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Thesis Outline 

 

 

Elucidating the mechanism by which nerve endings can achieve quantal release of 

neurotransmitters into the synaptic cleft is of fundamental importance. Release occurs via 

Ca2+-regulated exocytosis which involves a highly complex series of steps. It is dependent 

on the membrane excitability of the nerve endings controlled by voltage-sensitive cation 

channels, and can also be modulated by way of pre-synaptic receptors. Naturally-occurring 

neurotoxins from diverse sources such as snakes and micro-organisms have been found to 

facilitate or inhibit transmitter release and, in doing so, helped the identification of pre-

synaptic proteins responsible for neuro-exocytosis and its regulation. Both over- and under-

active transmitter release cause significant clinical symptoms and, therefore, compounds 

that restore normal function would be of great value as therapeutics for such conditions 

(Dolly, 2005). The work described in this thesis relates to the regulation of exocytosis; both 

overactive (Section A) and underactive (Section B).  

 

Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum, are very specific 

blockers of acetylcholine release from peripheral nerve endings. This action has been 

exploited to explore the process of regulated exosytosis including the vital part played by 

the target of these toxins, SNARE proteins, leading to their use as theraputic agents for 

disorders due to over-active skeletal muscle. BoNT complex (serotype A) is used for 

treating dystonias and spasticity and has also been proved useful for smooth muscle 

disorders (Dolly, 2005). Interestingly, it has been observed that the toxin alleviates pain 

associated with various conditions with or without accompanying excess muscle 

contractions (Aoki, 2001). These anti-nociceptive effects have been demonstrated in a 

number of applications including the treatment of tension-associated headaches, and 

chronic pain, active areas of research (Aoki, 2001). As early indications suggest that the 

toxin is effective in the treatment of refractory joint pain associated with chronic arthritis 

(Mahowald et al., 2006), Section A of this thesis explores its possible mechanism of action 

in this application. 
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In contrast to the blocking activity of BoNTs, dendrotoxins isolated from the venoms of the 

green and black mamba snakes, facilitate acetylcholine (Ach) release at the neuromuscular 

junction due to a potent and selective inhibition of some members of the Kv1 family of 

voltage-activated K+ channels. Blockade of their outward hyper-polarising current increases 

transmitter efflux leading to repetitive firing and even some epileptic-like activity. Through 

selective inhibition of channel subtypes, their specific roles in neurons can be better 

understood (Dolly, 2005). Dysfunction of Kv1 channel subtypes underlie several human 

diseases including Episodic Ataxia I and some types of epilepsies (Lehmann-Horn and 

Jurkat-Rott, 1999; Manganas et al., 2001; Zuberi et al., 1999) and their blockade in 

experimental models of multiple sclerosis has been shown to improve inefficient nerve 

impulse conduction (Smith et al., 2000). Specific blockers of K+ channels could act as 

potential therapeutics for certain conditions, returning under-active neurotransmitter release 

back up to normal levels. Understanding the interactions of a range of Kv1 channel 

blockers with heteromultimeric Kv1 channels mimicking those found in mammalian brain 

is the focus of Section B of this thesis. 
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Section A 

 

An exploration of the possible mechanism 

of action of BOTOX® in the treatment of 

chronic pain and inflammation resulting 

from arthritis 
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Chapter 1 

 

1.1 Introduction 

 

1.1.1 Pathogenesis of rheumatoid arthritis 

Rheumatoid arthritis (RA) is the most common auto-immune disease (Nishimoto and 

Kishimoto, 2004), affecting 1% of the population (McInnes and Schett, 2007). Despite this, 

there is no evidence yet for a specific auto-antigen (Fox, 1997) and the etiopathogenesis 

(cause and development) of the disease remains far from clear (McInnes and Liew, 1998). 

Without doubt though, this is a chronic inflammatory condition (Beeton et al., 2003; 

Keeble and Brain, 2004; McInnes and Liew, 1998; McInnes and Schett, 2007) typically 

affecting distal synovial joints, characterised by “flare ups” and periods of remission 

(Keeble and Brain, 2004; McInnes and Schett, 2007), where dysregulation of the cellular 

immune system and cytokine network results in severe pain (Beeton et al., 2003; Keeble 

and Brain, 2004). This, coupled with associated extra-articular disease, significantly 

impacts morbidity and mortality (Beeton et al., 2003; McInnes and Schett, 2007). 

Synoviocytes (cells of the synovial membrane) proliferating uncontrollably attach to the 

surface of the joint causing infiltration of mononuclear cells (e.g. lymphocytes, dendritic 

cells, macrophages) which produce pro-inflammatory cytokines. These cytokines induce 

further synoviocyte propagation and activation resulting in the formation of invasive and 

destructive pannus. Eventually oedema forms in the joint, the pannus invades the joint and 

along with chondrocytes (cells of the cartilage), produce proteolytic enzymes causing 

destruction of adjacent cartilage and release of more pro-inflammatory cytokines (Kay and 

Calabrese, 2004). The function of osteoclasts (responsible for bone resorption) is also 

dysregulated, altering the balance of normal bone turnover and resulting in overall 

resorption (Kay and Calabrese, 2004; McInnes et al., 2003). These processes lead to the 

classical symptoms of RA: swollen, painful joints with loss of mobility leading ultimately 

to joint erosion and deformity. Hence, there is loss of movement and further pain as well as 

systemic effects [caused by release of cytokines from inflamed joints (McInnes and Schett, 

2007)] such as inflammation of the lining of organs (Kay and Calabrese, 2004).   
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1.1.2 The role of inflammatory mediators  

As a specific auto-antigen trigger or alternative cause of RA remain unknown, potential 

therapeutics have tended to focus on the increased levels of pro-inflammatory cytokines in 

affected joints, and the immune cells responsible for their production. Cytokines play a role 

in every stage of the pathogenesis of RA from contributing to auto-immunity, to 

maintaining chronic inflammation in joints, to the destruction of cartilage and bone 

(McInnes and Schett, 2007). However, as there are many cytokines over-expressed in 

affected joints including interleukin (IL)-1β, IL-6, IL-15 and tumour necrosis factor alpha 

(TNFα) (McInnes and Schett, 2007), elucidating which are the most important was 

imperative (Feldmann et al., 2005). TNFα is crucial in controlling inflammatory and 

immune reactions resulting from disease and IL-1β [the secreted form of IL-1 typically 

considered more important as it acts on neighbouring cells (Kay and Calabrese, 2004)] is 

implicated in conditions that result in chronic inflammation (Kaneyama et al., 2005). IL-1 

and TNFα are involved in the communication between cells in affected joints and, 

importantly, each cytokine up-regulates production of the other (Kay and Calabrese, 2004). 

Examination of cytokine interactions in cultured synovial cells from rheumatoid joints 

found that blockade of TNFα reduced not only the synthesis of IL-1 but all pro-

inflammatory cytokines found in diseased joints (Feldmann et al., 2005), thereby, revealing 

a central role for TNFα in the regulation of synovial inflammation (McInnes and Liew, 

1998) and, therefore, the pathogenesis of RA (Grimsholm et al., 2005). The streptococcal 

cell wall arthritis model in IL-1 and TNFα-deficient mice has gone some way to 

distinguishing the roles of these 2 cytokines revealing TNFα to be important in the 

inflammatory process and implicating IL-1 in pathways that result in joint damage (Kay 

and Calabrese, 2004). IL-6 is another cytokine over-expressed in rheumatoid joints 

(McInnes and Schett, 2007) that has a pivotal role in the disease pathogenesis (Nishimoto 

and Kishimoto, 2004). It is produced by a variety of cell types and regulates immune plus 

inflammatory responses to infection or injury (Kaneyama et al., 2005; Nishimoto and 

Kishimoto, 2004). Despite the array of factors implicated in RA, the crucial functions of 

these 3 cytokines have not only been demonstrated in vitro but also in vivo. Various 

therapies attenuating the actions of these cytokines are in widespread clinical use; TNFα 

(Feldmann et al., 2005; McInnes and Schett, 2007), licensed for clinical use; IL-1 (Kay and 
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Calabrese, 2004; McInnes and Schett, 2007), and in late stage clinical trials; IL-6 (McInnes 

and Schett, 2007; Nishimoto and Kishimoto, 2004).  

 

1.1.3 Immune cells and rheumatoid arthritis 

Given the undeniable importance of cytokines in RA, the cells that produce them as a 

means of communication (Kay and Calabrese, 2004) are also under scrutiny. The role of T-

cells was once thought to be central to disease pathogenesis given not only their presence in 

large numbers in diseased joints (Fox, 1997; McInnes and Schett, 2007), but the fact that 

specific subsets accumulate (Fox, 1997). A possible genetic involvement in RA involving 

specific class II MHC (major histocompatibility complex) alleles implies that CD4 T-cells 

responding to specific antigens are necessary for development of the disease. Onset of 

arthritic symptoms in animal models has also been shown to depend on T-cells (Fox, 1997; 

McInnes and Schett, 2007). However, disappointing results with therapeutics aimed at 

decreasing T-cell numbers have called into question their central role (Beeton et al., 2003; 

McInnes and Schett, 2007). Additionally, neutrophils are implicated in inflammatory and 

immune events; in RA, once activated (Kontny et al., 2002), they infiltrate affected joints 

accounting for 90% of the cells found in the synovial fluid (SF) (Beeton et al., 2003; Kay 

and Calabrese, 2004). They are concentrated at sites of erosion (Beeton et al., 2003) and 

destroy connective tissue via release of proteolytic enzymes and oxygen free radicals 

(Kontny et al., 2002). When neutrophils are activated they release hypochlorous acid 

(which contributes to the destruction of bacteria). Taurine is a dominant free amino acid in 

the cytoplasm of neutrophils and is a scavenger for hypochlorous acid.  The two 

compounds react together to form taurine chloramine, which has potent anti-inflammatory 

activity. In neutrophils from patients with RA the formation of taurine chloramine is 

impaired (Kontny et al., 2002). Furthermore, the normally short life-span of these cells is 

extended from hours to days once they enter the site of inflammation (Beeton et al., 2003; 

Kay and Calabrese, 2004). This is coupled with the release of inflammatory mediators 

including IL-1β, TNFα and IL-6 (Beeton et al., 2003; Kasama et al., 2000; Kontny et al., 

2002; McInnes and Schett, 2007). Despite this, studies on possible RA therapies that would 

target these cells are lacking (Beeton et al., 2003). B-cells produce auto-antibodies and 

immunoglobulins that can form complexes which trigger not only local inflammation, but 
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also release of IL-1 and TNFα by macrophages (see below) (Kay and Calabrese, 2004; 

McInnes and Schett, 2007). They are a further source of the pro-inflammatory cytokines 

key in the arthritic diseased state: Il-1β, TNFα and IL-6. Hence, the use of B-cell depleting 

therapies have produced some significant and sometimes long-term positive results 

(McInnes and Schett, 2007). Arguably the primary source of inflammatory mediators in 

affected joints [including among many others Il-1β, TNFα and IL-6 (McInnes and Schett, 

2007)] is macrophages (Kay and Calabrese, 2004). These are found in close proximity to T-

cells and may act as antigen presenting cells and, in doing so, continue the immune 

response (Kay and Calabrese, 2004). While other cell types are involved in cartilage and 

bone erosion, they are less important in the production of the inflammatory factors 

described here. 

 

1.1.4 The neural influence 

While the immune system undoubtedly has a huge role to play in the development and 

continuation of RA, there is evidence for involvement of the nervous system. Inflammation 

of symmetrical joints suggests a neural influence and neurogenic inflammation, which is 

involved in the onset and progression of joint disease, has been shown by several groups to 

be involved in RA (Keeble and Brain, 2004). Stimulation of sensory nerves and a 

subsequent release of neuropeptides, mediates this type of inflammation which is 

characterised by oedema formation, increased blood flow, extravasation and inflammatory 

cell recruitment (Grimsholm et al., 2005; Keeble and Brain, 2004). It was, therefore, 

important to identify the neuropeptide(s) responsible. Substance P (SP) is the best 

characterised and evidence for its role in RA is plentiful. Following release from sensory 

neurons, and subsequent binding to the neurokinin 1 (NK1) receptor, SP exerts its pro-

inflammatory effects; increased microvascular permeability leading to inflammatory 

swelling as well as inflammatory cell accumulation resulting in vasodilation (Keeble and 

Brain, 2004). Levels of SP are increased in SF from RA affected joints, where it is 

responsible for increased synoviocyte proliferation, enhanced release of pro-inflammatory 

mediators and destructive enzymes including collagenase, presumably due to the presence 

of NK1 receptors on rheumatoid synoviocytes (Grimsholm et al., 2005). Not only are SP-

positive nerve fibres found in rheumatoid synovium and SP-sensitive cells occur on blood 
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vessels in the joint (contributing to vasodilation and inflammatory cell accumulation), but 

SP-containing neurons in the bone marrow communicate with the synovium (Keeble and 

Brain, 2004). As well as a pro-inflammatory role, SP is also involved in central pain 

pathways as a chief mediator in “wind up” which leads to central sensitisation, a feature of 

chronic pain conditions. Neurons in the dorsal horn of the spinal chord develop increased 

sensitivity and enlarged receptive fields (Keeble and Brain, 2004) as a result of peripheral 

inflammation (Ji et al., 2003). Indeed, spinal NK1 receptors are vital for the persistence of 

arthritic pain (Keeble and Brain, 2004). Calcitonin gene related peptide (CGRP) is another 

neuropeptide involved in pain signalling and occurs at elevated levels in SF from RA joints 

(Grimsholm et al., 2005). Like SP, it also causes neurogenic inflammation (Helyes et al., 

2006). 

 

1.1.5 Interactions between the immune and nervous systems 

The immune controlled reactions in RA do not work in isolation from the neural processes. 

The nervous and immune systems are known to interact in a reciprocal fashion (Freidin and 

Kessler, 1991) not only by secretion of neuropeptides at the site of inflammation during 

immune responses but via the production of these mediators by immune cells (Grimsholm 

et al., 2005). Conversely, cytokines can function as growth and differentiation factors in the 

nervous as well as the immune system (Shadiack et al., 1993). Some studies have found 

correlations between SF levels of SP and various pro-inflammatory cytokines such as IL-6 

and TNFα in long-standing (greater than 1 year) RA as well as a correlation between SP 

levels and joint inflammation (Grimsholm et al., 2005). However, there are claims that 

serum levels of SP do not correlate with disease activity (Keeble and Brain, 2004). 

Undoubtedly though, IL-1β induces SP expression in cultures of superior cervical 

ganglionic neurons (SCGN) and SP increases IL-1 production in B-cells (Freidin and 

Kessler, 1991) and modulates release of IL-1, TNFα and IL-6 from blood monocytes 

(macrophage precursors) (Grimsholm et al., 2005).  

Another cytokine with a role in the “cross-talk” between the nervous and immune systems 

is leukaemia inhibitory factor (LIF). It is an IL-6 type cytokine named for its ability to 

induce terminal differentiation in myeloid leukaemia cells. It also has several other 

functions including regulating blood cell development and T-cell maturation in the immune 
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system, and gene expression and neuronal response to injury in the nervous system 

(Patterson, 1994). Levels are increased in inflammatory conditions such as RA (and 

osteoarthritis) although the source is not clear (Patterson, 1994). However, LIF has been 

shown to be produced by IL-1β, and the former acts to induce the production of SP 

(Shadiack et al., 1993) in SCGN cultures; this process is dependent on the presence of non-

neuronal cells in the cultures, implying that glial cells are the source of LIF not only in 

events concerning solely the nervous system but those involving the immune system also 

(Patterson, 1994; Shadiack et al., 1993). So inflammation (and the presence of 

inflammatory mediators) induces LIF which, in turn, triggers production of neuropeptides 

(including SP and CGRP) in sensory neurons that do not usually express them, and through 

the induction of neurogenic inflammation, these neuronal mediators contribute directly to 

the inflammatory process (Patterson, 1994).  

 

1.1.6 Osteoarthritis 

Osteoarthritis (OA), the most common joint disease, chiefly affects the hands, spine, hips 

and knees. Changes in bone below the cartilage and loss of cartilage in the joint lead to pain 

and disability. It is thought that various processes, with a variety of causes or origins, 

potentially coupled with existing pre-dispositions, result in this joint disease. Cartilage 

integrity, vital for healthy joints, is maintained by the balance between cytokine-controlled 

anabolic and catabolic processes. However, the contribution of cytokines to joint 

destruction is not as well understood in OA as it is in RA. Despite this, it seems that the 

cytokine profile of SF from OA patients is the same as that of RA, although individual 

factors are present at lower concentrations. It is thought, therefore, that either OA joints are 

more sensitive to cytokines and damage occurs at lower concentrations or the cytokines 

themselves are not responsible for joint damage (Westacott and Sharif, 1996).  

Joint cartilage is composed of collagen, water and proteoglycan (PG). IL-1 is an inducer of 

cartilage degradation acting by suppressing production of collagen, increasing destructive 

enzyme levels and interfering with the ability of chondrocytes to produce PG. Despite this, 

IL-1 in the SF of OA joints cannot always be detected. An increase in the number of IL-1α 

and β secreting macrophages in OA compared to non-arthritic joints demonstrates that 

diseased areas can produce IL-1. Furthermore IL-1 receptor numbers are increased on OA 
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chondrocytes suggesting that cartilage in these joints could be more sensitive to damage by 

IL-1 compared to healthy joint cartilage. TNFα also degrades cartilage although less 

potently than IL-1 and, similarly, its detection in OA SF is not consistent. Interestingly, 

there is no correlation between IL-1 and TNFα levels demonstrating that in OA, at least, 

these cytokines are not produced by the same cells in response to a common stimulus (the 

opposite is thought to be the case in RA). Like IL-1, there are increased TNFα receptor 

levels on OA chondrocytes, perhaps conferring increased sensitivity of cartilage to this 

cytokine thereby enhancing destruction. High levels of IL-6 in diseased joints have been 

hypothesised to indicate disease activity. Both IL-1 and TNFα induce IL-6 production 

which is necessary for IL-1 mediated inhibition of PG synthesis, a contributing factor to 

cartilage damage (Westacott and Sharif, 1996). As well as a role in RA, LIF has also been 

found in SF from OA patients (Patterson, 1994; Westacott and Sharif, 1996). It is thought 

to be involved in the degradation of joint cartilage, possibly by stimulating the loss of PG 

(Westacott and Sharif, 1996). However, a role for LIF in immune and nervous system 

communication in OA joints has not been investigated.  

 

1.1.7 Botulinum neurotoxins and their mechanism of inhibition of SNARE-mediated 

exocytosis 

There are seven distinct serotypes of BoNT (A-G) which are produced by the bacterium 

Clostridium botulinum. The disease caused by these toxins, botulism, is characterised by 

flaccid paralysis caused by inhibition of synaptic transmission resulting from blockade of 

Ach release at peripheral nerve endings (Dolly and Aoki, 2006; Humeau et al., 2000). The 

toxin is produced as a single chain, 150 kDa polypeptide, but cleavage one-third of the way 

from the N-terminus into a 100 kDa heavy chain and 50 kDa light chain is necessary for 

full biological activity. However, the 2 resultant chains remain connected by a disulphide 

bridge and non-covalent interactions. Following binding of the toxin to high affinity sites 

on pre-synaptic motor nerve endings, acceptor-mediator endocytosis results in 

internalisation followed by reduction of the inter-chain bridge and the light chain is 

released into the cytoplasm (Humeau et al., 2000). BoNT light chains have zinc-dependent 

protease activity and cleave SNARE proteins, with serotypes targeting only specific 

SNAREs (Dolly and Aoki, 2006; Humeau et al., 2000). SNARE (soluble NSF (N-
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ethylmaleimide sensitive factor) attachment protein receptor)-mediated exocytosis is 

required for Ach release and SNARE cleavage by BoNTs prevents this process (Humeau et 

al., 2000). For exocytosis to occur, vesicles containing Ach must contact the target 

membrane (i.e. the plasma membrane) through docking. The vesicle membrane is then 

integrated completely into the target membrane in a multi-step process - priming and fusion 

(Rizo and Sudhof, 1998). This is dependent on the interaction of SNARE proteins on the 

vesicle and target membranes, v-SNAREs and t-SNAREs, resulting in the formation of a 4-

helix bundle and fusion of the two membranes. The energy released from the formation of 

the very stable SNARE complex is thought to be sufficient to fuse the membranes allowing 

efflux of the vesicle contents (Jahn and Scheller, 2006; Rizo and Sudhof, 1998). At the 

neuromuscular junction, the v-SNARE is vesicle-associated membrane protein (VAMP) 

and the t-SNAREs are SNAP-25 (synaptosomal-associated protein, with molecular mass 25 

kDa) and syntaxin (Dolly and Aoki, 2006; Rizo and Sudhof, 1998). VAMP is cleaved by 

BoNTs /B, /D, /F and /G, SNAP-25 by BoNTs /A, /C1 and /E and syntaxin by BoNT/C1 

(Dolly and Aoki, 2006; Humeau et al., 2000). Many homologues of these proteins exist in 

various tissues and some are cleaved by the BoNTs. Cleavage can also be species specific. 

In almost all cases, alterations in toxin potency on various homologues/species are due to 

mutations in amino acid sequence of the SNAREs in question although occasionally it is 

due to an absence of receptors to a given BoNT serotype in a particular species (Humeau et 

al., 2000).  

 

1.1.8 Aims of the study 

BOTOX®, a pharmaceutical preparation containing BoNT/A complexed with 

haemagglutinin (Dolly and Aoki, 2006), has proved successful in the treatment of severe, 

chronic pain associated with joints affected by both RA and OA (Mahowald et al., 2006). 

BoNT/A can inhibit SNARE-mediated exocytosis of neuropeptides from sensory nerves – 

C and Aδ fibres – preventing “wind-up” and central sensitisation (Aoki, 2001; Dolly and 

Aoki, 2006), processes that have been shown to be involved in RA (Keeble and Brain, 2004) 

(see above). Notably, LIF in the pancreas has been shown to cause an alteration in the 

phenotype of sympathetic neurons; the transmitter released changes from norepinephrine to 

Ach – an affect that can be replicated in cultured sensory neurons (Patterson, 1994; 
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Shadiack et al., 1993). Given that the toxin has a high affinity for cholinergic neurons, 

conferred by receptors present at nerve endings (Aoki, 2001; Dolly and Aoki, 2006), 

perhaps, the presence of LIF in arthritic joints can influence the phenotype of the 

innervating neurons resulting in heightened toxin sensitivity. Furthermore, there is much 

evidence that the release of cytokines implicated in the pathogenesis of these diseases is 

SNARE-mediated (Chai et al., 2006; Martin-Martin et al., 2000; Mollinedo et al., 1999; 

Murray et al., 2005b; Pagan et al., 2003), and provided the cells can mediate their uptake, 

BoNTs could selectively cleave these proteins preventing exocytosis of the inflammatory 

mediators. It is, therefore, reasonable to hypothesise that the mechanism of action of 

BOTOX in the treatment of chronic pain is related to SNARE inactivation in cytokine-

releasing cells. Demonstrating reduction by BoNTs of neuropeptide and cytokine release 

and associated SNARE cleavage in cells would confirm the ability of BoNTs to act directly 

on immune cells. Substantiating this hypothesis is a crucial step in defining the action of 

BOTOX® and, hence, characterising the target(s) of this therapeutic in the treatment of 

arthritis. 
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1.2 Materials and Methods 

 

1.2.1 Materials 

SF samples were provided by Dr. M. Mahowald, Minnesota Medical School, MN, USA. 

