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Improving Transductive Data Selection

Algorithms for Machine Translation

Alberto Poncelas Rodriguez

Abstract

In this work, we study different ways of improving Machine Translation models by
using the subset of training data that is the most relevant to the test set. This is
achieved by using Transductive Algoritms (TA) for data selection. In particular, we
explore two methods: Infrequent N-gram Recovery (INR) and Feature Decay Algo-
rithms (FDA). Statistical Machine Translation (SMT) models do not always perform
better when more data are used for training. Using these techniques to extract the
training sentences leads to a better performance of the models for translating a
particular test set than using the complete training dataset.

Neural Machine Translation (NMT) can outperform SMT models, but they re-
quire more data to achieve the best performance. In this thesis, we explore how
INR and FDA can also be beneficial to improving NMT models with just a fraction
of the available data.

On top of that, we propose several improvements for these data-selection methods
by exploiting the information on the target side. First, we use the alignment between
words in the source and target sides to modify the selection criteria of these methods.
Those sentences containing n-grams that are more difficult to translate should be
promoted so that more occurrences of these n-grams are selected. Another extension
proposed is to select sentences based not on the test set but on an MT-generated
approximated translation (so the target-side of the sentences are considered in the
selection criteria). Finally, target-language sentences can be translated into the
source-language so that INR and FDA have more candidates to select sentences
from.
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Chapter 1

Introduction

Machine Translation (MT) is a subfield of machine learning that aims to generate

the translation of sentences in one language into another language. In order to

accomplish this, MT models are built using sentence pairs that are translations of

each other. Models learn from these sentences so they can infer the translation of a

new, unseen sentence or document.

As the translations produced by the models are typically post-edited by a profes-

sional translator, the quality of the generated translations is of crucial importance

in order to minimize the amount of human effort.

Although one would think that by adding more sentence pairs, the model pro-

duces better translations, this is not necessarily true. It has been shown (Ozdowska

and Way, 2009) that Statistical Machine Translation (SMT) models can perform

better when trained with less data but in a closer domain to that of the test set. In

order to do that, data-selection algorithms aim to retrieve the subset of data that

is closer to a particular domain.

For this reason, data-selection techniques play a major role. These techniques

aim not only to reduce the size of the models (and the time required for training),

but also to identify the data that belong to a particular domain, so the model can

be trained with in-domain data.

1



1.1 Document-Specific Machine Translation

1.1.1 Domain identification problem

In MT, test sets are usually sampled from a particular set of content (potentially

a very large set of content) itself representative from a well-defined source, where

that source may be labeled as a ‘domain’. Test data are drawn from news sources

(blogs, news websites, etc.) thus representing the ‘News’ domain, or a test data are

drawn from medical sources thus representing the ‘medical’ domain, etc.

In some cases determining the domain of the test set can be difficult, and some-

times the test set can even belong to multiple domains. Fortunately, the selection

of the sentence pairs can be executed without the need for identifying the domain.

These data-selection methods that consider the test set as the seed in order to

retrieve sentences are those classified as Transductive Algorithms (TAs).

1.1.2 Transductive Learning

TAs operate under a very different paradigm to the standard approaches used in

machine learning, which are based on inductive learning. Inductive learning is con-

cerned with reasoning from the particular (observed training data) to the general

(functions that generalize well to unseen test data). In contrast, transductive learn-

ing (Vapnik, 1998) is concerned with the particular to the particular: in our case,

from a corpus of annotated MT training data to a specific test set to be trans-

lated. Generalization outside this specific test set is not an objective of transductive

learning, which can potentially allow transductive methods to outperform inductive

models with respect to specific test sets.

As the definition of domain can range from general (e.g. News, Bio, etc) to more

particular (such as author profiling), building document-specific MT systems is the

most specific example of domain adaptation that might be contemplated.

The use of the test set has been previously investigated in other works. For

example, Lu et al. (2007) propose to change the weight of those sentences that are

2



similar to the test set. Alternatively, they train several MT model candidates and use

the test set to select the most suitable one to generate the translation. Biçici (2011)

use the test set to select sentences to make regression based machine translation

computationally more scalable. Lopez (2008) propose Machine Translation by Patter

Matching, where those entries of the phrase table that match the phrases of the test

set are retrieved.

1.1.3 Adaptation of Machine Translation Models

A translation company, when they need to translate a new document they use a

MT engine that is the most suitable (e.g. trained in the same domain) to generate

a translation. However, if at translation time the test set (or the document to be

translated) is known, why not benefit from that? An MT model could be adapted

to the current document. We propose to postpone part of the training phase of the

MT model until the document to be translated is provided, which would minimize

the time and human efforts required to post-edit the output of the MT.

The impacts of this view of the MT process are significant, in that two aspects

which are central to how MT is done today are radically redefined:

• offline training is reduced or eliminated;

• the notion of poor quality ‘noisy’ data largely disappears;

• the notion of ‘domain’ becomes much more fine-grained and dynamic.

Furthermore, this will completely remove the major barrier and cost associated

with MT: personalisation. Today, personalised MT is simply not a possibility, and

even for larger institutions, customisation represents a major obstacle.

1.1.4 Cloud-Based Models

As hardware capability continues to improve, we foresee a paradigm shift in the

not too distant future where cloud-based models are built on-the-fly in real time
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for translation of specific documents. We envisage that following analysis of the

translation requirements of the said document, the best-fitting examples in the entire

cloud of translation data are selected as data for training of an MT system built

specifically to translate that document. In such a scenario, we expect training time

to be fast, as the amount of training data required will be small. In this way, we

could even think of such models as disposable; once the specific document has been

translated, there is no need to keep the MT system any longer.

Taken together, these improvements have the potential to transform the current

MT landscape:

• Speed: translation systems will be built in real time;

• Quality: systems are dynamically adapted on-the-fly, based on the current

translation task, and with incremental system-updating in real time during

the post-editing process;

• Personalisation: training/customization always takes place online, in real

time, to the user’s specific requirements.

These three improvements are tightly interconnected; by permitting personal-

isation as a real-time process, we will achieve major improvements in translation

quality and speed and considerably enhance the user experience.

1.2 Proposal of the Thesis

While building such an online real-time system-building set-up goes beyond the

scope of this thesis, the importance of the optimal selection of the training data

becomes paramount. Accordingly, in the context of this thesis, transduction is

explored primarily via the use of data selection and data synthesis methods. The

key idea is to choose examples from the training corpus that are similar in some way

to the test corpus, and then use standard statistical and neural inferential models,
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which will be biased toward performing well on the specific test set. This thesis

demonstrates that this can lead to improved performance on the test sets.

We explore the performance1 of TAs when used to build German-to-English

MT models. Initially, we set out to explore the effect of TAs on the prevailing

state-of-the-art in MT, namely SMT. More recently, of course, Neural Machine

Translation (NMT) approaches have become popular as they can outperform SMT

models. NMT models tend to perform better than SMT when larger amounts of data

are used for training. Nonetheless, this work also shows that a subset of sentences

retrieved by TAs can also be beneficial to improve the performance of NMT models.

In addition, we also propose several ways to improve TAs by exploiting informa-

tion in the target side. These improvements come from three directions, either by

(i) altering the selection criterion; (ii) altering the seed used for selecting sentences

(use a translation of the test set instead of the test set); or (iii) generating new

candidate sentences that TA can select from.

In sum, the primary focus of study in this thesis is the capability of TAs to

restrict the amount of training data needed for the building of a high-quality MT

system. However, it would be wrong to conclude that TAs can only be used for this

task. Accordingly, at the end of the thesis, we start to consider the extent to which

the class of algorithms classified in this thesis as TAs can be used inductively; can

they be used to generalise over specific data sets and applied to new ones? Can they

be utilised for domain adaptation?

1.3 Research Questions

The Research Question (RQs) we are addressing in this thesis aim to improve the

performance of models trained on data selected by TAs. The RQs explored are:

1. RQ1: How can we tailor data-selection algorithms to be most effec-

1In this work, performance of a data-selection algorithm is used to refer to the translation
quality of a model trained with the sentences retrieved by the algorithm, measured with automatic
evaluation metrics.
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tive in combination with NMT?

Although the TAs have a good performance in SMT they are yet unexplored in

NMT. NMT approaches require larger amounts of data than SMT to achieve

their best performances. For this reason, we want to explore whether these

models could also benefit from TAs.

2. RQ2: Can word-alignment information be useful for improving state-

of-the-art TAs?

The TAs analyzed in this thesis penalize the n-grams of sentences that have

already been selected in order to increase the variability. However, should

every n-gram be penalized equally? In every language, there are words or n-

grams that are more difficult to be translated and therefore more occurrences

are needed in order to learn the proper translation. A way of measuring how

complicated is to decide the translation of an n-gram is by computing the

alignment entropy, which measures the predictability of the translation by

analyzing how the words in the n-gram are mapped to the words in the target

side.

3. RQ3: Can the use of synthetic sentences improve the performance

of MT models when used in combination with TAs?

Another method to improve the quality of the models is to acquire more candi-

dates sentences to selected from. When additional data are not available there

is the option of creating sentences artificially. By doing this, we can augment

the size of the candidate pool. We want to explore whether using synthetic

data alone or in combination with authentic data is more beneficial than using

authentic data only.

One limitation of the explored TAs is that they select the sentences based

on the n-grams in the source side, ignoring the target-side completely. We

propose to use synthetic target-side sentences as the seed of TAs so that the
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selection is also performed considering the target side. By doing this we want

to minimize the effect of selecting noisy sentences (sentence pairs that are not

accurate translations of each other) and promote selecting the same n-grams

in the target side.

1.4 Contributions

In this thesis we use TAs applied in MT and there are several contributions in terms

of the exploration and improvements of these methods. Here we present the main

contributions of the thesis, but a more detailed list can be found in the introduction

of each chapter:

• We perform comparisons of SMT and NMT models that have been trained

with different amounts of data.

• We compare different SMT and NMT models using subsets of the training

sentences retrieved by TAs.

• We perform an analysis of the performance of different configurations of TAs

in SMT and NMT, and explore the impact of changing the values of the

parameters of TAs.

• We propose a novel extension for two TAs so that the decay of the n-grams

(used to promote the variability) becomes dynamic, and so different n-grams

are penalized differently.

• We discuss the disadvantages of selecting parallel sentences with TAs based

only in the source side and introduce a novel technique to execute these meth-

ods so they select sentences considering the target side instead.

• We investigate how authentic and synthetic training data can work in combi-

nation with TAs to build better models. In addition, we propose two ways of
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selecting synthetic data with TAs and how to combine them with the authentic

selected-data.

1.5 Outline of the Thesis

This thesis is structured in the following chapters:

• Chapter 2 (Background) introduces some concepts that will be used later

on in the thesis. In addition, we describe the two leading MT paradigms

Phrase-Based Statistical Machine Translation (PBSMT) and NMT, as the

experiments carried out involve building models following these approaches.

In addition, we provide an overview of the main data-selection algorithms and

describe their main characteristics.

• Chapter 3 (Transductive Algorithms on Statistical Machine Trans-

lation) presents several experiments for a better understanding of PBSMT

models. The chapter includes experiments that explore the impact of adding

training sentences to build the models. Additionally, in the chapter we inves-

tigate the performance when SMT models are built with data selected from

TAs. This chapter is also important as we establish the models considered as

baselines for SMT in the thesis.

• Chapter 4 (Transductive Algorithms on Neural Machine Transla-

tion) reports the performance of NMT models when trained with data from

TAs. This chapter addresses RQ1. We compare NMT models trained with

different sizes of either randomly-selected or TA-selected data. We explore

two different ways of using selected data in NMT: (i) using it to build models

from scratch; and (ii) using it to tune general-domain models. This chapter

also helps establish the baselines to be used in our the experiments, as well as

describe how NMT models are constructed in the following chapters.
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• Chapter 5 (The Use of Alignment Entropy) presents an analysis of the

impact of different configurations when used in SMT and NMT. We propose

a method to improve the selection criteria of TAs. In particular, we aim to

answer RQ2. We suggest three methods to compute alignment entropies and

we evaluate TAs when using these values for their parameters.

• Chapter 6 (The Use of Synthetic Data to Adapt Models) investigates

a set of experiments in which artificial data are involved to answer RQ3. This

chapter evaluates the models fine-tuned with synthetic sentences only, as well

as in combination with authentic ones.

• Chapter 7 (Conclusions and Future Work) summarizes the work con-

ducted in terms of the RQs proposed in the thesis. Finally, we propose several

ways to further explore the techniques proposed in this work.

1.6 Publications

The contents of this thesis are based on work published in peer-reviewed interna-

tional conferences. The papers that are the most related are the following:

1. Poncelas, A., de Buy Wenniger, G. M., and Way, A. (2019b). Transductive

data-selection algorithms for fine-tuning neural machine translation. In The

8th Workshop on Patent and Scientific Literature Translation (PSLT 2019),

Dublin, Ireland

2. Poncelas, A., Maillette de Buy Wenniger, G., and Way, A. (2018b). Feature

decay algorithms for neural machine translation. In Proceedings of the 21st An-

nual Conference of the European Association for Machine Translation, pages

239–248, Alacant, Spain

3. Poncelas, A., Way, A., and Toral, A. (2016). Extending feature decay al-

gorithms using alignment entropy. In International Workshop on Future and

Emerging Trends in Language Technology, pages 170–182, Seville, Spain. Springer
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4. Poncelas, A., Maillette de Buy Wenniger, G., and Way, A. (2017). Applying

n-gram alignment entropy to improve feature decay algorithms. The Prague

Bulletin of Mathematical Linguistics, 108(1):245–256

5. Poncelas, A., Shterionov, D., Way, A., de Buy Wenniger, G. M., and Passban,

P. (2018c). Investigating backtranslation in neural machine translation. In

21st Annual Conference of the European Association for Machine Translation,

pages 249–258, Alacant, Spain

6. Poncelas, A., Popovic, M., Shterionov, D., de Buy Wenniger, G. M., and Way,

A. (2019c). Combining SMT and NMT back-translated data for efficient NMT.

In Proceedings of Recent Advances in Natural Language Processing (RANLP),

pages 922–931, Varna, Bulgaria

7. Poncelas, A., de Buy Wenniger, G. M., and Way, A. (2019a). Adaptation

of machine translation models with back-translated data using transductive

data selection methods. In 20th International Conference on Computational

Linguistics and Intelligent Text Processing, La Rochelle, France

8. Poncelas, A., Way, A., and Sarasola, K. (2018d). The ADAPT System Descrip-

tion for the IWSLT 2018 Basque to English Translation Task. In International

Workshop on Spoken Language Translation, pages 72–82, Bruges, Belgium

9. Poncelas, A., de Buy Wenniger, G. M., and Way, A. (2018a). Data selection

with feature decay algorithms using an approximated target side. In 15th In-

ternational Workshop on Spoken Language Translation (IWSLT 2018), pages

173–180, Bruges, Belgium

10. Poncelas, A. and Way, A. (2019). Selecting Artificially-Generated Sentences

for Fine-Tuning Neural Machine Translation. In Proceedings of the 12th In-

ternational Conference on Natural Language Generation, Tokyo, Japan

In addition to that, there are other papers published in peer-reviewed conferences

in the Natural Language Processing (NLP) field that I have co-authored:
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1. Poncelas, A., Sarasola, K., Dowling, M., Way, A., Labaka, G., and Alegria, I.

(2019d). Adapting NMT to caption translation in Wikimedia Commons for low-

resource languages. In 35th International Conference of the Spanish Society for

Natural Language Processing (SEPLN 2019), Bilbao, Spain

2. Vanmassenhove, E., Moryossef, A., Poncelas, A., Way, A., and Shterionov, D.

(2019). ABI Neural Ensemble Model for Gender Prediction Adapt Bar-Ilan

Submission for the CLIN29 Shared Task on Gender Prediction. In Computational

Linguistics of the Netherlands CLIN29, Groningen, The Netherlands (Share task

winner paper)

3. Dowling, M., Lynn, T., Poncelas, A., and Way, A. (2018). SMT versus NMT:

Preliminary comparisons for Irish. In Technologies for MT of Low Resource

Languages (LoResMT 2018), page 12, Boston, USA

4. Silva, C. C., Liu, C.-H., Poncelas, A., and Way, A. (2018). Extracting in-domain

training corpora for neural machine translation using data selection methods. In

Proceedings of the Third Conference on Machine Translation: Research Papers,

pages 224–231, Brussels, Belgium

5. Liu, C.-H., Moriya, Y., Poncelas, A., and Groves, D. (2017b). IJCNLP-2017 Task

4: Customer Feedback Analysis. In Proceedings of the IJCNLP 2017, Shared

Tasks, pages 26–33, Taipei, Taiwan

6. Dzendzik, D., Poncelas, A., Vogel, C., and Liu, Q. (2017). ADAPT centre cone

team at IJCNLP-2017 task 5: A similarity-based logistic regression approach to

multi-choice question answering in an examinations shared task. In Proceedings

of the IJCNLP 2017, Shared Tasks, pages 67–72, Taipei, Taiwan (Share task

winner paper)

7. Liu, C.-H., Groves, D., Hayakawa, A., Poncelas, A., and Liu, Q. (2017a). Under-

standing meanings in multilingual customer feedback. In Proceedings of First
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Workshop on Social Media and User Generated Content Machine Translation

(Social MT 2017), Prague, Czech Republic
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Chapter 2

Background

In this chapter, we introduce concepts related to the NLP field that will be used

later and provide a background of MT field. In particular, we explain the main

state-of-the-art approaches, PBSMT (Koehn et al., 2003) and NMT (Cho et al.,

2014; Sutskever et al., 2014), that have been explored in this work.

In addition, as this thesis is related to the data-selection field, in Section 2.5 we

summarize the main data-selection techniques. Note that we classify and provide

a general overview of major data-selection techniques. Then, in Section 2.5.2 we

describe in more detail the transductive methods which are used in the experiments

carried out in this thesis.

2.1 Mathematical and NLP Concepts

First, we introduce some mathematical notation and NLP concepts that will be used

in this work.

N-gram functions An n-gram is a sequence of n contiguous elements extracted

from a longer string. Typically, these elements consist of characters or words. Unless

otherwise specified, in this thesis we consider an n-gram to be a sequence of words.

We define Ngrij(s) as the set of n-grams (where i ≤ n ≤ j) in a sentence s.

Similarly, we use the notation Ngrij(D) as the set of n-grams in a set of sentences D
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(equivalent to Ngrij(D) =
⋃
s∈DNgrij(s)). For simplification, in the case in which

i = 1, we will indicate only the value of j in the subscript, so Ngrj(s) = Ngr1j(s).

Moreover, we use Cs(ngr) as the count of occurrences of an n-gram ngr in a

sentence s, and CD(ngr) =
∑

s∈D Cs(ngr) the number of occurrences of ngr in the

set of sentences D.

The probability of the occurrence of an n-gram in a set of sentences D is calcu-

lated as in Equation (2.1):

PD(ngr) =
CD(ngr)∑

ngri∈Ngrnn(D)

CD(ngri)
. (2.1)

We use |s| to express the number of words contained in the sentence s and

words(D) =
∑
s∈D
|s| as the number of words in the set D.

Parallel Data In the MT field we typically use parallel sentences to build MT

models. This data consists of a pair 〈S, T 〉, where S is a set containing sentences in

the source language and T a set containing sentences in the target language. These

sentences are paired so the i-th sentence si ∈ S and ti ∈ T are a translation of each

other. The pair 〈S, T 〉 can also be considered a set of unique parallel sentence-pairs

〈si, ti〉, so we also refer to it as a parallel set.

Following the terminology of the MT field, we also refer to the subsequence of

words of a sentence s as a phrase s̄. From a sentence pair 〈si, ti〉 we can also extract

phrase-pairs 〈f̄ , ē〉 (where f̄ is a phrase from si and ē is a phrase from ti). We use

C(S,T )(f̄ , ē) for counting the number of sentences in which the phrase f̄ and ē occur

together in 〈S, T 〉.

Entropy Entropy is a measure of the uncertainty. It is used to evaluate the

predictability of the outcomes of a random process. The entropy of a random variable

X = x1, ...xN , where the probability of each outcome xi is P (xi), is computed as in
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Equation (2.2):

entropy(X) = −
∑
xi∈X

P (xi) log(P (xi)). (2.2)

A larger entropy means that the uncertainty is higher and lower entropies indicate

that the outcomes are more predictable. If there is only one predictable outcome

(P (x1) = 1), then the entropy is 0. The entropy value can be normalized to be in

the range [0, 1] when computed as in Equation (2.3):

entropy(X) = − 1

|X|
∑
xi∈X

P (xi) log(P (xi)). (2.3)

TF-IDF Term Frequency–Inverse Document Frequency (TF-IDF) (Salton and

Yang, 1973) is a statistic that indicates how relevant a word is for a document

in relation to a set of documents. The weight of a term is higher if it is frequent in

a document d, but it is also penalized if is also frequent in the other documents of

the collection D.

The TF-IDF value of word wk in a document d ∈ D is computed as in Equa-

tion (2.4):

tfidf(wk, d,D) = Cd(wk) log(idf(wk, D)) (2.4)

where idfk is the inverse document frequency (IDF). This measures the inverse of

the frequency of the k-th term in the set of all documents D, computed as idf(wk) =

|D|
|Dwk |

where Dwk is the set of documents containing wk.

TF-IDF is often used as a distance metric between two documents. A document

can be seen as a vector d where each element dk is tfidf(wk, d,D). The TF-IDF

distance of two vector of two documents d(1) and d(2) is defined as the cosine distance

between the two vectors computed as in Equation (2.5):

disttfidf (d(1),d(2)) = cos(d(1),d(2)) =
d(1) · d(2)

|d(1)||d(2)|
. (2.5)
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Language models Language Models (LMs) are models that measure the fluency

of a sentence, i.e. how likely the sentence is to have been produced by a native

speaker of the language. N-gram LMs are based on statistics that indicate how

likely words are to follow each other.

However, Equation (2.1) is not useful to estimate the probability as ngr may

not be found in D (which is likely if the sequence is too long). Therefore, n-gram

LMs split this process (smaller statistics) using the chain rule and aim to predict

one word at a time as in Equation (2.6):

PLM(w1, w2, ..., wl−1, wl) = P (w1)P (w2|w1)...P (wl|w1, w2, ..., wl−1). (2.6)

The terms of Equation (2.6) compute the probability of a word conditioned to

the sequence of all previous words. Following the Markov assumption, each term

P (wi|w1...wi−1) is approximated as in Equation (2.7):

P (wi|w1, w2, ..., wi−1) ≈ P (wi|wi−h, w2, ..., wi−1) (2.7)

where, instead of considering all the previous word of the sequence, only the previous

h words are considered. We call h the order of the LM. Each term of Equation (2.7)

is computed as in Equation (2.8):

PLMd
(wi|wi−h, ..., wi−1) =

CD(wi−h, ..., wi)

CD(wi−h, ..., wi−1)
. (2.8)

In order to evaluate an LM, two metrics are typically used: cross-entropy and

perplexity. This metrics estimate how well an LM can predict a sequence of words

s. The first metric, cross-entropy, is the average log probability of the words in s

computed as in Equation (2.9):

HLMd
(s) = − 1

|s|

|s|∑
i=1

log(PLMd
(wi|wi−n, ..., wi−1)). (2.9)
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The other metric, perplexity, is a transformation of cross-entropy as in Equa-

tion (2.10):

PPLMd
(s) = 2HLMd (s). (2.10)

2.2 Statistical Machine Translation

SMT is the MT paradigm in which the translation problem is considered as a sta-

tistical optimization problem.

The noisy channel model is a framework of communication where a message is

sent from the source to a receiver through a channel which causes the message to

suffer a distortion. SMT is based on this framework as it assumes a sentence f

in a source language is transformed into a sentence e in the target language when

transmitted through the noisy channel. The goal is to infer the translated sentence

e from f with the highest probability as in Equation (2.11):

e∗ = arg max
e

P (e|f) (2.11)

which following Bayes’ theorem, can be expressed as in Equation (2.12) (noisy chan-

nel model):

P (e|f) ∝ P (f |e)P (e) (2.12)

where we observe two main components:

• P (f |e), translation model probability, which measures adequacy, i.e how much

of the meaning is preserved in the translation. This model is built based on

bilingual data.

• P (e), language model probability, which measures fluency, i.e. how likely the

translation is to have been produced by a native speaker of that language.

This model is built based on monolingual (target-side) data.
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2.2.1 Word-Based Statistical Machine Translation

Word-based SMT (Brown et al., 1993) is the statistical translation approach that

uses words as atomic translation units. It introduced the concept of word alignment,

a function defining one-to-one and many-to-one mappings between words of the

sentence pairs.

