidly fires medium-
speed, medium-strength projectiles. The Railgun (right) fires a single, powerful, infinite-range instant-
strike energy bolt, but requires very precise aiming in order to hit its target. 

 

The very fact that such bots are consistently unpopular with gamesplayers 

demonstrates that sacrificing believability to artificially increase the competitiveness 

of agents is an inherently misguided approach - even when losing to a superior 

human opponent, gamesplayers invariably enjoy the experience more than fighting 

an unrealistic bot [140, 141]. Laird and Duchi [78] have previously investigated the 

influence of aiming skill upon Quake agents’ perceived humanness; they report that 
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bots which exhibit excessive accuracy elicited highly negative reactions from the 

judges in their experiments, and go so far as to suggest that constraining combat 

skills to realistic human levels be made a core criterion in FPS agent design. It should 

be noted, however, that even in cases where designers have taken measures to add an 

element of inaccuracy to rule-based agents’ aiming behaviours, this generally 

consists of little more than adding a simple random offset from their opponent’s true 

position. This can itself introduce artificialities, since the agents will tend to fire 

periodic volleys of shots in a halo around the player, resulting in predictable miss-

miss-hit-hit-miss-type patterns. 

 

4.5.2 Learning the Inaccuracy 
 
With this in mind, we look to imitation learning to provide an alternative. Our 

previous contributions have primarily concentrated on the strategic and tactical 

layers; this work is situated on the boundary of the reactive (close-quarters combat 

with limited available time to plan) and tactical strata (long-range combat with 

slightly greater scope for weapon selection and aim planning). 

 
Thurau and Bauckhage [11] present an initial approach to reactive combat imitation, 

using a mixture of 3 expert networks to aim and switch between three predefined 

weapons - one short range, one medium, one long - in a single plane. Counter-

intuitively, their experiments revealed that the weapon competencies were not 

allotted bijectively to the networks, but rather produced a holistic representation 

distributed across all three experts; they speculated that the handling of different 

weapons does not differ as widely in the data space as the visual in-game result 

suggests. However, they report that - because the underlying “aim” function is quite 

straightforward, as embodied by the traditional bots discussed earlier - the network 
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learned to aim too well, resulting in precisely the kind of pinpoint accuracy we wish 

to avoid. 

 
It is from these findings that we draw the intuition underpinning this work; rather 

than attempting to imitate the player’s aim, we instead learn what distinguishes a 

human from a traditional game bot - his inaccuracy. As sometimes occurs in our 

work, this places us at odds with our counterparts in the field of robotics, who use 

imitation as a means of quickly attaining optimal performance; since we are primarily 

interested in producing realistically human behaviour, we often need to deliberately 

strive for the competent yet suboptimal. The human-produced “noise” which Dillman 

et al [29] regard as a drawback of imitation learning - incorrect, unmotivated and 

unnecessary actions - are precisely the behavioural traits we are attempting to capture 

here. 

 

The inaccuracy of the player’s aim derives from two distinct components: 
 
• unintentional inaccuracy, due simply to human error 

• intentional inaccuracy, the player’s practice of accounting for his opponent’s 

motion while aiming 

 
Using this as our starting point, we attempt to learn context-sensitive weapon 

switching and aiming across the entire range of available weaponry, and in both the 

horizontal and vertical planes. 

 

4.5.3 Methodology 

4.5.3.1 Data Extraction 
 

To facilitate the learning process, we must first reconstruct the player’s perception of 

his opponent’s motion using the available low-level data. For each frame, we read the 
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player’s current position, his orientation (i.e. the direction in which he is aiming), and 

the position of the nearest opponent. From this, we derive the opponent’s current 

directional vector, and the vector running from the player’s position to the enemy’s - 

that is, the ‘perfect’ line along which the player would be aiming, were there no 

considerations of projectile speed or human error to take into account; the angular 

difference between this line and the player’s observed aiming direction is his 

inaccuracy. We can now express the opponent’s velocity relative to the player’s field 

of vision, by computing the projection of his directional vector onto the vectors 

parallel and perpendicular to the player’s view angle, as shown in Figure 4-17: 
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where ar  is the player’s viewing vector, b
r

is perpendicular to the viewing vector, and 

cr  is the direction of the opponent’s motion. We also record the opponent’s velocity 

in the vertical plane as the change in his Z-axis position between successive frames: 

 
1−−= ttvert zzv  

 

Figure 4-17 - Reconstruction of the player's visual perception from low-level data. 
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However, we must also consider the impact that elevation has on the player’s 

perception of his opponent’ motion. Consider the scenario where the opponent is 

directly above or below the player; in this case, any movement along the Z-axis (i.e. 

vertically towards or away from the player) will have no bearing upon his aim. If, on 

the other hand, the opponent is on the same horizontal plane as the player and begins 

to ascend or descend, the player will need to compensate by adjusting his pitch. 

Similarly, if the opponent is on the same horizontal plane as the player and is moving 

towards him, the parallel component of the opponent’s movement will have little 

influence on the player’s resulting aim; if, however, the opponent is above or below 

the player and moving along the parallel vector, then he will again need to adjust his 

pitch accordingly as the enemy approaches. 
 
To account for this, we weight both the parallel and vertical velocities according to 

the angular elevation of the opponent relative to the player; that is 
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As an aside, it is worth mentioning that this is good example of the benefits of using 

computer games for imitation (and, indeed, general AI) research. In robotic imitation, 

data is commonly derived either through video analysis or by using expensive 

motion-sensing equipment; here, by contrast, we can build a noise-free reconstruction 

of the player’s visual perception of the virtual environment, without having to 

perform any image processing of the game session’s graphical representation. Rather 

than using our access to the gamestate data to cheat, as is the case with the traditional 

agents discussed earlier, we instead use it to build a model which provides our agent 

with the same information as was obtained visually by the human player during the 

game session. 
 
In addition to the above, we must also read the following data on each timestep: 
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• the player’s current weapon 

• a “bitmask” indicating which weapons he currently possesses and has 

ammunition for 

• the player’s distance from the opponent 

• whether or not the player is firing his weapon 
 
Together, these will form the training set for the neural network architecture. 

 

Figure 4-18 - A series of interconnected neural networks is employed to learn and reproduce 
the observed combat behaviours 

 

4.5.3.2 Network Architecture 
 
The neural network architecture itself consists of three interconnected networks, each 

of which is trained to perform a specific function; the model’s structure is outlined in 

Figure 4-18 above. Each network is trained as follows: 

 
WEAPON 

The Weapon network is responsible for selecting the most appropriate gun, given the 

available options. Its inputs consist of the distance between the player and opponent 
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on each timestep, together with a bitmask indicating weapon availability. The target 

output is the active weapon on the subsequent timestep. 
 

FIRE 

The Fire network is responsible for determining whether or not the agent should fire 

its gun. Its inputs consist of the current weapon, the distance to the opponent, and the 

angular difference between the vector from player to opponent and the player’s 

current aiming vector. Its outputs are 1 if the player should fire his gun, 0 otherwise. 

 

AIM 

The most important component of the architecture, the Aim network is responsible 

for adjusting the aim of the agent in accordance with the opponent's manoeuvres and 

the attributes of the selected weapon. Its training data consists of the distance from 

player to opponent, the parallel, perpendicular and vertical velocities of the enemy, 

the current weapon, and the previous angular inaccuracy for some temporal context. 

In keeping with the approach discussed earlier, its target on each timestep is the 

angular difference between the vector running from the player to the opponent and 

the player’s current aim vector (i.e. the inaccuracy of the player’s aim). 

 
When trained and deployed, the relevant feature vectors are obtained from the 

agent’s gamestate on each timestep. The opponent’s proximity and the weapon 

bitmask are presented to the Weapon network, producing the index of the gun to be 

used on the next timestep. This is in turn supplied both to the Aim network - thereby 

producing the pitch and yaw inaccuracy of the agent’s aim on the next frame - and to 

the agent, for implementation on the next timestep. The Aim network supplies its 

angular output to the bot and also passes it to the Fire network, where together with 

the new weapon index and the distance between the player and enemy it determines 

whether or not the agent should commence firing its weapon. 
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4.5.4 Experiments 
 
In testing our model, we wished to use data derived from a free-flowing game 

session, rather than it being generated under more controlled circumstances. To that 

end, we first built a custom-purpose Quake 2 environment, designed specifically to 

maximise the variation of distance, angle and weaponry experienced by a player in 

the course of a game session (see Figure 4-19). We then had two players of 

comparable experience play on this map for just over 60 minutes, resulting in a 

wealth of data with which to train the networks. For the purposes of these 

experiments, we use the victor’s data as the training set, and the runner-up’s as a 

validation or test set. 

 

 
Figure 4-19 -  The custom Quake 2 map used in our experiments 
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In the cases of both the Weapon and Aiming networks, we limit the dataset to those 

periods during which the player was actively engaged in combat. This approach was 

taken because, during non-combat phases, the player generally pursues navigational 

behaviours; changes in his orientation and field of view are thus intended to facilitate 

visual inspection of his surroundings, and are unrelated to aiming. This was 

obviously not appropriate for the Fire network - in its case, we extracted every 

available sample, whether the player was in combat or not. 

 

Network Training Set # Test Set # 
Aim 10184 6008 
Weapon 10184 6008 
Fire 37981 35678 

Table 4-5 - Sizes of training and test datasets 

 

We then used this data to train each network using a range of topologies, employing 

Levenberg-Marquardt backpropagation across 3000 iterations. Ultimately, we found 

that the topologies shown in Figure 4-18 worked best - some insight may be gained 

by noting that the tests considered 10 distinct weapons. Very little improvement in 

performance was observed by increasing the number of neurons or layers in the case 

of the Fire and Weapon networks; we therefore opted for a 10-neuron single hidden 

layer configuration. We also noted that the evaluation set error was in some cases not 

as close to the training set error as had been expected; this was not mirrored in the in-

game trials, where the networks proved quite capable of generalising to unseen 

circumstances. On reflection, however, this seems reasonable - while the general 

rules of weapon handling will apply to all competent players, the individual quirks of 

two distinct human gamers will always lead to diversities of this kind. The effect was 

likely amplified by the fact that the victorious human player, from whom the training 

data was drawn, had quickly come to dominate the match, leaving his opponent with 

scarce opportunity to retaliate. 
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4.5.4.1 RESULTS 
 
The agent was observed to switch between different weapons dependent upon its 

proximity to the opponent, mirroring not only the concepts outlined above, but also 

the human exemplar’s specific weapon preferences. For instance, in close quarters 

combat, one might justifiably choose among the Blaster, Hyperblaster, Shotgun or 

Chaingun; the agent exhibited a preference for the Chaingun, switching to one of the 

others when it ran out of ammunition. When the opponent moved to medium range, 

the agent opted to use the Hyperblaster or Chaingun; at medium-to-long ranges, the 

Railgun or Rocketlauncher was preferred. Table 4-6 shows the mean-square error for 

each network/topology combination for both the training and test sets. 

 
Network Topology MSETrain MSETest 

7-5-2 0.0065 0.0102 
7-10-2 0.0056 0.0089 Aim 
7-10-10-2 0.0038 0.0054 
11-5-1 0.0287 0.0483 
11-10-1 0.0272 0.0416 Weapon 
11-10-10-1 0.0261 0.0455 
4-5-1 0.1333 0.1910 
4-10-1 0.1292 0.1881 Fire 
4-10-10-1 0.1254 0.1844 

 

Table 4-6 - Training phase results 

 
Beyond this, a number of interesting phenomena were observed. When in close-to-

medium range combat, where the player perceives the opponent as moving very fast 

across his field of vision, the agent exhibited only limited “leading” behaviour (that 

is, aiming ahead of its opponent to account for projectile speed). We believe this to 

be due partly to inadequate reaction time caused by the opponent’s proximity, and 

partly to the constraints imposed by the human’s interface - the player is physically 

limited, by the range of motion possible using a hand-driven mouse, in the speed and 
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accuracy with which he can turn. When the opponent moved further away, however, 

the leading behaviour became more pronounced and deliberate. Thus it appears that 

the weapon-handling behaviour encompasses both reactive and elements of tactical 

behaviours from the Hollnagel model discussed earlier; the practice of leading the 

opponent becomes more prominent as the amount of time available to the player 

increases. As discussed at the start of this section, we expected to see this effect to 

some degree at the outset of the experiment. 

