

Imitation Learning through Games:

Theory, Implementation and Evaluation

Bernard Gorman, Bachelor of Science

in Computer Applications

A dissertation submitted in fulfilment

of the requirements for the award of

Doctor of Philosophy (PhD) to the

Dublin City University Faculty

of Engineering and Computing,

School of Computing

Supervisor: Dr. Mark Humphrys

22 January 2009

 2

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of

study leading to the award of Doctor of Philosophy is entirely my own work, that I have

exercised reasonable care to ensure that the work is original, and does not to the best of my

knowledge breach any law of copyright, and has not been taken from the work of others save

and to the extent that such work has been cited and acknowledged within the text of my work.

Signed:

Student ID: 99012588
Date: 22 January 2009

 3

Contents
ABSTRACT ..5
ACKNOWLEDGEMENTS ...8
1 INTRODUCTION..9

1.1 INTRODUCTION ...9
1.1.1 Publications ...9

1.2 ARTIFICIAL GAME INTELLIGENCE ...10
1.2.1 Games Industry ..10
1.2.2 Academia..14
1.2.3 Machine Learning ..17
1.2.4 Games as Imitation Research Platforms ..18

1.3 CONTRIBUTIONS ...22
1.3.1 Research Questions..22
1.3.2 Contributions: Our Research ...22
1.3.3 Thesis Outline ..24

1.4 CONCLUSION ..27
2 IMITATION, BEHAVIOUR AND AI..28

2.1 INTRODUCTION ...28
2.1.1 Publications ...28

2.2 IMITATION LEARNING ...28
2.2.1 Biological Imitation ...29
2.2.2 Application in Robotics ..39

2.3 GAMES-BASED IMITATION LEARNING ...53
2.3.1 Motivation and Existing Work..53
2.3.2 Believability and Performance...56
2.3.3 Computational Modelling for Games...58
2.3.4 Selecting a Testbed: Quake 2 ...60

2.4 CONCLUSION ..63
3 THE QASE API ...65

3.1 INTRODUCTION ...65
3.1.1 Publications ...66

3.2 MOTIVATION ..66
3.2.1 Existing APIs..67

3.3 QASE, ENVIRONMENTS AND INTERFACES...72
3.3.1 The Quake 2 Environment..74
3.3.2 QASE Network Interface ..79

3.4 QASE AGENT ARCHITECTURE..92
3.4.1 Bot Hierarchy...92
3.4.2 Gamestate Augmentation ...95
3.4.3 Team-Based Play ...97
3.4.4 DM2 Parser & Recorder..97
3.4.5 Environment Sensing..98
3.4.6 Fixed Entity Sensing...104
3.4.7 Inbuilt AI Constructs ..104
3.4.8 Waypoint Maps ..106
3.4.9 MatLab Integration ..109

3.5 CONCLUSION ..111
3.5.1 Adoption in Academia ..112

4 IMITATION LEARNING ..113
4.1 INTRODUCTION ...113

 4

4.1.1 Publications ...114
4.2 BEHAVIOUR MODEL ... 115

4.2.1 Behaviour and Believability ...117
4.3 STRATEGIC BEHAVIOUR IMITATION... 118

4.3.1 Reinforcement Learning...119
4.3.2 Goal-Oriented Strategic Navigation ..122
4.3.3 Topology Learning ...123
4.3.4 Deriving Movement Paths..127
4.3.5 Learning Utility Values ..130
4.3.6 Multiple Weighted Objectives ..133
4.3.7 Object Transience ..134
4.3.8 Deployment ..135
4.3.9 Experiments..135

4.4 TACTICAL BEHAVIOUR IMITATION .. 141
4.4.1 Motion Modelling and Tactical Behaviours...142
4.4.2 Action Primitives..144
4.4.3 Bayesian Imitation ...146
4.4.4 Experiments..155

4.5 REACTIVE BEHAVIOUR IMITATION .. 159
4.5.1 Reactive Combat Behaviours ... 159
4.5.2 Learning the Inaccuracy ..161
4.5.3 Methodology...162
4.5.4 Experiments..167

4.6 CONCLUSION ..172
5 BELIEVABILITY TESTING ...173

5.1 INTRODUCTION ...173
5.1.1 Publications ...174

5.2 MOTIVATION ..174
5.2.1 Previous Contributions ..176
5.2.2 The Turing Test and Game AI .. 180

5.3 BOTT: THE BOT-ORIENTED TURING TEST.. 184
5.3.1 Online Survey Structure ...185
5.3.2 Experimental Protocol, Subjectivity and Bias .. 189

5.4 EVALUATION OF RESULTS... 192
5.4.1 Computing the Believability Index ... 192
5.4.2 The Confidence Index...193

5.5 EXPERIMENTS...194
5.5.1 Methodology...194
5.5.2 Results ..195
5.5.3 Feedback ..199
5.5.4 Remarks..200

5.6 CONCLUSION ..201
6 CONCLUSION ..203

6.1 INTRODUCTION ...203
6.1.1 Full List of Publications...204

6.2 THESIS REVIEW ..205
6.3 FUTURE WORK ...209

6.3.1 QASE Development..210
6.3.2 Potential Refinements to Existing Models .. 212

6.4 OPEN QUESTIONS ... 215
6.4.1 Meta-Behaviours ..215
6.4.2 Real-World Applicability and Biometric Imitation...221

7 REFERENCES...225

 5

Abstract

Despite a history of games-based research, academia has generally regarded

commercial games as a distraction from the serious business of AI, rather than as an

opportunity to leverage this existing domain to the advancement of our knowledge.

Similarly, the computer game industry still relies on techniques that were developed

several decades ago, and has shown little interest in adopting more progressive

academic approaches. In recent times, however, these attitudes have begun to change;

under- and post-graduate games development courses are increasingly common,

while the industry itself is slowly but surely beginning to recognise the potential

offered by modern machine-learning approaches, though games which actually

implement said approaches on more than a token scale remain scarce.

One area which has not yet received much attention from either academia or industry

is imitation learning, which seeks to expedite the learning process by exploiting data

harvested from demonstrations of a given task. While substantial work has been done

in developing imitation techniques for humanoid robot movement, there has been

very little exploration of the challenges posed by interactive computer games. Given

that such games generally encode reasoning and decision-making behaviours which

are inherently more complex and potentially more interesting than limb motion data,

that they often provide inbuilt facilities for recording human play, that the generation

and collection of training samples is therefore far easier than in robotics, and that

many games have vast pre-existing libraries of these recorded demonstrations, it is

fair to say that computer games represent an extremely fertile domain for imitation

learning research.

In this thesis, we argue in favour of using modern, commercial computer games to

study, model and reproduce humanlike behaviour. We provide an overview of the

biological and robotic imitation literature as well as the current status of game AI,

 6

highlighting techniques which may be adapted for the purposes of game-based

imitation. We then proceed to describe our contributions to the field of imitation

learning itself, which encompass three distinct categories: theory, implementation

and evaluation.

We first describe the development of a fully-featured Java API - the Quake2 Agent

Simulation Environment (QASE) - designed to facilitate both research and education

in imitation and general machine-learning, using the game Quake 2 as a testbed. We

outline our motivation for developing QASE, discussing the shortcomings of existing

APIs and the steps which we have taken to circumvent them. We describe QASE’s

network layer, which acts as an interface between the local AI routines and the

Quake 2 server on which the game environment is maintained, before detailing the

API’s agent architecture, which includes an interface to the MatLab programming

environment and the ability to parse and analyse full recordings of game sessions.

We conclude the chapter with a discussion of QASE’s adoption by numerous

universities as both an undergraduate teaching tool and research platform.

We then proceed to describe the various imitative mechanisms which we have

developed using QASE and its MatLab integration facilities. We first outline a

behaviour model based on a well-known psychological model of human planning.

Drawing upon previous research, we also identify a set of believability criteria -

elements of agent behaviour which are of particular importance in determining the

“humanness” of its in-game appearance. We then detail a reinforcement-learning

approach to imitating the human player’s navigation of his environment, centred

upon his pursuit of items as strategic goals. In the subsequent section, we describe

the integration of this strategic system with a Bayesian mechanism for the imitation

of tactical and motion-modelling behaviours. Finally, we outline a model for the

imitation of reactive combat behaviours; specifically, weapon-selection and aiming.

 7

Experiments are presented in each case to demonstrate the imitative mechanisms’

ability to accurately reproduce observed behaviours.

Finally, we criticise the lack of any existing methodology to formally gauge the

believability of game agents, and observe that the few previous attempts have been

extremely ad-hoc and informal. We therefore propose a generalised approach to such

testing; the Bot-Oriented Turing Test (BOTT). This takes the form of an anonymous

online questionnaire, an accompanying protocol to which examiners should adhere,

and the formulation of a believability index which numerically expresses each agent’s

humanness as indicated by its observers, weighted by their experience and the

accuracy with which the agents were identified. To both validate the survey approach

and to determine the efficacy of our imitative models, we present a series of

experiments which use the believability test to evaluate our own imitation agents

against both human players and traditional artificial bots. We demonstrate that our

imitation agents perform substantially better than even a highly-regarded rule-based

agent, and indeed approach the believability of actual human players.

Some suggestions for future directions in our research, as well as a broader

discussion of open questions, conclude this thesis.

 8

Acknowledgements

Firstly, I’d like to thank Mark Humphrys for his supervision of my work; this thesis

would not have come to fruition without his advice and encouragement. Thanks also

to Alan Smeaton, who suggested that I apply for a PhD position in the first place. A

special thanks must also go to Christian Thurau and Christian Bauckhage of Bielefeld

University, with whom we enjoyed a very pleasant and productive collaboration over

the course of our research. I’m especially indebted to them for their hospitality during

my three-week stay at their campus, and for giving me the opportunity to discover

just how terrible I am at waterskiing.

Thanks to everyone in my family for their amazing support; particularly my parents

Ann and Barney and brother Conor, who managed to put up with me for the past four

years while somehow retaining their sanity. Finally, a big thank-you to all my

friends, both within and outside the college, for making the last few years so

enjoyable. I honestly did try to make a list of you all, but DCU’s guidelines are quite

strict about a thesis’ acknowledgements not being longer than its main findings; so

on the slim chance that you someday feel compelled to wade through the following

230 pages, please accept this extraordinarily lame group-thanks.

 9

1 Introduction

1.1 Introduction
This section provides a synopsis of the current state of AI in commercial computer

games, the traditional attitudes of academia towards games research, and the

potential advantages offered by machine- and imitation learning to both. We then

proceed to discuss a number of research questions, before outlining our own

contributions to the field under three distinct categories; theory (computational

models of imitation for games), implementation (an API for machine and imitation

learning in games) and evaluation (a rigorous testing procedure, designed to offer an

objective, cross-agent measurement of believability). A detailed overview of the

contents and organisation of this thesis concludes the chapter.

1.1.1 Publications

At the beginning of each chapter, we cite a number of our publications which are

relevant to the contents of that section. A full list of publications is provided in the

final chapter; see Section 6.1.1.

For further discussion of some topics covered in this chapter, see “Learning Human

Behavior from Analyzing Activities in Virtual Environments” (Bauckhage, Gorman et

al 2007), MMI-Interaktiv Journal, Nr. 12, April 2007, which addresses the role of

imitation learning in games from a cognitive perspective.

 10

1.2 Artificial Game Intelligence

1.2.1 Games Industry

Despite the exponential growth of the games industry in recent years, and the parallel

advance of academic artificial intelligence, the majority of computer games continue

to rely largely upon symbolic AI techniques which were developed several decades

ago [21, 24, 74, 91, 136]. Here, we briefly summarise the most common of these

constructs, and their role in commercial game AI.

Perhaps the single most prevalent structure in game AI is the finite-state machine

(FSM) [21], a concept dating from the Moore and Mealy machines of the 1950s [84,

89]. Favoured primarily due to their straightforward and logically intuitive design,

they consist of hardcoded rules which determine the actions of the computer NPCs

(non-player characters) for each potential state encountered during a game session.

Modern game FSMs generally possess highly complex topologies, and are thus

capable of producing a façade of intelligence adequate for their designers’ purposes,

but their limitations are obvious; the programmer must anticipate and correctly

account for every scenario which may plausibly unfold in the course of a game

session - a proposition which, given the complexity of current games, is increasingly

untenable. A common complaint among experienced gamesplayers are so-called

exploits - areas of the state-action space which the designers did not foresee, and in

which NPCs are therefore observed to act in a distinctly non-intelligent, often bizarre

manner [120]. A simplified first-person combat FSM is shown in Figure 1-1.

Another common technique in commercial game AI is scripting, or scripted

behaviours. Rather than hardcoding the NPCs’ intelligence into the game itself, many

games incorporate an interpreter and an accompanying high-level scripting language,

allowing designers to quickly prototype game objectives and enemy intelligence

semi-independently of the programmers [21, 102]. This approach serves to abstract

 11

and separate NPC intelligence from the game code; changes to the AI can be

implemented without necessitating a recompile of the entire game engine. Scripts can

also be used to implement FSMs or other more advanced AI constructs, thereby

providing a markedly greater degree of flexibility than FSMs alone. Nonetheless,

they remain largely equivalent - the programmer must still define a set of rules

accounting for as many in-game states as possible, however creatively these can be

combined at runtime. The main attraction of scripted behaviours for game companies

lies, instead, in the ease of development such a system provides; scripts can be used

to define AI, create movie-like cutscenes, determine character interactions, and

perform numerous other tasks, while the scripting engine itself can be re-used to

greatly expedite the development of subsequent games [21].

Figure 1-1 - A simple illustrative FSM for a first-person combat game

A third significant component of commercial AI concerns path-planning - NPCs

must naturally be capable of negotiating their virtual environments in a believable

and efficient manner. Often, computer characters navigate by means of a waypoint

map - a predefined graph whose edges represent legitimate, collision-free paths

between important positions in the game environment, referred to as nodes or

waypoints. The A* algorithm is heavily employed in commercial games to traverse

these environment graphs for the shortest path between the NPC’s current location

pursue enemy
within range

engage enemy

low health

find health

low ammo

find ammo

low ammo

change
weapon

full health

lfull ammo

lfull ammo

gun found

 12

and a desired goal node; in practice, a series of parallel “quick” and “full” path-

planning operations are often used to avoid disturbances in the gameplay experience

due to excessive processing time [103]. A variety of game-specific optimisations are

already employed in existing commercial products [103], and additional

improvements have been proposed in academia [121, 67]. More recently, some

researchers have demonstrated the effectiveness of probabilistic roadmaps for

pathfinding in virtual environments [93, 96], though industry has again shown little

inclination to adopt these advanced methods.

In large part, the computer game industry’s reluctance to embrace more recent

academic techniques can be attributed to their perceived inscrutability; programmers,

working under strict schedules and pressured to deliver ever more impressive visual

and audio experiences, are satisfied to implement shallow AI systems which can be

easily and directly examined, analysed and altered as necessary, without the tuning

required by more sophisticated techniques [21, 74]. There are some scattered

exceptions to this rule - games which do adopt machine-learning approaches in the

implementation of their AI. Lionhead Studio’s “Black & White” used neural

networks to control its NPC protagonist, while Codemasters’ “Colin McRae Rally 2”

used a similar approach to learn the ‘rails’ along which the computer-controlled

opponent vehicles should travel. Even these games, however, resorted to deliberative

approaches in more complex situations; Black & White used a BDI (Belief-Desire-

Intent) model to define the NPC’s actual goals and ranges of behaviour [33], while

Colin McRae used an FSM whenever the computer’s car was required to perform

manoeuvres such as overtaking a competitor [48]. Millennium Interactive’s game

“Creatures” used a genetic algorithm approach to evolve the behaviour of its

characters, devoting approximately 50% of its computational cycle to AI routines.

These games are, however, highly unrepresentative of the state of commercial game

intelligence as a whole; indeed, in the cases of both Black & White and Creatures,

their unique approach to AI was their entire raison d’être - the “gimmick” upon

 13

which they were publicised and sold. In most games, only 1-5% of processor time is

typically dedicated to AI [24].

The limitations of these AI techniques have, of course, a number of observable in-

game consequences for the human player. Since the actions of each agent are

generally determined in advance and endowed with only minimal flexibility, they

represent an expression of the designers’ expert knowledge - a top-down attempt to

approximate what the programmer thinks a human would do, by examining his own

decision-making processes - rather than an intelligence derived from practical

experience of the game world. As a result, such characters frequently exhibit

repetitive, mechanical or otherwise non-humanlike behaviour, particularly when

confronted with uncommon situations, and are often rendered ineffective by the

human player’s natural aptitude for pattern-recognition within a relatively short space

of time. This in turn gives rise to another problem regularly encountered by

gamesplayers - namely, that developers attempt to compensate for their NPCs’

limited intelligence not by implementing new and better approaches, but simply by

granting the computer-controlled protagonists abilities which defy the rules imposed

by the game upon its human players [21]. Sometimes this involves exploiting the

artificial players’ direct access to the underlying gamestate, allowing them - in

combat games, for instance - to determine the precise position and velocity of their

opponents and strike with pinpoint accuracy. On other occasions, the cheating is

more blatant; computer enemies in resource-management or real-time strategy games

may, for example, be able to construct buildings or vehicles at a faster rate than

human participants. In racing and sports games, opposing characters are often

observed to acquire an inexplicable burst of speed if they fall too far behind, a

phenomenon so common that it has entered gaming vernacular as “rubber-band AI”

[110]. Not only do such ‘shortcuts’ detract from the perception of these characters as

human, but they frequently lead to frustrating gameplay, as players find themselves

pitted against foes with speed, reflexes and accuracy far in excess of their own.

 14

Nonetheless, competent players are still capable of regularly defeating these

superhuman opponents, implying that approaches based on imitating human play

could ultimately produce both more humanlike and more challenging artificial

agents.

1.2.2 Academia

Despite a history of games-based research, including Tesauro’s TD-Gammon [125]

and IBM’s famous Deep Blue (which began as a research project at Carnegie Mellon

University [57]), academia has generally regarded commercial games as a distraction

from the serious business of AI, rather than as an opportunity to leverage this existing

domain to the advancement of our knowledge. Part of this has been caused by the

type of games typically used; while chess and its ilk provide a useful testbed for the

development of efficient searching and pruning techniques, they present problems to

which computers are inherently suited, and do not offer the potential that modern

commercial computer games do. Chess is, from the human perspective, a deeply

strategic game precisely because it requires skills in which humans are not naturally

adept; the manipulation and mechanical searching of large state trees. From the

computer’s perspective, on the other hand, the configuration of the chess board is

easily reducible to a matrix representation, the entire range of potential moves is

known, and a heuristic value can be applied to each subsequent configuration with

reasonable accuracy. Choosing the next moves therefore becomes an exercise in pure

number-crunching - or, as the developer of Deep Blue put it, “brute-force

computation has eclipsed humans in chess.” [55] Indeed, some now argue that work

in board-game AI has become so constrained that it not only does a disservice to the

promotion of games-based research in general, but is barely research at all [91].

In addition, such games bear little or no relevance to the real world, and it is thus

difficult to see how they can contribute significantly to an intelligence capable of the

 15

broad range and scope of human behaviour. One of the recent pioneers of academic

game AI, John Laird, argues that the field at large has become so fragmented,

concerned with the development of ever more specialised algorithms designed to

work in increasingly narrow problem domains, that the “holy grail” - the

development of an integrated human-level intelligence - has been all but forgotten

[74]. It is his contention, given the rich complexity of interactive computer game

environments and the fact that they are inherently designed to present problems

whose solutions require human reasoning abilities, that such games represent the

single best platform upon which to tie the various strands of AI research into a

cohesive whole and construct new models of artificial intelligence. Laird strongly

advocates the closer collaboration of academia and industry in pursuit of this goal,

while the games industry itself is beginning to realise the benefits such a partnership

could bring; development studios are hiring AI PhDs in increasing numbers [74], and

some experts predict that home games consoles of the near future may incorporate a

dedicated AI processor in the vein of the specialised graphics hardware present in

current systems [21]. All the industry needs, according to Laird, is for academia to

tell them what is required.

Due in large part to the work of Laird and some others - aided, most likely, by

increasing numbers of young computer scientists who have grown up playing games,

and who therefore recognise their potential - there has been a steady increase in the

volume of research utilising commercial games in recent years. Some illustrative

examples are presented here. Laird has himself produced extensive work on artificial

Quake 2 combat opponents using his SOAR architecture [74 - 78, 136], incorporating

over 800 hardcoded rules which operate by recursively deconstructing high-level

goals into a series of lower-level operations. Van Waveren [135] wrote a Master’s

thesis based on his development of an advanced Quake 3 agent; this employed

largely traditional game AI techniques, with its core intelligence consisting of a fuzzy

logic module and a highly complex FSM. He also proposed a novel approach to

 16

pathfinding using an interconnected network of collision-free 3D volumes, along

similar lines to the PVS (potentially visible set) visualisation data stored in the game

world’s geometry files. It is worth noting that Van Waveren was also the author of

the Quake 2 Gladiator bot [134], which we used as a comparator in our believability

experiments (see Chapter 5).

Notably, some contributions to academic game research have served to indirectly

reaffirm the criticisms of rule-based and traditional commercial AI enumerated

earlier in this chapter. Solinger et al [118], for instance, present a knowledge-based

approach to creating an agent in Microsoft’s “Combat Flight Simulator”. In

explaining their decision to use hardcoded rules for decision-making, they observe

that “the advantage… is that it is easy for people to understand the rules, which

makes analysing pilot behaviour much easier.” They proceed to describe the agent’s

difficulties when faced with unfamiliar situations, and foreshadow the increasingly

unmanageable rule-bases necessary to account for every scenario in modern

simulations: “the dogfight agent may fail when the human player is creative and

executes a manoeuvre that is unknown to the agent… the easiest way to overcome

this problem is to create more situations and rules in the reasoning parts of the

system.” Elsewhere, Norling and Sonenberg [94] designed an artificial Quake 2

player by interviewing expert human players, and incorporating their attitudes

towards strategic and tactical decision-making into a BDI framework. While their

work proved promising in its ability to reproduce the behaviours described by the

interviewees, this premise does evoke a number of obvious conceptual objections,

and again serves to clarify one of the difficulties raised earlier against top-down rule-

based systems in general - that such approaches add an extra layer of subjectivity

between the observable game world and the agent implementation. Instead of the

traditional game-AI scenario, wherein a programmer utilises his expert knowledge to

project how a human player would behave, Norling’s approach involves

programmers asking third-party experts to describe their reasoning processes, which

 17

are then approximated. Considering that games provide us with the ability to obtain

low-level data recordings of said reasoning processes in action, a more direct and

rigorous alternative to either of these approaches is surely possible.

1.2.3 Machine Learning

As indicated above, the growing interest in commercial computer games as a

legitimate area of research has nonetheless centred in large part upon rule-based or

similar systems, as are already common in industrial game AI. Recent years have,

however, also witnessed a number of contributions which apply machine learning

techniques to the problem of game AI. Graepel et al [44], for instance, induced a

customised agent to learn different combat styles (aggressive/evasive) in the one-on-

one martial arts game “Tao Feng”, by pitting an online reinforcement-learning

system against the game’s in-built AI. Bakkes and Spronck [9, 10] proposed a

symbiotic framework for allowing FSM-controlled characters in team-based games

to evolve co-operative intelligence, and demonstrated that it was capable of

counteracting the advanced FSM AI in iD Software’s “Quake 3: Team Arena”.

Björnsson et al [16] described a reinforcement learning approach to creature

intelligence in a basic mobile/PDA game, using the human controller’s feedback to

expedite convergence and to develop player-specific behaviour preferences. Spronck

et al [119] also used reinforcement learning to develop a dynamic scripting approach

to low-level NPC combat behaviours in the “Baldur’s Gate” role-playing game,

while Ponsen and Spronck [101] applied the same techniques to global game states in

the real-time strategy game “Wargus”. These approaches still, however, relied upon

rulebases of manually constructed state-action pairings; reinforcement learning was

simply used to progressively weight these rules according to their influence over the

agents’ subsequent successes or failures.

 18

Aside from general machine-learning approaches, there is another subdiscipline

which holds immense potential as a means of developing intelligent game AI. By

examining the manner in which gameplay sessions unfold, it becomes clear that a

wide variety of interesting approaches based on imitation learning - that is, the

automated acquisition of skills or behaviours via observation of an expert’s

demonstration - may be possible. Though prominently employed in robotics,

imitation learning has seen surprisingly little application in games-based AI, and is

scarcely represented in the literature. Before we discuss the research questions which

presented themselves in the course of our own work, and the contributions which we

have made to the field, it is worthwhile to consider some of the advantages which

computer games offer as research platforms for imitation learning.

1.2.4 Games as Imitation Research Platforms

Every day, millions of people play thousands of games both online and in LANs -

from frantic first-person shooters to intricate role-playing simulations to

contemplative traditional games like chess and bridge. Each time they do so, they

generate vast quantities of raw behavioural data; data which could be of enormous

use in the development of new and interesting approaches to artificial intelligence,

but which too often simply vanishes, its potential unrecognised, into the ether of the

internet. Fortunately for us, many serious gamesplayers routinely save and archive

their own matches for posterity; but this is only a tiny fraction of the data which

could be harvested, were a dedicated effort to be made at any LAN conference or

similar event of the kind shown in Figure 1-2. Aside from the volume of data

afforded to games-based researchers, there are a number of other advantages in using

games as an imitation-learning research platform - and indeed, for artificial

intelligence research in general. We outline some of these below.

 19

Figure 1-2 - The biannual DreamHack LAN gives some sense of the sheer volume of data
potentially available to games-based imitation researchers. Such events represent an
unrecognised and largely untapped resource. (Photo: DreamHack Winter 2007)

 20

In contrast to the fields of robotics and computer vision - wherein data is generally

derived using expensive motion-capture equipment, or by subjecting video sequences

to extensive analysis - many modern games allow the recording of entire sessions (in

the form of network traffic) to comprehensive data files with nothing more than a

single command. Training samples acquired in this manner are, furthermore - and

again, in contrast to the aforementioned disciplines - entirely devoid of noise; they

contain the exact locations of each participant and entity in the game world, their

motion, internal states and all external influences. There is, therefore, no need to

process the visual rendering of the game world as seen by the human player in order

to analyse his behaviour; employing games as an imitation-learning platform allows

us to essentially skip the considerable effort required for data acquisition in other

fields, and instead to focus solely on the task of developing cognitive models to

explain the encoded behaviours. Indeed, in cases where elements of the player’s

visual perception are required, it is possible to design models which recreate this

perception from the bottom up - that is, to build a noise-free reconstruction of the

player’s experience of the virtual environment from the low-level data representation.

This is precisely the approach we adopt in the development of our reactive imitation

system, detailed in Section 4.5.

Furthermore, as noted by several researchers [e.g. 13] and discussed in later sections

of this thesis, much of the robotics literature focuses primarily on the engineering

challenge of achieving realistic humanoid physical motion. Rather than limb

movement data or similar, however, recordings of gameplay sessions encode the

actual behaviours of human players under rapidly-changing conditions and against

opponents of comparative skill; in many ways, this represents a more attractive and

fertile domain for AI researchers. Games essentially provide closed environments

with well-defined, sophisticated sets of competing objectives - they can be viewed as

the human equivalent of a typical laboratory rat maze. The goal of imitation learning

 21

in computer games, expressed in its simplest form, is thus to construct models which

explain and accurately reproduce behaviours recorded as sequences of network

messages during human gameplay sessions, thereby 'reverse-engineering' the player's

decision-making process from its observed results.

A more general advantage of using games as research platforms is that they resemble

idealised robot navigation worlds. Much of the work in this field is centred upon the

elimination of noise in the robot’s environment [17, 72], whereas computer games

guarantee accurate, undistorted information. Furthermore, map editors for such

games are common, allowing the user to create any environment he desires with

minimal time and effort. By utilising appropriate games as testbeds, researchers can

thus easily prototype their navigation techniques without needing to account for

sensory or other complications, before later adapting them to the additional

constraints of the real world. In similar fashion, certain game genres represent a

relatively close abstraction of reality; thus, the mental competencies required to

negotiate the virtual environment are likely to be quite similar to those required for

real-world navigation. Games may therefore provide some interesting insights into

human spatial reasoning and related faculties.

To summarise: employing games as a platform for imitation-learning research gives

access to almost unlimited training samples, containing no noise or other artefacts,

and which encode human planning and decision-making behaviours of potentially far

greater interest than the limb-motion data typically found in robotic imitation. Some

of these issues will be recounted and further contextualised at relevant junctures over

the remainder of this thesis; further discussion of the advantages inherent in using

games as research platforms - more specifically, the first-person shooter genre - can

be found in Section 2.3.

 22

1.3 Contributions

1.3.1 Research Questions

The pursuit of imitation in games raises a number of immediate questions:

• what game genres are most suited to the task?

• how can we represent and parse demonstrations of human play?

• what behaviours are exhibited in the recorded data?

• how should the data be analysed and used?

• how can the believability and performance of agents be objectively measured?

• to what degree, and in what areas, can imitation replace rule-based techniques?

• can techniques developed to reproduce human behaviour in computer games be

applied in other fields? And if so, how?

In broader terms, how can human behavioural data, generated during interaction with

a computer game environment, be collected and used to implement artificial agents

which act in a similar manner? What testbed game(s) should be chosen to provide the

best balance between complexity of encoded behaviour, real-world applicability, and

ease of analysis? What techniques may prove useful in analysing the observation

data? And how can lessons learned from the development of these agents be applied

in other domains? Over the remainder of this and the following chapters, we propose

answers to each of these questions.

1.3.2 Contributions: Our Research

As mentioned earlier, one of the most striking observations to confront us in the

initial stages of this research was, simply, the lack of existing work. Our

contributions to the field of imitation learning in games therefore developed in a

somewhat linear manner, which can be summarised in three stages:

 23

1. THEORY: MODELS OF COMPUTATIONAL GAME IMITATION

Drawing upon biological evidence, approaches from the field of robotics, and

our own experience in computer games, we developed a number of imitative

models designed to learn and reproduce various aspects of observed human

behaviour. These mechanisms fall into three distinct subcategories, closely

mirroring a widely-used psychological model of human planning (see Section

2.2.1); strategic long-term behaviours, tactical medium-term behaviours, and

reactive short-term behaviours. Our models, and the experiments conducted

in order to validate each of them, are detailed in Chapter 4.

2. IMPLEMENTATION: A MACHINE-LEARNING API FOR GAMES

One major obstacle encountered early in our research was the lack of an API

that was suitable for our intended purposes. Existing development platforms

were incomplete and ad-hoc, often with scattered documentation and

unintuitive interfaces. Rather than writing a minimal library which provided

only the specific features we required - thus leaving future researchers in

exactly the same position in which we had found ourselves - we instead

decided to develop a comprehensive API, encompassing all the functionality

that students or researchers would require in order to conduct further work in

this field. While geared principally towards machine- and imitation learning,

it would also represent a platform for cognitive agent research in general. The

resulting QASE API, and details of its adoption by various universities at

both undergraduate and postgraduate level, is detailed in Chapter 3.

3. EVALUATION: THE BOT-ORIENTED TURING TEST (BOTT)

As noted above, we present statistical validations of the functionality of each

imitative model in their respective subchapters. However, given that one of

our aims was to demonstrate the capacity of imitation learning to produce

more believable game agents, this alone was not sufficient. We wished to

 24

further evaluate the “humanness” of our agents, as perceived by actual

observers. Here, we again ran into an obstacle; there was no rigorous means

of evaluating this quality in agents. Some minor investigations of

believability had been conducted, but these were invariably highly informal,

and certainly not appropriate for inter-agent comparison. We thus decided to

design a generalised approach to such testing, which we call the Bot-Oriented

Turing Test (BOTT). Our proposed system is detailed in Chapter 5; it consists

of an anonymous online questionnaire, a protocol to which examiners should

adhere in order to maintain the survey’s integrity, and the formulation of a

believability index which numerically expresses the respondents’ perception

of the agent, weighted by experience and the accuracy with which it was

identified. A series of experiments comparing our imitation agents against

actual human players and traditional rule-based agents served both to evaluate

our agents, and as a test-case for the believability survey itself.

1.3.3 Thesis Outline

Although our research conceptually followed the above progression, in practice we

naturally needed to build an API before we could effectively develop our imitative

models. In Chapter 3, we therefore describe the first of our contributions - the Quake

Agent Simulation Environment (QASE). We outline our motivations for developing

QASE, discussing both the shortcomings of existing APIs and the steps which we

have taken to circumvent them. We then describe QASE’s network layer, which acts

as an interface between the local AI routines and the Quake 2 server on which the

game environment is maintained, before detailing the API’s agent architecture. The

latter consists of a bot factory which allows agents to be created from any of several

levels of abstraction, together with a variety of data structures designed to provide

these agents with additional functionality, including the ability to supply the agent

with sensory data about its environment, the facilitation of high-level queries about

 25

the agent’s condition by transparently amalgamating low-level data, the ability to

record and parse demonstration of human gameplay, integration with the MatLab

programming environment, inbuilt AI constructs, and topology-learning / navigation

faculties drawn from our work in imitation learning. We conclude the chapter with a

discussion of QASE’s adoption by numerous universities as both an undergraduate

teaching tool and a research platform.

In Chapter 4, we describe a number of imitative mechanisms developed using QASE

and its MatLab integration facilities. We first outline a behaviour model based on

Hollnagel’s hierarchy of human planning [53], as discussed in Section 2.2.1.

Drawing upon previous investigations, we also identify a set of believability criteria -

elements of agent behaviour which are of particular importance in determining the

“humanness” of its in-game appearance. In Section 4.3, we then proceed to detail a

reinforcement-learning approach to the imitation of the human player’s navigation of

his environment, centred upon his pursuit of item pickups as strategic goals. This

involves the derivation of a topological environment map by clustering the set of

positions occupied by the player in the course of the game session, and drawing

edges between the resulting waypoints based on the player’s observed motion. We

then examine the relationship between the items currently possessed by the player

and his subsequent navigation routes, creating a system of rewards such that the

agent is drawn along similar paths. We augment this by considering two further

elements of human strategy; weighted pursuit of multiple parallel goals, and

recognition of object transience - a feature of Quake 2 games whereby items become

unavailable for a set period of time after collection. We show that this system is adept

at capturing the human’s program-level behaviour; in other words, the imitation

model has the capacity to identify and pursue the human’s goals, without necessarily

reproducing his precise actions at each timestep.

 26

In Section 4.4, we describe the integration of this strategic navigation system with a

Bayesian mechanism for the imitation of tactical motion-modelling behaviours. We

note that it is not sufficient for the agent to simply move along the ground in the

game world; it must often negotiate obstacles such as chasms, lifts, doors, etc in

order to reach its next goal. Motion-modelling provides the means to achieve this, as

well as reproducing the smooth aesthetic effects that typify a human player. Our

approach utilises the concept of action primitives - that is, aggregated representations

of similar actions performed at different times in different places. We sequence these

primitives using a heavily adapted version of Rao et al’s model of action sequencing

in human infants [106], which expresses the next action as a function of the agent’s

current state, next state and goal state - information which is supplied by the strategic

navigation system. We also propose a technique, which we call imitative keyframing,

to combine the consistency offered by absolute orientation primitives with the fine-

grain adjustments provided by relative values.

In Section 4.5, we outline a model for the imitation of reactive combat behaviours;

specifically, weapon-selection and aiming. Drawing upon previous work which

found that direct imitation produced excessively accurate aim, our approach was to

instead learn the inaccuracy of the human player’s aim. This consists both of

intentional inaccuracy, due to the player aiming ahead of the opponent in order to

compensate for the speed of his weapon’s projectiles, and unintentional inaccuracy,

due to straightforward human error. To model this, we first reconstruct the human

player’s visual perception of his opponent’s motion from the available low-level data,

and then use it to train a series of three expert networks; one to select the most

appropriate weapon, one to adjust the agent’s aim, and a third to determine whether

the agent should open fire. A number of interesting phenomena captured by the

imitative mechanism are then discussed.

 27

In each of the chapters listed above, we conducted experiments to provide a statistical

validation of the respective models’ functionality. This was, however, not sufficient

on its own; we also wished to ascertain the degree to which the imitation agent is

perceived as being “humanlike” by an actual observer. We note the lack of an

existing means of rigorously gauging the believability of game agents, the few

previous attempts having been extremely ad-hoc and informal; we therefore propose

a generalised approach to such testing in Chapter 5 - the Bot-Oriented Turing Test

(BOTT). This takes the form of an anonymous online questionnaire, an

accompanying protocol to which examiners should adhere, and the formulation of a

believability index which numerically expresses each agent’s humanness as indicated

by its observers. The protocol specifies certain steps which are necessary in order to

maintain the integrity of the survey. The survey itself first ascertains the experience

level of the respondent on a strictly defined scale, and proceeds to present him with a

series of test pages; once complete, the believability index for each category of clips

can be computed and compared. To both validate the survey approach and to

determine the efficacy of our imitative models, we then present a series of

experiments which used the believability test to evaluate our own agents against both

human players and traditional artificial bots. These tests demonstrate that our

imitative mechanisms are capable of producing agents which perform substantially

better than even highly-regarded FSM-based agents such as the Quake 2 Gladiator

bot [134], and indeed approach the believability of actual human players.

1.4 Conclusion

This chapter presented a discussion of the current attitudes towards computer game

AI research, from the perspectives of both industry and academia. We then outlined a

number of relevant research questions, and described our own contributions to the

field in three distinct categories; theory, implementation and evaluation. Finally, a

chapter-by-chapter overview of this thesis was provided.

 28

2 Imitation, Behaviour and AI

2.1 Introduction

In this chapter, we discuss the concept of imitation learning in greater detail, and

outline the various advantages it offers over more traditional artificial intelligence

techniques. We ground our later work in a discussion of the biological impetus for

learning by observation, demonstrating that imitation is a necessary component of

higher intelligence, that it is a neurologically-supported evolutionary development

rather than a learned behaviour, and that it is computationally explicable in terms of

forward and inverse models. We then proceed to describe the adaptation of these

biological precedents in the field of robotic imitation, highlighting specific

approaches which are relevant to our own research. Finally, we present an overview

of imitation as it applies to game AI, justify our choice of Quake 2 as an

experimental testbed with regard to other game genres, discuss the role of

believability- and performance-based metrics in our work, and formulate a simple but

illustrative computational model of imitation learning in games.

2.1.1 Publications

Some of the topics covered in this chapter are also discussed in “Learning Human

Behavior from Analyzing Activities in Virtual Environments” (Bauckhage, Gorman et

al 2007), MMI-Interaktiv Journal, Nr. 12, April 2007.

2.2 Imitation Learning

Imitation learning, as the name suggests, refers to an agent’s acquisition of skills or

behaviours by examining a demonstrator’s execution of a given task. In spite of some

 29

movement towards games-based machine-learning research, imitation has thus far

received surprisingly little attention as a means to enhance the believability of game

agents. Perhaps even more perplexing is the converse; that the academic AI

community has neglected computer games as a platform for driving imitation

learning research. Considering their obvious suitability for the purpose - as will be

discussed in greater detail later - this dearth of previous work is quite inexplicable; it

is readily apparent that the potential benefits, both to the games industry and to

academia, are immense.

In contrast to the lack of existing games-based imitation learning research, imitation

is heavily employed in the field of robotics, and has amassed a significant literature.

As with our own work, robotic imitation is grounded - insofar as is possible - in

biological precedent, drawing upon several strands of psychology, neurology and

behavioural science. It is therefore instructive to examine some of the approaches

which have been developed by roboticists, in order both to appreciate the advantages

offered by employing computer games as one’s research platform, and to examine

these techniques for possible adaptation in our own work. In the following sections,

we provide a brief overview of imitation learning as it is understood in nature and

applied in robotics, before further discussing the potential roles for imitation research

in computer games, and vice-versa.

2.2.1 Biological Imitation

2.2.1.1 Imitation and Mimicry in Infants and Animals

There is much evidence from the fields of ethology, neuroscience, psychology and

linguistics to suggest that imitation is an important component of higher intelligence.

These disciplines have long been interested in the imitation of movements,

vocalisations and behaviours; George Romanes [109] proposed a scale of imitative

 30

abilities among different animal species as long ago as 1884, and his ideas attracted

the attention of researchers for several decades afterwards [e.g. 126, 128]. In one of

the most well-known studies of imitation in children, Jean Piaget [100] argued that

humans develop their imitative capacities in a progressive manner. Infants, he

claimed, are capable only of copying actions within their immediate perceptual field

and of the same sensory modality (for instance, hand gestures where the child's own

hand is also visible). Cross-modal imitation requiring proprioceptive information,

such as the replication of facial expressions, follows after the first year of

development, while deferred imitation - the ability to mentally retain observed

actions, and reproduce them when the demonstrator is no longer present - does not

emerge until 18 to 24 months [27]. Since Piaget considered the immediate aping of

behaviours to be insignificant, and argued that true, deferred replication was a

learned ability, the study of imitation as a form of intelligence became somewhat

stigmatised. It remained so until the 1970s, when investigations by Meltzoff and

Moore found that human neonates between 12 and 21 days of age are capable of

imitating both facial and manual gestures [86]. As this could not be explained by

conditioned mechanisms, they concluded that it was an innate faculty, contradicting

Piaget’s earlier findings. Subsequent results showed that even babies less than an

hour old were capable of imitation, and went so far as to imply that infants devote

most of their time to duplicating behaviours. Based on these observations, they

proposed the “Active Intermodal Mapping” model [85], which posits that infants use

their visual perception of a demonstrator's state as a target against which to direct

their own body states, perceived proprioceptively. This subsequently formed the

foundation of Demiris and Hayes’ model of passive robot imitation [26], as will be

discussed later. Today, psychologists regard imitation as being central to a child’s

development of symbolisation and representational skills.