Given a sentence f = (f1, ..., fls) in the source language and a sentence e =

(e1, ..., elt) in the target language, the alignment function a maps each word ej in

the target-side to a word fi in the source side along with the translation probability.

The most popular tools for word alignments are GIZA++ (Och and Ney, 2003)

and its variation FastAlign alignment model (Dyer et al., 2013) which introduces

a diagonal tension λ. This parameter measures the overall correspondence of word

order and an efficient re-estimation of the parameters that makes it around 10 times

faster than GIZA++ while still obtaining comparable quality.

2.2.2 Phrase-Based Statistical Machine Translation

PBSMT models (Koehn et al., 2003) may be considered to be an improvement over

word-based SMT models. These models use phrases as atomic units for translation

(as opposed to individual words). This approach is better able to capture contextual

information. Phrases from a source and a target sentence are paired so that every

word of the phrase in one side is aligned to a word present in the phrase of the other

side or a 〈NULL〉 token (but not to words outside the phrase).

The phrase pairs are gathered along with their translation scores in a structure

called a phrase-table, which will be used in the decoding step (when translating a

document) as a look-up dictionary, for selecting a translation of a phrase of the test

set.

The decision to select a phrase pair is based mainly on three components: (i)

a translation model (scores of the phrase-table), (ii) a reordering model, and (iii) a

LM:
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• Translation model: It provides the translation probabilities of a phrase pair

(an entry of the phrase table). Commonly 4 scores are computed: “inverse

phrase translation probability” (φ(f |e)), “inverse lexical weighting” (lex(f |e)),

“direct phrase translation probability” (φ(e|f)) and “direct lexical weighting”

(lex(e|f))

– Translation probability: It indicates the probability of a phrase to be the

translation of another phrase computed as in Equation (2.13):

φ(f̄ |ē) =
C(S,T )(f̄ , ē)∑̄

fi

C(S,T )(f̄i, ē)
(2.13)

where f̄ and ē are the source and target phrase pairs, respectively.

– Lexical weighting: This is computed in order to avoid the problem of

phrases that do not provide reliable probability estimations (e.g. low-

frequency phrases). It measures how well the words in the phrases trans-

late to each other (Koehn et al., 2003) computed as in Equation (2.14):

pw(f̄ |ē, a) =
l∏

i=1

1

{j|(i, j) ∈ a}
∑
∀(i,j)∈a

w(fi|ej) (2.14)

where w(fi|ej) is the lexical weighting defined as in Equation (2.15):

w(fi|ej) =
C(S,T )(fi, ej)∑
f ′ C(S,T )(f ′, ej)

(2.15)

where f ′ are the words in the source language aligned to ej

• Reordering model: Introduced by Tillmann (2004), this is the model that

handles the orientation of a phrase based on the previous adjacent phrase.

Koehn et al. (2005) estimates the probability of three different orientations

for a phrase: monotone (how likely the phrase follows the previous one), swap

(how likely is swapped with the previous one) and discontinuous (how likely

it is not to be connected to the previous one).
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• LM: An LM models the fluency of the output of the translation computing

the probability of a sequence of words as in Equation (2.8):

These scores computed are combined in a weighted logarithmic sum (known as

the log-linear model) as in Equation (2.16):

p(x) = exp
n∑
i=1

λihi(x). (2.16)

As we see in Equation (2.16), the feature functions are weighted according to

λi. After computing the feature functions, the optimal value of each λi needs to be

found. The process of finding appropriate values of λi is known as tuning.

One popular method for tuning is Minimum Error Rate Training (MERT) (Och,

2003). MERT uses a development set, a set of parallel sentences not included in

the training data, to estimate the optimal weights. In order to estimate them, first

initial random values are set, and then several runs are executed (until convergence).

In each iteration:

1. Translations of the sentences in the dev set are produced and the error of the

n-best sentences (using the reference translations) are computed.

2. Each parameter is optimized individually (fixing the values of the other pa-

rameters).

2.2.3 Moses Toolkit

The PBSMT tool we use in this work is the Moses Toolkit (Koehn et al., 2007).

This tool takes a set of parallel sentences and a language model as input and trains

an SMT system. It computes the models explained in Section 2.2.2 and produces a

file, moses.ini, that contains the features as shown in Listing 2.1.

The first part of the moses.ini file contains the paths to the components explained

in Section 2.2.2 (translation model, lexical reordering and language model) and other
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UnknownWordPenalty
WordPenalty
PhrasePenalty
PhraseDictionaryMemory name=Translat ionModel0 num−f e a t u r e s=4

path=/path/ to /phrase−t ab l e . gz input−f a c t o r=0 output−f a c t o r=0
Lex ica lReorder ing name=Lex ica lReorder ing0 num−f e a t u r e s=6

type=wbe−msd−b i d i r e c t i o n a l−fe−a l l f f
input−f a c t o r=0 output−f a c t o r=0
path=/path/ to / reorder ing−t ab l e . wbe−msd−b i d i r e c t i o n a l−f e . gz

D i s t o r t i on
KENLM lazyken=0 name=LM0 f a c t o r=0 path=/path/ to /LM order=8

Lex ica lReorder ing0= 0.0899023 0.0589253 0.0456796 0.0879397
0.000122106 0.135896

Di s t o r t i on0= 0.0294993
LM0= 6.15097 e−05
WordPenalty0= −0.0164713
PhrasePenalty0= −0.29107
Translat ionModel0= 0.000119481 0.0207173 0.222799 −0.000797186
UnknownWordPenalty0= 1

Listing 2.1: Extraction of moses.ini file using default configuration of Moses

wenn wir | | | when we | | | 0.2006 0.1772 0 .110 0.1551 | | | 0−0 1−1 | | | 648 1177 130 | | | | | |
wenn wir | | | when | | | 0.0006015 0.0007428 0.0051 0.1995 | | | 0−0 | | | 9974 1177 6 | | | | | |
wenn wir | | | whenever we | | | 0.1818 0.1851 0.003398 0.003376 | | | 0−0 1−1 | | | 22 1177 4 | | | | | |
wenn wir | | | where we | | | 0.003875 0.01148 0.0008496 0.005927 | | | 0−0 1−1 | | | 258 1177 1 | | | | | |
wenn wir | | | whi le we | | | 0.01492 0.009151 0.00085 0.002926 | | | 0−0 1−1 | | | 67 1177 1 | | | | | |

Listing 2.2: Extraction of phrase table file

features such as word and phrase penalty (so the translations are not too long or

too short), unknown word penalty and distortion (Brown et al., 1993).

The second part of the file contains the weights of the features (λi values in

Equation (2.11)). In Listing 2.1 we show the values after tuning.

We can observe in the first part of the moses.ini file (Listing 2.1) that the trans-

lation model (PhraseDictionaryMemory), reordering model (LexicalReordering) and

language model (LM) indicate the files where these models are stored. Note that

the translation model and reordering model files have been created by Moses, but

the language model is created separately and then provided to Moses at training

time.

The translation model is stored in a file called phrase table. We show an ex-

traction in Listing 2.2. This file contain five columns (the separator of the table is

“|||”)

1. Phrase in the source side.

2. Phrase in the target side: the phrase in the target side language that is paired

with the source side phrase.
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3. Translation model features: The four probabilities explained in Section 2.2.2

in this order: inverse phrase translation probability, inverse lexical weighting,

direct phrase translation probability, and direct lexical weighting. We describe

the first row of Listing 2.2 as an example of how they are computed:

• Inverse phrase translation probability (φ(f |e)): this is computed as in

Equation (2.13). The counts of occurrences of the phrases are shown in

column 5 (“when we” occurs 648 times, “wenn wir” and “when we” occur

together 130 times). Therefore the inverse phrase translation probability

is 0.2006 = 130/648.

• Inverse lexical weighting (lex(f |e)): this is computed as in Equation (2.14).

The individual lexical weighting is stored in a file called lex.e2f created

by Moses. In this file we find the values of lexical weighting for the words

in the phrases, in the rows wenn when 0.2658521 and wir we 0.6666557.

Therefore the inverse lexical weighting is 0.1772 = 0.2658521 · 0.6666557.

• Direct phrase translation probability (φ(e|f)): this is computed as in

Equation 2.13. “wenn wir” occurs 1177 times, “wenn wir” and “ when

we” occur together 130 times. Therefore the direct phrase translation

probability is 0.110 = 130/1177.

• Direct lexical weighting (lex(e|f)): this is computed as in Equation (2.14).

The individual lexical weighting is stored in a file called lex.f2e which con-

tains the rows when wenn 0.1995174 and we wir 0.7773823. Therefore

the direct lexical weighting is 0.1551 = 0.1995174 · 0.7773823.

4. Alignments: How words of the source and target side are aligned individually.

For example, in the last row, the pair 〈“wenn wir , when we”〉 , “0-0” indicate

that the 0-th word in the source side word (“wenn”) is aligned to the 0-th

target-side word (“when”).

5. Phrase counts: Three numbers consisting of target phrase counts, source
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wenn wir | | | when | | | 0.200000 0.066667 0.733333 0.333333 0.066667 0.600000
wenn wir | | | whenever we | | | 0.272727 0.090909 0.636364 0.090909 0.090909 0.818182
wenn wir | | | where we | | | 0.200000 0.200000 0.600000 0.200000 0.200000 0.600000
wenn wir | | | whi le we | | | 0.200000 0.200000 0.600000 0.200000 0.200000 0.600000

Listing 2.3: Reordering table

phrase counts, source and target intersection count. For example, in the first

example “wenn wir , when we”, there are 1177 occurrences of “wenn wir”, and

648 occurrences of “when we”. The phrases “wenn wir” and “ when we” occur

together 130 times,

The reordering model is also stored in a separate file. We show an extraction in

Listing 2.3. This file contain three columns (the separator of this table is also “|||”):

1. Phrase in the source side.

2. Phrase in the target side. The phrase in the target side language that is paired

with the source side phrase.

3. Orientation probabilities: Six probabilities in two sets indicating the orienta-

tion (monotone, swap and discontinuous) in both directions (left-to-right and

right-to-left), with each set of probability summing to 1.

2.3 Neural Machine Translation

More recently, NMT approaches have become more popular than SMT. Instead

of using phrases as translation units like in PBSMT models, in NMT approaches,

the sentences are encoded as vectors. These vectors are inputs (and outputs) of a

network whose nodes models a function. In the training process, the parameters of

the functions are adjusted so the returned vector encodes the sentence corresponding

to the translation of the input.
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2.3.1 Word Vector Models

A straightforward technique to encode a word as a vector is via the so called one-hot

vector encoding. Assuming a vocabulary of size V we can encode the i-th word in

the vocabulary as vector v ∈ R|V | with 1 in the i-th position and 0 in the other

positions.

However, this is a sparse representation in which there is no relationship between

the words. For example, given this representation, the distance between two related

words such as football and basketball is the same as football and plane, even though,

the last two are semantically more different than the first pair. Word embeddings

aim to find the position of the words in the vector space so that similar words are

grouped close to one another.

In Mikolov et al. (2013) two methods for computing word embeddings are pro-

posed (Figure 2.1):

• Continuous Bag-of-Words Model (CBOW): This model tries to predict a word

wt given the context. This means that the previous sequence of words (vectors

wt−1...wt−i) and the following sequence of words (vectors wt+1...wt+i)) are

used as input to a neural network architecture.

• Skip-gram Model: The objective is to predict the context words given a word

wt. It improves the quality of the resulting word vectors, but it also increases

the computational complexity (Mikolov et al., 2013).

The main benefit of these representations is the generalization it brings. Similar

words will have similar vectors and so the distance between them will be small

(as opposed to one-hot vectors where all vectors are equidistant from one another).

Another benefit is that we can represent the words using a lower dimensional vector.

2.3.2 Artificial Neural Networks

Inspired by biological neural networks, Artificial Neural Network (ANN) are com-

puting systems that are made up of interconnected processing elements (called per-
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Figure 2.1: CBOW and Skip-gram Word Embedding Models. (Mikolov et al., 2013)

ceptrons).

The networks receive a series of inputs x1, x2...xdx (which can be expressed as

elements of a vector x ∈ Rdx). These inputs are processed by perceptrons and then

a series of outputs y1, y2, ...ydy (which can be seen as elements of a vector y ∈ Rdy)

are produced.

In Figure 2.2 we see an example of a simple perceptron. The perceptron applies a

weighted sum of the inputs (for simplification purposes we omit the bias), activation

function and then feeds forward the results.

An example of a simple network is the multilayer perceptron in which perceptrons

are structured in layers, as in Figure 2.3, that are classified in three types:

• Input Layer: A layer in which the perceptrons receive the input and feed it to

the next layer.

• Hidden layer (one or several): A layer in which perceptrons gather the inputs

from the previous layer (which can be the input layer or another hidden layer),

perform the computations and feed the result to the next layer.

• Output Layer: A layer in which perceptrons perform the computations and
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Figure 2.2: Example of a perceptron.

provide the final output of the function that the network is approximating.

Figure 2.3: Example of an ANN.

As perceptrons are structured on layers, each layer can be modeled as in Equa-

tion (2.17):

h = f(Wihx) (2.17)

where x is the output of the previous layer (each element in the vector is the output

of one perceptron) or the input vector. f(x) is a non-linear activation function such
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as the f(x) = 1
(1+e−x)

(also known as sigmoid function or σ) or f(x) = tanh(x).

The matrix Wih ∈ R|h|×|x| is composed of the individual weights wij of the link

connecting the output of the j-th perceptron of the previous layer (i.e. xj) with the

i-th perceptron in the hiden layer (hi).

The output layer is modeled as in Equation (2.18):

y = g(Whoh) (2.18)

g(x) is also a non-linear activation function. In the case of using the ANN as

classification function a popular function of g(x) is the softmax function g(xi) =

exi∑
j e
xi

. This will produce an output y that encodes the probabilities so each yi

encodes the probability of the input belonging to the i-th class (which implies that∑
yi = 1).

The purpose of an ANN is to approximate a function φ(x). When a certain

input x is provided to the input layer of the ANN, the information is propagated to

the next hidden layer. Each hidden layer performs the computations (modeled in

Equation (2.17)) and emit the signal to the next layer. Eventually, the output layer

will provide an output y. This process is known as forward propagation. After exe-

cuting the forward propagation, the error φ(x)−y is computed. Then, the gradient

of the error with respect to the weights W of the different layers is calculated. This

process is known as backpropagation as it is computed backward from the output

layer to the input layer. Finally, using an optimizer such as Stochastic Gradient

Descent (SGD), the error can be reduced by changing the weights in the direction

of the gradient.

ANNs are trained using a set of pairs (x, φ(x)). After adapting the weights

by performing several iterations of forward propagation and backpropagation, the

outputs of the ANN converge to an approximation of the function φ(x).
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2.3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are ANNs that form directed cyclic graphs.

Having this structure allows the RNN to compute a sequence of vectors instead of

a single vector.

Each vector xt in the sequence (x1,x2, ...xTx) is sequentially processed (Figure

2.4). At the step of processing xt, the information of the previous output vector ht−1

is also gathered. Then, the hidden state ht and the output yt are produced. The

diagram presented in Figure 2.4 can be unfolded to take time out of the equation as

in Figure 2.5.

Figure 2.4: Example of an RNN.

Figure 2.5: Example of an unfolded RNN.

As each cell of the RNN has two inputs (the input xt and information of the
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previous hidden layer ht−1), Equation (2.17) is extended as in Equation (2.19):

ht = f(Wihxt + Uihht−1) (2.19)

where Wih and Uih are the weight matrices to be adjusted during training of the

RNN.

RNNs obtain the information of the previous hidden state ht−1 when process-

ing xt, which implicitly contains the information of the previous elements of the

sequence. However, the long-distance dependencies are more difficult to learn the

more the bigger the gap between xt and a previous element xt−k is.

In order to solve this long-distance dependency problem Long Short-Term Mem-

ories (LSTM) (Hochreiter and Schmidhuber, 1997) was proposed as a variation of

RNNs. As the experiments involving RNNs executed in this work consist of LSTM,

in Section 2.3.4 we explain them in more detail. Later, alternatives to LSTM such

as Gated Recurrent Units (GRUs) (Cho et al., 2014) were proposed. Nonetheless,

it has been shown that both approaches have similar performance (Chung et al.,

2014).

2.3.4 Long Short-Term Memory

LSTM is an improvement over the general RNN architecture. The particularity of

LSTM is that it has two inputs (ht−1 and ct−1) and two outputs (ht and ct), where

the signal ct contains the long-distance information. As presented in Figure 2.6,

ct encodes the signal ct−1 with minor updates. This causes the value of ct (at the

iteration t) to retain information from the previous steps.

The process that is executed in an LSTM cell in Figure 2.6 can be broadly

described via three main steps:

1. Forget step: In this step, it is decided whether the information of the memory

cell ct−1 should be kept or forgotten. This is measured by the forget gate ft as
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Figure 2.6: Diagram of LSTM.

in Equation (2.20).

ft = σ(Wfxt + Ufht−1). (2.20)

2. Update step: In this step, it is decided what should be stored in the memory

state. In this step the candidate values c̃t are created and the input gate layer

it, as Equation (2.21) and Equation (2.22), respectively:

c̃t = tanh(Wcxt + Ucht−1) (2.21)

it = σ(Wixt + Uiht−1). (2.22)

3. Output creation step: During the last step, the outputs ct and ht are produced.

• ct is a combination of how much is forgotten of the previous ct−1 and how

much it is updated with new values. It is computed as in Equation (2.23):

ct = ftct−1 + itc̃t. (2.23)
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• ht combines the cell state ct (normalized with tanh function to make the

values be in the range (−1, 1)) with the output gate ot which modulates

how much memory content is considered.

ht = ot tanh(ct) (2.24)

where ot is the output gate. It depends on the current output and the

previous hidden state as in Equation (2.25).

ot = σ(Woxt + Uoht−1). (2.25)

2.3.5 Encoder-Decoder Architecture

An RNN transforms a sequence of vectors into another target sequence, but both

sequences are of the same length. The Encoder-Decoder framework (Cho et al.,

2014; Sutskever et al., 2014) is an architecture introduced to solve this problem.

In Figure 2.7 we can find the structure of a basic Encoder-Decoder framework.

It consists of two RNNs (an encoder and a decoder) that transform a sequence

X = (x1,x2, ...,xTx) into another sequence Y = (y1,y2, ...,yTy), where the sequence

can differ in length.

• Encoder: The encoder converts the sequence (x1,x2, ...,xTx) into a context

vector c that summarizes the sentence. This vector c is constructed by con-

sidering the hidden vectors h
(s)
tx (where tx ∈ [1, Tx]) of the encoder (we use h

(s)
i

to denote the i-th vector of the sequence generated by the encoder and h
(t)
i to

denote the i-th vector generated by the decoder). When the last element of

the sequence 〈EOS〉 is encoded, the context vector c is sent to the decoder.

• Decoder: The decoder performs the inverse process of the encoder. Given the

context vector c it produces the vectors h
(t)
ty (until the element 〈EOS〉 is found)

that are decoded as the targets sequence of vectors. (y1,y2, ...,yTy).
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Figure 2.7: Encoder-Decoder model

2.3.6 Attention Model

The problem of the encoder-decoder framework is that it encodes the whole sequence

as a single vector. However, especially for the longer sequences, it may lead to an

information loss. This has a negative impact on the decoder has it only has access

to the vector c to generate the sequence of sentences.

The Attention Model (Bahdanau et al., 2014) was introduced to solve this prob-

lem. Using this mechanism, instead of using a single fixed context vector c to encode

the input sequence, a context vector for each output time step ct is created. This

helps the decoder to identify the parts in the input sequence that are relevant in

order to generate the subsequent words. The vector ct is computed as the weighted

sum of h(s) as in Equation (2.26):

ct =
Tx∑
i=1

αtih
(s)
i (2.26)

where the weights αti indicate how much attention should yt pay to each h
(s)
i (i.e.

how much yt is related to the element xi of the input sequence) and it is computed
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as a softmax function as shown in Equation (2.27).

αti =
exp(a(h

(t)
t−1,h

(s)
i ))∑Tx

k=1 exp(a(h
(t)
t−1,h

(s)
k ))

(2.27)

where the function a is the alignment model. The alignment model we use in this

work is computed as in Equation (2.28):

a(h
(t)
t−1,h

(s)
i ) = h

(t)
t−1Wah

(s)
i (2.28)

where Wa is a weight matrix that is trained jointly with the other parts of the NMT

model.

2.4 Translation Performance Evaluation Metrics

Translation performance evaluation metrics are used to evaluate the translation

quality of the output of a translation model. These metrics compare the hypothesis

(the output of the system) against a reference and determine how similar they are.

In this work we are measuring the translated outputs using the following metrics:

• Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002) uses match-

ing n-grams between the hypothesis and reference to give a quality score. The

score is in the range [0, 1] but often is given as a percentage measure.

The BLEU score is computed as in Equation (2.29):

BLEU(hyp, ref) = BP · exp
N∑
n=1

1

N
logPRn (2.29)

where N typically has a value of 4, and PRn is the precision computed as

the number of n-grams in common (between the hypothesis and the reference)

divided by the number of n-grams in the hypothesis. However, the number

of common n-grams should be limited to the maximum number of instances

in the reference. For example, for the reference sentence “the airport” the
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unigram precision of the hypothesis “the the” would be 2
2

= 1. For this reason

the precision is clipped, and is computed as in Equation (2.30):

PRn =

∑
ngr∈Ngrnn(hyp)

min(Chyp(ngr), Cref (ngr))∑
ngr∈Ngrnn(hyp)

Chyp(ngr)
(2.30)

which would cause the unigram precision in the example to be 1
2
.

BP is the brevity penalty defined as BP = min(1, e1− |ref ||hyp| ). It is introduced

to penalize those candidates that are shorter than the reference (those longer

than reference are already penalized by the precision measure).

• Translation Edit Rate (TER) (Snover et al., 2006) computes the minimum

number of edits required to make the hypothesis match the reference. The

edits include insertion, deletion or substitution of single words and shifts of

word sequences. It is computed as in (2.31):

TER =
# edits

average # of reference words
. (2.31)

• Metric for Evaluation of Translation with Explicit Ordering (METEOR) (Baner-

jee and Lavie, 2005) provides a score matching words and phrases of the hy-

pothesis and reference. There are three types of match:

– exact: two unigrams match if they are exactly the same,

– stem: two unigrams match if they are the same after they have been

stemmed,

– synonymy: two unigrams match if they are synonyms of each other.

All the words in the candidate must match at most one word in the reference.

The number of matches is used to compute the precision P = #match
|hyp| and recall
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R = #match
|ref | to compute the METEOR score as in Equation (2.32):

METEOR =
10PR

R + 9P
(1− Penalty) (2.32)

where Penalty = 0.5
(

#chunk
#match

)3

and #chunk indicates the minimum number

of chunks in which all the words in the hypothesis can be grouped. A chunk is

the sequence of words (in adjacent positions) in the hypothesis that are also

mapped to a sequence of words in the reference.

Unlike the other evaluation metrics we are presenting here, this is a language-

dependent evaluation metric as the unigrams are aligned using stemmer and

synonym tables.

• Character n-gram F-score (CHRF) (Popovic, 2015): It is an evaluation metric

that operates at the character level. It computes the F-score as in Equa-

tion (2.33):

CHRFβ = (1 + β2)
CHRP · CHRR

β2 · CHRP + CHRR
(2.33)

where:

– CHRP : Percentage of n-grams (character level) in the hypothesis which

are in the reference (precision).

– CHRF : Percentage of n-grams (character level) in the reference which

are also present in the hypothesis (recall).

– β: is a hyperparameter that assigns β times more importance to recall

than to precision. In this work we are computing the value where β = 3,

which Popovic (2015) demonstrated to be correlated with human judg-

ment.
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2.5 Data Selection

In the context of our work, data-selection methods are techniques that retrieve a

subset of sentences from a larger set of sentences on which MT models can be trained.

Although using less data for building models may be counter-intuitive, it has several

benefits. In some cases, building MT models is restricted by some requirements such

as time constraints (in which the model has to be trained or executed in a limited

amount of time) or hardware constraints (if the system is deployed in a machine

with limited memory or computation power). Other purposes of using data selection

methods are:

1. Filtering out noisy sentence pairs (e.g. those that are non-literal translation

of each other) that can cause the model to learn incorrect translations.

2. Identifying in-domain data as MT models trained in the same domain as the

document to be translated tend to achieve better performance.

The procedure of data-selection algorithms consist of selecting sentences from

the candidate pool U and adding them to a selected pool L. Before the execution

of the algorithm all sentences are candidate sentences, U = S, and the selected pool

is empty |L| = 0. Data-selection algorithms withdraw one or more sentences from

U and add them to L. Note that L contain source-side sentences when the selection

is made, but to train the MT models both the source and target side are provided.