 
It was observed, during some trials, that the Weapon network tended to switch 

between multiple guns in quick succession instead of simply picking one which was 

range-appropriate. This was due to the human exemplar’s practice of rapidly cycle 

through his inventory with the mouse wheel until he reached his desired gun, rather 

than choosing it directly; a practice which introduced considerable noise into the 

weapon-selection data. While serving as a good example of how imitation learning 

automatically captures elements of human behaviour which would ordinarily be 

overlooked by an AI designer, this rapid weapon-switching was in some cases 

observed to impact negatively upon the agent’s ability to aim. We therefore propose 

an alternative approach. Given that there is a relatively discrete logical partitioning of 

guns with varying range, we can cluster the distances between the player and 

opponent observed during combat, and select probabilistically. At timestep t, the 

weapon is chosen according to: 

∑
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where w is a weapon, dt is the clustered distance to the opponent at timestep t, and bk, 

the bitmask element corresponding to wk, is 1 if the agent possesses weapon wk and 

has ammo for it, 0 otherwise. This was observed to produce more decisive weapon 

selection behaviour. Choosing whether to adopt the probabilistic or neural 

approaches thus becomes a matter of priorities; between replicating a minor but 

compelling aspect of common human behaviour, or ensuring a more rigid but 
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perhaps more consistent mechanism. Naturally, if the training data is drawn from a 

player who selects his weapons directly rather than by spinning the mouse wheel, this 

issue becomes moot. 
 

One of the most interesting (and unanticipated) observations was that, in close 

combat with the opponent rapidly moving left and right around the agent, it seemed 

to be somewhat more capable of tracking the enemy as it moved anti-clockwise 

around the agent than as it moved clockwise. At first, we naturally assumed that the 

network had simply learned to reproduce one motion more accurately than the other; 

however, the same phenomenon was observed when the network was re-trained with 

differing topologies, and even when the evaluation dataset from the second human 

player was employed as the primary training set. Having reviewed the recordings of 

both the original game session and the agent’s reproduction, we suspect that this is 

due to the fact that both players were right-handed; their range of motion while 

sweeping the mouse inward - that is, the movement required to track an opponent 

anti-clockwise in close proximity - is therefore slightly greater, due to it being a more 

ergonomically comfortable motion than an outward sweep. While reproducing this 

was not an intended consequence of our imitative model, it once again serves to aptly 

illustrate the benefits of imitation learning in producing humanlike behaviour; it 

implicitly captures and manifests elements of the human gameplay experience - in 

this case, a bias introduced by the player’s physical interface - which would be 

entirely absent in a rule-based agent designed from the top down. 

 
Figure 4-20 - An example of the agent "leading" an opponent. The bot aims ahead of its enemy, such that the Hyperblaster’s projectiles 
coincide with his arrival. The agent’s aim tracks the opponent up the ramp, ultimately defeating him and scoring a point. 
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4.6 Conclusion 
 
In this chapter, we described the models and mechanisms which we have developed 

to imitate human behaviours from recorded Quake 2 game sessions. A hierarchy - or 

more accurately, a gradient - of observable in-game actions was first presented, 

based on Hollnagel’s contextual control model of real-world human behaviour; this 

identifies strategic long-term planning behaviours, tactical mid-term planning 

behaviours, and reactive short-term stimulus-response behaviours. We further 

identified, based on previous work by Laird/Duchi and Livingstone/McGlinchey, a 

number of core criteria for agent believability. 

 
Building upon this theoretical foundation, we proceeded to outline imitative models 

for each major level along the behaviour gradient, noting instances wherein some 

overlap between the different layers existed; in each case, we also described 

experiments which served to statistically validate the proposed systems. We detailed 

a reinforcement-learning approach to long-term strategic imitation and navigation, 

including such features as the human’s ability to account for dynamic changes in the 

local and global environment, the weighting and pursuit of multiple objectives in 

parallel, and the derivation of a goal-oriented topology of the game environment 

from recorded data. We then outlined the integration of this system with an approach 

to tactical motion-modelling based on the theory of action primitives; this allowed 

the agent to imitate a human player’s characteristically smooth motion, in addition to 

such behaviours as environment-relative weapon selection and complex medium-

term actions such as Quake’s signature rocket jump. Finally, we presented an 

approach to the imitation of reactive weapon-selection and combat behaviours, which 

involved first reconstructing the human player’s visual perception of his opponent’s 

motion from the available low-level data, and then emulating the inaccuracy - both 

intentional and unintentional - demonstrated in his aiming behaviours with varying 

weapon, angle, elevation and range. 
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5 Believability Testing 
 

5.1 Introduction 
 
One significant impediment to work in this field - indeed, in the fields of game AI 

and virtual human agents in general - is the current lack of a formal, rigorous 

standard for determining how ‘humanlike’ an artificial agent is, or any strict means of 

comparing the believability of different agents. In this chapter, we propose such a 

system - the Bot-Oriented Turing Test (BOTT) - and use our own imitation agents 

to demonstrate its effectiveness. 

 
In Section 5.2, we detail the motivation underlying this work; the reasons for the lack 

of a standardised approach to believability testing, the applicability of the Turing test 

to the problem, the informal nature of previous attempts at such analysis, and the 

necessity that this problem be addressed. 

 
In Sections 5.3 and 5.4, we state the specific objectives of what we refer to as our 

believability-test framework. We then detail each component of this framework; the 

construction of an anonymous online survey to profile the experience level of 

participants and collate their judgements of the agents’ believability in comparison to 

human players and other agents, the development of an experimental procedure or 

protocol to remove subjectivity and bias, and the computation of a believability index 

to numerically express the artificial players’ “humanness” as a function of the 

respondents’ experience and the accuracy with which they identified the agents. 

 
In Section 5.5, we outline an experiment conducted using the believability testing 

framework, which employed our own imitation agents as a test case, human players 

as a control group, and a traditional AI bot as a comparator. This has the dual purpose 
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of demonstrating the framework itself in practice, and of assessing the believability 

of our imitative mechanism as described in the preceding chapters. We find that our 

agents were judged to be significantly more humanlike that the traditional agents, and 

conclude that this provides strong evidence in favour of our thesis that imitation 

learning has the potential to produce more believable AI agents that traditional AI 

techniques alone. 

 
Some further observations on the test, and its applicability to the wider question of 

believability assessment, conclude this chapter. 

 

5.1.1 Publications 
 
The work in this chapter was published as “Believability Testing and Bayesian 

Imitation in Interactive Computer Games” (Gorman, B., Thurau, C., Bauckhage, C., 

and Humphrys, M.) in Proc. 9th Int. Conf. on the Simulation of Adaptive Behavior 

(SAB'06), volume LNAI Springer, 2006. 

 
It was also published as part of a discussion on the role of imitation learning in games 

from a cognitive perspective, as “Learning Human Behavior from Analyzing 

Activities in Virtual Environments” (Bauckhage, Gorman et al 2007), MMI-Interaktiv 

Journal, Nr. 12, April 2007. 

 

5.2 Motivation 
 
As discussed in the preceding chapters, one of the primary aims of our work in 

imitation learning is to improve the believability of artificial agents - that is, the 

degree to which they are perceived by observers as exhibiting humanlike traits, or 

indeed of being human. The question thus naturally arises: how do we objectively 

determine this “degree of believability”? One significant impediment to work in this 



 175

field is the current lack of a formal, rigorous standard for determining how 

‘humanlike’ an artificial agent is, or any strict means of comparing the believability 

of different agents. MacNamee, in noting that the question of evaluation has been 

largely overlooked in virtual-human and game AI research, posits that part of the 

reason lies in the fact that such sophisticated agents are a relatively new achievement; 

and thus, that models and implementations have necessarily occupied researchers 

more than metrics and evaluation. Systems which achieved a degree of believability 

were inherently novel, and therefore a success in their own right. As he concludes, 

however, the field is now well established, and the current situation is no longer 

tenable [80]. 

 
MacNamee further acknowledges, in his discussion of believability testing for virtual 

human simulations, some of the difficulties involved; namely, that “believability” is 

an inherently subjective concept, and that asking an individual to simply rate the 

humanness of an agent’s behaviour in isolation would invariably cause the results to 

be overtly influenced by the judges’ familiarity, or lack of same, with the field of 

artificial intelligence. He raises the possibility of using implicit measures, such as the 

agent’s ability to perform a given task or series of tasks, as a means of eliminating 

subjectivity; this functional or numerical approach is echoed by Wallace & Laird 

[136], who propose that agent performance be measured by representing behaviours 

as hierarchies of temporally-constrained sub-objectives, and measuring the degree to 

which the sequence of behaviour states exhibited by the agent is consistent with that 

of the human. We have already presented similar numerical investigations of our 

imitation mechanism’s various components in the preceding chapters. While this is 

an effective and necessary means of verifying its functionality, and while casual 

examination has indicated its ability to reproduce recognisable human behaviour, a 

formal assessment and quantification of the system’s observable in-game 

believability is also required. MacNamee ultimately concurs with this view, 
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remarking that the only credible method by which believability may be ascertained is 

by conducting a survey. 

 

5.2.1 Previous Contributions 
 
Some existing contributions have attempted to address the problems of evaluating 

believability in game AI. While we consistently found the testing procedures 

employed in these experiments to be highly informal and ad-hoc, they do offer some 

valuable insights. 

 
MacNamee’s aforementioned work [80] concerns NPC (Non-Player Character) 

agents - that is, characters which populate a virtual world but which are not 

controlled by humans. In contrast to the opponent AI with which our own work is 

concerned, his simulation therefore involves no human interaction, instead 

visualising high-level, universally familiar real-world behaviours; in this case, a 

group of agents socialising at a bar. As there is no human exemplar against which to 

compare, and not wishing to evaluate the agents in isolation for the reasons outlined 

earlier, MacNamee adopts the approach of presenting the judges with two separate 

artificial simulations and asking which exhibits the more humanlike behaviour. From 

the perspectives of both our own work and that of opponent AI in general, this is 

clearly not appropriate. Firstly, we are attempting to imitate the strategic and tactical 

behaviours observed during a human player’s interaction with the game world; we 

must therefore incorporate the data recorded from said humans as the control group 

in our survey. Secondly, the simulation against which MacNamee’s agents were 

evaluated simply executed random behaviours at each timestep. While this may be 

suitable for determining whether one’s agents act in a comparatively goal-driven 

manner in an autonomous simulation with no human interaction, a first-person 

shooter opponent bot which executed actions at random would be of little use for the 

purpose of comparison against our own agents. Thirdly, the test is presented as a 
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binary choice; either one or other of the observed simulations must be chosen as 

more believable. Although MacNamee posits some follow-up questions, this 

approach inherently limits the scope of the analysis that may be carried out upon the 

survey results. The test as a whole, while appropriate to the specific context in which 

it was employed, is thus quite informal, does not produce a result that can be easily 

translated for comparison against other agents, and does not represent a standard 

model that could be applied in more diverse scenarios. 

 
Elsewhere, McGlinchey and Livingstone [111] outline a series of believability 

experiments conducted using the game Pong, wherein opposing players each control 

a paddle at opposite ends of the game field, and attempt to prevent a moving ball 

from exiting the screen on their side by bouncing it back towards their opponent. 