With interest in the mechanisms and significance of imitation galvanised, further

studies showed that many other animals are incapable of learning in this way,

 31

reinforcing the view that imitation is indicative of higher intelligence. Indeed,

humans are now considered the only species capable of imitation as opposed to

mimicry - that is, the capacity to acquire and develop novel motor skills which are not

already part of their repertoire, through observation [3]. Billard [13], in a useful

primer on biological imitation and its relevance to robotics, distinguishes a number of

different forms of pseudo-imitation. Simple copying, as seen in species such as rats

and monkeys, refers to actions which are learned associatively and reproduced when

the animal is placed in the same social context as that wherein the behaviour was

originally observed. Copying of this kind is viewed as an example of social

facilitation; the animals demonstrate the ability to reproduce the correct behaviour

even when provided with incomplete contextual cues. More complex mimicry is

observed in species such as apes and dolphins - these animals are capable of

mastering sequences of manipulations, distinguishable from straightforward copying

by the animals' ability to reproduce isolated subsections of (or variations upon) the

imitated behaviours in contexts other than those in which they were learned.

Dolphins also exhibit the comparatively sophisticated ability to map heterologous

body structures to their own; for instance, they are capable of replicating a human

demonstrator's limb movements using their fins and tails. Orca calves learn to catch

prey by intentionally beaching themselves through a combination of mimicry and

direct teaching from their parents [98].

2.2.1.2 Human Imitation and Internal Models

The most complex imitative faculties - facilitating what is generally termed true

imitation - are exhibited by humans. Human imitation diverges from animal mimicry

principally in that the range of imitative abilities we possess requires a theory of

mind; that is, the ability to impute beliefs, desires and intentions to others. Human

imitation has the capacity to abstract observed motions, parameterising them during

 32

reproduction based on the contextual goal or intent of the imitator - the same motion

can, for instance, be optimised for aesthetic appearance (as in dance), efficiency (as

in sports) or precision (as in surgery) [13]. Human imitation also extends to verbal

and facial expressions, and an innate ability to recognise gestures; observers can

deduce actions from minimalistic point-light representations of the actor's

extremities, and distinguish both general and specific features of the demonstrated

movement (e.g. the weight of a lifted object).

Our ability to deduce complex movements from even such minimal visual cues

strongly suggests that the brain maintains an internal representation of the human

body’s kinematics and ranges of possible motion; that the central nervous system

employs forward and inverse model to predict the outcome of observed or replicated

motor commands. This topic is discussed in greater detail in e.g. Wolpert et al [139],

wherein the authors note that fast, co-ordinated limb movements cannot be controlled

by sensory feedback mechanisms alone, since the relatively significant delay incurred

by sensory processing, sensory-motor coupling and motor execution renders such a

real-time control system implausible. They instead suggest that the cerebellum acts as

a form of Smith Predictor; in other words, that the brain maintains separate forward

models of limb dynamics and of the transport delays involved in sensory afference.

The former produces a prediction of the limb's next state given the execution of a

motor command, and this state output is then transformed by the delay model, in

order to generate a final estimate of the sensory information as it is expected to

subsequently arrive. Any discrepancies between the estimated state and the actual

sensory feedback are then used to correct the actor's movement, and to refine the

predictive models.

Furthermore, they note that the sheer number of contexts under which humans

operate, and the variety of environmental variables involved even in simple actions,

 33

precludes the possibility that the brain relies upon a single controller capable of

encapsulating every such scenario. Instead, they posit a modularised system of paired

models [138]. Each module consists of a forward model which captures a particular

behaviour, and an inverse model controller which generates the motor command

necessary to enact that behaviour. A responsibility estimator determines the degree to

which each module's forward model accounts for the current context; each inverse

model then contributes proportionally in producing the final efferent motor

command. Errors between the predicted and observed states are propagated back to

the modules based on their respective contributions, and the inverse models adjusted

accordingly. Johnson and Demiris [66] propose a similar approach; here, however, a

hierarchy of coupled forward and inverse models is employed instead of a parallel

collection of modules. Abstract action representations generated at the topmost levels

percolate downwards through the model’s strata, where successive constraints are

applied to produce progressively more specific actions; finally, the lowest level

outputs an actual motor command. Johnson and Demiris explicitly present this model

as a computational representation of the mirror neuron system, as is discussed in the

following section.

A similar system of dividing responsibility proportionally across all known contexts

is employed as part of our own strategic imitation framework; see Section 4.3.6.

2.2.1.3 Mirror Neurons, Imitation and Language

The ability of even newborn infants to accurately map perception onto action implied

that certain areas of the brain are optimised for the task of imitation. This intuition

was substantiated by Rizzolatti, Gallese et al [39] with the discovery of so-called

mirror neurons in macaque primates, which were found to activate during both the

observation of certain behaviours in other individuals and their own execution of

related actions. The presence of a similar system in the human brain was confirmed

 34

by Fadiga et al [34], who used magnetic stimulation to show that areas of the

premotor cortex controlling the muscles involved in performing a given action also

become excited when the subject witnesses a demonstration thereof. Subsequent

investigations using PET scans served to clarify the specific pathways which

activated during observation of a grasping motion, replication of the same action, and

even when the subject imagines himself doing so [45, 107]. These studies also

revealed some interesting aspects regarding the manner in which motor tasks are

represented and executed. Some mirror neurons, for instance, were observed to only

‘recognise’ actions with highly specific features (e.g. when an object was held in a

configuration using the thumb and index finger), while certain related brain regions

appear to predict potential interactions with objects in the near future from sensory

cues, such as the different ways in which an item can be grasped by the hand

(“grasping affordances” [4]). These results, among others, strongly suggest that the

brain’s perceptual and motor systems share a common representational substrate; that

they are designed in a manner which lends itself perfectly to the task of imitation.

Billard [13] notes that further evidence for the existence of a human mirror system

can be found in brain lesion studies. Patients who have suffered lesions on their

parietal lobes sometimes develop an inability to make gestures or use objects in

response to an oral command (ideomotor apraxia). These patients are also

occasionally unable to recognise gestures from a photograph or video, suggesting that

the role of the parietal lobe in imitation is to translate the mental representation of a

movement into actual motor commands. Patients who suffer lesions on the frontal

lobe, by contrast, sometimes exhibit compulsive imitative behaviour; they are able to

stop such imitation only with considerable effort. This strongly implies the existence

of a neural subcircuit which continually processes visual information by activating

the motor patterns responsible for producing the same movements - that is, a mirror

neuron system - which is modulated and inhibited by the frontal lobe.

 35

Billard further observes that our aptitude for imitation - the capacity to recognise and

project others' states to our own - also provides a powerful mechanism for advanced

social cognition, endowing us with the ability to infer others' intentions and even to

estimate, manipulate or deceive their mental states. Indeed, there is substantial

evidence that imitative abilities may have underpinned the evolution of the most

complex human social interaction - language. Debate on this question has largely

centred, over the past several decades, upon two contrasting views of language

development [14]: the nativist approach, which holds that humans possess innate,

biologically “hardwired” language-learning faculties independent of other cognitive

skills, and that evolution has produced a universal grammar underlying all

languages; and the non-nativist, which proposes that the ability of infants to rapidly

learn their native tongue is a function of general cognitive learning processes applied

to a specific task. Nativists point to the fact that infants master language at a far

greater rate than is possible through simple association, while non-nativists stress the

importance of both egocentric mental development and external social/behavioural

cues - learned primarily through imitation - in the process of language learning. In

recent years, however, mirror neurons have provided some compelling neurological

basis for the latter view.

Rizzolatti and Arbib [108] note that the F5 area of the macaque brain - where mirror

neurons were originally discovered, and which exerts control over orofacial actions -

is generally accepted as being homologous with Broca’s region in the human brain,

which is responsible for syntactical processing, plays a partial role in comprehension,

and controls the motor functions necessary for speech production. They observe that

Broca’s area is also involved in the execution of hand and arm gestures, and in the

mental imagining of same. Given the concentration of mimetic, linguistic and

specific motor faculties in this region, and drawing upon studies of animal

communication, they propose that speech developed as a consequence of the mirror

system’s progressive evolution. First, they argue, we developed the ability to

 36

communicate via imitative facial cues, as is still observed in apes and monkeys - as

well as humans - today. This highly limited form of one-to-one communication was

later complemented by manual gestures, allowing for a dramatically wider range of

expression and combinatorial possibilities; third parties, be they objects or other

individuals, could now be referenced and described via vocal utterances. Through

repetition and imitation, these vocalisations gradually assumed semantic and

symbolic meaning, forming the basis of a simple vocabulary. Rizzolatti and Arbib

thus posit that the emergence of Broca’s area and its speech-related faculties from an

F5-like precursor, and the concomitant migration of vocalisation control from the

primitive brain-stem structures still employed by present-day animals to the higher

brain, was driven by the increasing necessity for integration of laryngeal motor

control, mirror properties, and close association with the adjacent premotor cortex as

prerequisites for spoken language.

2.2.1.4 Motor Primitives

Some years before the discovery of mirror neurons, it had been found that by

stimulating specific areas of a frog’s spine, complete movement behaviours such as

reaching or grasping could be generated; these could be further combined to form

more complex movement sequences [43]. Since stimulation of similar areas of the

spine in different frogs produced the same results, it was inferred that these were a

phylogenetic rather than an ontogenetic feature. From these investigations, the notion

of movement primitives developed - a comparatively small set of combinatorial motor

programs which represent a substrate of autonomous behaviour. Rizzolatti &

Gallese’s paper [39] served to provide some further neurological corroboration of

this concept, and clarified its relevance to imitation; they observed that certain mirror

neurons became inactive when a task demonstration finished, whereas others

remained active for a short while thereafter. Demiris [28], in presenting a

computational model of the mirror neuron system, proposes that this phenomenon be

 37

interpreted within the context of composite behaviours - that while a behaviour X

(which we may view as an action primitive) becomes dormant upon completion, a

behaviour X* whose initial step is X will remain active, since it is still capable of

generating predictions about the demonstrator’s future states. Thoroughman &

Shadmehr [127] found indications that the human brain uses similar primitives to

generate action sequences, since this approach significantly reduces the parameters

which need to be learned in order to produce complete movement behaviours.

As will be discussed later, the concept of motor primitives has received significant

attention in robotic imitation, and we have successfully adapted it for use in our own

work (see Section 4.4.2).

2.2.1.5 Ethology

The field of behavioural science also provides a number of models which are of use

in artificial imitation. For instance, Schaal [113] proposes a number of concepts

derived from cognitive studies of imitation which suggest promising directions for

agent learning and control. Emulation, where the actions of others serve to make

goals in the environment more overt, may provide a basis for learning how to direct

an agent towards favourable objectives. An approach based on priming, where

environmental stimuli co-occur with the demonstration and increase the observer’s

recollection - such as Pavlov’s famous salivating dog experiment - could be used to

bias an agent’s exploration towards similar stimuli. Hollnagel’s COCOM (Contextual

Control Model) [53, Figure 2-1], which describes a person’s actions as a function of

his situational context and available information, is often employed to analyse human

behaviour [132]; as will be discussed later, an adapted version of this model was

instrumental in the development of our own imitative mechanisms (see Section 4.2).

Elsewhere, drawing upon their investigations of learning and co-operation in

primates, Byrne and Russon [20] propose a two-level hierarchy based on differing

 38

degrees of imitative abstraction. At the higher level, program imitation involves

replicating the structural organisation of a complex process, while the low-level

actions required to perform the task are learned independently; action level imitation,

by contrast, involves the verbatim reproduction of observed actions. Atkeson and

Schaal [8], in their adaptation of this model for robotic imitation, note that true

action-level emulation requires full knowledge of the teacher’s internal state, which

is not feasible in most scenarios; they therefore propose an intermediate level, task

imitation, whereby actions are abstracted from the internal state to an observable co-

ordinate frame (for instance, the velocity of a demonstrator’s hand). Again, the

concepts of and distinction between program-level and task/action level imitation

played an important role in our own work - our strategic navigation system is

designed to capture the goal-oriented, program-level behaviour of the human player,

while our tactical motion-modelling system uses the computer-game equivalent of

both action-level and task-level motor commands (see Sections 4.3.2 and 4.4.3.4).

Figure 2-1 - Hollnagel's COCOM [53], the hierarchy of imitation proposed by Bryne and Russon

[20], Atkeson and Schaal’s distinction between task- and action-level imitation [8], and the

correspondence between their respective layers in terms of planning. We use an adaptation of

COCOM in our investigations (see Section 4.2 for further details).

 39

2.2.2 Application in Robotics

Given the compelling biological basis outlined above, it is little wonder that

researchers in the field of robotics have turned towards imitation techniques as a

powerful means of “bootstrapping” the intelligence of their machines. In this section,

we present an overview of some of the more common techniques in robotic imitation,

and discuss their applicability to imitation learning in games.

2.2.2.1 Motivation

Robot programming at large can be broadly divided into three approaches; human

programming, where the human simply writes the sequential program which the

robot will execute, reinforcement learning [2, 69], where the robot is provided with a

reward signal or optimization criterion and learns to perform a task through repeated

attempts, and programming by demonstration or imitation learning, where the robot

is shown a task a number of times and attempts to reproduce the observed action

[95]. The first option is obviously extremely labour-intensive, and results in robots

which can perform a limited repertoire of actions with a high degree of competence,

but cannot generalise or learn new skills. The Honda humanoid robot [52], which

utilises this hard-coding of behaviours, took a decade to develop; it is capable of

locomotion and basic object manipulation, but requires direct human instruction to

perform more complex tasks.

To alleviate the need for direct programming, reinforcement learning has been

widely employed to the problem of extrapolating control policies for simple robots.

Learning proceeds by exploring each action in every state, observing the reward

received, and updating an evaluation function which assigns expected rewards to

possible actions. However, as the complexity of these machines increases, there is an

exponential explosion in the number of actions which can be taken in each state. The

 40

Honda robot, for instance, has a total of 30 degrees of freedom - even if each of these

could only take the values forward, backward or stop on each timestep, this would

still result in 330 possible actions per state [113], which is an impossibly large space

to search. A method of reducing such massive searches to a more manageable scale is

required; imitation learning provides a means to this end.

Demiris and Hayes [27], in describing their own imitative model, give a concise

summary of some of the main advantages offered by imitation learning:

• imitation provides the ability to cope with dynamic environments, where

preprogrammed knowledge is unavailable or may become obsolete

• it increases the robot or agent’s ability to cope with changes in their own state

• it reduces the cost of programming for specific tasks, and expedites learning

as compared to a purely reinforcement-based approach

• imitation provides an impetus for the integration of multiple component

technologies, a theme echoed by Laird in his arguments that games represent

an ideal platform for the development of broad human-level intelligence.

The primary advantage of using imitation as the foundation of learning is that it can

dramatically reduce the state-action space which must be considered, by focussing

attention on areas which are actually relevant to the task at hand [7, 8, 113]. To build

on the example above, a classic reinforcement learning agent may need to interact

with its environment for a protracted period of time, or acquire an extremely large

number of state-action samples, in order to obtain sufficient knowledge of its task to

ensure that its policy converges towards the optimal [2, 69]. If the desired behaviour

is first demonstrated by an expert, however, then the observed policy can be used to

guide the agent’s behaviour towards that goal. Cottrell et al [25] describe two

approaches to reinforcement-based imitation using Q-learning [69], employing the

concepts of action biasing and estimated policy exploration. The former uses a

 41

modified ε -greedy policy - that is, a policy which selects a random action with

probability ε instead of the current best-known action, to guard against local

maxima - by weighting actions based on the number of times the observer was seen

to take them; the weights decay over time, causing the expert’s influence to lessen as

the learner gains experience, and ultimately converging to a simple ε -greedy policy.

Estimated policy exploration involves making a maximum-likelihood estimation of

the demonstrator’s policy, and choosing actions probabilistically according to this; an

imitation rate is used to specify the probability with which the learner uses the

expert’s policy as opposed to its own default policy, and again this decays over time.

Using these techniques, Cottrell demonstrates the effectiveness of imitation Q-

learning over exploration by training reinforcement agents to play the game “Pong”.

Similar hybrid systems, which combine the benefits of both imitation learning and

classic reinforcement techniques, have gained increasing popularity in recent years.

These typically use imitation to rapidly bring the robot to a reasonable level of

competence, and then refine its performance using direct reinforcement approaches

which utilise task-specific expert knowledge [113]. The difference between this and

our own work lies primarily in the fact that imitation in robotics is generally used as a

means to drive convergence towards optimal performance of a known task, whereas

we are faced with the problem of deducing uncertain relationships between the

player’s state and subsequent behaviour from recorded data, and are just as interested

- indeed, in many cases more interested - in the various idiosyncratic suboptimalities

inherent in human behaviour (see Section 2.3.3 for a more detailed discussion).

Imitation can be further classified as either passive or active [26]; under the former

approach, the learner perceives the environment and the demonstrated action,

recognises it, and later attempts to reproduce it, while active imitation involves the

learner internally generating and testing a series of candidate matching actions during

demonstration. The passive imitation model is based very closely on Meltzoff and

Moore’s Active Intermodal Mapping, mentioned earlier [85].

 42

2.2.2.2 Computational Formalisation and Imitation Paradigms

Schaal [112] offers a computational statement of imitation learning in robots. Motor

control, he observes, requires that commands of the appropriate magnitude be issued

at the correct time in response to both internal and external stimuli, with a specified

behavioural objective. Formally, this involves finding a control policy π such that:

),),(()(απ ttztu =

where u is the vector of motor commands, z is the vector of relevant internal and

external states, and α is the set of parameters which need to be adjusted, e.g. the

weights of a neural network. Secondly, he defines a generalised evaluation function

which specifies the level of success achieved by an imitator:

)),(),((ttutzgJ =

He notes that defining J for each particular imitative task is a complex problem. For

instance, should the evaluation be strictly goal-based - that is, J is small if the

imitator successfully grasps an object - or should the metric require that the specifics

of the behaviour - the precise pose and manner in which the object was grasped - also

be replicated? As part of our work, we will in later sections provide a computational

formalisation tailored to the requirements of games-based imitation learning, and

propose approaches to both numerical and perceptual evaluation of imitative agents.

Beyond this generalised formalisation of imitation learning, a number of different

paradigms can be identified within the robotic imitation literature. Early

investigations centred upon symbolic imitation, and relied largely upon FSM-like

deliberative processes; as the field evolved and more modern techniques were

adapted for imitative purposes, control-based and statistical approaches began to

emerge, though the choice of paradigm in even contemporary research depends

largely upon the specifics of the task at hand. Even more recently, biological models

 43

have been proposed, which seek to emulate the imitative functions of the human

brain at a comparatively low level, drawing heavily upon the neurological and

behavioural precedents discussed in the previous section. These aim to produce more

general, less task-oriented imitative models; other researchers continue to focus on

the goal of high-level demonstration learning, abstracting away from biological

fidelity. The following sections outline these differing approaches, and provide

examples of how imitation is carried out in each.

2.2.2.3 Symbolic Imitation

Symbolic imitation, as the name implies, involves constructing a symbolic

representation of the environment, analysing the observed actions in terms of

subgoals, and deriving a series of if-then rules. Prevalent during the early phases of

robotic imitation-learning research in the 1980s, early efforts commonly involved

physically pushing a robot through a movement sequence in order to proprioceptively

extract the ruleset [112] or utilising industrial robots to perform demonstrated tasks

[113]. In the latter case, the demonstrator would remotely operate a robotic

appendage, recording sensor information regarding its orientation, position, velocity,

etc; the example movements were then manually segmented into subgoals and state-

action transitions, and finally consolidated into graph-based representations - that is,

FSMs. Despite refinements such as robots capable of processing visual information

or data-glove input, many approaches to imitation are still based upon similar

symbolic techniques [112]; Kuniyoshi et al [73], for instance, use symbolic methods

to teach a robot various block-assembly tasks by visual demonstration, while Demiris

and Hayes [51] train an apprentice robot to negotiate a simple maze by following an

expert robot and constructing a symbolic representation of its actions. Figure 2-2, a

diagram of their experiment, serves as a typical example of symbolic imitation.

Although symbolic reasoning of this kind is widely employed in imitation, it remains

a comparatively laborious process, and the benefits of learning by demonstration are

 44

attenuated somewhat by the necessity for manual interpretation of the observed data -

indeed, as detailed earlier, finite-state machines are precisely what we wish to avoid

in our own work. In addition, many tasks are difficult to describe in purely symbolic

terms [113]. While relations such as move_forward or above(boxA, boxB)

are easily captured, how does one describe the dynamics of a tennis serve in such

neat language? For these reasons, research into non-symbolic imitation techniques

has become increasingly prevalent.

Figure 2-2 - An example of symbolic imitation learning, as presented by Demiris and Hayes [51]

2.2.2.4 Control-Based Imitation

Control-based imitation despatches with the need for a symbolic parsing of perceived

actions. Here, the control policy is specified in advance - often as a predictive

forward model - and the observation data is simply used to derive the parameters it

requires; the demonstrator’s role is thus to shape the behaviour of the control system.

Atkeson and Schaal [7, 8], for instance, use prior knowledge of point-mass physics to

learn a model from a single demonstration of the swing-up problem, where the robot

 45

must swing a pendulum from the inert position to vertical and balance it at that point.

They found that direct imitation fails due to unavoidable physical constraints, but by

learning the task-level intent of the demonstrator and using his initial trajectory to

seed an optimization process, the robot was able to adapt to the task after a number of

trials. Amit and Mataric [3] present a hierarchical architecture which abstracts

observation data from a series of forward-inverse control models at the lowest level

to a probabilistic framework of sequence learners at the top. Grudic and Lawrence

[46] describe an experiment wherein a robot apprentice equipped with a camera

learns to mimic the behaviour of a human-controlled demonstrator robot; they

accomplish this by approximating the multidimensional mapping from raw 1024-

pixel input images to actuator outputs as the sum of a cascade of 2-dimensional

functions, and show the ability of this approach to generalise from a small training

set in the presence of considerable noise. Schaal [114] employs a system of nonlinear

differential equations to describe the actions of a humanoid robot swinging a tennis

racquet; demonstration data is then used to learn a set of local parameters for the

control model (see Figure 2-3). Nakanishi et al [90] use a similar approach to

reproduce humanlike biped locomotion, and succeed in improving upon the “bent

knee” posture typically generated by standard walking algorithms.

Control-based approaches to the problem of imitation, while efficient in cases where

the desired behaviour can be naturally modelled as a parameterised function, again

prove difficult to apply in instances where the agent is required to reproduce a

broader range of behaviours, or when insufficient information is available to allow an

a priori specification of the control policy. In our case, it is clearly not feasible to

describe the complex behaviours exhibited by humans during play as a set of

formulae; indeed, it is the goal of our research to derive a control policy based on

observation, rather than imposing one in advance. For this reason, approaches based

on statistical analysis of the demonstration data would seem to be the best choice for

imitation in games.

 46

Figure 2-3 - Schaal's tennis-swing demonstration and the associated control model, as described

in [114]. Note that the model parameters obtained from demonstration are termed movement

primitives; this concept is discussed in Section 2.2.2.7.

 47

2.2.2.5 Statistical Imitation

Statistical approaches to imitation learning do not assume an a priori control model;

instead, they attempt to match perception and action based on statistical analysis of

the observation data. Dillman et al [29], for example, use fuzzy clustering and an

automated segmentation algorithm to learn the hand trajectories of a human

performing simple pick-up-set-down and peg-into-hole tasks, and employ radial-

basis networks to reduce the perception and action spaces to those components which

were relevant during demonstration. Mataric, Jenkins, Fod et al [37, 60-65] use

various segmentation, dimension-reduction and clustering techniques to automate the

derivation of movement sequences from human performance data - see Section

2.2.2.7 for a further discussion of their experiments with motor primitives. Statistical

imitation learning has even been used to transfer skills from human experts to lesser-

skilled human apprentices; Nechyba and Xu [92] train neural networks to learn the

responses of individuals who successfully complete a virtual simulation of the pole-

balancing problem, and use these networks to provide real-time advice to others who

were unable to perform the task unassisted.

Given its lack of reliance upon expert knowledge, predefined models or manual

processing, we concentrate on statistical approaches in our own work.

2.2.2.6 Biological Models

Over the past few years, an increasing number of contributions have sought to

develop artificial models of the cognitive processes which endow humans with their

imitative faculties, by employing as little abstraction from the original biological

systems as is feasible. Billard [13] defines three progressive levels of modelling for

imitation learning:

 48

• theoretical modelling - deriving conceptual models of the cognitive

mechanisms behind imitation, based primarily on behavioural studies;

• computational modelling - constructing models corresponding to the brain

areas and neural processes involved in these cognitive mechanisms, thereby

providing an explicit functional description of the computation required for

each form of imitation; and

• robotic modelling - designing hardware-implementable algorithms to realise

the computational models.

Billard criticises the fact that much of the robotic literature concentrates almost

exclusively on the engineering challenges inherent in designing machines with

humanlike ranges of motion, realising their imitative faculties by simply recording

the movements of the demonstrator’s limbs as a series of torques and angular

displacements, and utilising straightforward planning techniques to reproduce them.

Herein lies something of a philosophical parallel with our own work; we have

already noted that commercial games, often to their detriment, continue to employ

simplistic approaches to artificial intelligence, and have observed that games - by

virtue of providing detailed recordings of human cognitive and decision-making

processes in operation, as opposed to mechanical limb data - are in some ways a more

interesting platform than traditional robotic imitation learning. Billard argues that the

objective of computational and robotic modelling should instead be to investigate the

relationship between neurological studies and the imitative faculties we observe both

in ourselves and in other animals; in other words, to establish the means by which

various neurological phenomena contribute to high-level imitative function.

Biological models of imitation have, understandably, drawn heavily upon mirror

neurons for their inspiration, since these represent the most compelling explanation

for our imitative capabilities. Demiris [28] proposes a model of the mirror neuron

system comprising a dual route structure; a generative route which uses a forward

 49

model to make predictions about the next state of the system (i.e. the robot’s body),

and a learning route which activates if the demonstrated behaviour is unknown to the

imitator. A behaviour controller - basically an inverse model - is used to produce the

motor commands required to move the robot from one pose to another. In keeping

with its biological foundation, the same system is capable of both executing a

sequence of behaviours - by inputting its current state to the behaviour module and

generating an estimate of the next state, against which the eventual afferent state can

be compared - and of imitating actions, by inputting the demonstrator’s perceived

state instead of its own. Johnson and Demiris [66] subsequently extended this

concept by arranging multiple instances of the system in a hierarchical manner,

improving the accuracy of imitated behaviours by successively specialising candidate

actions as they pass from more abstract graph-based representations at the higher

levels to executable motor commands at the lowest. Oztop and Arbib [97] incorporate

both mirror neurons and other brain areas necessary for the realisation of grasping

motor behaviours in their MSN1 model (see Figure 2-4). They demonstrate, using a

virtual arm simulation, that it is capable of learning a variety of such actions

(precision grasping, power grasping and side-grasping) from visual demonstrations

of a human performing the same manoeuvres, using the concept of grasp affordances

- that is, the subconscious computation from sensory cues of the potential means of

manual interaction with an object - discussed in the previous section.

Elsewhere, Billard [15] describes a model composed of interconnected modules

which are explicitly designed to emulate specific regions of the central nervous

system, following the same neural functional decomposition as found in primates.

These modules are responsible for visual processing (the temporal cortex module),

motor control (the primary motor cortex and the spinal cord) and learning (the

cerebellum and premotor cortex modules, in the latter of which resides an

implementation of the mirror-neuron system). Billard notes that - with the exception

of the spinal cord module - the internal construction of each module does not

 50

precisely duplicate that of the corresponding brain area; the model’s biological

component instead lies in its modular division, the manner in which said modules are

connected, and the fact that each module does implement the relevant high-level

functions of the corresponding brain regions, using abstract neurons as building

blocks. Billard demonstrates that this model - though prone to low-amplitude and

incorrectly-paced reproductions of the demonstrator’s behaviour - has the capacity to

imitate repeating patterns such as walking and dancing, can learn the movements of

any limb, captures precise manipulations of the extremities, and is capable of using

video data of a live human performance as its input.

There is one further biologically-inspired technique which has received sufficient

attention - even in otherwise abstract, non-biological models - to warrant some

additional discussion; namely, movement primitives. In the following section we

discuss this concept, its ramifications, and its relevance to our own work

Figure 2-4 - The MNS1 model for imitation of grasping behaviours proposed by Oztop and
Arbib, illustrating how biologically-inspired models of imitation seek to achieve the minimal
possible deviation from natural systems.

 51

2.2.2.7 Movement Primitives

Movement primitives, variously known as motor primitives, action units, and motor

schemas, are a basis set of modularised motor programs which are sufficient, through

combination operators, for generating entire movement repertoires [37]. Though

clearly a biological model insofar as it draws upon evidence of similar schemas in

humans and animals (see Section 2.2.1.4), approaches to the derivation and

application of motor primitives span all three of the paradigms mentioned in the

previous sections; a motor primitive may be something as simple as the symbolic

“move forward” command from the Demiris & Hayes experiment [51]. As Schaal

notes, however, such low-level approaches do not scale well to complex systems

[113]. The more information a movement primitive can incorporate without losing its

modularity, the better; primitives such as “reach”, “swing” and “grasp” encode

complete temporal behaviours, but are general enough to allow a degree of

parameterisation and combination.

Leaving aside symbolic systems in which primitives must be defined manually, there

are two principal types of motor primitive, reflecting the differing forms of imitation

outlined earlier:

• Innate primitives, which are implemented using a predefined control model

• Learned primitives, which are statistically derived from the observation data

Schaal et al [115] describe an approach to innate skill learning based on using

nonlinear differential equations as dynamic movement primitives; indeed, the robot

tennis-swing experiment described above [114] used this system as its control model.

The biped locomotion experiment outlined in [90] adopts the same approach, using a

set of central pattern generators to drive the walking movement of the robot.

Movement primitives have also attracted attention in computer vision. Ilg, Giese et al

[41, 58] describe a system for extracting primitive movements from motion-captured

 52

video, and use spatio-temporal morphable models to linearly combine them; they

show the effectiveness of this technique in reproducing facial expressions and

synthesizing realistic motion from demonstrations of different martial arts.

From our own perspective, some of the most interesting work in the field of learned

motor primitives has been carried out by Mataric, Jenkins et al at the Robotics

Research Lab of the University of South Carolina [31, 37, 60-65, 82]. They present a

framework for the automated segmentation and derivation of movement primitives

from recorded limb motion data. Each observation sequence records the relative

angular positions of four degrees of freedom (DOFs) along the limb at each timestep

[37]. These sequences are segmented at points where the sum of the squared angular

velocities falls below an empirically-determined threshold, i.e.

δθθθθ <+++= 2
4

2
3

2
2

2
1

&&&&z , and the segments interpolated to a standard length of 100

elements. The vectors of each DOF are concatenated to give a single 400D vector

representing the movement within that segment; PCA (principal components

analysis), a technique which computes a new set of basis vectors for a given dataset

such that the transformed components are uncorrelated and ordered by decreasing

variability, is employed to reduce this vector to an 11D representation while retaining

most of the motion information. Finally, the reduced segments are clustered to

produce a small set of basis actions, which can be reconstructed by projecting back

to the input space and temporally resizing the resulting vector to obtain the original

movement. Each cluster thus represents a motion primitive - when executed in

isolation, they result in full strokes of the arm from one pose to another. Later

experiments used spatio-temporal isomap [60] to better capture the nonlinear,

temporally-depended nature of the observed behaviour. They further discovered that

applying ST-isomap a second time on the reduced-dimension embedding uncovered

behaviour units, consisting of sets of individual action primitives. This allowed for

the sequencing of primitives to reproduce full temporal behaviours; by examining the

last frame of the current action, a list of valid successor candidates is generated from

 53

the behaviour unit set, based on whether or not a transition from the last frame of the

current action to the first frame of the next would require an excessively large change

in joint position.

A number of the concepts explored by Mataric et al proved useful in the development

of our tactical imitation subsystem, as described in Chapter 4.4.

2.3 Games-Based Imitation Learning

2.3.1 Motivation and Existing Work

Despite the interest in imitation learning exhibited by the robotics community, very

little work has been done in applying similar techniques to the field of game AI.

Furthermore, as is clear from the overview above, much of the robotics literature

focuses primarily on the engineering challenges of imitating physical human motion.

Given that the process of generating training data for games is both rapid and

straightforward compared to robot imitation, that some games already possess large

online libraries containing vast number of samples, and that - rather than limb

movement data or similar, as is common in robotics - these recordings encode the

actual behaviours of human players under rapidly-changing conditions and against

opponents of comparative skill, computer games would seem to offer huge potential

for imitation learning and, indeed, the AI community at large. The goal of imitation

learning in computer games, expressed in its simplest form, is to construct models

which explain and accurately reproduce behaviours recorded during human gameplay

sessions, thereby 'reverse-engineering' the player's decision-making process from its

observed results.

Some scattered examples of imitation learning in games do exist. Sklar et al [117],

for instance, report on their work in developing a game based on the film “Tron”

which allows humans to play online against computer-controlled opponents. These

 54

matches are recorded, and the data used to train subsequent generations of agents.

However, this game imposes an extremely limited repertoire of behaviours on the

player - at each interval, the player can move left, they can move right, or they can go

straight ahead. Many contributions still persist in using similarly restricted games -

such as Pong [79, 111] or Pac-Man [140, 141] - which are too simplistic to yield

much in the way of interesting results, except for highly specific investigations

(Figure 2-5). Using commercial games for imitation research would seem to be a far

more profitable enterprise - see Section 2.3.4.1 for further discussion.

Figure 2-5 - Pong, Pac-Man and Tron are too simplistic to provide much scope for investigation.

Geisler [40] in his Master’s Thesis, investigates the relative performance of three

machine-learning approaches - ID3 decision trees, naïve Bayesian classifiers, and

multi-layer perceptrons - when applied to the task of learning simple actions from

human demonstration in the FPS (first-person shooter) game “Soldier of Fortune 2”.

He demonstrates that an MLP performs significantly better than the other approaches,

at the cost of an increased learning time. However, Geisler imposed a number of

artificial restrictions on the recorded data used in the experiments; for instance, he

discretises each of the low-level actions under investigation - move direction,

accelerate, face direction, and jump - into either binary values or indices of four 90°

sectors, as appropriate. In other words, the agent can move and aim only at right-

angles, effectively reducing the simulation from a full 3D virtual world to an equally

limited state as Sklar’s “Tron” game. Additionally, his analysis comprises only an

 55

inter-algorithm comparison of learning accuracy and speed of convergence; he does

not include a discussion of the observable in-game behaviour resulting from each

approach, and it is therefore difficult to ascertain how successful his agents actually

were in imitating their human exemplars.

Sukthankar and Sycara [122] propose a means of automatically recognising

sequences of team behaviours using the game “Unreal Tournament”. They remark

upon the particular difficulty of determining the exact transition point between

behaviours, a subject which we will revisit in the concluding chapter of this thesis.

To circumvent the problem, they employ a series of overlapping time windows

during which a single behaviour is assumed to be dominant, and train a set of Hidden

Markov Models to recognise each. However, their work examined only 3 specific

behaviours, which they had defined in advance and instructed the human volunteers

to perform - the HMMs were therefore simply classifying the best-matching

behaviour from an extremely limited list of known actions. This approach is

obviously not suitable for bottom-up analysis of a freeform game session, though the

complexity of distinguishing even between three known behaviours does provide

some insight into the scope of the problem.

Elsewhere, Zanetti and el Rhalibi [142] employ an evolutionary neural network

approach to imitation learning in the game “Quake 3”. Feedforward MLPs were

defined for each of three behaviour categories - combat, combat movement, and

general navigation - and trained from human gameplay samples using genetic

algorithms to optimise the network’s weights. Interestingly, they used a waypoint

system to deconstruct the human player’s navigation routes into sequences of simpler

paths for learning. Their experiments demonstrated that this architecture was adept at

capturing certain forms of behaviour, but susceptible to redundant and/or noisy

sample data in other areas - and, most importantly from our perspective, that the

resulting bot did not exhibit humanlike behaviour or strategic planning faculties.

 56

These results are corroborated by Thurau et al in their early investigations [12],

wherein they used self-organising maps (SOMs) to identify manifolds within the

dataset, and trained a neural network at each node; it was found that such holistic

attempts to imitate human gameplay did not capture the relevant behaviours at a

granularity sufficient for accurate reproduction. Indeed, Zanetti and el Rhalibi note

that their approach would likely benefit from a separation of concerns - the combat

network, for instance, should be “subdivided into three [neural networks] to better

learn and perform the three managed actions”.

It is for these reasons that we sought to develop separate, specialised approaches

appropriate to each of the three clearly defined categories of behaviour - long term

strategic behaviours, mid-term tactical behaviours, and short term reactive

behaviours - outlined in the discussion of Hollnagel’s COCOM earlier. A further

discussion of this issue will be presented in Section 4.2.

2.3.2 Believability and Performance

An important issue when considering how best to approach this work concerns the

relative importance of believability and performance in game agents. Should agents,

in other words, be designed in such a manner as to maximise the illusion of being a

human player? Or should they provide the greatest challenge possible for their human

opponents? The two are not necessarily synonymous. Harnad [49], in discussing the

wider implications of Turing’s famous paper, notes that his test cannot be passed

simply by virtue of an artificial participant beating a human - but only if, in the

process, its opponent or an observer becomes convinced that the AI is itself a human.

To illustrate this point, Livingstone [79] cites Big Blue’s defeat of Gary Kasparov in

1997. The feat itself was not evidence that the chess machine had passed the Turing

test, but Kasparov’s subsequent accusations of duplicity - that he had actually been

playing a human opponent in the guise of a machine - did raise the question, at least

 57

in an academic sense. It is generally understood, however, that Kasparov’s

allegations arose due to his lack of expertise in the field, and his consequent

incredulity at having lost to an artificial opponent.

In terms of our own work, we approach the domain first and foremost as artificial

intelligence researchers. As such, we are more interested in using computer games as

a research platform - in analysing human behaviour for the purposes of producing

believable facsimiles - than in providing the player with a challenging opponent. In

any case, as discussed earlier, it is a comparatively trivial task to write challenging

game agents; the only drawback being that such agents often rely on repetitive

patterns of behaviour, direct access to the gamestate, or outright cheating. A third

factor, relating both to believability and to performance, should also be noted here;

namely, that - largely due to their utilisation of the exploitative techniques listed

above - the difficulty involved in defeating traditional agents does not necessarily

result in a more enjoyable experience for the human participant, and often produces

precisely the opposite effect. Yannakakis and Hallam [140, 141] demonstrate that as

a computer opponent approaches optimal behaviour, human players report decreasing

satisfaction with the game experience; their investigations indicate that fair, diverse

and strategic behaviours are central to maximising the player’s enjoyment.

Believability is an infinitely more difficult goal than performance, but an agent which

can accurately reproduce human motion, behaviour and planning will therefore

provide a far more engaging experience for the gamesplayer than is currently offered

by traditional NPCs. In this regard, academia has much the same goal as the games

industry; Livingstone notes that the principal requirement for modern computer

games is not unbeatable AI, but believable AI.

At the same time, as we have already mentioned, capable players generally

outperform even exploitative traditional agents, providing the ultimate challenge for

other human participants despite exhibiting inescapable human error and

 58

suboptimality. In summary, while our primary interest lies in believability, we are

also of the opinion that adopting imitative approaches to game AI will ultimately lead

to agents which are less predictable, less repetitive, more adaptive, and thereby more

enjoyably challenging for human opponents.

2.3.3 Computational Modelling for Games

The intuition behind imitative approaches to game AI is straightforward; an elegant

(though, as he notes, highly generalised) formulation is provided by Thurau [129],

deriving in part from Schaal’s formalisation of robotic imitation as discussed earlier.

Given a situation encountered during a game session, which we view as a state vector

s, and a collection of environmental factors e, a human player’s behaviour can be

computationally modelled as the temporally-dependent sequence of meaningful

actions a which he executes in response to that situation; that is,

),...,,,...,(111 ntttntttt eeesssfa −−−−+ =

where at+1 is the action to be executed on the next timestep, and st is the observable

state of the game world at time t. By examining recorded samples of human

gameplay, it may be possible to derive the mapping f and thus to create an agent

which can accurately imitate humanlike behaviour even in novel scenarios.

Alternatively, Thurau notes that imitation can be understood as a classification

problem rather than the regression outlined above; he proposes using a Bayesian

approach to choose the action aj at timestep t+1 possessing the highest probability

among all actions observed in the training dataset, given the current state st :

),...,,,...,|(maxarg 111 ntttntttj
j

t eeesssaPa −−−−+ =

The fundamental premise of our research, then, is to parse the set of states S =

[s1…sk] and corresponding actions A = [a1…ak] from recorded gameplay samples,

 59

and to deduce models which both explain the relationship between them and are

capable of generating sensible predictions in unseen situations.

There are, of course, some important distinctions which must be drawn between the

robotic imitation research outlined in the preceding sections and that proposed in this

thesis. Firstly, the requirements for reproducing the actions of a gamesplayer in an

interactive environment are obviously quite different; for instance, the player’s

behaviour is influenced in large part by his location and co-occurring events, whereas

the majority of the approaches outlined above aim to reproduce isolated humanoid

motions. Nonetheless, the mental faculties required to navigate a virtual world - when

issues of actuator/muscle control are removed from consideration - are likely to be

quite similar to those required in the real world, and games may thus provide some

interesting insights into human spatial awareness, memory, reasoning, and so forth.