The Bioresources Unit at Dublin City University provided Sprague-Dawley rat pups. 

BoNT/B, /C1, /D, /E and /F were purchased from Metabiologics. List Laboratories 

provided BoNT/A in fully active di-chain form. Anti-syntaxin antibody (HPC-1, 

demonstrated in house to react with mouse, rat and human proteins) as well as alkaline 

phosphatase (AP) and horseradish peroxidase (HRP) conjugated secondary antibodies were 

purchased from Sigma. SMI-81 antibody (anti-SNAP-25, reactive with mammalian protein) 

was bought from Sternberger Monoclonals. Anti-VAMP-2 and anti-SNAP-23 antibodies 

(both reactive with human, rat and mouse proteins) were from Synaptic Systems. The pan 

VAMP antibody (HV62, reactive with mammalian proteins) was produced in-house. 

Fluorescently conjugated secondary antibodies were bought from Molecular Probes [Alexa 

Fluor (AF) 488] and Jackson Immunoresearch [Indocarbocyanine 3 dye (Cy3)]. 

SuperSignal West Pico Luminol/Enhancer solution was from Pierce. ELISA kits for TNFα, 

IL-1β, IL-6, LIF and SP, and CGRP were purchased from R&D Systems and SPIbio, 

respectively. Leibovitz’s (L15) medium, trypan blue, RPMI-1640 medium (RPMI), L-

glutamate, phosphate buffered saline (PBS) used for tissue culture and 

antibiotic/antimicotic (ab/am) solution were from Gibco. Other tissue culture reagents and 

all other chemicals were sourced from Sigma.  

 

1.2.2 Details of synovial fluid donors and sample preparation for analysis 

As part of a double blind, randomised, placebo-controlled clinical trial, SF samples were 

taken from arthritic patients before and after intra-articular (IA) injection with BOTOX® or 

placebo as detailed in Table 1.1 and stored at -80°C until used. In preparation for ELISA 

analysis, samples were thawed on ice and sonicated.   
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1.2.3 ELISA of synovial fluid samples and cell supernatants of botulinum neurotoxin-

treated macrophages  

ELISAs were carried out using kits, according to the manufacturers’ instructions. For all 

factors tested, levels in test samples were calculated from standard curves produced from 

absorbance readings of wells containing known concentrations of standard solutions. 

 

1.2.3a TNFα, IL-1β, IL-6 Samples and standards were incubated overnight at 4°C in 96-

well plates pre-coated with the relevant capture antibody. After thorough washing, plates 

were incubated with a second biotinylated antibody for 2 h at room temperature. Following 

another washing step, plates were incubated with streptavidin-HRP for 20 min at room 

temperature in the dark, washed, and substrate added for 20 min in the dark. Stop solution 

was then applied and the plate read using a microplate reader set to 450 nm with a reference 

wavelength of 570 nm.  

1.2.3b LIF Standards and samples were reacted overnight at 4°C in 96-well plates pre-

coated with a monoclonal antibody against LIF. After thorough washing, plates were 

incubated with a second antibody conjugated to HRP for 2 h at room temperature. Plates 

were developed with substrate solution for 20 min, in the dark, at room temperature, and 

after the addition of stop solution, read using a microplate reader as above. 

1.2.3c Substance P SP levels in test samples were determined using a competitive enzyme 

immuno-assay. Samples, standards and controls were placed in a 96-well plate pre-coated 

with a polyclonal antibody. Primary antibody (for SP) solution and SP conjugated to HRP 

were added to the wells and the plate was incubated overnight at 4°C. After washing, 

substrate solution was added to the wells and the plate incubated for 30 min, at room 

temperature, in the dark. Following the addition of stop solution, the absorbance at 450 nm 

of each well was determined using a microplate reader, with a reference wavelength as 

before. 

1.2.3d CGRP A 96-well plate pre-coated with a monoclonal antibody for CGRP was rinsed 

with wash buffer. Samples, standards and controls were placed into the plate; an anti-CGRP 

tracer was added and the plate incubated overnight at 4°C. The plate was washed again and 

incubated with Ellman’s reagent [5, 5'-dithiobis-(2-nitrobenzoic acid)] in the dark, at room 
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temperature for 30 min. Absorbance of wells at 405 nm was determined using a microplate 

reader. 

 

1.2.4 Isolation and culture of superior cervical ganglionic neurons; treatment with LIF and 

quantification of SNARE cleavage by botulinum neurotoxins 

Culturing of SCGNs was performed as discussed in (Mahanthappa and Patterson, 1998). 

Rat pups (1–3 day old) were killed with a lethal injection of Dolethal (50 mg/kg body 

weight). The animals were then placed on their backs and pinned through the front paws 

and snout. Using a dissection microscope, the trachea was exposed and cut through to 

reveal the oesophagus. Once the latter and the tongue were removed, the carotid artery was 

visible and ganglion (found at the artery branch) could be dissected out. Dispersal of 

ganglia was achieved with 1 mg/ml collagenase in L15 buffered for a 5% CO2 atmosphere 

(L15-CO2), for 30 min, with periodic agitation. Following trituration with a glass pipette, 

centrifugation, and resuspension in L15-CO2 to remove the collagenase, neurons were 

plated in wells previously coated with rat tail collagen. Typically, 10 ganglia were used per 

48-well plate. The following day, the antimitotic agent cytosine arabinoside (AraC), was 

added to the medium to prevent proliferation of non-neuronal cells. AraC was removed at 

day 2 after plating and replaced again on day 3. At this stage LIF (10 ng/ml) was added to 

some of the cells. Next day, AraC was removed but LIF was retained in test cultures. 

Medium (with and without LIF) was changed on day 9 after plating. Cells cultured for 12 

days were exposed to toxins (BoNT/A, /B, /C1 and /E), diluted in L15-CO2 to the 

concentrations detailed in Fig. 1.2 and 1.3, with 2 wells used for each concentration. The 

following day, the toxin containing medium was removed and cells harvested in lithium 

dodecyl sulphate (LDS) sample buffer, with pooling of wells for each concentration. After 

samples were heated to >80°C for 5 min, they were run on NuPAGE 12% Bis-Tris gels in 

MOPS buffer (50 mM Tris, 50 mM MOPS, 0.1% SDS, 1 mM EDTA, pH 7.7) for 2 h at 

175 volts. Gels were layered onto nitrocellulose membranes, sandwiched between several 

sheets of blotting paper, all previously soaked with transfer buffer [25 mM Tris, 192 mM 

glycine, 30% (v/v) methanol]. Wet transfer was carried out for 2 h at 25 volts. The resultant 

membranes were blocked with 3% TBS-T (20 mM Tris, 300 mM NaCl and 0.1% Tween 20, 

pH 7.5)/milk for 1 h at room temperature. After blocking, membranes were incubated with 
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mouse HPC-1 (1:2000), mouse SMI-81 (1:4000) and rabbit anti-VAMP-2 (1:200) diluted 

with 3% TBS-T/milk. After 1 h, three 10 min washes were performed with TBS-T and the 

membranes incubated for 1 h with the anti-mouse and anti-rabbit secondary antibodies 

conjugated to AP, made up in 3% TBS-T/milk. Membranes were washed twice for 10 min 

with TBS-T and once with AP buffer (200 mM Tris, 200 mM NaCl, 20 mM MgCl2, pH 9.5) 

before addition of substrate solution (40 mM BCIP/10 mM NBT in AP buffer). This was 

left for 5 – 30 min depending on colour development before a TBS-T wash and, finally, a 

rinse with TBS-T containing EDTA (20 mM) to stop the enzymic reaction. Band 

densitometric analysis was performed using GeneTools software to determine the amount 

of intact relative to cleaved protein. Where cleavage products were not detectable by 

antibodies, densities of the diminishing intact protein band were compared to that of an 

internal standard i.e. VAMP-2 was compared to syntaxin-1. 

 

1.2.5 Culture of lymphocytes and macrophages 

DG75 (an Epstein-Barr Virus-negative B cell line from a patient with Burkitt's lymphoma) 

cell line was cultured in RPMI medium supplemented with 10% foetal calf serum (FCS), L-

glutamate and ab/am solution. Cells were maintained in flasks as suspension cultures and 

grown to a density of 1x106 cells/ml before harvesting by centrifugation in a sterile tube at 

1000 g, for 5 min, at room temperature. When further cell propagation was required, a 

suitable volume of cells was returned to a culture flask containing fresh medium.  

Murine macrophages (J774 cell line) were also grown in RPMI supplemented with 10% 

FCS. Once confluent, they were detached from the base of the flask that they loosely attach 

to, by tapping the sides. Medium containing the cells was collected and cells were pelleted 

by centrifugation at 200 g for 5 min at room temperature. For continuation of cultures, cells 

were resuspended in 7 ml of fresh medium and 1 ml was used to seed a 75 cm2 flask 

containing 14 ml of RPMI. Cells were maintained for 3-4 days before splitting again.  

 

1.2.6 Treatment of murine macrophages with botulinum neurotoxins 

Macrophages cultured as previously described were plated in 6-well plates at a density of 4 

million cells/well. Medium was removed the following day and replaced with one 

containing 1 or 10 nM of BoNT/A, /B (1 nM only), /D, /E or /F in both the presence and 
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absence of 1 µg/ml lipopolysaccharide (LPS). After 24 h incubation, supernatants were 

collected and analysed using ELISAs. 

 

1.2.7 SNARE profiling of membranes prepared from cultured lymphocytes and 

macrophages 

Cells previously pelleted (at least 1x108 cells) were resuspended in ice-cold PBS and 

centrifuged at 200 g for 5 min; this was repeated twice before the cells were resuspended in 

5 ml of ice-cold distilled H2O. At this stage, a protease inhibitor cocktail was added at a 

1:1000 dilution (according to manufacture’s instructions, Sigma). Cells were then lysed by 

three freeze/thaw cycles; the tube containing cells was alternated between a beaker 

containing -80°C IMS and water at 37°C. The lysate was passed through a pre-cooled 25 

gauge needle 10 times, adjusted to 0.32 M sucrose and centrifuged at 1000 g for 10 min at 

4°C. The resultant supernatant was centrifuged at 105,000 g for 1 h at 4°C, the pellet 

solubilised in LDS sample buffer and heated to >80°C for 5 minutes once it had been 

passed through another 25 gauge needle. SDS-PAGE and Western blotting were performed 

as described previously. Antibodies used were as in section 1.2.4 with the inclusion of 

rabbit anti-SNAP-23 (diluted 1:1000), and in this case a HRP-conjugated secondary 

antibody. For development, three ten min washes with TBS-T were performed after the 

secondary antibody incubation, before substrate solution (SuperSignal West Pico 

Luminol/Enhancer solution) was added. After an appropriate incubation, according to the 

manufacturer’s instructions, excess liquid was removed and the membrane covered with a 

plastic sheet. Visualisation was with a G:BOX (Syngene) gel documentation system.   

 

1.2.8 Isolation of neutrophils from whole blood 

Human heparinized whole blood (30 ml) was separated into 4 tubes and diluted 1:2 with 

Hank’s balanced salt solution (HBSS). Each aliquot of diluted blood was layered over 10 

ml of ficoll-paque and centrifuged at 400 g for 30 min at room temperature. The plasma 

and ficoll-paque were aspirated off leaving a red blood cell pellet containing the neutrophils. 

The pellet was resuspended in 15 ml HBSS (twice the original volume of whole blood) and 

6% dextran (w/v in 0.85% NaCl solution) added to a final concentration of 1%. Red blood 

cells were left to settle out for 1 h at room temperature. The neutrophil-rich supernatant was 
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removed, diluted 1:2 with HBSS and centrifuged at 600 g for 10 min. Sometimes, red blood 

cell contamination was still present in the resultant pellet so, on these occasions, the red 

blood cells were briefly lysed with 2 ml ammonium chloride lysing buffer (168 mM NH4Cl, 

7.2 mM KHCO3, 1 mM EDTA, pH 7.3). HBSS (20 ml) was then added and another 

centrifugation step (at 600 g for 10 min) performed. The neutrophil pellet was resuspended 

in RPMI and cell number/viability ascertained using trypan blue and a haemocytometer. 

Typically in the region of 3 million cells were collected, with greater than 98% viability.     

 

1.2.9 Immuno-staining of isolated neutrophils 

All steps were performed with cells in suspension, as described in (Tapper et al., 2002). 

Neutrophils were pelleted out of RPMI and fixed in 1.5% paraformaldehyde (PFA) for 30 

min at 4°C then 1 h at room temperature, washed twice by centrifuging (at 1000 g for 3 min) 

and resuspending in 50 µl PBS. Following fixation, cells were permeabilised with 0.1% 

Triton-X 100 (TX-100) for 5 min before being washed again. Cells were then resuspened in 

25 µl of rabbit anti-SNAP-23 or guinea pig HV62 made up in 5% FCS/PBS for 2 h at room 

temperature, with constant agitation to avoid settling. Following another wash step, cells 

were incubated with 25 µl of the appropriate, fluorescently-conjugated, secondary antibody 

(anti-rabbit AF 488 or anti-guinea pig Cy3), for 1 h at room temperature, in the dark, again 

with agitation. After washing, cells were incubated with 30 µl 4',6-diamidino-2-

phenylindole (DAPI) stain for 10 min, washed a final time, and resuspended in 15 µl of 

PBS. Glycerol (45 µl of 100%) was added and the cells resuspended. This mixture was then 

placed onto a slide (taking care not to form bubbles). A coverslip was placed on top, and 

nail varnish used to seal the edges, once all excess liquid was removed with tissue. After 

the nail varnish had hardened, slides were stored overnight at 4°C before being examined 

with a fluorescent microscope, using the appropriate filter sets. 

In some experiments, permeabilised neutrophils were intoxicated with tetanus toxin (TeTX) 

light chain before and after fixation. In such instances, cells were incubated in HEPES 

buffer (50 mM HEPES-NaOH (pH 7.4), 2 mM dithioreitol (DTT), 0.2 mg/ml bovine serum 

albumin (BSA), 50 µM ZnCl2) containing 400 nM toxin light chain for 1 h at 37°C, washed, 

then stained as described above. 
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1.3 Results 

 

1.3.1 Comparison of cytokine profiles of arthritic patients pre- and post- BOTOX® 

administration failed to reveal a trend that can be attributed to this treatment 

As part of a clinical trial involving patients suffering from chronic pain associated with RA 

or OA, SF samples were taken pre- and at various times post-IA injection with BOTOX® or 

placebo (Table 1.1). Samples were analysed for levels of various inflammatory cytokines 

(TNFα, IL-1β and IL-6), as well as the neuropeptides SP and CGRP and, also, LIF. Despite 

its key role in the pathogenesis of RA (Grimsholm et al., 2005), TNFα was only detectable 

in 1 of the 2 RA patients tested (Fig. 1.1a). Where TNFα was present in RA patient RFS 

(Fig. 1.1a inset), there was no substantial decrease 1 month after IA BOTOX®. However, 3 

months post the 2nd BOTOX® treatment, the patient’s SF cytokine concentration had nearly 

tripled compared with initial baseline levels before any toxin was administered. In line with 

previous studies (Westacott and Sharif, 1996), TNFα was detectable in 3 out of 4 SF 

samples from OA patients (Fig. 1.1a). TNFα-containing sample sets were not available to 

track the effect of BOTOX® on cytokine levels within the expected duration of action of the 

treatment. Instead, SF was only taken when a patient presented for another BOTOX® 

injection, presumably once the effects of the previous dose had worn off. In this instance, 

there were similarities between RA and OA patients (RFS and CMO) in that TNFα 

concentrations had again nearly tripled compared with baseline (Fig. 1.1a). Cytokine levels 

were unchanged in samples from patients who received a placebo.  Despite the fact that in 

RA TNFα and IL-1β upregulate each other (Kay and Calabrese, 2004) and are produced by 

the same cells, presumably in response to the same stimulus (Westacott and Sharif, 1996), 

IL-1β was measurable in one RA patient’s SF, TAH, where no TNFα was detected (Fig. 

1.1b). In the other RA patient, RFS, differences in concentrations of both factors over time 

were consistent (Fig. 1.1a,b and insets). Where TNFα was detected in OA SF, IL-1β was 

also present (Fig. 1.1b). However, TNFα concentration changes in patient CMO were not 

mirrored in IL-1β levels. 
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Patient Diagnosis Patient ID Knee Study Visit Treatment 
      

TBB OA TBB #1  left Baseline - pre IA placebo placebo 
  TBB #2  left  1 mo blind - after IA placebo  placebo 
  TBB #3  left 1 mo OL - after IA BOTOX®  BOTOX® 
  TBB #4  left 3 mo OL - after IA BOTOX®   
  TBB #5  left 6 mo OL - after IA BOTOX®  
      

CMO OA CMO #1  left Baseline - pre IA BOTOX® BOTOX® 
  CMO #2  left 6 mo OL - after second IA 

BOTOX® 
 

      
RJO OA RJO #1 left Baseline - pre IA placebo placebo 

  RJO #2  left 1 mo blind - after IA placebo placebo 
      

MCS OA MCS #1  right Baseline - pre IA placebo placebo 
  MCS #2  right 1 mo blind - after IA Placebo  placebo 
      

TAH RA TAH #1  right Baseline - pre IA BOTOX® BOTOX® 
  TAH #2 right 1 mo blind - after IA BOTOX® BOTOX® 
      

RFS RA RFS #1  left Baseline - pre IA BOTOX® BOTOX® 
  RFS #2  left 1 mo blind - after IA BOTOX® BOTOX® 
  RFS #3 left 3 mo OL - after second IA 

BOTOX®  
BOTOX® 

Table 1.1│Details of SF samples taken from patients involved in a clinical trial assessing the 

effect of BOTOX® for the treatment of refractory joint pain associated with arthritic joints. 

Information relates to the patients, their treatments and time course of sample collection. (OA – 

osteoarthritis, RA – rheumatoid arthritis, IA – intra-articular injection, OL – open label, mo – 

month) 
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Figure 1.1│ Effect of BOTOX® on cytokine levels in SF samples from arthritic patients. 

Graphs show cytokine profiles of SF taken from patients with OA and RA before and after 

treatment with BOTOX® or a placebo. SF was taken at various time points and individual 

cytokine concentrations (a-e) were determined by ELISA. Samples were grouped according 

to patient; with each bar representing a different SF sample, plotted chronologically. Sample 

details are given in Table 1.1. Patient “RFS” shows inflammatory cytokine levels 

approximately 10 times higher (insets) than others. Results are averages (± S.D.) from 

ELISAs performed (n=4) on at least 2 different days. Error bars are sometimes encompassed 

by the bars. 

 

a 
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Surprisingly, a greater than 50% drop in IL-1β was observed in patient MCS following 

treatment with a placebo. Consistent with the proposed correlation of IL-6 with disease 

activity in both RA (Nishimoto and Kishimoto, 2004) and OA (Westacott and Sharif, 1996), 

this cytokine was detected in all SF samples (Fig. 1.1c). Furthermore, where appropriate 

samples were available, in all patients treated with BOTOX® a decrease (albeit minimal in 

some cases) in cytokine concentration was observed (TBB, TAH and RFS). Levels 

increased again some months after BOTOX® administration in some patients (CMO 6 

months and RFS 3 months – Table 1.1) corresponding to the expected duration of action of 

the treatment. The neuropeptide SP was also present in all the samples tested (Fig. 1.1d). 

Disappointingly, the concentration of SP in SF appeared unaffected by BOTOX® treatment, 

while placebo treatment appeared to alter SP levels; both an increase and decrease were 

observed. LIF was also present in SF from both OA and RA joints (Fig. 1.1e). Interestingly, 

RA patient TAH had an appreciable increase in SF LIF following IA BOTOX®. In contrast 

with results from other studies (Grimsholm et al., 2005), CGRP was undetectable not only 

in OA SF but RA samples also (data not shown). For all the factors measured, there were 

no obvious concentration differences between the RA and OA samples. While patient RFS 

had appreciably higher levels of inflammatory cytokines than the others (Fig. 1.1a,b,c 

insets), this was the only trend seen between individuals. 

 

1.3.2 LIF enhanced botulinum-neurotoxin mediated SNARE cleavage in superior cervical 

ganglia neurons  

BoNT cleavage of SNARE proteins in cultured SCGNs, in the presence and absence of LIF, 

was quantified by SDS-PAGE, Western blotting and band densitometric analysis. Cleavage 

of SNAP-25 by BoNT serotypes /A, /C1 and /E, and VAMP-2 proteolysis by BoNT/B were 

analysed. BoNT/C1 also has proteolytic activity against syntaxin-1 but it was not analysed. 

Membranes resulting from Western blotting appeared to show enhanced cleavage of 

SNARE proteins in neurons cultured with 10 ng/ml LIF (Fig. 1.2). Thus, cleavage products 

of SNAP-25 were visible in LIF-treated cells where lower doses of BoNT/A, /E or/C1 had 

been administered. In the case of BoNT/B cleavage of VAMP-2, the intact VAMP band 

was reduced at lower concentrations of toxin compared with neurons cultured in the 

absence of LIF.  
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pM BoNT              - LIF 
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Figure 1.2 │Botulinum neurotoxin-mediated SNARE cleavage in superior cervical 

ganglia neurons – visualisation. The effect of 12 days of 10 ng/ml LIF treatment on 

cleavage of SNARE proteins in SCGNs by various BoNT serotypes. SCGNs, cultured 

for 12 days with and without LIF were exposed to BoNT/A, /B, /C1 or /E (1 – 10,000 

pM) for 24 h, SNARE cleavage was then revealed by SDS-PAGE and Western 

blotting. Membranes were probed with antibodies against syntaxin-1 (HPC-1), SNAP-

25 [including BoNT/A, /C1 and /E cleavage products] (SMI-81) and VAMP-2, 

developed with AP and photographed with a G:BOX documentation system.     
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Densitometry analysis of the protein bands revealed by AP development of the Western 

blots, performed as described in the figure legend (Fig. 1.3), confirmed the visualised effect 

of LIF treatment, i.e. that it resulted in more extensive SNARE cleavage with lower doses 

of toxin (Fig. 1.3). Repetition of these experiments will be necessary in order to ascertain 

the significance of cleavage differences. 