While the paper’s main concern is to investigate what general elements of behaviour 

contribute most to perceived “humanness” rather than to design a rigorous 

believability test, it does provide some relevant observations. In their tests, a Self-

Organising Map is used to train an artificial player from human demonstration. A 

rule-based AI is also used for comparison purposes; this operates by projecting the 

location at which the ball will arrive, and moving to this position. In similar fashion 

to the aiming mechanisms of traditional FPS agents discussed in previous chapter, 

this means that the artificial player can essentially be perfect; a degree of fallibility 

was manually added by inserting a delay before the paddle starts moving towards the 

ball, reducing the speed of the paddle’s motion, and using a random ±20 pixel offset 

from the known endpoint of the ball’s trajectory. Eight games, involving different 

combinations of the human, hardcoded AI and imitation AI were then shown to a 

number of judges, who were asked to indicate whether they thought each paddle was 

being controlled by a human or artificial player. Although the paper does not discuss 

why such combinations were used, it is a shrewd approach which - for reasons 

detailed in Section 5.3.2 - we also used in our own believability tests. The results 

indicated that most of the judges’ identifications varied significantly from chance, but 
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not always in the desired manner; one respondent, for instance, correctly identified 

14/16 players, while another misidentified 14/16. McGlinchey speculates that this 

indicates a measurable distinction between the human and AI players. However, it is 

likely that the results were influenced by the fact that Pong is, as discussed in section 

2.3, an extremely simplistic game; players can move up, or move down, or they can 

vary their speed somewhat. Within such a limited repertoire of behaviours, there 

exists little opportunity for a human player to distinguish itself from an artificial one. 

The believability test itself is highly informal - once again, it employs binary 

identification, with only some qualifying questions asked afterwards; no overall 

results are given, nor in-depth analysis performed. This is no doubt due to the paper’s 

focus on, as its title indicates, “What Believability Testing Can Tell Us.” Ultimately, 

though, it seems clear that the accuracy and reliability of this endeavour would be 

best served by a more rigorous, structured testing process, whose results could be 

utilised by other researchers examining the same questions. Indeed, the results 

reported by McGlinchey seem to support this; the respondents who correctly 

identified most players, and those who misidentified most, gave the same reasons for 

their choices. 

 
Laird and Duchi [78] also describe some believability experiments conducted using 

their Quake 2 Soarbot; again, they approach the issue from the perspective of 

determining which behaviours they should implement in order to maximise the 

believability of rule-based agents. Their approach was to define a set of parameters - 

decision time, tactical complexity and aiming skill - which they expected to have a 

noticeable impact upon the agent’s perceived humanness; for each of these, they 

instantiate agents at different values of the relevant parameter, and have them play 

against a human expert. Five human players of differing skill then play against the 

same expert. Laird notes, from their experience during previous investigations, that in 

a typical game session the human player and the agent may only be in contact for 

brief periods at a time, and consequently - in the context of a believability study - that 
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the observer may not have the opportunity to examine the agents in sufficiently fine 

detail; he therefore uses video clips of the recorded sessions, which show the game 

world from the human or artificial player’s point of view. We use the same approach 

in our own believability experiments - it is well-suited to our purposes, particularly 

since our tests involve the strategic and tactical motion modelling systems rather than 

combat scenarios. Laird’s results showed that the judges found agents with medium 

reaction times and complex tactical behaviours the most convincing, while bots with 

high aiming skill were judged to be more artificial. The analyses presented in Laird 

and Duchi’s work are more detailed than in the previous cited examples, and 

convincingly demonstrate the effects of varying rule-based agent competencies on 

their perceived believability. However, some serious deficiencies persist in the 

testing procedure. Firstly, it is not clear whether the experimenters were present 

during the judges’ observation of the gameplay samples, but the fact that the matches 

were recorded and played back on videotape suggest that they may have been; this 

raises the possibility that experimenter bias may have influenced the results. 

Secondly, on the subject of the videotaped recordings, it is not clear why Laird and 

Duchi opted to take this approach, since facilities exist to generate digital AVI videos 

directly from recorded DM2 files. While this may have had some impact upon the 

quality of the videos presented to the judges, the more serious consequence is that 

any extraneous, non-behaviour-related indicators which were present during the 

recording process - for instance, different players may have used different in-game 

character models, screen layouts, etc - were retained and seen by the judges. This has 

the effect of giving the judges “clues” as to which samples come from a common 

source, and could lead to them making decisions based on logical deduction rather 

than observation. Even in cases where their deductions are wrong, this will have an 

unavoidably deleterious effect upon the accuracy of the results. The importance of 

removing all such indicators is detailed in Section 5.3.2; in our tests, we run a script 

over all the gameplay samples to homogenise them to a common presentation format, 
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before generating AVIs directly from the DM2 recordings. Thirdly, the evaluation 

procedure itself remains highly ad-hoc. The judges viewed each gameplay sample 

individually; they were then asked to rate its humanness on a scale from 1-10, and to 

make a binary decision as to whether it was a human or artificial player. As detailed 

earlier, asking individuals to make a snap-judgement on abstract concepts such as 

“humanness” in isolation, without providing any basis for comparison, has the effect 

of greatly increasing the amount of guesswork involved - it is not a plausible way to 

judge the relative believability of different agents. Finally, out of the eight judges, 

only three viewed all the gameplay samples - the remainder viewed only a subset of 

them. This is insupportable for obvious reasons, not the least of which is that it 

introduces the possibility of selection and ordering bias (see Section 5.3.2). Under 

our proposed protocol, incomplete responses are discarded before the analysis 

process, while the selection and ordering of clips is randomised. 

 
Throughout this thesis, we have stressed the numerous ways in which imitation 

learning holds obvious potential as a means of producing more believable agents; 

but, as can be seen from the examples above, there has thus far been no credible 

means of rigorously assessing this believability - the need for a perception- and 

behaviour-based analogue to the Turing test is clear. But which elements of, and to 

what degree, is the Turing test an appropriate tool in evaluating our imitation system? 

 

5.2.2 The Turing Test and Game AI 
 
It is perhaps of some historical interest, from the perspective of our work, that the 

original Turing test was itself conceived as an imitation game - the computer was 

given the task of equalling the ability of a human male to convince a judge, through 

typewritten interrogation, that he was a woman [133]. Livingstone [79] notes that 

Turing specifically discounted considerations of how the machine intelligence 

operated, realising that this would make the test susceptible to the other-minds 
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problem - that the only way to definitively prove a machine is thinking, is to be that 

machine and be aware of one’s own thoughts. He therefore focussed his attention on 

machines which could demonstrate what would commonly be considered 

intelligence. For Turing, if a machine were capable of emulating the conversational 

and imitative abilities of a human, then the judge would have no good reason to 

ascribe intelligence to one and not the other, apart from an arbitrary bias arising from 

the biological nature of the human participant versus the artificial provenance of the 

machine. 

 
As Livingstone further notes, this has come to be seen as an unsatisfactory attitude 

among many researchers, who are nowadays more concerned with investigating and 

building models to replicate intelligence from biological example, or with 

constructing robots capable of performing tasks involving real-world manipulation 

(see Chapter 2). This has the advantage of dividing the problem of human-level AI 

into constituent subgoals as opposed to a single pass-or-fail test, allowing progress in 

multiple areas to be made in parallel. Here, we find that each of the two primary 

facets of our work reflects one of these opposing viewpoints. We have ourselves 

deconstructed the multiplexed behaviours encoded in game sessions into a series of 

subobjectives, as per the Hollnagel-derived behaviour model described in Section 

4.2; we have also used biologically-inspired models as the basis of our imitative 

mechanisms. Furthermore, as discussed in Section 2.3, many modern commercial 

games - including Quake 2 - represent an abstraction of the real world, and 

techniques developed to imitate in-game human behaviours may therefore be adapted 

for real-world applications (see Section 6.4.2 for more on this topic). Thus, from the 

perspective of computer games as a platform for imitation-learning research, we 

have more in common with the post-Turing ethos. However, from the perspective of 

believability, or imitation learning as a means of producing better computer game 

AI, Turing’s position remains relevant; if a player is engaged in a game session and 

observes an opponent behaving in a manner that is typically associated with human 
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players, he has no reason to believe it is anything other than human1. The observer’s 

perception is the only important criterion. Thus, Turing’s approach is still appropriate 

for the evaluation of our agents. 

 
But we must still consider that the Turing test is concerned with natural language, 

whereas we are dealing with navigational and tactical behaviours in a virtual 

environment. How, specifically, does the test relate to our work? In a contribution 

which explores the logical implications of Turing’s paper, Harnad [49] notes a 

number of unresolved issues with the original test. He first distinguishes between 

functional and structural indistinguishability, and argues that Turing only accounts 

for the former, while disregarding the latter. Although Turing readily concedes and 

addresses this in his paper, treating the physical form in which the artificial mind is 

embodied as being irrelevant to the question of its intelligence, Harnad argues that 

discarding structural indistinguishability - that is, the correspondence between the 

physical bodies of the human and artificial participants - has the effect of excluding 

other, potentially salient aspects of functionality along with it. In the case of 

communication, the typewritten interrogation format removes tone, inflection, body 

language and so forth from consideration, thereby reducing the range of behaviours 

upon which the interrogator may base his judgement. Consequently, Harnad proposes 

a Turing hierarchy of benchmarks, with each successive level imposing increasingly 

stringent requirements upon the candidate machine: 

 
• t1: subtotal fragments of human functionality. Any model which seeks to 

emulate an arbitrary component of full human capacity; these may represent 

constituent modules in an eventual human-level AI. 

• T2: total symbolic function. The machine can perform any symbol-

manipulation task of which a human is capable. The original Turing test 
                                                 
1 It is worth observing that, in Turing’s original paper, the issue of whether the judge is aware that one 
of the participants might be an artificial intelligence is ambiguous. In this regard, Turing’s imitation 
game is quite similar to a typical Quake 2 match. 
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resides at this level, though as Harnad points out, it is susceptible to Searle’s 

Chinese Room counterexample [116]. 

• T3: total external sensorimotor (robotic) function. The machine can 

perform any real-world task of which a human is capable. Harnad posits this 

as the most reasonable ultimate goal for AI research. 

• T4: total internal microfunction. Though still composed of synthetic 

materials, T4 level robots exhibit all the microfunctions of human bodies; 

pupillary dilation, blushing, bleeding, and so forth. 

• T5: total empirical indistinguishability. At this level, there exists no test 

which can distinguish the robot from a human; they are bio-engineered at the 

molecular level. Harnad proposes T4 and T5 for the sake of completeness, but 

states that he regards them as being unnecessarily overdefined - a machine 

which passes T3 can be assumed to possess a mind. 

 
Our imitation-learning mechanisms reside on level t1 in this hierarchy; they are 

behaviour modules implementing subtotal fragments of human functionality. This is, 

however, little cause for alarm - as Harnad explains, every model across every 

scientific discipline is currently at varying stages of their equivalent t1 levels, and 

seem likely to remain so for the foreseeable future (Livingstone [79] points to the fact 

that recent winners of the annual Loebner Turing contest have all been deemed either 

‘probably a computer’ or ‘definitely a computer’; in the case of the 2000 contest, the 

judges’ predictions were 91% accurate after five minutes). The advantage of the 

Harnad t1 classification is that it represents a generic abstraction of the Turing test, 

releasing us from the constraints of natural language conversation and providing us 

with a formal basis upon which to conduct the evaluation of our agents. Models 

representing any component(s) of the full range of human functionality can be 

implemented for analysis; in our case, these are strategic planning/navigation and 

tactical motion modelling behaviours. 
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5.3 BOTT: The Bot-Oriented Turing Test 
 
To summarise the discussion thus far: due in part to the novelty of sophisticated 

autonomous virtual human agents until recent times, and in part to the reluctance of 

the AI community to address a difficult subjectivity problem, there exists no rigorous 

method of gauging the ‘believability’ of game bots, nor of objectively comparing this 

quality in different agents. Given that one of the central aims of our work lies in 

improving the believability of these bots, and that the lack of such a methodology is a 

major impediment to the orderly evaluation of artificial game agents in general, this 

is clearly a shortcoming which needs to be addressed. The only feasible means of 

determining the degree to which agents are perceived as human is to conduct a 

survey; this, of course, immediately raises questions of subjectivity, experimenter 

influence, and so on. In order to produce a credible assessment of agent believability, 

any proposed system must be designed with these concerns in mind. 