Secondly, while the objective in robot imitation is generally to reduce the time taken

for the machine to perform an action optimally, the goal of our research is to generate

game agents with a convincing façade of humanity. A good example of this

distinction can be found in Dillman et al [29], wherein the authors mention a number

of inherent problems in robot imitation learning. Since humans naturally tend to

perform tasks in a competent but suboptimal manner, they can generate a significant

amount of “noise” during demonstration. The most prominent traits of human

performance which can lead to imitation problems are:

1. unnecessary actions which do not contribute towards achieving the goal

2. incorrect actions which must be compensated at a later time

3. unmotivated actions which cannot be analytically linked to the sensor data

The authors then proceed to describe methods for the removal of these unwanted

artefacts. From our perspective, on the other hand, these idiosyncratic, suboptimal,

quintessentially human behavioural traits are an important facet of what we are

 60

attempting to capture and must therefore be incorporated into our agents rather than

being eliminated.

2.3.4 Selecting a Testbed: Quake 2

Our first step, naturally, was to identify a suitable testbed which would allow for the

analysis of human gameplay and the implementation of artificial agents trained using

this data. It soon became apparent that iD Software’s Quake 2 was the de facto

standard in research using commercial games; Laird had started the trend, and it had

been picked up by others [12, 131, 132]. Laird’s research centred upon rule-based

systems rather than in learning by imitation, but given that Quake 2 has built-in

features which permit the player to record himself during a match (to “demo” or

DM2 files), it remains a viable choice. In addition, the first-person shooter genre - of

which Quake is a prominent example - is particularly attractive from an imitation-

learning point of view; this is discussed at greater length in Section 2.3.4.2.

Quake 2, first released by ID Software in 1997, is a combat game played from a first-

person perspective - that is, the player sees the game world through the eyes of a

virtual avatar. Players explore a three-dimensional environment littered with

weapons, bonus items, traps and pitfalls, with the objective of reaching a particular

endpoint and/or defeating as many opponents as possible. In the single-player mode,

these opponents are agents realised using the kind of finite-state machines described

earlier; more interesting from our perspective is the multi-player mode, where

humans compete against one another in specially-designed deathmatch arenas.

Quake 2’s multi-player mode is a simple client-server model. One player starts a

server and other combatants connect to it, entering whatever environment (known as

a map) the instigating player has selected. These opponents then fight until a

specified time or kill limit has been reached, at which point the game restarts on the

 61

same map or another, as dictated by the server. Thus, in order to realize artificial bots

(agents), a means of establishing a session with the Quake 2 server, handling

incoming gamestate information and communicating the bot’s actions back to the

server must be implemented. Further pertinent details of the Quake 2 environment

are discussed in Chapter 3.

Quake 2 further facilitates the recording of matches from the perspective of each

player; these demo files contain an edited copy of the network packet stream received

by the client during the game session, capturing the player’s actions and the state of

all entities at each discrete time step. A parser capable of reconstructing the

gamestate from these files is therefore required.

Full details of the Quake 2 environment, and the QASE API designed to facilitate our

research using it, are provided in Chapter 3.

2.3.4.1 Why Existing Commercial Games?

Rather than take advantage of commercial games, many researchers - in the fields of

both machine learning and traditional game AI - have often chosen to work in

environments which inherently limit the scope of their investigation [91]. While it is

true that specific aspects of human behaviour learning can be studied in specially-

designed environments such as that presented by Sklar [117], there are a number of

advantages in choosing an existing game as opposed to creating one. Firstly, Quake 2

and other commercial games were written to provide players with a compelling,

challenging experience rather than with research in mind; they therefore represent

objective models of human interaction, in situations far more complex than those

faced in traditional robotic imitation learning or most purpose-built environments.

Secondly, games can be seen - and should be utilised - as mass-produced universal

testbeds, offering a vast array of genres suited to research of equally divergent

varieties; researchers working in commercial games who wish to reproduce others’

 62

work, or test it against their own, do not need to acquire testbeds from the original

authors or attempt to recreate them from scratch. Thirdly, rather than focussing

attention on a single element of human behaviour, commercial game sessions

generally comprise a full spectrum of multiplexed reactive, strategic and tactical

behaviours, executed in real-time competition against opponents of equal skill; data

harvested from such sessions therefore provides extremely fertile ground for analysis,

our task being to decouple and uncover the influences which drive the observed

behaviours and implement algorithms to realise them. Finally, unlike other areas of

machine learning where the collection of data requires considerable time and effort,

experimenting with mature and well-established commercial games such as Quake 2

allows us to utilise vast online libraries of existing demos, and new samples can be

generated rapidly and inexpensively.

2.3.4.2 Why First-Person Shooters?

One of the primary advantages of using this type of game in preference to others is

that it provides a rich, but comparatively direct mapping of human decisions onto

agent actions. This is in contrast to many other genres [21, 74, 91], where the agent’s

behaviours are determined in large part by factors other than the player’s decision-

making process. In real-time strategy games, for instance, the player typically

controls a large number of units, directing them in various scheduling and resource

management tasks. Although the player is responsible for, say, instructing his

followers to engage in battle against an enemy faction, the specifics of how the

confrontation unfolds is handled on a per-unit basis by the game’s AI routines. In

sports simulations, only a single character is usually under the control of the human

player at any given time; the interactions of his teammates, though perhaps

influenced by the tactics chosen before play, are managed from one timestep to the

next by the computer. In adventure games, imitating human performance would first

require an AI capable of visually recognising everyday objects and comprehending

 63

their significance, as well as an ability to understand and partake in conversations

with other characters; this prerequisite level of common-sense reasoning makes the

genre infeasible for imitation purposes, at least at present. While these games do

offer many interesting challenges for AI research, as partially enumerated by Laird

[74] and Fairclough et al [35], the attraction of Quake 2 and other first-person

shooters - to researchers and gamers alike - lies in the minimal degree of abstraction

they impose between the human player and his virtual avatar.

Additionally, the FPS genre - while incorporating unrealistic features such as

invincibility, teleportation, etc - is nonetheless an abstraction of the real world, as

opposed to a board or puzzle game with no relevance to reality. Thus, the possibility

exists that techniques developed to imitate in-game human behaviour may be

adaptable to other areas; indeed, Thurau et al [132] report that they have discussed

their approach to action primitives with biologists studying the courtship behaviour

of zebra finches. Further discussion of the potential for real-world application of

imitative techniques developed in games can be found in Section 6.4.2.

2.4 Conclusion

This chapter detailed the field of imitation learning in greater detail, outlining its

various advantages over more antiquated artificial intelligence techniques. A

discussion of the biological impetus for learning by observation was also presented,

demonstrating that imitation is a necessary component of higher intelligence, that it is

a neurologically-supported evolutionary development rather than a learned

behaviour, and that it is computationally explicable in terms of forward and inverse

models; these observations serve to ground the work described over the following

chapters in biological precedent. An overview of robotic imitation was then sketched,

its adaptation of natural imitative mechanisms explained, and specific approaches

which are relevant to our own research highlighted. A discussion of imitation

 64

learning in game AI, our choice of Quake 2 as an experimental testbed, the role of

believability- and performance-based metrics in our work, and the formulation of a

computational model for games-based imitation learning concluded this chapter.

 65

3 The QASE API

3.1 Introduction
In the initial stages of our research, it became clear that the available testbeds and

resources for game-based AI research of the kind we were pursuing were often

scattered, ad hoc and incomplete. We felt that the absence of a unified, low-level yet

easy-to-use development platform and experimental testbed was a major impediment

to the adoption of commercial first-person shooter games in both academic research

and education, as well as representing a major obstacle to our own work. We

therefore decided to develop an API which would not only allow us to conduct

investigations into imitation learning, but would also provide others wishing to

pursue similar work with a solid framework upon which to build. This chapter details

the result of this development; the Quake Agent Simulation Environment (QASE).

Typically, simulations consist of three principal components; an agent, an

environment, and an interface between them. This chapter details each of these

concepts as they relate to QASE. In Section 3.2, we first outline the motivations

underlying this work, including those shortcomings of existing APIs which we

sought to correct. Section 3.3 discusses elements of the Quake 2 environment and

QASE’s network layer, which represents the interface component of the simulation.

In Section 3.4, we then proceed to describe the most significant elements of QASE’s

agent architecture, including its provision of a bot hierarchy which allows agents to

be created from any of several levels of abstraction, its ability to supply the agent

with sensory data about its environment, its facilitation of high-level queries about

the agent’s condition by transparently amalgamating low-level data, its ability to

record and parse demonstration of human gameplay, its integration with the MatLab

programming environment [83], its inbuilt AI constructs, and its topology-

 66

learning/navigation faculties, which are drawn from our work in imitation. Some

further observations on QASE’s potential for application in both games-based AI

research and education, and a discussion of the various institutions that have already

adopted QASE in both capacities, conclude this chapter.

3.1.1 Publications

The work in this section was published as (Gorman et al 2005) “QASE - An

Integrated API for Imitation and General AI Research in Commercial Computer

Games” in the proceedings of the 7th International Conference on Computer Games

(CGAIMS ‘05), where it won the “Best Paper” award.

An extended version was subsequently selected for publication as “The QASE API -

An Integrated Platform for AI Research and Education Through First-Person

Computer Games” in the International Journal of Intelligent Games and Simulations,

Volume 4 Issue 2, June 2007 (Gorman et al 2007).

3.2 Motivation
In the initial stages of our research, it became clear that the available testbeds and

resources for game-based AI research were often scattered, frequently incomplete,

and consistently ad hoc. Existing APIs were unintuitive, unreliable and lacking in

functionality. Network protocol and file format specifications were generally

unofficial, more often than not the result of reverse-engineering by adventurous fans

[42]. Documentation was sketchy, with even the most rudimentary information

spread across several disjoint sources. Above all, it was evident that the absence of a

unified, low-level yet easy-to-use development platform and experimental testbed

was a major obstacle to our own work, and a significant impediment to the adoption

of first-person shooter games in academic research and education in general.

 67

As a result, we decided to adopt a two-track approach. We would develop techniques

for imitation learning in games, while simultaneously building a comprehensive

programming interface designed to provide all the functionality necessary for others

to engage in this work. This interface should be powerful enough to facilitate high-

end machine- and imitation-learning research, while at the same time being suitable

for use in undergraduate courses geared towards classic AI and agent-based systems.

The Quake 2 Agent Simulation Environment (QASE) was developed to meet these

requirements. It is a fully-featured, integrated API, designed to be as intuitive,

modular and transparent as possible. It is Java-based, ensuring an easily extensible

object-oriented architecture and allowing it to be deployed on any combination of

hardware platforms and operating systems. It amalgamates and improves upon the

functionalities of several existing applications, removing the need to rely on ad-hoc

software combinations or to comb through a multitude of different documentations;

QASE consolidates all relevant information into a single source. It is geared towards

machine and imitation learning, but is also appropriate for use with more traditional

forms of agent-based AI. Put simply, QASE is intended to provide as much of the

functionality the researcher or student will require in their experiments with cognitive

game agents as possible.

3.2.1 Existing APIs

In the initial, exploratory phase of our work, we investigated a number of candidate

APIs, originally intending to adopt one of them for use in our research; ultimately,

however, we were not satisfied that any of them provided the tools we would need.

Here, we discuss these APIs. While each has positive elements, we explain why in

each case we felt that they fell short of our ideal platform, and in what ways we

designed QASE to be a preferable alternative.

 68

3.2.1.1 Quake 2 Bot Core

One of the earliest attempts to facilitate bot programming in Quake 2, the Bot Core

[123] comprises an implementation of the game’s client-side network protocol

written in pure C, together with a very basic template for creating an AI cycle. It soon

became apparent that it was a less than ideal platform for our work; parts of the

network protocol had been neglected, other parts were not functioning reliably, it

required that each agent be compiled into a separate executable, and its potential

extensibility was extremely limited, making it an unsuitable choice for high-end

research applications in general.

3.2.1.2 GameBots

The GameBots project [1] allows communication between Epic Games’ Unreal

Tournament and other software, channelling messages to and from the server via a

socket interface. Messages are both sent and delivered as ASCII strings, adhering to a

predefined format. While this allows a wide range of programs to interface with the

server, it is a bare-bones system; the user must write his own parser for the game

messages, there are no supporting AI structures or logic included in the API, and

communication is handled exclusively through scripting, with no low-level access

available. Additionally, the socket interface which exposes the gamestate to external

control is implemented via a modified version of the game server; it is therefore not

possible to create an agent and connect it to an arbitrary Unreal Tournament match -

agents can only communicate with a server running the GameBots mod.

3.2.1.3 Quagents

The Quagents project [19] is intended primarily to propose Quake as a virtual testbed

for robot and “ant colony”-style agent simulations. Its approach is quite similar to

that of the GameBots API described above; Quagents is a recompiled modification of

 69

the Quake 2 libraries, which exposes the internal workings of the game to external

manipulation via predefined script commands. Again like GameBots, the

implementation of the actual agent controller itself is left to the user, although a

sample application allowing for real-time control of the bot is supplied. However,

Quagents also modifies the content of the game itself, implementing a stripped-down

version of the original by eliminating many items, simplifying the agent’s movement

functions, and reducing the interactivity of the bot with the game world (Quagents,

for instance, cannot engage in combat against each other).

In the case of both GameBots and Quagents APIs, their respective constraints - the

elimination of features present in the original game, the limitations imposed by

requiring the server to have the relevant modification installed, the lack of supporting

structures and functionality - were among the primary reasons for our ultimate

decision to reject them as viable candidate platforms for our research.

3.2.1.4 FEAR SDK

The most mature of the pre-existing APIs we investigated, FEAR [23] is once again a

modification of the game’s shared libraries; unlike GameBots and Quagents,

however, FEAR also provides a framework for creating the agent controller itself.

These must be compiled as DLLs and placed in appropriate subdirectories under the

main FEAR mod folder; bots are then deployed by issuing commands from the server

console during a game session. This has the drawback, however, of requiring not

only that the server be running FEAR - as with GameBots and Quagents - but that the

code for all desired agents be present on the same machine when the game session

begins. If, for instance, multiple researchers from different institutes wish to compare

their agents, they cannot simply connect to a common server and deploy them. FEAR

also includes a variety of in-built AI structures, including FSAs, decision trees,

neural networks and rule-based systems. While such features are welcome, we felt

that the inability (or at least, significant difficulty) of allowing external processing

 70

during the agent’s AI cycle was highly limiting. MatLab, for instance, provides a

vastly greater range of functionality than that embedded within FEAR, and is already

a familiar working environment for many researchers. The SDK is also quite

unintuitive in certain respects, which attenuates its utility as an educational aid.

Moreover, the fact that the SDK is inextricably linked to the game engine renders it

incompatible with other mods, such as the CTF (capture-the-flag) team-based

modification described in Section 3.4.3, unless the user were to subsume the CTF

code into FEAR.

3.2.1.5 TIELT

The Testbed for Integrating and Evaluating Learning Techniques [88] is a

middleware platform designed to act as a generic intermediary between game engines

and decision systems, similar in concept to QASE’s MatLab integration architecture

as described later in this chapter. For each game, users employ TIELT’s inbuilt editor

and scripting language to develop a series of knowledge bases; these consist of XML

files defining elements such as the objects contained in the gamestate, events that

may occur, state transition rules, messaging formats for communication with the

game server and decision system, etc. The majority of applications have thus far

centred upon real-time strategy games, although a bot has also been created for

Unreal Tournament as proof-of-concept. While TIELT is an excellent general-

purpose tool for research across different games, it is by necessity removed from the

low-level details of each; we felt that our work - and that of other groups interested in

pursuing research in first-person shooter games - would be better served by a

consolidated API with a wide range of inbuilt functionality. Had we adopted TIELT

for the purposes of interfacing our decision systems with Quake 2, we would have

needed to write separate software for reading human behaviour data from demo files,

dealing with BSP geometry and environmental entities like lifts and doors,

 71

constructing navigation graphs, and so forth; this would have resulted in precisely the

kind of ad-hoc, non-reusable amalgamation of software that we wished to avoid.

3.2.1.6 QASE: OUR APPROACH

Having examined the platforms outlined above, we concluded that none provided the

combination of simplicity, power, modularity, reusability and extensibility that an

educational and research tool of this kind required. We felt, as noted earlier, that the

lack of such a platform was a major impediment to the adoption of first-person games

in both areas, and sought to remedy this; it was always our intention that, while

geared primarily towards our own work in imitation- and machine-learning, the API

would be appropriate for the widest possible range of applications. As such, QASE

incorporates not only solutions to the various hurdles we encountered in the course of

our research, but all the features which occurred to us as being potentially beneficial

for others. Written in Java, the API itself consists of a single ~160kb JAR library,

which can run unmodified on any JRE-enabled machine. As detailed later in this

chapter, it permits low-level access to gamestate and environmental information for

those who want it, while also supplying high-level interfaces and convenience

functions which perform the necessary gamestate-handling tasks transparently. It

provides illustrative built-in AI structures for educational purposes, and draws upon

our own research in imitation learning to facilitate the automatic generation (or,

optionally, manual construction) of full navigational systems. Its efficient and flexible

MatLab integration provides an extremely powerful back-end engine with which

researches are already intimately familiar. Unlike the approaches adopted by several

of the APIs described above, its network layer encapsulates a full client-side

implementation of the Quake 2 network protocol, meaning that it is cleanly decoupled

from the server implementation; a QASE agent can connect to and be deployed upon

any arbitrary Quake 2 server, Windows or Linux, modified or otherwise. It allows

game sessions to be recorded to DM2 files and parsed at a later time, as well as

 72

automated loading and querying of local BSP (binary space partition) geometry files

to provide the agent with sensory information about its environment. It comes with

full, detailed documentation and a series of articles focussing on the network

protocol, the BSP file structure, and other subjects which will be of use to researchers

embarking upon work in this area. Finally, it is worth noting that QASE is still in

active development, and is evolving in response to the comments of groups and

individuals who have adopted it; the other APIs mentioned above are, as far as we

can determine, no longer maintained.

Over the remainder of this chapter, we will explain each of these QASE features - and

how they relate to the environment provided by Quake 2 - in detail.

3.3 QASE, Environments and Interfaces

Quake 2, first released by ID Software in 1997, belongs to the genre of first-person

shooter games. Players explore a three-dimensional environment littered with various

entities - weapons, bonus items, traps and pitfalls - with the objective of reaching a

particular endpoint and/or defeating as many opponents as possible. Most interesting

from the perspective of imitation learning is the multi-player mode, where players

compete against one another in specially-designed deathmatch arenas. A screenshot

of the Quake 2 environment and some important features is given in Figure 3-1.

As outlined in Chapter 1, Quake 2 was adopted for a number of reasons. Firstly, it

was prominent in the literature, having been employed by Laird in his experiments

using the Soar architecture [75, 76, 78]; it is a mature game, and as such the existing

resources are somewhat more substantial than for other games. Secondly, rather than

focussing attention on a single element of human behaviour, Quake 2 matches

require a full spectrum of ‘multiplexed’ reactive, strategic and tactical behaviours

from the agent, executed in competition against opponents of equal skill; from the

perspective of research, this offers a huge number of potential avenues for

 73

investigation. Thirdly, the first-person shooter genre - while incorporating unrealistic

features such as invincibility, teleportation, etc - is nonetheless an abstraction of the

real world, as opposed to a board or puzzle game with no relevance to reality.

Techniques developed in the game world may therefore prove applicable in other

areas, as we discuss at the end of this thesis. Additionally, the major attraction of

Quake 2 from our perspective lies in the minimal degree of abstraction the game

imposes between the human player and his virtual avatar; recorded Quake 2 game

sessions provide very direct mapping of human decisions onto observable agent

actions. Finally, Quake 2 provides facilities for the recording of game sessions to so-

called demo or DM2 files. This is of great benefit to our work, since the ability to

capture samples of human gameplay is a prerequisite for imitation learning.

Figure 3-1 - The Quake 2 environment. Weapons are collected to enable the character to fight

opponents. Ammunition is collected separately; certain guns share common types of ammo. Armour

reduces damage taken for a period of time. Health packs replenish the local character’s energy, which

when depleted results in temporary death and the loss of a point to the opponent.

 74

As outlined earlier, a simulation typically consists of three components - an agent, an

environment, and an interface. In our case, the environment component is provided

by the Quake 2 server. We must supply both the agent and interface elements; QASE

fulfils both these requirements. In this section, we outline QASE’s network layer and

its provision of an interface to the Quake 2 environment. We also outline the most

important features of the environments themselves. The third component, QASE

agents, will be detailed in Section 3.4.

3.3.1 The Quake 2 Environment

As stated above, the environment component of the simulation is provided by the

Quake 2 server. But what, exactly, does this environment contain? How are entities

categorised? What attributes do they possess? How is the game world itself

represented? Here, we outline some of the more important concepts in the Quake 2

environment, a knowledge of which will be required for later sections in this

chapter and, indeed, for the chapters to follow.

3.3.1.1 Maps

Each distinct environment in Quake 2, also called a map, is defined in the same

manner. Physical obstacles, called brushes, define the outer boundaries and local

features of the environment, while the agent is free to move in the unoccupied space

between them. The map itself, and everything contained within it, are projected onto

a three-dimensional orthogonal co-ordinate system, using a rotation whereby the

vertical axis is denoted as Z in all game data and communications. Details of the

maps themselves are not communicated from the server, but are instead stored locally

on each client machine, as Binary Space Partition (BSP) files. Further details on BSP

files, and their importance in providing the agent with sensory information on its

environment, are provided in Section 3.4.5. A wireframe model illustrating Quake

2’s co-ordinate system and the concept of brushes is provided in Figure 3-2.

 75

3.3.1.2 Environment Entities

Aside from the definition of the map itself, the local BSP files also contain

information on certain fixed entities within the environment. These are not to be

confused with the dynamic entities discussed below; fixed entities are elements such

as moving platforms, lifts, teleporters, buttons etc, which the player may in some

cases be able to interact with, but which nonetheless remain part of the environment.

QASE’s BSP parser, in addition to allowing sensory perception of the map’s

topology, also facilitates high-level queries of these fixed entities; for example, the

agent can tell with a single method call whether or not it is currently standing on top

of an elevator. This is further discussed in Section 3.4.6.

Figure 3-2 - A typical Quake 2 map, demonstrating the "brush" concept and the in-game co-ordinate

system. Environments are defined by a set of volume boxes; the player is constrained to moving in the free

space between them (inside3d.com).

 76

3.3.1.3 Dynamic Entities

In addition to these environmental features, each Quake 2 map contains numerous

dynamic entities. These are entities whose original positions are also defined in the

static BSP files, but which are managed throughout the course of the game session by

continuous server-client communication, due either to the fact that they are mobile

(i.e. they may be located at any arbitrary point in the map on each timestep) or that

they may on some occasions be absent (e.g. when a player collects an item, that item

vanishes for a certain period of time). On each timestep, the server transmits data to

each client, specifying which attributes of what entities have changed since the last

update; this information is then merged into the existing gamestate by the client.

Dynamic entities fall into one of four main categories, some of which have a number

of subcategories and other attributes.

• Weapons

Obviously, this category consists of the various guns scattered throughout the

environment. There are a large number of distinct weapons in the game; the

blaster, shotgun, super shotgun, machine gun, chaingun, hand grenades,

grenade launcher, rocket launcher, hyper blaster, railgun, and BFG10K. Each of

these guns has different properties - discharge rate, projectile radius and speed,

damage inflicted, etc - and their usefulness varies depending on the specific

situation in which the agent finds itself. Combat behaviours involving these

weapons are discussed in Section 4.5.

• Items

The Item category encompasses all non-weapon collectible entities in the game

world. These consist of “power-ups” - items which, when obtained, boost the

combat abilities of the player. Four subcategories exist:

o Ammunition: five distinct types of ammunition are found in the game

world, some of which are shared between multiple guns; bullets, cells,

 77

shells, rockets, and grenades. Only a certain maximum quantity of

each type of ammunition can be carried by the agent.

o Armour: flak jackets, armour shards, combat suits, and body armour

packs all fall under this subcategory. These items, once collected, will

reduce the amount of damage taken by the game character.

o Health: med kits and first aid kits, when collected, will boost the

remaining health of the game character, undoing any damage it had

previously taken.

o Special items: some maps may also contain one or more “special”

items - collectibles which provide a short but significant boost to the

character, or which are necessary in order to negotiate certain

elements of the terrain. These include the “quad damage” pickup,

which multiplies the damage the character does by a factor of 4,

“invulnerability”, which briefly makes the agent immune to all

damage, and the “underwater breathing” suit, which allows the agent

to stay submerged without losing health due to drowning.

• Objects

Objects are dynamic entities which are closely associated with the fixed

environmental entities discussed earlier. They are necessary in cases where

environmental entities must activate in response to some action by the player,

e.g. levers, buttons, automatic doors, lifts which only ascend when a player

stands upon them, etc. Object entities should therefore be seen as “triggers” for

the underlying fixed entities, rather than entities in their own right.

• Players

The final type of entity present in the game environment are Player entities, i.e.

the player himself and the opposing game characters against whom he is

fighting. Player entities are defined by a set of attributes, as follows:

 78

o Name: an identifier, specified by the player upon connection to the

game server. Can be any combination of alphanumeric characters.

o Skin: determines the in-game character model of the player, used

when visualising the environment.

o Origin: the current XYZ location of the Player entity within the map.

o Angles: the current orientation of the Player entity; this determines the

direction in which the player is currently looking/aiming. Yaw and

pitch are the important quantities from the perspective of data analysis

- the Roll value is only altered upon events such as a player’s death.

o Velocity: determines the current trajectory and speed of the player

along each of the X, Y and Z axes.

The local Player can, of course, also obtain information on various other elements of

his status; he can query his inventory to find out which items he is carrying,

determine which weapon he is currently wielding, track how much health/armour he

has remaining, and so on. Opposing player entities as reported by the server are

distinct from the local bot, in that only a reduced set of their attributes are visible

from the network communication stream. Only the Name, Skin and Origin attributes

of enemy players are visible; their inventories, health etc are hidden from view.

3.3.1.4 Inventory

The set of all items and weapons currently possessed by the player is called his

inventory. Each time the player dies, his inventory is reset to its default contents. The

local client does not maintain a continuous record of the player’s inventory; it is

retained on the server-side, and the full listing is only transmitted to the client when

the user requests it. This is problematic from the perspective of data analysis, since

many models will naturally require knowledge of the player’s inventory at each

timestep, and recorded game sessions will not contain this data. QASE, as will be

 79

discussed in Section 3.4.2, circumvents this problem by constructing the complete

inventory listing in real-time as the agent picks up and uses items.

3.3.1.5 Respawning

As noted earlier, one of the attractions of first-person shooters from the perspective

of imitation learning is that they represent an abstraction of the real world; and

consequently, that techniques developed in-game may be adapted for a wider range

of applications. However, certain phenomena exist in the game world which have no

identifiable real-world counterpart. The most important of these is the concept of

respawning, which refers to the spontaneous regeneration of dormant entities. If an

item is collected by a player, it vanishes for a fixed interval; when that period

elapses, the item respawns at its original position, ready to be collected again.

Similarly, if a player is killed, he need only press a key to reappear at one of the

random player spawn points around the arena. The purpose of the respawning

mechanic is to ensure that the game world does not become starved of item

resources, which would cause the session to come to a premature stalemate. While

respawning is obviously not applicable to real-world scenarios, it does present a

valuable additional element of human strategic thinking from the perspective of

imitation learning research - a human player will intuitively track the times at which

he collected various items, and if one such item is due to respawn in the near future,

will adjust his pursuit of strategic goals accordingly. This topic is dealt with in

greater detail in Section 4.3.7.

3.3.2 QASE Network Interface

We have described how the Quake 2 environment and its constituent entities are

represented; we must, however, still develop a means of communication between

the environment and agent. QASE’s network layer provides this interface.

 80

Quake 2's multi-player mode is a standard client-server model. One player starts a

server and other combatants connect to it, entering whatever environment (map) the

instigating player has selected. These opponents then fight one another until a

specified time or kill limit has been reached, at which point the game restarts on the

same map or another, as dictated by the server. The standard Quake 2 game client

also incorporates a rendering engine, which is responsible for visualising the map and

the various entities within it during human play; this is, naturally, unnecessary from

the perspective of artificial agents. The network protocol itself, including the format

of each message exchanged between client and server in the course of a game

session, has already been reverse-engineered from recorded DM2 matches by Uwe

Girlich [42]. In order to both manifest agents (or bots) within the game world and to

provide the interface component of the simulation, a means of establishing a UDP

session with the Quake 2 server, handling incoming state information, and

communicating the bot's actions back to the server must be implemented.

The current incarnation of QASE achieves this via a network layer which

incorporates a full implementation of the Quake 2 client-side protocol. This was,

however, not originally the case, as we discuss below.

3.3.2.1 Early Development

QASE’s network layer originated as a project at Blekinge Institute of Technology,

written by Martin Fredriksson in 1999, which we discovered during the initial phase

of our research. In its original form, it consisted only of a skeleton implementation of

certain parts of the Quake 2 client network protocol. Unfortunately, since it had been

written as an experimental teaching aid and had not been maintained, it also

contained several major bugs, possessed the bare minimum of functionality - indeed,

substantially less functionality than even the Quake 2 Bot Core discussed earlier -

and was certainly not ready for deployment in research work. Nonetheless, we felt

 81

that it would provide a decent and (as a Java-based application) extensible starting-

point, while its lack of existing functionality would enable us to mould it into an API

of the kind we had envisioned. We therefore contacted Mr. Fredriksson and proposed

that we should assume development of the API, to which he agreed.

Given the presence of the aforementioned bugs, and the obvious requirement that

agents should have a clean, stable, comprehensive interface to the game world, our

first task was to rewrite the network interface from the ground up, eliminating

problems and improving its efficiency, while extending it to cover the full client

protocol. Some of the issues which were encountered during QASE’s early

development are enumerated below.

• Incorrect gamestate handling. As further discussed in Section 3.3.2.2 later,

Quake 2 uses a system of delta coding to minimise the amount of information

transmitted at each interval. As such, the client API needs to be capable of

handling this information correctly, merging the gamestate updates with the

current representation to produce a complete view of the game world. QASE

did not originally do so; it was found that the API was “dropping” updates,

meaning that the client was only receiving an accurate view of the game

world - including its own position and direction data - once every 12 frames,

when the server defaulted to baseline mode. Clearly, a 92% loss of sensory

information was untenable, and needed to be rectified. To achieve this, the

gamestate-handling code was rewritten so that every entity was propagated

forward from the previous to the current gamestate at each interval, before the

specific changes are merged in. The actual merging process was also

rewritten, to prevent updates from overwriting existing entity attributes in

cases where the update does not include new values. Finally, the process was

made vastly more efficient by eliminating the redundant duplication of

component objects from one timestep to the next.

 82

• Missing entities. Calls to the gamestate requesting a list of the entities in the

environment generally returned only a tiny subset of the actual entities

present. Opposing players were found, while all other entities - weapons,

ammunition, various collectible items - were not. This was due to QASE’s

incorrect handling of the PacketEntities message, which together with

PlayerInfo represents the core of the gamestate information updated by

the server on each timestep; as such, the bug was quite debilitating from the

agents’ perspective. To remedy this problem, both the PacketEntities

class and the associated message-handling routines were rewritten, such that

the entities are correctly decoded and added to the gamestate on each update.

• Unimplemented messages. Originally, QASE’s network layer did not

implement many of Quake 2’s server messages at all, simply ignoring them

whenever they were received. These included the Inventory message,

which is used to pass a list of the player’s current item possessions from the

server to the client, the Reconnect message, which is used to indicate that a

new map has been chosen by the server, the TemporaryEntity message,

which represents irregular entities (projectiles, etc) when they are active in the

game world, the ServerSound message, which provides information about

auditory effects, and the ServerDownload message, which allows the

client to download content from the server if it does not possess it locally. As

a result, agents were unable to perform such basic tasks as determining which

items they were carrying and in what quantities, and were incapable of

successfully moving from one environment to the next when the server

invoked a change of map. All messages in the Quake 2 protocol have now

been implemented, allowing the bots to perform these and other such tasks

without user intervention. The Inventory message - which represents most

of the agent’s internal state - was a particularly crucial omission, both in

 83

relation to our own work and to models of Quake agent AI in general. See

Section 4.3 for an example of its importance in imitation learning.

• Thread safety. Originally, QASE agents had to be written from scratch,

using a simple polling mechanism. Under the initial implementation, this

meant that the Proxy - running on a dedicated thread - could write to the

gamestate while it was being read from elsewhere, or vice-versa. The only

effort to counteract this was a series of class-scope booleans designed to

prevent multiple threads from calling the accessor and mutator methods of the

Proxy and World objects simultaneously. As this was a rather haphazard

and inefficient approach, which was often observed to result in deadlocks and

consequent game freezes, we replaced the boolean pseudosemaphores by

synchronizing each of the relevant methods. Furthermore, the bots can now

operate in a new high thread-safety mode, whereby the Proxy will

synchronize on the World object when updating the gamestate, and the agent

will do likewise when reading it; this guarantees that the agent’s view of the

gamestate cannot be compromised by intervening write operations. As

detailed in Section 3.4.1, we also added a second approach to agent

implementation using the observer pattern. Each of these has their respective

advantages, as will be discussed later.

• Client ID conflict. This bug prevented multiple QASE agents from entering

the same server. On connection, the client is asked to provide a unique ID

number to the server; in the original QASE implementation, the same number

was used by every agent, meaning that only the first connection attempt

would be accepted. This was solved by maintaining a list of all previously

allocated client IDs, and randomly assigning an exclusive number to each bot.

 84

• Incorrect byte-stream translation. It was discovered that QASE was

incorrectly converting numerical data to the byte-stream format required for

network transmission. For instance, Quake 2 clients send their movement

information to the server in the form of a forward velocity and a right

velocity, with negative numbers indicating motion to the back or left; as a

result of the bug, the agents’ movements were restricted to the 90o quadrant

directly in front and to their right, which was obviously not acceptable. This

error also affected all other similar numerical conversions, leading in many

cases to erratic and unpredictable behaviour.

• Spontaneous crashes. The agents were found to crash under numerous,

incongruous circumstances; for instance, if any opposing player disconnected

from the server while the bot was active, it would trigger a crash. This was

traced to the original code’s handling of the Config table, a global

repository of data on each entity in the game world.

As is clear from the above list, these issues - and several other similar problems -

needed to be addressed before the API could be considered usable, let alone stable.

Beyond this, it contained no functionality, not even a framework for the creation of

game agents; users were required to write bots from scratch each time, and to

manually handle menial tasks such as defining the bot’s profile, detecting when it has

been killed, re-entering the game, etc. In Section 3.4, we describe our development of

a formal agent-creation hierarchy, and numerous associated features.

First, however, we detail the operation of QASE’s rewritten network interface.

3.3.2.2 QASE Network / Agent Interface

In its simplest form, QASE’s network layer represents an intermediary between the

server and the QASE agent’s AI routines on the local machine (see Figure 3-3). All

 85

two-way communication is handled via the Proxy class, which is responsible -

through delegation to the CommunicationHandler and various Message

classes - for establishing the session, sending the agent’s movement on each timestep,

and receiving and correctly processing data about the environment. On each update,

all incoming information is amalgamated into a World object, which represents the

current gamestate (that is, the status of every entity within the virtual world). This

gamestate can then be accessed and queried by the agent’s AI cycle; once done, the

Proxy is instructed to transmit the desired agent actions back to the server for

application on the next timestep. A simplified illustration of this process is shown in

Figure 3-6 towards the end of this section.

Figure 3-3 - QASE implementation of agent (bot) and interface components

Network communication between a QASE client and the Quake 2 server takes three

forms: session setup, wherein the client engages in a series of exchanges with the

server in order to gain the permissions necessary to manifest a character in the game

world, irregular messages, which the client can send to the server at any arbitrary

time in order to perform actions such as changing weapons or using an item, and

game messages, which the client and server exchange at regular 100ms intervals, and

which keep the agent apprised of changes to the environment’s state. Below, we

detail the most important concepts in each of these three categories.

 86

3.3.2.3 Session Setup

Each game session is established using connectionless packets, a special type of

datagram which can be sent to the server in the absence of a proper connection.

These packets consist simply of a header containing the sequence number -1,

followed by a text string indicating the desired command. The session setup

procedure is as follows:

• The client issues a message containing the string getchallenge

• The server replies with a message containing the string

o challenge 12345

where 12345 is a code used to ensure that the client is not using a spoofed IP

• The client responds with

o connect 34 789 12345 <userdata>

where 34 is the network protocol revision, 789 is a unique client ID, 12345

is the code sent by the server earlier, and <userdata> is a text string

containing information about the player’s desired character model, name, etc.

• The client then receives a ServerData message providing global

information about the game world and entities, as well as a series of

SpawnBaseline messages which provide details of the various entities’

initial (baseline) attributes.

• Finally, the client receives a StuffText message indicating that it is ready

to enter the game world. One last connectionless packet is sent to the server:

 87

o begin <levelkey>

where levelkey is an identifier for the current map, received in

ServerData. Once all this is complete, the character is spawned into the

world and can now interact with the other entities using the in-game protocol

described below.

3.3.2.4 Irregular Messages

Connectionless packets are also used to send irregular queries and commands to the

server, as distinct from the standard movement and aiming information transmitted

on every frame update. These include requests for a listing of the client’s inventory,

to talk to other players, to use inventory items, or to switch weapons. The QASE bot

hierarchy (Section 3.4.1) provides convenience methods for all these features, hiding

the actual message construction from the user; direct calls to the sendCommand

methods of the Proxy class are also facilitated for added low-level control.

3.3.2.5 In-Game Protocol

Once the session has been established and the agent has entered the game, the server

and QASE client begin exchanging messages. Every tenth of a second, the server

sends updates to each connected client; unless exceptional circumstances are

encountered, these updates consist of two sequence numbers and three messages:

• ServerFrame, which specifies the current and delta reference frames

• PlayerInfo, which contains information about the client’s current

position, velocity, aim, weapon, score, etc.

• PacketEntities, which contains information about all game entities.

Upon receiving a frame, the client must merge the updated information into its

existing gamestate record (see below). This done, QASE issues a ClientMove

 88

message to the server, indicating its desired velocity

(]400,400[,, −∈uprightforward), aim (]90,90[],180,180[−∈−∈ pitchyaw), and

whether or not it is firing its gun. These values together define the scope of the

agent’s legal in-game movement.

Figure 3-4 - Server’s view of the in-game character’s range of actions

An important point to note is that the client and server interpret these values

differently. From the server’s perspective, the forward velocity corresponds to

velocity along the global x-axis, right velocity is velocity along the global y-axis, and

angular measurements are absolute. From the client’s perspective, the forward

velocity is velocity in the direction towards which the agent is currently facing, the

right velocity is perpendicular to this, and the angular measurements are relative to

the agent’s local axes.

Figure 3-4 shows the server’s perspective of the character, Figure 3-5 shows the

client’s. The significance of this is that recorded DM2 demo files use the server

format to represent the character’s movement, and so the API must be capable of

moving back and forth between local bot co-ordinates and global server co-ordinates.

 89

Figure 3-5 - Client’s view of the in-game character’s range of actions

Since Quake is a real-time game in which potentially several dozen participants need

to be updated every hundred milliseconds, it is important that network latency be

minimised. As such, the UDP protocol is used for communication in preference to

TCP; this means that packets may arrive out of order, or be lost altogether. This

approach is not as reckless as it may first appear - the loss of a player update message

(for instance) can be compensated in subsequent updates, whereas using TCP would

cause any lost packets to hold up the data stream while the client waits for resent

information which is, by that point, out of date. Given a suitably low-overhead

mechanism for acknowledging and ordering incoming packets, the integrity of the

gamestate can be ensured while simultaneously maximising the available bandwidth.

Quake 2 implements such a scheme by means of sequence numbers and delta coding.

Both the QASE client and the server store old frame updates to allow for packet loss;

the server stores the previous 12 frames, while the client stores the previous 16. To

reduce bandwidth consumption, the server only transmits information on entities

within a certain viewable distance of the client, and will only send the specific entity

attributes which have changed since the last frame received by the client. Each

update packet sent from client to server has two sequence numbers as its header; the

 90

first specifies the number of the current frame, while the second specifies the number

of the last frame received from the server. Using this information, the server can

determine which packets were lost, and what cumulative changes have occurred in

the game world since that point. On the next update, the server will transmit those

changes, along with the reference frame against which the client should delta code;

QASE then merges the updates into its stored copy of the reference frame to produce

a complete gamestate representation. If the number of lost packets exceeds the

number of stored frames, then the server enters a special mode where it transmits

entity updates based on the baseline (initial) values established during the client’s

connection. It will continue to do so until the client indicates that it has re-

synchronized itself and is ready to resume delta coding.

Figure 3-6 shows a highly simplified outline of the relationship between the QASE

network interface and the Quake 2 server environment. Some elements of QASE’s

agent architecture (Section 3.4) are also shown for reference, most notably the

BasicBot class, which represents any agent derived from one of the base classes in

the bot hierarchy (Section 3.4.1). See the caption which accompanies the diagram for

further details of the interface’s operation.

Finally, an interesting point to note is that, because the network layer is largely

decoupled from the higher-level classes in the QASE architecture, it is highly

portable. Adapting the QASE API to games with similar network protocols, such as

Quake 3 and its derivatives, therefore becomes a relatively straightforward exercise;

by extending the existing classes and rewriting the data-handling routines, they could

conceivably be adapted to any UDP-based network game. Thus, QASE’s network

structures can be seen as providing a template for the development of artificial game

clients in general. See Section 6.3 for further discussion.