This algorithms presented in this section can be classified (based on the work

of Eetemadi et al. (2015) and Biçici and Yuret (2011)) according to the following

characteristics:

• Transductive algorithms (TA)/Non-transductive Algorithms (NTA): Trans-

ductive learning (Vapnik, 1998) approaches consider the test set Stest to select

the training instances that are relevant, whereas NTA approaches leave out

this information instead using the informativeness of sentences for selection.

Transductive learning aim to identify the best training sentences to better
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classify a given test set. In this context, this algorithms retrieve those parallel

sentences that are the most beneficial to train an MT model that translate a

given Stest. These methods can be sub-divided into two categories:

– Sentence-wise (SW)/Document-wise (DW): In order to retrieve sentences

the test set can be considered as a whole (document-wise) or each sen-

tence individually (sentence-wise). Sentence-wise methods are more fine-

grained as they can consider sentence-level characteristics such as word

order. However, document-wise methods use information in a more effi-

cient way: by combining the statistical information over all the informa-

tion in the test set, e.g. n-grams appearing in multiple sentences, they

obtain a less sparse and hence statistically more reliable representation

for data selection.

• Context-Dependent (CD)/Context-Independent (CI): Context-independent func-

tions retrieve a subset of data without considering the selected pool. Most

of these functions come from the quality estimation field, aiming to extract

parallel sentences from comparable corpora (bilingual texts that are related

but that are not strict translations of each other) by filtering out noisy data

and obtaining good quality parallel sentences. In contrast, context-dependent

methods consider L for determining which sentence to select next. They pur-

sue to find a balance between exploration (i.e. select sentences to discover new

phrases) and exploitation (i.e. estimate more accurately the phrase translation

probabilities of the sentences already selected).

The experiments carried out in this thesis are based on an scenario in which

the test set is known in advance. Therefore, we are using TAs as they are the

only methods benefiting from the information of the test set. However, in order to

introduce a general view of data selection algorithms, we provide a summary of main

existing methods in all categories (we list in Table 2.1 the data selection techniques

presented in this chapter).

37



T
A

/N
T

A

C
D

/C
I

S
W

/D
W

Length-based Functions NTA CI -
Alignment-based Functions NTA CI -
Language Model-Based Functions NTA CI -
N-gram Coverage NTA CD -
TF-IDF Coverage NTA CD -
DWDS NTA CD -
Log-probability Ratios NTA CD -
Perplexity Ratios NTA CD -
Sentence similarity TA CI SW
Infrequent n-gram Recovery TA CD DW
FDA TA CD DW
ParFDA TA CD DW

Table 2.1: Classification of data-selection algorithms.

2.5.1 Non-Transductive algorithms

Length-based Functions Length-based selection methods aim to select sen-

tences based on the intuition that sentence pairs whose source and target side differ

a lot (compared the average length difference) may be noisy and they should be left

out.

In the literature we can find different approaches of measuring the difference:

Taghipour et al. (2010) propose to use the length difference (|t| − |s|) or the pro-

portion (|t|/|s|) to remove sentences. Another proposal (Khadivi and Ney, 2005)

removes sentences whose length proportion exceeds a certain threshold t (keeping

sentences which fulfill the constraint that |s||t| < t and |t|
|s| < t).

Alignment-based Functions Taghipour et al. (2010) use sentence-alignment en-

tropy to remove noisy data from the training set. In their work, they compute the

entropies of the distribution of the alignment links in a sentence.

First, they define the word-alignment probability Pal(w). Given a sentence pair
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〈s, t〉, the probability of a word to be aligned is defined in Equation (2.34):

Pal(ws) =
a(ws)∑

wt∈Ngr1(t)

a(wt)
(2.34)

where ws is the word ws ∈ Ngr1(s) and a(w) is a function that retrieves how many

words in t (or 〈NULL〉 tokens) are aligned to w.

The probabilities computed in Equation (2.34) are used to compute the normal-

ized sentence-alignment entropies as in Equation (2.35):

scoreALIG(s) = 1− −
∑|s|

i=1 Pal(xi) log(Pal(xi))

log(|s|)
. (2.35)

We substract the normalized entropy from 1 so that the value of scoreALIG(s) is

higher the lower the entropy is. Sentences with high entropy indicate that the

alignment of the words is evenly distributed, i.e. the mapping of the words is close

to one-to-one mapping.

In contrast, for sentence pairs 〈s, t〉 with lower entropies, this indicates that words

are not evenly aligned, which is an indicator that s and t are inaccurate translations

of each other.

For this reason, sentence with lower entropies should be promoted (higher value

of scoreALIG).

Language Model-Based Functions Moore and Lewis (2010) propose to use

an in-domain language model LMI and an out-of-domain language model LMO to

obtain sentences that are closer to the in-domain data. They therefore define the

Cross-Entropy Difference (CED) as in Equation (2.36):

scoreCED(s) = HLMI
(s)−HLMO

(s). (2.36)

Axelrod et al. (2011) extend Equation (2.36) by using language models in both

the source-side and target-side languages, defining the Bilingual Cross-Entropy Dif-
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ference (BCED) in (2.37):

scoreBCED(s) = (HLMIsrc
(s)−HLMOsrc

(s)) + (HLMItrg
(s)−HLMOtrg

(s)). (2.37)

N-gram Coverage This approach consist of selecting a subset L of sentences

aiming to achieve the maximum coverage possible with the minimum amount of

sentences. In order to do that, Eck et al. (2005b) select those sentences containing

n-grams which have not yet been added to L, rewarding those that are more frequent

as defined in Equation (2.38):

scoreCOV (s, L) =

∑
ngr/∈Ngrn(L)

CS(ngr)

|s|
. (2.38)

TF-IDF Coverage The proposal of Eck et al. (2005a) is to retrieve sentences

that are the most different to the selected pool L based on TF-IDF distance. Those

sentences that differ the most to the selected pool L are the best candidates to be

added to L as they are the most informative.

A sentence s ∈ U is scored as the cosine difference between the TF-IDF vector

of the sentence ds (each term w is weighted as tfidf (w, s, S)) and the vector of the

selected pool dL (each term weighted as tfidf (w,L, S)) as defined in Equation (2.39):

scoreTFIDFCOV (s, L) = disttfidf (ds,dL). (2.39)

Density Weighted Diversity Sampling (DWDS) (Ambati et al., 2011) selects

sentences that contain the most representative n-grams which have not yet been seen

in the selected pool. Therefore the score of a sentence s is based on:

• Density d(s, L): This indicates how features are distributed in the selected

pool. It is computed as the probability of the n-gram ngr in the candidate

pool in proportion to the count of these n-grams (CL(ngr)) in the selected
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pool, defined as in Equation (2.40):

d(s, L) =

∑
ngr∈Ngrn(s)

PU(ngr)e−CL(ngr)

|Ngrn(s)|
. (2.40)

• Uncertainty u(s, L), the (normalized) number of non-selected n-grams con-

tained in s, defined as in Equation (2.41):

u(s, L) =

∑
ngr∈Ngrn(s)

(1− INgrn(L)(ngr))

|Ngrn(s)|
(2.41)

where IA(x) is the indicator function (which retrieves 1 if the element x is in

the set A and 0 otherwise), so (1− INgrn(L)(ngr)) indicates whether ngr is not

included in the selected pool L.

Ambati et al. (2011) define scoreDWDS(s) as the harmonic mean of the density

d(s) and the uncertainty u(s) as in Equation (2.42):

scoreDWDS(s, L) =
2d(s, L)u(s, L)

d(s, L) + u(s, L)
(2.42)

Log-probability Ratios Haffari et al. (2009) propose to select sentences that

contain n-grams that are common in the candidate pool and rare in the selected

pool (the more frequent a phrase is in L, the less important it is). The score of a

sentence is measured as in (2.43):

scoreLPR(s, L) =
1

|Ngrnn(s)|
∑

ngr∈Ngrnn(s)

log
PU(ngr)

PL(ngr)
. (2.43)

Perplexity Ratio Mandal et al. (2008) propose to select sentences based on the

perplexity ratio to select sentences that are novel with respect to an initially selected
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pool L. The sentences in the candidate pool U are scored as in Equation (2.44):

scorePPR(s, L) =
PPLML

(s)

PPLMS
(s)

. (2.44)

The aim is to select sentences from U that are informative regarding L. Sentences

that are rare (high perplexity) in L but common in S (low perplexity) are promoted

as they are the most informative. In contrast, those sentences that are rare in both

L and S (or only rare in S) are considered outliers and so, the score computed in

Equation (2.44) will be low.

2.5.2 Transductive algorithms

Sentence similarity These methods retrieve sentences based on how similar a

sentences from S are compared to the test set stest. For every sentence in the test

set, the most similar sentences from the training data are retrieved. We present two

different approaches of sentence similarity methods:

• Cosine TF-IDF: This method considers the text as a bag-of-words to compute

the distance between the test set and the sentences in S. Hildebrand et al.

(2005) propose to use cosine between TF-IDF vectors as the distance metric

as Equation (2.45):

scoreTFIDFsim(stest, s) = 1/disttfidf (ds,dstest). (2.45)

• Edit Distance: These methods are the most strict as they consider word over-

lap, order and position. These method measure the sentence similarity using

metrics such as Levenshtein distance (Levenshtein, 1966) (which computes the

minimum number of insertion, deletions or substitutions of characters that are

necessary to transform one sentence into the other) to score the similarities as
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in Equation (2.46):

scorelevensthein(stest, s) = 1/distlevensthein(stest, s). (2.46)

Note that the edit-distance approach is more strict than cosine TF-IDF as it

considers word overlap, word order and position whereas in cosine TF-IDF only the

word overlap is weighted (Wang et al., 2014).

Infrequent n-gram Recovery Gascó et al. (2012) and Parcheta et al. (2018)

propose to extract those sentences containing n-grams from the test set that are

considered infrequent (so frequent words such as stop words are ignored). In their

work, they use this method to retrieve sentences to augment an existing in-domain

parallel dataset SI (so they use SI + L set to train the models).

A sentence s is scored according to the number of infrequent n-grams (both in

the in-domain and selected set) shared with the set of sentences Stest of the test set.

It is computed as in Equation (2.47):

score(Stest, SI , s, L) =
∑

ngr∈Ngrn(Stest)

(min(1, Cs(ngr)) max(0, t− CSI+L(ngr))).

(2.47)

If s does not contain ngr, then the component min(1, Cs(s)) will be 0. t is the

threshold of occurrences of an n-gram to be considered infrequent. If the number of

occurrences is above the threshold t, then ngr is considered to be a frequent n-gram

and is ignored (the component max(0, t − CS(ngr)) is 0) and not considered for

scoring the sentence.

Feature Decay Algorithms (FDA) (Biçici and Yuret, 2011; Biçici, 2013; Biçici

et al., 2015; Biçici and Yuret, 2015) is a method that tries to maximize the variability

of n-grams in the training set by decreasing their score as they are added to the

selected pool.
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In order to do that, the n-grams (features) in the test set are assigned a value that

is inversely proportional to the number of selected instances, so the more frequent

they are in L the more they are penalized. The decay is given by the function in

Equation (2.48):

decay(ngr, L) = init(ngr)
dCL(ngr)

(1 + CL(ngr))c
(2.48)

where init(ngr) is an initialization function. Biçici and Yuret (2011) propose to use

either 1 or the inverted frequency log(|U |/CU(ngr)). The variables d and c are input

hyperparameters: the decay factor d is in the range (0, 1] with a default value of 0.5,

and the decay exponent c is in the range [0,∞) with a default value of 0.

The score of a sentence s in the candidate set is the normalized sum of the value

of its n-grams as in Equation (2.49):

scoreFDA(Stest, s, L) =

∑
ngr∈Ngrn(Stest)

Cs(ngr)decay(ngr)

|s|
. (2.49)

FDA scores each sentence s ∈ U , and then the sentence with the highest score is

removed from U and added to L. This process is repeated every time a sentence is

selected until N sentences are added into L. As scoring every sentence each time a

sentence is selected is computationally expensive, FDA proceeds as in Algorithm 1.

After initializing the value of the n-grams and the score of the sentences (steps 1

to 8) the sentence-score pairs are stored in a queue Q. This queue is sorted (step 9)

by score in descending order. Then, iterativelly the top sentence s of Q is retrieved,

the score updated (step 12) and then two scenarios are possible:

• s is selected (step 13; we explain the criteria to select a sentence later), then

the values of its n-grams are re-scored. However, the scores of the sentences in

Q are not modified, which means that some sentences in Q (those containing

the re-scored n-grams) have an outdated score.

• s is not selected (step 18), in which case the pair 〈s, scnew〉, where scnew is the
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Algorithm 1 FDA workflow

1: U ← S; L← []; Q← [];
2: for all ngr ∈ Ngrn(Stest) do
3: ngr ← init(ngr)
4: end for
5: for all s ∈ U do
6: sc← score(s, L)
7: add (s, sc) to Q
8: end for
9: sort(Q) by sc in descending order

10: while |L| < N do
11: (s, sc)← pop(Q)
12: scnew ← score(s, L)
13: if sc = scnew then
14: add s to L
15: for ngr ∈ Ngrn(s) do
16: ngr ← decay(ngr)
17: end for
18: else
19: add (s,scnew) to Q (such that it remains sorted)
20: end if
21: end while

updated score, is inserted in Q in order (so Q remains sorted by score).

Note that in Q, the sentences with updated and outdated scores are mixed.

However we know that the score of a sentence can only be lower or equal after being

updated. Therefore, if the score of the top sentence sbest of Q remains unchanged, it

is guaranteed to be the best sentence (i.e. scores of the other sentences are equal or

lower than sbest even if they were updated). Therefore, as selection criteria, is that

the best sentence in Q remains unchanged after being re-scored.

ParFDA ParFDA (Biçici et al., 2014, 2015; Biçici, 2016) tries to parallelize FDA

by executing several independent FDA processes on partitions of the training data.

Then the resulting selected data is merged into a single dataset. We show the

workflow of ParFDA in Figure 2.8.

However, ParFDA is only an approximation of FDA. Dependencies between the

sentences are lost. The strength of FDA is that information of the previous selected

sentences are considered to choose the next sentence. If the parallel corpus is divided
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Figure 2.8: ParFDA execution diagram

into different parts, the dependencies between sentences in different parts are lost.

Therefore, each FDA process does not have the complete information of the selected

pool to decide which sentence to select next. This can hurt performance especially

if features are not uniformly distributed over sub-parts of the corpus.

2.6 Conclusions

In this chapter we introduced concepts from NLP, and MT in particular. In addition,

we also described the main data-selection algorithms. Although in the experiments

we only use those methods classified as transductive, we believe that it is important

to have an overview of the main data-selection techniques, their characteristics and

how they are organized.
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Chapter 3

Transductive Algorithms on

Statistical Machine Translation

The scenario we explore in this thesis is how to improve MT models by using less but

more suitable data. More specifically, we assume that we only have a set of parallel

data available for training a model and a document in the source language (test set)

that needs to be translated. We have no other knowledge such as the domain of the

sentences, or lexical tags of the words. In fact, although we build German-to-English

models here, all the methods described are language-independent, so we could also

be unaware of the language pairs themselves.

In this chapter, we demonstrate that using more data to train SMT models is

not always the best approach. In fact we show that it is better to use a model

trained with fewer sentences but closer to the test set. We show how data-selection

algorithms can retrieve a subset of training data that causes an SMT model to obtain

better translation performance than a model trained with all data.

As the test set is known, the data-selection algorithms we investigate are only TA

(described in Section 2.5.2): TFIDF, INR, and FDA. The purpose of this chapter is

to show how these methods can retrieve a subset of training data that can be used

to build smaller models that achieve better translation quality for the given test set.

The contributions of this chapter are summarized as follows:
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• We perform a comparison of SMT models using different amounts of data

(Section 3.2).

• We explore the increase in coverage of the test set when using different TAs

(Section 3.4).

• We compare SMT models built with the full set of training sentences and a

subset retrieved by TA (Section 3.4).

In addition, the outcomes of this chapter are used for planning other experiments

involving the construction of SMT models in the following chapter of this thesis.

3.1 Experiment Settings

3.1.1 Data

The experiments performed use the same data as in the German-to-English experi-

ment described in Biçici et al. (2015). The datasets are the following:

• Training set: The training data provided in WMT 2015 (Bojar et al., 2015).

• Development set: 5K randomly sampled sentences from development sets pro-

vided in the WMT Translation Tasks from the years 2010 to 2014.

• Test set: We use two different test set to evaluate the models:

– BIO test: The Cochrane1 dataset provided in the WMT 2017 biomedical

translation shared task (Yepes et al., 2017).

– NEWS test: The test document provided in the WMT 2015 German-to-

English translation task (Bojar et al., 2015).

In Table 3.1 we show the statistics of the datasets mentioned above.

1http://www.himl.eu/test-sets
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|S| |W | |V |
DE EN DE EN

Training set 4.48M 110M 116M 2M 971K
Development set 5000 127K 129K 23K 16K
NEWS Test set 2169 44K 46.8K 9.9K 7,8K
BIO Test set 411 8.6K 8.5K 2K 1.6K

Table 3.1: Statistics of the data sets. |S| is the number of sentences, |W | the number
of words, and |V | the size of the vocabulary.

3.1.2 SMT Settings

The SMT experiments executed in this thesis are German-to-English SMT models

trained with the complete set or subsets of the Training set. For tuning, we use the

Development set.

The SMT models use the same 8-gram Language Model (LM) built using the

target-side of the complete Training set via the KenLM toolkit (Heafield, 2011)

using Kneser-Ney smoothing (Kneser and Ney, 1995). The models are evaluated

using BIO and NEWS test sets.

We train SMT models using the Moses toolkit (Koehn et al., 2007) with the

standard features (described in Section 2.2.3) and using GIZA++ (Och and Ney,

2003) for word alignment. We also perform tuning using MERT (Och, 2003) with

the reported scores based on the average of four MERT runs.

For evaluating the performance of the models we provide the scores of evaluation

metrics presented in Section 2.4: BLEU, TER, METEOR, and CHRF3.

3.2 SMT Models using Subsets of Data Sampled

Randomly

Before carrying out experiments using TA, we are interested in exploring the perfor-

mance of SMT models using different sizes of random subsets of data. In particular,

we present in Table 3.2 the performance of models built with 100K, 200K, 500K,

1M, 2M and 4.5M (the full set) sentence pairs. The outcomes of Table 3.2 are also
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presented in a graphical format in Figure 3.1 and Figure 3.2.

Figure 3.1: Results (BLEU and TER) of SMT models trained in different sizes of
data.

The results in Table 3.2, or Figures 3.1 and 3.2 (note that for the plot of TER

metric lower values indicate better performance), reveal that although the perfor-

mance tends to increase when using more data, that is not always the case. For

example, in the figures, we can see how for the BIO test set (plots on the left) the

performance decreases when moving from 1M sentences to 2M, or with the NEWS

test set (plots on the right) the same thing happens when increasing from 500K to

1M sentences.

Note also that the plots presented in Figures 3.1 and 3.2 show that the evaluation
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Figure 3.2: Results (METEOR and CHRF3) of SMT models trained in different
sizes of data.

metrics tend to be highly correlated (the only exception is TER when evaluated on

the NEWS test set). In following graphical representation of the results, we will

only present BLEU scores.
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BIO NEWS

10
0K

li
n
es BLEU 19.77 16.66

TER 59.87 64.29
METEOR 25.80 24.77
CHRF3 48.28 44.54

20
0K

li
n
es BLEU 20.56 17.43

TER 59.53 63.87
METEOR 26.59 25.39
CHRF3 49.26 45.41

50
0K

li
n
es BLEU 20.98 17.97

TER 59.30 64.34
METEOR 27.47 25.75
CHRF3 50.23 46.35

1M
li
n
es BLEU 21.61 17.83

TER 58.73 64.84
METEOR 27.87 25.76
CHRF3 51.32 46.25

2M
li
n
es BLEU 21.06 17.85

TER 60.11 65.85
METEOR 27.69 25.78
CHRF3 51.23 46.66

A
L

L BLEU 22.62 18.21
TER 57.98 66.88
METEOR 28.26 26.01
CHRF3 51.40 47.15

Table 3.2: Results of SMT models built with different sizes of (random) data.

3.3 Exploration of Transductive Methods in SMT

Our goal is to select sentences to build models that are smaller yet produce higher

quality translation for the test set than larger models trained with all data. For

this reason, the data-selection algorithms we choose to explore are those categorized

as transductive algorithms (TA in Table 2.1). In particular, we investigate TFIDF,

INR and FDA methods using the following configurations:

• TFIDF: This selection method is the only context-independent method ex-

plored. In addition, it is a sentence-wise method, so each sentence of the test

set is used independently to select training sentence-pairs, which means that

there may be overlap between the selected subset for each sentence of the test

set. Hildebrand et al. (2005) note this problem as something to be considered.
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In their experiments, both models (built with and without duplicates) perform

similarly, but models built with data whose duplicated sentences have been

kept achieve slightly better results. For this reason, in our experiments, we

also keep duplicated sentences.

The number of duplicate sentences retrieved by TFIDF depends on several

factors: (i) if sentences in the test set are similar, then the number of duplicates

will be higher (as the extracted subsets will be similar to each other); (ii) the

larger the retrieved subsets are, the less likely it is that a sentence appears only

once across the subsets (Table 3.3 indicates the proportion of unique sentences

found for different-sized subsets); and (iii) the larger test set is the more likely

it is to extract the same sentences.

Number of
sentences

Percentage of unique sentences

NEWS BIO
100K 73% 68%
200K 68% 66%
500K 61% 61%
1M 55% 56%
2M 48% 49%

Table 3.3: Percentage of unique sentences in the data retrieved by TFIDF method.

• INR: The purpose of the INR method is to select data (that is close to the

test set Stest) by augmenting an initial in-domain data set SI . However, as

mentioned before, we assume to be in the simplest scenario with no knowledge

of the domain. For this reason we are not augmenting any set but building it

from scratch. In addition, in order to compute how frequent an n-gram is we

use the training set S. Therefore the Equation (2.47) of INR is computed as
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in Equation (3.1):

score(Stest, S, s, L) =
∑

ngr∈Ngr3(Stest)

(min(1, Cs(ngr)) max(0, t− CS+L(ngr)))

(3.1)

using an n-gram order of three (we use the default order of FDA to make it

more comparable). In order to set a value of t in Equation (3.1), in the original

work of Parcheta et al. (2018) they explore different values (between 10 and

40), for the threshold t, but do not provide any default configuration.

For our experiments we perform several executions of INR, starting with a

value of t = 10 and multiplying by two each run. We keep increasing the value

until the execution time exceeds 48 hours. Note that the higher t is, the larger

amount of n-grams are considered infrequent (the criteria is less strict), and so

more sentences are retrieved. In Table 3.4 we present the number of sentences

retrieved by each execution. We see that more sentences are retrieved with

larger the values of t, but they do not exceed 300K. As in this work we are

comparing SMT models using training sets of sizes up to 2M sentences, we

choose the value of t that causes the model to retrieve the highest amount of

sentences, i.e. t = 640 for BIO test set (275K sentences retrieved) and t = 80

for NEWS test set (230K sentences retrieved).

threshold Number of sentences selected
NEWS BIO

10 27396 4568
20 57092 9644
40 116550 19415
80 229913 38800
160 - 75263
320 - 142779
640 - 274678

Table 3.4: Number of sentences retrieved by INR using different values of threshold t.
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• FDA: The configuration of FDA in our experiments uses the default parame-

ters in Equation (2.49), i.e. d = 0.5, c = 0 with 3-grams as features.

As ParFDA is an approximation of FDA we do not carry out experiments

using this method. However, we propose as future work to repeat the same

experiments as here exploring the performance of ParFDA when the data are

partitioned into different numbers of parts.

We use the BIO and NEWS test sets to retrieve data closer to these sets. We

investigate different sizes of TA-retrieved data to build SMT models and compare

their performance to the model trained with the complete training data (BASE).

3.4 Results

Figure 3.3: Coverage of Transductive methods (up to 100K sentences)

Before inspecting the performance of the models, we present in Figure 3.3 the

percentage of the vocabulary of the test set that is covered by each method when

different amounts of sentences are selected. The plot considers only the first 100K

sentences as this is enough to achieve a plateau. The figure also includes the coverage
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of 100K randomly sampled sentences (dotted line), so that we can observe how using

TA causes the coverage to increase more rapidly. The exception to this is the TFIDF

method for the NEWS test where (as it contain duplicated sentences) the coverage

increases more slowly than with random sentences.

Comparing each method individually, we observe that FDA has the steepest

curve. This demonstrates the benefits of promoting unseen words over the repetition

of words. In contrast, the curves for the INR method increase more slowly and, in

the case of the left plot of Figure 3.3, the coverage after selecting 100K sentence is

smaller than for FDA.