 
Our aims, then, are as follows: 

 
i) to construct a framework which facilitates rigorous, objective testing of the 

degree to which game agents are perceived as human; this framework will 

consist of an anonymous web-based survey and a protocol to which testers 

should adhere, in order to eliminate potential subjectivity and bias 

 
ii) to formulate a believability index expressing this ‘humanness’ as a function 

of the user’s experience and the accuracy with which the agents/humans are 

identified, and which facilitates the comparison of different agents. 

 
The system developed to fulfil these criteria, which we call the Bot-Oriented Turing 

Test (BOTT), is described below. We outline the structure of the survey and its 

applicability to the testing of agents in general, using our own experiments to 

illustrate key concepts; we then describe these experiments and their results in detail. 
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5.3.1 Online Survey Structure 
 

To counteract any potential observer bias, the test takes the form of an anonymous 

online survey. Respondents are first presented with a detailed page of instructions 

covering all aspects of the test (Figure 5-1, page 187). Before starting, they are 

further required to estimate their experience in first-person shooter games, at one of 

five different levels. Subjective judgements are avoided by explicitly qualifying each 

experience level: 

 

1. Never played, rarely or never seen 

2. Some passing familiarity (played / seen infrequently) 

3. Played occasionally (monthly / every few months) 

4. Played regularly (weekly) 

5. Played frequently (daily) 

 

Respondents are asked to specify the option which best expresses their level of 

experience at any point in the past; that is, if (s)he played a FPS game daily at one 

time but no longer does so, (s)he should nonetheless select the ‘Played frequently’ 

option. This will later be used to compute the weighted believability index. 

 
Upon proceeding to the test itself, the respondent is presented with a series of pages, 

each of which contains a group of video clips (Figure 5-2, page 188). Each group 

shows similar, but not identical, sequences of gameplay from the perspective of the 

in-game character. This approach was adopted to allay concerns that asking 

respondents to view individual clips in isolation, with no basis for comparison 

against similar samples, would lead to a significant amount of subjectivity and 

guesswork, thereby rendering the test essentially meaningless. Generally, three 

categories of clip should be employed; clips of an actual human player, which will 
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serve as the survey’s control group, clips of the artificial agent under investigation, 

and clips of a second comparator artificial agent, which will act as a measure of 

baseline agent believability. 

 
Within each group, the clips may depict any combination of human and artificial 

players. In other words, for each page, any of the following may be true: 

 
• the clips may depict two human players and an agent in any order  

• the clips may depict two agents and a human player in any order  

• all three clips may be of human players  

• all three clips may be of artificial players 

 
The respondent is required to examine the appearance and behaviour of the character 

in each clip, and indicate whether (s)he believes it is a human or artificial player. The 

clips are rated on a gradient, as follows: 

 

1 2 3 4 5 
Human Probably Human Don’t Know Probably Artificial Artificial 

 
This rating is the central concept of the survey, and will later be used to compute the 

believability index. The respondent is also asked to specify how many times (s)he 

viewed the clip, and to provide an optional comment explaining his/her choice; the 

latter is used in cases where some aspect of the clip strikes the respondent as 

particularly noteworthy. In cases where (s)he  indicates that (s)he believes the agent 

to be artificial, (s)he will be further asked to rate how "humanlike" (s)he perceives its 

behaviour to be, on a scale of 1 to 10. This more subjective rating is not involved in 

the computation of the believability index, but may be used to provide additional 

insight into users’ opinions of different agents in cases where they were correctly 

identified as such. Having completed all required sections on each page, the user 

submits his/her answers and moves on to the next. 
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Figure 5-1. BOTT Intro Screen 
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Figure 5-2. Main BOTT Screen 
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5.3.2 Experimental Protocol, Subjectivity and Bias 
 
Aside from the observer effect, there are several areas in which the potential for 

subjectivity and the introduction of bias exist. Since our aim is to provide an 

objective measure of believability, these must be accounted for. The issues in 

question are enumerated below; in each case, we also outline an approach to their 

elimination. This protocol should be observed by experimenters whenever the 

believability test is conducted. 

 

1. Selection of Gameplay Samples 
The first obvious pitfall is the selection of video clips - the selector may deliberately 

choose certain clips in an effort to influence the respondents. To guard against this, 

we propose two preventative measures: first, we ensure that the number of samples is 

sufficient to embody a wide variety of behaviours, and secondly, we cede control of 

the selection of the specific behaviours to an unbiased arbiter. In our case, we wished 

to compare the believability of our imitation agents against both human players and 

traditional rule-based bots; thus, we first ran numerous simulations with the 

traditional agent - over whose behaviour we had no control - to generate a set of 

gameplay samples, and then proceeded to use human clips embodying similar 

behaviour both in the believability test and to train our imitation agents. An 

alternative method would be to have a human third party select the clips, although 

this would in itself introduce the possibility of further prejudice; we feel that our 

approach is appropriate for the purposes of eliminating selection bias. 

 

2. Order of Presentation 

Similarly, the order in which the videos are presented could conceivably be used to 

guide the respondents’ answers. To prevent this, we randomize the order in which the 

groups of clips are displayed to each user, as well as the sequence of clips within 

each page; the test designer thus has no control over the order of the samples seen by 
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the user. Additionally, the filenames under which the clips are stored are randomized, 

such that the respondent cannot determine the nature of each clip based on examining 

the webpage source (e.g. clip 1 always human, clip 2 always artificial, etc). 

 

3. User Sabotage (intentional or unintentional) 

Another issue concerns the possibility that users will sabotage the survey, either 

deliberately or inadvertently. They may, for instance, choose the ‘Probably’ options 

in a deliberate effort to artificially minimize their error and ‘beat’ the test, or make 

random guesses rather than selecting the ‘Don’t Know’ option, or attempt to average 

out their answers over the course of the survey - that is, they may rate a clip as 

‘human’ for little reason other than that they rated several previous clips as 

‘artificial’, or vice-versa. To discourage this, we include notes on the introduction 

page to the effect that the test does not adhere to any averages, that the user’s ratings 

should be based exclusively upon their perception of the character’s behaviour in 

each clip, and that the user should be as definitive as possible in their answers. In our 

case, the requirement that the test should not adhere to averages - i.e. a combination 

of one human, one imitation, and one artificial clip on every page - ultimately lead us 

to use 12 human clips, 15 traditional agent clips, and 18 imitation clips in our 

experiments, since pages without imitation or artificial bots would be of little benefit 

in assessing the believability of our system as compared to traditional agents. 

 

4. User Fatigue 

A related problem is that of user fatigue; as the test progresses, the user may begin to 

lose interest, and will consequently invest less and less effort in examining each 

successive clip. We address this by including a feature enabling users to save their 

progress at any point, allowing them to complete the survey at their convenience. 

 

5. Identification by Deduction 

It is also imperative to ensure that the test is focused upon the variable under 

investigation - namely, the believability of the agent’s movement and behaviour. As 
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such, the survey must be structured so as not to present extraneous ‘clues’ which 

might influence the respondents, and cause them to rate clips based on deduction 

rather than observation. For instance, the tester should ensure that all clips conform 

to a standard presentation format, so that the respondent cannot discern between 

different agents based on visual indicators; different players may have used different 

in-game character models, individual player names, different screen layouts, etc. To 

this end, we run a script over the demo files to remove all such indicators and 

homogenize them to a common format. 

In the specific case of our imitation agents, this requirement that all extraneous 

indicators be removed raises a conflict between two of our goals in conducting the 

survey. If the players in two of the three clips on each page begin from the same 

location and exhibit near-identical behaviour, the respondent may conclude - through 

deduction rather than observation - that (s)he is probably viewing a human and 

imitation agent, and consequently that the remaining clip is more likely to be a 

traditional artificial agent. Note that this might not necessarily be true, but even an 

incorrect answer based on factors other than believability will adversely affect the 

accuracy of the results. We circumvent this problem by training imitation agents with 

different (but similar) samples of human gameplay to those actually used in the test. 

The resulting clips are therefore comparable, but do not ‘leak’ any additional 

information; respondents must judge whether or not they are human based solely on 

their appearance. At the same time, however, we obviously wish to test how 

accurately our agents can capture the aesthetic appearances of their direct human 

exemplars. To satisfy both requirements, a small minority of imitation agents are 

trained using the same human data as presented in the survey; in the experiments 

described below, two of the imitation agents were direct clones, while the remainder 

were trained on different data. 
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5.4 Evaluation of Results 
 
Before evaluating the results of the survey, one should ensure that there have been a 

substantial number of responses with a decent distribution across all experience 

levels; a good ‘stopping criterion’ is to run the test until the average experience level 

is at least 3 (i.e. a typical gamesplayer). Standard analyses - precision, recall, etc - 

can be carried out on the results, as we have done in the experiments section below; 

however, we also wish to formulate a believability index which is specifically 

designed to express the agent’s believability as a function of user experience and the 

certainty with which the clips were identified. 

5.4.1 Computing the Believability Index 
 
Recall that each clip is rated on a scale of 1 to 5, with 1 corresponding to ‘definitely 

human’ and 5 corresponding to ‘definitely artificial’. Obviously, the true value of 

each clip is always either 1 or 5. Thus, we can express the degree to which a clip 

persuaded an individual that the visualised character was human as the normalised 

difference between that person's rating and the value corresponding to ‘artificial’: 
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where hp(ci ) is the degree to which person p regarded clip i as depicting a human, 

rp(ci ) is person p’s rating of clip i, A is the value on the rating scale corresponding to 

‘artificial’, and max(h) is the maximum possible difference between a clip’s rating 

and A. In other words, hp(ci ) will be 0 if the individual identified a clip as artificial, 1 

if he identified it as human, and somewhere in between if he chose one of the 

'Probably’ or 'Don’t Know’ options. We now weight this according to the 

individual’s experience level: 
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where ep is the experience level of person p and avg(e) is the mean experience level 

of all respondents. This serves to boost the ratings of the more experienced 

participants within the sample by attaching extra weight to their responses, while 

discounting the ratings of less experienced respondents accordingly. 

 
Finally, we sum the weighted accuracies across all clips and respondents, and take 

the average: 
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where b is the believability index, n is the number of individual respondents, and m is 

the number of clips. The believability index therefore lies in the range (0, 1), and is 

essentially a weighted representation of the degree to which a given type of clip was 

identified as human - which, for clips involving an artificial agent, means the degree 

to which its behaviour deceived the viewer into believing it to be human. 

 

5.4.2 The Confidence Index 
 
The weighting mechanic described above serves to bias the believability index 

towards the responses of more experienced survey participants, relative to the 

respondents’ level of experience as a whole; it does not, however, indicate what that 

level of experience was. In order to express the overall strength of the result and to 

facilitate comparison between agents evaluated in different surveys, we therefore 

compute a confidence index as follows: 
 

)max(
)(

e
eavgc =  
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where avg(e) is the average experience of the respondents, and max(e) is the 

maximum experience level; the confidence index is thus conditioned upon a 

sufficient absolute level of expertise among respondents. Decoupling the indices in 

this manner produces a final believability index which is internally representative of 

the respondent’s ratings in each individual survey, while the confidence index 

ensures that the results can be compared against those obtained in other tests or using 

other agents. In practice, then, a ‘good’ result for an AI agent would involve a high 

value of b for both the agent and human clips - indicating that the respondents both 

accurately identified true human players, and misidentified the artificial agent as 

being human - together with a confidence index of 0.6 or more (indicating that 

respondents were of a significant level of experience). 