Figure 3-6 - A
 sim

plified outline of the relationship betw
een the Q

A
SE

netw
ork interface (green), the sim

ulation environm
ent (server, w

hite) and
the am

algam
ated gam

estate representation as observable by the agent (red).
Interface m

essages are show
n in blue. The C

om
m

unicationH
andler class,

m
anaged by Proxy, receives server m

essages on each update and decodes
their payloads. It then translates these m

essages into gam
estate objects -

Entity, Player, Inventory, etc - and the Proxy passes them
 on to the W

orld
object. The agent queries the W

orld object to determ
ine the current state of

the environm
ent, decides on a course of action, and instructs the Proxy to

send a C
lientM

ove m
essage back to the server via C

om
m

unicationH
andler.

The position of som
e elem

ents of the agent architecture (see Section 3.4)
w

ithin this system
 are also given for illustrative purposes (yellow

), m
ost

notably the B
asicB

ot object, w
hich represents any derivation from

 one of
the base classes in the B

ot hierarchy (Section
3.4.1).

3.4 QASE Agent Architecture

In this section, we describe QASE’s final simulation component; the agent

architecture. This consists both of a formal agent factory, with pre-built base agents

which require the programmer to provide nothing more than a single-point-of-

insertion AI cycle, and structures which provide the faculties necessary to construct

said cycle. The latter includes the ability to record and parse demonstration of human

gameplay, the facilitation of high-level queries about the agent’s condition by

transparently amalgamating low-level data, integration with the MatLab

programming environment, inbuilt AI constructs, and topology-learning / navigation

abilities drawn from our work in imitation learning.

Figure 3-7 - The QASE Bot Hierarchy

3.4.1 Bot Hierarchy

The interface methods described earlier operate at too low a level to be practical for

general use; they do not provide a structured, formal mechanism for the creation of

game agents. Indeed, requiring that agents be constructed using only basic network

functions - a laborious, inefficient and inherently ad-hoc process - runs contrary to

Bot
interface

BasicBot
abstract

ObserverBot
abstract

PollingBot
abstract

MatLabObserverBot
abstract

NoClipBot
abstract

MatLabPollingBot
abstract

MatLabGeneralObserverBot
concrete final

MatLabNoClipBot
abstract

MatLabGeneralPollingBot
concrete final

MatLabNoClipGeneralBot
concrete final

 93

the core design principles of our proposed API; the network layer alone is, therefore,

clearly inadequate. To address this, we develop a comprehensive bot hierarchy - an

agent-factory framework allowing users to build bots from any of a number of levels

of abstraction, while automating menial tasks such as defining the bot’s profile,

respawning when it has been killed, managing the detection of gamestate updates

from the Proxy, and so forth. The framework ranges from a simple interface class to

full-fledged bots incorporating an exhaustive range of user-accessible functions. The

bot hierarchy comprises three major levels; these are summarised below.

3.4.1.1 Bot Interface

A template which specifies the interface to which all bots must conform, but does not

provide any functionality. The programmer is entirely responsible for the actual

implementation of the agent, and may do so in any way he chooses.

3.4.1.2 BasicBot

An abstract agent which provides most of the basic functionality required by Quake 2

agents, such as the ability to determine whether the bot has died, to respawn (re-enter

the game after the agent has been defeated), to create an agent given minimal profile

information, to set the agent’s movement direction, speed and aim and send these to

the server with a single method call, to obtain sensory information about the virtual

world, and to record itself to a demo file. All that is required of the programmer is to

write the AI routine in the predefined runAI method, and to supply a means of

detecting and handling server updates according to whatever paradigm he wishes to

use. The third level of the hierarchy (see below) provides ready-to-use

implementations of two such paradigms.

BasicBot provides embedded access to the BSPParser class for environment

sensing (see Section 3.4.5), and the WaypointMap class for navigation (see Section

 94

3.4.8), by incorporating pass-through methods which relay calls to the appropriate

object. Some of these pass-through methods automatically set parameters to the most

useful default values; for instance, the bounding-box used to perform collision

detection is set to the size of the agent’s in-game character. BasicBot will

transparently find, load and query the BSP file associated with the current game level

when one of the environment-sensing methods is invoked for the first time. Users can

also obtain a pointer to the underlying objects, allowing full access to their facilities.

3.4.1.3 ObserverBot & PollingBot

The highest level of the Bot hierarchy consists of two classes, ObserverBot and

PollingBot, which represent fully-realised agents. Each of these implements a

method of detecting changes to the gamestate as indicated by their names, as well as

a single point of insertion - the programmer need only supply the AI routine to be

invoked on each update in the runAI method, while all other communication and

data-manipulation requirements are handled by the API. Thus, the agent is notified of

each update as it occurs, and a copy of the gamestate is presented to it. The user-

defined AI routines then set the required movement, aiming and action values for the

next update, and the API automatically transmits the changes.

The ObserverBot uses the observer pattern to register its interest with a Proxy,

and is thereafter notified whenever a game update takes place. Since this approach is

single-threaded, a separate thread is created to check whether the bot has been killed,

and to respawn as necessary. The advantages of this approach are twofold:

• it guarantees consistency of the gamestate; since the Proxy thread invokes a

method call in the ObserverBot, it must wait until the agent’s AI routine is

complete before receiving any further updates. This means that the gamestate

cannot be written in mid-AI cycle.

 95

• it allows multiple observers to connect to a single Proxy. This can be useful if

the programmer wishes, for instance, to have a second observer perform some

operation on the incoming data in the background.

The PollingBot operates by continually polling the Proxy and obtaining a copy of

the gamestate World object. If a change in the current frame number is detected, the

agent knows that an update has occurred, and will enter its AI routine. Because the

Proxy and agent are operating on separate threads, the Proxy is free to receive

updates regardless of what the agent is currently doing; this ensures that no server

frames will be lost, but may result in changes to the gamestate while the agent is

executing its AI cycle. To prevent this, the bot can be set to high thread safety mode,

in which the agent and Proxy both synchronize on the gamestate object; the agent

therefore cannot read the gamestate while it is being written, and the Proxy cannot

write the gamestate while it is being read.

3.4.1.4 Miscellaneous Bots

Beyond this, several convenience classes are available, which provide extended bot

implementations tailored to specific purposes. The NoClipBots allow the user to

move the agent through otherwise solid walls to any point in the environment before

starting the simulation, which we have found to be extremely useful in the course of

our own research; indeed, this bot category was added specifically to address our

need for such functionality. The MatLabBot branches facilitate integration with the

MatLab programming environment, and will be explained later.

3.4.2 Gamestate Augmentation

Rather than simply providing a bare-bones implementation of the client-side

protocol, QASE also performs several behind-the-scenes operations upon receipt of

 96

each update, designed to present an augmented view of the gamestate to the agent. In

other words, QASE transparently analyses the information it receives, makes

deductions based on what it finds, and exposes the results to the agent; as such, it

may be seen as representing a virtual extension of the standard Quake 2 network

protocol.

For instance, the standard protocol has no explicit item pickup notification; when the

agent collects an object, the server takes note of it but does not send a confirmation

message to the client, since under normal circumstances the human player will be

able to identify the item visually. QASE compensates for this by detecting the sound

of an item pickup, examining which entities have just become inactive, finding the

closest such entity to the player, and thereby deducing the entity number, type and

inventory index of the newly-acquired item. Building on this, QASE records a list of

which items the player has collected and when they are due to respawn,

automatically flagging the agent whenever such an event occurs. QASE detects and

flags a number of other implicit events in similar fashion; it alerts the agent when an

enemy dies, determines how long it can remain underwater before drowning, and so

forth.

Similarly, recordings of Quake 2 matches do not encode the full inventory of the

player at each timestep - that is, the list of how many of which items the player is

currently carrying. For research models which require knowledge of the inventory, as

is the case in our own work, this is clearly untenable. QASE circumvents the problem

by monitoring item pickups and weapon discharges, ‘manually’ building up an

inventory representation from each frame to the next. This can also be used to track

the agent’s inventory in online game sessions, removing the need to explicitly request

a full inventory listing from the server on each update.

 97

3.4.3 Team-Based Play

QASE is fully compatible with the popular Threewave CTF modification for Quake

2, in which players join either a Red or Blue team and attempt to capture the enemy

faction’s flag, by collecting it and returning it to their own base. Methods are

provided which enable the agent to join a specific team, or to join randomly; further

methods allow the agent to determine whether a particular player is a member of its

own or the opposing force. In cases where the server type is not known in advance,

the API will automatically determine the game mode, and if necessary will join an

arbitrary team. QASE is, therefore, well suited to researchers whose interest lies in

investigating team-based behaviours and interactions.

3.4.4 DM2 Parser & Recorder

One of the most fundamental requirements of the API from the perspective of our

own research was that it should allow demo (DM2) files to be parsed; these are saved

recordings of the network packet stream received during a game session, which

thereby encode a full account of the human player’s observed movements and

actions. QASE facilitates this via its DM2Parser class. Demo files are organised into

blocks, each of which consists of a header indicating the length of the block followed

by a series of concatenated messages, as described in Section 3.3.2.5. The DM2

parser operates by treating the file as a virtual server, sequentially reading blocks and

updating the gamestate as if it were receiving data online.

Furthermore, QASE incorporates a DM2 recorder which enables each agent to save a

demo of itself during play; this actually improves upon Quake 2’s standard recording

facilities, by allowing demos spanning multiple maps to be recorded in playable

format. This is done by separating the header information (ServerData and

SpawnBaseline) received when entering each new level from the stream of

 98

standard packets received during the course of the game. The incoming network

stream is sampled, edited as necessary, and saved to file when the agent disconnects

from the server or as an intermediate step whenever the map is changed.

3.4.5 Environment Sensing

The network packets received from the Quake 2 server do not encode any

information about the actual environment in which the agent finds itself, beyond its

current state and that of the various game entities. This information is contained in

files stored locally on each client machine; thus, in order to provide the bot with more

detailed sensory information (such as determining its proximity to an obstacle or

whether an enemy is currently visible), a means of locating, parsing and querying

these map files is required.

As discussed earlier, each Quake 2 map is constructed from a number of brushes, a

generic term for any convex polyhedron such as a pyramid, cuboid, cylinder, etc; the

term “convex” here means that any line through the object will have precisely one

entry point and one exit point, the importance of which will be seen later. The planes

formed by the faces of these objects divide the environment into a set of convex

regions, or the areas of open space within (some of) which the actual gameplay takes

place. Because Quake 2 levels are often very large and encompass a vast number of

brushes, an efficient means of representing them and the convex regions they enclose

is required; for this purpose, a Binary Space Partition Tree is used.

3.4.5.1 Binary Space Partitioning

The concept of a Binary Space Partition Tree, devised by Fuchs, Kedem, and Naylor

[38], provides an economical way of representing a virtual scene by specifying which

other polygons lie in front of and behind the plane formed at the surface of a given

 99

polygon. The resulting tree structure can then be used to perform collision detection

or to determine the order in which the polygons should be rendered, given the

position of the viewer. A BSP tree is created by first selecting a polygon to act as the

root node, with an associated splitting plane; all remaining polygons are then

classified as being in front of or behind this plane, and are added as its left and right

children of the root node, respectively. In cases where a polygon intersects the plane,

that polygon is divided in two at the point of intersection and both are added to the

binary tree. The process is recursively applied to each of the child lists, gradually

creating a series of subtrees until the list is exhausted. An example of BSP tree

construction is shown below.

Figure 3-8 - Initial and final stages in the construction of a 2D BSP tree. Image from 3dtechdev.com.

 100

3.4.5.2 Quake 2 BSP Format

Quake 2 BSP files consist of a directory indexing a series of lumps, each of which

contains information about a different element of the environment (entities, textures,

models, etc). From the perspective of obtaining sensory input about the game world,

the most important of these are:

• the Node and Leaf lumps, each of which represents a single element in the

BSP tree. Each Node contains an index to the plane equation used to split the

tree at that point; this is stored as a normal with an associated distance. The

Leaf object, representing a convex region within the level (including the

spaces within objects), indexes each brush which bounds the empty space.

• the LeafBrush lump, which indexes the brushes surrounding each hull.

• the Brush lump, which contains information about each brush in the level.

This includes the number of sides the brush has and its content, that is,

whether it is a solid object (as a wall) or may be passed through (water).

• the BrushSide lump, which indexes each brush side’s associated plane

• the Plane lump, which provides the coefficients of each plane equation;

these will later be used to determine the side of the associated face on which

the player’s avatar is currently located.

QASE’s BSPParser class is used to load the contents of a Quake 2 BSP file, and to

build the tree it represents. It also provides methods to perform collision detection, by

sweeping a line, box or sphere through the environment between two specified points

and reporting the first instance of a collision with a solid object; as an extension of

this, visibility detection may be performed by checking whether there are any opaque

 101

surfaces between the player’s position and a given point. For convenience, the

BasicBot class in the agent hierarchy provides embedded access to BSPParser -

calls to various environment-sensing functions are passed through to the appropriate

BSPParser methods. The actual BSP file corresponding to the active map in a

given game session may be stored in the default game directory, a custom directory,

or in any of Quake 2's PAK archives; its filename may or may not match the name of

the map, which is the only information possessed by the client. If the user sets an

environment variable pointing to the location of the base Quake 2 folder, BasicBot

will automatically find the BSP file by searching each location in order of likelihood.

This is done transparently from the agent's perspective; as soon as any environment-

sensing method is invoked, the map is silently located, loaded and queried.

Figure 3-9 - A 3D Quake BSP tree from van Waveren [135]. Each leaf is an area - possibly within one of
the brushes - bounded by a set of planes, and is known as a convex region or hull. Note that RU and RD
nodes subsume the splitting planes for YU, YD, GU, GD, etc, as these are coplanar.

3.4.5.3 Collision Detection

Collision detection is performed by tracing the course of a line through the BSP tree

and determining the first solid brush with which the line makes contact. The

 102

algorithm used to implement this is a pruned depth-first search; given a start and end

point, and letting the first node be the root node, it proceeds as follows:

1. At the current node, compute the dot product of the start and end points with

the splitting plane’s normal, and subtract the plane’s distance from this. If the

result is positive, then the point is in front of the plane; if it is negative, it is

behind the plane. Points that lie on the plane are treated as being in front of it.

This gives two possible scenarios:

a. both points are on the same side of the plane. In this case, we need

only traverse the front or back child of the current node.

b. the line between the two points is intersected by the plane. In this

case, we must split the line into two segments at the point of

intersection, and continue to trace the relevant segment down the front

and back children of the current node. Generally, we decide which to

check first by choosing either the side closest to the start of the trace,

or the one on which most of the divided line now lies.

2. If the newly-chosen node is a leaf, then proceed to step 3. Otherwise,

recursively perform step 1 with the new node and (possibly) line segment.

3. Upon reaching a leaf, we know that the current trace segment resides within

one of the convex subspaces of the map, possibly inside a particular brush; it

now remains to check whether a collision has occurred. Each Leaf node is,

as mentioned earlier, associated with a (possibly empty) set of Brushes

which bound it. Each brush is further associated with a number of

BrushSides, representing the different faces of the brush, and each of

these brush sides itself indexes one of the splitting plane equations. By

computing the dot product of the full line’s start and end points with these

planes for each brush side, it can be determined whether the line crosses one

 103

of the brush’s polygons, and how far this collision lies from the start of the

trace. If this distance is less than the current minimum collision distance

found, it is adopted as the new collision distance.

4. Return back up the tree to the point at which the last branching decision was

made, and continue with step 1 until all leaf nodes at which a collision may

have occurred have been visited. The final result of the algorithm is the

shortest distance between the start point and a collision with a solid subspace.

The above algorithm outlines the procedure for tracing a line through the game

world; however, this may produce misleading feedback if the space through which

the line passes is not large enough to accommodate the player, such as a window. To

account for this, QASE also provides the ability to perform collision detection using

a bounding box or sphere of customisable size. The process is much the same, but

collision detection is extended in each dimension to the outer extents of the volume.

Thus, line-tracing can be used for visibility checks, while the bounding box approach

determines the maximum distance which the player can travel in a given direction.

The sphere-tracing function can be used to determine whether a projectile will

successfully reach a given point, or will strike an intervening surface.

Figure 3-10 - BSP traces with line, sphere and box. Collision occurs at different points.

The environment-sensing faculties of QASE illustrate another advantage of using

computer games in research; they represent idealised robot navigation worlds, as

discussed earlier. A great deal of work in this field is centred upon the elimination of

 104

noise in the robot’s environment [17, 72]; by contrast, computer games guarantee

accurate, undistorted sensory information. Furthermore, map editors for such games

are common, allowing the user to create any environment he desires. By using Quake

or other appropriate games as testbeds, researchers can easily prototype their

navigation techniques, before adapting them to the constraints of the real world.

3.4.6 Fixed Entity Sensing

Aside from pure geometric data, the BSP files also contain information about certain

active features within the game environment. These entities, which include doors,

lifts, teleporters and buttons, should not be confused with the entity information

received from the server on each update, which relates primarily to player

movements and weapon spawns / despawns. The QASE API transparently parses and

extracts the details of all such entities upon the first BSP query, and performs

additional processing in order to allow the resulting data to be queried from high-

level contexts. For instance, graph-style edge links are created between teleporters

and their destination portals, while methods within the BasicBot class can be used to

easily determine whether the player is currently standing on a moving platform.

QASE can also return a list of the locations in the game environment at which certain

potentially hazardous features - lava, poison, etc - are found.

3.4.7 Inbuilt AI Constructs

For education purposes, QASE incorporates implementations of both a neural

network and a genetic algorithm generator. These are designed to be used in tandem

- that is, the genetic algorithm controller gradually causes the neural network’s

weights to evolve towards a given fitness function. The main classes involved in this

process are found in the soc.qase.ai.gann package:

 105

• NeuralNet

Builds a neural network given design parameters, controls the retrieval and

updating of its weights, facilitates output using logsig or tansig functions, and

computes the net's output for given input. Also allows the network to be

saved to disk and loaded at a later time.

• Genetic

A genetic algorithm (GA) generator class, which maintains the gene pool,

records fitness stats, controls mutation and recombination, and generates each

successive generation when prompted. The class also provides methods to

save and load Genetic objects, thereby allowing the genetic algorithm process

to be resumed rather than restarted.

• GANNManager

Provides the basic template of a 'bridge' between the GA and NN classes, and

demonstrates the steps required to evolve the weights of a population of

networks by treating each weight as a nucleotide in the GA's genome. The

class provides two modes of operation. For offline experiments - that is, those

performed outside a live Quake 2 match - the GANNManager can be run as a

thread, continually assessing the fitness of each network according to a user-

defined function, recombining the associated genomes, and evolving towards

an optimal solution for a specified duration of each generation and of overall

simulation time. For online experiments, the class can be attached as an

Observer of one or more Proxy objects, providing direct feedback from the

Quake 2 game world. The class is abstract; it must be subclassed to provide

the necessary fitness and observer functions, and to tailor its operation to the

specific problem at hand. The class also allows the user to save an entire

simulation to disk, and resume it from the same point later.

 106

A k-means calculator package (soc.qase.ai.kmeans) is also included, to serve

as an illustration of clustering techniques; it is also used extensively in QASE’s

waypoint map generator, to derive the graph nodes from raw observation data. The

k-means facilities are composed of two classes, KMeansCalc and KMeansData.

The latter acts as a wrapper for the data output by the algorithm, whereas the former

performs the actual clustering according to the following formulae:

1=s

ib if j
s

ji
s cxcx −=− min , and 0 otherwise

∑
∑=

s
s
i

s
s

s
i

i b
xb

c while kicc
tt ii K1,

1
=≠

−

where k is the number of clusters, x is a point in the dataset, and c is a cluster centroid

These features are intended primarily to allow students to experiment with some AI

constructs commonly taught in undergraduate classes - for more demanding research

applications, QASE allows MatLab to be used as a back-end (see Section 3.4.9).

3.4.8 Waypoint Maps

One of QASE’s most useful features, particularly from an educational point of view,

is the waypoint map generator. The most important requirement of any agent is that

it be capable of negotiating its environment. Although this can be done using the

environment-sensing facilities outlined above, to rely exclusively upon BSP tracing

would be a cumbersome and computationally expensive solution. Most traditional

methods of navigation instead employ waypoint maps - topological graphs of the

level, indicating the paths along which the agent can move. With this in mind, QASE

provides a package, soc.ai.waypoint, specifically designed to facilitate the

rapid construction of such maps.

 107

While the two principal classes of this package, Waypoint and WaypointMap,

can be used to manually build a topology graph from scratch, QASE also offers a far

more elegant and efficient approach to the problem - the

WaypointMapGenerator. A prime example of how our research in imitation

learning has guided the development of the QASE API,

WaypointMapGenerator draws on concepts developed in the course of our work

in strategic navigation imitation (see Section 4.3). Users need only present the

WaypointMapGenerator with a pre-recorded DM2 file; it will then

automatically find the set of all positions occupied by the player during the game

session, cluster them using the inbuilt k-means classes to produce a smaller number

of indicative waypoints, and draw edges between these waypoints based on the

observed movement of the demonstrator. The items collected by the player are also

recorded, and the Floyd-Warshall algorithm [36, 137] is then applied to find the

matrices of distances and shortest paths between each pair of points. Given an NxN

edge matrix E specifying the adjacency between the N waypoints, this algorithm

proceeds as follows:

pathMatrix(i,j)={NIL if (i,j) ∉ E | i=j, i if (i,j) є E & i!=j}

cost(i,j)={0 if i=j, ∞ if i!=j & (i,j) ∉ E, dist(i,j) if i!=j & (i,j) є E}

for b = 1 : N

 for a = 1 : N

 for c = 1 : N

 if cost(a,b) != ∞ & cost(b,c) != ∞

 if cost(a,b) + cost(b,c) < cost(a,c)

 cost(a,c) = cost(a,b) + cost(b,c)

 pathMatrix(a,c) = pathMatrix(b,c)

Figure 3-11 - The Floyd-Warshall algorithm

 108

The shortest distance between two points can be determined directly from the final

cost matrix, while the shortest path is found by “backtracking” through the path

matrix from the end node to the start. The map returned to the user at the end of the

process can thus be queried to find the shortest path from the agent’s current position

to any needed item, to the nearest opponent, or to any random point in the level.

Rather than manually building a waypoint map from scratch, then, all the student

need do in order to create a full navigation system for their agent is to record

themselves moving around the environment as necessary, collect whatever items

their bots require, and present the resulting demo file to QASE.

Figure 3-12 - A waypoint map, generated automatically by QASE from recorded human data
and exported to MatLab for visualisation. Green squares indicate item pickups.

The waypoint map functionality is again embedded into the BasicBot class - that

is, it provides shortest-path methods which the agent transparently passes on to an

underlying WaypointMap object. The ability to retrieve the map as raw positional

and edge data is also provided; this is particularly convenient for reading the map

 109

into MatLab, as shown in Figure 3-12. Additionally, WaypointMap permits

instances of itself to be saved to disk and reloaded, thereby enabling users to generate

a map once and use it in all subsequent sessions rather than recreating it each time.

3.4.9 MatLab Integration

For the purposes of our work in imitation learning, we need a way to not only obtain,

but also statistically analyse the observed in-game actions of human players. Rather

than hand-coding the required structures from scratch, we opted instead to integrate

the API with the Mathworks MatLab programming environment [83]. Given that it

provides a rich set of built-in toolboxes for neural computation, clustering,

classification and countless other techniques - in addition to its status as one of the

most widely-used research platforms available - MatLab was an ideal choice to act as

an optional back-end for QASE agents.

In order to use MatLab’s functions to create Quake bots, a means of linking QASE to

MatLab was required. Initial experiments involving a JNI interface to the MatLab

DLL engine proved to be extremely sluggish, and certainly not feasible for the

demands of an agent in a real-time game. A different approach was needed; one

which would allow MatLab to quickly and efficiently obtain the specific gamestate

information necessary to carry out its computations, thereby optimizing the agent’s

performance. QASE provides two different mechanisms whereby agents can be

instantiated and controlled via MatLab.

For simple AI routines, one of the standalone MatLabGeneralBots shown in

Figure 3-7 is sufficient. A MatLab function is written which creates an instance of

the agent, connects it to the server, and accesses the gamestate at each update, all

entirely within the MatLab environment. The advantage of this approach is that it is

intuitive and very straightforward; a template of the MatLab script is provided with

 110

the QASE API. In cases where a large amount of gamestate and data processing must

be carried out on each frame, however, handling it exclusively through MatLab can

prove quite inefficient.

For this reason, we developed an alternative paradigm designed to offer greater

performance. As outlined earlier in Section 3.4.1, QASE agents are usually created

by extending either the ObserverBot or PollingBot classes, and overloading

the runAI method in order to add the required behaviour. In other words, the agent’s

AI routines are atomic, and encapsulated entirely within the derived class. Thus, in

order to facilitate MatLab, a new branch of agents - the MatLabBots - was created;

each of these possesses a three-step AI routine as follows:

1. On each server update, QASE first pre-processes the data required for the task

at hand; it then flags MatLab to take over control of the AI cycle.

2. The MatLab function obtains the agent’s input data, processes it using its own

internal structures, passes the results back to the agent, and signals that the

agent should reassume control.

3. This done, the bot applies MatLab’s output in a postprocessing step.

This framework is already built into QASE’s MatLabBots; the programmer need

only extend MatLabObserver / Polling / NoClipBot to define the handling

of data in the preprocessing and postprocessing steps, and change the accompanying

MatLab script as necessary. By separating the agent’s body (QASE) from its brain

(MatLab) in this manner, we ensure that both are modular and reusable, and that

cross-environment communications are minimised. The preprocessing step filters the

gamestate, presenting only the minimal required information to MatLab; QASE thus

enables both MatLab and Java to process as much data as possible in their respective

native environments. This framework has proven very successful, both in terms of

 111

computational efficiency and ease of development; its advantage lies in the fact that

custom bots can be written for each task, minimising the amount of work that both

QASE and MatLab need to perform on each update. In contrast, the

MatLabGeneralBots do not pass any information to MatLab or expect any

results - the bot’s entire AI cycle must be implemented from within MatLab.

Figure 3-13 - MatLab - QASE integration. MatLab acts as a back-end in the agent's AI cycle.

3.5 Conclusion
In this chapter, we proposed our QASE API as a comprehensive tool for developing

first-person agents in Quake. We outlined our motivation in undertaking this work,

providing illustrative comparisons between the functionality of QASE and that of

existing APIs. We detailed the most relevant concepts in the Quake 2 environment,

and how they relate both to QASE and the work described later in this thesis. We

described the network layer of QASE, and how it provides an interface between the

agent and its environment, noting that its modular design provides a generic

framework for the creation of agents in other games. We then detailed QASE’s agent

architecture, including its bot hierarchy which allows agents to be built from various

levels of abstraction, its ability to supply the agent with sensory data about its

environment, its facilitation of high-level queries about the agent’s condition by

transparently amalgamating low-level data, its ability to record and parse

demonstration of human gameplay, its integration with the MatLab programming

environment, its inbuilt AI constructs, and its topology-learning / navigation faculties

drawn from our work in imitation learning.

 112

3.5.1 Adoption in Academia

Since its release on the Sourceforge software development site, QASE has attracted

attention from several quarters. From regular correspondence, we know that it is

currently used in work being conducted at Bielefeld University, Germany; it has been

adopted by researchers at China’s Huazhong University, and at Deutsche Telekom; it

is used at both under- and post-graduate level at Blekinge Institute in Sweden, where

it has also been employed as the experimental platform for at least one Master’s

Thesis [22]; and it is used as both a teaching aid and research tool at the University of

Las Palmas de Gran Canaria. Agents developed by other researchers using QASE

have also been demonstrated at DreamHack 2008, the largest LAN gaming

convention in the world [30]. It is our hope that QASE’s continued adoption will help

to foster interest in game-based machine learning and general AI research/education,

by providing an intuitive, integrated development framework.

 113

4 Imitation Learning

4.1 Introduction

In this chapter, we describe the models and mechanisms which we have developed to

imitate human gameplay from recorded Quake 2 sessions. Section 4.2 introduces a

hierarchy - or more accurately, a gradient - of observable in-game behaviours, based

on Hollnagel’s contextual control model of real-world human planning; this identifies

strategic long-term planning behaviours, tactical mid-term planning behaviours, and

reactive short-term stimulus-response behaviours. We further identify, based on

previous work by Laird/Duchi and Livingstone/McGlinchey, a number of core

criteria for agent believability. Building upon this theoretical foundation, we proceed

to outline imitative models for each major level along the gradient, noting instances

wherein some overlap exists between the different layers.

In Section 4.3, we first detail an approach to long-term strategic imitation and

navigation, modelling the human player’s observed navigation strategies as a Markov

Decision Process and applying reinforcement-learning techniques to discern the

relationship between his current situation and subsequent behaviour. The system

further incorporates such features as the human’s ability to account for dynamic

changes in the local and global environment, the weighting and pursuit of multiple

objectives in parallel, and the derivation of a goal-oriented topology of the game

environment from recorded data.

In Section 4.4, we then outline the integration of this system with a Bayesian

approach to tactical motion-modelling based on the concept of action primitives; this

allows the agent to imitate a human player’s characteristically smooth motion,

 114

behaviours such as environment-relative weapon selection, and complex medium-

term actions such as Quake’s signature rocket jump.

Finally, in Section 4.5 we present an approach to the imitation of reactive weapon-

selection and combat behaviours using an interconnected series of expert neural

networks. This involves first reconstructing the human player’s visual perception of

his opponent’s motion from the available low-level data, and then emulating the

inaccuracy - both intentional and unintentional - demonstrated in his aiming

behaviours with varying weapon, angle, elevation and range.

For each of the imitative subsystem enumerated above, we also describe experiments

designed to statistically validate their functionality.

4.1.1 Publications

The strategic navigation system detailed in Section 3.1 was published as “Towards

Integrated Imitation of Strategic Planning and Motion Modelling in Interactive

Computer Games” (Gorman & Humphrys 2005) in Proc. 3rd ACM Annual

International Conference in Computer Game Design and Technology (GDTW 05),

where it won the “Best Presentation” award

This paper was subsequently selected for publication in the ACM Computers in

Entertainment Journal, Volume 4, Issue 4 (October-December 2006).

The integrated strategic planning and Bayesian tactical/motion-modelling system

detailed in Section 3.2 was published as “Bayesian Imitation of Human Behavior in

Interactive Computer Games” (Gorman, Thurau et al 2006) in Proc. Int. Conf. on

Pattern Recognition (ICPR'06), volume 1, pages 1244-1247. IEEE, 2006.

 115

The reactive combat system detailed in Section 3.3 was published as “Imitative

Learning of Combat Behaviours in First-Person Computer Games” (Gorman &

Humphrys 2007) in Proc. 10th International Conference on Computer Games: AI,

Mobile, Educational & Serious Games, 2007.

4.2 Behaviour Model

One of the first questions to arise when considering the problem of imitation learning

in games is, quite simply, “what behaviours does the demonstration encode?”

Recorded Quake 2 matches, as with most modern games, typically comprise a wide

variety of simultaneous, multiplexed activities; a well-structured model of the human

player’s behaviour is therefore needed, to facilitate an orderly analysis of the

observation data. To this end, Thurau et al [131] propose a three-level hierarchy of

in-game behaviour based closely on Hollnagel’s Contextual Control Model [53]. Our

visualisation of Thurau’s model, with slight modifications, is shown in Figure 4-1.

In this model, strategic behaviours refer to actions the player takes with long-term

goals in mind. Goals may include maximising the number of weapons or items he

possesses (thereby also preventing opponents from obtaining them), controlling

certain areas which offer an advantage in terms of position or cover, and cycling

around the map in an efficient manner. Strategic goals will shift as the situation

warrants; if a player is low on ammunition but has plenty of health, then he will

naturally attempt to find an ammunition refill or a different weapon in preference to

an armour upgrade.

Tactical behaviours encode a degree of planning, but are more localized than the

global strategies. Tactical behaviours can take two main forms; environment-relative

and opponent-relative. Environment-relative tactical behaviours include jumping in

 116

order to cross a ravine, looking around while moving in order to spot enemies, or

executing more complex manoeuvres such as rocket jumps (see later). Opponent-

relative tactical behaviours concerns the manner in which a player reacts to an

opponent in his immediate vicinity - how he moves to minimise the danger to

himself, how to evade or engage the opponent in a premeditated fashion, and so

forth. Tactical behaviours, particularly of the environment-relative kind, are closely

linked to motion modelling.

Reactive behaviours are those which involve little or no planning; the player simply

reacts to stimuli in his immediate surroundings. An unexpected close-quarters

encounter with an opponent would give rise to such behaviours, as would auditory

input such as the sound of nearby gunfire. Basic aiming and firing behaviours also

fall under this category.

Figure 4-1 - Thurau’s adaptation of Hollnagel's COCOM [131]

 117

Motion modelling refers to the imitation of human movement as the agents execute

their AI routines. This serves three functions; firstly, it manifests a smoother, more

nuanced, more humanlike motion between points on the bot’s path. Secondly, it

prevents the artificial agents from performing actions which would be impossible for

the human player’s mouse-and-keyboard interface. Thirdly, it has an important

functional aspect which overlaps with tactical behaviours; motion modelling allows

the agent to actually perform the tactical manoeuvres - jumping, strafing, etc -

necessary to navigate certain areas of its environment.

It is important to note that the behaviours encoded in a typical game session often

cannot be strictly classified as belonging to a single category. For instance, while

weapon selection and aiming behaviours would generally be considered reactive,

they involve a distinct tactical component as well; in Section 4.5, we note that our

imitative agents were observed to behave reactively when aiming at a fast-moving

opponent in close proximity, whereas its aiming behaviours became more deliberate

and tactical at longer ranges. The behaviour hierarchy should thus be viewed as a

gradient along which the human’s behaviours fall.

4.2.1 Behaviour and Believability

A number of previous contributions have examined the specific elements of agent

behaviour which contribute most heavily towards their perceived ‘humanness’. Laird

and Duchi [78] define a set of such parameters - decision time, tactical complexity

and aiming skill - which they expected to have a noticeable impact upon the agent’s

believability; for each of these, they instantiate agents at different values of the

relevant parameter, and have them play against a human expert. They then showed

recordings of these game sessions to a panel of judges, and analysed the relationship

between the varying parameter values and the observer’s perception of the agent.

They found that the agent was judged most humanlike when it exhibited noticeable

 118

strategic and tactical planning behaviours, and was least believable when its aim was

excessively accurate. Elsewhere, McGlinchey and Livingstone [111] perform a series

of similar experiments using the game Pong as a testbed, while Livingstone [79]

extends the concept to consider Non-Player Character (NPC) agents, before

providing a summary of the most important components of agent believability. With

respect to our own work, the relevant believability criteria are as follows:

• the agent should not be merely a reactive bot; specifically, it should

o exhibit strategic planning in the medium- to long-term

o exhibit tactical planning in the short- to medium-term

• the agent should react to changes in its local environment

• the agent should act and aim with human-level precision and reaction times

In the following sections, we describe imitative mechanisms which fulfil each of

these criteria. Further discussion on the importance of believability studies can be

found in Chapter 5.

4.3 Strategic Behaviour Imitation

In a number of contributions [75, 78], the ability of agents to exhibit long-term

strategic planning consistently emerges as a key factor in determining its

“believability”. In order to learn strategic behaviours from human demonstration, we

develop a model designed to emulate the notion of program level imitation discussed

by Byrne and Russon [20]; in other words, to identify and imitate the demonstrator’s

goals and intent, rather than simply reproducing his precise actions. On each

timestep, the human player evaluates his current status, exercises his knowledge of

the game environment, and makes a strategic decision to pursue a particular goal.

Our task, then, is to identify and define the principal goal-states within the recorded

game session, and to derive those factors which caused the player to move towards

 119

them. In the context of Quake, strategic planning is mostly concerned with the

efficient collection and monopolisation of items and the control of certain important

areas of the map; we therefore define the goal-states as being the locations within the

game world at which the agent collected a new item.

Thurau et al [131] present an initial approach to emulating such behaviours based on

artificial potential fields; here, we instead apply a combination of reinforcement

learning and fuzzy clustering to the problem, while adding a number of mechanisms

designed to imitate other important aspects of strategic planning.

4.3.1 Reinforcement Learning

Markov Decision Processes [2, 69] are based on the idea that a problem can be

modelled as a set of states, actions which may be taken in each, transitions which

result from taking a particular action in a particular state, and rewards associated

with certain states. Formally, an MDP consists of:

• a set of states, S

• a set of actions, A

• a transition function T, which defines AaSssassP ∈∈∀ ,',),|'(

• a reward function R, which defines AaSsasR ∈∈∀ ,),(

On each timestep, the agent determines its current state, decides upon an action,

transitions to a successor state, and receives a corresponding reward from the

environment. Since we know the desired goal but not the correct actions to take,

rewards are typically given upon reaching a particular state rather than for taking a

particular action.

 120

The objective is to find a optimal policy, that is, a mapping from states to actions

which defines the agent’s behaviour in a each state,)(,: tt saAS ππ =→ . The value

)(tsV π of a policy π is the expected cumulative reward that will be received while

the agent follows the policy from state st. The optimal policy *π is thus the policy

such that

SssVsV ttt ∈∀=),(max)(* π

π

Depending on the application, the amount of knowledge we possess about the world

may vary. Typically, we do not know the values of),|'(assP and),|(asrP ; we

must therefore explore the world in order to construct a valid policy, which we can

then exploit to find the best route to the desired goal. One of the best-known

exploration algorithms is Q-Learning [69], which operates by summing the rewards

of future actions to build up a table of quality values associated with each (s, a) pair.

The update rule generally used in Q-Learning is as follows:

))','(max(),()1(),(

'
asQrasQasQ

Aa∈
++−= γαα

where γ is the discount factor used to reduce the value of future rewards, s’ is the

state to which the agent transitions upon taking action a, and the learning rate α is

generally taken as (1/t), where t is the current timestep. The control policy of the

agent is defined using a soft-max function such as the Boltzmann distribution:

∑
∈

=

Aa

T
asQ

T
asQ

e

easP

'

)',(

),(

),(

where T is the temperature of the system. By starting with a high value of T and

decreasing it as learning progresses, the agent gradually moves from a stochastic

 121

explorative policy when the Q-values are at their most inaccurate, to a deterministic

exploitative policy as its knowledge of the states and actions improves.

Unfortunately, it is not feasible to apply these techniques in an environment such as

Quake 2; given the number of states - a Q2 map can, at maximum, be a 32k x 32k x

32k grid - and the fact that significant changes in the rewards can potentially occur

every hundred milliseconds, the exploration time would be prohibitive. While an

approach similar to that employed by Cottrell [25] might prove beneficial in adapting

reinforcement learning to imitation, a more direct solution does present itself. Since

we can compute the values of),|'(assP and assign rewards to produce),|(asrP

based on the observed actions of the player, one of two iteration techniques can be

adopted to learn the optimal policy without needing to perform exploration.

The value iteration algorithm [69, Figure 4-2] is used to compute the value V(st) of

each state, and has been shown to converge to the correct V* values. The algorithm

operates by storing the maximum Q-values of each state across all actions, updating

them on each iteration; convergence occurs when the maximum variation between

two successive updates falls below a given threshold. Once the values have been

computed, the policy can be defined by simply choosing the transition which leads to

the successor state with the highest utility value.

For all s in S

 For all a in A

 ∑
∈

+←
Ss

sVassPasRasQ
'

)'(),|'(),(),(γ

),(max)(asQsV
a

←

Until δ<−+

∈
)()(max 1 sVsV ll

Ss

Figure 4-2 - The Value Iteration algorithm

 122

A second algorithm, policy iteration [69] is used to obtain the optimal policy directly

rather than indirectly over the utility values. Though very similar in form, policy

iteration is not detailed here, since the value iteration algorithm is sufficient for the

purposes intended.

Figure 4-3 - More than one path exists through each environment. The player chooses his route
in such a manner as will maximise his arsenal - and thus, his advantage over opponents - based
on his current health, armour, weapon, ammunition and other inventory contents. Experienced
players also attempt to maintain control over particularly important areas of the map.

4.3.2 Goal-Oriented Strategic Navigation

In Quake 2, experienced players traverse the environment methodically, establishing

control over important areas of the map and collecting items to strengthen their

character (see Figure 4-3). Thus, we define the player’s long-term strategic goals to

 123

be the items scattered at fixed points around each level. By learning the mappings

between the player’s status and his subsequent item pickups, the agent can adopt

observed strategies when appropriate, and adapt to situations which the player did

not face. A strategic imitation system must therefore implement:

• a means of deducing the map’s topology from demonstration

• a means of mapping the agent’s current state (inventory) to the appropriate

goal state (item pickup location) and actions (movement path)

• a means of allowing the agent to adapt to unseen states when deployed

• a means of allowing the agent to react to dynamic changes in its environment

Our system, designed to meet all these criteria, is described in the following sections.

4.3.3 Topology Learning

Learning the human player’s strategic navigation of his environment first requires a

means of building a representation of that environment’s topology. Traditional AI

bots in first-person shooter games generally employ waypoint maps - graphs of

interconnected nodes, whose edges specify the paths along which the agent is free to

move - which are manually constructed by the game designers. In keeping with our

focus on imitation learning, we would prefer to deduce a topology from recorded

game sessions. Adopting this approach has an additional advantage from the

perspective of strategic imitation: by deriving a topological representation of the map

from human demonstration, we implicitly discard those areas which the player did

not visit, and which we can therefore infer were of little or no strategic value.

To learn the topology of the environment, we first read the set of all player locations

{ }zy,x,=l
r from the recording, and cluster these points to obtain a reduced set of

prototype player positions. By examining the sequence of player positions, we also

construct an n x n matrix of edges E, where n is the number of clusters, and Eij = 1 if

 124

the player was observed to move from node i to node j and 0 otherwise. Thus, we

derive a waypoint map based on the demonstrator’s traversal of his environment.