Figure 3.4: Results of TA with different sizes of data for BIO (left) and NEWS
(right) test sets.

The performance of the model trained with the selected data is presented in

Table 3.5 and the plots of the BLEU scores are displayed in Figure 3.4.

Table 3.5 includes the column BASE with the scores of the model trained with

the complete training set. We have marked in bold the scores that outperform the

baseline and computed the statistical significance (marked with an asterisk) with

multeval (Clark et al., 2011) for BLEU, TER and METEOR when compared to the

baseline at level p=0.01 using Bootstrap Resampling (Koehn, 2004).
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BASE TFIDF INR FDA
BIO

10
0K

li
n
es BLEU 22.62 25.05* 25.87* 25.69*

TER 57.98 53.91* 53.85* 53.53*
METEOR 28.26 30.18* 30.67* 30.84*
CHRF3 51.40 53.60* 54.22* 54.30*

20
0K

li
n
es BLEU 22.62 24.63* 25.00* 25.16*

TER 57.98 54.56* 55.50* 54.84*
METEOR 28.26 30.22* 30.12* 30.36*
CHRF3 51.40 53.40* 53.53* 53.92*

50
0K

li
n
es BLEU 22.62 24.65* - 24.60*

TER 57.98 55.21* - 56.17*
METEOR 28.26 30.21* - 29.73*
CHRF3 51.40 53.58* - 53.17*

1M
li
n
es BLEU 22.62 24.75* - 23.55*

TER 57.98 55.40* - 57.50*
METEOR 28.26 30.34* - 28.91*
CHRF3 51.40 53.68* - 52.48*

2M
li
n
es BLEU 22.62 23.38 - 22.67

TER 57.98 56.97* - 59.05
METEOR 28.26 29.27* - 28.74
CHRF3 51.40 52.60 - 52.53

NEWS

10
0K

li
n
es BLEU 18.21 18.06 19.31* 19.42*

TER 66.88 63.30 63.03* 62.26*
METEOR 26.01 25.85 26.68* 26.76*
CHRF3 47.15 45.91 47.22* 47.06

20
0K

li
n
es BLEU 18.21 18.64* 19.64* 19.63*

TER 66.88 62.38* 63.14* 63.27*
METEOR 26.01 26.60* 27.12* 27.08*
CHRF3 47.15 46.70 48.09* 48.01*

50
0K

li
n
es BLEU 18.21 18.61* - 18.83*

TER 66.88 62.96* - 64.44*
METEOR 26.01 26.68* - 26.58*
CHRF3 47.15 46.92 - 47.68

1M
li
n
es BLEU 18.21 18.89* - 18.67*

TER 66.88 62.95* - 65.25*
METEOR 26.01 26.81* - 26.48*
CHRF3 47.15 47.40 - 47.61*

2M
li
n
es BLEU 18.21 18.22 - 18.46*

TER 66.88 64.56* - 66.05*
METEOR 26.01 26.37* - 26.25*
CHRF3 47.15 47.24 - 47.35*

Table 3.5: SMT models built with different sizes of selected sentences. The results
in bold indicate an improvement over BASE. The asterisk means the improvement
is statistically significant at p=0.01.
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Sentence dies sind die bekannten Nebenwirkungen dieser Medikamente.

Reference these are recognized side effects of these drugs.

BASE these are the pain of these medicines.
10

0
K

li
n

es TFIDF this are the side effects of this medications.

INR these are the well-known side effects of that medication.

FDA these are the well-known side effects of that medication.

2
M

li
n

es TFIDF these are the known side-effects , such treatment.

INR -

FDA these are the known side-effects , such treatment.

Table 3.6: Comparison of outputs produced by SMT models built with TA-selected
sentences.

In the table, we discover that most of the models built with TA-selected sentences

outperform the baseline. This also implies that the performance is better than those

models built with random sentences described in Section 3.2.

Figure 3.4 shows how the performance of the model changes as more TA-selected

data are used for training. The plot covers the results when selecting data ranging

from 10K sentences (as this is when the plateau of coverage is achieved according to

Figure 3.3) to the complete training set. In the figure, we can see that although the

maximum coverage is achieved with around 10K sentences, the models trained with

this number of sentences achieve the worst results, which are even lower than the

BASE. Despite that, when adding a few more sentences, the maximum performance

is achieved, i.e. using 100K sentences for the BIO test set or 200K sentences for

the NEWS test set. Then, the inclusion of more data causes the performance to

decrease. In contrast to random-selected data, we observe that when using data

from TA, the reduction is constant and there is no oscillation, so it seems unlikely

that adding more data will cause the model to improve further.

In Table 3.6 we include an example of a sentence translated by the model built

with all training data (BASE row) and the models trained with selected data. In the

100K subtable we present the output of those models built with the smallest set of

TA-retrieved data we have explored, and in subtable 2M the output of those models

built with the largest subset. We have also marked in bold the part of the sentences
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that differ with the translation produced by the BASE model. Table 3.6 shows how

the BASE model incorrectly translates the phrase “bekannten Nebenwirkungen”

(“recognized side effects”) as “the pain”, whereas models trained with TA-selected

data provide more accurate translations such as “side effects”, “well-known side

effects” or “known side-effects”.

The table also shows how smaller models can translate the sentence better than

those trained with larger sizes. For example, the translation provided by models

built with 2M TA-selected sentence-pairs omits the phrase “of these” in the transla-

tion which causes the sentences to be grammatically incorrect. In contrast, smaller

models produce “of this” and “of that” causing the sentence to be closer to the

reference. Another example is the word “Medikamente”, which is translated as

“treatment” (in the 2M subtable) whereas smaller models produce “medication” or

“medications” which are more similar to the word “drugs” in the reference.

3.5 Conclusion and Future Work

In conclusion, we have shown that SMT models trained with more data are not

necessarily better. In fact, a model trained with a selected subset of sentences can

perform better than a model trained with all data available. This demonstrates

that blindly adding data is not always a solution to improve MT models, as it may

be possible to find a subset of training data that causes the SMT model to achieve

better translation quality. The TAs explored in this chapter have shown themselves

to be good methods to find such subsets.

More specifically, we have presented a comparison of the performance of models

built with data selected using three TA methods: TFIDF, INR, and FDA. We

have shown that context-independent methods such as TFIDF do not perform as

well as context-dependent methods (i.e. INR and FDA), as the latter considers

more information (from the selected pool) to condition the decision to select new

sentences. We selected 100K, 200K and 500K sentences as training data, and showed
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that just a small subset of sentences is enough to obtain improved models.

In the future, we want to investigate other configurations of the same methods

explored in this chapter, e.g. removing the duplicates when using TFIDF, using

smaller values of t for INR or using alternatives such as ParFDA. More recently,

the NMT paradigm has exhibited better results when a larger amount of data are

available. In order to investigate whether the techniques presented here are also

applicable in NMT, we dedicate the next chapter to explore the performance of

NMT models trained using TA-selected data.
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Chapter 4

Transductive Algorithms on

Neural Machine Translation

As explored in the previous chapter, SMT models built with the data retrieved from

TA can outperform a model built with the full training set. We want to explore

whether it is also applicable for NMT to create improved models. Accordingly,

in this chapter we want to address research question RQ1: How can we tailor

data-selection algorithms to be most effective in combination with NMT?

NMT approaches exhibit better performance than SMT when larger sizes of

data are available for training (Koehn and Knowles, 2017). The incorporation of

additional training data tend to cause the performance of NMT models to increase

(this is further explored in Section 4.3). However, this is only true if the data added

are good-quality in-domain sentences. For this reason, we want to explore the impact

on the models when using the subset of data retrieved by TA that, although being

smaller in size, is closer to the test set. The main contributions of this chapter,

based on Poncelas et al. (2018b) and Poncelas et al. (2019b), are the following:

• We provide a summary of main techniques used to build NMT-adapted NMT

models (Section 4.1).

• We perform a comparison of NMT models using complete words or sub-words

as vocabulary (Section 4.2.2).
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• We perform a comparison of NMT models using different sizes of data (Section

4.3).

• We compare models built with randomly-selected data with TA-selected data

(Section 4.5.2).

• We analyze models fine-tuned with subsets of training data (Section 4.5.1).

The experiments carried out in this chapter will provide insights on the best

configurations so that improvements are achieved using TA-selected data. Conse-

quently, the experiments described in the following chapters will be based on the

outcomes of this chapter.

4.1 Domain Adaptation in NMT

Figure 4.1: Overview of domain adaptation for NMT.

This section provides a general overview of adaptation techniques for NMT which

we wil use to design experiments to apply the data selected by TA. According to Chu

and Wang (2018), adaptation procedures can be structured into two main groups

(see Figure 4.1):
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• Data-Centric: Techniques which involve augmenting or modifying the train-

ing data. Models can be adapted to a domain by adding monolingual data

(using monolingual corpora). For example, Sennrich et al. (2016b) add target-

language monolingual sentences to the training data (having a 〈NULL〉 token

in the source-side) that the fluency of the generated sentences is improved. A

similar approach consists of creating sentences artificially (synthetic parallel

corpora generation: Sennrich et al. (2016b)). These sentences can be obtained

by using an MT model that translates monolingual sentences in the target

language into the source language. Other data-centric approaches involve a

modification of the data by appending a tag with its domain to each sentence

(multi-domain: Chu et al. (2017)).

• Model-Centric: These are techniques which involve modifying the structure or

the procedure in which the model is trained. They can be sub-divided into

three groups:

– Training Objective-Centric: These are techniques that alter the cost func-

tions or the procedure of the training. A popular method in this category

is fine-tuning. We discuss this method and its variants in Section 4.1.1.

Another training objective-centric method is cost weighting (Wang et al.,

2017, 2018) which consists of modifying the NMT cost function so that

in-domain sentences have a higher weight (e.g. measured using cross-

entropy difference).

– Architecture-Centric: These approaches consisting of modifying the struc-

ture of the NMT model such as concatenating the hidden states of the

decoder and an LM trained in the target-language (deep fusion: Gülçehre

et al. (2015)); adding a discriminator aiming to predict the domain based

on the hidden states of the encoder, which forces the encoder to preserve

domain-related information (domain discriminator : Britz et al. (2017));

or increasing the size of the word embeddings so they include the domain
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of the word (domain control : Kobus et al. (2017)).

– Decoding-Centric: These are techniques that improve the decoder of the

models, such as using an LM trained with target-side language (shallow

fusion: Gülçehre et al. (2015)), word lattices generated by SMT (neural

lattice search: Khayrallah et al. (2017)) or ensembling the adapted model

with the general-domain model to avoid overfitting (ensembling : Freitag

and Al-Onaizan (2016)).

4.1.1 Fine-tuning

A method to adapt a general-domain NMT model is the fine-tuning technique (Lu-

ong and Manning, 2015; Freitag and Al-Onaizan, 2016). This consists of using a

small set of in-domain data to train the last epochs of a bigger model trained with

more general-domain sentences. For this reason, in this work, we also refer to fine-

tuning as adaptation of a model.

There are several variations of applying this fine-tuning. For example, Chu

et al. (2017) perform fine-tuning using a dataset tagged with the domain they want

to adapt to (i.e. combination of the fine-tuning and the multi-domain techniques).

This was also used by Poncelas et al. (2019d) to adapt NMT models to the Wikipedia

captions domain in Basque and Irish languages, where it was shown that the inclu-

sion of domain-tags in the dataset used for fine-tuning caused the performance to

increase.

A related approach is the transfer learning method used by Zoph et al. (2016)

to build efficient models on low-resource languages. In their work, they train a

model on a high-resource language and then train the last epochs with data of the

low-resource language of interest.

Another variation is the gradual fine-tuning technique proposed by van der Wees

et al. (2017). They train the model with a different-sized data set in each epoch.

The amount of training sentences is decreased gradually, keeping those that are more

in-domain (according to CED weights). The size of the subset of a training data S
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at each epoch e is defined as Equation (4.1):

n(e) = α · |S| · βb(e−1)/ηc (4.1)

where α is the relative start size (i.e. the fraction of training data used for the

first epochs), β is the retention rate (i.e. fraction of training data kept in the new

selection), and η is the number of epochs for which the same subset is used.

A usage of fine-tuning that considers the test set is proposed by Li et al. (2018).

In their work, they build one adapted model for each test. They use the set of

sentences that is the most similar to each sentence of the test set, retrieved by using

three string similarity measures: (i) Levenshtein distance (Levenshtein, 1966); (ii)

cosine similarity of the average vector of the word embeddings; and (iii) the cosine

similarity between hidden states of the encoder in NMT. This approach is the closest

to our work as the test set is considered to retrieve sentences. The main difference is

that their adaptations by fine-tuning are sentence-wise (one model for each sentence)

whereas in this thesis the adaptations are made on a document-wise basis (one model

for each test set). Performing a sentence-wise adaptation has the benefit of being

more fine-grained but it also has disadvantages: (i) the total computational cost

is higher as the data selection and fine-tuning process are executed multiple times

(as many as sentences there are in the test set); (ii) the usage of the data is less

efficient as the adaptations are performed independently and the same sentence can

be extracted and used for fine-tuning multiple times (to adapt different models);

and (iii) translating sentences in the same test set using different models increases

the risk of generating inconsistencies through the entire document (e.g. same term

can be translated differently in two sentences).
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4.2 Experiment Settings

4.2.1 NMT Settings

In this work we construct NMT systems using OpenNMT-py, the Pytorch port1 of

OpenNMT (Klein et al., 2017) to train the models. According to the creators of

OpenNMT2 a good baseline for German-to-English WMT 2015 data is the one built

with default parameters:

• Vocabulary size of 50000 for each language.

• 2-layer LSTM with 500 hidden units.

• SGD with a learning rate of 1, which decays at 0.5 rate after the 8th epoch.

• Attention model computed as described in Equation (2.27).

• The words in the output that are not in the vocabulary are replaced by the

word in the source with the highest attention.

The training process in NMT involves splitting the training data into batches

(we use 64 sentences per batch) and using them to update the weights of the models.

The process of using every batch to train the model is called an “epoch”.

Generally, models are trained for several epochs, until convergence is achieved

(the accuracy of the model does not increase when evaluated using a development

set). If the model is further trained after convergence it may lead to overfitting. In

our experiments, all models are trained for 13 epochs. This is the default number

of epochs in the settings of OpenNMT-py, but we also find that the model (trained

with all data) actually converges around epoch 13. Figure 4.2 shows the accuracy

and perplexity of the model when trained until the 16th epoch. In the figure, we

observe that after the 13th epoch the accuracy and perplexity remain approximately

the same.

1https://github.com/OpenNMT/OpenNMT-py
2http://opennmt.net/Models/
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Figure 4.2: Accuracy and Perplexity of the NMT model in each epoch.

In addition, we evaluate the model when trained with different epochs. The

results up to the 16th epoch can be seen in Figure 4.3. As we can see, the models

are stable around the 13th epoch.

4.2.2 The Use of BPE in NMT

A problem with NMT is that the vocabulary size needs to be established at training

time and it remains fixed. At decoding time, the words of the test set that were

omitted from the vocabulary are copied from the source (which is the approach we

follow) or an UNK token is generated.

In order to solve this problem, Sennrich et al. (2016c) propose to use Byte Pair

Encoding (BPE), a technique consisting of segmenting words into sub-word units.

The intuition behind BPE is that unknown words may still be translated if they are

split into smaller sub-units. For example, the word “daylight” may not be included

in the vocabulary of the NMT system (if it is infrequent), but if it is split into “day”

and “light”, these sub-words could be part of the vocabulary and be considered in the

translation process. In BPE, instead of splitting words into morphemes (Passban,

2017), the division is made by measuring what sequence of characters occur more
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Figure 4.3: Evaluation metrics of the NMT models by epoch.

frequently (it is language-independent), so a sub-word does not necessarily have a

meaning.

Applying BPE requires to learn how to split the words first. In order to do this,

we can use monolingual texts, in which case it proceeds as follows: The vocabulary,

consisting of character n-grams, is initialized with individual characters (character

unigrams) in the text, so the words in the data are represented as a sequence of

characters. Then, iteratively:

1. The most frequent pair of sequential character n-grams 〈a, b〉 is identified.

2. All occurrences of 〈a, b〉 are merged into ab and the new symbol ab is added

to the vocabulary.

3. Repeat this process until the maximum number of merge operations is reached.

In our experiments, we use BPE trained jointly on both sides of the training

data using 89,500 merge operations (the configuration used in the original work of

Sennrich et al. (2016c)). Note that in Table 4.1 we also present the results of the

models (built with all data executed for 13 epochs) trained with data without apply-
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without
BPE

10,000
operations

89,500
operations

BIO
BLEU 28.82 31.49* 33.14**
TER 50.24 48.17* 46.79**
METEOR 29.49 33.59* 34.57**
CHRF3 52.94 57.53* 59.08**

NEWS
BLEU 24.74 24.58 26.34**
TER 55.25 55.59 54.41**
METEOR 27.98 29.10* 30.09**
CHRF3 48.95 50.31* 51.71**

Table 4.1: The model using different different merge operations. The results in bold
indicate an improvement over the baseline. An asterisk shows that the improvement
is statistically significant at p=0.01 when compared to without BPE, and double
asterisks when compared to both without BPE and 10,000 operations.

ing BPE (without BPE column), using 10,000 and 89,500 merge operations (10,000

operations and 89500 operations columns, respectively). We have marked in bold

those scores achieving better results than the model trained with data without hav-

ing applied BPE. The scores tend to be better with data that has had BPE applied.

Most of the improvements are statistically significant at level p=0.01 (marked with

an asterisk), and in the case of the 89,500 operations column we have marked with

two asterisks those improvements that are statistically significant compared both to

models with and without BPE using 10000 operations.

Note also that splitting the words into too many subwords (using a low number of

merge operations) can also hurt performance: the model built with data after apply-

ing 10,000 operations (smaller sub-words) performs worse than the model without

BPE according to BLEU and TER metrics for the NEWS test.

In the remainder of this work, we denote model with BPE to those models that

have been built using data that has been preprocessed using BPE.
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4.3 NMT with Different Sizes of Data

One of the disadvantages of NMT models is that good performance is only achieved

when trained with much larger amounts of data compared to SMT (Koehn and

Knowles, 2017). In some cases, when low amounts of data are available, they un-

derperform SMT models (Dowling et al., 2018).

In a similar way to what was presented in Chapter 3 for SMT, in this section we

analyze the performance of the NMT models built with different sizes of randomly-

sampled (without duplicates) data. In Table 4.2 we present the evaluation scores of

the models trained with 100K, 200K, 500K, 1M and 2M random sentences. We also

include in Figure 4.4 the plot BLEU score of these models.

Figure 4.4: NMT models trained in different sizes of data without BPE (thin line)
and with BPE (thick line).

In the figure, we see that when using BPE, the translation scores tend to be

better. However, it is not the case for smaller models (built with 500K lines or less

in Table 4.2) where we can see that the translation scores achieved by the model

using BPE are lower than when using the data without word-splitting.
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without BPE with BPE
BIO NEWS BIO NEWS

10
0K

li
n
es BLEU 19.40 15.46 16.58 13.44

TER 61.29 67.23 72.11 73.31
METEOR 22.97 21.20 22.25 19.69
CHRF3 43.53 38.76 38.59 35.19

20
0K

li
n
es BLEU 22.92 18.62 21.43 17.70

TER 56.96 62.37 62.60 65.77
METEOR 25.82 23.89 26.83 23.60
CHRF3 47.15 42.60 46.32 41.27

50
0K

li
n
es BLEU 25.76 21.38 25.70 21.10

TER 54.69 59.42 55.04 60.47
METEOR 27.58 25.95 29.78 26.61
CHRF3 50.08 45.97 51.31 46.04

1M
li
n
es BLEU 27.15 22.78 29.24 23.40

TER 52.10 57.48 51.24 57.23
METEOR 28.74 26.90 32.07 28.09
CHRF3 51.76 47.10 55.07 48.50

2M
li
n
es BLEU 28.67 23.82 30.90 24.87

TER 50.52 56.46 49.16 55.81
METEOR 29.14 27.55 33.52 29.16
CHRF3 52.59 48.15 57.00 50.18

Table 4.2: Results of models built with different sizes of (random) data.

If we compare these models to those of SMT (Section 3.4), we see that the

performance of the NMT models (Table 4.2) with random subsets is better than for

comparable SMT models (Table 3.2). The exception to this are those models built

with small sizes of training data. For example, when comparing the results of the

SMT model (100K lines column in Table 3.5) with those of the NMT model (100K

lines column in Table 4.2), we see that SMT obtains better results according to all

evaluation metrics.

The performance of NMT models tends to increase as more data are added,

whereas that of SMT fluctuates. However, the addition of training data to build

NMT models does not necessarily guarantee improvements. The incorporation

of poor-quality data may not raise the performance. For example, the outcomes

presented in Poncelas et al. (2018c) revealed that the inclusion of too many MT-

generated sentences in the training data causes the models to reach an upper bound

in performance. Moreover, the incorporation of noisy sentence pairs can hurt the
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performance as it causes the model to learn how to produce imperfect translations.

4.4 Experiments

The experiments in Section 4.3 have shown that in NMT it is preferable to use large

amounts of data. However, we want to investigate whether using a subset obtained

by using TA to train the model can achieve improvements. Note that, the selection

algorithms explored in Section 2.5.2 were originally designed for use in SMT. In

this chapter, we want to explore whether these methods are also useful in NMT to

improve the performance of a model trained with the complete training data.

The experiments we are executing are based on those presented in Section 3.1.2

for SMT. We use TA-retrieved data to build models with increasing amounts of

selected data. However, we explore two different procedures in which the selected

data can be applied to build improved models:

• Newly-built : Build NMT models from scratch, using only the output of TA

as training data. In Section 4.3 we have shown that NMT models tend to

perform better as more data are used to train. Nonetheless, in the same way

as explored in SMT, models built with the selected data may perform better

than those built with the full training set.

• Fine-tuned : Fine-tune the model (trained with all data) using the output

of TA-selected data. In particular, we use the model trained for 12 epochs

(BASE12 ) and execute the last epoch using the selected subset, making a

total of 13 epochs.

We build the models for translating BIO and NEWS test sets and compare them

to the baseline BASE13 (the model trained with all data for 13 epochs). Note that

the goal is again to achieve improvements by using fewer data, and executing less

training steps. For example, by reducing the training data by half, building an NMT
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model executes the half the number of steps, and when applied fine-tuning for the

last epoch we execute ((12 · 1) + (1 · 0.5))/13 = 0.96 of the steps of BASE13 model.

Note that BPE is applied on the TA-selected data (after the selection). This

implies that the execution of the TAs is performed on unsplit data. The main

reason to do this is that all the compared models are trained on the same sentences

(including those on SMT in Section 3.4).

Nevertheless, we propose as future work to compare these subsets to those re-

trieved by TAs on data split with BPE (i.e. apply BPE both in the seed and the

training data, and execute TA afterwards). This would cause the n-grams in the test

set considered by TAs to no longer be a sequence of words, but rather a sequence of

sub-words. One of the benefits of this is that new, potentially helpful, n-grams are

considered.

We follow the example of the word “daylight” discussed in Section 4.2.2 to il-

lustrate the issue. Imagine the sentence in the test set to be translated is “During

the daytime, the sunlight is strong”. Although this sentence includes two words,

“daytime” and “sunlight”, that are expected to be close (in the vector space) to

the word “daylight”, the TA will not select any sentence containing it (unless the

candidate contains other words that overlap with those of the test set). Let us op-

timally assume that with BPE the words “daylight”, “daytime” and “sunlight” are

split as: “day” and “light”; “day” and “time”; and “sun” and “light”, respectively.

Then, if BPE is applied before the execution of the TA the candidate sentence that

originally contained “daylight” will be considered by the TA as now it would match

the words “day” and “light” of the test set. However, this approach also has its

drawbacks because each sub-word n-gram encode less information.

4.5 Results

In Table 4.3 we show the results of the baseline models trained for 12 epochs

(BASE12 columns) and 13 epochs (BASE13 columns). In the table, we observe
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without BPE with BPE
BASE12 BASE13 BASE12 BASE13

BIO
BLEU 28.77 28.82 33.29 33.14
TER 50.35 50.24 46.11 46.79
METEOR 29.49 29.49 34.62 34.57
CHRF3 52.97 52.94 59.02 59.08

NEWS
BLEU 24.63 24.74 26.16 26.34
TER 55.51 55.25 54.41 54.41
METEOR 27.92 27.98 30.00 30.09
CHRF3 48.79 48.95 51.48 51.71

Table 4.3: Results of the model BASE12 and BASE13 (with and without using
BPE).

again that the model trained for 13 epochs achieves convergence. If we compare

the BASE12 columns and BASE13 columns we observe that the improvements are

small and we can even find that for the BIO test set, when BPE is applied (BIO

subtable, with BPE column) the model trained for 13 epochs achieves lower results

than the model trained for 12 epochs.