 

1.3.3 SNARE protein profiles in immune cells 

Membranes were prepared from cultures of human lymphocyte and murine macrophage 

cell lines and subjected to Western blotting using antibodies against the SNARE proteins 

syntaxin-1, VAMP-2, SNAP-25 and SNAP-23. Rat brain membranes were also included to 

provide positive controls for the neuronal SNAREs (Table 1.2, Fig. 1.4). Neither syntaxin-

1 nor SNAP-25 were detectable in either of the membrane preparations but were found in 

the brain membranes, as expected. VAMP-2 was visualised in murine macrophages but not 

in human lymphocytes which both contained SNAP-23. The detected molecular mass for 

the latter, though greater than 23 kDa, corresponds with the 29 kDa size previously reported 

and estimated for both human and mouse SNAP-23 respectively (Martin-Martin et al., 

2000). 

Neutrophils were isolated from human heparinized whole blood and immuno-staining was 

performed to determine the SNARE profile of these non-neuronal cells (Table 1.2). SNAP-

23 was identified (Fig. 1.5a) but, as human SNAP-23 is resistant to cleavage by all 

serotypes of BoNT, cleavage assays were not attempted. 

 

 Neuronal tissue  
(BoNT sensitivities) 

Non-neuronal tissue 
(BoNT sensitivities) 

v-SNAREs VAMP 1 (/B, /D, /F, /G) VAMP 3 (/B, /D, /F, /G) 

 VAMP 2 (/B, /D, /F, /G)  

   

t-SNAREs SNAP-25 (/A, /E) SNAP-23 (none) 

 syntaxin 1A, 1B (/C1) syntaxin 2, 3, 5, 6 (/C1*) 

  syntaxin 4 (none) 

 Table 1.2│ Human SNAREs – location and toxin sensitivities. Adapted from (Humeau et al., 

2000). * expected 
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Figure 1.3│ Botulinum neurotoxin-mediated SNARE cleavage in superior cervical 

ganglia neurons – quantitation. Analysis of SNARE cleavage by BoNT serotypes /A, 

/B, /C1 or /E in SCGNs with and without LIF treatment. Densitometric analysis of 

protein bands was performed on AP developed Western blots (Fig. 1.2) using 

GeneTools software. In the case of SNAP-25 (a, b, c), the density of the intact 

protein band in each lane was expressed as a % of the total (intact and cleaved). For 

VAMP-2 (d) where the cleavage product was not visualised, band density was 

compared to the syntaxin band as it is not cleaved by BoNT/B and served as an 

internal control for the amount of protein in each lane.     
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Figure 1.4│SNARE proteins of lymphocytes and macrophages. Membranes prepared 

from human lymphocyte (ly) and murine macrophage (mc) cell lines were subjected to 

SDS-PAGE and Western blotting (AP conjugated secondary antibodies were used for 

syntaxin-1, VAMP-2 and SNAP-25 and HRP for SNAP-23) and their SNARE profiles 

determined. Rat brain membranes (rb) were included as a positive control for neuronal 

SNAREs. Syntaxin-1 (→→→→) and SNAP-25 (→→→→) were only found in the rat brain 

membranes, VAMP-2 was present in murine macrophages and rat brain membranes (→→→→) 

and SNAP-23 only in the immune cells (→→→→). M, (◄) denotes mobilities of standard 

proteins (kDa). The apparent molecular weight of SNAP-23 was as expected from 

previous studies – see section 1.3.3. 
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Figure 1.5│ SNARE profile of neutrophils. These cells were isolated from human 

heparinized whole blood and SNAREs fluorescently labelled. a, SNAP-23 (rabbit anti-

SNAP-23 and anti-rabbit AF 488); b, VAMP (guinea pig HV62 and anti-guinea pig Cy3). 

DAPI staining revealed distinct multi-lobed nuclei of neutrophils (insets). Incubation with 

400 nM TeTX light chain (c) did not attenuate the VAMP signal (b compared with c) in 

fixed and permeabilised cells. Permeabilised, toxin treated, un-fixed neutrophils 

disintegrated during processing and could not be assessed. Omission of the primary 

antibody, with DAPI included to demonstrate the presence of cells, gave only background 

fluorescence: d, AF 488 and e, Cy3. 
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The HV62 antibody which recognises VAMPs -1, -2 and -3 labelled these cells (Fig. 1.5b). 

Omission of either of the primary antibodies resulted in only background signals (Fig. 

1.5d,e). VAMP proteins are cleaved by BoNT/B, /D, /F and /G and also by TeTX. For 

safety reasons and for ease of working, cleavage of VAMP in neutrophils was attempted by 

incubation with TeTX light chain rather than with a VAMP-cleaving BoNT serotype (Fig. 

1.5c). However, the fluorescent signal was not eliminated when fixed neutrophils were 

treated with TeTX light chain and labelled with HV62. Attempts were made to cleave 

protein in permeabilised, unfixed samples but due to the very delicate nature of the cells 

and their inability to survive outside the body for more than a few hours, neutrophils 

disintegrated before the staining process could be completed. Therefore, cleavage of 

VAMP and demonstration of the presence of toxin-sensitive VAMP in these immune cells 

could not be confirmed within the confines of working with such delicate cells (Fig. 1.5b,c). 

 

1.3.4 Various serotypes of botulinum neurotoxin act on LPS-activated macrophages to 

reduce release of inflammatory cytokines 

Murine macrophages were treated with different serotypes of BoNT (/A, /B, /D, /E or /F) 

overnight, in the presence and absence of LPS. After 24 h, cell supernatants were collected 

and inflammatory cytokine compositions analysed by ELISA. In the absence of LPS, 

BoNTs /B, /E and /F caused a small but significant increase in the release of IL-1β from the 

macrophages at 1 nM (Fig. 1.6a) (p=0.0447, 0.0025 and 0.0276 respectively). At a higher 

concentration (10 nM), BoNTs /E and /F continued to exert this significant effect with 

p<0.0001 in both cases (BoNT/B wasn’t tested at the higher concentration). In the presence 

of LPS some toxin serotypes reduced IL-1β release; /A, /B and /E having significant effects 

at the concentrations tested. BoNT/D only reduced IL-1β release significantly (p=0.0091) 

when 10 nM was applied to the LPS treated cells. In the case of TNFα, BoNT/A, /B, /E and 

/F significantly increased release in the absence of LPS at 1 nM, with an even greater 

response from 10 nM BoNT/E and especially BoNT/F. Conversely, the higher dose of 

BoNT/A did not result in a significant increase in TNFα release from non-activated cells 

(Fig. 1.6b). BoNT/D, which did not affect cytokine release in the absence of LPS, was able 

to reduce TNFα levels in its presence, but not significantly and only at the lower dose of 1 

nM. IL-6 release from LPS-activated macrophages was not significantly suppressed by any  
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a b c 

d 

Figure 1.6│ Cytokine release from botulinum neurotoxin-treated macrophages. Some 

serotypes of BoNT can attenuate the release of various cytokines from LPS-treated murine 

macrophages. Macrophages were treated with 1 or 10 nM toxin for 24 h in the absence (a-

c upper panels and d left hand panel) and presence (a-c lower panels and d right hand 

panel) of LPS (1 µg/ml) before cell supernatants were collected and cytokine levels 

measured by ELISA. Control supernatants from cells not exposed to toxin, with and 

without LPS, were similarly analysed. Data is plotted as mean (n=3) ± S.D. Significance 

values refered to in the text were calculated using unpaired t-tests, where control release 

was compared individually, to that in the presence of the various serotypes tested. 
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of the BoNT serotypes tested regardless of concentration (Fig. 1.6c), but 1 nM of /B 

(p=0.0233), /E (p=0.0311) and /F (p<0.001) cause significantly increased levels in the 

absence of LPS, an effect that was increased by a higher dose of BoNT/E and especially 

BoNT/F (p<0.0001) as seen with other cytokines where 10 nM BoNT/F causes release in 

the non-activated macrophages similar to that seen in the LPS-treated control. Given that 

LIF is produced by cells in arthritic joints, the affect of BoNTs on its release were also 

studied (Fig. 1.6d). Treatment with both 1 and 10 nM of the BoNT serotypes did not 

significantly increase or decrease LIF release from macrophages which had not been 

exposed to LPS. Only BoNT/A significantly attenuated LIF levels, and at both 

concentrations tested (1 nM, p=0.0129; 10 nM, p=0.0235). In summary, BoNT treatment 

had differing effects on the various cytokines examined. While increased (compared to 

control) release was usually the case when toxin was added to non-activated cells, this did 

not seem to have any bearing on results from LPS-treated cells, with the exception of 

BoNT/F which not only triggered cytokine release in the absence of LPS but also failed to 

reduce release in its presence. 
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1.4 Discussion 

 

Despite the success of BOTOX® IA injections in treating the chronic pain associated with 

both RA and OA (Mahowald et al., 2006), the mechanism of action of the toxin in this 

application has yet to be deciphered. This preliminary study was designed to begin to 

investigate potential targets for BOTOX® in the arthritic joint and the possible actions of 

other BoNT serotypes in such a condition, taking into account both the neural and 

inflammatory contributors. The first step in this exploration was to analyse SF taken from 

arthritic joints before and after BOTOX® treatment, administered during a clinical study. It 

was hoped that changes in the concentrations of various inflammatory mediators would 

reveal the potential site(s) of action of this treatment. 

 

In the SF samples investigated, from both RA and OA joints, only IL-6 levels consistently 

appeared to be affected by BOTOX® treatment, with levels reducing post treatment and 

increasing again when further treatments were required, which would be expected given the 

role IL-6 is thought to play in indicating disease activity in both conditions (Nishimoto and 

Kishimoto, 2004; Westacott and Sharif, 1996). However, a correlation between SP and IL-6 

levels in RA previously demonstrated was not revealed here (Grimsholm et al., 2005), nor 

was there a relationship between the other inflammatory cytokines tested and SP, as might 

be expected given previous observations (Grimsholm et al., 2005). Furthermore, a link 

between TNFα and IL-6 SF concentrations which have been seen in SF samples from 

patients with temporo-mandibular joint disorders including OA (Kaneyama et al., 2005) 

were not revealed in this study. While it is unwise to draw too many conclusions from such 

a small sample, some of the discrepancies between the results obtained in this study and 

others could be due to the well documented lack of reproducibility between such 

measurements made with various assay systems (Westacott and Sharif, 1996) in different 

Institutions (Kaneyama et al., 2005). So it is necessary to primarily compare results only 

within individual studies. 

Despite this, there is value in this investigation if limitations in both SF samples and factors 

analysed are addressed. Firstly, there were a very small number of samples available with 
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insufficient time points post BOTOX® administration. Age and disease stage matching 

would also be important in a more comprehensive study as well as information on the 

clinical outcomes for treated patients. Since SF volume can distort outcomes (Kaneyama et 

al., 2005), it is important to ensure that aspirated infusions are consistent in volume 

between patients. In this initial exploration, the number of factors investigated was limited. 

Assuming sufficient SF volume, it would be interesting to compare inflammatory mediators 

and their soluble receptors which act as antagonists (Grimsholm et al., 2005) as an excess 

of cytokine compared to such receptors is necessary (Kaneyama et al., 2005) for a factor to 

exert its effect. Where large excesses of inflammatory cytokines or alterations in their 

levels following treatment are not found, investigating anti-inflammatory cytokines could 

reveal whether an imbalance between the 2 groups is indicative of symptoms, or, 

deficiencies in compounds capable of counteracting inflammation are causal. Monitoring 

other factors more directly implicated in joint destruction such as receptor activator of 

nuclear factor-κΒ (RANK) ligand (RANKL) which is important for osteoclast 

differentiation (McInnes and Schett, 2007) could also reveal further information. 

 

LIF, a cytokine with many functions, has been found in SF from both RA and OA joints 

both in this study and elsewhere (Patterson, 1994). While it is thought to have a destructive 

role in the joint (Westacott and Sharif, 1996), it can also induce a cholinergic phenotype in 

neurons in vitro and in vivo (Patterson, 1994; Shadiack et al., 1993). Given the high affinity 

of BoNT serotypes for ecto-acceptors on cholinergic nerve endings (Aoki, 2001; Dolly and 

Aoki, 2006), experiments were performed to test the hypothesis that the presence of LIF 

enhances the sensitivity of sensory nerve endings in arthritic joints to BOTOX®. To this 

end SNARE cleavage by various serotypes of BoNTs was quantified in control and LIF-

treated cultured SCGNs. Incubation with LIF gave evidence of SNARE cleavage at lower 

toxin doses not just in the case of BoNT/A, the serotype used clinically, but for BoNT/B, 

/C1 and /E also. It is worth noting that LIF-treated cultures often appeared to be somewhat 

sparser with fewer processes. This corresponded to weaker bands on blots developed under 

the same conditions as control cultures, an effect particularly clear when analysing the 

already quite faint VAMP-2 bands. This made densitometry analysis of this protein 

somewhat more challenging; furthermore, as cultures were plated on collagen, protein 
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quantitation of samples before analysis was not possible. While this result is certainly 

promising, it is unwise to assume that such enhancements in SNARE cleavage would result 

in altered exocytosis of neuropeptides. A pertinent next step would be to compare the 

exocytosis of factors such as SP from cultures grown with and without LIF and to attempt a 

correlation of SNARE cleavage and release. This may also provide confirmation of the 

individual proteins contributing to the SNARE complex in the exocytosis of neuropeptides 

from these cells.     

 

Many studies have been performed to establish the SNARE proteins present in a variety of 

immune cells. A few examples include (Chai et al., 2006; Feng et al., 2001; Martin-Martin 

et al., 2000; Mollinedo et al., 1999; Murray et al., 2005a; Murray et al., 2005b; Pagan et al., 

2003; Pitzurra et al., 1996), some of which have established that exocytosis mediated by 

these SNAREs is the mechanism of release of the pro-inflammatory cytokines IL-1β and 

TNFα from immune cells (Chai et al., 2006; Murray et al., 2005a; Murray et al., 2005b; 

Pagan et al., 2003). It is, therefore, very plausible that BOTOX® injected into arthritic joints 

is acting on such cells, and that clinical benefits of this treatment, are at least in part, due to 

a reduction in inflammatory factors due to BOTOX®-mediated SNARE cleavage resulting 

in attenuation of their release. While BoNT/D has been shown to prevent release of TNFα 

from human monocytes (macrophage pre-cursors) activated by LPS (Imamura et al., 1989), 

the substrate for the toxin was not identified; therefore, no evidence of BoNT-mediated 

SNARE cleavage was sought. Conversely, where SNARE cleavage has been demonstrated 

in these cells, it was either by micro-injection or in permeabilised cells. VAMP proteins 

were cleaved by TeTX micro-injected into neutrophils (Mollinedo et al., 1999); likewise, 

the same toxin cleaved VAMP in macrophages following a perforation procedure (Pitzurra 

et al., 1996). As TeTX shares the same cleavage site as BoNT/B on VAMP (Humeau et al., 

2000), it is reasonable to hypothesise that at a minimum, VAMP in immune cells will be 

sensitive to BoNT/B if not other VAMP cleaving serotypes. In identifying SNARE proteins 

in immune cells in this study, the aim was to then cleave those proteins following 

application of the toxin in intact cells, one step further in demonstrating that BoNTs can 

target immune cells.  
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In contrast to their abundance in neurons, SNARE proteins are present in much smaller 

amounts in immune cells, especially in cell lines (like the lymphocyte and macrophage 

lines used here). Therefore, it was necessary to grow many flasks of cells and prepare 

membranes before Western blot analysis could be attempted. Although identification of 

SNAREs was possible, the number of cells and consequently the volume of culture medium 

that toxin would have to be applied to before cleavage experiments were attempted made 

this approach unworkable. The decision was then made to label SNARE proteins in isolated 

neutrophils, the benefit being that work was being conducted with native tissues. Due to 

limitations in the volume of blood available for extracting of such cells, immuno-

fluorescence rather than Western blotting was employed to identify SNAREs. While this 

was successful, the frailty of the neutrophils made cleavage experiments very difficult. 

Attempts were made to treat unfixed, permeabilised neutrophils with TeTX light chain 

(used rather than BoNT as it is much safer and, therefore, easier to work with) but, 

unfortunately, the cells disintegrated and immuno-staining could not be completed. TeTX 

was applied to fixed cells but no alteration in the fluorescent signal of labelled VAMP was 

observed. This is likely due to the fact that the target protein was fixed. So the low levels of 

SNARE proteins expressed in immune cells and the frailty of neutrophils made cleavage 

experiments very difficult.  

 

Even without demonstrating BoNT ability to cleave target proteins in immune cells, the 

effect of toxins on exocytosis from such cells was investigated. Control and LPS-activated 

macrophages were treated with BoNT/A, /B, /D, /E or /F and effects on the release of 

arthritis-pertinent cytokines measured. While taking into account that these experiments 

were performed in vitro, it is promising that cytokine release was affected by BoNT 

application. In the case of non-activated cells it is not surprising that, in some instances, 

toxins elicited cytokine release greater than that of control cells given that BoNT is a 

protein foreign to these cells. It is noteworthy that exposure to different serotypes resulted 

in release of different cytokines from non-activated cells but, in the main, BoNT/F 

triggered release greater than that from control cells and BoNT/B did not. More striking 

effects were seen from the LPS-activated macrophages, which more closely mimic the state 

of the cells as they would be in the arthritic joint. Again, attenuation of cytokine release 
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differed between the various serotypes tested indicating a specificity in response, perhaps a 

result of the many different combinations of SNARE proteins responsible for exocytosis 

from immune cells (Chai et al., 2006; Martin-Martin et al., 2000; Murray et al., 2005a; 

Murray et al., 2005b; Pagan et al., 2003). SNAP-25 cleaving BoNT/A, and BoNT/D which 

cleaves VAMP were most effective in this study. As BoNT/A is the serotype present in 

BOTOX®, it is encouraging that it was able to reduce IL-1β release. Furthermore, as IL-1β 

and TNFα up-regulate each other (Kay and Calabrese, 2004) and IL-1β increases SP release 

in neurons (Freidin and Kessler, 1991), attenuating release of just one factor could have 

several knock-on effects. However, while human SNAP-23, the non-neuronal homologue 

of the BoNT/A target SNAP-25, is insensitive to all BoNTs, the murine form is cleaved by 

BoNT/E and to a lesser extent by BoNT/A (Humeau et al., 2000). Therefore, actions seen 

in this murine in vitro model may not be replicated in the human joint. Despite this, 

BoNT/A was most effective at 1 nM and this dose may not be strong enough to overcome 

the reduced susceptibility of SNAP-23 to this toxin. Perhaps, though unlikely, there is as 

yet unidentified SNAP-25 in these cells, or the toxin is acting on a different target. 

 

In a search for the mechanism of action for IA administration of BOTOX® for the treatment 

of chronic pain in arthritic joints, there is some evidence from a small number of SF 

samples that IL-6 levels are reduced after toxin treatment. Evidence has been gathered that 

suggests that culturing neurons in the presence of LIF increases the sensitivity of SNARE 

proteins to cleavage by BoNT, although whether this would in turn alter neuropeptide 

release from such cells remains to be established. Although SNARE cleavage in immune 

cells could not be demonstrated, evidence was obtained that various BoNT serotypes, 

including the clinically-used BoNT/A, can alter SNARE-mediated cytokine release from 

activated macrophages. To take this study further it will be necessary to repeat the 

experiments measuring the effect of LIF treatment on SCGN SNARE cleavage by various 

serotypes of BoNTs. This will the establish the significance of the data achieved thus far as 

well as provide an opportunity to investigate the effect of both LIF and BoNT treatment on 

the release of SP from the cultured neurons thereby establishing if enhanced SNARE 

cleavage does result in reduced exocytosis from the SCGNs. It would also be appropriate to 

look for cholinergic markers in the neurons cultured with LIF to add weight to the 
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hypothesis that LIF causes a cholinergic phenotype which in turn leads to enhanced 

SNARE cleavage. As visualisation of cleaved SNAREs in cultured immune cells is 

challenging, fluorescence-activated cell sorting (FACS) could be employed to examine any 

effects of BoNT serotypes on the surface markers of cultured macrophages and thus 

demonstrate a direct action of BoNTs on these cells. Lastly an animal arthritis model e.g. 

rat adjuvant or rat and mouse type II collagen RA models could be employed to provide 

tissue and fluids from diseased, BOTOX® treated and untreated joints. Synovial membranes 

could be analysed for SNARE cleavage and SF for alterations in cytokine levels (assuming 

sufficient volume, therefore the larger the animal used the better). While there are still 

questions to be answered, this preliminary study has certainly yielded areas for further 

exploration and demonstrated the value in this line of approach.  
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Section B 

 

 

Defining the pharmacology of 

heteromeric Kv1 channels mimicking 

those in mammalian brain 
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Chapter 2 

Introduction 

 

 

2.1 K+ currents and K+ channels 

Neuronal action potentials are electrochemical signals that transmit information from one 

end of a cell to the other, triggering neurotransmitter release at synapses, resulting in cell to 

cell communication. These impulses are initiated and propagated by the movement of 

charged ions across usually impermeable cell membranes, through ion conducting channels 

(Li et al., 2006). K+ currents are responsible for returning the membrane potential to a 

resting state, thereby governing the resting membrane potential of a cell (Li et al., 2006). 

These currents vary in many respects including kinetics, voltage dependency and 

pharmacology. Various types of currents can be found in the same cell and similar currents 

arise in different cells indicating that diversity is not due to cell type. Single channel 

recordings have shown that the observed current diversity is likely to be due to different 

types of K+ channel. In fact, K+ channels are the largest and most prevalent group of ion 

channels, and are present in almost all eukaryotic cells (Rudy, 1988). In non-excitable cells 

they have roles in hormone secretion, cell proliferation, cell volume regulation and 

lymphocyte differentiation (Xu et al., 1995). While the number of K+ channel genes is large, 

the diversity of current phenotypes that exists across excitable cells is greater as alternative 

splicing, post-translational modifications and heterologous assembly of pore-forming 

subunits into tetramers all contribute to the functional diversity of K+ channel gene 

products (Li et al., 2006). Co-assembly with accessory subunits enhances this multiplicity 

resulting in channels with altered properties including assembly, trafficking, gating and 

conduction (Li et al., 2006). There are many types of K+ channel including Ca2+-activated 

(KCa), inward-rectifying (KIR) and two-pore (K2P) but the voltage-gated (Kv) family is the 

biggest consisting of several sub-families (Gutman et al., 2003a). 