We quickly discovered, however, that naïve clustering often resulted in a topological

map which was of insufficient granularity to capture the most important points in the

dataset - that is, the points at which the player was observed to collect an item. Figure

4-5 provides an illustration of this phenomenon. Here, the agent may inadvertently

miss certain items which it was supposed to collect, since the placement of the

waypoint nodes is such that the graph’s edges - that is, the agent’s traversable paths -

do not intersect with the item collection points, represented as green squares.

We address this using a custom modification of the k-means algorithm. This involves

introducing a collection of immutable “anchor” centroids, which specify points of

particular importance in the dataset; in our case, these are the positions at which the

player’s inventory (list of items) changed. The process operates by adjusting the set

of initial cluster centroids, such that each anchor replaces the centroid nearest to it.

Once done, the algorithm runs as normal, with the added stipulation that the anchors

remain fixed throughout. In this manner, the points at which items pickups occurred

stay constant, while the remaining clusters are distributed around them - in effect,

providing us with an inherently goal-oriented discrimination of the level’s topology.

Formally, the algorithm proceeds as follows:

1. A set of initial centroids is first derived from the data; various approaches to

the selection of these centroid positions are given in [18]. In our case, since

the data encodes the near-continuous motion of an avatar through its

environment with time, we sample the datastream at evenly-spaced intervals

to produce the set of initial centroids.

2. The initial centroid which lies closest to the position of each anchor centroid

(as defined above) is removed, and replaced by that anchor.

 125

3. For each non-anchor centroid, recompute the cluster centre positions c1…cn as

the centroids of the set of data vectors they currently represent, i.e

)(∑= ji xavgc
anchorsci ∉

icxdistj kj
k

=∀)),((minarg|

4. If the algorithm has converged (i.e. no change occurs in the assignment of

input vectors to reference vectors for two successive iterations), then stop.

Otherwise, go to step 2.

In practice, we also employ Elkan’s fast k-means modification [32] to greatly

expedite the clustering process. An illustration of how the waypoint map would

appear if visualised in-game is shown in Figure 4-4 below; the effectiveness of our

approach in capturing item collection points is shown in Figure 4-5 and Figure 4-6.

Figure 4-4 - An illustrative projection of the topological waypoint map onto a visualisation of an
in-game scene. Nodes are blue, edges are red, nodes at which items reside are green.

 126

Figure 4-5 - A naive clustering of the player's positions reveals the topology of the level using the
unmodified fast k-means algorithm. Note that several items (green) are not ‘captured’ by the waypoints
(blue) and the edges between them (red).

Figure 4-6. The modified algorithm produces a clustering which arranges itself around important points
(i.e. strategic objectives) in the dataset, rather than treating them incidentally. It proves effective in
capturing all item collection events.

 127

4.3.4 Deriving Movement Paths

Typically, traditional agents use shortest-path methods to navigate from their current

location to a desired waypoint node. From the perspectives of both imitation learning

and humanlike behaviour, this is unacceptable. Firstly, human behaviour is inherently

sub-optimal; while an experienced player will generally pursue a good path to his

objective, it will not necessarily be the best. Secondly, an imitative approach to

learning movement patterns has the effect of co-opting elements of human strategy

that would be either difficult to achieve with a traditional agent, or would be

overlooked entirely. A human player, for instance, may deliberately choose to take a

longer path to his ultimate objective if it offers other benefits; a particular corridor

may be poorly illuminated in the game world, and will thus make it more difficult for

an opponent to spot and kill his avatar. A more circuitous route may permit him to

collect ammunition for a weapon situated at the end of his current movement path,

allowing it to be used immediately. Though the imitation agent will naturally not

know that it is pursuing a specific path for these reasons, it will nonetheless gain the

benefits of the human’s strategic thinking. This ability to subsume elements of human

reasoning, by deducing relationships between state and behaviour from observable

outputs - without requiring that the reasoning processes themselves be manually

coded - is what makes imitation such a powerful mechanism.

To capture this, we view the topological map of the game environment as a Markov

Decision Process [54], with the clusters corresponding to states and the edges to

transitions. We also read the player’s inventory from the demo at each timestep - that

is, the list of weapons and ammunition currently in his possession. We construct an

inventory state vector specifying the player’s health and armour values together with

the weapons he has collected and the amount of ammo he has for each. The set of

unique state vectors is then obtained; these state prototypes represent the varying

 128

situations faced by the player during the game session. We can now construct a set of

paths which the player followed while in each such situation. These paths consist of a

series of transitions between clusters:

],...,,[,2,1, kiiii ccct =

where ti is a transition sequence (path), and ci,j is a single node along that sequence.

Each path begins at the point where the player enters a given state, and ends where he

exits that state - in other words, when an item is collected that causes the player’s

inventory to shift towards a different prototype. Figure 4-7 illustrates a typical path

followed in one such prototype.

Figure 4-7 - An example of a path followed by the player while in a particular inventory state

4.3.4.1 Assigning Rewards

Having obtained the different paths pursued by the player in each inventory state, we

turn to reinforcement learning to reproduce his behaviour. In this scenario, the

 129

MDP’s actions are modelled as the choice to move to a given node from the current

position. Thus, the transition probabilities are

ijEjaisjsP ====),|'(

where s is the current node, s’ is the next node, a is the executed action, and E is the

edge matrix. Since each action in each state leads unambiguously to a single

successor state, this produces a deterministic mapping of the form

', sas →

This has an added advantage in that each entry of the probability matrix can be

represented as a single bit, offering a significant reduction in storage overhead. To

guide the agent along the same routes taken by the player, we assign an increasing

reward to consecutive nodes in every path taken under each prototype, such that

jcpR jii =),(,

where pi is a prototype, and ci,j is the jth cluster in the associated movement sequence.

Each successive node along the path’s length receives a reward greater than the last,

until the final cluster (at which an inventory state change occurred) is assigned the

highest reward. If a path loops back or crosses over itself en route to the goal, then

the higher values will overwrite the previous rewards, ensuring that the agent will be

guided towards the terminal node while ignoring any non-goal-oriented diversions

along the way. Thus, as discussed earlier, the agent will emulate the player’s

program-level behaviour - that is, it will identify and pursue the human

demonstrator’s strategic goals, rather than simply duplicating his precise actions. An

example of such behaviour is shown in Figure 4-8 below.

 130

Figure 4-8 - A quiver plot illustrating program-level imitation. Pictured above are the player’s (blue)
performance of an item collection sequence, and the agent’s reproduction of same (red); starting positions
are given by their respective coloured squares, items are in green. In the middle of the sequence, the player
descends and re-ascends a staircase, with no objective benefit. The agent ignores this non-goal-oriented
movement, bypassing the stairs and heading directly towards the final item pickup at the near-right.

4.3.5 Learning Utility Values

With the transition probabilities and rewards in place, we can now run the value

iteration algorithm in order to compute the utility values for each node in the

topological map under each inventory state prototype. The value iteration algorithm

iteratively propagates rewards outwards from terminal nodes to all others,

discounting them by distance from the reward signal. Once complete, these utility

values will represent the “usefulness” of being at that node while moving to the goal.

 131

Figure 4-9 - Rewards (red & blue) and learned utility values (magenta & green) shown on the
vertical axis. Note that every node has a nonzero utility value; the agent will be drawn towards
the goal from any point on the map. The program-level approach effectively abstracts the
agent’s situation from the implementation of its solution - if the agent encounters this particular
inventory state while at position X, for instance, it will follow an alternate route to the terminal
node 4 rather than copying the human demonstrator’s path (1-2-3-4).

Generally, the algorithm’s stopping criterion is based on the variation of the utility

values between consecutive iterations; however, in a complex world such as that

presented here, convergence may be prohibitively slow. In our case, it is important

that every node in the map should possess a utility value under every state prototype

by the end of the learning process, thereby ensuring that the agent will always receive

strong guidance towards its goal. We therefore adopt the game value iteration

approach outlined by Hartley et al [50]; the algorithm is applied until all nodes have

been affected by a reward at least once - that is, until every node has a non-zero

 132

utility value. Figure 4-9 shows the result of applying value iteration to one particular

path through the environment.

Furthermore, the value iteration algorithm itself can be greatly expedited by

exploiting the deterministic nature of this particular MDP. Using the INRA MDP

Toolbox 2.0 for MatLab, the main value iteration code appears as follows:

 for s = 1:S

 for a = 1:A

 Q(a) = R(s,a) + discount * P(s,:,a) * V;

 end;

 V(s) = max(Q);

 end;
Figure 4-10 - Standard value iteration code

where R is a two-dimensional reward matrix, and P is a three-dimensional transition

matrix. In an example run of 442 nodes, this takes 139 seconds to affect every state

for a particular path around the map. In our scenario, however, each action inherently

implies a movement to the associated state; the code can thus be rewritten as follows:

 for s = 1:S

 V(s) = max(R(s, :) + discount * (P(s, :) .* V));

 end;
Figure 4-11 - The rewritten value iteration code

The transition matrix is reduced to two dimensions, and inner loop is vectorized so

that the rewards of all actions in a given state are computed simultaneously. On the

same dataset and machine, this code produces the same results as above in just 1.016

seconds.

 133

4.3.6 Multiple Weighted Objectives

Beyond the mapping of inventory status onto navigation decisions, a number of other

features of human planning behaviour must also be taken into account. Faced with a

situation where several different items are of strategic benefit, for instance, a human

player will intuitively weigh their respective proximities and importance before

deciding on his next move. To model this, we adopt a fuzzy clustering approach. On

each update, the agent’s current inventory is expressed as a membership distribution

across all prototype inventory states. This approach produces an aggregated set of

utility values which reflect the similarity of the agent's current state to each of those

experienced by the player, thereby allowing the agent to utilize its knowledge of the

human’s actions across the entire game session rather than considering only the

single most analogous situation. For instance, in cases where item A is less attractive

than item B given the agent’s current status, but item A is located closer to its current

position, the agent will be drawn towards the goal state associated with A. This is

computed as follows:

∑=
−

−

−

−
= P

i

p
is

pssm
1

1

1

||||
||||)(rr

rr

where s is the current inventory state, p is a prototype inventory state, P is the

number of prototypes, and mp(s) is the degree to which state vector s is a member of

prototype p, relative to all other prototypes.

This approach has the advantage of increasing the agent’s adaptability when

deployed. In the case of the recorded human data, we can determine the player’s

precise objective on every timestep, simply by reading ahead in the packet stream

and determining which item he eventually collected. When the imitation agent is

deployed, however, it will likely be required to begin its navigation from a different

point on the map, and its inventory states will therefore be markedly different to

 134

those observed during the learning process. Weighting across all objectives in this

manner ensures that the agent will pursue consistent behaviours even in such cases.

4.3.7 Object Transience

Another important element of planning behaviour is the human’s understanding of

object transience - that is, a collected item will be unavailable until the game

regenerates it after a fixed interval. A human player intuitively tracks which items he

has collected from which areas of the map, can easily estimate when they are

scheduled to reappear, and adjusts his strategy accordingly. To capture this, we

introduce an activation variable in the computation of the membership values;

inactive items are nullified, and the membership values are redistributed among items

which are still active:

∑=
−

−

−

−
= P

i i

p
p

isoa

psoa
sm

1
1

1

||||)(

||||)(
)(rr

rr

where a, the activation of an item, is 1 if the object o at the terminal node of the path

associated with prototype state p is present, and 0 otherwise. The utility

configurations associated with each prototype are then weighted according to the

membership distribution as described above, and the adjusted configurations

superimposed; we also apply a discount to prevent backtracking. The formulae used

to compute the final utility values and select the next position cluster is thus:

∑ =
=

P

p pp
ce smcVcU

1
)()()()(γ

}1|{),(max1 =∈=+ xcyt t
ExyyUc

where U(c) is the final utility of node c, γ is the discount, e(c) is the number of times

the player has entered cluster c since the last state transition, Vp(c) is the original

value of node c in state prototype p, and E is the edge matrix. Imitating the human’s

 135

comprehension of object transience allows not only the adjustment of long-term

strategies as items respawn in distant areas of the map, but also fulfils the

believability criterion as outlined in Section 4.2.1 that an agent should react to

changes (in this case, item respawns) in its immediate environment.

Further discussion, and detailed examples, of both the objective-weighting and

transience mechanics are presented in the Experiments section and Figure 4-12.

4.3.8 Deployment

When deployed, the agent passes its current location and inventory to MatLab via the

QASE interface on each timestep. MatLab then determines the closest-matching

topological node, computes the similarity of each state prototype to the given

inventory state, weights the utility values accordingly, finds the set of nodes

connected to the current node by examining the edge matrix, and selects the

successor node with the highest utility value. As the agent traverses its environment,

item pickups and in-game events will cause its inventory to change, resulting in a

corresponding switch in the utility configuration and attracting the agent towards its

next objective.

4.3.9 Experiments

Here, we present a statistical validation of the strategic planning system. A

comprehensive evaluation of the mechanism as it pertains to the agent’s perceived

believability or humanness is presented in Chapter 5.

To evaluate the agents’ ability to learn the human’s strategic behaviour, we first

conducted 150 separate tests on 30 sequences of simple item pickups spanning four

different game levels. For each set of five tests, the first attempt placed the agent at

 136

the same starting position as the player; the four subsequent tests placed the bot at a

random position along the sequence. When starting at the same location as the player,

the agent was expected to reproduce the exact sequence of pickups. When starting at

each of the random positions, it was expected to attempt to reproduce the sequence if

possible; however, if its starting location caused it to collect an object while en route

to the first item in the sequence, the agent was expected to deal with this

unencountered situation appropriately. Each topological map was constructed at a

cluster ratio of 35%; that is, the number of waypoints was 35% of the total number of

positions encoded in the underlying dataset. Because these samples represented

isolated pickup sequences rather than continuous gameplay, the agent did not take

item respawns into account - this was tested separately on more extensive samples, as

described later. Also, to account for the random positioning of the agent, we made

each internodal link in the topological map bi-directional. For each test, the number

of seconds taken for the bot to complete its task was recorded, and can be compared

with the human player’s time. These results are summarized in Table 4-1 below.

Dataset Player Bot (Same SP) Rand 1 Rand 2 Rand 3 Rand 4
1 24.8 14.2 25.4 36.7 23.6 20.1
6 12.0 11.8 16.1 15.3 21.4 18.1
7 15.8 10.8 11.1 10.8 12.6 15.9
9 79.2 51.0 76.9 72.1 61.3 76.9
10 60.8 47.1 46.8 71.7 50.9 72.5
11 32.8 43.1 56.0 68.7 58.2 65.7
18 54.4 20.6 31.2 22.7 20.4 37.2
19 20.8 12.7 43.3 12.9 43.5 20.7
20 50.4 29.3 76.9 31.0 33.4 31.2
21 20.0 17.3 15.8 13.5 11.2 12.2
22 38.4 51.3 43.0 40.1 59.8 47.4
27 28.8 37.9 55.8 35.2 35.6 52.1
30 24.8 29.6 28.3 30.0 34.0 35.1
Table 4-1 - Illustrative results of human navigation reproduction using strategic imitation.
Numbers are the time taken for the agent to complete the human’s pickup sequence from the
same starting position and each of four random positions. Results were chosen for varying
complexity, duration and agent performance.

 137

As can be seen, the agent successfully completed each task, although with greatly

varying times. When the agent started at the same point as the human, the times are

generally quite similar; in some cases, the agent actually manages to complete the

collection sequence faster than the demonstrator, since it will (as noted above) ignore

any non-goal-oriented movements present in the gameplay sample. The deviations

recorded in the random-spawn tests are due primarily to the fact that the agent often

started around the midpoint of the sequence, requiring it to either collect all

subsequent or all previous items before doubling-back to pick up the remainder.

Certain samples also saw noteworthy differences in the time taken for the agent to

complete its task when starting from the same position as the human player. In these

cases, it was observed that the bot tended to move in rough, circuitous motions

between what should have been adjacent points; this was found to be caused by a

concentration of complex paths through relatively small spaces, the slightly high

(35%) number of clusters used, and the resulting dense placement of nodes within the

topological map. Subsequent experiments would clarify the detrimental effects of

high waypoint densities on agent navigation (see Section 4.4.4). Some other minor

issues also contributed to the observed time differences - most notably the occasional

repetition of paths, caused by the artificial addition of bidirectional edges - but

overall the bot showed impressive performance and adaptability, as evinced by its

successful completion of pickup sequences when starting from artibrary locations.

While useful for the purposes of numerical comparison, however, these isolated

pickup sequences do not fully test the agent’s planning abilities. A more instructive

examination of its performance can be made by supplying more extensive gameplay

samples, wherein the player is observed to cycle continuously around the map in

accordance with his changing state. We therefore trained the agent on four extended

demonstrations across two different levels, where the human player had more scope

to develop the kind of elaborate strategy typically seen in a live game session. Here,

 138

the direction in which the player traverses the map is often an important element of

his strategy, allowing him to collect weapons before their relevant ammunition, or to

build up armour reserves before entering the open areas of the level; consequently,

edges in the topological map are taken as being unidirectional, except in cases where

the player was explicitly observed to move along them in both directions. The

objective-weighting and item transience mechanisms resulted in the emergence of a

noticeably more complex, more involved long-term planning behaviour. Rather than

simply cycling the map from one pickup to the next, the agents were instead

observed to react dynamically to changes in an object’s activation, to concentrate on

areas of the map which were favoured by the human player over the course of his

demonstration, and to give added significance to regions which were more heavily

populated with beneficial items. For instance, in several samples the player was

observed to first obtain a full complement of weaponry, after which he would patrol

specific areas of the map which contained many of the most useful items; the agent

took this into account by concentrating on those same areas throughout its test run.

One issue noted during these tests was an occasional ‘indecisiveness’ at points where

multiple paths intersected - the agent would sometimes move among several

neighbouring nodes, due to local maxima caused by overlapping utility values. In

such cases, however, this problem was quickly resolved by the discount factor

applied to recently-visited position clusters; this acted to push the bot away from

such intersections and towards more attractive areas of the map, resulting in little

overall disruption to the agent’s movement.

Illustrative examples of the goal-weighting and object transience mechanisms are

shown in Figure 4-12 on page 140. These demonstrate how the object transience

approach fulfils the believability criterion, outlined in Section 4.2.1, that the agent

should react to changes in its local environment. It is important to note, however, that

 139

these microcosmic examples are not the sole effects of the system. While it is

fortunate that some items happened to respawn in the bot's immediate vicinity, thus

providing ideal visualisations of the mechanism in operation, the very fact that the

agent was able to resolve these reappearances in the short-term negates their long-

term planning importance. It bears re-stating that the agent is internally tracking the

times at which the inactive items are scheduled to respawn, and therefore perceives

these reappearances no differently than it does the reactivation of items in other,

more distant areas of the map. The strategic implications of this mechanism occur

when the agent realizes that items at medium or greater distances from its current

position have respawned, leading it to adjust its long-term goals accordingly. The

navigation system, while primarily a strategic mechanism, therefore incorporates

situation-dependent elements of both reactive (when items at close range respawn)

and strategic behaviour (when items at longer ranges respawn).

Finally, it is instructive to note that the agent was out of line-of-sight of these items

as they respawned. In the case of a human player in the same scenario, he would

enter the area knowing that the items were due to respawn in the near future, but not

the precise time. When the items respawn, however, they emit a distinctive noise; this

would alert the human player that they had reappeared, even if he had already moved

past them and could no longer see them in his field of vision. From an observer's

perspective, then, the imitation agents in the sequences below would be perceived as

exhibiting reactive behaviours in response to an auditory stimulus. Along with the

strategic imitation of the human's tendency to opt for poorly-lit corridors discussed

earlier, this is an excellent example of how imitation learning can serve to co-opt

aspects of human perception, and their influence upon behaviour, which would not be

evident in a traditional rule-based agent.

 140

Figure 4-12 - Four sequences showing the objective-weighting and item transience mechanisms. Top, the agent
(white circle) comes across two shotgun ammunition pickups (red circles) for the first time (1.1, 1.2), and
collects them (1.3) before moving on (1.4). Having cycled around part of the level, the agent returns before the
items have respawned (2.1), and since their inactivity nullifies the associated utilities, the bot initially passes by
(2.2); however, their sudden re-emergence (2.2) causes the utilities to reactivate, and the agent is drawn to collect
them (2.3) before continuing (2.4). Later, the agent returns once again (3.1). The items are now active, but since
the agent has already collected several shotgun pickups, it has moved away from the prototype states associated
with these items. The relevant membership values are thus insignificant; as a result, the agent ignores the pickups
(3.2, 3.3), and continues on towards more attractive objectives (3.4). Finally, in a different session, the agent is
moving along a path (4.1) as a row of armour shards respawns behind it (4.2). It reacts at once, turning around to
collect the items (4.3), before resuming its course (4.4).

 141

A full gameplay example is visualised via QASE/MatLab in Figure 4-13 above.

Here, the agent (red) successfully reproduced the observed human behaviour (blue)

having started at a different point (red diamond) than the demonstrator (blue

diamond). Because of this, it was not possible to simply reproduce the exact

sequence of pickups - instead, the agent was forced to rely on its objective-weighting

mechanism to attract it towards each successive item location.

Further evaluation of the strategic navigation system, both in terms of imitative

accuracy and in the context of its contribution to the perceived “humanness” of the

agent, is detailed in Chapter 5.

4.4 Tactical Behaviour Imitation
In this section, we first outline the relationship between motion modelling and

tactical imitation, and discuss the importance of their role in creating a believably

Figure 4-13 - A continuous gameplay samples; the agent (red) successfully reproduced the observed
behaviour (blue) from a different starting position. Item locations are represented as green squares.

 142

humanlike agent. We then describe the development of our approach to integrating a

motion modelling and tactical imitation mechanism with the strategic navigation

system described above, based on the theory of action primitives.

4.4.1 Motion Modelling and Tactical Behaviours

While the strategic navigation approach described in the previous section does

provide an accurate reproduction of the recorded player’s long-term planning and his

traversal of the environment, the agent’s movement between nodes in the topological

map appears jerky and stilted - it does not capture the aesthetically smooth motion

which human players typically exhibit. Since the illusion created by even the most

intricate planning behaviours will be shattered if the agent is observed to move in an

unconvincing manner, it therefore becomes imperative to implement a mechanism

capable of imitating the human player’s motion. We refer to this requirement as

motion modelling. In addition, human players often exhibit behaviours which serve

no observable purpose during game sessions; unnecessary jumps, arbitrary weapon

discharges and other such actions are commonplace. Even simple actions, such as

standing in place while looking around for enemies or turning the camera to visually

inspect an upcoming obstacle, are distinctively human behaviours; these are

generally not exhibited by traditional agents, since visual examination of the

environment is redundant from their perspective. While emulating such behaviours

will not contribute towards the agent’s effectiveness, their absence would greatly

detract from the perception of the agent as a human player; thus, by imitating such

idiosyncrasies, it may be possible to make the artificial opponent appear more

lifelike. As discussed in Chapter 1, this is in marked contrast to most applications of

robotic imitation learning, where these unmotivated and unnecessary actions are

considered nuisances which detract from the optimality of the solution [29].

 143

Figure 4-14 - A player (white circle) wishes to collect an item (red circle) located on top of a high
platform. Directional navigation alone is not sufficient to reach all strategic goals; a
complementary tactical imitation system is required to negotiate obstacles such as this.

Beyond this, motion modelling has an important functional role in the realisation of

environment-relative tactical behaviours; an example is shown in Figure 4-14. As

discussed earlier, tactical behaviours are those which operate over a shorter term than

strategic behaviours, but nonetheless encode a degree of localized planning. The

virtual environments manifested in Quake, as with most modern games, are highly

complex; simply navigating along the environment surface from one point to another

is not sufficient. Players may need to jump across a ravine, stand on an elevating

platform, use doors or switches, and so forth. They perform tactical weapon-

switching behaviours, such as drawing their rocket launcher as they approach an

obstacle in order to perform a rocket jump, or choosing the Hyperblaster and firing at

the entrances to an open area to cover their movements from potential enemy

 144

encroachment. In many cases, the player can only reach certain areas of the map and

attain certain goals by performing one or more such actions at the appropriate time.

The goal-oriented navigation system, in other words, can be interpreted as

determining where the agent needs to go, while the tactical motion model provides

the means to get there.

For the purposes of our agent, then, an ability to imitate the behaviours discussed

above is essential. To do so, we draw on the theory of action primitives.

4.4.2 Action Primitives

Our initial attempts to integrate tactical motion modelling with the strategic

navigation system utilised an adaptation of an approach proposed by Thurau et al

[132], based on the theory of action primitives as described in Chapter 2. Action

primitives are sets of modularised motor commands which are capable, via

combination, of generating entire movement repertoires [37]; they are widely

documented in the behaviour, biological and robotic literature [28, 43, 60, 127].

To extract primitives from the recorded Quake 2 data, we first read the sequence of

actions executed by the player at each interval during the game session. This results

in a set of four-dimensional vectors as shown below:

a = [yaw, pitch, fire, jump]

That is, the angular orientation of the player in each plane, whether he is firing his

weapon, and whether he is jumping. We then cluster the set, thereby aggregating

similar actions executed at different times or locations, and reducing the data to a

smaller set of prototypical actions, otherwise known as primitives.

In order to reconstruct the human player’s motion, the agent must also learn how to

sequence these primitives. To this end, we employ a series of probability functions

 145

similar to Thurau [132]. In that case, however, the primitives were used in isolation;

they were not underpinned by a dedicated navigation system. We must therefore

adapt the approach, such that the strategic planning system outlined earlier is

responsible for navigation around the environment, and the motion modelling system

is layered on top.

Since the player’s action depends on his current location in the environment, the

probability of executing a particular action primitive aj when the agent is within the

Voronoi region of waypoint wk - that is, closer to wk than to any other node in the

topological map - was originally written as

)()(kjjt waPaaP ==

However, in our new model, this could lead to situations where an incongruous

primitive is chosen if the agent is currently at a node with more than one possible

successor; for instance, if the navigation system chooses to move left, but the motion-

modelling system chooses a primitive which the player executed while moving to the

right. To constrain the motion model such that it adheres to the paths chosen by the

navigation system, we choose primitives based not on the current node w, but rather

on the edge e along which the agent is travelling; that is,

)()(kjjt eaPaaP ==

The conditional probabilities can be computed by re-examining the recorded data.

Each action in the training set can be associated with an edge in the topological map,

and it can be associated with an action primitive. By counting the number of times a

particular action primitive is observed to be executed on a given edge, an m x n

matrix is formed where m is the number of edges and n is the number of action

primitives; the probabilities are then deduced by normalising the rows of the matrix.

An entry at position (k, j) thus indicates the probability P(aj | ek) as above.

 146

We must also consider the fact that not every action primitive can be executed as the

successor of every other; there is a constrained ordering of primitives, imposed

largely by the limitations of the player’s physical interface (see Section 4.4.3.4). As

such, it is necessary to introduce a condition which expresses the probability of

performing a particular action given the previously-executed action:

)()(1−== tjjt aaPaaP

where at-1 is the action which was executed on the last time step. These probabilities

are computed in a similar manner to the above; an n x n transition matrix is

constructed, and populated by observing the sequence of actions from the demo.

Since the conditional probabilities at-1 and ek are independent - the current state

(edge) affects only the next action, not the previous one - the overall probability of

executing action primitive aj is therefore given as

)(

)()(
),()(1

1
j

kjtj
ktjjt aP

eaPaaP
eaaPaaP −

− ===

While this system proves capable of manifesting humanlike motion while pursuing

the agent’s strategic goals, it is a less than satisfactory solution. One of its primary

shortcomings is its inherently disjoint nature - that is, the motion modeling system is

layered on top of the strategic-planning system, with no communication and only

minimal relation between them. The planning module picks the next edge to traverse,

and the motion module picks the actions on that basis, with no regard for the agent’s

condition or objectives. For this reason, we continued to investigate alternative

approaches, with the aim of developing a more robust integration.

4.4.3 Bayesian Imitation

During a research visit to Bielefeld University, we discovered that Thurau et al were

developing an improved approach to primitives based on Rao et al’s Bayesian model

 147

of action sequencing in infants and robots [106]. This formulates the choice of action

at each timestep as a probability function of the subject’s current state st, next state

st+1 and goal state sg, as follows:

),|(
),|(),|(

),,|(
1

1
1

gtt

gtjjtt
gttjt sssP

ssaPassP
sssaaP

+

+
+ ==

where the normalisation constant is computed by marginalising over actions:

∑ +

+=

u
gtuutt

gtjjtt

ssaPassP
ssaPassP

),|(),|(
),|(),|(

1

1

It was immediately apparent that, by viewing these states as the waypoints in our

topological map, Rao’s model was an ideal fit for the strategic navigation approach

described in Section 4.3; the position states st and st+1 are defined by the utility

values, while the current goal(s) are defined by the inventory membership

distribution. We therefore decided to develop a unified model of strategic and tactical

imitation, by integrating these two systems.

4.4.3.1 Primitives Extraction and Sequencing

As with the approach to primitives detailed in Section 4.4.2, we first read the

sequence of actions executed by the player on each timestep. This results in a set of

extended action vectors a such that

a = [yaw, pitch, walkstate, jump, weapon, firing]

where yaw є [-180, 180] and pitch є [-90, 90] define the player’s view orientation,

walkstate є [0, 2] determines whether the player is stationary, walking or running,

jump є [-1, 0, 1] indicates whether the player is crouching, standing or jumping,

weapon є [1, 11] signifies his current weapon, and firing є [0, 1] determines whether

 148

or not the player is discharging his weapon. As before, we cluster these action vectors

to produce an aggregated set of basis behaviours.

According to Rao’s model, the probability of executing each action at a given

timestep can be computed according to:

),,|()(1 gttjjt wwwaPaaP +==

where w is used to denote a waypoint in the topological map, to avoid confusion

between the states in Rao’s model and the strategic imitation system’s inventory

states. However, a familiar problem confronts us. In the original model, Rao assumes

that each action is independent of the last; in Quake 2, by contrast, each action is

constrained by its predecessor, due to the limitations of the human player’s interface

(see Section 4.4.3.4 for further discussion). To account for this, we must introduce an

extra conditional probability in our calculations. Since, as noted by Thurau [130], the

action observed on the previous timestep at-1 is independent of wt, wt+1, and wg -

sequencing of actions due to the human’s external input modality does not affect in-

game environmental conditions - the new probabilities are computed as:

),,,|()(11 −+== tgttjjt awwwaPaaP

),|(
),,|(),|(

1

11

gtt

tgtjjtt

wwwP
awwaPawwP

+

−+=

but,

)(
)|(),|(

),,|(1
1

j

tjgtj
tgtj aP

aaPwwaP
awwaP −

− =

)(
)|(

),|(
),|(),|(

)(1

1

1

j

tj

gtt

gtjjtt
jt aP

aaP
wwwP

wwaPawwP
aaP −

+

+==⇒

 149

Therefore,

)(
)|(

),,|()(1
1

j

tj
gttjjt aP

aaP
wwwaPaaP −

+==

4.4.3.2 Adaptations of the Rao/Shon/Meltzoff Model

Despite the suitability of Rao et al’s model [106] for our work, the requirements of a

game agent navigating a virtual environment are naturally quite different than those

of a behavioural model of infant imitation (see Chapter 1). Several further

adaptations were required before this approach could be used in the game world.

Firstly, Rao’s model assumes that transitions between states are instantaneous upon

execution of the chosen action; in the context of our waypoint map, however,

multiple actions may be performed while moving between successive position states.

The importance of this distinction became clear in our initial tests, as a direct

implementation of the model resulted in only a single action having a non-zero

probability for each (wt , wt+1, wg). This, in turn, meant that the agent only executed a

new primitive upon reaching each waypoint along its path. The result in the game

world was that the agent was observed to make a sharp change in orientation as it

passed each waypoint, and would then “lock” to this orientation while moving along

the edge towards the next node. This was particularly pronounced in areas of the map

with sparse waypoints and long edges, and had the effect of rendering the agent’s

appearance highly artificial. To rectify this, we instead express P(wt+1|wt ,at) as a

probability distribution across all actions on edge Ewt,wt+1 in the topological map.

Second, Rao assumes a single unambiguous goal, whereas we deal with multiple

weighted goals in parallel. As discussed in Section 4.3.6, we thus derive the player’s

specific goals during the learning process, and perform a weighting across all active

 150

goal clusters when the agent is deployed. With this in mind, the probabilities are

restated as follows:

∑ −
+==

g
j

tj
gttjgjt aP

aaP
wwwaPmaaP

)(
)|(

),,|()(1
1

where mg is the weighting of the current inventory with respect to goal state g.

Finally, while the above is sufficient to produce an accurate imitation of the human’s

behaviour, a further optimisation presents itself. In the course of our initial

investigation, some features of the action representation became apparent:

• the range of possible values of the latter four elements is quite limited in

comparison to that of the orientation variables; the total state space of

[walkstate, jump, weapon, firing] consists of only (3 * 3 * 11 * 2) = 198

distinct states. Indeed, this is small enough to make clustering largely

unnecessary, particularly due to the fact that the number of actual observed

states will typically be much smaller.

• while the player’s firing and jumping are in some cases dependent upon his

position, goal and orientation (for instance, performing a rocket jump, firing

at a particular point, jumping through a narrow gap), his orientation is

dependent only on his position and goal state.

Therefore, we can decouple the yaw and pitch elements of the action vector from the

remainder, add a dependency upon the former to the computation of the latter’s

probabilities, and sequence them individually. The action vectors are now rendered

as separate orientation and interaction vectors, where

ao = [yaw, pitch]

ai = [walkstate, jump, weapon, firing]

 151

The corresponding probabilities are calculated as:

∑ −
+==

g o
j

o
t

o
j

gtt
o
jg

o
j

o
t aP

aaP
wwwaPmaaP

)(
)|(

),,|()(1
1

and

∑ −
+==

g i
j

o
t

i
t

i
j

gtt
i
jg

i
j

i
t aP

aaaP
wwwaPmaaP

)(
),|(

),,|()(1
1

This serves both to produce a more fine-grain clustering of the orientation primitives,

and to more accurately model their sequencing; an additional clustering optimisation

will be discussed in Section 4.4.3.4.

4.4.3.3 Probability Computation and Deployment

With the model defined, we can now examine the demonstration data to extract the

probabilities P(wt+1|wt,a), P(a|wt,wg), and P(a|at-1). The first term is a forward model

of the player’s future state given his current action, as Rao et al discuss in the context

of infant behaviour [106]. They propose that neonates learn the equivalent model

through body babbling - that is, the proprioceptive development of an internal

correspondence map between muscle commands and resulting limb configurations,

acquired via trial-and-error experimentation with random body movements. Our task

is somewhat simpler; a set of probability matrices are constructed based on the

observed incidence of each primitive in the gameplay sample, indexed by position,

goal and previous action in accordance with the formulae given above.

Once deployed, the strategic navigation system determines the agent’s current

position wt, obtains the goal membership distribution m, computes the utility values

for each waypoint in the topological map, and chooses the highest-valued successor

 152

node wt+1. The tactical subsystem then assumes control, using the data supplied by

the navigation module - in addition to its own knowledge of the actions executed on

the preceding timestep - to extract the relevant values from the probability matrices.

Finally, it computes the likelihood of each primitive and selects the action with the

maximum a posteriori probability. Note that it is an entirely valid alternative to

choose the primitive by roulette-wheel selection over candidate actions; we use

maximum a posteriori simply because it maximally exploits the knowledge gained

from the human player’s demonstration.

4.4.3.4 Imitative Keyframing

With respect to the orientation primitives, there is still one issue to resolve regarding

their precise representation. Two options present themselves:

• relative primitives. Under this approach, the vector extracted from the

gamestate on each timestep consists of the change in orientation from the

preceding timestep, i.e.

ao = [∆yaw, ∆pitch]

• absolute primitives. Using this approach, the orientation vector extracted

from the gamestate consists of the absolute yaw and pitch values of the player

at that timestep, i.e.

ao = [yaw є [-180, 180], pitch є [-90, 90]]

These two are somewhat equivalent to the action space and task space representation

of state data discussed by Schaal [8] in the context of robotic motor control; that is,

relative primitives require knowledge of the agent’s internal state, whereas absolute

primitives are specified in observable game co-ordinates. In the case of relative

primitives, the comparatively small range of observed values of ∆yaw and ∆pitch -

 153

due both to the constraints of the human’s physical interface and the short (100ms)

period between samples, which preclude exaggerated actions such as turning 180° in

a single timestep - means that action primitives derived from the demonstration data

are highly accurate, even at low cluster densities. Agents trained using this approach

exhibited the ability to make very fine adjustments to their orientation while

navigating, as is typical of human players. However, our initial tests identified a

problem. In cases where the agent adopted a different trajectory through the

environment compared to its human exemplar - as is inevitable given the complexity

of the game world and our adoption of program-level navigation - it would

occasionally traverse the distance between two waypoint several timesteps faster or

slower the human player had. Thus, a primitive that the human was observed to

execute on edge B would be appended to the agent’s current orientation when it had

only completed (to exaggerate for illustrative purposes) half of the observed player’s

motion from edge A. Since relative primitives encode no self-corrective information

and implicitly depend upon all previous primitives, these transition errors tended to

accumulate as the agent traversed successive edges. The observable result of this

phenomenon was that, while the agent’s modelling of the human would initially

appear very accurate, after a period of time its orientation became increasingly

incongruous with its direction of movement.

Absolute primitives, by contrast, are not vulnerable to this effect, since they encode

the full yaw and pitch of the player on every timestep. However, since the state space

of absolute actions is far larger than that of relative actions, primitives derived from

absolute data tended to produce significantly coarser orientation adjustments than

relative primitives, even at higher cluster densities; this had the effect of rendering

the agent’s in-game motion substantially less humanlike. Given that one of the

principal objectives of our work is to improve the believability of game agents, an

alternative is clearly needed.

 154

Our solution, which we call imitative keyframing, allows us to borrow the strengths

of both the relative and absolute approaches. The central concept is analogous to

keyframing in computer animation, whereby the artist specifies a set of start and end

positions within an animation sequence, and the computer creates the smooth

transitions between them - although naturally in our case, the inter-keyframe actions

are derived from observation data rather than being generated artificially. More aptly,

it is similar to the action primitive sequencing system proposed by Fod, Mataric and

Jenkins [37], as discussed in Chapter 2. In that contribution, they derived movement

primitives from human limb-motion data, and sequenced them by generating a list of

potential successor candidates observed at the end of each discrete action; they then

selected the primitive which would result in the least perturbation of the robot’s limb

trajectory between movements.

In our case, we record a set of initial primitives for each (Ect,ct+1, cg) pair in the

recorded data - these are absolute primitives which the player was observed to

execute upon first entering each new edge in each goal state. Depending on the

topological complexity of the map, these can either be used directly or clustered to

form a smaller set of primitives; a slight improvement in the smoothness of the

agent’s motion can also be achieved by recording the minimum and maximum

observed perturbations for each edge-goal pair, which can later be used to clamp the

bot’s orientation on each edge. Aside from these initial actions, we record the relative

changes in orientation on every timestep. The relative actions are clustered to derive

a set of primitives and the probability matrices are constructed as above, with the

addition of an extra matrix representing the valid relative successor primitives for

each initial absolute primitive in each edge-goal state.

When the agent is deployed, the mechanism employs relative primitives and operates

exactly as before while the bot is moving along the edges of the topological map.

Upon reaching a node, however, a slight alteration is introduced. The agent consults

the initial primitives’ probability matrix, selects the highest-valued action, and

 155

applies it. Then, it generates a list of all possible relative successor primitives,

chooses the one which will minimise the change in orientation upon the next

timestep, executes it, and reverts back to normal operation. Thus, the relative

primitives are used when traversing the edges of the topological map, while the

absolute primitives are used to keyframe a single timestep at each waypoint. In this

way, the ability of the relative primitives to manifest fine-grain orientation

adjustments is retained, while the absolute primitives ensure that no error accrued

during traversal of a particular edge can propagate to the next.

4.4.4 Experiments

Here, we present a statistical validation of the unified strategic and Bayesian tactical

system, and examine the effect of different cluster densities upon the accuracy of the

resulting imitation. A comprehensive evaluation of the mechanism as it pertains to

the agent’s perceived believability or humanness is presented in Chapter 5.

To test the model, we utilized 35 recorded gameplay samples of varying length and

complexity, spread across three distinct environments. In each case, the agent

attempted to reproduce the human’s behaviour with cluster densities of 20%, 30%

and 50% of the total number of samples, both for constructing the topological map

and for deriving the action primitives. In each case, the gameplay samples included

features which would require the Bayesian motion-modelling system to learn and

reproduce certain tactical actions - jumping, interaction with environmental features

such as elevating platforms, etc - in order to successfully complete the human’s

traversal. Because, as mentioned in Section 4.3, the agent’s task was not to simply

copy the human - but rather to deduce his objectives and pursue them independently -

a frame-by-frame comparison of the bot’s actions against the demonstrator’s was not

appropriate. Instead, we compute the error between the agent’s position and actions

while traversing each edge and those of the human while moving along the same

edge in the same goal state.