The results of the models trained with the selected data are shown in Table 4.4

(models without BPE) and Table 4.5 (models with BPE). In each table we include

the scores achieved by the model built using the complete training data trained for

13 epochs (BASE13 column) and the models trained with the data retrieved by

TFIDF, Infrequent N-gram Recovery (INR) and Feature Decay Algorithms (FDA)

methods. For each method, we present two columns which indicate how the adapted

model was built: by training the model from epoch 1 using the selected data (newly-

built columns), or by fine-tuning the 12th epoch of the general-domain model using

the selected data (fine-tune columns). The BLEU scores of these models are also

presented in Figure 4.5. The two plots at the top show the performance of the models

without using BPE, and the two plots in the bottom the results of models with BPE.

In each plot, we present both the results of the newly-built models (straight lines)

and the fine-tuned models (dotted lines). These plots give a good overview of how

the different TAs perform in NMT. We see that the scores achieved by models built
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BASE13 TFIDF INR FDA
newly-
built

fine-
tuned

newly-
built

fine-
tuned

newly-
built

fine-
tune

BIO
10

0K
li
n
es BLEU 28.82 21.74 29.01 27.45 28.99 28.39 29.01

TER 50.24 63.17 49.99 55.64 49.89 53.87 50.09
METEOR 29.49 25.66 29.51 29.77 29.59 29.98 29.48
CHRF3 52.94 43.33 52.91 52.27 52.99 52.15 52.92

20
0K

li
n
es BLEU 28.82 25.57 29.15 31.09* 29.12 30.58* 28.94

TER 50.24 56.72 49.84 50.04 50.11 49.78 49.98
METEOR 29.49 28.15 29.47 31.74* 29.53 31.82* 29.55
CHRF3 52.94 49.54 52.77 55.25 52.93 55.12 53.08

50
0K

li
n
es BLEU 28.82 27.12 29.23 - - 32.31* 29.12

TER 50.24 55.15 49.77 - - 48.11* 49.92
METEOR 29.49 29.43 29.54 - - 32.15* 29.53
CHRF3 52.94 51.90 53.14 - - 56.15* 52.94

1M
li
n
es BLEU 28.82 27.36 29.36 - - 31.85* 29.46*

TER 50.24 54.42 49.55 - - 48.57* 49.91
METEOR 29.49 29.71 29.55 - - 31.85* 29.71
CHRF3 52.94 51.64 53.24 - - 55.99* 53.34

2M
li
n
es BLEU 28.82 27.07 30.03* - - 31.05* 28.90

TER 50.24 54.36 49.11* - - 48.97* 50.09
METEOR 29.49 29.67 29.86* - - 31.09* 29.48
CHRF3 52.94 51.16 53.79* - - 55.00* 52.83

NEWS

10
0K

li
n
es BLEU 24.74 14.00 24.43 19.61 24.65 19.51 24.58

TER 55.25 71.19 55.50 62.85 55.32 62.43 55.30
METEOR 27.98 19.66 27.81 24.40 27.92 24.50 27.93
CHRF3 48.95 34.68 48.52 43.10 48.87 42.98 48.78

20
0K

li
n
es BLEU 24.74 18.41 24.74 23.08 24.86 23.04 24.79

TER 55.25 64.18 55.23 58.00 55.29 57.88 55.23
METEOR 27.98 23.69 27.97 27.25 28.05 27.22 28.04
CHRF3 48.95 41.63 48.73 47.52 48.99 47.27 49.02

50
0K

li
n
es BLEU 24.74 21.44 24.69 - - 25.17* 24.87

TER 55.25 61.03 55.23 - - 56.01 55.18
METEOR 27.98 26.04 27.94 - - 28.86* 28.05
CHRF3 48.95 45.69 48.73 - - 49.83 49.09

1M
li
n
es BLEU 24.74 22.98 24.78 - - 25.60* 24.75

TER 55.25 58.78 55.36 - - 54.97 55.24
METEOR 27.98 27.01 27.93 - - 28.86* 28.01
CHRF3 48.95 47.11 48.80 - - 50.09 48.92

2M
li
n
es BLEU 24.74 23.78 24.74 - - 25.85* 24.72

TER 55.25 57.70 55.36 - - 54.54* 55.22
METEOR 27.98 27.65 27.91 - - 28.94* 28.02
CHRF3 48.95 48.08 48.79 - - 50.09 48.92

Table 4.4: NMT models fine-tuned with different sizes of selected data (without
BPE). The results in bold indicate an improvement over BASE13. The asterisk
means the improvement is statistically significant at p=0.01.
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BASE13 TFIDF INR FDA
newly-
built

fine-
tuned

newly-
built

fine-
tuned

newly-
built

fine-
tuned

BIO
10

0K
li
n
es BLEU 33.14 19.99 33.95* 25.56 33.52* 27.38 33.68*

TER 46.79 65.56 45.99* 60.85 45.92* 54.66 45.97*
METEOR 34.57 25.01 34.96* 30.11 34.77 30.88 34.71
CHRF3 59.08 43.21 59.50 50.91 59.43 51.72 59.24

20
0K

li
n
es BLEU 33.14 24.90 33.97* 29.95 33.88* 29.79 33.96*

TER 46.79 59.18 46.03* 51.58 45.90* 52.58 45.64*
METEOR 34.57 28.71 34.89* 33.41 34.94* 32.80 35.01*
CHRF3 59.08 48.97 59.41 56.41 59.56 55.64 59.56

50
0K

li
n
es BLEU 33.14 27.09 34.14* - - 32.97 33.75*

TER 46.79 56.15 45.60* - - 48.58 45.92*
METEOR 34.57 30.98 34.96* - - 34.41 34.92*
CHRF3 59.08 52.89 59.69* - - 58.62 59.57

1M
li
n
es BLEU 33.14 28.55 34.21* - - 34.31* 33.29

TER 46.79 53.14 45.65* - - 46.09 46.59
METEOR 34.57 32.04 35.15* - - 35.27* 34.72
CHRF3 59.08 54.60 59.83* - - 59.64 59.30

2M
li
n
es BLEU 33.14 29.72 34.16* - - 33.83 33.73*

TER 46.79 51.88 45.71* - - 47.52 46.10*
METEOR 34.57 32.40 34.97* - - 35.17 34.83*
CHRF3 59.08 55.48 59.56* - - 59.57 59.36

NEWS

10
0K

li
n
es BLEU 26.34 14.59 26.41 18.39 26.49 18.92 26.49*

TER 54.41 70.61 54.45 65.56 54.19 64.81 54.21
METEOR 30.09 20.04 30.14 23.55 30.21 24.09 30.21*
CHRF3 51.71 35.67 51.70 41.03 51.78 41.95 51.80

20
0K

li
n
es BLEU 26.34 17.62 26.33 23.00 26.44 23.03 26.55*

TER 54.41 66.50 54.41 59.42 54.35 59.04 54.17*
METEOR 30.09 23.37 30.03 27.32 30.12 27.62 30.24*
CHRF3 51.71 40.71 51.52 47.16 51.67 47.63 51.89

50
0K

li
n
es BLEU 26.34 21.35 26.44 - - 25.60 26.40*

TER 54.41 60.94 54.40 - - 55.75 54.47
METEOR 30.09 26.36 30.11 - - 29.43 30.10*
CHRF3 51.71 45.53 51.61 - - 50.65 51.71

1M
li
n
es BLEU 26.34 23.10 26.46 - - 27.01* 26.70*

TER 54.41 59.02 54.36 - - 53.85* 54.16*
METEOR 30.09 27.75 30.13 - - 30.46* 30.19
CHRF3 51.71 47.82 51.61 - - 52.14* 51.88

2M
li
n
es BLEU 26.34 24.17 26.32 - - 27.42* 26.39

TER 54.41 57.23 54.43 - - 53.66* 54.29
METEOR 30.09 28.45 30.01 - - 30.66* 30.12
CHRF3 51.71 49.17 51.52 - - 52.46* 51.67

Table 4.5: NMT models fine-tuned with different sizes of selected data (using BPE).
The results in bold indicate an improvement over BASE13. The asterisk means the
improvement is statistically significant at p=0.01.
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Figure 4.5: Results of the models trained with TA-selected data.

with TA-selected data are higher than those with randomly sampled sentences.

In the following subsections, we analyze the newly-built and fine-tune approaches

individually.
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4.5.1 Results of Models Built with Selected Data

We first investigate the results of NMT models built from scratch with subsets of

data retrieved by TA. The results of these models can be observed in the newly-built

columns of Table 4.4 and Table 4.5.

If we compare the scores in these tables with those obtained by SMT in Table 3.5,

we see that in general (with the exception of TFIDF newly-built models trained with

smaller sets of data) the quality of the translations produced by small NMT models is

higher than SMT. In addition, the gap in quality between SMT and NMT increases

as more TA-selected data are used to train the model. The newly-built models

also perform better than those built with the same amount of randomly-sampled

sentences (in Table 4.2).

The outcomes in SMT also showed that using larger amounts of TA-retrieved

data improved the performance, but additional data then starts to hurt performance.

In NMT, models trained with data selected from FDA (newly-built) also shows this

effect. We see that in the straight lines of Figure 4.5 the maximum is reached with

just a fraction of the data, while using more sentences causes the performance to

decrease. In contrast, using the TFIDF method the performance tends to increase

as more data are used, but it is always below that of the BASE13 model (i.e. trained

with the full set). The performance when using INR is not conclusive. As the data

extracted does not exceed 200K sentences it is enough to achieve improvements for

the BIO test (without BPE) but insufficient in the other scenarios explored.

As mentioned in Section 4.2.1, the size of the vocabulary considered by the model

is set at the beginning of the training step (we use a vocabulary size of 50000 words).

Therefore, those words of the test set that are infrequent in the training data may

be left out when the NMT model is built. The advantage of using the selected data

for training from scratch is that the vocabulary considered by the model is more

likely to cover more words of the test set (n-grams of the test set are relatively more

frequent in the selected training subset).

The example in Table 4.6 illustrates this issue. We present a sentence of the
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Sentence Elemente aus Folklore über Klassik bis zu Sport und Akrobatik werden im Jazz
Dance verarbeitet.

Reference elements ranging from folklore and classical to sports and acrobatics are worked
into jazz dance.

without BPE
BASE13 elements from folklore to classical music and Akrobatik are processed in jazz

dance.

10
0K

li
n
es TFIDF it is also possible to be used in jazz from pop to sports and walks.

INR there are elements from classical music to sport and acrobatics.

FDA artists from classical music to classical music to sport and hostels will
be processed in the Jazz Dance.

2M
li
n
es TFIDF the Jazz Dance process is performed by classical dance and dance

and acrobatics.

INR -

FDA elements from folklore through classical to sport and acrobatics are used
in jazz dance.

with BPE
BASE13 elements from folklore through classical to sport and acrobatics are processed

in jazz dance.

10
0K

li
n
es TFIDF elements of Colombia from classical up to sport and advertise in Jazz

dance in jazz.

INR in the jazz dance of Hivia classic to sport and acrobatics in jazz dance.

FDA there are currently a variety of styles between classical music to sport
and bikers.

2M
li
n
es TFIDF elements from folklore through classical to sport and acrobatics are processed

in jazz dance.

INR -

FDA elements from folklore to classical music and acrobatics are processed in jazz
dance.

Table 4.6: Comparison of outputs produced by models built from scratch.
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NEWS test set, the reference and the translation generated by the BASE13 model,

both with (with BPE subtable) and without BPE (without BPE subtable). We also

include the sentences produced by the newly-built models using subsets of 100K and

2M sentences (the smallest and largest datasets explored in the experiments).

When inspecting the vocabulary considered by BASE13 we discover that “Akro-

batik” is not included, because it is not frequent enough in the training set. For

this reason, in the produced translation, the word “Akrobatik” is not translated but

copied directly from the test set (BASE13 row in without BPE subtable of Table

4.6). In contrast, those models built with the selected 2M sentences correctly trans-

late the word into “acrobatics” because it is included in the vocabulary. The models

built with 100K also consider the word “Akrobatik”. The sentences generated by

models in the 100K subtable differ significantly from that of BASE13 and (except

for INR) the word “acrobatics” is not present.

The problem of limitatiing the vocabulary is (partially) solved by BPE (with

BPE subtable) as the vocabulary covers more sub-words of the test set.

4.5.2 Results of Fine-Tuned Model

In the fine-tune columns of Table 4.4 (without BPE) and Table 4.5 (with BPE),

we show the results of the BASE12 model fine-tuned with the selected data. These

results can also be seen in the dotted lines in Figure 4.5. In the plots we find that

varying the size of data does not impact the quality as much as it does for the

newly-built models.

In those models without BPE (fine-tune columns of Table 4.4), the fine-tuned

models do not achieve any improvements (on the NEWS test set) over the baseline

BASE13 or if they achieve improvements (on the BIO test set) those are small and

most of them are not statistically significant at p=0.01 (the only exceptions are the

models fine-tuned with 500K FDA-selected data and 2M TFIDF-selected data).

In contrast, the effect of fine-tuning when BPE is applied (fine-tune columns of

Table 4.5) is generally positive when compared to BASE13, as most of the scores are
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better. The only exception is TFIDF for the NEWS test set. Note that the NEWS

test, which contains 2169 sentences, is larger than the BIO test set, 411 sentences.

In general, the use of a larger test set is a disadvantage for the TFIDF technique as

it considers each sentence in the test independently. For example, when extracting

100K sentences with TFIDF there are 243 relevant sentences for each sentence of

the BIO test set (100000/411 = 243), but only 46 for each sentence of the NEWS

test set (100000/2169 = 46).

Sentence seit knapp zehn Jahren wird auf dem ehemaligen Truppenübungsplatz in
Münsingen nicht mehr geschossen.

Reference not a shot has been fired in the former military training ground in Münsingen
for almost ten years.

without BPE
BASE13 for nearly ten years, the former Truppenübungsplatz was no longer shot.

10
0K

li
n
es TFIDF no more shot has been shot on the former Truppenübungsplatz in Münsin-

gen for nearly ten years.

INR for nearly ten years, the former Truppenübungsplatz has not been shot in
Münsingen.

FDA for nearly ten years, the former Truppenübungsplatz has not been shot in
Münsingen.

2M
li
n
es TFIDF no more shot has been shot on the former Truppenübungsplatz in Münsin-

gen for nearly ten years.

INR -

FDA for nearly ten years, the former Truppenübungsplatz was no longer shot.

with BPE
BASE13 since almost ten years, the former troops in Münsingen will no longer be shot.

10
0K

li
n
es TFIDF for almost ten years, the former troop location in Münsingen is no longer

shot.

INR for almost ten years, the former troop line in Münsingen is no longer shot.

FDA for almost ten years, the former troop line in Münsingen is no longer shot.

2M
li
n
es TFIDF for almost ten years, the former troops in Münsingen will no longer be shot.

INR -

FDA for almost ten years, the former troops in Münsingen will no longer be shot.

Table 4.7: Comparison of outputs produced by the baseline (general-domain model
on the 13th epoch) and models fine-tuned with selected data.

The outputs produced by the fine-tuned models are closer to the baseline. For

example, the translation generated for the sentence “Elemente aus Folklore über

Klassik bis zu Sport und Akrobatik werden im Jazz Dance verarbeitet.” shown in

Table 4.6 are the same as BASE13 for all fine-tuned models regardless of the size,
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as well as whether BPE has been applied or not.

An example of a sentence that has been translated differently by fine-tuned

models is presented in Table 4.7. We again show the models that have been adapted

by using 100K and 2M lines of TA-selected data. We also indicate in bold the parts

of the sentence that differ from the baseline.

The disadvantage of the fine-tuning approach compared to newly-built models

is that fine-tuning methods use the same vocabulary as BASE12. This implies that

new vocabulary is not introduced.

We see in Table 4.7 (without BPE subtable) an example of this. The translation

of “Truppenübungsplatz” is not learned by adapted models and it is copied directly

from the source sentence. The improvements seen by fine-tuned models consist of

variations of the sentence such as different word-ordering (e.g. the TFIDF model

generates “for nearly ten years” at the end of the sentence instead of the begin-

ning) or different verb conjugations (e.g. “has not been shot” instead of “was no

longer shot”). In addition, adapted models generate more accurate translations. For

example, they produce the phrase “in Münsingen” which was omitted by BASE13.

When BPE is applied to the data, the model can learn how to translate com-

pound words. We can see an example of this in Table 4.7 (with BPE subtable), where

the effect of BPE causes the word “Truppenübungsplatz” to be split into “Trup-

pen/üb/ungsp/latz”, and hence the translation by the general-domain model is able

to infer “troops” as translation (this is translated as “military training ground” in

the reference). Note that BPE splits words statistically and hence sub-words do not

necessarily carry any meaning.

In the with BPE subtable, we see again that the adapted-model provides different

grammatical variations (such as “is no longer shot” instead of “will no longer be

shot”), and it can also produce information that was excluded by the general-domain

model, even if it has been inferred from part of the word (instead of complete words

as seen in the without BPE subtable).

For example, as a translation of “Truppenübungsplatz” (“military training ground”),
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BASE12 generates the phrase “troops”, but the “training ground” part is dropped.

However, the adapted models generate “troop location” or “troop line” which in-

cludes a possible translation for “ground”.

4.6 Conclusion and Future Work

In this chapter we have analyzed the impact of using different amounts of training

sentences for building NMT models. We have shown that the inclusion of good-

quality data is generally beneficial, but it is preferable to use in-domain sentences.

The experiments carried out include using data retrieved by TA to either build

NMT models from scratch or to fine-tune a general model during the last epoch.

The results reveal that it is possible to find a subset of the training data that, when

used to build or fine-tune an NMT model, can obtain better performance than a

system built with the full training set.

First, we evaluated models built from scratch with subsets of data. As the

vocabulary considered by the models are the most frequent words, it might happen

that those terms that are relevant in a particular domain are left out as they do

not have enough occurrences in the full training set. For this reason, the use of TA-

selected data for training causes the models to consider the most relevant vocabulary.

Among the TAs explored we see that FDA is the best for building NMT mod-

els from scratch, only a fraction of data selected by this algorithm is enough to

achieve higher performance than models trained with the full training data. The

INR method can also retrieve a subset that is favorable to use as training data, but

the execution time may be prohibitive if the desired subset is too big (as explained

in Section 3.3, after executing the method for 48 hours the amount of sentences

retrieved does not exceed 300K). Finally, the TFIDF method has the problem of

handling each sentence of the test set independently and so for larger test sets it is

not useful.

When fine-tuning the models we find that, as the vocabulary is limited by the
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initial model, the increases in performance when using a subset of data are small,

if any, when BPE is not used. However, with BPE, not is the general performance

of the models are higher, but also fine-tuning with small subsets becomes favorable.

Most of the datasets retrieved from the TA used to fine-tune the BASE12 model

causes the performance to surpass that of BASE13 (if BPE is applied). The only

exception to this is the TFIDF method for larger test sets, such as that of the NEWS

domain.

In the remainder of the thesis, the experiments involving the use of TA-retrieved

data in NMT models will be carried out using BPE and applying the selected subsets

(the sizes will be 100K, 200K and 500K sentences so they are comparable to those

experiments executed for SMT) for fine-tuning the 13th epoch of the model trained

with all sentences. The reason to use this configuration is that it is a more plausible

scenario as the cost of building a model for each new document is high both in terms

of time and computational resources.

In addition, we limit the TA explored to INR and FDA only as they are the

methods that have shown higher performance. As the selection criterion of TFIDF

ignores the selected pool, and each sentence in the test set is considered indepen-

dently, when using larger test sets as seed, the data obtained may not be enough to

use in for fine-tuning.

In the future, we want to explore other methods of adapting NMT models pre-

sented in Section 4.1 such as deep fusion, shallow fusion or cost weighting. Regarding

the fine-tuning process, we propose to investigate other variations such as gradual

fine-tuning or alternative configurations of what we have presented in this chapter.

For example, instead of executing one additional epoch with the selected subset,

models could be fine-tuned for more iterations to investigate whether the perfor-

mance improves. Alternatively, instead of fine-tuning the BASE12 model (from the

12th iteration), we can fine-tune that model in the previous iteration of training,

such as BASE3, BASE8 or BASE12.

Finally, as mentioned in Section 4.2.2, something that is worth-investigating is
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to execute the TA selection on data that has been split with BPE.
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Chapter 5

The Use of Alignment Entropy

The experiments with data-selection algorithms revealed that it is possible to im-

prove MT models by using a fraction of available parallel data. In addition, they

show superior results to other data-selection algorithms such as context-independent

methods. In addition, context-dependent TA showed superior results to other data-

selection algorithms such as context-independent methods. The central characteris-

tic to these algorithms is that they penalize the n-grams after they are selected to

promote sentences with unseen n-grams.

In the experiments explored in the previous chapter, the TA were executed by us-

ing the default configuration. For example, for INR we used the same threshold, and

in FDA we used the default values of hyperparameters d and c (see Equation (2.49)).

In this chapter we evaluate to what extent modifying the default configuration im-

pacts the performance of MT models trained using the selected data.

Moreover, the configuration influences every n-gram equally. For example, in

INR, an n-gram is assumed to be frequent (and so is no longer considered for selec-

tion) when there are more than t occurrences. This threshold is the same for every

n-gram. Similarly, the penalty (decay function) that FDA applies to an n-gram

depends on the decay factor and decay exponent hyperparameters, which are the

same regardless of the n-grams.

In this chapter, we want to answer RQ2: Can word-alignment information
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be useful for improving state-of-the-art TAs? We rebuild the methods so that

different configurations can be set to each n-gram individually. By doing that, we can

penalize more heavily those n-grams that have a more straightforward translation,

with the result that they will require fewer instances in the selected data.

The experiments performed in this chapter are based on the work of Poncelas

et al. (2016) and Poncelas et al. (2017) and include the following contributions:

• We perform an analysis of the performance of TAs using different values of

the hyperparameters in INR (Section 5.1.1).

• We perform an analysis of the performance of TAs using different values of

the hyperparameters in FDA (Section 5.1.2).

• We propose a novel extension for TAs so that the decay of the n-grams becomes

dynamic (Section 5.2).

• We evaluate SMT models with data retrieved from TA using alignment en-

tropies (Section 5.4.1).

• We evaluate NMT models with data retrieved from TAs using alignment en-

tropies (Section 5.4.2).

The models built in this chapter consist of both SMT (training from scratch

with the selected data) and NMT (fine-tuned BASE12 model after applying BPE).

We will see that the changes to the configuration have a different impact in each

approach. Nonetheless, the results show that NMT models have superior perfor-

mance. Therefore, in the future chapters, each algorithm will be evaluated using

NMT approaches.
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5.1 Transductive Data-Selection Algorithms

Parametrization

The first part of this chapter explores what is the impact on translation quality

when different configurations of TA are used. In this section, we evaluate SMT

and NMT models using TA-retrieved data when different values are used for the

hyperparameters (we vary the value of one hyperparameter at a time while having

the values of the rest fixed with default values).

5.1.1 Infrequent N-gram Recovery Parametrization

The main hyperparameter in INR is the threshold t, which indicates the number of

occurrences of an n-gram needed so it is considered frequent. In our work, we use S

to compute the initial count of each n-gram, so at selection time (after initialization),

the threshold of an n-gram is tngr = t− CS(ngr) (inferred from Equation (2.47)).

The configuration of INR can be modified by altering the value of t. To do that,

we introduce a hyperparameter k ∈ [0, 1] to modulate the threshold as tngr
k

. An

n-gram ngr is considered infrequent as long as it fulfils the condition (t−CS(ngr))
k

>

CL(ngr). The Equation (2.47) can be reformulated as in Equation (5.1):

score(Stest, S, s, L) =∑
ngr∈Ngr3(Stest)

(min(1, Cs(ngr)) max(0, t− (CS(ngr) + kCL(ngr))) (5.1)

where the value of k is 1 in the default configuration. The hyperparameter k can

be considered a decay factor for INR (analogous to the hyperparameters in FDA),

but instead of being used as a penalty, it indicates how susceptible the n-gram is to

being considered frequent.

We select up to 200K sentences using the default configuration of INR (k = 1)

and another execution of k = 0.5. In order to understand the differences between
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Figure 5.1: Coverage of the test set using different values of k of INR.

the two configurations, in Figure 5.1 we show the coverage (percentage of words of

the test set that are present in the selected data) of the first 100K selected sentences

selected in the two executions. As we can see, both executions have similar coverage.