 

2.2 The voltage-gated, Kv, family of K+ channels 

The lack of discovery of a K+ channel rich tissue hampered early research (pre-1980s) in 

the K+ channel field. Studying the genetics of Drosophila melanogaster provided an 
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alternative approach. Flies were isolated due to a mutation that caused their legs to shake 

when anaesthetized with ether. From 1983-87, voltage-clamp experiments in pupal and 

larval muscle showed that this “Shaker” mutation affects a K+ current. The fact that other 

currents are not affected suggested that the Shaker gene encodes a structural component of 

the current i.e. the channel (Papazian et al., 1987). Next, in 1987-88, protein sequences 

from 2 cDNAs of the Shaker gene complex were shown to have properties of integral 

membrane proteins containing 6 identical, potentially membrane-spanning segments as well 

as a topology and amino acid sequence very similar to vertebrate voltage-dependent Na+ 

channels (Pongs et al., 1988). Such channels were known to have 4 internal repeats, but this 

was not the case for the Shaker proteins leading to the hypothesis that 4 Shaker products 

aggregate to form a channel (Pongs et al., 1988).   

Using information gained from cloning the Shaker gene, 3 further K+ channel genes were 

isolated based on their similarity to Shaker viz. Shab, Shaw and Shal (Jan and Jan, 1992). 

All 4 members of this gene family encode peptides with conserved organisation, suggesting 

common function (Wei et al., 1990). While voltage-gating and K+ selectivity are features 

shared by the family, their kinetic and voltage sensitivities differ. Variations in lengths of 

domains at the N and C termini result in differences in size of the peptides: Shaker ~71 kDa, 

Shab ~100 kDa, Shaw ~56.5 kDa and Shal ~56 kDa. Despite this, there is a conserved core 

region encompassing the 6 potentially membrane spanning domains, which varies little 

(Wei et al., 1990), resulting in about 40% amino acid identity between any pair of genes 

(Jan and Jan, 1992). 

The 4 members of the Drosophila gene family, Shaker, Shab, Shaw and Shal, have 1 or 

more mammalian homologues and therefore each defines a subfamily (Kv1 – 4) of K+ 

channel genes (Jan and Jan, 1992; Wei et al., 1990): Shaker-related, Kv1; Shab-related, 

Kv2; Shaw-related, Kv3 and Shal-related, Kv4 (Gutman et al., 2003a; Gutman et al., 2005). 

These mammalian and Drosophila proteins are more closely related (regardless of species) 

than the subfamily members of a single species, sharing roughly 70% amino acid identity in 

the core region (Jan and Jan, 1992; Wei et al., 1990) [compared with 40% between 

subfamilies (Xu et al., 1995)]. This demonstrates that the individual structural features of 

the subfamilies evolved before vertebrate/invertebrate separation (Wei et al., 1990). Despite 

the similarity in products from the gene subfamilies, heteromultimerisation of subunits into 
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channels is family specific. N terminal domains control this assembly ensuring that cells 

maintain several distinct K+ current systems (Xu et al., 1995). 

 

2.3 The structure of Kv1 channels 

Kv1 channels are large (Mr ~ 400 kDa) sialoglycoprotein complexes (Parcej et al., 1992) 

composed of 4 pore-forming α subunits (Kv1.1-1.6) and 4 auxiliary, cytoplasmically-

associated β subunits (Dolly and Parcej, 1996; Orlova et al., 2003; Parcej et al., 1992; 

Rettig et al., 1994; Scott et al., 1994a).  

2.3.1 The α subunits The α subunits have several conserved features including 6 putative 

membrane-spanning segments (α helices S1-S6) and with both the N and C termini located 

intracellularly (Fig. 2.1a,b). A functional channel consists of 4 α subunits arranged around 

a central axis forming the ion conduction pathway (Fig. 2.1c). α helices S1-4 are 

responsible for voltage sensing, and wrap around the pore of the adjacent subunit (Long et 

al., 2005b) (Fig. 2.1c). The S4 helix contains a positively charged amino acid (arginine) at 

every third residue, interspersed with hydrophobic residues, and is generally thought to 

function as the main voltage-sensor (see below) (Jan and Jan, 1992). The ion conduction 

pore consists of S5, the S5-S6 loop and S6 (Long et al., 2005b).The S5-S6 loop contains a 

conserved sequence which acts as a K+ selectivity filter (see below) (Li et al., 2006). The 

S4-S5 linker connects the pore and voltage sensing components of the α subunits (Long et 

al., 2005a). 

2.3.2 The T1 domain Preceding S1, the first membrane spanning helix of an α subunit, the 

N-terminus forms the T1 domain (within the cell). These domains (1 from each α subunit) 

form a tetrameric complex at the intracellular membrane providing a docking platform for β 

subunits (Long et al., 2005a) (Fig. 2.2a). The T1-S1 linker maintains separation between 

the pore of the channel and the intracellular regions. A wide space between the T1 domain 

and pore is achieved by the radial direction of the linkers, allowing the inner pore helices to 

undergo large movements during pore opening (see below) without interference (Fig. 2.2a). 

This also results in diffusion pathways, called side portals, between the cytoplasm and pore 

entrance which provide a means for communication and allows the flow of K+. The 4 side 

portals of a complete channel attract cations due to negatively charged amino acids on their  
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Figure 2.1│Kv channel α subunit arrangement and structural model. a, A simple 

topographical model common to all Kv channels predicted by amino acid sequence. 

There are six membrane spanning segments (cylinders, S1-S6) with N- and C-termini 

arranged intracellularly. The fourth membrane spanning segment contains evenly 

spaced charged residues and comprises the membrane voltage-sensor. b, Side view of 

ribbon diagram of one subunit of Kv1.2 based on crystal structure (Long et al., 

2005a). K+ ions are shown as purple spheres. Transmembrane helices are labelled. The 

fourth transmembrane segment is shown in gold. c, Tetrameric arrangement of Kv1.2 

as viewed above from the extracellular surface. The 4 subunits are coloured 

differently. Taken from (Li et al., 2006) (a,b) and (Long et al., 2005a) (c). 
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rims and surface (Fig 2.2c). They also have a role in inactivation (see below) (Long et al., 

2005a). 

2.3.3 The β subunits β subunits act as accessory proteins, mainly for Kv1 channels (Li et al., 

2006; Parcej et al., 1992), and interact with them via the T1 domain (Long et al., 2005a) 

(Fig. 2.2a,b). There are several Kvβ family members with well conserved C-termini but 

differing N-termini (Leicher et al., 1998; Li et al., 2006; Scott et al., 1994b). These subunits 

also form tetramers, and are related to the aldo-keto reductase enzymes having both 

catalytic and substrate binding domains (Li et al., 2006). The active site contains an NADP+ 

cofactor and catalytic residues for hydride transfer but the function of this is as yet 

undeciphered. It has been suggested that the enzyme may act as a sensor for Kv1 channels 

in such a way that the redox state of the cell could have an influence on electrical activity at 

the membrane (Long et al., 2005a). Through their N-terminal domain, β1 subunits confer 

fast inactivation when co-expressed with Kv1 α subunits that usually produce non-

inactivating channels (Rettig et al., 1994) (see below). As other β subunits do not share this 

property it is likely they have other functions. Enhanced surface expression of channels co-

expressed with β subunits indicates a possible role as channel chaperones (Manganas and 

Trimmer, 2000). 

 

2.4 The pore-forming region of Kv1 α subunits. 

All K + channels share a highly conserved pore region encoded by a critical amino acid 

sequence called the K+ signature sequence from which the structural elements of the pore 

are formed (Doyle et al., 1998; MacKinnon, 2003). In Kv1 α subunits, this is a short stretch 

of amino acids between the S5 and S6 transmembrane domains. This pore region consists 

of the turret, pore helix and selectivity filter (Doyle et al., 1998). In a fully assembled 

channel, 4 pore regions, 1 from each of the α subunits, assemble together to form an ion 

conduction pathway (MacKinnon, 2003), with 4-fold symmetry around the pore. The 

“turrets” from each monomer jut into the extracellular solution above the centrally-located 

pore entrance (Imredy and MacKinnon, 2000) (Fig. 2.3a). The transmembrane α helices are 

tilted with respect to the membrane resulting in a broad vestibule at the entrance of the pore 

(Doyle et al., 1998), which dips into the membrane and tapers into the selectivity filter at 

the centre of the vestibule (Hopkins et al., 1996).  
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Figure 2.2│Views of a Kv1.2-β2 subunit complex. a, Ribbon representation with the 

extracellular solution above and the intracellular solution below. Each α subunit, 

including the T1 domain and its associated β subunit, is coloured differently. TM 

indicates the membrane component of the channel. b, A single α and β subunit of the 

channel viewed from the side. The transmembrane S1-S6 helices, proline-valine-proline 

(PVP) sequence of S6, and the N and C termini of the Kv1.2 and β2 subunit are labelled. 

The N terminus of the β subunit is on the side furthest from the viewer. c, Surface 

representation of the Kv1.2-β2 complex. Negatively charged glutamate and aspartate 

residues are coloured red and positively charged arginine and lysine residues in blue. 

The large hole above the T1 domain depicts the side portal which connects the 

cytoplasm to the pore. Taken from (Long et al., 2005a). 
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2.4.1 Ion selectivity The selectivity filter is responsible not only for the 1000-fold greater 

selectivity of these channels for K+ over Na+ but, also, allows rapid diffusion through the 

pore. The selectivity filter separates the cavity of the channel from the extracellular solution. 

It is so narrow that it causes K+ to shed its hydrating water molecules in order to enter 

(Doyle et al., 1998). A single layer of threonine hydroxyl oxygen atoms and 4 evenly 

spaced layers of carbonyl oxygen atoms from the K+ signature sequence create 4 K+ 

binding sites along the selectivity filter numbered 1 to 4 from the extra to intracellular side 

(Fig. 2.3b,c). Dehydrated K+ binds to these sites taking 8 carbonyl oxygen atoms, 4 from 

above and 4 below the ion, which act like surrogate water taking the place of water oxygen 

atoms and in doing so compensate for the energetic cost of dehydration (Doyle et al., 1998; 

MacKinnon, 2003). In this way, a queue of K+ binding sites is formed and the ions can 

diffuse from water into the selectivity filter (MacKinnon, 2003). Na+ has a smaller radius 

than K+ meaning that it cannot get close enough to the carbonyl oxygen atoms to 

compensate for the energetic cost of dehydration. This prevents them from passing through 

the channel, thereby, ensuring such impressive K+ selectivity (Doyle et al., 1998). At most 

times, there are 2 ions in the selectivity filter. The repulsion between them overcomes the 

affinity that each has for its binding site so they are not too tightly bound, resulting in rapid 

diffusion through the pore. If the internal K+ concentration is too low, only 1 ion occupies 

the selectivity filter and, hence, binds too tightly preventing the flow of ions (MacKinnon, 

2003). 

 

2.5 Gating of Kv1 channels 

Ion channels gate (open and close) in response to external signals. Kv1 channels (as well as 

all voltage-gated K+, Na+ and Ca+ channels) open (activate) in a voltage dependent manner 

in response to membrane depolarization, i.e. changes in voltage across the cell membrane, 

and then spontaneously shut (inactivate), usually independently of voltage (Long et al., 

2005b; MacKinnon, 1991). The membrane electrical field exerts a force on charged amino 

acids (arginines in the S4 helix), called the gating charges, which move through the 

membrane, ultimately altering channel conformation. The gating charge is very large, 

resulting in channels that are very sensitive to small voltage changes (Long et al., 2005b). 

The gating charge of a Kv channel is the equivalent of almost 14 electrons moving across 
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Figure 2.3│The ion conduction pore of K+ channels. This is a representation of a 

KcsA channel from Streptomyces lividans. While each subunit consists only of 2 

helices as opposed to the 6 found in eukaryotic Kv1 channels, it shares close sequence 

homology in the pore region. a, View of a tetrameric channel, each subunit being 

distinguished by a different colour. b, Two of the four subunits of the pore are shown 

with the extracellular side on top (Zhou et al., 2001). The selectivity filter is depicted 

in gold. The blue mesh illustrates the electron densities of K+ and water along the 

pore. c, Close-up view of the selectivity filter with dehydrated K+ at positions 1 

through 4 (external to internal) inside the filter and a hydrated K+ in the central cavity 

below the filter. This figure was taken from (Doyle et al., 1998) (a) and (MacKinnon, 

2003) (b,c). 
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the transmembrane voltage difference. These charges are attributed to 4 arginine residues 

per α subunit – resulting in a total of 16, with each arginine residue having approximately 1 

electron charge (MacKinnon, 2003). The membrane electric field works on the charged 

residues, pushing them outwards when the inside of the membrane is positive, and pulling 

them inwards when the inside of the membrane is negative (Long et al., 2005b). S6 helices 

(1 from each subunit of a tetrameric channel) line the pore on the intracellular side of the 

selectivity filter, forming the inner helix bundle – an expandable constriction for opening 

and closing the pore. It is called the activation gate. The S6 helices have a conserved 

proline-X-proline (Pro-X-Pro) sequence (where X is any amino acid; valine in Kv1.2), 

which curves them so they run almost parallel to the membrane near the intracellular 

surface (Long et al., 2005a) (Fig. 2.2b). The S4-S5 linker (which connects the voltage 

sensing and pore channel components) runs parallel to the membrane inside the cell, 

crosses over the top of the S6 helix and forms amino acid contacts with it. The curved 

nature of S6, imbued by the conserved Pro-X-Pro sequence, enables it to act as a platform 

for the linker. Hence, the movement of the voltage sensor domain is transmitted to the 

activation gate, via the S4-S5 linker, resulting in the mechanical opening and closing of the 

pore (Long et al., 2005b).   

2.5.1 Inactivation Diversity of Kv channels is based mainly on differences in the kinetics of 

activation and inactivation (Pongs, 1992). Indeed, the firing pattern and wave forms of 

action potentials in a neuron is determined to a large extent by the inactivation properties of 

the K+ channels present in that particular cell (Jan and Jan, 1992). A refractory period 

follows inactivation when, through a series of conformational changes, the channel returns 

to its resting state. Channel inactivation can occur at the intra or extracellular entrance of 

the pore, and be imbued by the N or C terminus, respectively. Channels inactivated at the 

extracellular entrance to the pore reactivate rapidly compared with the slow reactivation 

resulting from intracellular inactivation (Pongs, 1992).  

Fast inactivation of Kv1 channels is mediated by the N-terminus, resulting in spontaneous 

closure of channels which occurs over tens of milliseconds (MacKinnon, 1991). The 

process occurs in some members of the Kv1 family, e.g. Kv1.4. The N terminus 

“inactivation gate” of the α subunit of these channels enters the side portals, blocking 

access of the intracellular K+ ions to the pore, thereby inactivating the channel. A very 
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specific N terminus sequence is required to produce an N terminal inactivation gate: 

approximately 10 hydrophobic amino acids followed by a mixture of hydrophilic and 

positively charged residues. The hydrophobic stretch enters the side portal, and reaches into 

the inner pore which is lined with hydrophobic amino acids. Positively charged amino acids 

from the hydrophilic sequence make electrostatic interactions with the negatively charged 

amino acids on the surface of the T1 domain and linkers to S1 (Fig. 2.4) (Long et al., 

2005a). The N terminus of the β1 subunit also has inactivation gate properties, with 70 

extra N terminal amino acids compared with other β subunit family members. This extra 

length allows the inactivation gate to reach to the side portal of the α subunit. Co-

expression of β1 subunits with Kv1 channels other than Kv1.4, confers them with N-type 

inactivation (Rettig et al., 1994). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4│Hypothetical model for the binding of an inactivation peptide to 

the Kv1.2-β2 channel. A portion of the T1 and transmembrane components 

are shown. The inactivation peptide is modeled on the 22 N terminal residues 

of β1. Three positive residues (+) at positions 13, 15 and 20 from the N 

terminus were placed at the site of interaction with negatively charged 

residues on T1 (*) and the hydrophobic residues at the N terminus were 

placed at the inner pore where they are known to bind and block the flow of 

K+ ions. Taken from (Long et al., 2005a). 
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C-type inactivation is slower than N-type and is sensitive to external cations and the amino 

acid composition of the K+ channel pore as all 4 α subunits of the channel participate co-

operatively. The mechanism for inactivation is not as clear though it is likely that the outer 

mouth of the channel constricts, decreasing the inter-subunit distance across the outer 

vestibule of the channel pore (Panyi et al., 1995). 

 

2.6 The toxin approach to studying the biochemistry of K+ channels  

While studying the genetics of a Drosophila mutant was very successful for identifying Kv 

channel genes, the simultaneous discovery of Kv channel blockers in the early 1980s lead 

to isolation and characterisation of K+ channel proteins (Black et al., 1988; Rehm and 

Lazdunski, 1988). Several neurotoxins isolated from the venom of Dendroaspis 

angusticeps and polylepis (green and black mamba snakes, respectively) were found to 

facilitate neurotransmitter release at both peripheral and central synapses, an effect that was 

explained by the toxins’ blockade of voltage-sensitive K+ currents in these neurons (Dolly 

and Parcej, 1996; Halliwell et al., 1986). Toxin binding and affinity chromatography 

resulted in the purification of a subset of Kv channels from mammalian brain, revealed by 

cloning to be from the Kv1 family, identifying the dendrotoxins (DTXs) as blockers of 

some members of this set of proteins (Dolly and Parcej, 1996). Similarly, Noxiustoxin 

(NxTX) isolated from the venom of the Mexican scorpion Centruroides noxius (Carbone et 

al., 1982), was shown to increase neurotransmitter release from synaptosomes by 

decreasing K+ permeability (Sitges et al., 1986). This and other toxins isolated from 

scorpion venoms proved to be high affinity selective probes for K+ channels including 

those from the Kv1 subfamily and as such were, like DTXs, used to purify channels from 

native tissues [for example (Koschak et al., 1998)]. Despite the success of molecular 

cloning techniques, the subunit compositions of channels in native tissues was unknown. 

Importantly, the use of DTX to purify channels from native tissue resulted in the discovery 

of the β subunit and the α(4) β(4) stoichiometry of Kv1 channels (Parcej et al., 1992). In 

addition, scorpion toxins were used to identify the pore region of the Shaker channel, 

determine the tetrameric composition of K+ channels and investigate the role of Kv1 

channels in T cell function (Garcia et al., 2001; Garcia et al., 1998). Crucially, both DTXs 

and scorpion toxins were employed to define the subunit compositions of Kv1 channels in 
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native mammalian brain tissue (Koch et al., 1997; Koschak et al., 1998; Scott et al., 1994a; 

Wang et al., 1999b). 

 

2.7 Kv1 inhibition by peptide toxins 

2.7.1 Dendrotoxins DTXs are isolated from mamba venoms; αDTX, βDTX, γDTX and 

δDTX from Dendroaspis angusticeps, DTXI and DTXk from D. polylepis and DV14 from 

D. viridis (Benishin et al., 1988; Dolly, 1992; Hopkins et al., 1996). The toxins for which 

sequence data is available can be placed into 2 subfamilies (Table 2.1) which show 

approximately 60% amino acid identity. βDTX and γDTX have only been partially 

sequenced and while they are members of the DTX family, it is not clear to which 

subfamily they belong (Harvey, 1997; Hopkins et al., 1996).  

 

 

 

 

 

 

 

 

  
 1                      10                       20                         30                       40                       50 

 
δDTX 

 
       AAKYCKLP VRYGPCKKKI PSFYYKWKAK QCLPFDYSGC GGNANRFKTI EECRRTCVG 

 
DTXk 

 
       AAKYCKLP  LRIGPCKRKI  PSFYYKWKAK QCLPFDYSGC GGNANRFKTI EECRRTCVG 

 
DV14 

 
       AAKYCKLP VRYGPCKKKI PSFYYKWKAK QCYPFDYSGC GGNANRFKTI EECRRTCVG                       

  

 1                    10                        20                        30                        40                       50 

 
αDTX 

 
pEPRRKLCILH RDPGRCYDKI PAPYYNQKKK QCERFDWSGC GGNSNRFKTI EECRRTCIG 

 
DTXI 

 
pEP IRKLCILH RDPGRCYQKI PAFYYNQKKK QCEGFTWSGC GGNSNRFKTI EECRRTCIRK                               

  

1                   10                       20                       30                        40                         50 

 
BPTI 

 
    RPDFCLEP PYTGPCKARI  IRYFYNAKAG  ICQTFVYGGC  RAKRNNFKSA EDCMRTCGGA 

Table 2.1│Sequences of dendrotoxin subfamilies, and a homologous protease inhibitor. 

The single letter amino acid code is: A=alanine, R=arginine, N=asparagine, D=aspartic acid, 

C=cysteine, Q=glutamine, E=glutamic acid, G=glycine, H=histidine, I=isoleucine, 

L=leucine, K=lysine, M=methionine, F=phenylalanine, P=proline, S=serine, T=threonine, 

W=tryptophan, Y=tyrosine, V=valine, pE=pyroglutamate. Taken from (Hopkins et al., 

1996), (Katoh et al., 2000) and (Swaminathan et al., 1996). 
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After initial findings that they facilitated neurotransmitter release at the neuromuscular 

junction, it was determined that DTXs act by blocking Kv channels (Halliwell et al., 1986). 

DTXs are arguably the most specific of venom peptide toxins, with activity against only a 

few of the Kv1 α subunits. As a group they inhibit Kv1.1, 1.2 and 1.6 (Hopkins et al., 1996) 

but the specificities of individual homologues differ as detailed in Table 2.2. They are 

single chain polypeptides of low molecular weight (around 7 kDa), 57 – 60 residues long 

with 3 conserved disulphide bonds (Fig. 2.5b). Specifically, DTXk consists of a 310-helix 

(residues 3–7), a β-hairpin (residues 18-35) and an α helix (residues 47-56) (Smith et al., 

1997) (Fig. 2.6a). The DTXs also have sequence homology to Kunitz serine protease 

inhibitors such as bovine pancreatic trypsin inhibitor (BPTI) (Table 2.1), but the most 

potent toxins have negligible protease inhibitor activity and the inhibitors do not block K+ 

channels (Dolly and Parcej, 1996; Harvey, 1997). 

 

 

 

 

 

 

 

 

 

 

 

c a b 

Figure 2.5│Three-dimensional models of dendrotoxink and dendrotoxinI. a, main chain 

folding of DTXk side-chain positions of some the residues vital for Kv1.1 channel 

binding affinity. b, ribbon structure of DTXI with the three disulphide bonds, highly 

conserved among the DTXs, shown as yellow ball and stick models. c, positions of the 

two putative K+ channel binding triads on DTXI. Taken from (Smith et al., 1997) and 

(Katoh et al., 2000). 
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However, conserved patterns of disulphide bridging result in similar backbones of the 

DTXs and serine protease inhibitors, though there are differences in the detailed structures 

(Smith et al., 1997). Comparison of the 2 groups of homologues suggested that conserved 

lysine residues in the DTXs may be responsible for their channel blocking ability (Harvey, 

1997). These positively charged amino acids are concentrated in the lower part of the 

structure, the cationic domain, formed by the N- and C-terminal regions and residues 27-30 

of the β-turn (Katoh et al., 2000). In fact, studies involving site-directed mutagenesis of 

DTXk revealed the areas of the toxin that interact with Kv1.1 channels [the specific target 

of the toxin (Table 2.2)] both in synaptic plasma membranes from rat cerebral cortex and 

recombinantly expressed in Xenopus oocytes (Smith et al., 1997; Wang et al., 1999a). 