 156

Cluster density 20% 30% 50%
Position MAE (Units) 21.32 19.22 17.76
Position MAPE (%) 2.69 2.42 2.32
Yaw RMSE (°) 4.78 3.84 2.71
Pitch RMSE (°) 0.30 0.17 0.11

Table 4-2 - Variation of mean error with cluster density

The results are summarized above. As can be seen from Tables 4.2-4.4, the model

produced a very accurate reproduction of the human player’s behaviours, even at low

cluster densities. The MAPE (mean absolute percentage error) between the agent’s

position and that of the human, calculated from the centroid of the dataset, did not

exceed 7.25% at 20% density, and was generally much lower; the highest recorded

Sample Position
MAPE (%)

Yaw
RMSE (°)

Pitch
RMSE (°)

1 0.93 3.83 0.16
5 1.63 10.3 0.16
10 1.26 1.55 0.07
15 3.28 3.93 0.10
20 3.56 8.75 1.34
25 4.15 8.06 1.36
30 7.25 3.45 0.33
35 3.33 1.98 1.09

Table 4-3 - Representative error rates for 20% cluster density

Sample Position
MAPE (%)

Yaw
RMSE (°)

Pitch
RMSE (°)

1 0.71 1.52 0.10
5 0.91 0.20 0.16
10 0.98 1.63 0.03
15 2.88 2.29 0.07
20 2.23 7.23 0.09
25 3.21 4.85 0.09
30 5.83 2.06 0.13
35 2.11 0.71 0.09

Table 4-4 - Representative error rates for 50% cluster density

 157

RMSE (root-mean-square error) in the agent’s yaw was 10.3° at the lowest density,

while its pitch stayed within 1.36° of the demonstrator’s. The low pitch error reflects

the fact that the agent was engaged in imitating the player’s strategic navigational

behaviours - variations in the horizontal plane were therefore greater (moving around

corners, etc) than those in its vertical, which would be more pronounced in a combat

scenario. The numerical results correlated with the very humanlike visual appearance

of the imitation agents.

While the choice of cluster densities revealed itself to be highly dependent upon the

complexity of the environment and the size of the gameplay sample, the results

demonstrate an expected trend towards greater accuracy with more clusters. In

certain cases, however, this did not hold true. We found this to be caused by the

overcrowding of the topological map with waypoint nodes, which forced the agent to

make significantly more course corrections than were necessary for accurate

reproduction of the player’s navigation; this, in turn, often had a negative impact on

the accuracy of the action primitives. Given the relatively small error reduction that

results from increasing the topological density versus the more significant error

reduction when the number of primitives is increased (see Table 4-2), and

considering that higher topological cluster densities are undesirable in any case since

they increase the duration of the learning process, a useful guideline derived from

these experiments is to use the minimum number of topological clusters required to

provide a sufficiently detailed representation of the environment while maximizing

the number of action primitives in accordance with any relevant resource

considerations. In general, we found that cluster densities of less than approximately

20% were not sufficient to capture the topology of the environment, while densities

of greater than 50% often resulted in a decrease in performance, both numerically

and perceptually.

 158

Figure 4-15- Examples of the aesthetic (top) and functional (middle) aspects of the tactical
motion-modelling system; the bottom sequence demonstrates a combination of both.

Recall that, in Section 4.4.1, we discussed the role of the motion-modelling system in

reproducing both the aesthetic qualities of the human player’s motion - a vital

component in the perceived humanness of the agent, as will be further detailed in

Chapter 5 - and its functional elements, which comprise the environment-relative

tactical behaviours necessary for the agent to negotiate its environment. Some

examples of both the aesthetic and tactical aspects of the Bayesian system are shown

in Figure 4-15 above.

The top sequence shows the agent leaning into and strafing (pivoting) around a

corner, turning its view towards the corridor into which it is about to move. From the

agent’s perspective, such aesthetic motion is pointless; to an observer, however, it

immediately conveys the impression of a human player, who needs to actually look

towards his destination in order to ensure that (for instance) no opponents are lying in

wait.

In the middle sequence, the agent’s next goal is an item on top of the large box. As it

approaches, it switches weapon to the rocket launcher, looks downwards, jumps, and

 159

fires a rocket into the ground to propel itself upwards. This so-called rocket jump is

considered one of the most advanced moves in Quake 2, and is commonly employed

by experienced players to reach otherwise inaccessible areas.

The bottom sequence shows the agent interacting with a lift by stepping onto it,

standing still as it ascends (functional) and then jumping off at the top, an

unnecessary action which is nonetheless common among human players (aesthetic).

4.5 Reactive Behaviour Imitation

In this section, we describe our work in imitating reactive behaviours; these are

actions which involve very little planning, which the human takes in response to

stimuli in his or her immediate environment. In the context of Quake, reactive actions

principally refer to the aiming behaviour of the agent while in combat with an

opponent. We first briefly recap the problems with existing agent aiming behaviours,

and some related work in this field, before describing our imitative approach. A

series of experiments is then detailed to demonstrate its effectiveness in capturing

humanlike weapon-manipulation behaviours.

4.5.1 Reactive Combat Behaviours

In Quake 2, as in all first-person shooter games, players employ a wide variety of

different weaponry while engaging in combat against one another. Though the

specific weapons vary from game to game, a number of common characteristics

prevail; certain guns fire slow-moving but powerful projectiles, others fire quick but

weak bursts. Some are ideally suited to ranged combat, whereas others are more

useful in close quarters (Figure 4-16). Depending on the situation, the player may

 160

need to “lead” his opponent - that is, deliberately aim ahead of the enemy - in order

to give the projectile sufficient time to meet its target. Experienced human players

utilise these weapons in such a way as to maximise their effectiveness, instantly

weighing an array of variables (proximity to opponent, remaining ammunition, etc)

before deciding upon their course of action. In comparison to this lucid play style, the

performance of traditional rule-based artificial agents leaves much to be desired.

Designed top-down, they exhibit at best a crude approximation of the human player’s

context-sensitive weapon handling; often, they will simply retain whichever gun they

happened to last pick up, or whichever the game designer has specified as being the

most powerful. To compound this problem, developers often compensate for their

agents’ lack of intelligence by endowing them with superhuman capabilities far

beyond the constraints imposed upon the human player by his mouse-and-keyboard

interface, enabling them to read the position of their human opponent from the

gamestate and strike with pinpoint accuracy.

Figure 4-16 - Examples of different weapon types in Quake 2. The Rocket Launcher (left) fires a single
slow but powerful projectile, which explodes on impact. The Hyperblaster (middle) rapidly fires medium-
speed, medium-strength projectiles. The Railgun (right) fires a single, powerful, infinite-range instant-
strike energy bolt, but requires very precise aiming in order to hit its target.

The very fact that such bots are consistently unpopular with gamesplayers

demonstrates that sacrificing believability to artificially increase the competitiveness

of agents is an inherently misguided approach - even when losing to a superior

human opponent, gamesplayers invariably enjoy the experience more than fighting

an unrealistic bot [140, 141]. Laird and Duchi [78] have previously investigated the

influence of aiming skill upon Quake agents’ perceived humanness; they report that

 161

bots which exhibit excessive accuracy elicited highly negative reactions from the

judges in their experiments, and go so far as to suggest that constraining combat

skills to realistic human levels be made a core criterion in FPS agent design. It should

be noted, however, that even in cases where designers have taken measures to add an

element of inaccuracy to rule-based agents’ aiming behaviours, this generally

consists of little more than adding a simple random offset from their opponent’s true

position. This can itself introduce artificialities, since the agents will tend to fire

periodic volleys of shots in a halo around the player, resulting in predictable miss-

miss-hit-hit-miss-type patterns.

4.5.2 Learning the Inaccuracy

With this in mind, we look to imitation learning to provide an alternative. Our

previous contributions have primarily concentrated on the strategic and tactical

layers; this work is situated on the boundary of the reactive (close-quarters combat

with limited available time to plan) and tactical strata (long-range combat with

slightly greater scope for weapon selection and aim planning).

Thurau and Bauckhage [11] present an initial approach to reactive combat imitation,

using a mixture of 3 expert networks to aim and switch between three predefined

weapons - one short range, one medium, one long - in a single plane. Counter-

intuitively, their experiments revealed that the weapon competencies were not

allotted bijectively to the networks, but rather produced a holistic representation

distributed across all three experts; they speculated that the handling of different

weapons does not differ as widely in the data space as the visual in-game result

suggests. However, they report that - because the underlying “aim” function is quite

straightforward, as embodied by the traditional bots discussed earlier - the network

 162

learned to aim too well, resulting in precisely the kind of pinpoint accuracy we wish

to avoid.

It is from these findings that we draw the intuition underpinning this work; rather

than attempting to imitate the player’s aim, we instead learn what distinguishes a

human from a traditional game bot - his inaccuracy. As sometimes occurs in our

work, this places us at odds with our counterparts in the field of robotics, who use

imitation as a means of quickly attaining optimal performance; since we are primarily

interested in producing realistically human behaviour, we often need to deliberately

strive for the competent yet suboptimal. The human-produced “noise” which Dillman

et al [29] regard as a drawback of imitation learning - incorrect, unmotivated and

unnecessary actions - are precisely the behavioural traits we are attempting to capture

here.

The inaccuracy of the player’s aim derives from two distinct components:

• unintentional inaccuracy, due simply to human error

• intentional inaccuracy, the player’s practice of accounting for his opponent’s

motion while aiming

Using this as our starting point, we attempt to learn context-sensitive weapon

switching and aiming across the entire range of available weaponry, and in both the

horizontal and vertical planes.

4.5.3 Methodology

4.5.3.1 Data Extraction

To facilitate the learning process, we must first reconstruct the player’s perception of

his opponent’s motion using the available low-level data. For each frame, we read the

 163

player’s current position, his orientation (i.e. the direction in which he is aiming), and

the position of the nearest opponent. From this, we derive the opponent’s current

directional vector, and the vector running from the player’s position to the enemy’s -

that is, the ‘perfect’ line along which the player would be aiming, were there no

considerations of projectile speed or human error to take into account; the angular

difference between this line and the player’s observed aiming direction is his

inaccuracy. We can now express the opponent’s velocity relative to the player’s field

of vision, by computing the projection of his directional vector onto the vectors

parallel and perpendicular to the player’s view angle, as shown in Figure 4-17:

a
caccompv apar r

rr
r

r
⋅

==
b

cbccompv bperp r

rr
r

r
⋅

==

where ar is the player’s viewing vector, b
r

is perpendicular to the viewing vector, and

cr is the direction of the opponent’s motion. We also record the opponent’s velocity

in the vertical plane as the change in his Z-axis position between successive frames:

1−−= ttvert zzv

Figure 4-17 - Reconstruction of the player's visual perception from low-level data.

 164

However, we must also consider the impact that elevation has on the player’s

perception of his opponent’ motion. Consider the scenario where the opponent is

directly above or below the player; in this case, any movement along the Z-axis (i.e.

vertically towards or away from the player) will have no bearing upon his aim. If, on

the other hand, the opponent is on the same horizontal plane as the player and begins

to ascend or descend, the player will need to compensate by adjusting his pitch.

Similarly, if the opponent is on the same horizontal plane as the player and is moving

towards him, the parallel component of the opponent’s movement will have little

influence on the player’s resulting aim; if, however, the opponent is above or below

the player and moving along the parallel vector, then he will again need to adjust his

pitch accordingly as the enemy approaches.

To account for this, we weight both the parallel and vertical velocities according to

the angular elevation of the opponent relative to the player; that is

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
=

a
cav par r

rr

φsin ()()1cos −−= ttvert zzv φ

As an aside, it is worth mentioning that this is good example of the benefits of using

computer games for imitation (and, indeed, general AI) research. In robotic imitation,

data is commonly derived either through video analysis or by using expensive

motion-sensing equipment; here, by contrast, we can build a noise-free reconstruction

of the player’s visual perception of the virtual environment, without having to

perform any image processing of the game session’s graphical representation. Rather

than using our access to the gamestate data to cheat, as is the case with the traditional

agents discussed earlier, we instead use it to build a model which provides our agent

with the same information as was obtained visually by the human player during the

game session.

In addition to the above, we must also read the following data on each timestep:

 165

• the player’s current weapon

• a “bitmask” indicating which weapons he currently possesses and has

ammunition for

• the player’s distance from the opponent

• whether or not the player is firing his weapon

Together, these will form the training set for the neural network architecture.

Figure 4-18 - A series of interconnected neural networks is employed to learn and reproduce
the observed combat behaviours

4.5.3.2 Network Architecture

The neural network architecture itself consists of three interconnected networks, each

of which is trained to perform a specific function; the model’s structure is outlined in

Figure 4-18 above. Each network is trained as follows:

WEAPON

The Weapon network is responsible for selecting the most appropriate gun, given the

available options. Its inputs consist of the distance between the player and opponent

 166

on each timestep, together with a bitmask indicating weapon availability. The target

output is the active weapon on the subsequent timestep.

FIRE

The Fire network is responsible for determining whether or not the agent should fire

its gun. Its inputs consist of the current weapon, the distance to the opponent, and the

angular difference between the vector from player to opponent and the player’s

current aiming vector. Its outputs are 1 if the player should fire his gun, 0 otherwise.

AIM

The most important component of the architecture, the Aim network is responsible

for adjusting the aim of the agent in accordance with the opponent's manoeuvres and

the attributes of the selected weapon. Its training data consists of the distance from

player to opponent, the parallel, perpendicular and vertical velocities of the enemy,

the current weapon, and the previous angular inaccuracy for some temporal context.

In keeping with the approach discussed earlier, its target on each timestep is the

angular difference between the vector running from the player to the opponent and

the player’s current aim vector (i.e. the inaccuracy of the player’s aim).

When trained and deployed, the relevant feature vectors are obtained from the

agent’s gamestate on each timestep. The opponent’s proximity and the weapon

bitmask are presented to the Weapon network, producing the index of the gun to be

used on the next timestep. This is in turn supplied both to the Aim network - thereby

producing the pitch and yaw inaccuracy of the agent’s aim on the next frame - and to

the agent, for implementation on the next timestep. The Aim network supplies its

angular output to the bot and also passes it to the Fire network, where together with

the new weapon index and the distance between the player and enemy it determines

whether or not the agent should commence firing its weapon.

 167

4.5.4 Experiments

In testing our model, we wished to use data derived from a free-flowing game

session, rather than it being generated under more controlled circumstances. To that

end, we first built a custom-purpose Quake 2 environment, designed specifically to

maximise the variation of distance, angle and weaponry experienced by a player in

the course of a game session (see Figure 4-19). We then had two players of

comparable experience play on this map for just over 60 minutes, resulting in a

wealth of data with which to train the networks. For the purposes of these

experiments, we use the victor’s data as the training set, and the runner-up’s as a

validation or test set.

Figure 4-19 - The custom Quake 2 map used in our experiments

 168

In the cases of both the Weapon and Aiming networks, we limit the dataset to those

periods during which the player was actively engaged in combat. This approach was

taken because, during non-combat phases, the player generally pursues navigational

behaviours; changes in his orientation and field of view are thus intended to facilitate

visual inspection of his surroundings, and are unrelated to aiming. This was

obviously not appropriate for the Fire network - in its case, we extracted every

available sample, whether the player was in combat or not.

Network Training Set # Test Set #
Aim 10184 6008
Weapon 10184 6008
Fire 37981 35678

Table 4-5 - Sizes of training and test datasets

We then used this data to train each network using a range of topologies, employing

Levenberg-Marquardt backpropagation across 3000 iterations. Ultimately, we found

that the topologies shown in Figure 4-18 worked best - some insight may be gained

by noting that the tests considered 10 distinct weapons. Very little improvement in

performance was observed by increasing the number of neurons or layers in the case

of the Fire and Weapon networks; we therefore opted for a 10-neuron single hidden

layer configuration. We also noted that the evaluation set error was in some cases not

as close to the training set error as had been expected; this was not mirrored in the in-

game trials, where the networks proved quite capable of generalising to unseen

circumstances. On reflection, however, this seems reasonable - while the general

rules of weapon handling will apply to all competent players, the individual quirks of

two distinct human gamers will always lead to diversities of this kind. The effect was

likely amplified by the fact that the victorious human player, from whom the training

data was drawn, had quickly come to dominate the match, leaving his opponent with

scarce opportunity to retaliate.

 169

4.5.4.1 RESULTS

The agent was observed to switch between different weapons dependent upon its

proximity to the opponent, mirroring not only the concepts outlined above, but also

the human exemplar’s specific weapon preferences. For instance, in close quarters

combat, one might justifiably choose among the Blaster, Hyperblaster, Shotgun or

Chaingun; the agent exhibited a preference for the Chaingun, switching to one of the

others when it ran out of ammunition. When the opponent moved to medium range,

the agent opted to use the Hyperblaster or Chaingun; at medium-to-long ranges, the

Railgun or Rocketlauncher was preferred. Table 4-6 shows the mean-square error for

each network/topology combination for both the training and test sets.

Network Topology MSETrain MSETest

7-5-2 0.0065 0.0102
7-10-2 0.0056 0.0089 Aim
7-10-10-2 0.0038 0.0054
11-5-1 0.0287 0.0483
11-10-1 0.0272 0.0416 Weapon
11-10-10-1 0.0261 0.0455
4-5-1 0.1333 0.1910
4-10-1 0.1292 0.1881 Fire
4-10-10-1 0.1254 0.1844

Table 4-6 - Training phase results

Beyond this, a number of interesting phenomena were observed. When in close-to-

medium range combat, where the player perceives the opponent as moving very fast

across his field of vision, the agent exhibited only limited “leading” behaviour (that

is, aiming ahead of its opponent to account for projectile speed). We believe this to

be due partly to inadequate reaction time caused by the opponent’s proximity, and

partly to the constraints imposed by the human’s interface - the player is physically

limited, by the range of motion possible using a hand-driven mouse, in the speed and

 170

accuracy with which he can turn. When the opponent moved further away, however,

the leading behaviour became more pronounced and deliberate. Thus it appears that

the weapon-handling behaviour encompasses both reactive and elements of tactical

behaviours from the Hollnagel model discussed earlier; the practice of leading the

opponent becomes more prominent as the amount of time available to the player

increases. As discussed at the start of this section, we expected to see this effect to

some degree at the outset of the experiment.

It was observed, during some trials, that the Weapon network tended to switch

between multiple guns in quick succession instead of simply picking one which was

range-appropriate. This was due to the human exemplar’s practice of rapidly cycle

through his inventory with the mouse wheel until he reached his desired gun, rather

than choosing it directly; a practice which introduced considerable noise into the

weapon-selection data. While serving as a good example of how imitation learning

automatically captures elements of human behaviour which would ordinarily be

overlooked by an AI designer, this rapid weapon-switching was in some cases

observed to impact negatively upon the agent’s ability to aim. We therefore propose

an alternative approach. Given that there is a relatively discrete logical partitioning of

guns with varying range, we can cluster the distances between the player and

opponent observed during combat, and select probabilistically. At timestep t, the

weapon is chosen according to:

∑
=

u
utu

ktk

k
t bdwP

bdwPw
)|(

)|(maxarg

where w is a weapon, dt is the clustered distance to the opponent at timestep t, and bk,

the bitmask element corresponding to wk, is 1 if the agent possesses weapon wk and

has ammo for it, 0 otherwise. This was observed to produce more decisive weapon

selection behaviour. Choosing whether to adopt the probabilistic or neural

approaches thus becomes a matter of priorities; between replicating a minor but

compelling aspect of common human behaviour, or ensuring a more rigid but

 171

perhaps more consistent mechanism. Naturally, if the training data is drawn from a

player who selects his weapons directly rather than by spinning the mouse wheel, this

issue becomes moot.

One of the most interesting (and unanticipated) observations was that, in close

combat with the opponent rapidly moving left and right around the agent, it seemed

to be somewhat more capable of tracking the enemy as it moved anti-clockwise

around the agent than as it moved clockwise. At first, we naturally assumed that the

network had simply learned to reproduce one motion more accurately than the other;

however, the same phenomenon was observed when the network was re-trained with

differing topologies, and even when the evaluation dataset from the second human

player was employed as the primary training set. Having reviewed the recordings of

both the original game session and the agent’s reproduction, we suspect that this is

due to the fact that both players were right-handed; their range of motion while

sweeping the mouse inward - that is, the movement required to track an opponent

anti-clockwise in close proximity - is therefore slightly greater, due to it being a more

ergonomically comfortable motion than an outward sweep. While reproducing this

was not an intended consequence of our imitative model, it once again serves to aptly

illustrate the benefits of imitation learning in producing humanlike behaviour; it

implicitly captures and manifests elements of the human gameplay experience - in

this case, a bias introduced by the player’s physical interface - which would be

entirely absent in a rule-based agent designed from the top down.

Figure 4-20 - An example of the agent "leading" an opponent. The bot aims ahead of its enemy, such that the Hyperblaster’s projectiles
coincide with his arrival. The agent’s aim tracks the opponent up the ramp, ultimately defeating him and scoring a point.

 172

4.6 Conclusion

In this chapter, we described the models and mechanisms which we have developed

to imitate human behaviours from recorded Quake 2 game sessions. A hierarchy - or

more accurately, a gradient - of observable in-game actions was first presented,

based on Hollnagel’s contextual control model of real-world human behaviour; this

identifies strategic long-term planning behaviours, tactical mid-term planning

behaviours, and reactive short-term stimulus-response behaviours. We further

identified, based on previous work by Laird/Duchi and Livingstone/McGlinchey, a

number of core criteria for agent believability.

Building upon this theoretical foundation, we proceeded to outline imitative models

for each major level along the behaviour gradient, noting instances wherein some

overlap between the different layers existed; in each case, we also described

experiments which served to statistically validate the proposed systems. We detailed

a reinforcement-learning approach to long-term strategic imitation and navigation,

including such features as the human’s ability to account for dynamic changes in the

local and global environment, the weighting and pursuit of multiple objectives in

parallel, and the derivation of a goal-oriented topology of the game environment

from recorded data. We then outlined the integration of this system with an approach

to tactical motion-modelling based on the theory of action primitives; this allowed

the agent to imitate a human player’s characteristically smooth motion, in addition to

such behaviours as environment-relative weapon selection and complex medium-

term actions such as Quake’s signature rocket jump. Finally, we presented an

approach to the imitation of reactive weapon-selection and combat behaviours, which

involved first reconstructing the human player’s visual perception of his opponent’s

motion from the available low-level data, and then emulating the inaccuracy - both

intentional and unintentional - demonstrated in his aiming behaviours with varying

weapon, angle, elevation and range.

 173

5 Believability Testing

5.1 Introduction

One significant impediment to work in this field - indeed, in the fields of game AI

and virtual human agents in general - is the current lack of a formal, rigorous

standard for determining how ‘humanlike’ an artificial agent is, or any strict means of

comparing the believability of different agents. In this chapter, we propose such a

system - the Bot-Oriented Turing Test (BOTT) - and use our own imitation agents

to demonstrate its effectiveness.

In Section 5.2, we detail the motivation underlying this work; the reasons for the lack

of a standardised approach to believability testing, the applicability of the Turing test

to the problem, the informal nature of previous attempts at such analysis, and the

necessity that this problem be addressed.

In Sections 5.3 and 5.4, we state the specific objectives of what we refer to as our

believability-test framework. We then detail each component of this framework; the

construction of an anonymous online survey to profile the experience level of

participants and collate their judgements of the agents’ believability in comparison to

human players and other agents, the development of an experimental procedure or

protocol to remove subjectivity and bias, and the computation of a believability index

to numerically express the artificial players’ “humanness” as a function of the

respondents’ experience and the accuracy with which they identified the agents.

In Section 5.5, we outline an experiment conducted using the believability testing

framework, which employed our own imitation agents as a test case, human players

as a control group, and a traditional AI bot as a comparator. This has the dual purpose

 174

of demonstrating the framework itself in practice, and of assessing the believability

of our imitative mechanism as described in the preceding chapters. We find that our

agents were judged to be significantly more humanlike that the traditional agents, and

conclude that this provides strong evidence in favour of our thesis that imitation

learning has the potential to produce more believable AI agents that traditional AI

techniques alone.

Some further observations on the test, and its applicability to the wider question of

believability assessment, conclude this chapter.

5.1.1 Publications

The work in this chapter was published as “Believability Testing and Bayesian

Imitation in Interactive Computer Games” (Gorman, B., Thurau, C., Bauckhage, C.,

and Humphrys, M.) in Proc. 9th Int. Conf. on the Simulation of Adaptive Behavior

(SAB'06), volume LNAI Springer, 2006.

It was also published as part of a discussion on the role of imitation learning in games

from a cognitive perspective, as “Learning Human Behavior from Analyzing

Activities in Virtual Environments” (Bauckhage, Gorman et al 2007), MMI-Interaktiv

Journal, Nr. 12, April 2007.

5.2 Motivation

As discussed in the preceding chapters, one of the primary aims of our work in

imitation learning is to improve the believability of artificial agents - that is, the

degree to which they are perceived by observers as exhibiting humanlike traits, or

indeed of being human. The question thus naturally arises: how do we objectively

determine this “degree of believability”? One significant impediment to work in this

 175

field is the current lack of a formal, rigorous standard for determining how

‘humanlike’ an artificial agent is, or any strict means of comparing the believability

of different agents. MacNamee, in noting that the question of evaluation has been

largely overlooked in virtual-human and game AI research, posits that part of the

reason lies in the fact that such sophisticated agents are a relatively new achievement;

and thus, that models and implementations have necessarily occupied researchers

more than metrics and evaluation. Systems which achieved a degree of believability

were inherently novel, and therefore a success in their own right. As he concludes,

however, the field is now well established, and the current situation is no longer

tenable [80].

MacNamee further acknowledges, in his discussion of believability testing for virtual

human simulations, some of the difficulties involved; namely, that “believability” is

an inherently subjective concept, and that asking an individual to simply rate the

humanness of an agent’s behaviour in isolation would invariably cause the results to

be overtly influenced by the judges’ familiarity, or lack of same, with the field of

artificial intelligence. He raises the possibility of using implicit measures, such as the

agent’s ability to perform a given task or series of tasks, as a means of eliminating

subjectivity; this functional or numerical approach is echoed by Wallace & Laird

[136], who propose that agent performance be measured by representing behaviours

as hierarchies of temporally-constrained sub-objectives, and measuring the degree to

which the sequence of behaviour states exhibited by the agent is consistent with that

of the human. We have already presented similar numerical investigations of our

imitation mechanism’s various components in the preceding chapters. While this is

an effective and necessary means of verifying its functionality, and while casual

examination has indicated its ability to reproduce recognisable human behaviour, a

formal assessment and quantification of the system’s observable in-game

believability is also required. MacNamee ultimately concurs with this view,

 176

remarking that the only credible method by which believability may be ascertained is

by conducting a survey.

5.2.1 Previous Contributions

Some existing contributions have attempted to address the problems of evaluating

believability in game AI. While we consistently found the testing procedures

employed in these experiments to be highly informal and ad-hoc, they do offer some

valuable insights.

MacNamee’s aforementioned work [80] concerns NPC (Non-Player Character)

agents - that is, characters which populate a virtual world but which are not

controlled by humans. In contrast to the opponent AI with which our own work is

concerned, his simulation therefore involves no human interaction, instead

visualising high-level, universally familiar real-world behaviours; in this case, a

group of agents socialising at a bar. As there is no human exemplar against which to

compare, and not wishing to evaluate the agents in isolation for the reasons outlined

earlier, MacNamee adopts the approach of presenting the judges with two separate

artificial simulations and asking which exhibits the more humanlike behaviour. From

the perspectives of both our own work and that of opponent AI in general, this is

clearly not appropriate. Firstly, we are attempting to imitate the strategic and tactical

behaviours observed during a human player’s interaction with the game world; we

must therefore incorporate the data recorded from said humans as the control group

in our survey. Secondly, the simulation against which MacNamee’s agents were

evaluated simply executed random behaviours at each timestep. While this may be

suitable for determining whether one’s agents act in a comparatively goal-driven

manner in an autonomous simulation with no human interaction, a first-person

shooter opponent bot which executed actions at random would be of little use for the

purpose of comparison against our own agents. Thirdly, the test is presented as a

 177

binary choice; either one or other of the observed simulations must be chosen as

more believable. Although MacNamee posits some follow-up questions, this

approach inherently limits the scope of the analysis that may be carried out upon the

survey results. The test as a whole, while appropriate to the specific context in which

it was employed, is thus quite informal, does not produce a result that can be easily

translated for comparison against other agents, and does not represent a standard

model that could be applied in more diverse scenarios.

Elsewhere, McGlinchey and Livingstone [111] outline a series of believability

experiments conducted using the game Pong, wherein opposing players each control

a paddle at opposite ends of the game field, and attempt to prevent a moving ball

from exiting the screen on their side by bouncing it back towards their opponent.

While the paper’s main concern is to investigate what general elements of behaviour

contribute most to perceived “humanness” rather than to design a rigorous

believability test, it does provide some relevant observations. In their tests, a Self-

Organising Map is used to train an artificial player from human demonstration. A

rule-based AI is also used for comparison purposes; this operates by projecting the

location at which the ball will arrive, and moving to this position. In similar fashion

to the aiming mechanisms of traditional FPS agents discussed in previous chapter,

this means that the artificial player can essentially be perfect; a degree of fallibility

was manually added by inserting a delay before the paddle starts moving towards the

ball, reducing the speed of the paddle’s motion, and using a random ±20 pixel offset

from the known endpoint of the ball’s trajectory. Eight games, involving different

combinations of the human, hardcoded AI and imitation AI were then shown to a

number of judges, who were asked to indicate whether they thought each paddle was

being controlled by a human or artificial player. Although the paper does not discuss

why such combinations were used, it is a shrewd approach which - for reasons

detailed in Section 5.3.2 - we also used in our own believability tests. The results

indicated that most of the judges’ identifications varied significantly from chance, but

 178

not always in the desired manner; one respondent, for instance, correctly identified

14/16 players, while another misidentified 14/16. McGlinchey speculates that this

indicates a measurable distinction between the human and AI players. However, it is

likely that the results were influenced by the fact that Pong is, as discussed in section

2.3, an extremely simplistic game; players can move up, or move down, or they can

vary their speed somewhat. Within such a limited repertoire of behaviours, there

exists little opportunity for a human player to distinguish itself from an artificial one.

The believability test itself is highly informal - once again, it employs binary

identification, with only some qualifying questions asked afterwards; no overall

results are given, nor in-depth analysis performed. This is no doubt due to the paper’s

focus on, as its title indicates, “What Believability Testing Can Tell Us.” Ultimately,

though, it seems clear that the accuracy and reliability of this endeavour would be

best served by a more rigorous, structured testing process, whose results could be

utilised by other researchers examining the same questions. Indeed, the results

reported by McGlinchey seem to support this; the respondents who correctly

identified most players, and those who misidentified most, gave the same reasons for

their choices.

Laird and Duchi [78] also describe some believability experiments conducted using

their Quake 2 Soarbot; again, they approach the issue from the perspective of

determining which behaviours they should implement in order to maximise the

believability of rule-based agents. Their approach was to define a set of parameters -

decision time, tactical complexity and aiming skill - which they expected to have a

noticeable impact upon the agent’s perceived humanness; for each of these, they

instantiate agents at different values of the relevant parameter, and have them play

against a human expert. Five human players of differing skill then play against the

same expert. Laird notes, from their experience during previous investigations, that in

a typical game session the human player and the agent may only be in contact for

brief periods at a time, and consequently - in the context of a believability study - that

 179

the observer may not have the opportunity to examine the agents in sufficiently fine

detail; he therefore uses video clips of the recorded sessions, which show the game

world from the human or artificial player’s point of view. We use the same approach

in our own believability experiments - it is well-suited to our purposes, particularly

since our tests involve the strategic and tactical motion modelling systems rather than

combat scenarios. Laird’s results showed that the judges found agents with medium

reaction times and complex tactical behaviours the most convincing, while bots with

high aiming skill were judged to be more artificial. The analyses presented in Laird

and Duchi’s work are more detailed than in the previous cited examples, and

convincingly demonstrate the effects of varying rule-based agent competencies on

their perceived believability. However, some serious deficiencies persist in the

testing procedure. Firstly, it is not clear whether the experimenters were present

during the judges’ observation of the gameplay samples, but the fact that the matches

were recorded and played back on videotape suggest that they may have been; this

raises the possibility that experimenter bias may have influenced the results.

Secondly, on the subject of the videotaped recordings, it is not clear why Laird and

Duchi opted to take this approach, since facilities exist to generate digital AVI videos

directly from recorded DM2 files. While this may have had some impact upon the

quality of the videos presented to the judges, the more serious consequence is that

any extraneous, non-behaviour-related indicators which were present during the

recording process - for instance, different players may have used different in-game

character models, screen layouts, etc - were retained and seen by the judges. This has

the effect of giving the judges “clues” as to which samples come from a common

source, and could lead to them making decisions based on logical deduction rather

than observation. Even in cases where their deductions are wrong, this will have an

unavoidably deleterious effect upon the accuracy of the results. The importance of

removing all such indicators is detailed in Section 5.3.2; in our tests, we run a script

over all the gameplay samples to homogenise them to a common presentation format,

 180

before generating AVIs directly from the DM2 recordings. Thirdly, the evaluation

procedure itself remains highly ad-hoc. The judges viewed each gameplay sample

individually; they were then asked to rate its humanness on a scale from 1-10, and to

make a binary decision as to whether it was a human or artificial player. As detailed

earlier, asking individuals to make a snap-judgement on abstract concepts such as

“humanness” in isolation, without providing any basis for comparison, has the effect

of greatly increasing the amount of guesswork involved - it is not a plausible way to

judge the relative believability of different agents. Finally, out of the eight judges,

only three viewed all the gameplay samples - the remainder viewed only a subset of

them. This is insupportable for obvious reasons, not the least of which is that it

introduces the possibility of selection and ordering bias (see Section 5.3.2). Under

our proposed protocol, incomplete responses are discarded before the analysis

process, while the selection and ordering of clips is randomised.

Throughout this thesis, we have stressed the numerous ways in which imitation

learning holds obvious potential as a means of producing more believable agents;

but, as can be seen from the examples above, there has thus far been no credible

means of rigorously assessing this believability - the need for a perception- and

behaviour-based analogue to the Turing test is clear. But which elements of, and to

what degree, is the Turing test an appropriate tool in evaluating our imitation system?

5.2.2 The Turing Test and Game AI

It is perhaps of some historical interest, from the perspective of our work, that the

original Turing test was itself conceived as an imitation game - the computer was

given the task of equalling the ability of a human male to convince a judge, through

typewritten interrogation, that he was a woman [133]. Livingstone [79] notes that

Turing specifically discounted considerations of how the machine intelligence

operated, realising that this would make the test susceptible to the other-minds

 181

problem - that the only way to definitively prove a machine is thinking, is to be that

machine and be aware of one’s own thoughts. He therefore focussed his attention on

machines which could demonstrate what would commonly be considered

intelligence. For Turing, if a machine were capable of emulating the conversational

and imitative abilities of a human, then the judge would have no good reason to

ascribe intelligence to one and not the other, apart from an arbitrary bias arising from

the biological nature of the human participant versus the artificial provenance of the

machine.

As Livingstone further notes, this has come to be seen as an unsatisfactory attitude

among many researchers, who are nowadays more concerned with investigating and

building models to replicate intelligence from biological example, or with

constructing robots capable of performing tasks involving real-world manipulation

(see Chapter 2). This has the advantage of dividing the problem of human-level AI

into constituent subgoals as opposed to a single pass-or-fail test, allowing progress in

multiple areas to be made in parallel. Here, we find that each of the two primary

facets of our work reflects one of these opposing viewpoints. We have ourselves

deconstructed the multiplexed behaviours encoded in game sessions into a series of

subobjectives, as per the Hollnagel-derived behaviour model described in Section

4.2; we have also used biologically-inspired models as the basis of our imitative

mechanisms. Furthermore, as discussed in Section 2.3, many modern commercial

games - including Quake 2 - represent an abstraction of the real world, and

techniques developed to imitate in-game human behaviours may therefore be adapted

for real-world applications (see Section 6.4.2 for more on this topic). Thus, from the

perspective of computer games as a platform for imitation-learning research, we

have more in common with the post-Turing ethos. However, from the perspective of

believability, or imitation learning as a means of producing better computer game

AI, Turing’s position remains relevant; if a player is engaged in a game session and

observes an opponent behaving in a manner that is typically associated with human

 182

players, he has no reason to believe it is anything other than human1. The observer’s

perception is the only important criterion. Thus, Turing’s approach is still appropriate

for the evaluation of our agents.

But we must still consider that the Turing test is concerned with natural language,

whereas we are dealing with navigational and tactical behaviours in a virtual

environment. How, specifically, does the test relate to our work? In a contribution

which explores the logical implications of Turing’s paper, Harnad [49] notes a

number of unresolved issues with the original test. He first distinguishes between

functional and structural indistinguishability, and argues that Turing only accounts

for the former, while disregarding the latter. Although Turing readily concedes and

addresses this in his paper, treating the physical form in which the artificial mind is

embodied as being irrelevant to the question of its intelligence, Harnad argues that

discarding structural indistinguishability - that is, the correspondence between the

physical bodies of the human and artificial participants - has the effect of excluding

other, potentially salient aspects of functionality along with it. In the case of

communication, the typewritten interrogation format removes tone, inflection, body

language and so forth from consideration, thereby reducing the range of behaviours

upon which the interrogator may base his judgement. Consequently, Harnad proposes

a Turing hierarchy of benchmarks, with each successive level imposing increasingly

stringent requirements upon the candidate machine:

• t1: subtotal fragments of human functionality. Any model which seeks to

emulate an arbitrary component of full human capacity; these may represent

constituent modules in an eventual human-level AI.

• T2: total symbolic function. The machine can perform any symbol-

manipulation task of which a human is capable. The original Turing test

1 It is worth observing that, in Turing’s original paper, the issue of whether the judge is aware that one
of the participants might be an artificial intelligence is ambiguous. In this regard, Turing’s imitation
game is quite similar to a typical Quake 2 match.

 183

resides at this level, though as Harnad points out, it is susceptible to Searle’s

Chinese Room counterexample [116].

• T3: total external sensorimotor (robotic) function. The machine can

perform any real-world task of which a human is capable. Harnad posits this

as the most reasonable ultimate goal for AI research.

• T4: total internal microfunction. Though still composed of synthetic

materials, T4 level robots exhibit all the microfunctions of human bodies;

pupillary dilation, blushing, bleeding, and so forth.

• T5: total empirical indistinguishability. At this level, there exists no test

which can distinguish the robot from a human; they are bio-engineered at the

molecular level. Harnad proposes T4 and T5 for the sake of completeness, but

states that he regards them as being unnecessarily overdefined - a machine

which passes T3 can be assumed to possess a mind.

Our imitation-learning mechanisms reside on level t1 in this hierarchy; they are

behaviour modules implementing subtotal fragments of human functionality. This is,

however, little cause for alarm - as Harnad explains, every model across every

scientific discipline is currently at varying stages of their equivalent t1 levels, and

seem likely to remain so for the foreseeable future (Livingstone [79] points to the fact

that recent winners of the annual Loebner Turing contest have all been deemed either

‘probably a computer’ or ‘definitely a computer’; in the case of the 2000 contest, the

judges’ predictions were 91% accurate after five minutes). The advantage of the

Harnad t1 classification is that it represents a generic abstraction of the Turing test,

releasing us from the constraints of natural language conversation and providing us

with a formal basis upon which to conduct the evaluation of our agents. Models

representing any component(s) of the full range of human functionality can be

implemented for analysis; in our case, these are strategic planning/navigation and

tactical motion modelling behaviours.

 184

5.3 BOTT: The Bot-Oriented Turing Test

To summarise the discussion thus far: due in part to the novelty of sophisticated

autonomous virtual human agents until recent times, and in part to the reluctance of

the AI community to address a difficult subjectivity problem, there exists no rigorous

method of gauging the ‘believability’ of game bots, nor of objectively comparing this

quality in different agents. Given that one of the central aims of our work lies in

improving the believability of these bots, and that the lack of such a methodology is a

major impediment to the orderly evaluation of artificial game agents in general, this

is clearly a shortcoming which needs to be addressed. The only feasible means of

determining the degree to which agents are perceived as human is to conduct a

survey; this, of course, immediately raises questions of subjectivity, experimenter

influence, and so on. In order to produce a credible assessment of agent believability,

any proposed system must be designed with these concerns in mind.

Our aims, then, are as follows:

i) to construct a framework which facilitates rigorous, objective testing of the

degree to which game agents are perceived as human; this framework will

consist of an anonymous web-based survey and a protocol to which testers

should adhere, in order to eliminate potential subjectivity and bias

ii) to formulate a believability index expressing this ‘humanness’ as a function

of the user’s experience and the accuracy with which the agents/humans are

identified, and which facilitates the comparison of different agents.

The system developed to fulfil these criteria, which we call the Bot-Oriented Turing

Test (BOTT), is described below. We outline the structure of the survey and its

applicability to the testing of agents in general, using our own experiments to

illustrate key concepts; we then describe these experiments and their results in detail.

 185

5.3.1 Online Survey Structure

To counteract any potential observer bias, the test takes the form of an anonymous

online survey. Respondents are first presented with a detailed page of instructions

covering all aspects of the test (Figure 5-1, page 187). Before starting, they are

further required to estimate their experience in first-person shooter games, at one of

five different levels. Subjective judgements are avoided by explicitly qualifying each

experience level:

1. Never played, rarely or never seen

2. Some passing familiarity (played / seen infrequently)

3. Played occasionally (monthly / every few months)

4. Played regularly (weekly)

5. Played frequently (daily)

Respondents are asked to specify the option which best expresses their level of

experience at any point in the past; that is, if (s)he played a FPS game daily at one

time but no longer does so, (s)he should nonetheless select the ‘Played frequently’

option. This will later be used to compute the weighted believability index.

Upon proceeding to the test itself, the respondent is presented with a series of pages,

each of which contains a group of video clips (Figure 5-2, page 188). Each group

shows similar, but not identical, sequences of gameplay from the perspective of the

in-game character. This approach was adopted to allay concerns that asking

respondents to view individual clips in isolation, with no basis for comparison

against similar samples, would lead to a significant amount of subjectivity and

guesswork, thereby rendering the test essentially meaningless. Generally, three

categories of clip should be employed; clips of an actual human player, which will

 186

serve as the survey’s control group, clips of the artificial agent under investigation,

and clips of a second comparator artificial agent, which will act as a measure of

baseline agent believability.