 

5.5 Experiments 
 
In this section, we detail an experiment carried out using the believability test in 

conjunction with our imitation agents, as described in the previous chapter. The 

purpose of this experiment was twofold; first, to evaluate the believability-test 

framework itself, and second, to examine how believable our imitation agents were in 

comparison with human players and traditional rule-based artificial agents. 

 

5.5.1 Methodology 
 
The experiment consisted of 15 groups of 3 clips; these clips were up to 

approximately 30 seconds in length. We first ran numerous simulations involving the 

rule-based artificial agent to derive a set of gameplay samples, and then used similar 

samples of human players both in the test itself and to train our imitation agents. The 

rule-based agent used was the Quake 2 Gladiator bot [134], which was chosen due to 

its reputation as one of the best bots available. Indeed, it was so highly regarded that 
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its author, JP van Waveren, was hired by iD Software to adapt it as the official 

Quake3 bot; this subsequently formed the basis of his Master’s thesis [135]. 

 
With the video clips in place, the URL of the survey site was distributed to the 

mailing lists of several colleges in Ireland and Germany. After a one-week test 

period, we had amassed a considerable number of responses. Having discarded 

incomplete responses, we were left with 20 completed surveys, totalling 900 

individual clip ratings; the average experience level of respondents was 3.2, giving a 

confidence index of 0.64 for the survey as a whole. 

 

Clip Type Believability Confidence Recall (%) Precision (%)
Human 0.69 68.37 

Imitation 0.69 68.60 78.39 

Artificial 0.36 
0.64 

36.69 50.87 
Table 5-1 - Believability/Confidence indices, Recall and Precision values. Recall values consider 
classifying the imitation and artificial agents as ‘human’ to be the desired results. Precision is 
estimated over [human or imitation] identified as human, and FSM agent identified as artificial.

 

5.5.2 Results 
 
As can be seen from Table 5-1 above, the survey produced a very favourable 

impression of our imitation agent compared to the traditional artificial agent. The 

believability indices for human, imitation and artificial clips were 0.69, 0.69 and 

0.36, respectively. In other words, the imitation agents were misidentified as human 

69% of the time, while the rule-based agents were mistaken as human in only 36% of 

cases (weighted according to experience). Clips which actually did depict human 

players were correctly identified 69% the time. 

 
Essentially, it seems that respondents were generally unable to discern between the 

human players and our imitation agents; these results are corroborated by the recall 

values, which indicate that both the human and imitation clips were classified as 



 196

human in approximately 68.5% of cases, while the rule-based agent was classified as 

human only 36.69% of the time. Since the human sources used to train the imitation 

agents were different than those human clips presented as part of the test, this implies 

that the results are based on the general abilities of the imitation mechanism, rather 

than any factors unique to the clips in question. 

 
Rating Imitation Human Artificial 
Human 225 145 102 
Artificial 103 67 176 
Neutral 32 28 22 
Table 5-2 - Confusion matrix showing overall classification of clips. Classification threshold is 
taken to be a rating of ‘Probably Artifical/Human’ or more definite  

 
Further indication of the imitation agents’ effectiveness is evident in the graph of 

accuracy against experience level show in Figure 5-3 below: 
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Figure 5-3 - Variation of believabilty for human, imitation and artificial clips with experience 
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The chart generally follows an intuitive trend; as experience level rises, respondents 

correctly identify human clips more frequently, and misidentify the traditional agent 

as human less frequently. The identification of imitation agents as human, by 

contrast, closely parallels that of genuine human clips. These trends may be 

explained by the fact that more experienced players have a greater knowledge of 

characteristically human behaviours - smooth strafing, unnecessary jumping, pausing 

to examine the environment, and similar idiosyncrasies - which the traditional agent 

would not exhibit, but which were captured and reproduced by the imitation bots. 

This interpretation is supported by many of the comments submitted by the most 

experienced respondents, some of which are recounted in Table 5-3 below. 

 
Experience Comment 

5 Bunny hop for no reason, also seems to be looking for enemies 
5 Fires gun for no reason, so must be human 
5 Unnecessary jumping 
5 human player since it performs complex moves 
5 Shooting to cover possible enemies with rocket launcher 
5 takes short cuts, shows smart aiming/shooting towards the end 
5 Stand and wait. Ai wouldn't do this (?) 
5 paused and jumped while pointing the gun around the corner first 
5 Human as they knew how to Rocket jump 
5 Human - it appears as if it is responding to objects appearing. 
5 fast moves, smart item cycling 

5 at the beginning there was a short period where the character was 
waiting, that made it seem human 

5 The rocket jump and the short sequence of backward running at 
the end suggest this was human 

Table 5-3 - Sample comments from imitation clips misidentified as human 
 
Some further comments on the interestingly atypical results for the traditional 

artificial agent at experience levels 1 and 2 are required. These ratings come from 

individuals who respectively describe themselves as never having seen first-person 

shooter games before, or as having minimal familiarity with them. At the lowest 

experience level, respondents correctly identified the artificial agents with unusual 
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accuracy; at experience level 2, by contrast, the artificial agents were 

disproportionately misidentified as human. Though we hesitate to venture an in-depth 

psychological exploration of these results, we regard the most likely explanation for 

the accuracy of identification at experience level 1 to be oversensitivity caused by a 

complete lack of knowledge of FPS games, while the inaccuracy observed at 

experience level 2 is likely due to overconfidence resulting from the individual’s 

minimal knowledge. In the case of subjects of experience level 1, our conclusion is 

based on an examination of the comments left by respondents in the course of the 

survey. We noticed a recurring theme in their remarks: 

 
Experience Comment 

1 no-one could be looking at how jagged all those turns are without 
being dizzy! 

1 just looks like bizarre movement 
1 this clip is confusing because the movement is very erratic 
1 Running up steps - not good! 

Table 5-4 - Sample comments from correctly-identified traditional agent clips 
 
 
As discussed in previous chapters, humans tend to exhibit smooth, purposeful motion 

in comparison to traditional artificial agents, an aspect of human behaviour that we 

seek to imitate in our own work. However, it appears that respondents of experience 

level 1, having no prior frame of reference upon which to base their conclusions, 

were oversensitive to this effect, believing the agent to be moving in a manner that 

would be impossible or nonsensical for humans when this was not the case. See, for 

instance, the last comment in the table above; the user judged the clip as depicting an 

artificial agent due to the fact that the agent ran up some stairs, which in most 

environments is a strict necessity for humans and agents alike. This explanation gains 

credence from comments left by respondents of experience levels 3 to 5, which were 

found to indicate substantially less certainty and more nuanced reasoning even when 

correctly identifying an artificial agent, as shown in Table 5-5 below. 
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Experience Comment 

3 character seemed human, but went into a corner which was no use 
and left very quickly, didn't need time to look around 

3 very calculated, didn’t jump up the stairs 
5 appears very human-like but something is not quite right 
5 incoherent movement ... either an artificial player or a newbie 
5 Some odd movement. Could just be a poor player. 

Table 5-5 - Sample comments from correctly-identified traditional agent clips 
 
 
Unfortunately, in the case of experience level 2, no comments were left for the 

incorrectly identified artificial agents; we are therefore unable to draw any firm 

conclusions about the respondents’ reasoning. Note, however, that at both experience 

levels 1 and 2, the graph of our imitation agents’ believability closely follows that of 

actual human players. Essentially, it seems that even minimally-experienced 

respondents agreed that the imitation agents closely resembled the human players in 

their behaviour and appearance, but disagreed on how human players behave in the 

first place. Their responses are perhaps most noteworthy for the contrast they provide 

with individuals of experience level 3 and above (that is, semi- to very frequent first-

person shooter players), who identify the artificial agents with increasing accuracy in 

proportion to their experience. 

 

5.5.3 Feedback 
 
Several respondents also commented on the believability-testing system itself. While 

opinions on the structure of the survey, the user interface, and the testing mechanism 

were generally very positive, a frequent complaint pertained to the number of clips 

which users were required to evaluate; many individuals found it to be excessive, 

even with the ability to save and resume at any point. This also goes some way 

towards explaining the half-finished tests mentioned at the start of the experiments 

section. While we did attempt to balance our need for a comprehensive survey with 
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the potential for user fatigue, we clearly overestimated the number of clips which 

respondents would consider acceptable; based on the responses, we would propose 

that perhaps 10 groups of three clips is a more appropriate figure, so long as the 

experimenter ensures that the videos embody a diverse variety of behaviours. 

 
In addition, those components of the survey which users perceived as being 

“optional” - the fields which allowed the respondent to specify how many times (s)he 

watched each clip, and in the case of supposed artificial agents to provide an 

estimation of their ‘humanness’ on a scale of 1 to 10 - were scarcely utilised at all. 

While these variables are not employed in the computation of the 

believability/confidence index or other statistical analyses, they could potentially 

provide some very interesting fine-grain ancillary data, both on individual samples 

and across entire categories. These features are, however, rendered effectively 

redundant if the users only choose to use them occasionally or not at all. It might 

therefore be beneficial, for future reference, to describe them as being mandatory on 

the survey intro screen, or even to prevent the user from moving to the next group of 

clips until all such fields on the current page are completed. 

 

5.5.4 Remarks 
 
As a final note, it is instructive to reflect upon the consequences of both Harnad’s 

gradated hierarchy, and the strong relationship between experience level and 

accuracy of identification established in our own experiments, with respect to 

Turing’s original test. As Harnad notes, the simplistic pass-or-fail nature of the 

Turing test has caused many researchers to turn away from it as a feasible yardstick 

of intelligence, preferring instead to pursue gradual progress in many parallel fields. 

Turing himself did not address the question of “experience” in his paper, most likely 

regarding it to be redundant with respect to so common a human ability as natural 

language conversation. But surely, this is too simple - after all, linguistic aptitude is 
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still dependent upon experience and an accompanying variety of factors. If a machine 

is capable of deceiving, for instance, a non-native speaker, should it then be regarded 

as intelligent? To what degree? What of a dyslexic native speaker? One could not 

imagine denying the intelligence of a human simply because he or she suffers from 

an impairment of their symbol-manipulation capacities - if a machine were capable of 

convincing such an individual that it is a fellow human, or indeed a fellow dyslexic 

human, upon what grounds would we withhold the same judgement? And what of a 

juvenile interrogator? If the artificial interlocutor can fool an eight-year-old, should it 

then be regarded as possessing the intellect of an eight-year old? 

 

5.6 Conclusion 
 
Due both to the novelty of sophisticated autonomous virtual human agents until 

recent times, and the reluctance of the AI community to address a difficult 

subjectivity problem, there exists no rigorous method of gauging the ‘believability’ 

of game bots, nor of objectively comparing this quality in different agents. While 

previous investigations have used human judges to pinpoint the attributes which 

contribute most to their agent’s perceived ‘humanness’, the believability tests 

employed in these experiments have been consistently informal, ad-hoc and non-

modular. Given that one of the central aims of our work lies in improving the 

believability of game bots, and that the lack of a standard testing methodology is a 

major impediment to the orderly evaluation of artificial game agents in general, this 

is clearly a shortcoming which needs to be addressed. In order to produce a credible 

assessment of agent believability, we outlined a framework which facilitates rigorous, 

objective testing of the degree to which game agents are perceived as human; this 

consists of an anonymous web-based survey and a protocol to which testers should 

adhere, in order to eliminate potential subjectivity and bias. To ensure that the results 

of the believability test can be compared across different agents, we also formulate a 
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believability index expressing this ‘humanness’ as a function of the user’s experience 

and the accuracy with which the agents/humans are identified. 