In Table 5.1 we see the performance of models built with the data retrieved by

these executions of INR. This table is divided into two subtables showing the results

for SMT and NMT models (SMT and NMT columns, respectively). We mark in

bold those evaluation scores that indicate a better performance of the model when

compared to default (columns including (default)) settings and are marked with an

asterisk if they are statistically significant at p=0.01. We compare the columns

determining that a configuration is better than default when, most of the evaluation

metrics for both test sets (both subtables) indicate improvements, and whether they

are statistically significant.

However, in the table we see that using k = 0.5 generally does not have a positive

impact on the results. In SMT, none of the scores indicate improvements when

compared to default INR execution. In NMT, only a few scores show improvements

but none of them are statistically significant at p=0.01.
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SMT NMT
k=1 (default) k=0.5 k=1 (default) k=0.5

BIO

10
0K

li
n
es BLEU 25.87 25.47 33.52 34.00

TER 53.85 53.95 45.92 45.90
METEOR 30.67 30.73 34.77 34.67
CHRF3 54.22 54.38 59.43 59.32

20
0K

li
n
es BLEU 25.00 25.00 33.88 33.81

TER 55.50 55.41 45.90 45.83
METEOR 30.12 30.18 34.94 34.9
CHRF3 53.53 53.87 59.56 59.51

NEWS

10
0K

li
n
es BLEU 19.31 19.20 26.49 26.44

TER 63.03 63.40 54.19 54.23
METEOR 26.68 26.63 30.21 30.14
CHRF3 47.22 47.36 51.78 51.69

20
0K

li
n
es BLEU 19.64 19.16 26.44 26.43

TER 63.14 64.74 54.35 54.20
METEOR 27.12 26.65 30.12 30.19
CHRF3 48.09 47.69 51.67 51.72

Table 5.1: SMT and NMT models built with different decay of INR. The results in
bold indicate an improvement over default configuration k = 1.

5.1.2 Feature Decay Algorithms Parametrization

In FDA, the main hyperparameters involved in the decay of the n-grams are the

decay factor d and the decay exponent c. In this section, we explore the impact of

altering the default values of these hyperparameters.

5.1.2.1 Decay Factor

The decay factor indicates how much the value of the feature decreases after being

selected. The value of d must be in the range (0, 1); values greater than 1 would

promote the selected n-gram to be promoted instead of penalizing it. Values below

0 would cause the decay to oscillate between positive and negative values. Within

the (0, 1) range, lower values of d cause the decay to be faster. The default value of

d is 0.5, so the contribution of an n-gram towards the score of the sentence is halved

every time it is added to the selected pool. In this section, we explore five different
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Figure 5.2: Coverage of the test set using different decay factors (values of d in
Equation (2.49)).

decay factors: the default value (0.5), two extreme values (0.1 and 0.9), and two

values in between (0.3 and 0.7).

In Figure 5.2 we observe how higher decay factors (corresponding to slower decay)

cause the method to be more likely to select an n-gram that was already selected

instead of choosing those that have not yet been included in the selected pool. This

means that higher decay factors correspond to a slower increase in coverage with

more data, as can be seen in Figure 5.2.

We also present in Table 5.2 the performance of the five decay factors explored.

In general, the results reveal that changes of decay factor in FDA have a bigger

impact in SMT than in NMT.

In SMT we see that faster decay values (i.e. smaller values of d) give the best

results. For the NEWS test set, most of these scores are statistically significant at

p=0.01, and for the BIO test set both using d = 0.1 and d = 0.2 (trained with 200K

and 500K lines, respectively) achieve statistically significant results. We observe

that increasing the decay factor value slightly can also lead to improvements. For

example, in the 0.7 column, both the model for BIO test built with 500K lines,
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and the models for NEWS test built with 100K and 500K lines, achieve statistically

significant improvements. When d is increased to 0.9, none of the models achieve

statistically significant improvements at level 0.01.

In NMT we do not find any value of the decay factor that causes the models

to clearly outperform that of the default configuration. Using both higher and

lower decay factor values, there are evaluation scores that demonstrate improvements

(marked in bold).

5.1.2.2 Decay Exponent

The decay exponent is the factor c in Equation (2.49). The range of the decay

exponent is [0,∞) with a default value of 0. Higher values of c cause the selected

n-grams to be penalized more heavily (in contrast to the decay factor where higher

values cause the decay to be slower). The decay exponent is in the range [0,∞).

Accordingly, in this section, the values investigated are those closer to 0, the lower

bound.

In Figure 5.3 we present a comparison of the coverage of different executions of

FDA using different decay exponent values. We observe in the figure that the higher

the value of the decay exponent is the faster the maximum coverage is achieved. It

causes FDA to prioritize the exploration (i.e. diversity of n-grams) over exploitation

(i.e. selecting more instances of the same n-gram).

In Table 5.3 we present the results of MT models using the selected data. The

outcomes of modifying the decay exponent are similar to what was observed when

changing the decay factor.

In SMT, the configuration that achieves maximum coverage most quickly (i.e.

using higher values of c) tends to achieve better results. Most of the configurations

with c > 0 perform better in SMT (numbers in bold in Table 5.3). Overall, the best

scores are observed when c = 1. Most of the scores in the table have at least one

evaluation metric indicating a statistically significant improvement at 0.01, marked

with an asterisk. Nonetheless, increasing the value is not a guarantee of better
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Figure 5.3: Coverage of the test set using different decay exponents (values of c in
Equation (2.49)).

results. For example, many scores in c = 2 are worse than c = 1.

In NMT, varying the configuration of FDA does not seem to have a strong in-

fluence on the quality of the models. Changes in the value of c do not seem to have

any correlation with the performance. We see for example, that all the configu-

rations where c > 0 with 100K sentences for the BIO test achieve improvements,

whereas when 500K sentences are used none of the configuration does. Similarly,

for the NEWS test set, models trained with 500K sentences achieve statistically

significant improvements at p=0.01, whereas none of them do when using 100K or

200K sentences.

5.2 Word Occurrence Balance with Alignment En-

tropies

In the previous section, we explored the TA when using values of the hyperparam-

eters, but these settings influence all n-grams equally. We contend that different
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n-grams should have different decay ratios in order to influence the number of re-

trieved instances. There should be fewer occurrences of those n-grams that are

regularly aligned to the same n-grams in the target language as fewer occurrences

are necessary to find a suitable translation. This can be regulated by increasing the

decay ratio of those particular n-grams only. For example, a German word such as

“Deutschland” should have a more rapid decay as it is expected to be aligned to the

same word in English (“Germany”).

An indicator of the complexity of translating an n-gram is given by the average

probability of translation ambiguity (Mohit and Hwa, 2007). Those n-grams with

several translations (and with similar translation probabilities) tend to be more

ambiguous. We can use these translation probabilities to compute the alignment

entropy (following Equation (2.49)) as a measure of the ambiguity. Higher entropies

would indicate that the n-gram is difficult to translate. In the following subsections,

we explore two methods of computing the alignment entropies.

5.2.1 Alignment Entropy based on Translation Probabilities

The first approach consists of using the translation probabilities of each word to

compute the alignment entropy (Poncelas et al., 2016). The translation probabili-

ties can be obtained from an alignment tool such as FastAlign or GIZA++. Hence,

given a word ws in the source language, we can retrieve a multiset of translation

probabilities TP , where each element pi ∈ TP corresponds to the translation prob-

ability (computed by an alignment tool) of ws to be aligned to a word candidate in

the target language wti . We also add to TP the probability of an n-gram not being

aligned to any candidate in order to ensure that
∑

pi∈TP
pi = 1. Then, the alignment

entropy of ws can be defined as in Equation (5.2):

alignEntunig(ws) =

−
∑

pi∈TP
pi log(pi)

log(|TP |)
. (5.2)

For those words whose alignments could not be retrieved, we assign them an
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entropy equal to the mean of the entropies of the rest of the words, so that every

unigram of the test set has their own associated alignment entropy.

A limitation of Equation (5.2) is that entropies are computed for unigrams only.

Extending it to an n-gram is not straightforward as it is not reasonable to expect

that, for example, a 3-gram in the source language should always be mapped to a

3-gram in the target language. Therefore, we estimate the entropy of the n-gram as

the mean of the entropies of the words in the n-gram as in Equation (5.3):

decayEnt(ngr) =

−
∑

w∈Ngr1(ngr)

alignEntunig(w)

|ngr|
. (5.3)

We propose to use the mean because it is reasonable to think that the alignment

entropy of an n-gram should be between the boundaries of the values of its individual

words. For example, the alignment entropy of the n-gram “John runs” should remain

between the entropy of the word “John” (as including the word “runs” increases the

range of possibilities to be aligned) and the word “runs” (because adding the word

“John” restricts the range of possibilities to be aligned).

5.2.2 Alignment Entropy based on N-gram to Unigram Map-

ping

The other method we use to compute the alignment probability is to ignore the

individual alignment of the words and assume that each n-gram could be aligned to

every word in the target sentences (Poncelas et al., 2017). For example, in the pair

〈“John runs”,“John rennt”〉, we assume that the bigram “John runs” is aligned to

every unigram: 〈“John runs”,“John”〉 and 〈“John runs”,“rennt”〉. Strictly speaking,

the used alignments are not correct. However, as using this approach we expect n-

grams with lower entropies to be aligned to a lower variety of words, it provides

us with an estimation of how difficult it is to find a translation. In addition, n-

grams that tend to appear in domain-specific contexts will have fewer translation

candidates and thus be more likely to have lower entropies (under the assumption
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of equal translation probability).

Algorithm 2 NGRmap workflow

1: TP ← {}
2: Extract the subset 〈Sngr, Tngr〉 = {〈si, ti〉 ⊂ 〈S, T 〉 : ngr ∈ si}.
3: for all wti ∈ Ngr1(Tngr) do

4: Add
CTngr (wti)

words(Tngr)
to TP

5: end for

The procedure to find the set of translation probabilities TP of an n-gram ngr

is presented in Algorithm 2. First, a subset 〈Sngr, Tngr〉 is retrieved (step 2). This

subset consists of all the line-pairs in 〈S, T 〉 including ngr in the source side. Note

that despite representing Tngr with subscript ngr, the n-gram is only required (and

expected) to be present in Sngr. As we assume ngr could be aligned to any word in

the target sentences, we iterate (step 3) over all the unigrams in Tngr. In step 4, we

compute the probability of ngr to be aligned to the word wti, and add it to the set

TP . We presume that all the alignments are equally probable, so the translation

probability of a word wti is its frequency in the set TP .

Finally, the aligment entropy is computed using the probabilities from TP as in

Equation (5.4):

decayEnt(ngr) =

−
∑

pi∈TP
pi log(pi)

log(|TP |)
. (5.4)

5.3 Experiments

We design experiments to investigate the impact on the performance of the MT mod-

els when trained with the data retrieved by TA extended with alignment entropies.

The alignment entropies are those described in the previous section:

• FAmean: alignment entropy as the mean of the alignment entropy using the

translation probabilities retrieved by FastAlign (described in Section 5.2.1).

• GZmean: alignment entropy as the mean of the alignment entropy using the

translation probabilities retrieved by GIZA++ (described in Section 5.2.1).
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• NGRmap: alignment entropy assuming every n-gram can be aligned to each

unigram (as described in Section 5.2.2).

These entropies are applied as values in the hyperparameters of TA, as follows:

• INR: In INR it will substitute the value of k in Equation (5.5).

score(Stest, S, s, L) =∑
ngr∈Ngr3(Stest)

(min(1, Cs(ngr)) max(0, tngr − decayEnt(ngr)CL(ngr))). (5.5)

• FDA: In FDA it is used as the decay factor, exponent factor, or both. As n-

grams with higher translation entropies should decay more slowly, decayEnt(ngr)

can be directly substituted in d, but when substituting c we use 1−decayEnt(ngr)

instead, so, for example, when applying the entropies into both hyperparam-

eters, the decay is as in Equation (5.6):

decay(ngr, L) = init(f)
decayEnt(ngr)CL(ngr)

(1 + CL(ngr))(1−decayEnt(ngr)) . (5.6)

5.4 Results

In Figure 5.4 we show the distribution of the scores of the three methods (FAmean,

GZmean and NGRmap) for the BIO and NEWS test sets. We see that FAmean has

the smallest variation among the three of them. This is caused by the high number

of words for which FastAlign did not retrieve an alignment probability, so many

n-grams have the value of the mean assigned. By contrast, the alignment entropies

retrieved by GZmean and NGRmap are more spread out. Although they have a

similar deviation, these methods tend to retrieve higher entropies.
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Figure 5.4: Distribution of the alignment entropies.

INR (default) FAmean GZmean NGRmap
BIO

10
0K

li
n
es BLEU 25.87 25.54 25.43 26.14

TER 53.85 53.96 54.25 53.60
METEOR 30.67 30.81 30.56 30.97*
CHRF3 54.22 54.34 54.14 54.39*

20
0K

li
n
es BLEU 25.00 24.52 24.73 25.07

TER 55.50 56.01 55.14 55.67
METEOR 30.12 30.17 29.93 30.14
CHRF3 53.53 53.58 53.72 53.97

NEWS

10
0K

li
n
es BLEU 19.31 19.33 19.35 19.22

TER 63.03 62.69* 63.02 63.69
METEOR 26.68 26.69 26.71 26.57
CHRF3 47.22 47.29 47.32 47.12

20
0K

li
n
es BLEU 19.64 19.76 19.59 19.78*

TER 63.14 63.42 63.31 62.74*
METEOR 27.12 27.08 26.93 27.13
CHRF3 48.09 48.10 47.73 47.87

Table 5.4: Results of SMT models trained with data retrieved by INR method
extended with alignment entropies. The results in bold indicate an improvement over
default configuration. The asterisk means the improvement is statistically significant
at p=0.01.
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5.4.1 Results in SMT

The results of extending the INR method with alignment entropies are displayed

in Table 5.4, and in Table 5.5 we present the results for FDA. The first columns

show the baseline performance, i.e. the model trained with data retrieved from

the TA with the default configuration. The remaining columns show the results

of models trained with TA-selected data using alignment entropies. In the case

of FDA (Table 5.5), each configuration is divided into three columns representing

to which hyperparameter the alignment entropies have been applied: decay factor

hyperparameter (DF columns), decay exponent hyperparameter (DE columns), and

both decay factor and exponent (DFE columns).

We find that using different decays for each n-gram has a positive impact on

the models built with the selected data. Among the three techniques explored –

FAmean, FAmean and NGRmap – the latter is the method that causes the models

to perform better.

In INR, despite the findings in Section 5.1.1 where configurations with k be-

low 1 do not lead to improvements, we can still see that using different values for

each n-gram can have benefits. For example, the INR executions with the entropies

from NGRmap lead to statistically significant improvements at 0.01 for both do-

mains. FAmean also achieves improvements for most of the metrics (most of scores

in FAmean column are in bold) but only the TER score for the NEWS test set using

100K lines is statistically significant. The only method that does not seem to have

benefits is GZmean as only one experiment achieves improvements for all scores (the

model for the NEWS test set using 100K sentence pairs).

The analysis for FDA is more complex as there are two hyperparameters where

alignment entropy could be applied. Therefore the first question we want to answer

is: where should the alignment entropies be applied? In Table 5.5 we see that those

configurations where alignment entropy is involved in the decay factor (i.e. either

decay factor only or both decay and exponent ) do not perform as well as when they

are applied in the decay exponent only. Note that the entropies are in the [0 − 1]
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range, which implies that when they are applied in the decay factor it can take the

extreme values (as the values in the decay factor hyperparameter are also in the

[0− 1] range) whereas when the entropies are applied in the decay exponent (whose

values are in the [0−∞) range), the values only cover a portion of that range.

By analyzing the DF and DEF columns, we do not see any experiment where

significant improvement at 0.01 for both test sets is achieved, except for the TER

metric in the NEWS test set in the GZmean column, but we see that most of

the metrics indicate worse results. Applying the entropies in the decay exponent,

however, has a positive impact on performances as shown in the DE columns of

both subtables, where most scores are in bold. Moreover we can find statistically

significant improvements at p=0.01.

Nonetheless, the performance of the models also depends on the approach that

computed the alignment entropies. Using alignment entropies from FAmean and

GZmean approaches in the decay exponent causes some models to achieve statis-

tically significant improvements, but these results are not consistent as they vary

depending on the test set. In contrast, theNGRmap experiment has a more stable

performance and shows its best results when alignment entropies are applied in the

decay exponent hyperparameter. In the DE column (NGRmap experiment), we ob-

serve that most of the scores indicate statistically significant improvements at 0.01

for both test sets.

In Table 5.6 we present an example of a sentence and how it is translated by the

models trained with data using retrieved by different experiments. We mark in bold

those words that differ from the translation generated by the default configuration

of the TA.

In the table we see that the extended models perform small changes to the

translations such as adding the words “the” or “to”. However, the most interesting

difference is how the models translate the German word “sauerstoffreiche”. This

word, that according to the reference means “oxygen-rich”, is one of the word with

high entropies (0.99, 0.92 and 0.926 values in FAmean, GZmean and NGRmap,
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Sentence dies erschwert es dem Herzen, das sauerstoffreiche Blut in das für die Genesung benötigte Gehirn zu
pumpen.

Reference this makes it harder for the heart to pump the oxygen-rich blood into the brain needed for recovery.

INR this makes it difficult for the heart, the sauerstoffreiche blood in for the recovery needed brain.

FAmean this makes it difficult for the heart, the sauerstoffreiche blood in the for the recovery required brain
to.

GZmean this makes it difficult for the heart, the oxygen-rich blood in this for recovery needed brain to.

NGRmap this makes it difficult for the heart, the world blood in the for the recovery needed brain.

FDA this makes it difficult for the heart, the world blood in it for the recovery needed brain.

FAmean
DF

this makes it difficult for the heart, the world blood in this for the recovery needed
brain to.

FAmean
DE

this makes it difficult for the heart, the oxygen-rich blood in it for the recovery
needed brain.

FAmean
DFE

this makes it difficult for the heart, the oxygen-rich blood in this for the recovery
needed to pour brain.

GZmean
DF

this makes it difficult for the heart, the oxygen-rich blood in the for the recovery
needed brain.

GZmean
DE

this makes it difficult for the heart, the oxygen-rich blood in it for the recovery
needed brain.

GZmean
DFE

this makes it difficult for the heart, the world blood in this for the recovery needed
brain.

NGRmap
DF

this makes it difficult for the heart, the world blood in the for the recovery needed
brain to.

NGRmap
DE

this makes it difficult for the heart, the oxygen-rich blood in the for the recovery
needed brain.

NGRmap
DFE

this makes it difficult for the heart, the world blood in the for the recovery needed
brain to.

Table 5.6: Comparison of outputs of the SMT models (100K lines) with data re-
trieved from INR and FDA. The configurations shown correspond both to default
and extended with alignment entropies. In FDA these are applied as decay factor
(DF), decay exponent (DE), or decay factor and exponent (DFE).
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respectively). In the models trained with data from the default INR and FDA

settings, the word “sauerstoffreiche” is kept untranslated (in INR) or incorrectly

translated as “world” (in FDA). In contrast, most models extended with alignment

entropies (i.e. GZmean in INR subtable; and FAmean DE, FAmean DFE, GZmean

DE or NGRmap DE in FDA) propose the correct “oxygen-rich” translation.

5.4.2 Results in NMT

INR (default) FAmean GZmean NGRmap
BIO

10
0K

li
n
es BLEU 33.52 33.97 33.53 33.61

TER 45.92 45.65 46.23 45.98
METEOR 34.77 34.91 34.78 34.77
CHRF3 59.43 59.53 59.37 59.38

20
0K

li
n
es BLEU 33.88 33.93 34.16* 33.97

TER 45.90 45.85 45.46* 45.80
METEOR 34.94 34.97 34.97 34.85
CHRF3 59.56 59.68 59.66 59.52

NEWS

10
0K

li
n
es BLEU 26.49 26.48 26.38 26.47

TER 54.19 54.13 54.35 54.23
METEOR 30.21 30.21 30.18 30.15
CHRF3 51.78 51.85 51.69 51.74

20
0K

li
n
es BLEU 26.44 26.56 26.46 26.48

TER 54.35 54.14 54.29 54.25
METEOR 30.12 30.24* 30.13 30.20
CHRF3 51.67 51.85 51.62 51.78

Table 5.7: Results of NMT models trained with data retrieved by INR method
extended with alignment entropies. The results in bold indicate an improvement over
default configuration. The asterisk means the improvement is statistically significant
at p=0.01.

Similarly to what presented for SMT, in this subsection, we analyze the NMT

models built with data retrieved with extended TA models. The results can be seen

in Table 5.7 for INR and Table 5.8 for FDA.

The outcomes of Section 5.1 showed that NMT models are less sensitive to the

variation of the hyperparameters of TA. This is also the case when using alignment

entropies. The tables show that the results for NMT are similar to their baselines.
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Nonetheless, we see slight improvements in some of the experiments.

In INR (Table 5.7) most scores of FAmean are better than the default INR, but

the only statistically significant improvement is the METEOR score in NEWS test

set for 200K lines. GZmean tends to perform relatively well on the BIO test set

(with two scores statistically significant at p=0.01, when trained with 200K lines)

but none of the scores are statistically significant on the NEWS test set. Finally,

NGRmap performs the worst of the three with none of the scores showing statistically

significant improvements. In FDA (Table 5.8), the only experiments in which we

find statistically significant (at p=0.01) improvements for more than one score are

for the NEWS test set when fine-tuning with 500K lines.

Sentence dies erschwert es dem Herzen, das sauerstoffreiche Blut in das für die Genesung
benötigte Gehirn zu pumpen.

Reference this makes it harder for the heart to pump the oxygen-rich blood into the brain needed
for recovery.

INR this makes it more difficult to pump the heartbeat blood into the brain needed for
recovery.

FAmean this makes it more difficult to pump the fat blood into the brain needed for recovery.

GZmean this makes it more difficult to pump the fat blood into the brain needed for recovery.

NGRmap this makes it more difficult to pump the fat blood into the brain needed for recovery.

FDA this makes it more difficult to pump the fat blood into the brain needed for recovery.

FAmean
DF

this makes it more difficult to pump the fat blood into the brain needed for recovery.

FAmean
DE

this makes it difficult to pump the heartbeat blood into the brain needed for
recovery.

FAmean
DFE

this makes it more difficult to pump the fat blood into the brain needed for recovery.

GZmean
DF

this makes it more difficult to pump the fat blood into the brain needed for recovery.

GZmean
DE

this makes it more difficult to pump the fat blood into the brain needed for recovery.

GZmean
DFE

this makes it more difficult to pump the fat blood into the brain needed for recovery.

NGRmap
DF

this makes it difficult to pump the heartbeat blood into the brain needed for
recovery.

NGRmap
DE

this makes it more difficult to pump the fat blood into the brain needed for recovery.

NGRmap
DFE

this makes it more difficult to pump the fat blood into the brain needed for recovery.

Table 5.9: Comparison of outputs of the NMT models (100K lines) with data re-
trieved from INR and FDA. The configurations shown correspond both to default
and extended with alignment entropies. In FDA these are applied as decay factor
(DF), decay exponent (DE), or decay factor and exponent (DFE).
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In Table 5.9 we show a sentence translated with the models built in the experi-

ments. We see that the translations produced by the models are indeed very similar

to each other (compared to the variations of generated by SMT models presented

in Table 5.6). The differences with translations with the default TA set-up con-

sist of the omission of the word “more” and the translations proposed for the word

“sauerstoffreiche”.

In the table we see that this word has been incorrectly translated as “world”

by INR and FDA, but the extensions that propose different words are “fat” and

“heartbeat” which are also erroneous. This reveals a drawback of our proposal, as

increasing the variety of the n-grams in the target side, it also causes the models to

find the correct translation more difficult.

5.5 Conclusions and Future Work

In this chapter, we have analyzed the performance of models using different config-

urations of TA.

The outcomes observed in Section 5.1 show that in SMT, the best performance

(as demonstrated by steeper coverage curves) is achieved when using those settings

that penalize n-grams more heavily. This is the case when smaller decay factors or

higher decay exponents are used. This implies that in SMT, it is preferable to select

a more diverse set of n-grams rather than obtaining too many occurrences of each.

The experiments performed also indicate that changes in the hyperparameters have

a lower impact on NMT. This is due to the fact that the experiments involving

NMT involve fine-tuning rather than building models from scratch.

Additionally, we have extended the algorithms so each n-gram has its own decay

ratio. This extension can be used along with the alignment entropies of the n-grams

to build models with better performance. The alignment entropy measure provides

an estimation of how difficult an n-gram is to be translated. We proposed three

methods to compute it. Using the alignment entropy to alter the decay ratio of each
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n-gram causes the selected data to include fewer instances of those n-grams that

have a straightforward translation.

The retrieved data have been used to build SMT and fine-tune NMT models.