Within each group, the clips may depict any combination of human and artificial

players. In other words, for each page, any of the following may be true:

• the clips may depict two human players and an agent in any order

• the clips may depict two agents and a human player in any order

• all three clips may be of human players

• all three clips may be of artificial players

The respondent is required to examine the appearance and behaviour of the character

in each clip, and indicate whether (s)he believes it is a human or artificial player. The

clips are rated on a gradient, as follows:

1 2 3 4 5
Human Probably Human Don’t Know Probably Artificial Artificial

This rating is the central concept of the survey, and will later be used to compute the

believability index. The respondent is also asked to specify how many times (s)he

viewed the clip, and to provide an optional comment explaining his/her choice; the

latter is used in cases where some aspect of the clip strikes the respondent as

particularly noteworthy. In cases where (s)he indicates that (s)he believes the agent

to be artificial, (s)he will be further asked to rate how "humanlike" (s)he perceives its

behaviour to be, on a scale of 1 to 10. This more subjective rating is not involved in

the computation of the believability index, but may be used to provide additional

insight into users’ opinions of different agents in cases where they were correctly

identified as such. Having completed all required sections on each page, the user

submits his/her answers and moves on to the next.

 187

Figure 5-1. BOTT Intro Screen

 188

Figure 5-2. Main BOTT Screen

 189

5.3.2 Experimental Protocol, Subjectivity and Bias

Aside from the observer effect, there are several areas in which the potential for

subjectivity and the introduction of bias exist. Since our aim is to provide an

objective measure of believability, these must be accounted for. The issues in

question are enumerated below; in each case, we also outline an approach to their

elimination. This protocol should be observed by experimenters whenever the

believability test is conducted.

1. Selection of Gameplay Samples
The first obvious pitfall is the selection of video clips - the selector may deliberately

choose certain clips in an effort to influence the respondents. To guard against this,

we propose two preventative measures: first, we ensure that the number of samples is

sufficient to embody a wide variety of behaviours, and secondly, we cede control of

the selection of the specific behaviours to an unbiased arbiter. In our case, we wished

to compare the believability of our imitation agents against both human players and

traditional rule-based bots; thus, we first ran numerous simulations with the

traditional agent - over whose behaviour we had no control - to generate a set of

gameplay samples, and then proceeded to use human clips embodying similar

behaviour both in the believability test and to train our imitation agents. An

alternative method would be to have a human third party select the clips, although

this would in itself introduce the possibility of further prejudice; we feel that our

approach is appropriate for the purposes of eliminating selection bias.

2. Order of Presentation

Similarly, the order in which the videos are presented could conceivably be used to

guide the respondents’ answers. To prevent this, we randomize the order in which the

groups of clips are displayed to each user, as well as the sequence of clips within

each page; the test designer thus has no control over the order of the samples seen by

 190

the user. Additionally, the filenames under which the clips are stored are randomized,

such that the respondent cannot determine the nature of each clip based on examining

the webpage source (e.g. clip 1 always human, clip 2 always artificial, etc).

3. User Sabotage (intentional or unintentional)

Another issue concerns the possibility that users will sabotage the survey, either

deliberately or inadvertently. They may, for instance, choose the ‘Probably’ options

in a deliberate effort to artificially minimize their error and ‘beat’ the test, or make

random guesses rather than selecting the ‘Don’t Know’ option, or attempt to average

out their answers over the course of the survey - that is, they may rate a clip as

‘human’ for little reason other than that they rated several previous clips as

‘artificial’, or vice-versa. To discourage this, we include notes on the introduction

page to the effect that the test does not adhere to any averages, that the user’s ratings

should be based exclusively upon their perception of the character’s behaviour in

each clip, and that the user should be as definitive as possible in their answers. In our

case, the requirement that the test should not adhere to averages - i.e. a combination

of one human, one imitation, and one artificial clip on every page - ultimately lead us

to use 12 human clips, 15 traditional agent clips, and 18 imitation clips in our

experiments, since pages without imitation or artificial bots would be of little benefit

in assessing the believability of our system as compared to traditional agents.

4. User Fatigue

A related problem is that of user fatigue; as the test progresses, the user may begin to

lose interest, and will consequently invest less and less effort in examining each

successive clip. We address this by including a feature enabling users to save their

progress at any point, allowing them to complete the survey at their convenience.

5. Identification by Deduction

It is also imperative to ensure that the test is focused upon the variable under

investigation - namely, the believability of the agent’s movement and behaviour. As

 191

such, the survey must be structured so as not to present extraneous ‘clues’ which

might influence the respondents, and cause them to rate clips based on deduction

rather than observation. For instance, the tester should ensure that all clips conform

to a standard presentation format, so that the respondent cannot discern between

different agents based on visual indicators; different players may have used different

in-game character models, individual player names, different screen layouts, etc. To

this end, we run a script over the demo files to remove all such indicators and

homogenize them to a common format.

In the specific case of our imitation agents, this requirement that all extraneous

indicators be removed raises a conflict between two of our goals in conducting the

survey. If the players in two of the three clips on each page begin from the same

location and exhibit near-identical behaviour, the respondent may conclude - through

deduction rather than observation - that (s)he is probably viewing a human and

imitation agent, and consequently that the remaining clip is more likely to be a

traditional artificial agent. Note that this might not necessarily be true, but even an

incorrect answer based on factors other than believability will adversely affect the

accuracy of the results. We circumvent this problem by training imitation agents with

different (but similar) samples of human gameplay to those actually used in the test.

The resulting clips are therefore comparable, but do not ‘leak’ any additional

information; respondents must judge whether or not they are human based solely on

their appearance. At the same time, however, we obviously wish to test how

accurately our agents can capture the aesthetic appearances of their direct human

exemplars. To satisfy both requirements, a small minority of imitation agents are

trained using the same human data as presented in the survey; in the experiments

described below, two of the imitation agents were direct clones, while the remainder

were trained on different data.

 192

5.4 Evaluation of Results

Before evaluating the results of the survey, one should ensure that there have been a

substantial number of responses with a decent distribution across all experience

levels; a good ‘stopping criterion’ is to run the test until the average experience level

is at least 3 (i.e. a typical gamesplayer). Standard analyses - precision, recall, etc -

can be carried out on the results, as we have done in the experiments section below;

however, we also wish to formulate a believability index which is specifically

designed to express the agent’s believability as a function of user experience and the

certainty with which the clips were identified.

5.4.1 Computing the Believability Index

Recall that each clip is rated on a scale of 1 to 5, with 1 corresponding to ‘definitely

human’ and 5 corresponding to ‘definitely artificial’. Obviously, the true value of

each clip is always either 1 or 5. Thus, we can express the degree to which a clip

persuaded an individual that the visualised character was human as the normalised

difference between that person's rating and the value corresponding to ‘artificial’:

)max(
|)(|

)(
h

Acr
ch ip

ip

−
=

where hp(ci) is the degree to which person p regarded clip i as depicting a human,

rp(ci) is person p’s rating of clip i, A is the value on the rating scale corresponding to

‘artificial’, and max(h) is the maximum possible difference between a clip’s rating

and A. In other words, hp(ci) will be 0 if the individual identified a clip as artificial, 1

if he identified it as human, and somewhere in between if he chose one of the

'Probably’ or 'Don’t Know’ options. We now weight this according to the

individual’s experience level:

 193

)(
)(

)(
eavg
che

cw ipp
ip =

where ep is the experience level of person p and avg(e) is the mean experience level

of all respondents. This serves to boost the ratings of the more experienced

participants within the sample by attaching extra weight to their responses, while

discounting the ratings of less experienced respondents accordingly.

Finally, we sum the weighted accuracies across all clips and respondents, and take

the average:

nm

cw
b

n

p

m

i ip∑ ∑
=

)(

where b is the believability index, n is the number of individual respondents, and m is

the number of clips. The believability index therefore lies in the range (0, 1), and is

essentially a weighted representation of the degree to which a given type of clip was

identified as human - which, for clips involving an artificial agent, means the degree

to which its behaviour deceived the viewer into believing it to be human.

5.4.2 The Confidence Index

The weighting mechanic described above serves to bias the believability index

towards the responses of more experienced survey participants, relative to the

respondents’ level of experience as a whole; it does not, however, indicate what that

level of experience was. In order to express the overall strength of the result and to

facilitate comparison between agents evaluated in different surveys, we therefore

compute a confidence index as follows:

)max(
)(

e
eavgc =

 194

where avg(e) is the average experience of the respondents, and max(e) is the

maximum experience level; the confidence index is thus conditioned upon a

sufficient absolute level of expertise among respondents. Decoupling the indices in

this manner produces a final believability index which is internally representative of

the respondent’s ratings in each individual survey, while the confidence index

ensures that the results can be compared against those obtained in other tests or using

other agents. In practice, then, a ‘good’ result for an AI agent would involve a high

value of b for both the agent and human clips - indicating that the respondents both

accurately identified true human players, and misidentified the artificial agent as

being human - together with a confidence index of 0.6 or more (indicating that

respondents were of a significant level of experience).

5.5 Experiments

In this section, we detail an experiment carried out using the believability test in

conjunction with our imitation agents, as described in the previous chapter. The

purpose of this experiment was twofold; first, to evaluate the believability-test

framework itself, and second, to examine how believable our imitation agents were in

comparison with human players and traditional rule-based artificial agents.

5.5.1 Methodology

The experiment consisted of 15 groups of 3 clips; these clips were up to

approximately 30 seconds in length. We first ran numerous simulations involving the

rule-based artificial agent to derive a set of gameplay samples, and then used similar

samples of human players both in the test itself and to train our imitation agents. The

rule-based agent used was the Quake 2 Gladiator bot [134], which was chosen due to

its reputation as one of the best bots available. Indeed, it was so highly regarded that

 195

its author, JP van Waveren, was hired by iD Software to adapt it as the official

Quake3 bot; this subsequently formed the basis of his Master’s thesis [135].

With the video clips in place, the URL of the survey site was distributed to the

mailing lists of several colleges in Ireland and Germany. After a one-week test

period, we had amassed a considerable number of responses. Having discarded

incomplete responses, we were left with 20 completed surveys, totalling 900

individual clip ratings; the average experience level of respondents was 3.2, giving a

confidence index of 0.64 for the survey as a whole.

Clip Type Believability Confidence Recall (%) Precision (%)
Human 0.69 68.37

Imitation 0.69 68.60 78.39

Artificial 0.36
0.64

36.69 50.87
Table 5-1 - Believability/Confidence indices, Recall and Precision values. Recall values consider
classifying the imitation and artificial agents as ‘human’ to be the desired results. Precision is
estimated over [human or imitation] identified as human, and FSM agent identified as artificial.

5.5.2 Results

As can be seen from Table 5-1 above, the survey produced a very favourable

impression of our imitation agent compared to the traditional artificial agent. The

believability indices for human, imitation and artificial clips were 0.69, 0.69 and

0.36, respectively. In other words, the imitation agents were misidentified as human

69% of the time, while the rule-based agents were mistaken as human in only 36% of

cases (weighted according to experience). Clips which actually did depict human

players were correctly identified 69% the time.

Essentially, it seems that respondents were generally unable to discern between the

human players and our imitation agents; these results are corroborated by the recall

values, which indicate that both the human and imitation clips were classified as

 196

human in approximately 68.5% of cases, while the rule-based agent was classified as

human only 36.69% of the time. Since the human sources used to train the imitation

agents were different than those human clips presented as part of the test, this implies

that the results are based on the general abilities of the imitation mechanism, rather

than any factors unique to the clips in question.

Rating Imitation Human Artificial
Human 225 145 102
Artificial 103 67 176
Neutral 32 28 22
Table 5-2 - Confusion matrix showing overall classification of clips. Classification threshold is
taken to be a rating of ‘Probably Artifical/Human’ or more definite

Further indication of the imitation agents’ effectiveness is evident in the graph of

accuracy against experience level show in Figure 5-3 below:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
Experience Level

B
el

ie
va

bi
lit

y
In

de
x

Human Imitation Artificial

Figure 5-3 - Variation of believabilty for human, imitation and artificial clips with experience

 197

The chart generally follows an intuitive trend; as experience level rises, respondents

correctly identify human clips more frequently, and misidentify the traditional agent

as human less frequently. The identification of imitation agents as human, by

contrast, closely parallels that of genuine human clips. These trends may be

explained by the fact that more experienced players have a greater knowledge of

characteristically human behaviours - smooth strafing, unnecessary jumping, pausing

to examine the environment, and similar idiosyncrasies - which the traditional agent

would not exhibit, but which were captured and reproduced by the imitation bots.

This interpretation is supported by many of the comments submitted by the most

experienced respondents, some of which are recounted in Table 5-3 below.

Experience Comment

5 Bunny hop for no reason, also seems to be looking for enemies
5 Fires gun for no reason, so must be human
5 Unnecessary jumping
5 human player since it performs complex moves
5 Shooting to cover possible enemies with rocket launcher
5 takes short cuts, shows smart aiming/shooting towards the end
5 Stand and wait. Ai wouldn't do this (?)
5 paused and jumped while pointing the gun around the corner first
5 Human as they knew how to Rocket jump
5 Human - it appears as if it is responding to objects appearing.
5 fast moves, smart item cycling

5 at the beginning there was a short period where the character was
waiting, that made it seem human

5 The rocket jump and the short sequence of backward running at
the end suggest this was human

Table 5-3 - Sample comments from imitation clips misidentified as human

Some further comments on the interestingly atypical results for the traditional

artificial agent at experience levels 1 and 2 are required. These ratings come from

individuals who respectively describe themselves as never having seen first-person

shooter games before, or as having minimal familiarity with them. At the lowest

experience level, respondents correctly identified the artificial agents with unusual

 198

accuracy; at experience level 2, by contrast, the artificial agents were

disproportionately misidentified as human. Though we hesitate to venture an in-depth

psychological exploration of these results, we regard the most likely explanation for

the accuracy of identification at experience level 1 to be oversensitivity caused by a

complete lack of knowledge of FPS games, while the inaccuracy observed at

experience level 2 is likely due to overconfidence resulting from the individual’s

minimal knowledge. In the case of subjects of experience level 1, our conclusion is

based on an examination of the comments left by respondents in the course of the

survey. We noticed a recurring theme in their remarks:

Experience Comment

1 no-one could be looking at how jagged all those turns are without
being dizzy!

1 just looks like bizarre movement
1 this clip is confusing because the movement is very erratic
1 Running up steps - not good!

Table 5-4 - Sample comments from correctly-identified traditional agent clips

As discussed in previous chapters, humans tend to exhibit smooth, purposeful motion

in comparison to traditional artificial agents, an aspect of human behaviour that we

seek to imitate in our own work. However, it appears that respondents of experience

level 1, having no prior frame of reference upon which to base their conclusions,

were oversensitive to this effect, believing the agent to be moving in a manner that

would be impossible or nonsensical for humans when this was not the case. See, for

instance, the last comment in the table above; the user judged the clip as depicting an

artificial agent due to the fact that the agent ran up some stairs, which in most

environments is a strict necessity for humans and agents alike. This explanation gains

credence from comments left by respondents of experience levels 3 to 5, which were

found to indicate substantially less certainty and more nuanced reasoning even when

correctly identifying an artificial agent, as shown in Table 5-5 below.

 199

Experience Comment

3 character seemed human, but went into a corner which was no use
and left very quickly, didn't need time to look around

3 very calculated, didn’t jump up the stairs
5 appears very human-like but something is not quite right
5 incoherent movement ... either an artificial player or a newbie
5 Some odd movement. Could just be a poor player.

Table 5-5 - Sample comments from correctly-identified traditional agent clips

Unfortunately, in the case of experience level 2, no comments were left for the

incorrectly identified artificial agents; we are therefore unable to draw any firm

conclusions about the respondents’ reasoning. Note, however, that at both experience

levels 1 and 2, the graph of our imitation agents’ believability closely follows that of

actual human players. Essentially, it seems that even minimally-experienced

respondents agreed that the imitation agents closely resembled the human players in

their behaviour and appearance, but disagreed on how human players behave in the

first place. Their responses are perhaps most noteworthy for the contrast they provide

with individuals of experience level 3 and above (that is, semi- to very frequent first-

person shooter players), who identify the artificial agents with increasing accuracy in

proportion to their experience.

5.5.3 Feedback

Several respondents also commented on the believability-testing system itself. While

opinions on the structure of the survey, the user interface, and the testing mechanism

were generally very positive, a frequent complaint pertained to the number of clips

which users were required to evaluate; many individuals found it to be excessive,

even with the ability to save and resume at any point. This also goes some way

towards explaining the half-finished tests mentioned at the start of the experiments

section. While we did attempt to balance our need for a comprehensive survey with

 200

the potential for user fatigue, we clearly overestimated the number of clips which

respondents would consider acceptable; based on the responses, we would propose

that perhaps 10 groups of three clips is a more appropriate figure, so long as the

experimenter ensures that the videos embody a diverse variety of behaviours.

In addition, those components of the survey which users perceived as being

“optional” - the fields which allowed the respondent to specify how many times (s)he

watched each clip, and in the case of supposed artificial agents to provide an

estimation of their ‘humanness’ on a scale of 1 to 10 - were scarcely utilised at all.

While these variables are not employed in the computation of the

believability/confidence index or other statistical analyses, they could potentially

provide some very interesting fine-grain ancillary data, both on individual samples

and across entire categories. These features are, however, rendered effectively

redundant if the users only choose to use them occasionally or not at all. It might

therefore be beneficial, for future reference, to describe them as being mandatory on

the survey intro screen, or even to prevent the user from moving to the next group of

clips until all such fields on the current page are completed.

5.5.4 Remarks

As a final note, it is instructive to reflect upon the consequences of both Harnad’s

gradated hierarchy, and the strong relationship between experience level and

accuracy of identification established in our own experiments, with respect to

Turing’s original test. As Harnad notes, the simplistic pass-or-fail nature of the

Turing test has caused many researchers to turn away from it as a feasible yardstick

of intelligence, preferring instead to pursue gradual progress in many parallel fields.

Turing himself did not address the question of “experience” in his paper, most likely

regarding it to be redundant with respect to so common a human ability as natural

language conversation. But surely, this is too simple - after all, linguistic aptitude is

 201

still dependent upon experience and an accompanying variety of factors. If a machine

is capable of deceiving, for instance, a non-native speaker, should it then be regarded

as intelligent? To what degree? What of a dyslexic native speaker? One could not

imagine denying the intelligence of a human simply because he or she suffers from

an impairment of their symbol-manipulation capacities - if a machine were capable of

convincing such an individual that it is a fellow human, or indeed a fellow dyslexic

human, upon what grounds would we withhold the same judgement? And what of a

juvenile interrogator? If the artificial interlocutor can fool an eight-year-old, should it

then be regarded as possessing the intellect of an eight-year old?

5.6 Conclusion

Due both to the novelty of sophisticated autonomous virtual human agents until

recent times, and the reluctance of the AI community to address a difficult

subjectivity problem, there exists no rigorous method of gauging the ‘believability’

of game bots, nor of objectively comparing this quality in different agents. While

previous investigations have used human judges to pinpoint the attributes which

contribute most to their agent’s perceived ‘humanness’, the believability tests

employed in these experiments have been consistently informal, ad-hoc and non-

modular. Given that one of the central aims of our work lies in improving the

believability of game bots, and that the lack of a standard testing methodology is a

major impediment to the orderly evaluation of artificial game agents in general, this

is clearly a shortcoming which needs to be addressed. In order to produce a credible

assessment of agent believability, we outlined a framework which facilitates rigorous,

objective testing of the degree to which game agents are perceived as human; this

consists of an anonymous web-based survey and a protocol to which testers should

adhere, in order to eliminate potential subjectivity and bias. To ensure that the results

of the believability test can be compared across different agents, we also formulate a

 202

believability index expressing this ‘humanness’ as a function of the user’s experience

and the accuracy with which the agents/humans are identified.

We then conducted a series of experiments with the believability framework, using

our own imitation agents as a test-case, together with actual human data as a control

group and a well-regarded traditional artificial agent as a comparator. The purpose of

these experiments was twofold; firstly, to demonstrate the effectiveness of the testing

methodology, and secondly to evaluate our imitative mechanisms. The survey

produced a very favourable impression of our agents; as the experience level of the

respondents increased, they correctly identified the human players more frequently,

and misidentified the traditional agent as human less frequently. Our imitation

agents, by contrast, were judged human in close parallel with the actual human

players. We consider this to be very strong evidence in support of our original

premise - namely, that imitation learning has the potential to produce more believable

game agents than rule-based systems or other traditional AI techniques alone.

 203

6 Conclusion

6.1 Introduction

In this chapter, we look back over the contents of this thesis, and suggest some future

directions for our research. We begin by providing a full list of our publications,

which have been listed in the introduction to each preceding chapter according to

their relevance. In Section 6.2, we review these chapters in turn.

In Section 6.3, we discuss a number of possible areas for continuing research in our

own work. First, we describe several future improvements and side-projects relating

to the QASE API. We then outline some potential refinements to our various

imitative models; these approaches deviate somewhat from the core principles of the

research as presented throughout this thesis, and so we discuss in each case why we

opted not to implement them previously.

In Section 6.4, we consider open questions; as distinct from the previous section,

these are avenues of research which follow from our work, but require the

development of new models rather than improvements to existing ones, or involve

fields of research which are quite distinct from that of games-based AI. We first

consider the issues of behaviour-switching and anticipation, outlining the difficulty

of realising either via purely imitative approaches. We then consider the applicability

of our game-based imitative models to real-world scenarios, before discussing the

potential refinements to our imitative agents which could result from the

incorporation of real-world biometric data.

Some closing remarks, acknowledgements and thanks conclude this chapter.

 204

6.1.1 Full List of Publications

For quick reference, the following is a list of the publications which we have

achieved while conducting our research. Papers which are relevant to the content

under discussion are also listed in the introduction to each chapter of this thesis.

6.1.1.1 Conference Proceedings

• Gorman, B. and Humphrys, M.

Towards Integrated Imitation of Strategic Planning and Motion Modelling in

Interactive Computer Games, in proc. 3rd ACM Annual International Conference in Computer Game

Design and Technology (GDTW 05), Liverpool, November 2005, pages 92-99

o winner, "Best Presentation" award

• Gorman, B., Fredriksson, M. and Humphrys, M.

QASE - An Integrated API for Imitation and General AI Research in

Commercial Computer Games, in Proc. 7th International Conference on Computer Games: AI,

Animation, Mobile, Educational & Serious Games, Angoulême, November 2005, pages 207-214

o winner, "Best Paper" award

• Gorman, B., Thurau, C., Bauckhage, C., and Humphrys, M.

Bayesian Imitation of Human Behavior in Interactive Computer Games, in Proc.

Int. Conf. on Pattern Recognition (ICPR'06), volume 1, pages 1244-1247. IEEE, 2006

• Gorman, B., Thurau, C., Bauckhage, C., and Humphrys, M.

Believability Testing and Bayesian Imitation in Interactive Computer Games,
in Proc. 9th Int. Conf. on the Simulation of Adaptive Behavior (SAB'06), volume LNAI. Springer, 2006

• Gorman, B. and Humphrys, M.

Imitative Learning of Combat Behaviours in First-Person Computer Games,
in Proc. 10th International Conference on Computer Games: AI, Mobile, Educational & Serious Games, 2007

 205

6.1.1.2 Journal Papers

• Gorman, B. and Humphrys, M.

Towards Integrated Imitation of Strategic Planning and Motion Modelling in

Interactive Computer Games, ACM Computers in Entertainment, Volume 4, Issue 4 (October-

December 2006), ISSN 1544-3574, Article 10

• Bauckhage, C., Gorman, B., Thurau, C.,and Humphrys, M.

Learning Human Behavior from Analyzing Activities in Virtual Environments,
MMI-Interaktiv, Nr. 12, April 2007, ISSN 1439-7854

• Gorman, B., Fredriksson, M. and Humphrys, M.

The QASE API - An Integrated Platform for AI Research and Education

Through First-Person Computer Games, International Journal of Intelligent Games and

Simulations, Volume 4 Issue 2, June 2007

6.2 Thesis Review

In Chapter 1, we outlined the central concepts of imitation learning, and provided an

overview of its use in fields such as robotics and computer vision. We then proposed

that - considering the ease with which they can record noiseless, objective data, the

availability of vast existing sample libraries, and the fact that such recordings encode

nothing less than the real-time planning behaviours of the human player, as opposed

to the simple limb movement data typically used in robotic imitation - computer

games provide an ideal platform for academic imitation learning research. Similarly,

we noted that imitation learning holds the potential to produce more believable,

challenging and interesting game agents, which would naturally be of interest to the

games industry and players alike. Our task, then, was to examine the stream of

network communications recorded during gameplay sessions, and reverse-engineer

the player’s decision-making process from its observable in-game results. To that

 206

end, we defined the principal contributions which our work would make to the field,

in three distinct categories:

• THEORY: MODELS OF COMPUTATIONAL GAME IMITATION

Drawing upon biological evidence, approaches from the field of robotics, and

our own experience in computer games, we developed a number of imitative

models designed to learn and reproduce various aspects of observed human

behaviour. These mechanisms fall into three distinct subcategories, closely

mirroring a widely-used psychological model of human planning; strategic

long-term behaviours, tactical medium-term behaviours, and reactive short-

term behaviours.

• IMPLEMENTATION: A MACHINE-LEARNING API FOR GAMES

One major obstacle encountered early in our research was the lack of an API

that was suitable for our intended purposes. Existing development platforms

were incomplete and ad-hoc, often with scattered documentation and

unintuitive interfaces. Rather than writing a minimal library which provided

only the specific features we required - thus leaving future researchers in

exactly the same position in which we had found ourselves - we instead

decided to develop a comprehensive API, called the Quake Agent Simulation

Environment (QASE), which would encompass all the functionality necessary

to conduct further work in this field. While geared principally towards

machine- and imitation learning, it would also represent a platform for

cognitive agent research in general.

• EVALUATION: THE BOT-ORIENTED TURING TEST (BOTT)

As noted above, we present statistical validations of the functionality of each

imitative model in their respective subchapters. However, given that one of

our aims was to demonstrate the capacity of imitation learning to produce

 207

more believable game agents, this alone was not sufficient. We wished to

further evaluate the “humanness” of our agents, as perceived by actual

observers. Here, we again ran into an obstacle; there was no rigorous means

of evaluating this quality in agents. Some minor investigations of

believability had been conducted, but these were invariably highly informal,

and certainly not applicable to inter-agent comparisons. We thus decided to

design a generalised approach to such testing, which we call the Bot-Oriented

Turing Test (BOTT).

In Chapter 3, we described the first of these contributions - the Quake Agent

Simulation Environment (QASE). We adopted iD Software’s Quake 2 as our testbed

for a number of reasons; it was prominent in the literature, existing resources were

somewhat more substantial than for other games, and as a first-person shooter it

offered an attractively direct mapping of human decisions onto observable agent

actions. We proceeded to outline our motivations for developing QASE, discussing

both the shortcomings of existing APIs and the steps which we had taken to

circumvent them. We then described QASE’s network layer, which acts as an

interface between the local AI routines and the Quake 2 server, before detailing the

API’s agent architecture, which allows bots to be created from any of several levels

of abstraction and provides a wide variety of supporting facilities. We concluded the

chapter with a discussion of QASE’s adoption by numerous universities as both an

undergraduate teaching tool and research platform.

In Chapter 4, we described a number of imitative mechanisms developed using

QASE and its MatLab integration facilities. We first outlined a behaviour model

which distinguishes between long-term strategic, medium-term tactical and short-

term reactive behaviours. In Section 4.3, we proceeded to detail a reinforcement-

learning approach to the imitation of the human player’s navigation behaviours,

centred upon his pursuit of item pickups as strategic goals. This involved deriving a

 208

topological map of the environment by clustering the set of positions occupied by the

player in the course of the game session, drawing edges between the resulting

waypoints based on the player’s observed motion, and employing value iteration to

learn the relationship between the player’s current state and subsequent navigation

routes. This system proved adept at capturing the human’s program-level behaviour;

the imitation model identified and pursued the human’s goals, without necessarily

reproducing his precise actions at each timestep.

In Section 4.4, we described the integration of this strategic navigation system with a

Bayesian mechanism for the imitation of tactical motion-modelling behaviours. Our

approach involves reading the player’s orientation from the demo file on each

timestep, along with values indicating his movement speed, posture, and whether he

is firing his weapon. We then cluster this data to produce a set of action primitives -

that is, aggregated representations of similar actions performed at different times in

different places. We sequence these primitives using a heavily adapted version of

Rao et al’s model of action sequencing in human infants [106], which expresses the

next action as a function of the agent’s current state, next state and goal state -

information which is supplied by the strategic navigation system. We also proposed a

technique, imitative keyframing, which combines the consistency offered by absolute

orientation primitives with the fine-grain adjustments provided by relative values.

In Section 4.5, we outlined a model for the imitation of reactive combat behaviours;

specifically, weapon-selection and aiming. Drawing upon previous work which had

found that direct imitation produced excessively accurate aim, our approach was to

instead learn the human player’s inaccuracy. To model this, we first reconstructed

the player’s visual perception of his opponent’s motion from the available low-level

data, using their respective positions, velocities, and orientations on each timestep.

We then trained a series of three expert networks using this data; one to select the

most appropriate weapon, one to adjust the agent’s aim, and a third to determine

 209

whether the agent should open fire. A number of interesting phenomena - and some

associated problems - were captured by the imitative mechanism, such as the

inability to adjust aim in certain directions as quickly as in others, caused by the

limitations of the human’s mouse input. We noted that this was an excellent example

of humanlike behaviour which would not be implemented by traditional artificial

agents, both because a top-down designer would not think to include it, and because

it would be difficult to reproduce accurately using a rule-based approach.

For each of the imitative models described above, we conducted experiments to

provide a statistical validation of their functionality. We also wished, however, to

ascertain the degree to which the imitation agent is perceived as being “humanlike”

by an actual observer. We noted that there was no existing means to rigorously gauge

the believability of game agents, the few previous attempts having been extremely

ad-hoc and informal. We therefore proposed a generalised approach to such testing in

Chapter 5 - the Bot-Oriented Turing Test, or BOTT. This took the form of an

anonymous online questionnaire, an accompanying protocol to which examiners

should adhere in order to maintain the integrity of the survey, and the formulation of

a believability index which expresses each agent’s humanness as indicated by its

observers. To validate the survey approach, we presented a series of experiments

which used the believability test to evaluate our own imitation agents against both

human players and traditional artificial bots. The results showed that the imitation

agents were perceived to be significantly more believable than traditional bots; we

considered this to be strong evidence in favour of our thesis that imitation learning

holds the potential to produce markedly more humanlike game agents.

6.3 Future Work

In this section, we describe some potential future improvements to the QASE API

and our existing imitative models.

 210

6.3.1 QASE Development

While the current version of QASE provides a comprehensive set of tools for agent

construction - essentially incorporating every feature which occurred to us as being

potentially useful, both from the machine-learning and general agent research

perspectives - there are a number of further developments which we wish to

undertake. These projects will be conducted in parallel with any changes

implemented due to comments or suggestions from existing QASE users.

6.3.1.1 QASE3

One of the first additions we intend to make is to extend QASE such that it is capable

of realising agents in Quake 3 multiplayer matches. As discussed in Section 3.3.2,

QASE’s network layer is quite cleanly decoupled from the other structures in the

API, meaning that such extension is a relatively straightforward process. This

extension will be transparent from the user’s perspective; QASE3, as we intend to call

the update, will automatically determine the game running on the specified server,

and will instantiate base or derived objects as necessary. Not only will this serve to

provide another testbed for researchers to investigate - Quake 3 is a more fast-paced,

reactive and team-based game than its predecessor; sufficiently different to make it

an attractive alternative platform for certain areas of research - but it will also act as

proof-of-concept for a related sub-project, as discussed below.

6.3.1.2 QNET

Building upon QASE3, we intend to release the network layer of QASE as a

standalone framework, entitled QNET. Again, as discussed in Chapter 3, the

decoupling of the network layer from the remainder of the API allows the

communication components to be viewed as a generic foundation for the creation of

 211

client agents in a wide variety of multiplayer game. The network layer itself will be

also updated to support TCP-based games, in addition to the more common UDP. It

is our hope that QNET will assist in furthering interest in computer games as a viable

platform for both academic research and education.

6.3.1.3 QScript

Many undergraduate AI and programming courses employ some variation on a

“robot world” - that is, a simulation in which the student, often using a simplified

pseudolanguage, must write control programs to navigate through a 2D maze. We

intend to augment QASE so that it may be adopted for the same purposes. This will

involve the definition of a simple scripting language, Qscript, which will include

standard programming concepts such as loops, conditional statements, etc. Atomic

commands (moveForward, moveBackwards, turnLeft) will also be provided. The

scripts written by the student, either in a text editor or in a supplied GUI front-end,

will serve to define the agent’s AI cycle; they will be read into the QScript interpreter

and processed upon each gamestate update. The obvious advantage of using QASE in

preference to existing robot world simulators is that Quake 2 allows a much greater

range of programming skills and AI concepts to be explored; furthermore, when

students are ready to being writing full agents using standard code, they will already

be familiar with the API and testbed.

6.3.1.4 GANN Interface

One final addition which we intend to make is a front-end interface to QASE’s

genetic neural network architecture. This will take the form of a GUI which permits

various parameters of the neural network and genetic algorithm manager - the

number of inputs, hidden layers and outputs, the size of the gene pool, the rate of

mutation, the duration of each generation, etc - to be specified, and the relevant

 212

objects automatically instantiated. We will also provide an inbuilt example of the

GANN mechanism in operation; this will involve a single-room Quake map with

items scattered at various positions, with the agents having the task of collecting as

many pickups as possible while continuously aiming at the nearest opponent.

Although this is a comparatively minor addition to the API’s existing functionality,

observing the agents’ emergent intelligence as they learn to navigate and aim in a full

3D world will provide an excellent conceptual illustration for undergrad students.

6.3.2 Potential Refinements to Existing Models

At various points during our research, a number of minor potential refinements to our

existing imitation models occurred to us. Though we did not implement these

modifications - due both to time constraints and to our skepticism that they would

provide a noticeable improvement, for the reasons enumerated - some of these

refinements are presented here for the purposes of future study.

6.3.2.1 State Compression

In any game session, there may exist one or more items which the human player was

rarely observed to collect, and whose associated elements in the set of state vectors

used by the strategic navigation system are therefore minimally variant. By

employing a dimensionality-reducing technique such as PCA - or simply by

eliminating those elements directly - the vector representation could be compressed,

reducing the state space and leading to greater storage and computational efficiency.

However, this is likely to have the significant disadvantage of reducing the agent’s

ability to adapt to uncommon or unseen situations. It is entirely possible that the

agent may, in fact, regularly collect items which the human player did not. For

instance, the human player may pass a particular item location after the item itself

 213

has already been collected by an opponent, and is therefore inactive; the agent, by

contrast, may pass while the item is present and collect it. Similarly, enemy players

have the ability to discard their weapons, which then become collectible - if the

enemy possesses a weapon which the imitation agent’s human exemplar did not, the

same issue arises once again. These problems are compounded when we consider

that our strategic imitation model compares the agent’s current state against all

observed human states, and weights the agent’s goals accordingly. Thurau et al [132]

previously investigated PCA in their work on action primitives, but did not use it to

reduce the dimensionality of their state vectors; they later reported that they had

found all the state features to be necessary for consistent imitation.

It was for these reasons that we opted against investigating state-compression

techniques in our current work. Nonetheless, it is possible that an alternative, more

suitable means of reducing the agent’s state representation could be developed; and

the benefits of finding an appropriate solution would be significant. We therefore

present state compression as an issue which is worth revisiting in the future.

6.3.2.2 Weapon Similarity Matrices

As discussed in Section 4.5, a variety of different weapons exist in Quake 2, as is the

case with all first-person shooter games. These weapons conform to a number of

common characteristics; certain guns fire slow-moving but powerful projectiles,

others fire quick but weak bursts. Some are ideally suited to ranged combat, whereas

others are more useful in close quarters. Additionally, different sets of guns share a

common ammunition type; the shotgun and super-shotgun use shells, the

hyperblaster and BFG use cells, the machine gun and chaingun use bullets, and so

forth. By constructing a matrix which defines the comparative similarity of each pair

of weapons and their shared ammunition, it may be possible to leverage this

information to the benefit of the various imitation models. For instance, if a particular

 214

weapon is not currently active on the map, the strategic navigation system could

proportionally boost the path values associated with similar guns. If the agent does

not have a specific weapon, the reactive combat weapon-selection model could

switch to the most similar weapon which the agent does possess.

The disadvantage of such an approach, from the perspective of our own research, is

that it inherently introduces some very high-level expert knowledge into the system,

which we strenuously sought to avoid. In addition, defining an a priori matrix of

weapon similarities comes dangerously close to enforcing a top-down rule-based

approach; if weapon X is unavailable then choose weapon Y else weapon Z. It also

leaves the system open to designer bias, since there is no strict means of gauging the

precise similarity of two weapons - the matrix would therefore reflect only the

personal opinion of its creator. These factors place the proposed modification in

direct opposition to the overriding ethos of our work.

Perhaps most importantly, explicit encoding of weapon similarities is likely to be

entirely unnecessary, since the human player is already aware of such similarities. If

a particularly desirable weapon is unavailable, he will pursue it or an equivalent

weapon on the map, or switch to a comparable gun which he already possesses; such

behaviours are captured by the strategic navigation and reactive combat imitation

models. Note also that this implicit weapon-similarity reasoning affords the agent a

far greater degree of nuance than would a top-down definition of the kind described

above; the player may exhibit preferential behaviour only with respect to certain

similar guns, rather than adhering to a blanket rule across all weapons. Our existing

imitative mechanisms should, therefore, capture not only the human player’s

understanding of weapon similarities, but also the degree to which this effect is

present.

 215

6.4 Open Questions

In this section, we describe potential avenues of future research which require either

the development of new models, or involve fields of research which lie outside that

of games-based artificial intelligence.

6.4.1 Meta-Behaviours

The mechanisms presented in the preceding chapters of this thesis do not, as yet,

constitute a fully-realised imitation agent. In order to achieve this, models which

implement one additional category of behaviour must be developed; we call this

category meta-behaviours. Our existing models operate by encountering a particular

state, and executing learned motor commands accordingly. Meta-behaviours are

decision processes which do not define any motor commands of their own, but

instead combine and control the functionalities of the existing strategic, tactical and

combat systems to produce high-level global behaviours. Meta-behaviours comprise

two main subcategories, anticipation and behaviour-switching. Unfortunately, as we

discuss below, the development of models to capture these phenomena is extremely

problematic from the perspective of imitation learning.

6.4.1.1 Anticipation

Anticipation refers to the human player’s ability to project the probable short- to

medium-term actions of his opponent, and adjust his tactics accordingly. For

instance, if the player is pursuing an opponent who enters a room with only one other

exit, the player may decide to navigate an alternative route to that point and ambush

the enemy as he emerges. If the player knows that his opponent has no weapon, he

may move to collect the nearest available gun and again lie in wait for the enemy. As

outlined above, anticipation is therefore a tactical/strategic reasoning behaviour

 216

which does not require additional motor functions in order to be implemented; a

combination of the existing mechanisms is sufficient. Laird [76] describes a rule-

based approach to modelling anticipation in his SOAR Quakebot, which consists of

estimating the opponent’s current state, projecting what the agent would do in that

same state, and taking countermeasures accordingly.

However, it is difficult to imagine a purely imitative implementation of such a

mechanism. Even in Laird’s approach, the rules for detecting and counteracting each

anticipation scenario - specifically, the two which were outlined above - must be

explicitly stated. Indeed, it was necessary to define the rules in such detail that, for

instance, the agent was instructed not to attempt an ambush in a narrow corridor, but

to wait for the opponent to enter a more open space before engaging him. This neatly

illustrates the core difficulty of implementing an anticipation system with respect to

imitation learning; it is a high-level reasoning, co-ordination and execution task

which inherently requires expert knowledge of the game. While it would be possible

for our imitation agents to construct an internal estimation of the opponent’s current

state, and project his likely behaviour on that basis, the question then becomes: what

action should the agent take? And how should we actually execute the decision

process? We could simply instruct the agent to go to the appropriate location, but this

would be indistinguishable from a rule-based agent. We could boost the utility values

of the relevant nodes in the strategic navigation map in order to draw the agent in that

direction, but this would again require explicit hardcoding. There is no clear way to

deduce and passively pursue the appropriate behaviour from demonstration, since

anticipation is an innately top-down, pre-emptive behaviour.

A further problem concerns the question of when it is appropriate for the agent to

begin anticipating the opponent’s actions, rather than pursuing its own objectives. In

Laird’s case, this was again achieved by specifying a series of hardcoded rules - the

agent would begin anticipating if the opponent was visible, and was greater than X

 217

distance units from the bot, and had its back turned, and was moving in the direction

of a known item in an adjoining room. We could certainly set “triggers” at various

points in the environment to induce such behaviours - the embedding of such tactical

information in waypoint nodes has already been proposed by Liden and Hancock

[104] - or attempt to establish a relationship between the player’s movement and that

of the opponent while he is visible and in certain areas of the map, but this would

once again involve the introduction of hardcoded rules and highly detailed expert

knowledge; in contrast to our existing mechanisms, it would also mean that the

model itself would have to be rewritten to account for the specific terrain of each

environment.

In any case, the question of when to anticipate - or indeed, when to perform any other

behaviour - leads into a larger related problem; that of the second meta-behaviour

component, behaviour-switching.