 
We then conducted a series of experiments with the believability framework, using 

our own imitation agents as a test-case, together with actual human data as a control 

group and a well-regarded traditional artificial agent as a comparator. The purpose of 

these experiments was twofold; firstly, to demonstrate the effectiveness of the testing 

methodology, and secondly to evaluate our imitative mechanisms. The survey 

produced a very favourable impression of our agents; as the experience level of the 

respondents increased, they correctly identified the human players more frequently, 

and misidentified the traditional agent as human less frequently. Our imitation 

agents, by contrast, were judged human in close parallel with the actual human 

players. We consider this to be very strong evidence in support of our original 

premise - namely, that imitation learning has the potential to produce more believable 

game agents than rule-based systems or other traditional AI techniques alone. 
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6 Conclusion 

6.1 Introduction 
 
In this chapter, we look back over the contents of this thesis, and suggest some future 

directions for our research. We begin by providing a full list of our publications, 

which have been listed in the introduction to each preceding chapter according to 

their relevance. In Section 6.2, we review these chapters in turn.  

 
In Section 6.3, we discuss a number of possible areas for continuing research in our 

own work. First, we describe several future improvements and side-projects relating 

to the QASE API. We then outline some potential refinements to our various 

imitative models; these approaches deviate somewhat from the core principles of the 

research as presented throughout this thesis, and so we discuss in each case why we 

opted not to implement them previously. 

 
In Section 6.4, we consider open questions; as distinct from the previous section, 

these are avenues of research which follow from our work, but require the 

development of new models rather than improvements to existing ones, or involve 

fields of research which are quite distinct from that of games-based AI. We first 

consider the issues of behaviour-switching and anticipation, outlining the difficulty 

of realising either via purely imitative approaches. We then consider the applicability 

of our game-based imitative models to real-world scenarios, before discussing the 

potential refinements to our imitative agents which could result from the 

incorporation of real-world biometric data. 

 
Some closing remarks, acknowledgements and thanks conclude this chapter. 
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6.1.1 Full List of Publications 
 
For quick reference, the following is a list of the publications which we have 

achieved while conducting our research. Papers which are relevant to the content 

under discussion are also listed in the introduction to each chapter of this thesis. 

6.1.1.1 Conference Proceedings 
 

• Gorman, B. and Humphrys, M. 

Towards Integrated Imitation of Strategic Planning and Motion Modelling in 

Interactive Computer Games, in proc. 3rd ACM Annual International Conference in Computer Game 

Design and Technology (GDTW 05), Liverpool, November 2005, pages 92-99 
 

o winner, "Best Presentation" award 

 
• Gorman, B., Fredriksson, M. and Humphrys, M. 

QASE - An Integrated API for Imitation and General AI Research in 

Commercial Computer Games, in Proc. 7th International Conference on Computer Games: AI, 

Animation, Mobile, Educational & Serious Games, Angoulême, November 2005, pages 207-214 
 

o winner, "Best Paper" award 

 
• Gorman, B., Thurau, C., Bauckhage, C., and Humphrys, M. 

Bayesian Imitation of Human Behavior in Interactive Computer Games, in Proc. 

Int. Conf. on Pattern Recognition (ICPR'06), volume 1, pages 1244-1247. IEEE, 2006 
 

• Gorman, B., Thurau, C., Bauckhage, C., and Humphrys, M. 

Believability Testing and Bayesian Imitation in Interactive Computer Games, 
in Proc. 9th Int. Conf. on the Simulation of Adaptive Behavior (SAB'06), volume LNAI. Springer, 2006 

 
• Gorman, B. and Humphrys, M. 

Imitative Learning of Combat Behaviours in First-Person Computer Games, 
in Proc. 10th International Conference on Computer Games: AI, Mobile, Educational & Serious Games, 2007 
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6.1.1.2 Journal Papers 
 

• Gorman, B. and Humphrys, M. 

Towards Integrated Imitation of Strategic Planning and Motion Modelling in 

Interactive Computer Games, ACM Computers in Entertainment, Volume 4, Issue 4 (October-

December 2006), ISSN 1544-3574, Article 10 
 

• Bauckhage, C., Gorman, B., Thurau, C.,and Humphrys, M. 

Learning Human Behavior from Analyzing Activities in Virtual Environments, 
MMI-Interaktiv, Nr. 12, April 2007, ISSN 1439-7854 

 
• Gorman, B., Fredriksson, M. and Humphrys, M. 

The QASE API - An Integrated Platform for AI Research and Education 

Through First-Person Computer Games, International Journal of Intelligent Games and 

Simulations, Volume 4 Issue 2, June 2007 
 

6.2 Thesis Review 
 
In Chapter 1, we outlined the central concepts of imitation learning, and provided an 

overview of its use in fields such as robotics and computer vision. We then proposed 

that - considering the ease with which they can record noiseless, objective data, the 

availability of vast existing sample libraries, and the fact that such recordings encode 

nothing less than the real-time planning behaviours of the human player, as opposed 

to the simple limb movement data typically used in robotic imitation - computer 

games provide an ideal platform for academic imitation learning research. Similarly, 

we noted that imitation learning holds the potential to produce more believable, 

challenging and interesting game agents, which would naturally be of interest to the 

games industry and players alike. Our task, then, was to examine the stream of 

network communications recorded during gameplay sessions, and reverse-engineer 

the player’s decision-making process from its observable in-game results. To that 
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end, we defined the principal contributions which our work would make to the field, 

in three distinct categories: 

 
• THEORY: MODELS OF COMPUTATIONAL GAME IMITATION 

Drawing upon biological evidence, approaches from the field of robotics, and 

our own experience in computer games, we developed a number of imitative 

models designed to learn and reproduce various aspects of observed human 

behaviour. These mechanisms fall into three distinct subcategories, closely 

mirroring a widely-used psychological model of human planning; strategic 

long-term behaviours, tactical medium-term behaviours, and reactive short-

term behaviours. 

 
• IMPLEMENTATION: A MACHINE-LEARNING API FOR GAMES 

One major obstacle encountered early in our research was the lack of an API 

that was suitable for our intended purposes. Existing development platforms 

were incomplete and ad-hoc, often with scattered documentation and 

unintuitive interfaces. Rather than writing a minimal library which provided 

only the specific features we required - thus leaving future researchers in 

exactly the same position in which we had found ourselves - we instead 

decided to develop a comprehensive API, called the Quake Agent Simulation 

Environment (QASE), which would encompass all the functionality necessary 

to conduct further work in this field. While geared principally towards 

machine- and imitation learning, it would also represent a platform for 

cognitive agent research in general. 

 
• EVALUATION: THE BOT-ORIENTED TURING TEST (BOTT) 

As noted above, we present statistical validations of the functionality of each 

imitative model in their respective subchapters. However, given that one of 

our aims was to demonstrate the capacity of imitation learning to produce 
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more believable game agents, this alone was not sufficient. We wished to 

further evaluate the “humanness” of our agents, as perceived by actual 

observers. Here, we again ran into an obstacle; there was no rigorous means 

of evaluating this quality in agents. Some minor investigations of 

believability had been conducted, but these were invariably highly informal, 

and certainly not applicable to inter-agent comparisons. We thus decided to 

design a generalised approach to such testing, which we call the Bot-Oriented 

Turing Test (BOTT). 

 
In Chapter 3, we described the first of these contributions - the Quake Agent 

Simulation Environment (QASE). We adopted iD Software’s Quake 2 as our testbed 

for a number of reasons; it was prominent in the literature, existing resources were 

somewhat more substantial than for other games, and as a first-person shooter it 

offered an attractively direct mapping of human decisions onto observable agent 

actions. We proceeded to outline our motivations for developing QASE, discussing 

both the shortcomings of existing APIs and the steps which we had taken to 

circumvent them. We then described QASE’s network layer, which acts as an 

interface between the local AI routines and the Quake 2 server, before detailing the 

API’s agent architecture, which allows bots to be created from any of several levels 

of abstraction and provides a wide variety of supporting facilities. We concluded the 

chapter with a discussion of QASE’s adoption by numerous universities as both an 

undergraduate teaching tool and research platform. 

 
In Chapter 4, we described a number of imitative mechanisms developed using 

QASE and its MatLab integration facilities. We first outlined a behaviour model 

which distinguishes between long-term strategic, medium-term tactical and short-

term reactive behaviours. In Section 4.3, we proceeded to detail a reinforcement-

learning approach to the imitation of the human player’s navigation behaviours, 

centred upon his pursuit of item pickups as strategic goals. This involved deriving a 
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topological map of the environment by clustering the set of positions occupied by the 

player in the course of the game session, drawing edges between the resulting 

waypoints based on the player’s observed motion, and employing value iteration to 

learn the relationship between the player’s current state and subsequent navigation 

routes. This system proved adept at capturing the human’s program-level behaviour; 

the imitation model identified and pursued the human’s goals, without necessarily 

reproducing his precise actions at each timestep. 

 
In Section 4.4, we described the integration of this strategic navigation system with a 

Bayesian mechanism for the imitation of tactical motion-modelling behaviours. Our 

approach involves reading the player’s orientation from the demo file on each 

timestep, along with values indicating his movement speed, posture, and whether he 

is firing his weapon. We then cluster this data to produce a set of action primitives - 

that is, aggregated representations of similar actions performed at different times in 

different places. We sequence these primitives using a heavily adapted version of 

Rao et al’s model of action sequencing in human infants [106], which expresses the 

next action as a function of the agent’s current state, next state and goal state - 

information which is supplied by the strategic navigation system. We also proposed a 

technique, imitative keyframing, which combines the consistency offered by absolute 

orientation primitives with the fine-grain adjustments provided by relative values. 

 
In Section 4.5, we outlined a model for the imitation of reactive combat behaviours; 

specifically, weapon-selection and aiming. Drawing upon previous work which had 

found that direct imitation produced excessively accurate aim, our approach was to 

instead learn the human player’s inaccuracy. To model this, we first reconstructed 

the player’s visual perception of his opponent’s motion from the available low-level 

data, using their respective positions, velocities, and orientations on each timestep. 

We then trained a series of three expert networks using this data; one to select the 

most appropriate weapon, one to adjust the agent’s aim, and a third to determine 
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whether the agent should open fire. A number of interesting phenomena - and some 

associated problems - were captured by the imitative mechanism, such as the 

inability to adjust aim in certain directions as quickly as in others, caused by the 

limitations of the human’s mouse input. We noted that this was an excellent example 

of humanlike behaviour which would not be implemented by traditional artificial 

agents, both because a top-down designer would not think to include it, and because 

it would be difficult to reproduce accurately using a rule-based approach. 

 
For each of the imitative models described above, we conducted experiments to 

provide a statistical validation of their functionality. We also wished, however, to 

ascertain the degree to which the imitation agent is perceived as being “humanlike” 

by an actual observer. We noted that there was no existing means to rigorously gauge 

the believability of game agents, the few previous attempts having been extremely 

ad-hoc and informal. We therefore proposed a generalised approach to such testing in 

Chapter 5 - the Bot-Oriented Turing Test, or BOTT. This took the form of an 

anonymous online questionnaire, an accompanying protocol to which examiners 

should adhere in order to maintain the integrity of the survey, and the formulation of 

a believability index which expresses each agent’s humanness as indicated by its 

observers. To validate the survey approach, we presented a series of experiments 

which used the believability test to evaluate our own imitation agents against both 

human players and traditional artificial bots. The results showed that the imitation 

agents were perceived to be significantly more believable than traditional bots; we 

considered this to be strong evidence in favour of our thesis that imitation learning 

holds the potential to produce markedly more humanlike game agents. 