The results reveal that changes in the configuration have a greater impact on SMT

models. For example, in SMT approaches, the best results are found when using the

NGRmap method applied in the decay exponent of FDA. However, in NMT this

configuration does not always lead to better translation qualities.

In the future, we want to explore ways to compute the alignment entropies (e.g.

values of entropies greater than 1 for use in the decay exponent in FDA) or use other

methods to find configurations that further improve the results presented here.

One drawback of the proposal presented in this chapter is that increasing the

occurrences of an n-gram in the source language can induce a higher variability in

the target side, which may cause the MT system trained with this data to produce

unwanted translations. The next chapter (in which we aim to improve these methods

not by modifying the selection criteria but artificially augmenting the data available)

also addresses this issue, by creating a seed of the TA in the target language. This

forces the TA to select target-side n-grams of the new seed, which results in a

restriction of the variability in the selected target sentences.

In addition, the results observed in this and the previous chapters clearly show

that NMT models produce translations of better quality than SMT. Accordingly, in

the next chapters, the experiments will be carried out using NMT approaches only.
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Chapter 6

The Use of Synthetic Data to

Adapt Models

The experiments in the last chapter aimed to improve the performance of TA by

altering the criteria for selecting sentences. The sentences retrieved were extracted

from the same candidate pool without any supplementary data.

In this chapter, we want to improve the models by augmenting the amount of

candidate sentences. However, as we are operating in a scenario where additional

data are not readily available, we investigate the use artificially-generated data (pro-

duced by an MT engine) when used in combination with TA. In particular, we

explore back-translated parallel sets, i.e. a parallel set where the source side has

been artificially created by translating target-language monolingual sentences. Note

that in this work we use the terms artificial, synthetic or back-translated dataset

(or sentences) interchangeably when referring to sentence pairs that have been built

following the back-translation technique.

The questions that we want to answer in this chapter is RQ3: Can the use of

synthetic sentences improve the performance of MT models when used

in combination with TAs?

The use of back-translated parallel sentences offers new candidates to be selected

by TA. However, the explored TA performed the selection based on overlaps of
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n-grams between the test set and the source-side of the parallel data. As the source-

side of the back-translated parallel set has been artificially generated, it hinders

TA finding overlaps, and thus preventing relevant sentences from being retrieved

because the source side may contain errors produced by the MT such as unnatural

word order, repetition or omission of certain words.

For this reason, we want to explore how to use TA to find overlaps of n-grams

not only in the source side but also in the target side. However, as the test set,

which is in the source language, cannot be used as the seed to search target-side

n-grams, we propose to generate a synthetic seed (the approximated target-side, or

testtrg) in the target language. This is achieved by translating the test set with a

general-domain MT model.

This technique can be positive on its own to retrieve authentic sentence pairs,

as it promotes the selection of the same n-grams (those in testtrg) in the target side.

The experiments in the previous chapter revealed that the increase in occurrence of

an n-grams in the target side can induce a larger variety of possible translations,

and consequently increase the difficulty of learning the appropriate translation. By

using a seed in the target side, the n-grams searched are restricted to those of testtrg.

Finally, the techniques mentioned above are combined to fine-tune models with

TA-selected hybrid data (i.e. an assemblage of authentic and synthetic data). This

can be brought about either by merging authentic and synthetic parallel sentences

before using TA, or by combining independent executions of TA in authentic and

synthetic sets. In this chapter we explore three procedures to construct hybrid

training data that when used to fine-tune models, the performance achieved is higher

than those using subsets of TA-selected authentic data.

The techniques presented here are inspired by the outcomes of Poncelas et al.

(2018c) that revealed that the synthetic data are useful even when used in isolation.

The proposals of this chapter are based on the techniques in the works of Poncelas

et al. (2018a), Poncelas et al. (2018d), Poncelas et al. (2019a) and Poncelas and

Way (2019). The contributions are summarized in the following points:
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• We propose two approaches of retrieving artificial parallel sentences using TA

(Section 6.3).

• We explore the performance of NMT models fine-tuned with synthetic data

extracted with TA (Section 6.5.1).

• We introduce a novel technique of using TA with an artificial seed (Section 6.2)

and discuss the benefits of retrieving sentences based on the target side (Sec-

tion 6.5.2).

• We analyze three techniques to retrieve a mixture of authentic and synthetic

sentences using TA that cause the performance of models fine-tuned with this

data to be higher than using authentic data (Section 6.5.3).

The experiments in previous chapters have shown that NMT models clearly

outperform those SMT. This is true not only for models trained with all data but

also with data retrieved from TA (regardless of the configuration). For this reason,

the experiments performed in this chapter are restricted to NMT models only.

6.1 The Use of Back-translated Data

The work of Sennrich et al. (2016b) aimed to improve NMT models using monolin-

gual data to boost the decoder and improve the fluency of the translation (playing

a similar role to a LM). In their work, they propose to use sentences in the target

side to build parallel sets. These parallel sets are created by pairing target-language

sentences with either a 〈NULL〉 token or artificially-generated translations (back-

translation) on the source side. Note that the authentic data are always on the

target side to prevent the model from learning to produce sentences with mistakes.

The results revealed that if the proportion of sentences containing the 〈NULL〉 token

in the source is too high, then the model learns to ignore the source side. The back-

translation method, however, causes the performance of NMT models to increase
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and it has become popular in the pipeline of training NMT models (Sennrich et al.,

2016a; Di Gangi et al., 2017; Lo et al., 2017).

Figure 6.1: Creation of back-translated parallel set.

The procedure for creating back-translated sentences is presented in Figure 6.1:

first authentic parallel sentences are used to build an MT in the reverse direction.

Then, we use this model to translate a set of sentences into the source language. The

created sentences can be paired with the authentic sentences in the target language

to create a set of (synthetic) parallel sentences.

6.2 Construction of Approximated Test Set

Another use of synthetic data in the pipeline of selecting sentences with TA is to

use artificial sentences as the seed instead of the test set per se. In particular, we

use a translation (using an MT) of the test set (approximated target side or testtrg)

so it can be used by a TA to retrieve sentences by finding n-gram overlaps with the

sentences in the target side instead of the source side (Poncelas et al., 2018a).

In the left-side of Figure 6.2 we show the pipeline of how TAs are generally used

to select sentences (the approaches we have followed in previous chapters), and on

the right how we propose to use TA with an approximated target side. The first
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Figure 6.2: Pipeline of the traditional usage of TAs (left) and pipeline of our pro-
posal, using the target-side (right).

step in our approach consists of generating testtrg (translate step on the right side

of Figure 6.2) to use as the seed by a TA to extract parallel sentences. In order to

build this approximated target-side, we translate the test set using an MT model

which we refer to as the initial model.

The output of a TA (using a test set, in the source language, as seed) can be

seen as an ordered sequence of sentences as in Equation (6.1):

TAsrc = (s
(src)
1 , s

(src)
2 , s

(src)
3 , ...s

(src)
N ) (6.1)

In a similar way, the output of a TA using the approximated target side as seed

(referred to as TAtrg) can be formulated as in Equation (6.2):

TAtrg = (s
(trg)
1 , s

(trg)
2 , s

(trg)
3 , ...s

(trg)
N ). (6.2)
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Additionally, both TAsrc and TAtrg can be combined into one training set of N

sentences (step Combine in the right-hand diagram in Figure 6.2). In this work, we

explore the strategy of concatenating both outputs (we propose as future work other

methods of merging such as the union or the intersection). This is accomplished by

concatenating the top sentences of each subset to obtain a new list of sentences of

size N , as in Equation (6.3):

TA = (s
(src)
1 , ...s

(src)
N ·α , s

(trg)
1 , ...s

(trg)
N(1−α)) (6.3)

where 0 ≤ α ≤ 1 indicates the proportion of sentences that are selected from TAsrc

and TAtrg.

Note that some of the sentences may be replicated if they have been retrieved

by both executions of TA. We decided to keep the duplicates as it may be beneficial

to oversample those sentences if there is an agreement of both executions. This

approach is an approximation of executing fine-tuning for two iterations: a first

iteration on TAsrc ∪ TAtrg and a second iteration on TAsrc ∩ TAtrg.

6.3 Batch and Online Selection

As we have seen, the sentences retrieved by TA are based on n-gram overlaps between

the seed and the source side of the parallel data. However, when these methods are

used to select back-translated sentences, the n-grams of the test set are searched on

MT-generated sentences.

For this reason, we propose two approaches to use the TA for selecting from

an artificial parallel set, depending on whether the n-grams are searched for in the

source side (artificial) or the target side (authentic) as in Figure 6.3:

• Batch processing: this approach (left-hand side of Figure 6.3) consists of se-

lecting sentences based on the overlap of n-grams between the test set and the

synthetic source-side. We designate it as batch processing as it involves back-
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Figure 6.3: Pipeline of the batch (left) and online (right) processing to obtain TA-
selected synthetic data.

translating the complete set of monolingual sentences and afterwards selecting

sentences from the generated parallel set.

• Online processing: this approach (right-hand side of Figure 6.3) consists of

selecting sentences from target-language monolingual data (using an approxi-

mated target side as described in Section 6.2) and then back-translating only

the selected set (Poncelas et al., 2018d). The characteristic of this approach

is that it is not necessary to back-translate the complete data set but only a

subset.

6.4 Experiments

In this chapter, we aim to investigate the impact of using artificial data in com-

bination with TA. Similar to our previous experiments, we fine-tune the BASE12

model with 100K, 200K and 500K sentences selected using INR and FDA in which
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artificial data are involved.

The experiments carried out are structured in three parts. In the first two parts

we examined individually: (i) the performance of TA on back-translated sentences;

and (ii), the use of testtrg, as described in Section 6.2, to retrieve sentences from an

authentic parallel set. In the last set of experiments, we gather all data (authentic

and synthetic) to fine-tune BASE12 with hybrid subsets.

6.4.1 Models Adapted with Synthetic Data

The first set of experiments consists of models fine-tuned only with synthetic sen-

tences extracted via TA (Poncelas et al., 2019a). These experiments will provide

insights on the extent to which using back-translated sentences are useful for im-

proving models.

The back-translated parallel set is created following the work of Poncelas et al.

(2018c). We build a model in the reverse direction, English-to-German, with 1M

randomly sampled sentences1 from the Training set, with the same configuration

described in Section 4.2.1.

We use this model to back-translate all the target sentences of the Training set

to create a parallel set (Ssynth,T). We are aware that 1M of these sentences have

been also used to train the model for back-translation. Despite that, as the model

does not overfit, the generated sentences are different from the authentic.

In contrast of experiments in previous chapters, these models are fine-tuned

with new data, unseen by the BASE12 model (in previous experiments we have

used subsets of the same data used for training).

6.4.2 Use of Approximated Target Side to Select Sentences

We also evaluate the performance of models when fine-tuned with TA-retrieved

data using an approximated target side (a synthetic seed) to extract sentences from

1This criterion is based on the work of Poncelas et al. (2018c), but we also see that at least
in the German-to-English direction in Figure 4.4 in Chapter 4, there is an elbow in the curve is
around 1M sentences, and the increases of performance are smaller when using more sentences
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the authentic parallel dataset. The purpose is to investigate whether the sentences

selected by a TA that uses testtrg as the seed can also be used to fine-tune BASE12

and achieve better performance than BASE13. Moreover, in the case of achieving

positive results, does it perform better than the model adapted with TA-selected

data using the original test set as a seed?

In addition, we explore the performance when both approaches, TAsrc and TAtrg,

are combined following the concatenation method presented in Section 6.2. Accord-

ingly, the experiments can be classified as: (i) use TAtrg alone for fine-tuning the

model, i.e. configuration where α = 0 in Equation (6.3); and (ii) concatenate TAsrc

and TAtrg (i.e. configuration where different values of α in (6.3) are set).

In the experiments, we use as testtrg the output of the BASE12 (we are fine-

tuning that model) and explore the values α = 0.25, α = 0.50 and α = 0.75 for

concatenation.

6.4.3 Models Adapted with Hybrid Data

Finally, we combine the described techniques to fine-tune models with hybrid data.

These experiments can be classified into three approaches depending on how the

authentic and synthetic data are combined:

• hybr (combine before selection): consisting of selecting from a hybrid set. This

involves concatenating both the authentic candidate Sauth and artificial Ssynth

sentences. Then the selection is performed on the new set Sauth+synth.

• batch (combine after selection): consisting of performing two executions, TAauth

and TAsynth, and concatenating them as described in Section 6.3. To avoid

confusion, we use γ instead of α to represent the proportions of authentic and

synthetic data. We explore the values γ = 0.75, γ = 0.50 and γ = 0.25.

• online (combine after selection): consisting on performing two executions of

TA, TAauth and TAtrg−synth. The sentences in TAtrg−synth are synthetic sen-

tences retrieved using the approximated target-side as seed (we again use the
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translation generated by BASE12). This implies that the overlaps of n-grams

are found in the target-side (the side that is authentic) of the parallel data. We

concatenate TAauth and TAtrg−synth in different proportions of γ. We explore

the values γ = 0.75, γ = 0.50 and γ = 0.25.

6.5 Results

6.5.1 Models Adapted with Synthetic Data

BASE13 INR synth
BIO

10
0K

li
n
es BLEU 33.14 33.52 32.40

TER 46.79 45.92 47.62
METEOR 34.57 34.77 34.86*
CHRF3 59.08 59.43 59.69

20
0K

li
n
es BLEU 33.14 33.88 32.41

TER 46.79 45.90 47.82
METEOR 34.57 34.94 34.87*
CHRF3 59.08 59.56 59.74

NEWS

10
0K

li
n
es BLEU 26.34 26.49 26.64*

TER 54.41 54.19 54.92
METEOR 30.09 30.21 30.58**
CHRF3 51.71 51.78 52.77**

20
0K

li
n
es BLEU 26.34 26.44 26.66**

TER 54.41 54.35 54.85
METEOR 30.09 30.12 30.64**
CHRF3 51.71 51.67 52.87**

Table 6.1: Results of the models built with different sizes of INRsrc and INRtrg us-
ing back-translated data. The results in bold indicate an improvement over BASE13.
An asterisk shows that the improvement is statistically significant at p=0.01 when
compared to BASE13, and double asterisks when compared to both BASE13 and
INR.

In the first set of experiments, we analyze the models that have been fine-tuned

with TA-retrieved synthetic data. The results of these models are presented in Tables

6.1 and 6.2. In the tables, we include two baselines in the first columns: the results

of BASE13 and the model fine-tuned with an authentic subset. In the third column,
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BASE13 FDA synth
BIO

10
0K

li
n
es BLEU 33.14 33.68 32.28

TER 46.79 45.97 47.55
METEOR 34.57 34.71 34.90*
CHRF3 59.08 59.24 59.61

20
0K

li
n
es BLEU 33.14 33.96 32.14

TER 46.79 45.64 47.80
METEOR 34.57 35.01 34.87*
CHRF3 59.08 59.56 59.74

50
0K

li
n
es BLEU 33.14 33.75 32.15

TER 46.79 45.92 48.42
METEOR 34.57 34.92 34.78*
CHRF3 59.08 59.57 59.88

NEWS

10
0K

li
n
es BLEU 26.34 26.49 26.39*

TER 54.41 54.21 55.25
METEOR 30.09 30.21 30.50**
CHRF3 51.71 51.80 52.57**

20
0K

li
n
es BLEU 26.34 26.55 26.55*

TER 54.41 54.17 54.97
METEOR 30.09 30.24 30.51**
CHRF3 51.71 51.89 52.72**

50
0K

li
n
es BLEU 26.34 26.40 26.62**

TER 54.41 54.47 54.83
METEOR 30.09 30.10 30.61**
CHRF3 51.71 51.71 52.87**

Table 6.2: Results of the models built with different sizes of FDAsrc and FDAtrg us-
ing back-translated data. The results in bold indicate an improvement over BASE13.
An asterisk shows that the improvement is statistically significant at p=0.01 when
compared to BASE13, and double asterisks when compared to both BASE13 and
FDA.
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we show the results of the model fine-tuned with synthetic data. We mark in bold

those scores that are higher than BASE13 and mark with one (or two) asterisk if

the improvements are statistically significant at p=0.01. Those scores marked with

two asterisks indicate that the improvements are also statistically significant when

compared to the model fine-tuned with authentic data.

The results in the tables show that the use of synthetic data for fine-tuning is

beneficial (compared to BASE13) as most of the scores are marked in bold (and

according to METEOR these improvements are statistically significant at p=0.01).

However, we observe a disagreement between BLEU, TER, and METEOR. TER

scores indicate worse translation qualities (higher scores) than the baselines (none

of them are in bold as higher scores indicate worse translation quality). In contrast,

METEOR scores tend to be higher than the baselines which indicates that the

output also differs in terms of word choice (METEOR is the only metric that does

not penalize different word or phrases if they have a similar meaning).

When comparing the models fine-tuned with synthetic data to those fine-tuned

with a subset of authentic data, the improvements are not so evident. The statisti-

cally significant improvements are only achieved for the NEWS test set (the numbers

marked with two asterisks in NEWS subtable in Tables 6.1 and 6.2) for METEOR

scores (and BLEU when using 500K lines), whereas for the BIO test set none of

them are statistically significant at p=0.01.

In Table 6.3 we show a few examples of English sentences in the training data,

along with the authentic and synthetic counterparts. These examples show positive

and negative aspects of using back-translated sentences for training MT models.

In the first row, we see that in the authentic set we have the pair 〈“10 %!”,“one

tenth!”〉 whereas the synthetic counterpart is 〈“ein Zehntel!”,“one tenth!”〉. Al-

though both “10 %!” and “ein Zehntel!” have the same meaning the last one is a

literal translation. A different rephrasing may increase the chances of the phrase

being retrieved. For example, in these experiments the sentence 〈“ein Zehntel!”,“one

tenth!”〉 is selected as the test set contains the word “Zehntel”, whereas the authentic
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German (auth) German (synth) English

1 10 %! ein Zehntel! one tenth!

2 laut dieser Sichtweise sind Aus-
gaben einfach Ausgaben.

nach Ansicht dieser Ansicht Aus-
gaben auszugeben.

indeed, according to this view,
spending is spending.

3 er ist verheiratet und hat zwei
Kinder.

seitdem hat er eine lange Karriere
auf der Bühne, im Film und im
Fernsehen absolviert und hat sich
auch als Sängerin und Autor in
den letzten Jahren etabliert

since then, he has had a long ca-
reer on stage, in film and on tele-
vision. he has also established
himself as a singer and an author
in recent years.

4 nach Krankenhausangaben wur-
den zwei um die 50 Jahre alte
Männer durch das Beben schwer
verletzt: einer sei von einem her-
abfallenden Schornstein getrof-
fen worden, der andere habe
durch Glas Schnittwunden erlit-
ten. außerdem seien mehrere
Menschen durch herabstürzende
Gegenstände in ihren Wohnun-
gen leicht verletzt worden.

am Samstag wird es eine weitere
Komödie, ”La pasone” von Carlo
Mazzacurati Italiens, geben, die
die fruchtbare Silvio Orlando, die
ein washed-up filmin der Toskana
ist, in einer Nachbarkapelle aus
dem 16. Jh.

Saturday will feature another
comedy, ”La Passione” by Carlo
Mazzacurati of Italy starring the
prolific Silvio Orlando, who plays
a washed-up filmmaker who is
forced to set his last-chance
project in Tuscany after a plumb-
ing disaster at his country home
damages a 16th-century fresco in
a neighbouring chapel.

5 folglich übernimmt Informatic
SA keine Gewährleistung für ihre
Richtigkeit, ausser sie wurden
vom Kunden schriftlich oder per
E-Mail ausdrücklich für obliga-
torisch erklärt.

. . , . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . .

par conséquent, Informatic SA
ne donne donc aucune assurance
quant à leur exactitude à moins
qu’elles n’aient été expressément
déclarées obligatoires par écrit ou
par e-mail par le client.

Table 6.3: Examples of back-translated sentences

pair 〈“10 %!”,“one tenth!”〉 is not retrieved.

In the second row, we see an example of a synthetic sentence that is unlikely

to have been produced by a native German speaker (observe for example that in

the authentic sentence the word repeated, “Ausgaben”, corresponds to the English

repeated word “spending”, but in the MT-generated sentence the repeated word is

“Ansicht” which means “point of view”) so the number of n-grams that overlap with

an authentic seed can be expected to be lower.

An advantage of using back-translation is that it can solve the problem of having

noisy parallel sentences. The third example in the table presents the authentic

sentence-pair 〈“er ist verheiratet und hat zwei Kinder.”,“since then, he has had a

long career on stage, in film and on television. he has also established himself as

a singer and an author in recent years.”〉 which do not convey the same meaning

at all. In the machine-translated sentence, the source-side is “seitdem hat er eine

lange Karriere auf der Bühne, im Film und im Fernsehen absolviert und hat sich

auch als Sängerin und Autor in den letzten Jahren etabliert”. This is closer in
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meaning to the target-side sentence, and therefore more useful for training a model

(however we see mistakes such as translating the word singer as a female singer,

“Sängerin”, although the subject of the sentence indicates that he is a male singer

(Vanmassenhove et al., 2018)). A similar example is presented in the fourth row.

The authentic sentence is not a good translation of the English sentence whereas

the synthetic one is more accurate. We observe again that names in the English

side such as “Carlo Mazzacurati” or “Silvio Orlando” are present in the synthetic

sentence, (German (synth) columns) whereas in the authentic sentence they are

absent. In this case, again, it is preferable to use the synthetic sentence-pair in the

training or fine-tuning of the model.

In the row five there is another positive effect of using TA on back-translated

data. As we can see, the target side of that example is not an English sentence

but French. Using this pair as training data would cause a negative impact on

the performance of the MT. In this case, the synthetic German-side consists of a

sequence of dots (the model used for back-translation is not capable of translating

from French). Therefore, as TAs search n-grams in the source side, this would cause

to discard such unfavourable sentence pair.

6.5.2 Models Adapted Using Approximated Target Side

The second set of experiments comprise executing TA using a testtrg as the seed to

retrieve authentic sentences. The performance of the models is presented in Table

6.4 (using INR) and Table 6.5 (using FDA). The tables again include two base-

lines: BASE13 and the model adapted with default TA (i.e. using α = 1). The

remaining columns show the performance of the models fine-tuned with a combi-

nation of TAsrc and TAtrg in different proportions, given by the value of α. As

we have two baselines we mark with one asterisk those results that are statistically

significant improvements at p=0.01 compared to BASE13 and two if they are also

when compared to TA with α = 1.

First, we observe that using the testtrg alone is useful to adapt the models to
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BASE13 α = 1 α =
0.75

α =
0.50

α =
0.25

α = 0

BIO
10

0K
li
n
es BLEU 33.14 33.52 33.46 33.47 33.70* 33.39

TER 46.79 45.92 46.31 46.20 45.91* 46.05*
METEOR 34.57 34.77 34.78 34.63 34.88* 34.75
CHRF3 59.08 59.43 59.33 59.29 59.44 59.23

20
0K

li
n
es BLEU 33.14 33.88 33.62* 34.03* 33.86* 33.43

TER 46.79 45.90 45.89* 45.70* 45.63* 45.90*
METEOR 34.57 34.94 34.77 35.02* 34.89* 34.95*
CHRF3 59.08 59.56 59.25 59.55 59.53 59.39

NEWS

10
0K

li
n
es BLEU 26.34 26.49 26.59 26.64* 26.55 26.59*

TER 54.41 54.19 54.08* 54.17* 54.13 54.30*
METEOR 30.09 30.21 30.30* 30.37** 30.33** 30.34**
CHRF3 51.71 51.78 51.93 52.10* 52.07 52.12**

20
0K

li
n
es BLEU 26.34 26.44 26.61** 26.66** 26.55 26.49

TER 54.41 54.35 54.10** 54.06** 54.13* 54.37*
METEOR 30.09 30.12 30.25** 30.28** 30.29** 30.27*
CHRF3 51.71 51.67 51.93 51.96 51.97 52.02**

Table 6.4: Results of the models built with different sizes of INRsrc and INRtrg

using authentic data. The results in bold indicate an improvement over BASE13.
An asterisk shows that the improvement is statistically significant at p=0.01 when
compared to BASE13, and double asterisks when compared to both BASE13 and
α = 1.

the test set. Most of the scores of column α = 0 are marked in bold which indicates

that the performance is higher than BASE13. In addition, many of these indicate

statistically significant improvements (marked with one or two asterisks) at p=0.01.

Nonetheless, compared to models fine-tuned with the subset of authentic data (α = 1

column), the improvements are smaller and only a few achieve statistically significant

improvements for the NEWS test set (e.g. INR using 100K sentences or FDA using

500K sentences in α = 0 column).