Mutants were chosen on the basis that a positively charged region of DTXk (the cationic 

domain) interacts with a negatively charged area on the channel (negatively charged amino 

acids in the S5-S6 domain). The multiple lysines and/or arginines (positive) conserved on 

DTXk as well as other channel blocking homologues, coupled with the fact that removing 

glutamate (negative) from the toxin binding domains of α subunits decreases DTX affinity, 

provided evidence for the theory. Furthermore, it was shown that for scorpion toxins 

interacting with Kv1.3 channels, there are electrostatic interactions between the toxin 

residues (similar to those on DTXs) and acidic (negative) amino acids in the channel mouth 

(Smith et al., 1997). Altering positively charged lysine residues (K24, 26 and 28) to alanine 

in the β hairpin decreased the binding affinity with the K26 mutant giving the largest 

decrease. Mutating a tryptophan residue (W25) to the less hydrophobic alanine also 

reduced binding affinity demonstrating that both positively charged and hydrophobic 

residues in the β-hairpin are important for toxin/channel interaction. Altering residues K3 

and 6 in the 310-helix also reduced toxin binding affinity, thus also demonstrating the 

importance of this region (Fig. 2.5a). Interestingly, mutating positively charged amino 

acids in the C terminal α helix did not influence binding, highlighting the selectivity of the 

identified residues. The studies concluded, therefore, that the 310-helix and β-hairpin 

domains are important for channel interaction with alterations of some residues in these 

structural elements reducing binding affinity (Smith et al., 1997; Wang et al., 1999a). A 

later study of DTXI comfirmed that residues in the N-terminal half of the molecule are 

mainly responsible for binding of the toxin although there was evidence that 
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Toxin Abbre-
viation 

Source Organism 
 

Animal Channels known to be 
sensitive 

Refs. 

Agitoxin-1 AgiTX
-1 

Leiurus quinquestriatus var. 
herbraeus 

Scorpion Kv1.1, 1.3, 1.6 (Garcia et al., 
1994; Suarez-
Kurtz et al., 

1999) 

Agitoxin-2 AgiTX
-2 

Leiurus quinquestriatus var. 
herbraeus 

Scorpion Kv1.1, 1.3, 1.6 (Garcia et al., 
1994; Suarez-
Kurtz et al., 

1999) 
(Cayabyab et 

al., 2000) 

Agitoxin-3 AgiTX
-3 

Leiurus quinquestriatus var. 
herbraeus 

Scorpion Kv1.3 (Garcia et al., 
1994) 

Charybdo-
toxin 

ChTX Leiurus quinquestriatus var. 
herbraeus  

Scorpion Kv1.2, 1.3 (Grissmer et al., 
1994) 

αDendrotoxin αDTX Dendroaspis angusticeps Snake Kv1.1, 1.2, 1.6 (Grissmer et al., 
1994; Grupe et 

al., 1990) 

βDendrotoxin βDTX Dendroaspis angusticeps Snake Kv1.1, 1.2 (Hopkins et al., 
1996) 

γDendrotoxin γDTX Dendroaspis angusticeps Snake Kv1.1, 1.2 (Hopkins et al., 
1996) 

δDendrotoxin δDTX Dendroaspis angusticeps Snake Kv1.1, 1.6 (Hopkins, 1998; 
Imredy et al., 

1998) 

Dendrotoxin I DTX I Dendroaspis polylepis Snake Kv1.1, 1.2 (Hopkins, 1998) 

Dendrotoxin 
K 

DTX k Dendroaspis polylepis Snake Kv1.1 (Shamotienko et 
al., 1997) 

Hongotoxin HgTX Centruroides limbatus Scorpion Kv1.1, 1.2, 1.3, 1.6 (Koschak et al., 
1998) 

Kaliotoxin KTX Androctonus australis Scorpion Kv1.1, 1.3 (Grissmer et al., 
1994) 

Margatoxin MgTX Centruroides margaritatus Scorpion Kv1.1, 1.2, 1.3 (Garcia-Calvo 
et al., 1993) 

(Suarez-Kurtz 
et al., 1999) 

Mast Cell 
Degranulating 

Peptide 

MCD Apis mellifera Bee Kv1.1, 1.2, 1.6 (Grissmer et al., 
1994; Grupe et 

al., 1990; 
Stuhmer et al., 

1989) 

Noxiustoxin NxTX Centruroides noxius Scorpion Kv1.2, 1.3 (Grissmer et al., 
1994) 

Stichodactyla 
toxin 

ShK Stichodactyla helianthus. Sea 
anemone 

Kv1.1, 1.2, 1.3, 1.4, 1.6, (Kalman et al., 
1998; 

Middleton et al., 
2003; Suarez-
Kurtz et al., 

1999) 

Tityustoxin 
Kα 

TsTX-
Kα 

Tityus serrulatus Scorpion Kv1.2, 1.3 (Hopkins, 1998; 
Rodrigues et al., 

2003) 

Table 2.2 │ Details of toxins known to block Kv1 channels  
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there are some functional residues in the C-terminal of the DTXI molecule (Katoh et al., 

2000). The study went on to examine the possibility of the toxin possessing a functional 

diad or triad of residues crucial for channel binding, as have been discovered in sea 

anemone and scorpion toxins (Honma and Shiomi, 2006). Two putative triads were 

identified; Lys19/Tyr17/Trp37 and Lys5/28/29 (Fig. 2.5c). Conversely, binding of αDTX 

(the DTXI angusticeps homologue, see Table 2.1) only depends on residues at the N 

terminus for binding, with those in the β-hairpin (the location of the DTXI 

Lys19/Tyr17/Trp37 triad) being unimportant. In fact, three residue differences between 

αDTX and DTXI at positions 18, 34 and 36 result in large changes in the electrostatic 

potential of the domain. Thus, the more acidic residues surrounding Lys19 of αDTX are 

suggested to disturb interactions between it and negatively charged residues of the K+ 

channel pore (Katoh et al., 2000). It had been suggested that the fact that DTXk has two 

areas of residues vital for binding (in the β-hairpin and the 310-helix) compared with only 

one for αDTX (those at the N-terminus and not the β-hairpin) could be responsible for the 

very selective nature of DTXk (blocking only Kv1.1 channels) compared to αDTX (inhibits 

Kv1.1, 1.2 and 1.6), as a larger proportion of the toxin molecule interacts with the channel 

pore therefore requiring a higher degree of pore sequence specificity (Table 2.2) (Gasparini 

et al., 1998; Wang et al., 1999a). However, if DTXI does in fact have two binding triads, 

this does not translate into α subunit specificity as DTXI inhibits Kv1.1 and 1.2 channels 

(Table 2.2). It could though account for the higher binding affinity to rat brain membranes 

of DTXI over αDTX (Katoh et al., 2000). 

A study of the energetic and structural interactions between δDTX and the Shaker K+ 

channel, with the pore region mutated to resemble that of Kv1.1 (Imredy and MacKinnon, 

2000) found that a triangular patch of 7 amino acids formed the interaction surface of the 

toxin. In agreement with results gathered for subfamily member DTXk, the vital residues 

for δDTX binding are in the 310-helix and the β-hairpin (Imredy and MacKinnon, 2000). 

The authors propose that the asymmetric ligand binds off-centre to the pore, interacting 

predominantly with the turret region of one α subunit and contacting the 2 adjacent subunits, 

therefore, not interacting with all 4 subunits equally (see Fig. 2.6 for schematic). Assuming 

that a single toxin molecule binds per channel, the result is 4 possible orientations involving 

different combinations of the channel forming subunits. Such an interaction would render a  
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channel with bound DTX not completely, physically blocked, conveniently explaining the 

residual flow of current through certain channels even in the presence of very high toxin 

doses. The authors put forward 2 possible explanations for the mechanism of inhibition of 

the channels; that the positively charged toxin acts as a K+ repellent or, more likely, that a 

DTX molecule attached to a turret results in a more rigid pore structure which could then 

negatively influence the flow of ions (Imredy and MacKinnon, 2000). 

 

2.7.2 Scorpion toxins Scorpion toxins that inhibit K+ channel activity have homologous 

primary amino acid sequences (Garcia et al., 2001; Garcia et al., 1998). There have been at 

least 26 subfamilies identified as of 2008 (α-KTx1-26) (Shijin et al., 2008), with the isolation 

b a 

Figure 2.6│ Hypothetical binding orientation of snake and scorpion toxins. a, 

δDTX bound to the mutant Shaker K+ channel. The channel is shown looking 

directly down the pore from the extracellular side. Lys6 of δDTX is shown in 

purple. b, Binding orientation of agitoxin 2 on the K+ channel based on mutant 

cycle analysis of its interaction with the Shaker channel (MacKinnon et al., 1998; 

Ranganathan et al., 1996). The channel is in the same orientation as in a. The 

purple residue on AgiTX-2 is Lys27 which interacts with the external K+ binding 

site of the channel and, thus, acts as a “plug”' in the pore (Park and Miller, 1992; 

Ranganathan et al., 1996). The toxin backbones are shown as a black line. Taken 

from (Imredy and MacKinnon, 2000). 
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of scorpion toxins being a very active field [some examples include: (Abbas et al., 2008; 

Abdel-Mottaleb et al., 2008; Corzo et al., 2008; Shijin et al., 2008; Srairi-Abid et al., 2008). 

These peptides are 30-40 amino acids in length, with 3 or 4 disulphide bridges which link 3 

anti-parallel β strands with an α helical region (see Table 2.3 for the sequences of some 

toxin examples). This results in a very compact structure where all the residues are in 

solution, with the exception of the cysteines which are buried in the peptide (Fig. 2.7) 

(Garcia et al., 2001; Garcia et al., 1998). On the whole, scorpion toxins are less specific 

than DTXs as they inhibit other families of Kv channels besides Kv1 such as Ca2+-activated 

(KCa) channels [e.g. Charybdotoxin (ChTX), and NxTX] (some examples are listed in 

Table 4.4). Although divided into sub-families based on sequence homology, toxins across 

these sub-families inhibit Kv1 channels e.g. ChTX (α-KTx1), NxTX (α-KTx2) and the 

agitoxins (AgiTXs) (α-KTx3) (Hopkins et al., 1996).  

 

 

 

 

 

Table 2.3│Comparison of the amino acid sequences of various scorpion toxins, aligned 

with respect to the 6 cysteine residues (bold). The position of the disulphide bonds is 

indicated.  ChTX – carybdotoxin, IbTX – iberiotoxin, Lq2 – L. quinquestriatus toxin 2, 

LbTX – limbatustoxin, NxTX – noxiustoxin, MgTX – margatoxin, C.l.l. I - C. limpidus 

limpidus toxin I, TyKα – tityustoxin-Kα, AgTX1 – agitoxin 1, AgTX2 – agitoxin 2, 

AgTX3 – agitoxin 3, KTX – kaliotoxin, KTX2 – kaliotoxin 2. Taken from (Garcia et al., 

1998) 

α-KTx 1 

α-KTx 2 

α-KTx 3 

1 10 20 30 
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Like the dendrotoxins, several scorpion toxins also block Kv1.1, 1.2 and 1.6 though, 

interestingly, several also target Kv1.3 [e.g. margatoxin (MgTX)] (Hopkins et al., 1996). 

Subunit sensitivities for some of these toxins are given in Table 2.2. While DTXs and 

scorpion toxins interact with many of the same amino acids on Kv1 channels (Imredy and 

MacKinnon, 2000), they bind in slightly different places. Scorpion toxin binding, like DTX, 

is governed by electrostatic interactions between negative residues of the channel and 

positive residues of the toxin, the lysine at position 27 having been identified as crucial for 

binding of several toxins including ChTX and AgiTX-2 (Fig. 2.7) (Garcia et al., 2001). The 

positively charged side chain of the residue lies physically close to the K+ binding site in 

the ion conduction pore and, therefore, its location in the toxin/channel complex is near the 

centre of symmetry in the tetrameric channel structure (Garcia et al., 2001). Therefore, 

scorpion toxins bind in the centre of the pore and physically “plug” it, compared with the 

off-centre interaction of DTXs. AgiTX-2, for example, fits between the channel turrets 

competing for the K+ binding site, thereby, obstructing the pore (Imredy and MacKinnon, 

b a 

Fig 2.7│Backbone and three-dimensional structures of agitoxin-2. Structure showing side 

chains that are vital for binding to the Shaker channel; a, backbone structure and b, three-

dimensional structure. Colours represent residues with the following properties: white, 

hydrophobic; green, polar; red, negatively charged; blue positively charged; gray, aromatic; 

yellow, cysteine. Taken from (Garcia et al., 2001). 
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2000) (see schematic Fig. 2.6). Indeed, the size of the residue at position 425 of the Shaker 

channel can sterically prevent peptides from reaching their binding site (Garcia et al., 2001). 

 

2.7.3 Sea anemone toxins These are rich sources of both voltage-gated Na+ and K+ channel 

toxins (Honma and Shiomi, 2006). The Kv1 channel blockers include Stichodactyla toxin, 

ShK, isolated from the Caribbean sea anemone, Stichodactyla helianthus, BgK from 

Bunodosoma granulifera and HmK from Heteractis magnifica. They are 35 – 37 amino 

acids long with 3 conserved disulphide bridges; 3-35, 12-28 and 17-32. Amino acids serine 

at position 20, lysine at 22 and tyrosine at 23 are completely conserved in all sea anemone 

Kv1 blockers. They are vital for the binding of ShK to both rat brain membranes and Kv1.1, 

1.2, 1.3 and 1.6. The lysine and tyrosine residues have been identified as having particular 

importance, similar to the dyad found in scorpion toxins (e.g. lysine 27 and tyrosine 36 for 

ChTX). Despite a different molecular scaffold, the dyads of both scorpion and sea anemone 

toxins superimpose in the three-dimensional structures (Honma and Shiomi, 2006). ShK, 

like scorpion toxins, binds centrally to the outer vestibule of channels, plugging the pore 

(Lewis and Garcia, 2003).  

 

2.8 Classical K+ channel blockers 

Tetraethylammonium (TEA) and 4-aminopyridine (4-AP) block various families of K+ 

channels and many Kv1 α subunits are sensitive to them. TEA is a quarternary ammonium 

cation consisting of four ethyl groups attached to a central nitrogen atom (Fig. 2.8a). While 

it can bind to both intra- and extracellular sites of a K+ channel (Lenaeus et al., 2005), in 

these experiments it was applied externally. An aromatic amino acid residue at the 

equivalent of position 449 of the Shaker channel is required for extracellular channel block 

by TEA (MacKinnon and Yellen, 1990), and all four subunits of a channel make an 

energetic contribution to the binding of a molecule of TEA (Heginbotham and MacKinnon, 

1992; Kavanaugh et al., 1992). 4-AP is a small molecule (Fig. 2.8b) that requires 

membrane depolarization, i.e. open channels, to block. For a channel to become unblocked, 

depolarization is again required demonstrating that 4-AP becomes trapped in closed 

channels (Armstrong and Loboda, 2001; Choquet and Korn, 1992).  
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While 4-AP does not block channels from the outside, it can block when applied 

extracellulary therefore it must cross the cell membrane. The difference between the extra 

(lower) and intracellular (higher) pH of a cell is a key factor in the potency of 4-AP. 

Therefore it is likely that the molecule crosses the membrane in an unionised form, and 

blocks the channel from the inside once it is re-ionised .(Choquet and Korn, 1992). 

 

2.9 Investigation of relevant channels 

While expression of Kv1 α subunit genes (with or without the accompanying β subunits) 

yields distinct voltage-dependent K+ currents, the biophysical and pharmacological 

properties of these channels rarely matches those of native K+ currents recorded from 

neurons. This highlights the need to establish the subunit compositions of authentic 

neuronal Kv1 channels so that insight into channel structure and function can be obtained 

from the biophysical and pharmacological properties of exact, recombinantly reconstructed 

channels (Dolly and Parcej, 1996). This is especially important given that mutations of 

these channels are implicated in various channelopathies such as Episodic Ataxia 1, some 

epilepsies and even Multiple Sclerosis (Lehmann-Horn and Jurkat-Rott, 1999; Manganas et 

al., 2001; Zuberi et al., 1999), and the development of successful therapeutics depends on 

the availability of an authentic target for drug development. The theoretically possible 

a b 

Figure 2.8│Structures of the classical K+ channel blockers tetraethylammonium (a) 

and 4-aminopyridine (b) 
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number of channels that could be produced from homo- and hetero-tetrameric combinations 

of the 6 α subunit genes alone is manifold. However, only a subset of the potential 

oligomers have been identified (Coleman et al., 1999; Koschak et al., 1998; Scott et al., 

1994a; Shamotienko et al., 1997), most of which are heteromers, suggesting that these 

combinations may confer properties suited to the role of a channel at a particular location. 

This emphasises the importance of studying physiologically-relevant channels unlike 

numerous studies performed solely on homomeric Kv1 channels [e.g. (Garcia et al., 1994; 

Grissmer et al., 1994; Hopkins, 1998; Stuhmer et al., 1989)]. 

As isolating native channels from mammalian brain is not a practical approach for 

supplying adequate material for investigation of blockers, development of recombinant 

technology to produce physiologically relevant channels (detailed later in Chapter 6) is a 

vital step for continued exploration of these proteins. 

 

2.10 Potential utilisation of the specific inhibition of Kv1 channels by peptide toxins  

The value of peptide toxins as blockers of Kv1 channels has already been demonstrated, 

through the use of DTXs and scorpion toxins to purify channels from native tissue and 

determine their specific subunit compositions (Koch et al., 1997; Koschak et al., 1998; 

Wang et al., 1999b). Additionally, scorpion toxins have been used to determine the pore 

region of channels (MacKinnon and Miller, 1989). It is these venom-isolated peptide toxins 

that currently offer the best hope for brain heteromer-specific Kv1 blockers. Understanding 

their interactions with physiologically-relevant oligomers, in contrast to the homomers 

more usually studied, will aid in the pharmacological profiling of Kv1 channels. Finding 

and/or developing blockers specific for defined heteromers would prove particularly useful 

in assigning a molecular basis for K+ currents recorded from neurons. Perhaps most 

importantly, there is potential for such molecules to contribute to future therapeutics.  

There are features of these toxins that in all likelihood would prohibit them from being 

directly used in a clinical situation. For example, such peptides do not cross the blood-brain 

barrier, their bioavailability would preclude oral administration requiring instead 

intravenous, intramuscular or subcutaneous administration, and they are likely to trigger 

immune responses (Lewis and Garcia, 2003). However, using the toxins as templates to 

design small molecules that mimic their action could achieve the hetero-oligomeric specific 
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inhibition required, targeting localised channel populations which would surely decrease 

adverse side effects.  

 

2.11 Rb+ efflux assay for high-throughput screening of specific blockers for Kv1 hetero-

tetramers 

Large scale profiling of a library of peptide toxins requires not only a convenient source of 

native-like targets but also a suitable system for determining channel/toxin interactions. 

Typically, electrophysiological recordings are the gold standard for ion channel 

measurements; these are very accurate but incredibly time consuming and, as such, not 

suitable for screening. Ion channel activity has previously been quantified by flux assays. In 

the case of K+ channels with equal conductivity for Rb+, inhibitors have been tested for 

blockade of the efflux of radioactive 85Rb+. However, the use of such high-energy 

radioisotopes for large scale screens would not be favourable due to their associated 

hazards, especially in large quantities. Moreover, the expense of the isotope, as well as its 

disposal, is of major concern.  

As an alternative, a high-throughput, non-radioactive Rb+ efflux assay has previously been 

described (Terstappen, 1999). Cells expressing the channel of interest are loaded with Rb+ 

and its release upon K+ depolarisation, in the presence and absence of inhibitors, quantified 

by atomic absorption spectroscopy (AAS). The 96-well format of this assay makes it very 

attractive for screening applications. The potential for automation of the assay was 

considered, but analysis of AAS samples was thought to be a limiting step (Terstappen, 

1999). Modifying conventional atomic absorption spectrometers to cope with the smaller 

samples volumes provided by a microplate format, coupled with attached auto-samplers has 

allowed AAS to become a high-throughput technique (Ford et al., 2002). This is, therefore, 

a very practical assay for screening large numbers of compounds in the search for blockers 

of native-like Kv1 channels composed of specific combinations of α subunits. 

 

2.12 Aims of this study 

Many peptide toxins have been shown to block Kv1 channels, mostly through investigation 

of recombinant homomeric channels as it is the α subunit composition that confers 

sensitivity to these blockers (Grissmer et al., 1994; Gutman et al., 2005), and the expression 
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of α subunit cDNAs alone forms active channels (Scott et al., 1994b). In the main, Kv1 

channels from mammalian brain are composed of heteromeric combinations of α subunits 

(Shamotienko et al., 1997). As different compounds require contributions from various 

subunits for binding (Akhtar et al., 2002; Heginbotham and MacKinnon, 1992), it is 

possible that screening heteromeric channels will identify toxins with effects unpredictable 

from looking at parental monomers alone. Such inhibitors could act as useful tools for 

characterising and distinguishing the specific oligomers responsible for K+ currents 

recorded in neurons. Given the many advantages of the Rb+ efflux assay for high-

throughput screening of K+ channel inhibitors, it was highly desirable to establish and 

optimise this technique for determining their effects on concatenated α subunit 

combinations, expressed in mammalian cells. Automation of the efflux assay would expand 

the scope to screen numerous potential blockers against all the available heteromeric 

channels. Electrophysiological recordings and radio-labelled toxin binding experiments 

could confirm results obtained by this newly-established assay and provide functional 

characterisation of such expressed channels. In this way, the effects of many toxins on 

heteromeric channels could be analysed, for the first time, and toxins selective for such 

channels identified.  

Ultimately this research aimed to express channels with compositions mimicking those 

elucidated from mammalian brain, and to characterise them according to their biophysical 

and pharmacological properties. Recreation of such native-like tetramers would provide 

authentic targets for development of future therapeutics.  
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Chapter 3 

Materials and Methods 

 

 

3.1 Materials 

Restriction enzymes were purchased from New England Biolabs, Klenow DNA polymerase 

from Epicentre Biotechnologies, SP6 polymerase and RNase inhibitor from Roche, pSFV 

plasmid, pCR-blunt plasmid, DH5α competent cells, SOC medium and Lipofectamine 2000 

transfection reagent from Invitrogen; 0.5% trypsin/EDTA, L-glutamate, ab/am solution, 

Geneticin, Opti-MEM medium and sterile PBS (for tissue culture) were bought from Gibco. 