6.4.1.2 Behaviour-Switching

Behaviour-switching refers to the human player’s ability to dynamically adjust the

balance between his primary, secondary and tertiary behaviours in accordance with

his circumstances. In terms of the model described in Section 4.2, this allows him to

move along the gradient from strategic to tactical to reactive, or vice-versa. Consider

a player who is engaged in strategic cycling of the environment, collecting important

items as rapidly as he can. He spots an opponent in the distance, but decides that he

does not yet possess a sufficient arsenal to challenge him. He therefore adjusts his

behaviour slightly. While ensuring that he stays out of the enemy’s sight, he begins to

follow him, continuing to pick up items along the way; his behaviour has moved to

the tactical/strategic boundary of our gradient. When the player is satisfied that he

can defeat his opponent, he proceeds to anticipate the enemy’s destination and

ambushes him; his behaviour has moved to the reactive/tactical end of the gradient,

becoming increasingly reactive as the opponent fights back. Once he has defeated his

 218

enemy, the player will generally revert to pursuing strategic goals. Behaviour-

switching is the process by which these decisions to move between the different

levels of the hierarchy are made.

In order to derive an appropriate switching function from the recorded game session,

the datastream must first be segmented into individual “periods” of behaviour; their

frequency and interrelations could then be analysed to produce an imitative model.

However, the segmentation process is greatly complicated by the fact that similar

behaviours are executed at different locations and times in substantively different

ways; that they are occasionally, as in the case of anticipation, extremely difficult to

represent without expert knowledge of the map; and that behaviours are both

temporally continuous and non-binary - a player can, as demonstrated by the example

above, engage in strategic/tactical/reactive behaviours simultaneously and in any

ratio, and thus there are few “hard” boundaries between observed actions in the

datastream. In the opening chapter of this thesis, we discussed the reasons why

control-based methods of imitation were unsuitable for learning the behaviours of

human gamesplayers. To briefly recap, they require a predefined model of the task at

hand - a human arm swinging a tennis racquet can be described using pendulum

physics, for instance - and imitation is simply used to learn the parameters of the

controller. A control-system approach to imitative learning of in-game human

behaviours would therefore require an expert model of human reasoning itself; if we

possessed such a model, then this and all other research would be redundant, since

we would already have solved the problem of AI. A similar Catch-22 exists here - if

we had a segmentation process capable of determining when the human’s behaviour

changed and to what degree, then our work would already be done.

Examining some other segmentation approaches serves to highlight the difficulties

inherent in the task of imitative behaviour-switching. Mataric, Jenkins et al [31, 37,

60-65, 82], for instance, describe an approach to the automated segmentation of

 219

human limb motion into its constituent actions. This, however, relies on the fact that

the arm’s range of motion and degrees of freedom are known, and that there is a very

obvious hard boundary between behaviours - when the arm stops moving in a

particular direction, i.e. where the sum of the squared angular velocities in each

degree of freedom falls below a given threshold. In our case, we do not know the

equivalent “degrees of freedom” of the human’s decision-making process, and there

is no convenient boundary condition to look for. Elsewhere, Sukthankar and Sycara

[122] propose a means of automatically recognising team behaviours using the game

Unreal Tournament. They too remark upon the difficulty of determining the exact

transition point between behaviours; to circumvent this problem, they employ a series

of overlapping time windows during which a single behaviour is assumed to be

dominant, and train a set of Hidden Markov Models to recognise each. However,

their work examined only 3 specific behaviours, which they had defined in advance

and instructed the human volunteers to perform; the HMMs were therefore simply

classifying the best-matching behaviour from an extremely limited list of known

actions. This approach is obviously not suitable for bottom-up analysis of a freeform

game session, though the complexity of distinguishing even between three known

behaviours does provide some insight into the scope of the problem.

To further illustrate this point, consider the anticipation scenario given earlier, where

the opponent enters a room and the player moves to ambush him at the opposite side.

Determining that the player is initially engaged in “pursuit” behaviour should not

prove difficult. But what happens when the opponent moves out of sight into the next

room? How would the segmentation system ascertain whether the player’s

subsequent behaviour was due to a decision to circle around an intercept the enemy,

or whether he had opted to return to his normal strategic navigation of the

environment, and re-encountered the opponent simply by chance? Perhaps we could

create a specific rule for this situation - if Opponent B moves out of sight, and Player

A moves to position X, and remains stationary for some period of time, and then re-

 220

engages the opponent all within a 60-second timeframe, then this is classed as

anticipation. This might be possible, although it would require specialised knowledge

of the environment terrain and could certainly not be derived from the network

stream alone. But we would then presumably be forced to define similar

segmentation rules for every such scenario - of which there are potentially hundreds.

And even then, how would we know that we had accounted for all of them? Would

the rules need to be redefined for the specific terrain of each individual map? Almost

certainly so. And beyond these fundamental considerations, with what degree of

accuracy would these relatively crude top-down rules capture the complexities of

behaviour switches? As one moves further along this line of thought, it becomes

increasingly untenable to view the proposed solution as either a bottom-up imitation

learning approach, or a general model of behaviour-switching; it gradually becomes

indistinguishable from a rule-based system or a symbolic segmentation of the data.

6.4.1.3 Remarks

For the reasons detailed above, it may be the case that anticipation and behaviour-

switching simply involve too high a level of abstract reasoning to be reproducible

from low-level observation data; that they may define the limits of a purely imitative

approach to agent intelligence in games, a question which we sought to explore

throughout our work. There is, though it lies outside our area of interest in this

research, nothing to preclude other learning approaches or rule-based systems from

being layered on top of the imitative mechanisms; this is, as we discussed at the

beginning of the thesis, a common practice in robotic imitation. At any rate, we

would consider a full exploration of imitative anticipation and behaviour-switching to

be sufficient basis for a PhD in its own right, and a project which we would be

delighted to see undertaken.

 221

6.4.2 Real-World Applicability and Biometric Imitation

Here, we discuss both the possibility that our in-game models may be adapted to real-

world applications, and the potential benefits offered by incorporating biometric

measurements of the human player into our imitation systems.

6.4.2.1 Applications in the Real World

Our work sought primarily to develop imitative artificial intelligence techniques,

both for the inherent benefit they would provide to the field and to demonstrate the

advantages of using computer games as an imitation learning platform. Nevertheless,

one of the reasons we chose modern commercial games - and the first-person shooter

genre in particular - was that they offered the potential for real-world applicability.

As has been discussed before, first-person games represent a relatively close

approximation of the real world, and impose a very direct mapping of human

decisions onto the observable actions of the game avatar; thus, techniques which

have been developed in-game may be adaptable for wider use. Following the work of

Thurau et al, for instance, biologists at Bielefeld University are investigating action

primitives as a means of modelling the courtship behaviours of zebra finches [132].

Here, we discuss some other potential uses.

One potential real-world application was suggested by a researcher at DCU, who

noted that the strategic imitation system detailed in Chapter 4.3 could provide the

ideal foundation of an automated mapping and navigation aid for blind pedestrians.

Indeed, it is not difficult to imagine how such a mechanism would operate. A college

campus, which offers a closed but structurally complex system, would provide an

excellent testbed for the project. The training data could be harvested by a number of

sighted volunteers wearing GPS tracking units while conducting their daily business;

as with in-game strategic imitation, this would take advantage of the human’s innate

 222

navigation skills, while giving extra weight to those paths which were followed more

frequently than others. Goals would be defined as the various buildings scattered

around the campus. After a certain period, the data would be processed as detailed

earlier to produce the topological map; this data could conceivably be used to create a

hierarchy of maps of different granularities, representing the external environment of

the campus and the internal layout of each building. A sensor placed at the entrance

to each structure could signal the device to switch to the relevant internal map. In

terms of deployment for the blind end-user, the system would likely take the form of

an audio signal of some kind, perhaps a pair of headphones connected to a modified

GPS device. A series of regular stereo tones emitted by the device would then

indicate - by varying their balance and intensity - when the user should turn, in which

direction, and how sharply.

The Bayesian tactics system, too, would play an important role in the proposed

system. As in the game world, it is not sufficient to simply define the start, end and

intermediate points of a particular navigation path; there will inevitably be

intervening obstacles which need to be negotiated. Tactical modelling of the kind

discussed in Chapter 4.4 could be used to trigger an alert if, for instance, a door

blocked the user’s path, if a step or stairway lay ahead of him, if he needed to use an

elevator, and so forth. Once again, the navigation system would define where to go,

while the tactical primitives would provide details of how to get there.

In terms of more large-scale uses, it has been suggested that a similar approach could

be applied to modelling patterns of traffic flow, by affixing GPS units to volunteers’

vehicles. Given a sufficiently representative sampling, the imitation system could be

used to determine not only the most common points of traffic congestion, but also the

alternative paths which are most frequently used by motorists who find themselves

approaching a bottleneck - and, therefore, which routes are in greatest need of

attention. While the data-harvesting process would need to be repeated at regular

 223

intervals, to account for changes in the physical topologies and in motorists’ resulting

behaviour, it could nonetheless be a valuable tool for urban planners and developers.

6.4.2.2 Biometric Imitation

In the same way that techniques developed in-game may be adapted for the real

world, it is interesting to consider the potential usefulness of real-world data in

training future agents. It is possible that biometric measurement of the human player

could be used to augment the directly-observed gameplay data, resulting in further

refinement to the “humanness” of the imitation. A common observation among

experienced gamesplayers is the correlation between emotional state and consequent

in-game behaviour. If a particular player is defeated in multiple encounters in quick

succession, for instance, his resulting frustration frequently leads to a temporary

alteration in his play style. The specific nature of this alteration can differ greatly

from one player to the next. Player A may adopt a more cautious approach on the

next encounter, attempting to minimise the chance that he will suffer the humiliation

of another defeat; in the context of our imitation model, his behaviour becomes more

strategic and tactical, and less reactive. Player B, by contrast, may become more

obviously agitated, opting to run in with guns blazing in the hope of breaking his

losing streak; his behaviour has shifted from the strategic end of the imitation

gradient to the reactive. The longevity of this shift depends in large part upon its

results. If the player successfully redresses the imbalance between his score and the

opponent’s, he will generally revert to his standard behaviour model. If the player

continues to be defeated, he will often ‘give up’ on the current match, becoming

careless and listless as he waits for the scores to reset at the start of the next round.

At present, of course, there is no means of associating the emotional state of the

player with the low-level data recorded from the network stream. These occasional

deviations are, therefore, not differentiated from the player’s standard behaviours;

 224

they are simply subsumed into the general model during the training process. While it

would be possible to encode some rules which, for instance, treat the behaviours

observed within a 60-second timeframe after the player has sustained five

consecutive defeats as being non-standard, this would at best be a crude

approximation of the true effect, and at worst would simply lead to a hopelessly

inconsistent bot. A better approach would be to collect real-world biometric data

along with the gameplay recording - heartrate, temperature, perhaps the vocal

utterances of the player, as are common in multiplayer LAN competitions - and

analyse them in parallel. If a correlation between the player’s in-game state,

biometric measurements, and subsequent behaviour could be ascertained and

reproduced, it would serve to greatly increase the humanness and believability of the

imitation agent.

 225

7 References
1. Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S., Kaminka, G.A., Schaffer, S. and

Sollitto, C. “GameBots: A 3D virtual world test bed for multiagent research”, in proc.

Second Int’l Workshop on Infrastructure for Agents, MAS, and Scalable MAS, 2001

2. Alpaydin, E. “Introduction to Machine Learning”, MIT Press, 2004

3. Amit, R and Mataric, M “Learning Movement Sequences from Demonstration”, Int. Conf.

on Development and Learning, 2002

4. Arbib M.A., Billard A., Iacobonic M. and Oztop E., "Synthetic brain imaging: grasping,

mirror neurons and imitation", Neural Networks, Volume 13 Issues 8-9, pp. 975-997, 2000

5. Arbib, M.A., "The Mirror System, Imitation, and the Evolution of Language", in Kerstin

Dautenhahn and Chrystopher Nehaniv ed., Imitation in Animals and Artifacts, MIT Press,

2002

6. Arkin, R.C. “Behavior-Based Robotics”. MIT Press, 1998

7. Atkeson, C. G. and Schaal, S. “Learning tasks from a single demonstration”, IEEE

International Conference on Robotics and Automation (ICRA97), pp. 1706-1712, 1997

8. Atkeson, C. G. and Schaal, S. “Robot learning from demonstration”, in proc. International

Conference on Machine Learning, pp. 11-73, 1997

9. Bakkes S. and Spronck P. "Symbiotic Learning in Commercial Computer Games", in proc.

CGAMES ‘05, pp. 116-120, 2005

10. Bakkes S., Spronck P. and Postma E. “TEAM: The Team-Oriented Evolutionary

Adaptability Mechanism”, in proc. Int'l Conference of Entertainment Computing, LNCS

3166, pp. 273–282, Springer-Verlag 2004

 226

11. Bauckhage C. and Thurau C. “Towards a Fair 'n Square Aimbot - Using Mixtures of

Experts to Learn Context Aware Weapon Handling”, in Proc. GAME-ON, p20-24, 2004

12. Bauckhage, C, Thurau, C. & Sagerer, G. “Learning Humanlike Opponent Behaviour for

Interactive Computer Games”, in Pattern Recognition, Vol 2781 of LNCS Springer-Verlag,

2003

13. Billard, A. "Imitation", Handbook of Brain Theory and Neural Networks, MIT Press, 2002

14. Billard, A. "Imitation: a means to enhance learning of a synthetic proto-language in an

autonomous robot", in C. Nehaniv and K. Dautenhahn ed., Imitation in Animals and

Artifacs, MIT Press, 1999

15. Billard, A. "Learning motor skills by imitation: a biologically inspired robotic model",

Cybernetics & Systems, 32, pp. 155-193, 2001

16. Björnsson, Y., Hafsteinsson, V., Jóhannsson, Á. and Jónsson E. "Efficient Use of

Reinforcement Learning in a Computer Game", in proc. Computer Games: Artificial

Intelligence, Design and Education (CGAIDE), pp. 379-383, 2004

17. Borenstein, J. and Koren, Y. “Real-time obstacle avoidance for fast mobile robots”, IEEE

Transactions on Systems, Man, and Cybernetics, 19(5):1179--1187, 1989

18. Bradley, P. S. and Fayyad, U.M. “Refining Initial Points for K-Means Clustering”, in proc.

15th International Conf. on Machine Learning, 1998

19. Brown, C., Costello, D., Ferguson, G., Hu, B. and van Wie, M. “Quagents: Quake Agents”,

http://www.cs.rochester.edu/research/quagents/

20. Byrne, R.W and Russon, A.E. "Learning by Imitation: A Hierarchical Approach",

Behavioral and Brain Sciences 21, 667-721, 1998

21. Cass, S. "Mind Games", IEEE Spectrum, p40–44, December 2002.

http://www.cs.rochester.edu/research/quagents/

 227

22. Cazorla, H.V."Multiple Potential Fields in Quake 2 Multiplayer", Master's Thesis,

Blekinge Institute of Technology, 2006

23. Champandard, A.J. “The FEAR SDK”, http://fear.sourceforge.net

24. Charles, D. and McGlinchey, S. “The Past, Present and Future of Artificial Neural

Networks in Games”, in proc. Int’l Conference on Computer Games, Artificial Intelligence,

Design and Education (CGAIDE), pp163-168, 2004

25. Dahlstrom, D., Wiewiora, E., Cottrell, G. and Elkan, C. “Imitative Policies for

Reinforcement Learning”, UC San Diego Seminar on Learning Algorithms, Spring 2001

26. Demiris, J. and Hayes, G. “Active and passive routes to imitation”, in proc. AISB

Symposium on Imitation in Animals and Artifacts, 1999

27. Demiris, J. and Hayes, G., "Imitative learning mechanisms in robots and humans", in proc.

5th European Workshop on Learning Robots, pp. 9-16, 1996

28. Demiris, Y. "Mirror neurons, imitation and the learning of movement sequences", in proc

9th International Conference on Neural Information Processing, pp. 111-115, 2002

29. Dillmann, R., Kaiser, M. and Ude, A. “Acquisition of elementary robot skills from human

demonstration”, International Symposium on Intelligent Robotic Systems (SIRS'95) (pp. 1-

38), 1995

30. DreamHack Biannual LAN Gaming Convention, http://web.dreamhack.se

31. Drumwright, E., Jenkins, O.C. and Mataric, M.J. “Exemplar-Based Primitives for

Humanoid Movement Classification and Control”, IEEE International Conference on

Robotics and Automation, pp. 140-145, 2004

32. Elkan, C. "Using the Triangle Inequality to Accelerate k-Means", in proc. 20th Int'l Conf.

on Machine Learning, pp. 147-153, 2003

http://web.dreamhack.se/

 228

33. Evans, R. “Black & White AI Analysis”, http://shorl.com/dryjubribrefrafra

34. Fadiga L., Fogassi L., Pavesi G. and Rizzolatti G. "Motor facilitation during action

observation: a magnetic stimulation study", Journal of Neurophysiology, 73(6), pp. 2608-

2611, 1995

35. Fairclough, C., Fagan, M., MacNamee, B. and Cunningham, P., “Research Directions for

AI in Computer Games”, Technical report, Trinity College Dublin, 2001.

36. Floyd, R.W. “Algorithm 97, Shortest path”, Comm. ACM. 5(6), 345, 1962

37. Fod, A. Mataric, M.J. and Jenkins, O.C. “Automated Derivation of Primitives for

Movement Classification”, Autonomous Robots 12 (1), pp.39-54, 2002

38. Fuchs, H., Kedem, Z., and Naylor, B., “On Visible Surface Generation by A Priori Tree

Structures”, in proc. SIGGRAPH ‘80, 14(3), 124--133, 1980

39. Gallese V., Fadiga L., Fogassi L. and Rizzolatti G. "Action recognition in the premotor

cortex", Brain 119 pp. 593-609, 1996

40. Geisler, B. "An Empirical Study of Machine Learning Algorithms Applied to Modeling

Player Behavior in a First Person Shooter Video Game", Master's thesis, Dept. of

Computer Sciences, University of Wisconsin-Madison, 2002

41. Giese, M.A., Knappmeyer, B. and Bulthoff, H.H. “Automatic synthesis of sequences of

human movements by linear combination of learned example patterns”, in H.H. Bulthoff,

S.W. Lee, T. Poggio, and C. Walraven, editors, Biologically Motivated Computer Vision,

volume 2525 of LNCS, pages 538-547, Springer, 2002

42. Girlich, U., “The Unofficial Quake 2 DM2 Format Description”,

http://demospecs.planetquake.gamespy.com/dm2/

43. Giszter, S.F, Mussa-Ivaldi, F.A. and Bizzi, E, “Convergent force fields organized in the

frog’s spinal cord”, Journal of Neuroscience, 13(2):467-491, 1993

http://shorl.com/dryjubribrefrafra

 229

44. Graepel T., Herbrich R., and Gold J., “Learning to Fight”, in proc. CGAIDE 2004, pp. 193-

200

45. Grafton S.T., Arbib M.A., Fadiga L. and Rizzolatti G., "Localization of grasp

representations in human by PET: 2. Observation versus imagination", Experimental Brain

Research 112, pp. 103-111, 1996

46. Grudic, G. Z. and Lawrence, P. D. “Human-to-robot skill transfer using the SPORE

approximation”, International Conference on Robotics and Automation, pp. 2962-2967,

1996

47. Hand, D., Mannila, H. and Smyth, P. “Principles of Data Mining”, MIT Press 2001

48. Hannan, J. “Colin McRae Rally 2 AI Analysis”, http://shorl.com/prysovuneniny

49. Harnad, S. “Minds, Machines and Turing - The Indistinguishability of Indistinguishables”,

Journal of Logic, Language and Information 9, 425-445, 2001

50. Hartley, T., Mehdi, Q. and Gough, N. “Applying Markov Decision Processes to 2D Real-

Time Games”, in proc. Int’l Conference on Computer Games, Artificial Intelligence,

Design and Education (CGAIDE): p55-59, 2004

51. Hayes, G. and Demiris, J. “A robot controller using learning by imitation”, in A.

Borkowski, & J. L. Crowley (Eds.) proc. 2nd International Symposium on Intelligent

Robotic Systems, pp. 198-204, 1994.

52. Hirai, K., Hirose, M., Haikawa, Y. and Takenaka, T. “The development of Honda

humanoid robot”, IEEE International Conference on Robotics and Automation (pp. 1321-

1326). Leuven, Belgium: IEEE, New York, 1998.

53. Hollnagel, E. “Human reliability analysis: Context and control”, London: Academic Press,

1993

 230

54. Howard, Ronald A. "Dynamic Programming and Markov Processes", The M.I.T. Press,

1960

55. Hsu, F.H. “Cracking GO”, IEEE Spectrum, October 2007

56. Hurford, J. “Language beyond Our Grasp: What Mirror Neurons Can, and Cannot, Do for

the Evolution of Language”, Evolution of Communication Systems: A Comparative

Approach, pages 297--313. Cambridge, MA: MIT Press, 2004

57. IBM Research, “The Making of Deep Blue”, http://www.research.ibm.com

58. Ilg, W. and Giese, M.A. “Modeling of movement sequences based on hierarchical

spatiotemporal correspondences of movement primitives”, in H.H. Bulthoff, S.W. Lee, T.

Poggio, and C. Walraven, editors, Biologically Motivated Computer Vision, volume 2525

of LNCS, pages 528-537. Springer, 2002

59. Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and Hinton, G.E. “Adaptive mixtures of local

experts”, Neural Computation, 3(1):79-87, 1991

60. Jenkins O.C. and Mataric, M.J. "Automated Derivation of Behavior Vocabularies for

Autonomous Humanoid Motion", in proc. Second International Joint Conference on

Autonomous Agents and Multiagent Systems, 2003

61. Jenkins O.C. and Mataric, M.J., "Deriving Action and Behavior Primitives from Human

Motion Data"in IEEE/RSJ Internation Conference on Intelligent Robots and Systems,

pages 2551-2556, 2002

62. Jenkins O.C. and Mataric, M.J., "Primitives and Behavior-Based Architectures for

Interactive Entertainment", AAAI Fall Symposium on on AI and Interactive Entertainment,

Stanford, CA, CA, Mar 26-28, 2001

63. Jenkins, O. C., Mataric, M.J. and Weber, S. “Primitive-Based Movement Classification for

Humanoid Imitation”, IEEE International Conference on Humanoid Robots, 2000

 231

64. Jenkins, O.C., “Data-driven Derivation of Skills for Autonomous Humanoid Agents”, PhD

Dissertation, University of Southern California, 2003

65. Jenkins, O.C. and Mataric, M.J. “A spatio-temporal extension to Isomap nonlinear

dimension reduction”, in proc. 21st International Conference on Machine Learning, 2004

66. Johnson M. and Demiris Y., "Hierarchies of coupled inverse and forward models for

abstraction in robot action planning, recognition and imitation", in proc. AISB Symposium

on Imitation in Animals and Artifacts, 2005

67. Jönsson, F.M. "An optimal pathfinder for vehicles in real-world digital terrain maps",

Department of Numerical Analysis and Computing Science, Royal Institute of Science,

Stockholm, Sweden, 1997

68. Jordan, M.I. and Jacobs, R.A. “Hierarchical mixtures of experts and the EM algorithm”,

Neural Computation, 6:181--214, 1994

69. Kaelbling, L.P., Littman, M. L., and Moore, A.W. “Reinforcement learning: A survey”,

Journal of Arti cial Intelligence Research, 4:237-285, 1996

70. Khatib, O. “Real-time Obstacle Avoidance for Manipulators and Mobile Robots”,

International Journal of Robotics Research. Vol 5, No. 1, Spring 1986

71. Kirby, M. and Sirovich, L. “Application of the Karhunen-Loeve procedure for the

characterization of human faces”. IEEE Transactions on Pattern analysis and Machine

Intelligence, 1990

72. Koren, Y. and Borenstein, J., “Potential Field Methods and Their Inherent Limitations for

Mobile Robot Navigation”, in proc. IEEE International Conference on Robotics and

Automation, pp.1398-1404, 1991

73. Kuniyoshi Y., Inaba M. and Inoue H., "Learning by watching - extracting reusable task

knowledge from visual observation of human-performance", IEEE Transactions On

Robotics And Automation, 10 (6): 799-822, December 1994

 232

74. Laird, J. E., van Lent, M., “Interactice Computer Games: Human-Level AI’s Killer

Application”, in Proc. AAAI 2000, pp. 1171-1178.

75. Laird, J.E, “Using a Computer Game to develop advanced AI”, IEEE Computer, pages 70 -

75, July 2001.

76. Laird, J.E., “It Knows What You're Going To Do: Adding Anticipation to a Quakebot”, in

Proc. Fifth International Conference on Autonomous Agents, 2000

77. Laird, J.E., “The Soar Tutorial, Part VI”, http://sitemaker.umich.edu/soar

78. Laird, J.E. and Duchy, J.C, “Creating Human-like Synthetic Characters with Multiple Skill

Levels: A Case Study using the SOAR Quakebot”, AAAI Fall Symposium: Simulating

Human Agents, 2000

79. Livingstone, D. “Turing's test and believable AI in games”, ACM Computers in

Entertainment (CIE) Vol. 4, Issue 1, 2006

80. MacNamee, B. “Proactive Persistent Agents: Using Situational Intelligence to create

Support Characters in Character-Centric Computer Games”, PhD Dissertation, Dept. of

Computer Science, University of Dublin, Ireland, 2004

81. Mataric, M.J. “Sensory-motor primitives as a basis for imitation: Linking perception to

action and biology to robotics”, in C. Nehaniv and K. Dautenhahn, editors, Imitation in

Animals and Artifacts, MIT Press, 1999

82. Mataric, M.J., Jenkins, O.C., Fod, A. and Zordan, V.B “Control and Imitation in

Humanoids”, AAAI Fall Symposium on Simulating Human Agents, 2000

83. Mathworks Matlab, http://www.mathworks.com

84. Mealy, G.H. “A Method for Synthesizing Sequential Circuits”, Bell System Tech. J. 34

p1045–1079, 1955

http://sitemaker.umich.edu/soar
http://www.mathworks.com/

 233

85. Meltzoff, A. and Moore, M.K. “Explaining facial imitation: a theoretical model”, Early

Development and parenting, 6:2, pp. 157.1-14, 1997

86. Meltzoff, A. N. and Moore, M. K. "Imitation of facial and manual gestures by human

neonates”. Science, 198, 74-8, 1977.

87. Minsky, M.L. and Papert, S.A. "Perceptrons" (1969), MIT Press

88. Molineaux, M. and Aha, D. "TIELT: A testbed for gaming environments", proceedings of

the 16th National Conference on Artificial Intelligence, pp. 1690-1691, 2005

89. Moore, E F. “Gedanken-experiments on Sequential Machines”, Automata Studies, Annals

of Mathematical Studies (34) p129–153. Princeton University Press, 1956

90. Nakanishi, J., Morimoto, J., Endo, G., Schaal, S., and Kawato, M. “Learning from

demonstration and adaptation of biped locomotion with dynamical movement primitives”,

Workshop on Robot Learning by Demonstration, IEEE International Conference on

Intelligent Robots and Systems, 2003

91. Naraeyek, A. “Computer Games - Boon or Bane for AI Research?”, Künstliche Intelligenz,

pages 43-44, February 2004

92. Nechyba, M. C. and Xu, Y. “Human skill transfer: neural networks as learners and

teachers”, IEEE/RSJ International Conference on Intelligence Robots and Systems, pp.

314-319, 1995.

93. Nieuwenhuisen D., Kamphuis A., Mooijekind M., and Overmars M.H. “Automatic

construction of roadmaps for path planning in games”, in proc. Int’l Conf. on Computer

Games: Artificial Intelligence, Design and Education (CGAIDE), pp285-292 2004.

94. Norling, E. and Sonenberg, L. "Creating Interactive Characters with BDI Agents",

Australian Workshop on Interactive Entertainment, 2004

 234

95. Noy, L. "Movement Imitation: Linking Perception and Action", Weizmann Institute,

Faculty of Mathematics and Computer Science, 2004

96. Overmars, M.H “Path Planning for Games”, in Proc. International Game Design and

Technology Workshop and Conference (GDTW 05) ACM, 2005.

97. Oztop E. and Arbib, M.A., "Schema design and implementation of the grasp-related mirror

neuron system", Biological Cybernetics 87(2): pp. 116-140, 2002

98. Pain, S. "Culture Shock", The New Scientist, Issue 2283, 2001

99. Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V. and Rizzolatti, G. “Understanding

motor events: a neurophysiological study”, Exp. Brain Res., 91, 176-80, 1992

100. Piaget, J. “Play, Dreams, and Imitation in Childhood”, New York: Norton, 1962

101. Ponsen, M. and Spronck, P., "Improving Adaptive game AI with Evolutionary Learning",

in proc Computer Games: Artificial Intelligence, Design and Education (CGAIDE) pp.

389–396, 2004

102. Rabin S. ed. "AI Game Programming Wisdom" (Chapter 10), CRM, 2002.

103. Rabin S. ed. "AI Game Programming Wisdom" (Chapter 2), CRM, 2002.

104. Rabin S. ed. "AI Game Programming Wisdom" (Chapters 4.5 & 5.1), CRM, 2002.

105. Rabiner, L.R. "A tutorial on hidden Markov models and selected applications in speech

recognition," Proc. of IEEE, vol. 77, no. 2, pp. 257--286, February 1989

106. Rao, R.P.N., Shon, A.P. and Meltzoff, A.N. “A Bayesian Model of Imitation in Infants and

Robots”, in K. Dautenhahn and C. Nehaniv, editors, Imitation and Social Learning in

Robots, Humans, and Animals: Behavioural, Social and Communicative Dimensions.

Cambridge University Press, 2004.

 235

107. Rizzolatti G., Fadiga L., Matelli M., Bettinardi V., Paulesu E., Perani D. and Fazio F.,

“Localization of grasp representations in human by PET: 1. Observation versus execution”,

Experimental Brain Research 111, pp. 246-252, 1996

108. Rizzolatti, G. and Arbib, M. A. “Language within our grasp”, Trends in Neurosciences,

21(5):188 – 194, 1998

109. Romanes, G. J. and Darwin, C. “Mental evolution in Animals”, D. Appleton & Co, 1884

110. “Rubber-band AI”, http://www.nationmaster.com/encyclopedia/Rubberband-effect,

http://en.wikipedia.org/wiki/Game_artificial_intelligence#Cheating_AI

111. McGlinchey, S., and Livingstone, D. “What Believability Testing Can Tell Us”, in proc.

Int’l Conference on Computer Games, Artificial Intelligence, Design and Education

(CGAIDE), pg273, 2004

112. Schaal S., Ijspeert A.J. and Billard, A. "Computational Approaches to Motor Learning by

Imitation", Philosophical Transactions: Biological Sciences, Vol. 358 No. 1431, pp. 537-

547, 2003

113. Schaal, S. “Is imitation learning the route to humanoid robots?”, Trends in Cognitive

Sciences, 3(6):233-242, 1999

114. Schaal, S., “Movement planning and imitation by shaping nonlinear attractors”, in proc.

12th Yale Workshop On Adaptive And Learning Systems, 2003

115. Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. “Learning movement primitives”, in

proc. International Symposium on Robotics Research (ISRR 2003), Springer, 2004.

116. Searle, J. "Minds, Brains, and Programs," Behavioral and Brain Sciences 3, 417-457, 1980

117. Sklar, E., Blair, A.D., Funes, P. and Pollack, J. “Training Intelligent Agents Using Human

Internet Data”, in Proc. 1st Asia-Pacific Conference on Intelligent Agent Technology, 1999

 236

118. Solinger D., Ehlert P. and Rothkranz L., "A Flight Simulator Dogfight Agent for Real-

Time Decision-Making in the Cockpit", in proc. CGAMES '05, pp. 129-133, 2005

119. Spronck P., Sprinkhuizen-Kuyper I. and Postma E., "Online Adaptation of Game Opponent

AI in Simulation and in Practice", in proc. 4th Int'l Conference on Intelligent Games and

Simulation (GAME-ON) 2003

120. Spronck P., Sprinkhuizen-Kuyper I. and Postma E.: "Improving Opponent Intelligence

through Machine Learning", 3rd Int. Conf. on Intelligent Games and Simulation, 2002.

121. Stentz, A., "Optimal and Efficient Path Planning for Partially-Known Environments", in

Proc. IEEE International Conference on Robotics and Automation, May 1994

122. Sukthankar, G. and Sycara, K. “Automatic Recognition of Human Team Behaviors”,

Modeling Others from Observations, Workshop at IJCAI05, 2005

123. Swartzlander, B., “Quake 2 Bot Core”, http://www.telefragged.com/Q2BotCore/

124. Tenenbaum, J.B., de Silva, V. and Langford, J.C “A global geometric framework for

nonlinear dimensionality reduction”, Science 290: 2319-2323, 2000

125. Tesauro, G. “TD-Gammon, a self-teaching backgammon program achieves master-level

play”, Neural Computation, 6, 215-219, 1994

126. Thorndike, E. L. "Animal Intelligence", New York: Macmillan, 1911

127. Thoroughman, KA, and Shadmehr, R “Learning of action through adaptive combination of

motor primitives”, Nature 407: 742-747, 2000

128. Thorpe, W.H. "Learning and Instinct in Animals", London, Methuen, 1956/1963

129. Thurau, C., "Behavior Aquisition in Artificial Agents", Ph.D., Bielefeld University, 2006

130. Thurau, C., Paczian, T. and Bauckhage, C. “Is Bayesian Imitation Learning the Route to

Believable Gamebots?”, in Proc. GAME-ON North America, pages 3–9, 2005

 237

131. Thurau, C., Bauckhage, C. and Sagerer, G. “Learning Humanlike Movement Behaviour for

Computer Games”, in Proc. 8th Intl. Conf. on the Simulation of Adaptive Behaviour, 2004

132. Thurau, C., Bauckhage, C. and Sagerer, G. “Synthesising Movement for Computer

Games”, in Pattern Recognition, ed CE Rasmussen, HH Bulthoff et al, LCNS 3175,

Springer, 2004

133. Turing, A.M. "Computing machinery and intelligence", Mind 59, 433-460, 1950

134. Waveren, J.M.P. van, Q2 Gladiator bot, http://leesvoer.com/zooi/projects/gladiator/

135. Waveren, J.M.P. van, “The Quake III Arena Bot”, Master's thesis, TU Delft, June 2001

136. Wallace, SA and Laird, JE: “Behavior Bounding: Toward Effective Comparisons of

Agents & Humans”, in proc. IJCAI 2003, pags727-732

137. Warshall, S. "A theorem on Boolean matrices" ACM 9 (1): 11–12, 1962

138. Wolpert, D. and Kawato, M., "Multiple paired forward and inverse models for motor

control", Neural Networks 11, 1317-1329, 1998

139. Wolpert, D.M., Miall, R.C., Kawato, M., "Internal models in the cerebellum", Trends in

Cognitive Sciences, Vol. 2, No. 9, pp. 338-347, 1998

140. Yannakakis, G. and Hallam, J. "Evolving Opponents for Interesting Interactive Computer

Games", 8th Int’l Conference on the Simulation of Adaptive Behavior, p499–508, 2004

141. Yannakakis, G. and Hallam, J., "Interactive Opponents Generate Interesting Games", in

proc. International Conference on Computer Games: Artificial Intelligence, Design and

Education, pp. 240-247, 2004

142. Zanetti S. and El Rhalibi, A. "Machine learning techniques for FPS in Q[uake]3",

Advances in Computer Entertainment Technology pp. 239-244, 2004

	Abstract
	 Acknowledgements
	1 Introduction
	1.1 Introduction
	1.1.1 Publications

	1.2 Artificial Game Intelligence
	1.2.1 Games Industry
	1.2.2 Academia
	1.2.3 Machine Learning
	1.2.4 Games as Imitation Research Platforms

	1.3 Contributions
	1.3.1 Research Questions
	1.3.2 Contributions: Our Research
	1.3.3 Thesis Outline

	1.4 Conclusion

	2 Imitation, Behaviour and AI
	2.1 Introduction
	2.1.1 Publications

	2.2 Imitation Learning
	2.2.1 Biological Imitation
	2.2.1.1 Imitation and Mimicry in Infants and Animals
	2.2.1.2 Human Imitation and Internal Models
	2.2.1.3 Mirror Neurons, Imitation and Language
	2.2.1.4 Motor Primitives
	2.2.1.5 Ethology

	2.2.2 Application in Robotics
	2.2.2.1 Motivation
	2.2.2.2 Computational Formalisation and Imitation Paradigms
	2.2.2.3 Symbolic Imitation
	2.2.2.4 Control-Based Imitation
	2.2.2.5 Statistical Imitation
	2.2.2.6 Biological Models
	2.2.2.7 Movement Primitives

	2.3 Games-Based Imitation Learning
	2.3.1 Motivation and Existing Work
	2.3.2 Believability and Performance
	2.3.3 Computational Modelling for Games
	2.3.4 Selecting a Testbed: Quake 2
	2.3.4.1 Why Existing Commercial Games?
	2.3.4.2 Why First-Person Shooters?

	2.4 Conclusion

	3 The QASE API
	3.1 Introduction
	3.1.1 Publications

	3.2 Motivation
	3.2.1 Existing APIs
	3.2.1.1 Quake 2 Bot Core
	3.2.1.2 GameBots
	3.2.1.3 Quagents
	3.2.1.4 FEAR SDK
	3.2.1.5 TIELT
	3.2.1.6 QASE: OUR APPROACH

	3.3 QASE, Environments and Interfaces
	3.3.1 The Quake 2 Environment
	3.3.1.1 Maps
	3.3.1.2 Environment Entities
	3.3.1.3 Dynamic Entities
	3.3.1.4 Inventory
	3.3.1.5 Respawning

	3.3.2 QASE Network Interface
	3.3.2.1 Early Development
	3.3.2.2 QASE Network / Agent Interface
	3.3.2.3 Session Setup
	3.3.2.4 Irregular Messages
	3.3.2.5 In-Game Protocol

	1.1.1

	3.4 QASE Agent Architecture
	3.4.1 Bot Hierarchy
	3.4.1.1 Bot Interface
	3.4.1.2 BasicBot
	3.4.1.3 ObserverBot & PollingBot
	3.4.1.4 Miscellaneous Bots

	3.4.2 Gamestate Augmentation
	3.4.3 Team-Based Play
	3.4.4 DM2 Parser & Recorder
	3.4.5 Environment Sensing
	3.4.5.1 Binary Space Partitioning
	3.4.5.2 Quake 2 BSP Format
	3.4.5.3 Collision Detection

	3.4.6 Fixed Entity Sensing
	3.4.7 Inbuilt AI Constructs
	3.4.8 Waypoint Maps
	3.4.9 MatLab Integration

	3.5 Conclusion
	3.5.1 Adoption in Academia

	4 Imitation Learning
	4.1 Introduction
	4.1.1 Publications

	4.2 Behaviour Model
	4.2.1 Behaviour and Believability

	4.3 Strategic Behaviour Imitation
	4.3.1 Reinforcement Learning
	4.3.2 Goal-Oriented Strategic Navigation
	4.3.3 Topology Learning
	4.3.4 Deriving Movement Paths
	4.3.4.1 Assigning Rewards

	4.3.5 Learning Utility Values
	4.3.6 Multiple Weighted Objectives
	4.3.7 Object Transience
	4.3.8 Deployment
	4.3.9 Experiments

	4.4 Tactical Behaviour Imitation
	4.4.1 Motion Modelling and Tactical Behaviours
	4.4.2 Action Primitives
	4.4.3 Bayesian Imitation
	4.4.3.1 Primitives Extraction and Sequencing
	4.4.3.2 Adaptations of the Rao/Shon/Meltzoff Model
	4.4.3.3 Probability Computation and Deployment
	4.4.3.4 Imitative Keyframing

	4.4.4 Experiments

	4.5 Reactive Behaviour Imitation
	4.5.1 Reactive Combat Behaviours
	4.5.2 Learning the Inaccuracy
	4.5.3 Methodology
	4.5.3.1 Data Extraction
	4.5.3.2 Network Architecture

	4.5.4 Experiments
	4.5.4.1 RESULTS

	4.6 Conclusion

	5 Believability Testing
	5.1 Introduction
	5.1.1 Publications

	5.2 Motivation
	5.2.1 Previous Contributions
	5.2.2 The Turing Test and Game AI

	5.3 BOTT: The Bot-Oriented Turing Test
	5.3.1 Online Survey Structure
	5.3.2 Experimental Protocol, Subjectivity and Bias

	5.4 Evaluation of Results
	5.4.1 Computing the Believability Index
	5.4.2 The Confidence Index

	5.5 Experiments
	5.5.1 Methodology
	5.5.2 Results
	5.5.3 Feedback
	5.5.4 Remarks

	5.6 Conclusion

	6 Conclusion
	6.1 Introduction
	6.1.1 Full List of Publications
	6.1.1.1 Conference Proceedings
	6.1.1.2 Journal Papers

	6.2 Thesis Review
	6.3 Future Work
	6.3.1 QASE Development
	6.3.1.1 QASE3
	6.3.1.2 QNET
	6.3.1.3 QScript
	6.3.1.4 GANN Interface

	6.3.2 Potential Refinements to Existing Models
	6.3.2.1 State Compression
	6.3.2.2 Weapon Similarity Matrices

	6.4 Open Questions
	6.4.1 Meta-Behaviours
	6.4.1.1 Anticipation
	6.4.1.2 Behaviour-Switching
	6.4.1.3 Remarks

	6.4.2 Real-World Applicability and Biometric Imitation
	6.4.2.1 Applications in the Real World
	6.4.2.2 Biometric Imitation

	7 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