 

6.3 Future Work 
 
In this section, we describe some potential future improvements to the QASE API 

and our existing imitative models. 
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6.3.1 QASE Development 
 
While the current version of QASE provides a comprehensive set of tools for agent 

construction - essentially incorporating every feature which occurred to us as being 

potentially useful, both from the machine-learning and general agent research 

perspectives - there are a number of further developments which we wish to 

undertake. These projects will be conducted in parallel with any changes 

implemented due to comments or suggestions from existing QASE users. 

 

6.3.1.1 QASE3 
 
One of the first additions we intend to make is to extend QASE such that it is capable 

of realising agents in Quake 3 multiplayer matches. As discussed in Section 3.3.2, 

QASE’s network layer is quite cleanly decoupled from the other structures in the 

API, meaning that such extension is a relatively straightforward process. This 

extension will be transparent from the user’s perspective; QASE3, as we intend to call 

the update, will automatically determine the game running on the specified server, 

and will instantiate base or derived objects as necessary. Not only will this serve to 

provide another testbed for researchers to investigate - Quake 3 is a more fast-paced, 

reactive and team-based game than its predecessor; sufficiently different to make it 

an attractive alternative platform for certain areas of research - but it will also act as 

proof-of-concept for a related sub-project, as discussed below. 

 

6.3.1.2 QNET 
 
Building upon QASE3, we intend to release the network layer of QASE as a 

standalone framework, entitled QNET. Again, as discussed in Chapter 3, the 

decoupling of the network layer from the remainder of the API allows the 

communication components to be viewed as a generic foundation for the creation of 
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client agents in a wide variety of multiplayer game. The network layer itself will be 

also updated to support TCP-based games, in addition to the more common UDP. It 

is our hope that QNET will assist in furthering interest in computer games as a viable 

platform for both academic research and education. 

 

6.3.1.3 QScript 
 
Many undergraduate AI and programming courses employ some variation on a 

“robot world” - that is, a simulation in which the student, often using a simplified 

pseudolanguage, must write control programs to navigate through a 2D maze. We 

intend to augment QASE so that it may be adopted for the same purposes. This will 

involve the definition of a simple scripting language, Qscript, which will include 

standard programming concepts such as loops, conditional statements, etc. Atomic 

commands (moveForward, moveBackwards, turnLeft) will also be provided. The 

scripts written by the student, either in a text editor or in a supplied GUI front-end, 

will serve to define the agent’s AI cycle; they will be read into the QScript interpreter 

and processed upon each gamestate update. The obvious advantage of using QASE in 

preference to existing robot world simulators is that Quake 2 allows a much greater 

range of programming skills and AI concepts to be explored; furthermore, when 

students are ready to being writing full agents using standard code, they will already 

be familiar with the API and testbed. 

 

6.3.1.4 GANN Interface 
 
One final addition which we intend to make is a front-end interface to QASE’s 

genetic neural network architecture. This will take the form of a GUI which permits 

various parameters of the neural network and genetic algorithm manager - the 

number of inputs, hidden layers and outputs, the size of the gene pool, the rate of 

mutation, the duration of each generation, etc - to be specified, and the relevant 
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objects automatically instantiated. We will also provide an inbuilt example of the 

GANN mechanism in operation; this will involve a single-room Quake map with 

items scattered at various positions, with the agents having the task of collecting as 

many pickups as possible while continuously aiming at the nearest opponent. 

Although this is a comparatively minor addition to the API’s existing functionality, 

observing the agents’ emergent intelligence as they learn to navigate and aim in a full 

3D world will provide an excellent conceptual illustration for undergrad students. 

 

6.3.2 Potential Refinements to Existing Models 
 
At various points during our research, a number of minor potential refinements to our 

existing imitation models occurred to us. Though we did not implement these 

modifications - due both to time constraints and to our skepticism that they would 

provide a noticeable improvement, for the reasons enumerated - some of these 

refinements are presented here for the purposes of future study. 

 

6.3.2.1 State Compression 
 
In any game session, there may exist one or more items which the human player was 

rarely observed to collect, and whose associated elements in the set of state vectors 

used by the strategic navigation system are therefore minimally variant. By 

employing a dimensionality-reducing technique such as PCA - or simply by 

eliminating those elements directly - the vector representation could be compressed, 

reducing the state space and leading to greater storage and computational efficiency. 

 
However, this is likely to have the significant disadvantage of reducing the agent’s 

ability to adapt to uncommon or unseen situations. It is entirely possible that the 

agent may, in fact, regularly collect items which the human player did not. For 

instance, the human player may pass a particular item location after the item itself 



 213

has already been collected by an opponent, and is therefore inactive; the agent, by 

contrast, may pass while the item is present and collect it. Similarly, enemy players 

have the ability to discard their weapons, which then become collectible - if the 

enemy possesses a weapon which the imitation agent’s human exemplar did not, the 

same issue arises once again. These problems are compounded when we consider 

that our strategic imitation model compares the agent’s current state against all 

observed human states, and weights the agent’s goals accordingly. Thurau et al [132] 

previously investigated PCA in their work on action primitives, but did not use it to 

reduce the dimensionality of their state vectors; they later reported that they had 

found all the state features to be necessary for consistent imitation. 

 
It was for these reasons that we opted against investigating state-compression 

techniques in our current work. Nonetheless, it is possible that an alternative, more 

suitable means of reducing the agent’s state representation could be developed; and 

the benefits of finding an appropriate solution would be significant. We therefore 

present state compression as an issue which is worth revisiting in the future. 

 

6.3.2.2 Weapon Similarity Matrices 
 
As discussed in Section 4.5, a variety of different weapons exist in Quake 2, as is the 

case with all first-person shooter games. These weapons conform to a number of 

common characteristics; certain guns fire slow-moving but powerful projectiles, 

others fire quick but weak bursts. Some are ideally suited to ranged combat, whereas 

others are more useful in close quarters. Additionally, different sets of guns share a 

common ammunition type; the shotgun and super-shotgun use shells, the 

hyperblaster and BFG use cells, the machine gun and chaingun use bullets, and so 

forth. By constructing a matrix which defines the comparative similarity of each pair 

of weapons and their shared ammunition, it may be possible to leverage this 

information to the benefit of the various imitation models. For instance, if a particular 
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weapon is not currently active on the map, the strategic navigation system could 

proportionally boost the path values associated with similar guns. If the agent does 

not have a specific weapon, the reactive combat weapon-selection model could 

switch to the most similar weapon which the agent does possess. 

 
The disadvantage of such an approach, from the perspective of our own research, is 

that it inherently introduces some very high-level expert knowledge into the system, 

which we strenuously sought to avoid. In addition, defining an a priori matrix of 

weapon similarities comes dangerously close to enforcing a top-down rule-based 

approach; if weapon X is unavailable then choose weapon Y else weapon Z. It also 

leaves the system open to designer bias, since there is no strict means of gauging the 

precise similarity of two weapons - the matrix would therefore reflect only the 

personal opinion of its creator. These factors place the proposed modification in 

direct opposition to the overriding ethos of our work. 

 
Perhaps most importantly, explicit encoding of weapon similarities is likely to be 

entirely unnecessary, since the human player is already aware of such similarities. If 

a particularly desirable weapon is unavailable, he will pursue it or an equivalent 

weapon on the map, or switch to a comparable gun which he already possesses; such 

behaviours are captured by the strategic navigation and reactive combat imitation 

models. Note also that this implicit weapon-similarity reasoning affords the agent a 

far greater degree of nuance than would a top-down definition of the kind described 

above; the player may exhibit preferential behaviour only with respect to certain 

similar guns, rather than adhering to a blanket rule across all weapons. Our existing 

imitative mechanisms should, therefore, capture not only the human player’s 

understanding of weapon similarities, but also the degree to which this effect is 

present. 
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6.4 Open Questions 
 
In this section, we describe potential avenues of future research which require either 

the development of new models, or involve fields of research which lie outside that 

of games-based artificial intelligence. 

 

6.4.1 Meta-Behaviours 
 
The mechanisms presented in the preceding chapters of this thesis do not, as yet, 

constitute a fully-realised imitation agent. In order to achieve this, models which 

implement one additional category of behaviour must be developed; we call this 

category meta-behaviours. Our existing models operate by encountering a particular 

state, and executing learned motor commands accordingly. Meta-behaviours are 

decision processes which do not define any motor commands of their own, but 

instead combine and control the functionalities of the existing strategic, tactical and 

combat systems to produce high-level global behaviours. Meta-behaviours comprise 

two main subcategories, anticipation and behaviour-switching. Unfortunately, as we 

discuss below, the development of models to capture these phenomena is extremely 

problematic from the perspective of imitation learning. 

 

6.4.1.1 Anticipation 
 
Anticipation refers to the human player’s ability to project the probable short- to 

medium-term actions of his opponent, and adjust his tactics accordingly. For 

instance, if the player is pursuing an opponent who enters a room with only one other 

exit, the player may decide to navigate an alternative route to that point and ambush 

the enemy as he emerges. If the player knows that his opponent has no weapon, he 

may move to collect the nearest available gun and again lie in wait for the enemy. As 

outlined above, anticipation is therefore a tactical/strategic reasoning behaviour 
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which does not require additional motor functions in order to be implemented; a 

combination of the existing mechanisms is sufficient. Laird [76] describes a rule-

based approach to modelling anticipation in his SOAR Quakebot, which consists of 

estimating the opponent’s current state, projecting what the agent would do in that 

same state, and taking countermeasures accordingly. 

 
However, it is difficult to imagine a purely imitative implementation of such a 

mechanism. Even in Laird’s approach, the rules for detecting and counteracting each 

anticipation scenario - specifically, the two which were outlined above - must be 

explicitly stated. Indeed, it was necessary to define the rules in such detail that, for 

instance, the agent was instructed not to attempt an ambush in a narrow corridor, but 

to wait for the opponent to enter a more open space before engaging him. This neatly 

illustrates the core difficulty of implementing an anticipation system with respect to 

imitation learning; it is a high-level reasoning, co-ordination and execution task 

which inherently requires expert knowledge of the game. While it would be possible 

for our imitation agents to construct an internal estimation of the opponent’s current 

state, and project his likely behaviour on that basis, the question then becomes: what 

action should the agent take? And how should we actually execute the decision 

process? We could simply instruct the agent to go to the appropriate location, but this 

would be indistinguishable from a rule-based agent. We could boost the utility values 

of the relevant nodes in the strategic navigation map in order to draw the agent in that 

direction, but this would again require explicit hardcoding. There is no clear way to 

deduce and passively pursue the appropriate behaviour from demonstration, since 

anticipation is an innately top-down, pre-emptive behaviour. 

 
A further problem concerns the question of when it is appropriate for the agent to 

begin anticipating the opponent’s actions, rather than pursuing its own objectives. In 

Laird’s case, this was again achieved by specifying a series of hardcoded rules - the 

agent would begin anticipating if the opponent was visible, and was greater than X 
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distance units from the bot, and had its back turned, and was moving in the direction 

of a known item in an adjoining room. We could certainly set “triggers” at various 

points in the environment to induce such behaviours - the embedding of such tactical 

information in waypoint nodes has already been proposed by Liden and Hancock 

[104] - or attempt to establish a relationship between the player’s movement and that 

of the opponent while he is visible and in certain areas of the map, but this would 

once again involve the introduction of hardcoded rules and highly detailed expert 

knowledge; in contrast to our existing mechanisms, it would also mean that the 

model itself would have to be rewritten to account for the specific terrain of each 

environment. 
 