HiSpeed plasmid purification kits and Polyfect were from Qiagen. pβUT2 was a gift from 

A. Rodaway, Kings College, London, pIRES2-EGFP plasmid was from Clontech and 

Kv1.X sequences in pAKS plasmid were a gift from Prof. O. Pongs. Calbiochem supplied 

MOWIOL. Protein molecular weight markers were purchased from Biorad. Mouse 

monoclonal anti-Kv1.2 antibody was generated against K+ channels purified from bovine 

brain (Muniz et al., 1992), Kv1.2 antibody directed against external epitopes was a gift 

from Prof. J.S. Trimmer; Kv1.3 and Kv1.6 antibodies were from Santa Cruz and Abcam, 

respectively, and all AF conjugated secondary antibodies from Molecular Probes. Kv1.2 

(clone K14/16), Kv1.4 (clone 13/31) and Kv1.1 (clone 20/78) antibodies for immuno-

labelling total channel populations were bought from Neuromab. α and δDTX and DTXk 

were isolated from the venoms of Dendroaspis angusticeps and polylepis, respectively 

(Dolly, 1992). 4-AP and TEA were purchased from Lancaster Synthesis, Shk and 

Tityustoxin-Kα (TsTX-Kα) from Peptides International; all other toxins tested from 

Alomone Labs. 125Iodine was from Aim Research Company, Rb+ standard for atomic 

absorption spectroscopy from Acro Organics and BCA (bicinchoninic acid) assay kit from 

Pierce. All other chemicals including tissue culture reagents were from Sigma.  

 

3.2 Molecular biology procedures 

3.2.1 Generation of Kv1.1-1.2 cRNA Kv1.1-1.2–pSFV1 cRNA was prepared by Dr. O. 

Shamotienko. DNA, as described previously (Akhtar et al., 2002), was linearised with Spe1 

restrictase and used to generate capped cRNA with SP6 polymerase. This entailed 
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incubating 15 µg of DNA and 20 µl of SP6 polymerase plus 15 µl of RNase inhibitor in a 

total volume of 500 µl at 37°C for 1.5 h, before adding another 10 µl of the enzyme and 

continuing the incubation for 1.5 h. The resultant cRNA (~3.25 mg/ml) was stored in 

aliquots as an ethanol precipitate at -80°C; for reconstitution, the samples were centrifuged, 

ethanol removed and the pellet dissolved in sterile PBS. 

 

3.2.2 Preparation of Kv1.1-1.2 and 1.6-1.2 pIRES2-EGFP constructs These were made by 

Dr O. Shamotienko as described in (Sokolov et al., 2007), including Kv1.1, 1.2 and 1.6 

monomers. pIRES2-EGFP plasmid contains an internal ribosomal entry site (IRES), from 

the encephalomyocarditis virus (ECMV), between a multiple cloning site (MCS) and an 

EGFP cloning region. This allows both the gene of interest (cloned into the MCS) and 

EGFP to be translated from the same mRNA strand. EGFP is a variant of wild-type green 

fluorescent protein (GFP), optimised for brighter fluorescence and enhanced expression in 

mammalian cells; expression simplifies the monitoring of transfection efficiency, channel 

expression and selecting cells for electrophysiological recordings. 

Kv1.1-1.2 Spe I and BamH I restrictases were used simultaneously to digest Kv1.1-

1.2 pSFV (Akhtar et al., 2002) followed by blunting of the 5’-overhangs of the product 

with Klenow DNA polymerase. pIRES2-EGFP was digested with Bgl II and Sma I and 

similar blunting of the 5’-ends was again performed. Both the digested insert and plasmid 

were purified by agarose gel electrophoresis, and the 1.1-1.2 insert was ligated into the 

pIRES2-EGFP plasmid. Restriction mapping with Nhe I and Pst I was used to check the 

orientation of the insert once DNA had been prepared from single colonies of transformed 

DH5α cells. DNA was then purified on a larger scale using a HiSpeed plasmid purification 

kit. 

Kv1.6-1.2 In preparation for assembling the Kv1.6-1.2 pIRES2-EGFP plasmid, the 

following forward and reverse primers were used to amplify Kv1.6 and 1.2 constituents 

from pAKS plasmid: Kv1.6 – forward, TCG ACT CGA GCC GCC ACC ATG AGA TCG 

GAG AAA TCC C and reverse, TCG AGG ATC CGA CCT CCG TGA GCA TTC TTT 

TC (without a stop codon) and Kv1.2 – forward, CGA CTC GAG ATG ACA GTG GCT 

ACC GGA G and reverse, TCG AGG ATC CTC AGA CAT CAG TTA AC, with Xho I 

and BamH I restriction sites underlined on the forward and reverse primers, respectively. 
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The PCR reaction was as follows: 2 min denaturation followed by 22 cycles of: 94°C, 30 s; 

55°C, 45 s; 75°C, 2 min. Following agarose gel electrophoresis purification, PCR products 

were cloned into pβUT2 plasmid after both were digested with Xho I and BamH I. Next, 

Kv1.6 pβUT2 was incubated with BamH I and the 5’-overhangs blunted, as above with 

Klenow DNA polymerase. EcoR I was then used to remove the 3’-untranslated region 

(UTR) flanking the pβUT2 MCS (Akhtar et al., 2002). To remove the Kv1.2 insert with its 

5’ and 3’ UTRs, the Kv1.2 pβUT2 plasmid was incubated with Hind III and 5’-overhangs 

were blunted followed by digestion with EcoR I. After purification, the Kv1.6 pβUT2 

plasmid and Kv1.2 insert were ligated yielding the Kv1.6-1.2 pβUT2 plasmid, with the 

Kv1.6 and 1.2 connected by the 5’-UTR. Confirmation that monomeric constituents were in 

the same open reading frame (ORF) was achieved using a forward primer based on the 3’-

region of Kv1.6 and the reverse based on the 5’-region of Kv1.2. In order to subclone 

Kv1.6-1.2 into pIRES2-EGFP, the 2 plasmids were incubated with Hind III and Xho I, 

respectively, followed by blunt ending of 5’-overhangs, and digestion with EcoR I. The 

insert and plasmid were purified and semi-directionally cloned, and Kv1.6-1.2 pIRES2-

EGFP formed; DNA was prepared from single colonies of transformed DH5α cells, using a 

Qiagen plasmid purification kit. 

 

3.2.3 Cassette cloning system This was developed as described in (Shamotienko et al., 

2008), by Dr O. Shamotienko, Dr J. Wang and Prof J. O. Dolly. Dr O. Shamotienko and Dr 

M. Bodeker prepared the constructs. A modified pβUT2 plasmid was the source of a 

proven inter-subunit linker as above and in (Akhtar et al., 2002). 

3.2.3a PCR amplification of Kv1.X–constituents Rat Kv1.1-, 1.2-, 1.3-, 1.4- and 1.6-pAKS 

plasmids were used as PCR templates; their amplification was achieved using the primers 

detailed in Table 3.1 which incorporated Xba I and Xho I restriction sites at the 5’ and 3’ 

ends, respectively. The conditions for amplification using Pfx high fidelity polymerase 

were: initial denaturation, 95°C for 2 min, then 22 cycles of amplification with each cycle 

comprising denaturation, 94°C for 30 s, annealing at 58°C for 45 s and elongation at 72°C 

for 2 min. PCR-products were purified by electrophoresis on agarose gel and cloned into 

the ‘intermediate’ pCR-blunt plasmid; competent DH5α cells were transformed with the  
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Rat Kv1  
α Subunits 

 
Forward primer  
(with Xba I site underlined) 
 

 
Reverse primer  
(-STOP)* 
(with Xho I site underlined) 
 

 
Kv1.1 

 
G TCTAGA AT GAC GGT GAT GTCAGG 
GGA GAATGC  
 

 
G CTCGAG AA CAT CGG TCA GGA GCT 
TGC TCT TAT TAAC  

 
Kv1.2 

 
GTCTAGAATGACAGTGGCTACCGGAGA
C CCAGTGG 
  

 
G CTCGAG GA CAT CAG TTA ACA TTT 
TGG TAATAT TCAC*  

 
Kv1.3 

 
GTCTAGAATGACCGTGGTGCCCGGGG
AC CACCTG 
 

 
GCTCGAGGACATCAGTGAATATCTTTTT
GATGTTGACAC 

 
Kv1.4 

 
GTCTAGAATGGAGGTGGCAATGGTGAG
TGCC 
 

 
GCTCGAGGACACATCAGTCTCCACAGC
CTTTGCATTAG 

 
Kv1.6 

 
GTCTAGAATGAGATCGGAGAAATCCCT
TACGC 
 

 
GCTCGAGGAGACCTCCGTGAGCATTCT
TTTCTCTGC 

 
Subunit domain in 
pIRES2 plasmids  
(with restriction site) 
 

 
Forward primer 
(restriction site underlined) 
 

 
Reverse primer 
(restriction site underlined) 

 
I (Nhe I – Bgl II) 
 

 
AGCTAGCAGAATAAACGCTCAACTTTG
GCAGATC 

 
GAGATCTCCAGATCCGGTACCAGATCG
ATCTCGAC 

 
II (Bgl II – EcoR I) 
 

 
GAGATCTAGAATAAACGCTCAACTTTGG
CAGATC 

 
CGAATTCCCAGATCCGGTACCAGATCG
ATCTCGAC 

 
III (EcoR I – Sal I) 
 

 
CGAATTCAGAATAAACGCTCAACTTTGG
CAGATC 

 
AGTCGACCCAGATCCGGTACCAGATCG
ATCTCGAC 

 
IV (Sal I – BamH I) 

 
AGTCGACAGAATAAACGCTCAACTTTG
GCAGATC 

 
AGGATCCCCAGATCCGGTACCAGATCG
ATCTCGAC 
 

* Reverse primer for Kv1.2 (+STOP): G CTCGAG TT ATC AGA CAT CAG TTA ACA TTT TGG TAA TAT 
TCAC 
 

Table 3.1│ Cassette cloning primers. Upper panel: specific primers used for amplification of 

Kv1.X subunits, with Xba I and Xho I sites on forward and reverse primers, respectively, to facilitate 

subsequent cloning into pβUT2. Only Kv1.2 was engineered with two STOP codons. Lower panel: 

UTR specific primers for amplifying rat Kv1 subunits, incorporating linker sequences from pβUT2 

and restriction sites allowing position-dependent cloning of individual subunits (with flanking linker) 

into corresponding domain positions within the pIRES2 MCS. The UTR-specific primers differed 

only by domain–specific flanking restriction sites.  
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ligated products. DNA was prepared on a large scale from positive clones; after digestion 

with Xho I and Xba I, inserts were purified by agarose gel electrophoresis and subcloned 

into pβUT2, using Xho I and Xba I sites. 

 

3.2.3b Modification of pβUT2 plasmid and cloning of Kv1.X inserts with flanking half-

linkers Sal I, BamH I and Bg1 II sites of the MCS of pβUT2 plasmid were eliminated by 

sequential in-filling to prevent their interference with subsequent assembly of oligomeric 

constructs into pIRES2-EGFP or-DsRed plasmids. Purified Kv1.X inserts were ligated into 

mutated pβUT2 plasmid and positive clones identified by digestion with Xba I and Xho I 

enzymes. These acted as templates for the subsequent PCR. The forward and reverse 

primers used were based not on the Kv1.X genes but on the first (up to the Xba I site) and 

last (downstream of Xho I site) 30 nucleotides of the UTRs of the Xenopus β-globin gene 

flanking the MCS of pβUT2 (Table 3.1). Restriction sites introduced during this PCR 

allowed positional cloning into the pIRES2-EGFP or-DsRed mammalian expression 

vectors (see later). PCR amplification was performed under the same conditions as before; 

single bands of the expected size were purified by agarose gel electrophoresis, cloned into 

pCR-blunt plasmid and assembled into the pIRES plasmids. All constructs were verified by 

DNA sequencing. 

 

3.2.3c Assembly of Kv1.X tetrameric constructs Paired sites for Nhe I/Bgl II, Bgl II/EcoR I, 

Eco RI/Sal I, and Sal I/BamH I, respectively, were used to individually sub-clone the genes 

from pCR-blunt into domains I to IV of pIRES2-EGFP or -DsRed. In the same way, 

dimeric combinations of channels could be constructed, by sub-cloning only 2 Kv1.X genes 

into the pIRES2 vectors with the ORF still maintained. In these instances, positions 3 and 4 

were occupied. Correct positioning of all the constructs in pIRES2 plasmids were 

confirmed by restriction analysis. Concatenated Kv1 channel constructs were expressed in 

HEK-293 (HEK) cells (except where stated) and experiments performed 48 h after 

transfection.  

 

3.2.4 Transforming competent cells Competent E. coli DH5α cells, stored at -80°C, were 

thawed on ice and 50 µl aliquoted into pre-cooled tubes containing the required DNA. 
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Following a 30 min incubation of the cells and DNA on ice at 4°C, they were heat shocked 

with 20 s in a water bath at 42°C, then returned to ice for a further 20 min; 950 µl of SOC 

medium was added and the mixture transferred to a larger tube for incubation in a shaker 

incubator for 90 min at 220 rpm and 37°C. The resultant culture (100 µl) was spread on a 

kanamycin (50 µg/ml) plate and cultured overnight at 37°C. If individual colonies were not 

visible, a second kanamycin plate was streaked from the first as DNA preparation requires 

individual colonies.    

 

3.2.5 Preparation of DNA This was prepared using HiSpeed plasmid purification kits (midi 

and maxi), according to the manufacturer’s instructions. A single colony was picked from 

plate previously streaked with transformed bacteria and cultured in 50 µg/ml kanamycin LB 

medium (5 ml) for 8 h at 37°C and 300 rpm. Once this starter culture had begun to grow 

(i.e. the medium had become cloudy), it was used to inoculate a 200 ml culture (also 

containing 50 µg/ml kanamycin in LB medium) which was grown overnight under the 

same conditions. The following day, bacteria were pelleted by centrifugation at 6000 g for 

15 min at 4°C. The pellet was resuspended in buffer P1 followed by addition of the alkaline 

lysis buffer P2, thorough mixing, and a 5 min incubation. Buffer P3 was then added, 

neutralising the mixture and precipitating genomic DNA, proteins and cell debris. The 

lysate was incubated in a QIAfilter cartridge for 10 min, during which time a HiSpeed tip 

was equilibrated using Buffer QBT. The cell lysate was then filtered into the prepared tip 

and the resultant cleared lysate left to pass through the tip, before washing with Buffer QC. 

DNA collected in the HiSpeed tip was then eluted with buffer QF, precipitated with 

isopropanol and put through a QIAprecipitator which collects the DNA. Ethanol (70%) was 

passed through the precipitator to wash the DNA following which air was pushed through 

twice to remove any ethanol left over. Finally, the DNA was eluted in TE buffer.  

 

3.3 Cell culture techniques 

3.3.1 Mammalian cell lines CHO, HEK and COS-7 (COS) cells were maintained in 

Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 10% FCS, ab/am 

solution and L-glutamate, as adherent cultures in a 5% CO2 incubator at 37°C. Once cells 

had grown to 80% confluency, they were harvested by trypsinisation and re-plated. 
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Trypsinisation was performed following removal of culture medium and 2 PBS washes of 

the cell layer; 0.5% trypsin/EDTA solution was then added for approximately 5 min. Once 

the cells were detached, supplemented DMEM was added resulting in inactivation of the 

trypsin by the serum in the medium, which contains trypsin inhibitors. Cells were then 

processed as required.   

 

3.3.2. Electroporation of cells with cRNA (used for expression of the Kv1.1-1.2 channel in 

CHO cells) An 80% confluent 75 cm2 flask was harvested and washed twice by 

centrifugation at 160 g for 5 min followed by re-suspension in sterile PBS. After the final 

wash, cells were resuspended in 0.8 ml PBS containing 75 µg cRNA. This mixture was 

transferred to a 0.4 cm electroporation cuvette and 2 pulses of 850 V, with a capacitance of 

25 uF, were applied. After 1 min, the cells were diluted in supplemented DMEM and plated 

as necessary. Cells were then kept in a 5% CO2 incubator at 37°C for 24 h.  

 

3.3.3 Polyfect transfection of cells Cell densities and quantities of DNA, Polyfect and 

medium were determined from the Handbook supplied by the manufacturer. HEK cells 

were plated in the required flasks one day prior to transfection such that they were 50% 

confluent. DNA was diluted in non-supplemented DMEM, mixed well and Polyfect then 

added. The mixture was left for 10 min for complex formation to occur during which time 

growth medium was replaced on the plated HEK cells. Once the incubation time had 

elapsed, supplemented DMEM was added to the DNA/Polyfect mixture, and the total 

volume transferred to the cells with gentle swirling to ensure even distribution of the 

complexes. Cells were then incubated at 37°C, 5% CO2 for 48 h to allow gene expression.        

 

3.3.4 Transfection of cells using Lipofectamine 2000 HEK cells plated one day previously, 

in the appropriate culture vessel at a density of approximately 40%, were used for 

transfections. DNA, Lipofectamine 2000 and medium volumes for the various size culture 

flasks are given in the manufacturer’s instructions. Quantities for a 75 cm2 flask are given 

in brackets. DNA (30 µg) and Lipofectamine 2000 (75 µl) were separately diluted with 

Opti-MEM (1.9 ml) and left for 5 min, following which they were combined and incubated 

at room temperature for a further 20 min. During this time, growth medium was removed 
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from the cells to be transfected and following 2 washes with non-supplemented DMEM to 

remove any traces of serum or antibiotics, an appropriate amount (19 ml) of the same 

medium was returned to the cells. Following the 20 min incubation, the 

DNA/Lipofectamine 2000 mixture was also added. Cells were replaced at 37°C, 5% CO2 

overnight. The following day, medium was replaced with supplemented DMEM and cells 

were re-plated if necessary. When expression levels were not sufficient for functional 

analysis of channels, the DNA concentration was doubled without altering any other 

parameters. 

 

3.3.5 Lipofectamine 2000 COS cell transfection for K+ channel surface labelling COS cells 

used for surface immuno-staining experiments were plated on poly-l-lysine coated 22x22 

mm coverslips in 35 mm dishes at a density of ~8% in 2 ml supplemented DMEM one day 

prior to transfection. In this instance, 1 µg DNA and 1 µl Lipofectamine 2000 were used for 

each dish, each diluted with 50 µl Opti-MEM. Once the DNA and transfection reagent had 

been mixed and incubated for 20 min, COS cells were placed in 0.5 ml of serum-free 

DMEM after 2 washes in the same. The DNA/Lipofectamine 2000 mixture was added and 

the cells were incubated at 37°C, 5% CO2 for 4 h following which medium was replaced 

with supplemented DMEM and the cells were incubated for a further 2 days.    

 

3.3.6 Establishing Kv1 expressing stable cell lines To prepare HEK cell lines stably 

expressing Kv1 channels, cells were transfected with the relevant pIRES2-EGFP construct 

using Polyfect; 48 h post transfection, Geneticin was added to the culture medium at a final 

concentration of 1 mg/ml. Once the non-transfected cells had died and become detached 

(approx 2 – 3 weeks) and the surviving cells were growing at a healthy rate, they were re-

plated in 24-well plates at a density of 1 cell/well. EGFP expression of the growing cells 

was monitored via fluorescent microscopy and stock cultures were produced from the 

brightest colonies. 

 

3.4 Monitoring expression of recombinant channels 

3.4.1 Immuno-staining of K+ channel proteins expressed in CHO cells Following 

electroporation, CHO cells were plated onto sterile coverslips and incubated in DMEM (as 
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above) for 24 h. Coverslips were washed three times with PBS before the cells were fixed 

with 4% PFA (in the same buffer) for 15 min. Following 3 PBS washes, samples were 

quenched with 50 mM NH4Cl/PBS for 15 min, and washed again. Permeabilisation was 

with 0.1% TX-100/PBS for 5 min and another 3 washes followed. The cells were then 

incubated with a mouse monoclonal antibody specific for Kv1.2 α subunit, diluted in 5% 

FCS/PBS for 4 h at room temperature. Three further PBS washes followed, before 

incubation for 2 h at room temperature with goat anti-mouse IgG-conjugated to AF 488 

diluted 1:1500 in 5% FCS/PBS, washing and staining with DAPI for 5 min. After a final 

wash step, coverslips were mounted onto slides with MOWIOL and, once dried, viewed 

with an Olympus 1X71 microscope using filters appropriate for the fluorophores employed. 

Control experiments were also performed omitting secondary antibody and, in some cases, 

untransfected cells were similarly treated to provide a further control. 

 

3.4.2 Immuno-fluorescent labelling of surface Kv1 channels COS cells plated on poly-l-

lysine coverslips in 35 mm dished and transfected 2 days previously with Lipofectamine 

2000 were processed as described in (Manganas and Trimmer, 2000) with some minor 

modifications (see Appendix A for buffer compositions). Medium was removed from cells 

and replaced with 1 ml ice-cold 3% PFA/PBS for 30 min at 4°C. Following 3x5 min 

washes with chilled PBS, cells were blocked in Tris-buffered milk (blotto) for 30 min. This 

was followed by incubation with primary antibodies directed against an ecto-domain of 

Kv1.2, for 2 h at room temperature (10 µg/ml purified IgG in blotto – 750 µl/dish). After 

3x20 min washes with blotto, cells were permeabilised with 0.1% TX-100/blotto for 30 min 

at room temperature, then incubated with a second cytoplasmically-directed primary 

antibody (used at 10 µg/ml in the same buffer), for 1 h at room temperature. Secondary 

antibody incubation followed 3x10 min washes in 0.1% TX-100/blotto. These AF 

conjugated antibodies were used at 1:1500 dilutions, in 0.1% TX-100/blotto, for 45 – 60 

min at room temperature. The requisite secondary antibodies for both primaries were 

combined in a single incubation and where DAPI staining of nuclei was required, it too was 

included in this step (0.005 µg/ml). Washing with 0.1% TX-100/PBS was the final step 

before coverslips were mounted on slides, sealed with nail varnish and kept at -20°C 

overnight. Slides were viewed as detailed above. All primary antibodies were re-used for 
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further experiments. For controls, primary antibodies were omitted. As fluorescent protein 

genes are present in the pIRES plasmids used for channel expression, their fluorescence 

was also viewed to ensure it did not interfere with signals from antibodies. 