In general, the best performance is seen when combining TAsrc and TAtrg (α =

0.75, α = 0.5 and α = 0.25 columns). However, we cannot establish an optimal

value of α. In INR the best results are found when using the α = 0.5 configuration

whereas in FDA the best scores are found with the α = 0.75 configuration, although

we do still find examples in which α = 0.25 achieves better results, e.g. in the 100K
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BASE13 α = 1 α =
0.75

α =
0.50

α =
0.25

α = 0

BIO
10

0K
li
n
es BLEU 33.14 33.68 33.77* 33.91* 33.91* 33.31

TER 46.79 45.97 46.11* 45.99* 45.97* 46.49
METEOR 34.57 34.71 34.73 34.76 34.85 34.63
CHRF3 59.08 59.24 59.22 59.31 59.34 58.86

20
0K

li
n
es BLEU 33.14 33.96 34.14* 33.75* 33.91* 33.70*

TER 46.79 45.64 45.90* 45.74* 45.96* 45.72*
METEOR 34.57 35.01 35.03* 34.91* 34.84* 34.96*
CHRF3 59.08 59.56 59.35 59.33 59.28 59.45

50
0K

li
n
es BLEU 33.14 33.75 34.06* 33.58* 33.54* 33.36

TER 46.79 45.92 45.52* 45.93* 45.74* 46.17
METEOR 34.57 34.92 34.96* 34.85 34.94* 34.85*
CHRF3 59.08 59.57 59.49 59.46 59.42 59.36

NEWS

10
0K

li
n
es BLEU 26.34 26.49 26.65* 26.42* 26.43 26.33

TER 54.41 54.21 54.12* 54.13* 54.16* 54.16*
METEOR 30.09 30.21 30.27* 30.22* 30.19 30.20
CHRF3 51.71 51.80 51.99 51.84 51.86 51.81

20
0K

li
n
es BLEU 26.34 26.55 26.65** 26.51 26.52 26.54*

TER 54.41 54.17 54.12* 54.13* 54.21* 54.04*
METEOR 30.09 30.24 30.27** 30.25* 30.25* 30.27*
CHRF3 51.71 51.89 51.99* 51.90 51.95 51.98

50
0K

li
n
es BLEU 26.34 26.40 26.58** 26.71** 26.54 26.50

TER 54.41 54.47 54.14** 54.12** 54.15** 54.04**
METEOR 30.09 30.10 30.28** 30.28** 30.24** 30.28**
CHRF3 51.71 51.71 51.98 51.95** 51.94 51.94

Table 6.5: Results of the models built with different sizes of FDAsrc and FDAtrg
using authentic data. The results in bold indicate an improvement over BASE13.
An asterisk shows that the improvement is statistically significant at p=0.01 when
compared to BASE13, and double asterisks when compared to both BASE13 and
α = 1.

row of BIO subtable (in either Table 6.4 or Table 6.5). We believe that the language

pair is another factor to be considered when choosing the best value of α. In these

experiments, finding overlapping n-grams in English is easier than in German, as

the latter language has more complex inflection and compounding. We propose as

future work to evaluate this technique on other language pairs.

Intuitively, models built using the data selected using the approximated target

side as seed alone should have worse performance than using the original test set. As
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testtrg is artificially generated, it may contain errors. Therefore, a TA that bases the

decision to extract sentences on that seed may not select the best ones. However,

basing the decision of the selection solely on the test set solely also has limitations.

Although it guarantees that the selected source sentences are similar to the test set,

it does not provide any information about the target side of the selected sentences.

Therefore, as we have seen in the previous section, it may still select sentences with

target-side translations that are wrong or not suitable given the domain of the test

set, and so hurt the final translation accuracy.

German English

INR-retrieved data pos
INRsrc

pos
INRtrg

die 40er -Jahre sind das ”goldene
Zeitalte” des Kinos, viele Millionen
Menschen strömen wöchentlich in die
Lichtspielhäuser.

family Plot (1976) was his last film. 44 -

FDA-retrieved data pos
FDAsrc

pos
FDAtrg

diese Zahl ist mehr als doppelt so viel, als
vor 10 Jahren.

famous pieces from the 19th century in-
clude those by Delacroix, Gauguin, Monet,
Renoir and Corot.

50 -

verglichen mit dem Vorjahr entspricht dies
einer Umsatzsteigerung von 6 %.

this is an increase of 6 % compared to the
previous year.

- 1

Herr Präsident, ich sage Ihnen, das habe
ich getan.

yes, I did. - 30

Table 6.6: Examples of sentences retrieved by TAsrc and TAtrg.

In Table 6.6 we show examples of sentence pairs retrieved by INRsrc, INRtrg,

FDAsrc and FDAtrg. In the table, we also indicate the position of the sentence pair

in the retrieved set. For example, the value of 44 in the column posINRsrc indicates

that it corresponds to the sentence pair INR
(src)
44 . In the columns with positions,

we indicate with a “-” if the sentence pair is not found in the top-200K sentences

retrieved by INR, or the top-500K sentences retrieved by FDA.

In the first row, we see that the sentence “die 40er -Jahre sind das ‘goldene

Zeitalte’ des Kinos, viele Millionen Menschen strömen wöchentlich in die Licht-

spielhäuser.” has been selected by INRsrc. However, this is a noisy sentence as the

source side and target side are not an accurate translation of each other (we can see

for example that the year “1976” in the target side is not present in the German
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side). A similar example of a selected noisy sentence happens for FDA with the

sentence “diese Zahl ist mehr als doppelt so viel, als vor 10 Jahren.” (this is again

easily noticeable as the names “Delacroix, Gauguin, Monet, Renoir and Corot” are

only present in the English-side sentence). Including these sentences in the set data

will cause the model to learn incorrect translations.

The previous examples have successfully been excluded from the output when

using the target side as seed. In the table we can also find examples of noisy sentences

retrieved by TAtrg such as “Herr Präsident, ich sage Ihnen, das habe ich getan.”

which in the target side has the incorrect translation of “yes, I did.”. In spite of

that, the negative impact of including this sentence is smaller; in this case, it is only

present in TAtrg. This means that the n-grams of the source side of this sentence

pair are not likely to be present in the test set (we cannot guarantee that they are

not included in the test set as we are only analyzing the top-200K and the top-500K

sentences of selected data).

In the table, we also find sentence pairs exclusively in TAtrg such as (“verglichen

mit dem Vorjahr entspricht dies einer Umsatzsteigerung von 6%.”,“this is an increase

of 6% compared to the previous year.”) which is not a noisy sentence. This sentence

is not included in TAsrc as the n-grams in the German side do not match those in

the test set, but including the back-translated sentence may be useful in NMT as it

is similar to the authentic counterpart in the vector space.

Combining the outputs of TAsrc and TAtrg causes the training data to be rein-

forced with sentences with relevant translations. Note that mixing the outputs of

the two executions of TA cause some sentence pairs to be replicated, as there is an

overlap of the outputs. Nonetheless, the number of unique sentence pairs of each

TA-retrieved data set is above 90%, regardless of the value of α.

6.5.3 Models Adapted with Hybrid Data

The last set of experiments consists of combining authentic and synthetic parallel

data to adapt models. We present in Table 6.7 the results using INR, and Table
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6.8 using FDA. As in this set of experiments we use one baseline (i.e. the results of

models fine-tuned with authentic data only), the numbers in bold indicate improve-

ments when compared to this baseline, and statistically significant improvements at

p=0.01 are marked with one asterisk.

The results show that increasing the size of the candidate pool is beneficial. We

see that most of the scores are better than the model fine-tuned with only authentic

data. The tables are structured in three subtables showing the results of hybr, batch

and online approaches (the last two are also split into different columns according

to the values of γ).

The hybr approach has the advantage of using a single selected pool, whereas

batch or online approaches consist of two independent executions (one on the au-

thentic and one synthetic parallel sets). This causes the final results to be an ap-

proximation as the n-grams of the test set that are present in both authentic and

synthetic sets would follow a distorted process. For example, in INR this approach

causes each n-gram to have a different threshold to be considered frequent in INR

(more occurrences of n-grams can be found if they do not exceed the threshold in

each execution) or not to decay as much as they should in FDA (a similar prob-

lem of ParFDA). Nonetheless, the three approaches achieve comparable results. In

addition, in the batch or online approaches, we do not observe an optimal value of

γ. Although expecting that higher values of γ should achieve better results (higher

presence of authentic sentence) we also see experiments in which using γ = 0.25

achieve the best results. For example, using INR, in the 100K row in the NEWS

subtable in Table 6.8, both for batch and online, the best results are found in the

γ = 0.25 columns.

We are aware that the combinations of authentic and synthetic data may include

duplicated sentences in the target side. For this reason, in Table 6.9 we present the

percentage of unique target-side sentences in the training data of each model. For

example, a 90% selection of unique sentences in a set of 100K would indicate that

for 10K authentic selected-sentences their synthetic counterparts are present (or vice
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hybr batch
γ =
0.75

batch
γ =
0.50

batch
γ =
0.25

online
γ =
0.75

online
γ =
0.50

online
γ =
0.25

INR

B
IO

100K 90% (56% auth) 93% 90% 93% 94% 92% 93%
200K 90% (55% auth) 92% 90% 92% 93% 92% 93%
500K - - - - - - -

N
E

W
S 100K 92% (64% auth) 94% 92% 94% 96% 95% 96%

200K 91% (62% auth) 93% 91% 94% 95% 93% 95%
500K - - - - - - -

FDA

B
IO

100K 90% (53% auth) 94% 90% 93% 95% 94% 95%
200K 90% (52% auth) 93% 89% 93% 95% 93% 94%
500K 87% (51% auth) 91% 86% 90% 92% 90% 92%

N
E

W
S 100K 93% (58% auth) 95% 93% 95% 97% 96% 96%

200K 91% (58% auth) 93% 94% 91% 94% 94% 95%
500K 88% (57% auth) 90% 92% 88% 92% 92% 93%

Table 6.9: Number of unique sentences in the target-side of the training data.

versa). In the table, we observe that all the percentages are above 88% (regardless of

TA, domain, and the technique used to combine the authentic and synthetic data),

so the number of duplicates is not too high.

In addition, in the hybr column we include in bracket, the percentage of sentences

that are authentic (in the other columns the ratio of authentic is given by the value

of γ). We see that the number of authentic sentences is slightly above half (between

50% and 65%) implying that there is no preference towards a particular type.

We also present in Table 6.10 a sentence translated by the different models

explored in this section to show the effect of adding synthetic sentences in the

training data. First, we observe that models trained with hybrid data alter the

order of the n-gram “a policeman was injured” and “hospital information”.

Additionally, in the German sentence, the word “nach” (literally “after”) has the

meaning of “according to” in this context (as seen in the reference). Despite that,

the output generated by INR and FDA is the incorrect word (in this context) “after”

whereas hybrid models correctly produce “according to” (we indicate in bold these

n-grams as they are different when compared to default executions of TA). The
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Sentence nach Krankenhausangaben wurde ein Polizist verletzt.

Reference according to statements released by the hospital, a police officer
was injured.

BASE13 a police officer was injured after hospital information.

INR (auth) a policeman was injured after hospital information.

INR hybr according to hospital information, a policeman was injured.

INR batch γ = 0.75 according to hospital information, a policeman was injured.

INR batch γ = 0.5 according to hospital information, a policeman was injured.

INR batch γ = 0.25 according to hospital information, a policeman was injured.

INR online γ = 0.75 according to hospital information, a policeman was injured.

INR online γ = 0.50 according to hospital information, a policeman was injured.

INR online γ = 0.25 after hospital information, a policeman was injured .

FDA (auth) a policeman was injured after hospital information.

FDA hybr according to hospital information, a policeman was injured.

FDA batch γ = 0.75 according to hospital information, a policeman was injured.

FDA batch γ = 0.5 according to hospital information, a policeman was injured.

FDA batch γ = 0.25 according to hospital information, a policeman was injured.

FDA online γ = 0.75 according to hospital information, a policeman was injured.

FDA online γ = 0.50 according to hospital information, a policeman was injured.

FDA online γ = 0.25 according to hospital information, a policeman was injured.

Table 6.10: Comparison of outputs of the NMT models (100K lines) with hybrid
data retrieved from INR and FDA following different approaches.

only exception is INR γ = 0.25, more influenced by the seed testtrg (i.e. sentence “a

police officer was injured after hospital information.”) which does not contain the

n-gram “according to”.

In the training data, the only sentence containing the n-gram “nach Kranken-

hausangaben” is the authentic sentence presented in the fourth row of Table 6.3

(selected by every execution of TA), and as we have said the authentic pair does not

correspond to an accurate translation. We also searched for other sentences starting

with the word “nach” which are translated as “according to” in the target side, and

we find that the majority of these sentences are synthetic. For example, one of the

selected synthetic pairs is (“nach Ansicht dieser Ansicht Ausgaben auszugeben.”,

“indeed, according to this view, spending is spending.”), which is the example in-

cluded in the second row of Table 6.3). This again shows how having a different

rephrasing in the source side increases the chances of selecting new sentences that

improve the models.
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The example presented in Table 6.10 is not the only one in which models contain-

ing synthetic sentences in the training data produce correct translations, on which

the BASE13 model or those fine-tuned with data from TA do not. Another example

is the sentence “Tanzfreudiger Nachwuchs gesucht” (in the reference: “Dance-crazy

youths wanted”). This sentence is translated as “looking for a Happy New Year’s

Eve” by BASE13 and the models fine-tuned with INR or FDA. However, when

using the hybrid training set, the translation is closer to the reference “looking for

Dancing Dance”.

6.6 Conclusions and Future Work

In this chapter, we have explored different uses of synthetic data to improve the

models when fine-tuned with data selected from TA. The experiments carried out

revealed that despite the artificially-generated data being imperfect, it is useful to

improve the models.

First, we have explored models fine-tuned with synthetic data only. Although

manifesting smaller improvements than those fine-tuned with authentic data, we

discovered that the use of back-translated data has several benefits. As the source-

side constitutes a different rephrasing, it increases the chances of the sentence pair

being selected by TA. Moreover, we found examples of sentence pairs in which the

artificial source-side represents a more accurate translation of the target side than

that found in the authentic sentence pair.

Furthermore, we have explored a different pipeline in which TA can be used. In

particular, we have incorporated the approximated target-side (a translation of the

test set using a general-domain MT engine) as the seed of TA. Although using this

testtrg in isolation to retrieve sentences is not always beneficial, the combination of

executions using both the test set and the testtrg can lead to improvements.

Finally, we combined all the techniques proposed in the chapter to fine-tune

models with both authentic and back-translated sentences. This has been achieved
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by following three different approaches: (i) combining the data sets before the se-

lection; (ii) concatenating the TA-selected authentic and synthetic data; and (iii),

concatenating the TA-selected authentic data and the synthetic set (retrieved by

finding overlaps of n-grams in the authentic target-side).

As in these experiments we have only investigated with one authentic set and

one synthetic set, in the future we want to explore whether the results improve

if diverse synthetic sets are used, i.e. multiple back-translated sentences, using

different models, for each target-side sentence. These models can be built using a

different set of data, different configurations, or different paradigms. For example,

Poncelas et al. (2019c) showed that combining back-translated data generated form

an SMT and an NMT model can be more beneficial to train MT models than using

only one approach. Moreover, we want to consider other procedures for combining

the outputs of TA. This is also applicable to the creation of the approximated target

side. By building many of them using different MT engines we can retrieve several

TAtrg variants. This expands the number of alternatives to explore as there would

be more methods to concatenate the outputs of TA using different seeds.
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Chapter 7

Conclusions and Future Work

In this thesis we have explored the impact of using different amounts of data on the

two leading MT approaches. We have seen that in SMT, adding more data does not

necessarily lead to better results. In contrast, in NMT, the inclusion of high-quality

data tends to be beneficial and the best performance is seen when a larger set of

sentences is used.

Nonetheless, both SMT and NMT approaches have also been shown to perform

better when using less, but more relevant data to the test set. We have used two TAs

INR and FDA to identify relevant sentences. The experiments showed that in SMT,

using a small subset retrieved by the TAs was enough to build models that perform

better than those built with the complete training data (or a randomly-sampled

subset).

As INR and FDA were designed to work in SMT, the performance on NMT

approaches, which require more data to perform well, was hitherto unexplored. In

this work we demonstrated that these data-selection algorithms can also be beneficial

in NMT.

In addition, we have proposed different methods to improve the TAs by: (i)

modifying the selection criterion (with alignment entropies); (ii) augmenting the

number of candidates that the TAs can select (using synthetic sentences); and (iii)

also considering the target side to select sentences (using an artificial target-side
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seed).

7.1 General Recommendations

We recommend the use of context-dependent TA such as INR and FDA over the

techniques such as TFIDF that retrieve data by comparing each sentence individu-

ally without promoting the variability of n-grams.

In terms of the values of the hyperparameters of TAs, we have seen that those

configuration that have a steeper coverage curve (e.g. smaller decay factor in FDA)

are preferable. Note that some parameters can cause the models to perform better,

but it also has an impact on the training time. For example, higher orders of n-grams

tend to achieve better results, but this would also increase the execution time. In

general, both the number of selected sentences and order of n-grams are the most

relevant factors that affect the execution time in FDA.

In the case of INR, the value of the threshold t also has an impact on the

execution time as it influences the number of sentences selected. The higher the

value of t, the more sentences that will be retrieved (see Table 3.4), but it also

causes the execution time to increase. On the other hand if the value of t is too

small, it may not retrieve enough sentences. The optimal value of t highly depends

on the data used for initialization (in terms of size and n-gram variety), for this

reason we suggest to execute preliminary experiments using a dev set.

In this work we have not determined how many sentences should be retrieved so

the MT model achieves the best performance. In our experience, just a small subset

of data is enough for achieving improvements. However, the selected data should at

least achieve the plateau when the highest coverage possible is reached.

In general, what we find to have the highest positive impact is the inclusion

of additional sentence pairs in the candidate pool. This augmentation is always

favourable as the TAs can select those that are truly relevant. On the top of that,

even when parallel sentences are not available, the use of artificially-created sen-
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tences are also helpful.

7.2 Research Questions Revisited

As a conclusion of this work, we summarize the outcomes of the experiments per-

formed to answer each RQ individually:

1. RQ1: How can we tailor data-selection algorithms to be most effec-

tive in combination with NMT?

In Chapter 4 we have used the data selected by the TA both to build NMT

models from scratch and to fine-tune a general-domain model. The exper-

iments performed showed that: (i) when BPE is not applied, TA-extracted

data are more useful to build models from scratch as the vocabulary of the

test set is included in the most frequent words of the selected data; and (ii)

when BPE is applied, the vocabulary is not a limitation and so by just exe-

cuting a single extra epoch with selected data, the models can be improved.

2. RQ2: Can word-alignment information be useful for improving state-

of-the-art TAs? The word-alignment entropies of the n-grams proposed in

Chapter 5 are indicators of how difficult it is to generate their translations.

The entropies were used as an input of the TAs (as values of their parameters)

so each n-gram is penalized differently, depending on how difficult they are

to be translated. N-grams with higher entropies indicate that they are more

difficult to be translated, and so the decay should be smaller. In our experi-

ments, we showed that this extension can benefit SMT models but it has only

a small influence on NMT. A disadvantage of this method is that increasing

the number of sentences containing n-grams with multiple (evenly-distributed)

possible translations can also increase the chance that a model translates the

word incorrectly.
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3. RQ3: Can the use of synthetic sentences improve the performance

of MT models when used in combination with TAs?

In Chapter 6 we explored the performance of NMT models fine-tuned with

back-translated sentences retrieved from TAs. We showed that the mod-

els fine-tuned with these data (synthetic sentences only) can also boost the

general-domain models and achieve similar performance to those adapted with

authentic sentences. Accordingly, we proposed three ways of using TAs with

authentic and synthetic datasets: (i) combining both datasets before the se-

lection; (ii) combining the TA-selected authentic sentences with sentences ex-

tracted from the synthetic set; and (iii) combining the TA-selected authentic

sentences with sentences extracted from monolingual target-side data (which

are back-translated afterwards). The sentences obtained via these procedures

were used to fine-tune NMT models, and the results revealed that all three of

them (which have a similar performance) enabled the model to increase the

quality of the translation.

Another use of artificial sentences in TAs is to use them as a seed. In Chapter

6 we used this approach to select sentences by considering the target side of the

training sentences. This implies searching for the n-grams of an MT-translated

test set (instead of the original). The experiments carried out showed that se-

lecting sentences from the target side can also boost NMT models. The results

when TAs extract sentences finding n-grams in the source side (German) were

similar to those when finding n-grams in the target side (English).

7.3 Future Work

There are several ways in which this work can be expanded. One limitation of

this work is that, although the techniques explored are language-independent, the

experiments we have run are only in the German-to-English direction. In future,

we want to investigate these methods using different language pairs and different
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directions.

Furthermore, there are other specific lines of research that can be contemplated

that would constitute useful extensions of this thesis.

7.3.1 Generalisation Capabilities of TAs

BASE CED TFIDF INR FDA
BIO

10
0K

li
n
es BLEU 22.62 18.91 21.54 23.77 24.15

TER 57.98 60.71 58.06 56.93 55.35
METEOR 28.26 24.86 27.68 29.39 29.24
CHRF3 51.40 48.00 50.44 52.67 52.59

NEWS

10
0K

li
n
es BLEU 18.21 13.79 15.95 16.74 16.43

TER 66.88 67.55 65.41 64.98 65.1
METEOR 26.01 21.78 23.99 24.79 24.19
CHRF3 47.15 41.51 43.72 44.63 44.18

Table 7.1: Results of the models built with selected data using an in-domain set.

Although the primary aim of this thesis is to adapt MTs models to a particular

test document, a future line of research would be to explore whether TAs can be

used to adapt models towards a particular domain instead, using an in-domain set

as seed. This would demonstrate that TAs have generalization capabilities beyond

what has been shown in this thesis.

In Table 7.1, we present some preliminary research in this direction. Assuming

we do not have the test set to hand, we (i) executed CED, TFIDF, INR and FDA

techniques using an in-domain set as seed to extract sentences (100K lines), and (ii)

built SMT models using those extracted sentences. As in-domain data we used the

European Medicines Agency (EMEA)1 (Tiedemann, 2009) dataset (361K sentence

pairs) for the BIO test set and the rapid2016 2 data set (1.3M sentence pairs) for

the NEWS test set.

In the table we see that INR and FDA are able to outperform other data-selection

1http://opus.nlpl.eu/EMEA.php
2https://tilde.com/
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techniques for domain adaptation such as the more commonly used CED. Note too

that when compared to the results of the BASE model, they can achieve better

performance depending on the seed used (such as for the BIO test set).

This provides preliminary evidence that INR and FDA have generalization capa-

bilities beyond specific test documents, although of course we have only performed

experiments on one language pair and on two domains. For a more definitive an-

swer, more experiments on further language pairs and domains would need to be

conducted.

Further work that can be done in this direction includes exploring which charac-

teristics of the seed (such as the size, number of n-grams, etc.) would have the best

impact when used with TAs. Of course, given its standing as the state-of-the-art

paradigm in MT today, all these issues ought to be explored in NMT, too.

7.3.2 Exploration of Configuration of TAs

Additionally, the configurations of both TAs have been the same across the whole

thesis. Section 5.1 showed that different configurations have an impact in SMT.

However, the configurations explored involve changing only one parameter at a time.

Another issue that was raised in Section 4.2.2 is whether these methods work better

using BPE in the seed and candidates before selection is performed.

Similarly, different configurations of the models could be explored in NMT. For

example, should the general-domain model (BASE) be close convergence before

fine-tuned with TA-selected data? How many iterations of fine-tuning should be

executed with TA-selected data for optimal performance?

Regarding the alignment probabilities proposed in Chapter 5, we have seen that

they can have a positive impact in SMT when used in the decay exponent of FDA.

However, the entropies computed are in the (0, 1) range whereas the decay exponent

can have any positive value. We would like to know whether using higher values of

entropies could be beneficial. In addition we propose to explore alternative methods

of computing the alignment entropies.
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7.3.3 Augmentation of Candidate Pool

In the last chapter, which explores the use additional artificial sentences, there

are also directions for further research. First of all, the generated sentences are

obtained from a single NMT model. In the future we want to explore the creation of

synthetic data using MT models with different configurations, different sets of data

or even following other approaches such as SMT. These models can be explored

independently or also can be combined to build different artificial source sides from

each target-side sentence. This can also be applied when the artificial test set is built:

will the use of multiple approximated target side as seed be beneficial? Finally we

want to consider other procedures for combining the outputs of TAsrc and TAtrg,

or TAauth and TAsynth, such as union or intersection.
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Biçici, E., Liu, Q., and Way, A. (2014). Parallel FDA5 for fast deployment of accu-

rate statistical machine translation systems. In Proceedings of the Ninth Workshop

on Statistical Machine Translation, pages 59–65, Baltimore, Maryland, USA.
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