In any case, the question of when to anticipate - or indeed, when to perform any other 

behaviour - leads into a larger related problem; that of the second meta-behaviour 

component, behaviour-switching. 
 

6.4.1.2 Behaviour-Switching 
 
Behaviour-switching refers to the human player’s ability to dynamically adjust the 

balance between his primary, secondary and tertiary behaviours in accordance with 

his circumstances. In terms of the model described in Section 4.2, this allows him to 

move along the gradient from strategic to tactical to reactive, or vice-versa. Consider 

a player who is engaged in strategic cycling of the environment, collecting important 

items as rapidly as he can. He spots an opponent in the distance, but decides that he 

does not yet possess a sufficient arsenal to challenge him. He therefore adjusts his 

behaviour slightly. While ensuring that he stays out of the enemy’s sight, he begins to 

follow him, continuing to pick up items along the way; his behaviour has moved to 

the tactical/strategic boundary of our gradient. When the player is satisfied that he 

can defeat his opponent, he proceeds to anticipate the enemy’s destination and 

ambushes him; his behaviour has moved to the reactive/tactical end of the gradient, 

becoming increasingly reactive as the opponent fights back. Once he has defeated his 
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enemy, the player will generally revert to pursuing strategic goals. Behaviour-

switching is the process by which these decisions to move between the different 

levels of the hierarchy are made. 

 
In order to derive an appropriate switching function from the recorded game session, 

the datastream must first be segmented into individual “periods” of behaviour; their 

frequency and interrelations could then be analysed to produce an imitative model. 

However, the segmentation process is greatly complicated by the fact that similar 

behaviours are executed at different locations and times in substantively different 

ways; that they are occasionally, as in the case of anticipation, extremely difficult to 

represent without expert knowledge of the map; and that behaviours are both 

temporally continuous and non-binary - a player can, as demonstrated by the example 

above, engage in strategic/tactical/reactive behaviours simultaneously and in any 

ratio, and thus there are few “hard” boundaries between observed actions in the 

datastream. In the opening chapter of this thesis, we discussed the reasons why 

control-based methods of imitation were unsuitable for learning the behaviours of 

human gamesplayers. To briefly recap, they require a predefined model of the task at 

hand - a human arm swinging a tennis racquet can be described using pendulum 

physics, for instance - and imitation is simply used to learn the parameters of the 

controller. A control-system approach to imitative learning of in-game human 

behaviours would therefore require an expert model of human reasoning itself; if we 

possessed such a model, then this and all other research would be redundant, since 

we would already have solved the problem of AI. A similar Catch-22 exists here - if 

we had a segmentation process capable of determining when the human’s behaviour 

changed and to what degree, then our work would already be done. 

 
Examining some other segmentation approaches serves to highlight the difficulties 

inherent in the task of imitative behaviour-switching. Mataric, Jenkins et al [31, 37, 

60-65, 82], for instance, describe an approach to the automated segmentation of 
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human limb motion into its constituent actions. This, however, relies on the fact that 

the arm’s range of motion and degrees of freedom are known, and that there is a very 

obvious hard boundary between behaviours - when the arm stops moving in a 

particular direction, i.e. where the sum of the squared angular velocities in each 

degree of freedom falls below a given threshold. In our case, we do not know the 

equivalent “degrees of freedom” of the human’s decision-making process, and there 

is no convenient boundary condition to look for. Elsewhere, Sukthankar and Sycara 

[122] propose a means of automatically recognising team behaviours using the game 

Unreal Tournament. They too remark upon the difficulty of determining the exact 

transition point between behaviours; to circumvent this problem, they employ a series 

of overlapping time windows during which a single behaviour is assumed to be 

dominant, and train a set of Hidden Markov Models to recognise each.  However, 

their work examined only 3 specific behaviours, which they had defined in advance 

and instructed the human volunteers to perform; the HMMs were therefore simply 

classifying the best-matching behaviour from an extremely limited list of known 

actions. This approach is obviously not suitable for bottom-up analysis of a freeform 

game session, though the complexity of distinguishing even between three known 

behaviours does provide some insight into the scope of the problem. 

 
To further illustrate this point, consider the anticipation scenario given earlier, where 

the opponent enters a room and the player moves to ambush him at the opposite side. 

Determining that the player is initially engaged in “pursuit” behaviour should not 

prove difficult. But what happens when the opponent moves out of sight into the next 

room? How would the segmentation system ascertain whether the player’s 

subsequent behaviour was due to a decision to circle around an intercept the enemy, 

or whether he had opted to return to his normal strategic navigation of the 

environment, and re-encountered the opponent simply by chance? Perhaps we could 

create a specific rule for this situation - if Opponent B moves out of sight, and Player 

A moves to position X, and remains stationary for some period of time, and then re-
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engages the opponent all within a 60-second timeframe, then this is classed as 

anticipation. This might be possible, although it would require specialised knowledge 

of the environment terrain and could certainly not be derived from the network 

stream alone. But we would then presumably be forced to define similar 

segmentation rules for every such scenario - of which there are potentially hundreds. 

And even then, how would we know that we had accounted for all of them? Would 

the rules need to be redefined for the specific terrain of each individual map? Almost 

certainly so. And beyond these fundamental considerations, with what degree of 

accuracy would these relatively crude top-down rules capture the complexities of 

behaviour switches? As one moves further along this line of thought, it becomes 

increasingly untenable to view the proposed solution as either a bottom-up imitation 

learning approach, or a general model of behaviour-switching; it gradually becomes 

indistinguishable from a rule-based system or a symbolic segmentation of the data. 

 

6.4.1.3 Remarks 
 
For the reasons detailed above, it may be the case that anticipation and behaviour-

switching simply involve too high a level of abstract reasoning to be reproducible 

from low-level observation data; that they may define the limits of a purely imitative 

approach to agent intelligence in games, a question which we sought to explore 

throughout our work. There is, though it lies outside our area of interest in this 

research, nothing to preclude other learning approaches or rule-based systems from 

being layered on top of the imitative mechanisms; this is, as we discussed at the 

beginning of the thesis, a common practice in robotic imitation. At any rate, we 

would consider a full exploration of imitative anticipation and behaviour-switching to 

be sufficient basis for a PhD in its own right, and a project which we would be 

delighted to see undertaken. 
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6.4.2 Real-World Applicability and Biometric Imitation 
 
Here, we discuss both the possibility that our in-game models may be adapted to real-

world applications, and the potential benefits offered by incorporating biometric 

measurements of the human player into our imitation systems. 

 

6.4.2.1 Applications in the Real World 
 
Our work sought primarily to develop imitative artificial intelligence techniques, 

both for the inherent benefit they would provide to the field and to demonstrate the 

advantages of using computer games as an imitation learning platform. Nevertheless, 

one of the reasons we chose modern commercial games - and the first-person shooter 

genre in particular - was that they offered the potential for real-world applicability. 

As has been discussed before, first-person games represent a relatively close 

approximation of the real world, and impose a very direct mapping of human 

decisions onto the observable actions of the game avatar; thus, techniques which 

have been developed in-game may be adaptable for wider use. Following the work of 

Thurau et al, for instance, biologists at Bielefeld University are investigating action 

primitives as a means of modelling the courtship behaviours of zebra finches [132]. 

Here, we discuss some other potential uses. 

 
One potential real-world application was suggested by a researcher at DCU, who 

noted that the strategic imitation system detailed in Chapter 4.3 could provide the 

ideal foundation of an automated mapping and navigation aid for blind pedestrians. 

Indeed, it is not difficult to imagine how such a mechanism would operate. A college 

campus, which offers a closed but structurally complex system, would provide an 

excellent testbed for the project. The training data could be harvested by a number of 

sighted volunteers wearing GPS tracking units while conducting their daily business; 

as with in-game strategic imitation, this would take advantage of the human’s innate 
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navigation skills, while giving extra weight to those paths which were followed more 

frequently than others. Goals would be defined as the various buildings scattered 

around the campus. After a certain period, the data would be processed as detailed 

earlier to produce the topological map; this data could conceivably be used to create a 

hierarchy of maps of different granularities, representing the external environment of 

the campus and the internal layout of each building. A sensor placed at the entrance 

to each structure could signal the device to switch to the relevant internal map. In 

terms of deployment for the blind end-user, the system would likely take the form of 

an audio signal of some kind, perhaps a pair of headphones connected to a modified 

GPS device. A series of regular stereo tones emitted by the device would then 

indicate - by varying their balance and intensity - when the user should turn, in which 

direction, and how sharply. 

 
The Bayesian tactics system, too, would play an important role in the proposed 

system. As in the game world, it is not sufficient to simply define the start, end and 

intermediate points of a particular navigation path; there will inevitably be 

intervening obstacles which need to be negotiated. Tactical modelling of the kind 

discussed in Chapter 4.4 could be used to trigger an alert if, for instance, a door 

blocked the user’s path, if a step or stairway lay ahead of him, if he needed to use an 

elevator, and so forth. Once again, the navigation system would define where to go, 

while the tactical primitives would provide details of how to get there. 

 
In terms of more large-scale uses, it has been suggested that a similar approach could 

be applied to modelling patterns of traffic flow, by affixing GPS units to volunteers’ 

vehicles. Given a sufficiently representative sampling, the imitation system could be 

used to determine not only the most common points of traffic congestion, but also the 

alternative paths which are most frequently used by motorists who find themselves 

approaching a bottleneck - and, therefore, which routes are in greatest need of 

attention. While the data-harvesting process would need to be repeated at regular 
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intervals, to account for changes in the physical topologies and in motorists’ resulting 

behaviour, it could nonetheless be a valuable tool for urban planners and developers. 

 

6.4.2.2 Biometric Imitation 
 
In the same way that techniques developed in-game may be adapted for the real 

world, it is interesting to consider the potential usefulness of real-world data in 

training future agents. It is possible that biometric measurement of the human player 

could be used to augment the directly-observed gameplay data, resulting in further 

refinement to the “humanness” of the imitation. A common observation among 

experienced gamesplayers is the correlation between emotional state and consequent 

in-game behaviour. If a particular player is defeated in multiple encounters in quick 

succession, for instance, his resulting frustration frequently leads to a temporary 

alteration in his play style. The specific nature of this alteration can differ greatly 

from one player to the next. Player A may adopt a more cautious approach on the 

next encounter, attempting to minimise the chance that he will suffer the humiliation 

of another defeat; in the context of our imitation model, his behaviour becomes more 

strategic and tactical, and less reactive. Player B, by contrast, may become more 

obviously agitated, opting to run in with guns blazing in the hope of breaking his 

losing streak; his behaviour has shifted from the strategic end of the imitation 

gradient to the reactive. The longevity of this shift depends in large part upon its 

results. If the player successfully redresses the imbalance between his score and the 

opponent’s, he will generally revert to his standard behaviour model. If the player 

continues to be defeated, he will often ‘give up’ on the current match, becoming 

careless and listless as he waits for the scores to reset at the start of the next round. 

 
At present, of course, there is no means of associating the emotional state of the 

player with the low-level data recorded from the network stream. These occasional 

deviations are, therefore, not differentiated from the player’s standard behaviours; 
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they are simply subsumed into the general model during the training process. While it 

would be possible to encode some rules which, for instance, treat the behaviours 

observed within a 60-second timeframe after the player has sustained five 

consecutive defeats as being non-standard, this would at best be a crude 

approximation of the true effect, and at worst would simply lead to a hopelessly 

inconsistent bot. A better approach would be to collect real-world biometric data 

along with the gameplay recording - heartrate, temperature, perhaps the vocal 

utterances of the player, as are common in multiplayer LAN competitions - and 

analyse them in parallel. If a correlation between the player’s in-game state, 

biometric measurements, and subsequent behaviour could be ascertained and 

reproduced, it would serve to greatly increase the humanness and believability of the 

imitation agent. 
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