 

3.4.3 Western blot analysis SDS-PAGE and Western blotting were performed as described 

in Section A. Briefly, transiently- and stably-expressing cells were harvested with 0.5 mM 

PBS/EDTA instead of trypsin/EDTA. Detached cells were resuspended in PBS and after 

centrifugation the resultant pellet was dissolved in 1xLDS sample buffer (~4 mg/ml 

protein), heated to 80°C for 10 min, and passed through a 25 G needle. Samples were then 

run on 4-12% pre-cast gels and following transfer, membranes were developed with Kv1 α 

subunit-specific primary antibodies, secondaries conjugated to HRP and SuperSignal West 

Pico Luminol/Enhancer substrate solution.      

 

3.4.4 Biotinylation of surface targeted, expressed channels These experiments were 

performed by Dr O. Shamotienko. For biotinylation of surface proteins, an aqueous 

solution (17 µl) of sulphosuccinimydyl-6-(biotin-amido) hexanoate (60 mg/ml) was added 

to 0.3 ml of cell suspension (5 mg protein/ml) and incubated at 22°C for 1 h. Excess 

reagent was quenched and removed by 3 washes with PBS containing 100 mM glycine 

before resuspending the cells in PBS and extracting with 2% TX-100 for 1 h at 4°C. After 

centrifugation (300 000 g for 1 h), the supernatant was diluted 3-fold and an aliquot (1 ml) 

incubated at 4°C overnight with a 50% slurry of streptavidin-agarose CL-4B. Loosely-

bound unwanted proteins were removed by 3 washes with PBS/0.4 M NaCl and the 

immobilised proteins dissolved in sample buffer (2x). The resultant samples were subjected 

to SDS-PAGE and Western blotting with antibodies specific for Kv1.1 or 1.2 (Shamotienko 

et al., 1999).  

  

3.5 Pharmacological analysis of recombinant Kv1 channels using a Rb+ efflux assay 

3.5.1 Assessment of known K+ channel blockers on Kv1.1-1.2 channels transiently 

expressed in CHO cells Rb+ efflux experiments were performed as described in (Terstappen, 

1999), with some modifications (see Appendix B for buffer compositions). Cells 

electroporated with Kv1.1-1.2-pSFV cRNA were plated in 96-well plates at a density of 
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50,000 cells/well, in 100 µl of DMEM. The following day, Rb+ loading was achieved by 

replacement of culture medium with 300 µl of buffer containing 5.4 mM Rb+  for 4 h. 

Extracellular Rb+ was removed by washing in 25 mM HEPES wash buffer (pH 7.4) using a 

Biotek 405 cw plate washer. Stimulation buffer containing 75 mM K+ (100 µl) was then 

applied to cells for 3 min to activate expressed channels. To measure basal (unstimulated) 

release, some cells were incubated with the wash buffer (containing 0.1 mM K+), also for 3 

min. An aliquot (75 µl) of the supernatants were collected following the stimulation period, 

after which cells were washed again before being lysed with 100 µl 1% TX-100 for 10 min; 

75 µl of lysate was collected and all samples were diluted with 300 µl of ionization 

prevention (IP) buffer. The supernatant and lysate samples were analysed by AAS, using a 

Thermo Solaar S4 atomic absorption spectrometer, attached to a Gilson 222XL auto-

sampler for loading the samples. Rb+ concentration was automatically determined from 

defined standards. The amounts of basal and stimulated release, that is Rb+ concentration in 

the supernatants, were expressed as % of total (supernatant + lysate) Rb+ content.  

To ascertain the optimum time required for Rb+ loading, medium on transfected cells was 

replaced with the appropriate buffer at various time intervals. Once the incubation time had 

elapsed, the test plate was washed and 100 µl 1% TX-100 added for 10 min; lysates (75 µl) 

were collected, diluted and analysed as described above. The optimum concentration of K+ 

required to activate the expressed channels was also determined by measuring supernatant 

[Rb+] after exposure to stimulation buffer with varying [K+] ([NaCl] was altered to 

maintain the isomolar balance). To show that Rb+ release was indeed due to expressed 

channels, untransfected CHO cells and those electroporated in the absence of cRNA were 

similarly analysed. Substances tested for channel blocking ability were either added to the 

stimulation buffer (4-AP and TEA) or included with the cells for the final hour of Rb+ 

loading (αDTX). For experiments on channel blockers, results were expressed as % evoked 

release ± S.E.M. relative to that for the drug-free control; the evoked increment was 

calculated by subtracting basal from the stimulated release value. For all experiments, at 

least eight wells were assayed for every condition and measurements repeated with 3 

different batches of electroporated cells.  
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3.5.2 Characterisation of the pharmacological profiles of Kv1 channels expressed in HEK 

cells, using a modified Rb+ efflux assay Alterations to the assay described above were made 

to suit HEK rather than CHO cells used initially, and to improve application of peptide 

toxins. Buffer compositions are those used routinely for such cells by Xention Ltd. 

(Cambridge, UK). HEK cells stably expressing channels and/or those transiently 

transfected using Lipofectamine 2000, were plated in poly-D-lysine coated 96-well plates 

(Biocoat, BD Falcon), at a density of 50,000 cells/well in a final volume of 100 µl of 

culture medium (1 day post transfection for transients). The following day, cells were 

loaded for 4 h with Rb+ by replacement of medium with 150 µl of Rb+ loading buffer, and 

experiments performed as previously described; however, slightly modified wash and 

stimulation buffers (see Appendix C for compositions) were employed, and stimulation 

time for Rb+ efflux was increased from 3 to 5 min. 

Toxins were tested for blocking ability by addition to the cells of 50 µl of a 2x 

concentration (diluted in 0.01% bovine serum albumin (BSA)/modified wash buffer), 

following washing. After a 10 min incubation, cells were stimulated with 50 µl 150 mM K+ 

modified stimulation buffer (isomolar replacement of NaCl with KCl) resulting in a final 

concentration of toxin and 75 mM K+. The assay was continued as previously described. 

For experiments involving 4-AP and TEA, they were included directly in the stimulation 

buffer (or in wash buffer for some measurements) as described above. Control wells were 

included in each experiment for measurement of basal or unchallenged stimulated release. 

Samples were diluted with 275 µl I.P. buffer before being analysed by AAS as detailed 

above. Fractional inhibition of evoked Rb+ release is plotted ± S.E.M., n = >16 wells from 

measurements made on at least 2 different days. Details of all compounds screened are 

given in Tables 2.2 and 4.3. 

 

3.6 Electrophysiological recordings and data analysis  

3.6.1 Analysis of K+ current evoked from Kv1.1-1.2 channels expressed in CHO (performed 

by Dr M. Sokolov) K+ currents were recorded from CHO cells electroporated with Kv1.1-

1.2-pSFV cRNA in voltage-clamp, whole cell mode (Hamill et al., 1981). Cells were plated 

on glass coverslips immediately after transfection, and currents recorded the next day. The 

extracellular solution contained (in mM): 150 NaCl, 5 KCl, 1.8 CaC12, 1 MgCl2, 10 
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HEPES, 5 NaOH, and 10 D-glucose, adjusted to pH 7.4 with HCl. Patch pipettes were 

pulled from thin-walled borosilicate glass capillaries (1.5 mm OD, 1.2 mm ID); pipette 

resistance was typically between 2 and 5 MΩ. No compensation was made for series 

resistance (ranged from 3-7 MΩ). Patch pipettes were filled with a solution containing (in 

mM) 70 KCl, 70 K-gluconate, 1 MgC12, 5 EGTA, 10 HEPES, and 10 D-glucose, adjusted 

to pH 7.4 with KOH. The osmolarity of all extra- and intra-cellular solutions were in the 

range of 320 ± 7 mOsm. The liquid junction potential was not corrected. The currents were 

filtered at 1 kHz, and sampled at 5 kHz (or 1 kHz for 60 s pulse). Recordings were made at 

room temperature (22-24oC), using a HEKA EPC10 amplifier and Pulse software. 

Pharmacological experiments were performed by applying drugs directly to the recording 

chamber. Currents were recorded in response to repetitive pulses (200 ms, +40 mV); when 

stabilised, drugs were applied and the amplitudes obtained for 10-20 pulses averaged, final 

values for each concentration being taken from at least 3 cells. 

 

3.6.2 Electrophysiological recordings and data analysis from HEK cells stably expressing 

Kv1.1-1.2 and 1.6-1.2 (described in (Sokolov et al., 2007) and performed by Dr M. Sokolov) 

After obtaining stable expression of K+ channels in HEK cells, K+ currents were recorded 

as described above, with some modifications. Currents were filtered at 1 kHz, and sampled 

at 4 kHz (with the exception of 60 s pulses, which were sampled at 50 Hz). P/4 leak 

subtraction was used. The membrane holding potential was -60 mV. To determine voltage 

dependency of activation kinetics after a pre-conditioning pulse to -110 mV for 300 ms, a 

series of depolarisation steps (400 ms duration) from -60 to +50 mV were applied in 10 mV 

increments. Current amplitudes corresponding to 40-90% of the maximum were fitted with 

a single exponential function. Conductance-voltage (G-V) relations were determined from 

averaged current after 200-300 ms of activation, normalised relative to the K+ driving force 

by assuming a reversal potential of -75 mV (measured reversal potential was between -70 

and -80 mV). Kinetics of K+ current deactivation were measured after a 50 ms step to +40 

mV. Inactivation was evaluated during 60 s depolarisation steps to +40 mV. To determine 

steady-state inactivation, cells were maintained at +20 mV for 40 s, followed by 1 s steps to 

the indicated voltage to remove inactivation, and then stepped to +40 mV to determine the 
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extent of K+ current remaining. Time constants were determined by fitting currents with 

single or double exponential functions of the form:  

I =A0+A1 exp(-t/τ1)+ A2 exp(-t/τ2)  (1) 

where A0, A1 and A2  are amplitude coefficients, τ1 and τ2  time constants. 

The voltage-dependence of deactivation was fitted by the equation: 

τ = A exp(-zFE/2.303RT)    (2) 

where A is an amplitude coefficient, z elementary charge, F Faraday’s constant, E 

membrane potential, R gas constant, and T temperature. 

Steady steady-state inactivation and conductance-voltage relationships were fitted by a 

Boltzmann equation of the form:  

 G = Gmax {1 + exp[(V½-V)/k]}-1.  (3) 

 

Drugs were applied directly to the recording chamber and current amplitudes measured 

from the average of 10-20 pulses (200 ms, +20 mV), after current levels stabilised. All data 

shown are mean ± S.E.M. (n>3); where not shown, error bars fall within the data point. 

 

3.6.3 Characterisation of K+ currents elicited from hetero-tetramers (described in 

(Shamotienko et al., 2008) and performed by Dr H. Shaban and Dr J.T. Sack) Membrane 

currents were measured in whole-cell voltage-clamp mode, as outlined in (Sokolov et al., 

2007), except where specified. Borosilicate patch pipettes were filled with an internal 

solution (in mM): 90 KCl, 50 KF, 30 KOH, 10 EGTA, 20 HEPES, pH 7.4. The 

extracellular bath solution contained (in mM) 135 choline chloride, 20 KOH, 1.8 CaCl2, 1 

MgCl2, and 40 HEPES, pH 7.4. Just prior to use, 0.01% (w/v) BSA was added; silanised 

pipette tips and tubes were used for handling toxins. Solutions were exchanged by 

continuous flow with a peristaltic pump or a Cellectricon Dynaflow-16 system. Series 

resistance compensation was applied to minimise the voltage error (<10 mV). Correction 

was made for a calculated liquid junction potential of +8.4 mV. Membrane holding 

potential was -100 mV. Leak subtraction was used to isolate K+ current. Analogue traces 

were filtered at 5 kHz, and sampled at 50 kHz. Non-linear fitting was carried out with 

equations described previously (Sack and Aldrich, 2006).  Data are reported as mean ± 

S.E.M.; n values refer to number of individual cells tested.  
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3.7 125I-αdendrotoxin binding studies 

For all experiments involving 125I-αDTX, HEK cells transfected with the relevant construct 

48 h previously using Lipofectamine 2000 were harvested with 0.5 mM PBS/EDTA instead 

of trypsin. Once cells were dislodged from the flask, they were resuspended in PBS and 

centrifuged as described (see above). Silanised plasticware was also used to minimise toxin 

absorption. 

3.7.1 Iodination of αdendrotoxin Toxin was radiolabelled as previously described (Dolly, 

1992) using the chloramine-T method; 0.98 mg/ml αDTX (10 µl), buffer A (5 µl), 1 mCi 

Na125I (10 µl) and 1 mg/ml chloramine-T (5 µl) were combined for 60 s, then the reaction 

quenched with 970 µl buffer B. At this stage 2x 10 µl aliquots were removed and diluted 

with 990 µl buffer D, for determination of the specific activity. The rest of the reaction 

mixture was loaded onto a column containing 2 ml CM-sepharose CL6B resin. After the 

column was washed with 20 ml buffer B (including washings from the reaction tube) to 

remove free 125I, the labelled toxin was eluted with buffer C (10 ml). Fractions (1 ml) were 

collected and those containing the radio-labelled toxin determined with a Geiger counter. 

Aliquots removed for determination of specific activity were incubated on ice for 20 min 

with 250 µl 40% TCA and 740 µl 1% BSA, with mixing. The pellet resulting from 

centrifugation at 10,000 g for 5 min was washed with 10% TCA and counted in a γ-counter. 

Specific activity was 200 Ci/mmol. 

Buffer A – 0.4 M sodium phosphate, pH 7.4 

Buffer B – 10 mM sodium phosphate, pH 7.4 and 0.02% (w/v) TX-100 

Buffer C – buffer B + 0.6 M NaCl 

Buffer D – buffer B + 2% (w/v) sodium metabisulphite 

 

3.7.2 Saturable binding of 125I-αdendrotoxin to various Kv1 channels and its displacement 

by unlabelled toxins Cells suspended in binding buffer (150 mM NaCl, 5 mM KCl, 1 mM 

SrCl2, 50 mM imidazole-HCl, 1% BSA, pH 7.5) were incubated for 1 h at room 

temperature in a total volume of 200 µl, with increasing concentrations of 125I-αDTX (0.5-

10 nM) in the presence or absence of 1 µM unlabelled αDTX. Aliquots (90 µl) of the 

reaction mixture were filtered through Whatman GF/B filters followed by three washes (0.5 

ml each) with ice-cold TBS-buffer (150 mM NaCl, 5mM KCl, 50 mM Tris-HCl, pH 7.5). 
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For displacement experiments, suspended cells were incubated with 2.5 nM 125I-αDTX, 

with and without increasing concentrations of various unlabelled toxins. Radioactivity 

remaining on washed filters was measured with a γ-counter and resultant data analysed, 

using Graph Pad Prism software. KD and Bmax values were obtained from fitting the 

saturable binding data with a one site binding equation; Y = Bmax.X/KD+X, where X is 

[ligand] and Y is specific binding. Ki values for the peptide toxins investigated were 

calculated as described in Chapter 5. 

 

3.7.3 Determination of protein concentrations in cell suspensions 

The concentration of protein in toxin binding samples (in the absence of added BSA) was 

determined using a BCA assay. It is a detergent compatible method based on the reduction 

of Cu2+ to Cu1+ by protein in an alkaline environment. A Cu1+ ion then chelates with 2 BCA 

molecules producing a complex that absorbs strongly at 562 nm. BSA standards as well as 

reagent A (sodium carbonate, sodium bicarbonate, bicinchoninic acid and sodium tartrate in 

0.1M NaOH) and reagent B (4% cupric sulphate) are provided in the kit. 

Samples of cell suspensions in binding buffer were adjusted to 1% TX-100 to solubilise 

proteins and the same buffer containing 1% TX-100 was used to make up BSA standards 

and, also, served as the blank; 50 parts reagent A and 1 part reagent B, comprised the 

working reagent, 200 µl of which was used to dilute 25 µl of standards, samples and blank, 

in a microplate. After mixing for 30 s, the covered plate was incubated at 37°C for 30 min. 

After cooling to room temperature, absorbance was measured at 562 nm. Protein 

concentrations of the samples were determined from a standard curve produced from 

absorbance readings of the standards after correction for the blank.  



 
78 

Chapter 4 

Expression in mammalian cells of 2 concatemers of brain Kv1 channel α 

subunits give similar K+ currents but yield pharmacologically 

distinguishable heteromers: assessment of their suitability for screening 

of inhibitors 

 

 

4.1 Overview 

Synthesis and assembly of Kv1 channels is controlled to yield a limited variety of channels 

as demonstrated by Shamotienko et al (Shamotienko et al., 1997). Presumably, properties 

of these specific channel combinations are suited to different roles according to neuron type 

or location. Channels purified from mammalian brain are predominantly heteromeric in 

composition (Wang et al., 1999b); therefore, it is necessary to characterise oligomers with 

these defined α subunit combinations and stoichiometries. Such heteromeric channels 

contain different proportions of Kv1 α subunits, with Kv1.2 being the most prevalent, 

followed by Kv1.1 (Scott et al., 1994a). Kv1.1 subunits always occur with Kv1.2 

(Shamotienko et al., 1997), with heteromers consisting of these subunits alone present in 

several areas of human brain; cerebral cortical grey matter, cerebral white matter and spinal 

cord (Coleman et al., 1999).  

In a previous study (Akhtar et al., 2002), a Kv1.1-1.2 construct was prepared using a linker 

from the Xenopus β-globin gene and expressed in Xenopus oocytes. Although it gave an 

outward, non-inactivating K+ current whose voltage-dependency of activation differed from 

those of the parental homomers, its other electrophysiological and pharmacological 

properties were not determined. Also to avoid any peculiarities with the amphibian host, it 

was desirable to fully characterise this channel when expressed in mammalian cells. Thus, 

the tandem-linked Kv1.1-1.2 construct was co-expressed with the β2 subunit in BHK cells 

using a Semliki Forest virus (SFV) and found to produce a hetero-oligomer of the expected 

size, indicative of the assembly of two Kv1.1-1.2 dimers (Akhtar et al., 2002). High-affinity 

binding of 125I-labelled αDTX or DTXk observed with the intact cells demonstrated correct 

folding and assembly of the two dimeric constituents to form a tetrameric channel containg 
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two Kv1.1 and two 1.2 subunits in the plasma membrane (Tytgat et al., 1995), but its 

functionality was not analysed electrophysiologically.  

The aims of this study were to profile the biophysical and pharmacological properties of 

this Kv1.1-1.2 containing channel expressed in CHO cells [due to their low content of 

endogenous outward K+ currents (Yu and Kerchner, 1998)], in order to establish its utility 

as a prototypic, authentic target for future screening of drugs capable of selectively 

inhibiting particular subtypes. For this purpose, it was not necessary to co-express auxiliary 

β subunits as in the previous study (Akhtar et al., 2002) because the determinants for 

external binding of channel blockers are provided by the α subunits (Doyle et al., 1998). 

However, biophysical properties could be affected by the absence of β subunits and 

therefore, eventually, constructs consisting of 4 α and 4 β subunits will be desirable for 

such drug development strategies. The transfection procedure was simplified for expressing 

the K+ channel; cells were electroporated with cRNA prepared using the SFV expression 

plasmid (pSFV1) that contained the inserted Kv1.1-1.2 gene (Akhtar et al., 2002), rather 

than using the more time consuming preparation of SFV particles for transfecting the cells. 

Optimisation of the simple, fast and convenient Rb+ efflux assay allowed functional 

analysis of various ion channel blockers on the expressed protein. To validate the results, 

comparisons were made with those obtained from electrophysiological recordings.  

 

Following success with this approach, it was extended to other constructs. First, however, 

modifications to the expression system were required to yield a longer lasting and larger 

quantity of channel-expressing cells, compared to the short-lived and finite number of cells 

provided by electroporation with cRNA described above. To this end, the Kv1.1-1.2-

pSFV1 construct was subcloned into pIRES2-EGFP and a stable cell line developed using 

HEK cells. Kv1.6 is the third most abundant α subunit in brain, like Kv1.1 is found 

complexed with Kv1.2 (Scott et al., 1994a) and in the limited number of instances where 

subunit stoichiometries of neuronal Kv1 tetramers have been identified unambiguously, 

there is evidence of a swap of Kv1.1 with Kv1.6. That is, a Kv1.1 subunit is interchanged 

with Kv1.6 in channels containing the requisite Kv1.2, along with Kv1.3 and 1.4 subunits 

(Coleman et al., 1999; Shamotienko et al., 1997). The functional consequences of this 

single subunit swap are, therefore, of interest. Kv1.2 and 1.6 have also been detected 
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together in auditory neurons from the trapezoid body of Kv1.1 knockout mice (Brew et al., 

2003). Taking these factors into account, the next channel chosen for study was one 

containing Kv1.6 and 1.2 subunits; hence, a Kv1.6-1.2-pIRES2-EGFP construct was 

prepared and a stably expressing HEK cell line developed. The biophysical and 

pharmacological profiles of these channels were ascertained by electrophysiological 

recordings, Rb+ efflux and radiolabelled toxin displacement. Importantly, a ligand capable 

of distinguishing Kv1.1-12 and Kv1.6-1.2 containing channels was identified. These 

findings have been published (Sokolov et al., 2007). 

Having optimised the Rb+ efflux assay for profiling the pharmacology of concatenated K+ 

channels in CHO cells, the establishment of 2 cell lines stably expressing channels 

containing Kv1.1-1.2 and Kv1.6-1.2 provided a ready supply of recombinant channels of 

the defined subunit composition. This facilitated further exploitation of the Rb+ flux assay 

by its automation. The technology not only allowed the screening of a range of peptide 

toxins in the search for further blockers that distinguish these 2 channels, but also allowed 

exploration of the possibility of using Rb+ efflux for more detailed measurements of 

inhibitory constants. 

 

4.2 Optimised expression of Kv1.1-1.2 containing channels resulted in assembly in 

functional form on the plasmalemma of CHO cells 

The effect of altering various electroporation parameters on the percentage of cells 

expressing Kv1.1-1.2 was investigated (Table 4.1). Following electroporation with cRNA 

containing the Kv1.1-1.2 gene in pSFV, cells were plated on sterile coverslips, 24 h later 

fixed and labelled with a monoclonal antibody specific for Kv1.2 (Muniz et al., 1992) to 

asses channel expression (Fig. 4.1a-c). The number of labelled cells was compared with the 

total number of cells in the same field (as determined by DAPI staining of their nuclei) to 

give the fraction expressing K+ channels (Table 4.1, Fig. 4.1a). Two pulses of 850 V with 

capacitance of 25 µF and 75 µg of RNA was decided upon as these conditions resulted in 

~50% of cells being transfected, a level of expression sufficient for Rb+ efflux experiments 

and electrophysiological analysis. The specificity of Kv1.2 labelling was confirmed by 

experiments conducted either on untransfected cells or by omission of the primary antibody 

when labelling transfected cells (Fig. 4.1c); neither of these conditions gave a fluorescent 
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signal. Fig. 4.1b demonstrates the 2 distinct staining patterns observed: uniform staining 

throughout the cell, and punctate staining at the plasma membrane with the majority of 

fluorescence concentrated in the perinuclear region.  

 

Electroporation conditions 
RNA (µg) Volts C (µF) No. of pulses Path length (cm) 

% Transfected 
cells 

 30  210 25 2 0.1 18 
 45  600 50 3 0.4 27 
 45  300 800 1 0.4 35 
 75  420 25 2 0.2 39 
 75  850 25 2 0.4 47 
120  850 25 2 0.4 59 
180  850 25 2 0.4 66 

 

 

 

It was established that storing cRNA at -80°C for >8 weeks was not detrimental to 

transfection efficiency (Fig. 4.2a). There was a decrease in the % of cells expressing 

Kv1.1-1.2 48 h post transfection compared with 24 h (Fig. 4.2a); therefore, all experiments 

were performed 1 day after cells were electroporated. 

Having confirmed the presence of the required protein expressed in transfected cells, it was 

desirable to verify the integrity of the channel on the plasmalemma. This was achieved by 

labelling the surface proteins with a reactive biotin conjugate, affinity-separation of the 

biotinylated derivatives from a detergent-solubilised extract on streptavidin resin, followed 

by SDS-PAGE and Western blotting. The isolated surface K+ channel showed one protein 

band with Mr ~120 kDa that was recognised by antibodies specific for Kv1.1 or Kv1.2 α 

subunits, and corresponds to the size of the dimer (Fig. 4.1d). A notable absence of smaller 

proteins is indicative of the channel in its membrane-bound state containing only intact 

Kv1.1-1.2 protein, where two copies make up the pharmacologically-active oligomer, 

demonstrated by experiments further on. Samples of total protein that were biotinylated 

similarly but not fractionated, gave a broad band of Mr ~ 60 kDa reactive with both 

antibodies, in addition to the larger protein of Mr ~ 120 kDa (Fig. 4.1d). The smaller band 

is approximately the size of one α subunit and may be a result of cleavage of the dimeric  

Table 4.1│ Influence of electroporation conditions on expression of Kv1.1-1.2 

containing channels in CHO cells. 
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Figure 4.1│Expression of Kv1.1-1.2 containing channels: fluorescence microscopy and biotinylation 

of surface proteins reveal expression of the recombinant K+ channel and targeting to the plasmalemma 

of CHO cells. Cells electroporated with cRNA encoding the Kv1.1-1.2 protein were fixed 24 h post-

transfection, permeabilised and labelled with a monoclonal antibody specific for Kv1.2 α subunit. 

Bound IgG was visualised with anti-species IgG conjugated to AF 488 (green) (a,b). a, Cell nuclei 

were stained with DAPI (blue) to demonstrate transfection efficiency (see Materials and Methods). b, 

Two patterns of labelling were observed: uniform throughout the cell (top), and punctate staining at 

the plasma membrane with a concentration of the signal in the perinuclear region (bottom). Omission 

of the primary antibody resulted in absence of the signal (c). d, Transfected cells were solubilised 

with TX-100 after biotinylation of the surface proteins and the soluble extract incubated with 

streptavidin-agarose resin. Immobilised proteins were subjected to SDS-PAGE and Western blotting, 

utilising antibodies specific for Kv1.1 or 1.2. Lanes: 1, eluate from the streptavidin-agarose resin; 2, 

total cell lysate. A single band of Mr ~ 120 kDa, representing intact Kv1.1-1.2 dimer was observed for 

the K+ channels from the surface of biotinylated cells whereas components of lower molecular weight 

also occurred in the total protein sample. 
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protein but as it is not present in the surface expressed channels it will not impact on 

functional studies. Thus, the presence on the plasmalemma of an assembled oligomer 

(composed of a pair of dimers – see 4.5) was demonstrated and expression optimised to 

allow functional characterisation of the surface expressed channel. 

 

4.3 Effects of known Kv1 channel blockers on Kv1.1-1.2 expressed in CHO cells 

determined using a high-throughput Rb+ efflux assay 

Experiments were performed to measure the effect of various Kv1 channel inhibitors on 

Rb+ efflux through the expressed channels. The investigation also established the suitability 

of these transfected cells for employment in a high-throughput assay which can be used for 

screening compounds in search of novel pharmacological agents against these expressed 

targets of pre-defined composition. The necessary time for Rb+ loading was found to be 3 h, 

as beyond this time the concentration of Rb+ in cells stopped increasing (Fig. 4.2b). 

Likewise, 75 and 100 mM K+ evoked the greatest release of Rb+ via the activated 

recombinant channels (Fig. 4.2c), and the lower effective amount was chosen for all 

experiments going forward. In control experiments, basal and stimulated release of Rb+ 

were measured from untransfected as well as transfected CHO cells. Low levels of Rb+ 

were released from untransfected cells under both conditions, similar to basal release from 

transfected cells, the corresponding stimulated Rb+ release being at least twice that from 

these cells (Fig. 4.2d). This 2:1 ratio of stimulated to basal release was applied as a 

necessary criterion for all subsequent experiments [as advised by personnel at Xention Ltd. 

(Cambridge, UK), where the assay is used for high-throughput screening]. A further control 

was included to exclude that electroporation of cells (in the absence of cRNA) affected 

their ability to retain Rb+ under both basal and stimulating conditions (Fig. 4.2d). 4-AP, 

TEA and αDTX were all shown to inhibit evoked Rb+ efflux (Fig. 4.3a-c); 4-AP inhibited 

release with an IC50 roughly estimated at 0.5 mM (Fig. 4.3a). TEA also reduced Rb+ efflux 

though to a lesser extent than 4-AP; the very high, maximum dose (50 mM) used gave only 

a 50% reduction in release (Fig. 4.3b). αDTX blocked Rb+ efflux at nanomolar 

concentrations (Fig. 4.3c) as was expected, with an extrapolated IC50 of ~ 2nM. Basal 

efflux was not affected by the test compounds (Fig. 4.3d) – that is, basal release from cells 

was the same in both the presence and absence of the test compound. The experiments were  
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Figure 4.2│Optimisation of channel expression and Rb+ efflux conditions. a, 

Comparison of transfection efficiency with freshly prepared cRNA and that stored at   

-80°C for >8 weeks at 24 and 48 h post transfection was assessed as described in 

Results. b, [Rb+] in cell lysates (µg/l) was analysed after various loading times (mean 

± S.E.M.; n=>12. c, Both supernatant and lysates were measured following channel 

activation with various concentrations of K+, and Rb+ efflux expressed as % total Rb+ 

in the cells (i.e. content in supernatants and lysates; mean ± S.E.M.; n=≥19). d, 

Transfected, untransfected and mock electroporated CHO cells were loaded with Rb+ 

and release was measured under basal and stimulating conditions (3 min with 75 mM 

K+), using AAS (see Materials and Methods). Supernatant Rb+ levels are expressed 

relative to the total as mean ± S.E.M.; n=15. 

b 

c d 
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Figure 4.3│Sensitivity of Kv1.1-1.2 containing channels expressed in CHO cells to 

various channel blockers as measured by the Rb+ assay. Rb+ efflux from transfected 

cells used for drug testing was calculated as described in Materials and Methods, and 

subtraction of values for basal release from those for stimulation gave the evoked 

increment for each set of cells. The quantities of evoked Rb+ release measured in the 

presence of 4-AP, TEA or αDTX were plotted (mean ± S.E.M.; n=≥24) relative to the 

requisite normalised control. 4-AP or TEA was added to the stimulation buffer (a and 

b) whereas αDTX was included in the Rb+ loading buffer (c). While basal efflux was 

unaffected by the test compounds (d), it differed significantly (in the absence of 

compounds) between different batches of transfected cells (*), as measured by one-

way ANOVA (p=0.0001). 

 

a b c d
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performed on different days using different batches of cells and consequently there were 

significant differences in the amount of basal release measured between different 

compounds (Fig. 4.3d). However, as basal release of Rb+ was measured for each batch of 

cells and only experiments where the stimulated Rb+ release was at least twice the basal 

release were used, this variability in the measurements was accounted for. 

 

4.4 Comparison of the susceptibilities of this expressed K+ channel to 4-aminopyridine, 

tetraethylammonium and αdendrotoxin as revealed by electrophysiological recordings and 

Rb+ efflux 

A fraction of the K+ current (IK) produced by this channel proved very sensitive to 4-AP, 

with a concentration of just 20 µM already exhibiting significant inhibition of the evoked IK, 

and 0.1 mM giving a reduction of 40% compared with the normalised control (Fig. 4.4a). 

However, a component of the current appears to be insensitive to 4-AP as at 10 mM, 45% 

of IK remained. In comparison, at this concentration, evoked release of Rb+ was almost 

completely inhibited. Sensitivity of this IK to TEA was markedly reduced compared with 4-

AP, as 3 mM TEA did not reduce the current significantly. The highest concentration used 

(20 mM) inhibited current by only 34% (Fig. 4.4b), a value which correlates well with Rb+ 

efflux results where the same dose reduced evoked Rb+ release by 42%. 

Electrophysiological recordings revealed αDTX to be more potent at blocking IK than Rb+ 

efflux (Fig. 4.4c), with 80% inhibition requiring 10 and 50 nM, respectively.  

 

4.5 Surface expression of concatenated Kv1 channels stably expressed in HEK cells to a 

level adequate for functional analysis  

Initial experiments on COS, BHK and CHO cells transiently-transfected with Kv1.1-1.2-

pIRES2-EGFP vector showed a protein corresponding in size to the dimer together with 

smaller immuno-reactive bands (data not shown), whereas HEK cells were devoid of such 

fragments (see below). This advantageous feature of HEK cells was exploited for 

successfully creating stable cell lines expressing intact dimer-containing channels. After 2-

3 weeks in geneticin-containing medium, practically all of the surviving cells (~5-10% of 

the original number plated) transfected with Kv1.1-1.2- or Kv1.6-1.2-pIRES2-EGFP 

showed green EGFP fluorescence, which allowed subsequent cell clones to be selected and  
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Figure 4.4│Inhibition of K+ currents from Kv1.1-1.2 containing channels. 

Electrophysiological recordings were performed to compare the effect of K+ 

channel blockers on this recombinantly-expressed channel with that measured by 

Rb+ efflux. K+ currents were elicited in transfected CHO cells with 200 ms 

depolarising pulses (to +40 mV); the amplitudes recorded from 10-20 pulses 

before and after drug application were averaged and normalised. Each point is the 

mean of 3–6 (a) and 2–3 values (b,c) ± S.E.M. 4-AP inhibits the K+ current from 

the Kv1.1-1.2 containing channels significantly at the lowest concentration tested, 

0.02 mM 4-AP (*, p=0.0049, measured by an unpaired t-test). 
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propagated. SDS-PAGE and Western blotting revealed a band of Mr ~120 kDa, recognised 

in these cells by respective anti-Kv1.1, Kv1.2 and Kv1.6 antibodies. It is noteworthy that 

there is an absence of smaller bands corresponding to the size (~ 60 kDa) observed for the 

monomeric constituents (Fig. 4.5). Cell lines chosen for preparing stocks suspensions gave 

satisfactory levels of 125I-αDTX binding (ranged from 0.08 – 0.15 pmoles/mg protein); 

such surface expression of channels is adequate for electrophysiological and Rb+ efflux 

measurements. 

 

4.6 Kv1.1-1.2 and Kv1.6-1.2 channels exhibit similar electrophysiological properties, yet 

are differentiated from their monomeric constituents by their half-activation voltages 

Patch-clamp whole-cell recordings from HEK cells stably expressing the Kv1.6-1.2 or 

Kv1.1-1.2 containing channels gave sigmoidally-activating currents, typically of 1-7 nA 

amplitude, following a depolarisation step from -110 mV to +50 mV (Fig. 4.6a). Likewise, 

deactivation of the IK was found to be similar for both channels. At -40 mV, current 

deactivation occurred incompletely with a time constant of about 20 ms; with more 

negative potentials, the speed of decay increased with a voltage dependence equivalent to 

1.2 elementary charges traversing the transmembrane voltage drop (Fig. 4.6b). This voltage 

dependence is similar to that of the Shaker Kv1 channel (Zagotta et al., 1994).   

To quantify the activation kinetics of these channels, K+ current rise was fitted by a mono-

exponential function (see section 3.6.2, equation 1). Activation rates are similar for Kv1.6-

1.2 and Kv1.1-1.2 (Fig. 4.6c), giving time constants (τ) at 0 mV of approximately 10 ms 

(Table 4.2), and accelerating with increasing command voltage. Also similar to the Shaker 

channel, the steepness of voltage dependence of activation varied with different voltage 

ranges and could not be fitted by equation (2) (see Materials and Methods) as a simple 

elementary charge movement (Fig. 4.6c). Conductance-voltage relations were generated by 

plotting the conductances obtained at different voltages (Fig. 4.6d). This revealed that the 

two channel heteromers activate slightly differently; their half-maximal activation 

potentials are separated by 7 mV, though their slopes are identical (Table 4.2). No 

significant inactivation of the K+ currents from either Kv1.6-1.2 or Kv1.1-1.2 could be 

detected within 400 ms of depolarisation to +50 mV (Fig. 4.7); however, a prolonged step 

revealed slow inactivation of each channel (Fig. 4.7a). Inactivating currents could be fitted  
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Figure 4.5│Expression of Kv1.1-1.2 or Kv1.6-1.2 containing channels and 

monomers in HEK cells via pIRES2-EGFP vectors. Western blotting results confirm 

the correct sizes and subunit compositions. Suspensions of HEK cells stably- and 

transiently-expressing the dimeric and monomeric channels, respectively, were 

subjected to SDS-PAGE, and stained with antibodies specific for Kv1.1, Kv1.2 or 

Kv1.6 using ECL regents (see Materials and Methods).  Lanes: 1, Kv1.1 monomer; 

2,4 Kv1.1-1.2 dimer; 3, Kv1.2 monomer; 5,7 Kv1.6-1.2 dimer and 6, Kv1.6 

monomer. Sizes of the standard markers used are indicated. Note that each dimer 

gave the expected size (����), with an absence of any bands corresponding to the 

mobility of the monomers (►). 
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Figure 4.6│Voltage dependence for activation and deactivation of Kv1.1-1.2 and 1.6-1.2 containing 

channels stably expressed in HEK cells. a, Typical K+ current recorded from Kv1.6-1.2 and Kv1.1-1.2 

containing channels during an I–V protocol (depolarising voltage steps of 400 ms from -60 to +50 mV 

in 10 mV increments; records of the initial 80 ms from every second trace are shown). Thick lines 

overlapping the current traces resulted from fitting the data with a mono-exponential function. Note: 

current traces at -30 and -50 mV overlap for Kv1.1-1.2. b, Deactivation observed after returning 

membrane potential from +40 mV to the various voltages specified. Scale bars apply to both channel 

traces (a,b). c, Activation and deactivation kinetics determined by fitting current traces with a mono-

exponential function. The dashed and continuous lines resulted from fitting equation (2) (see Materials 

and Methods) to the calculated τ values for Kv1.6-1.2 and Kv1.1-1.2, respectively. Activation time 

constants at voltages from -20 to +10 mV were used for fitting; data for both channels deviate from fits 

at positive voltages. d, Conductances at various command potentials were normalised and fitted with a 

Boltzmann equation (3); dashed and continuous lines represent the fitted results for Kv1.6-1.2 and 

Kv1.1-1.2, respectively (overlapping for deactivation). A significant difference in the V½ values for 

activation was revealed with two-tailed Mann-Whitney U test (p < 0.03). Error bars show S.E.M.  
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with a double exponential function, revealing similar inactivation constants (Table 4.2). On 

average, at the end of a 60 s depolarisation step to 40 mV, currents had inactivated by more 

than 80% (Table 4.2). On examining the influence of voltage on inactivation of the currents 

with a steady-state inactivation protocol (Fig. 4.7b,c), membrane potentials more negative 

than -60 mV were found to be required to remove inactivation from either channel (Fig. 

4.7d). 

As replacing Kv1.6 with Kv1.1 in a heteromeric channel caused a detectable negative shift 

in its half-activation voltage (see above), a basis for this was sought by studying the 

parental homo-tetrameric channels. Thus, the conductance-voltage relationship of each 

monomer was determined using pIRES2-EGFP constructs expressed in HEK cells (Fig. 

4.8). The Kv1.1 homomeric channel showed half-activations at -24 mV, Kv1.6 at -15 mV 

and Kv1.2 at 7.2 mV.  While Kv1.6 homo-tetramers activate at more positive voltages than 

those made from Kv1.1, replacing Kv1.1 with Kv1.6 in a concatenated construct caused the 

resultant channel to activate at more negative voltages. This indicates that the gating 

differences between Kv1.6 and Kv1.1 are more complex than a simple alteration in the 

midpoint of voltage sensor activation. 

Activation Deactivation 

τ (ms) 

Inactivation 

(step to +40 mV; 60 s) 

Steady-

state 

inactivation 

 

 

HEK stable 

cell lines 

 

V½ (mV); k τ (ms) 

at +0; 20; 50 mV 

at –100 mV at –40 mV % of I τ 1; τ 2 (s) V½ (mV) 

 

Kv1.1-1.2 

-0.7 ± 1.6; 

17 ± 1; 

(n=9) 

10.6 ± 1.3; 

5.1 ± 0.7; 

2.6 ± 0.3;  (n=6) 

2.9 ± 0.4 

(n=6) 

22.2 ± 4.9 82.4 ± 3.6 

(n=6) 

1.6 ± 0.2; 

13.2 ± 2 

-95.7 ± 0.9; 

(n=5) 

 

Kv1.6-1.2 

-7.3 ± 2.3; * 

17 ± 0.5;  

(n=7) 

10 ± 1.5; 

5.8 ± 1.1; 

3.1 ± 0.4; (n=5) 

3.3 ± 0.4 

(n=4) 

23.3 ± 5.7 82.5 ± 2.6 

(n=4) 

2.4 ± 0.7; 

20 ± 6 

-92.5 ± 2.1; 

(n=6) 

Table 4.2│Electrophysiological properties determined for Kv1.1-1.2 and Kv1.6-1.2 channels         

                   * significant difference (p < 0.03, Mann-Whitney U test) 
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Figure 4.7│ Inactivation properties of K+ currents resulting from Kv1.1-1.2 and 1.6-1.2 

channels stably expressed in HEK cells. a, K+ currents show the development of slow 

inactivation in response to a 60 s depolarisation pulse to +40 mV. b, Shows steady-state 

inactivation. c, Cells were held at +20 mV for 40 s to allow channels to undergo significant 

inactivation, then subjected to pre-conditioning pulses of different negative potentials, 

followed by a test pulse to +40 mV. Scale bars apply to both channel traces. d, Conductances 

resulting from the test pulse were plotted against membrane potentials of the pre-pulse; the 

data fitted with a Boltzmann function are shown as dashed and continuous lines for Kv1.6-1.2 

and Kv1.1-1.2, respectively.  
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Figure 4.8│ Voltage dependency of activation of homomeric K+ channels transiently 

expressed in HEK cells. G-V plots of homomeric channels formed by Kv1.1, 1.2 or 1.6 

after transient expressed in HEK cells. Conductance values were fitted with a 

Boltzmann function, equation (3) (see Materials and Methods).  The resultant values for 

half-activation (in mV) and slope were as follows; Kv1.1: -24 ± 1, 11 ± 1 (n=5); Kv1.2: 

7.2 ± 0.6, 15 ± 0.5 (n=6) and Kv1.6: -15 ± 1, 9 ± 1 (n=4). The curves shown for Kv1.6-

1.2 and 1.1-1.2 channels are fitted plots taken from Fig. 4.6d.  
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4.7 Channels composed of Kv1.6-1.2 and Kv1.1-1.2 can be distinguished by their 

susceptibilities to inhibitors   

Different homo-tetrameric Kv1 channels differ to varying extents in their sensitivity to 

pharmacological agents; therefore, the long-term goal of this work is to develop a 

pharmacopoeia capable of identifying different heteromeric Kv1 subtypes. A first step 

along this path is to find ligands that can distinguish between hetero-tetramers that vary in 

some, but not all, α subunits.   

External TEA proved less effective in blocking the K+ current produced by Kv1.6-1.2 than 

Kv1.1-1.2 (Fig. 4.9a). All four K+ channel subunits are known to make an energetic 

contribution to the binding of a single TEA molecule at the external mouth of the 

conduction pore (Heginbotham and MacKinnon, 1992; Kavanaugh et al., 1992). Hence, the 

sensitivity observed is in the expected rank order, as Kv1.1 homo-tetramers are more 

sensitive to TEA than those containing Kv1.6.  In contrast, 4-AP, another classical blocker 

of Kv1 channels, failed to distinguish between the channels made from Kv1.6-1.2 or 

Kv1.1-1.2 (Fig. 4.9b), consistent with very similar 4-AP sensitivities of the parental 

homomers (Grupe et al., 1990; Stuhmer et al., 1989). αDTX binds to homo-tetramers of all 

the Kv1 subunits studied herein (Grupe et al., 1990; Stuhmer et al., 1989) and, accordingly, 

inhibited the K+ currents mediated by Kv1.6-1.2 or Kv1.1-1.2 channels (Fig. 4.9c ) [c.f. 

Rb+ flux, (Fig. 4.10c) and 125I αDTX binding (Fig. 4.11)]. By this electrophysiological 

measurement αDTX is significantly more effective on Kv1.6-1.2 than Kv1.1-1.2, but 

despite the significance of the difference it is insufficient to make this toxin a distinguishing 

ligand. On the other hand, DTXk proved effective in this regard. DTXk is known to block 

any Kv1.1-containing channel in oocytes (Akhtar et al., 2002). Whereas the Kv1.6-1.2, 1.6 

or 1.2 channels proved virtually resistant to DTXk, it inhibited Kv1.1-1.2 or 1.1 (Fig. 4.9d) 

and, thus, the latter toxin can successfully discern the swap of Kv1.6 for Kv1.1 in a 

heteromeric K+ channel.  

Experiments were performed to measure the effects of the same compounds on evoked 

release of Rb+ from the same stable HEK cell lines. The resultant data is plotted as 

fractional inhibition of Rb+ release instead of percentage evoked Rb+ efflux used elsewhere 

in the chapter and thesis, to allow easy comparison with the similarly plotted, 

corresponding electrophysiology data (Fig. 4.9 and 4.10), as published in (Sokolov et al., 
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2007). Thus, in keeping with the paper layout the electrophysiology data has been 

discussed first in the equivalent sections of this chapter (4.6 and 4.7).  

Comparable to results obtained electrophysiologically, TEA preferentially blocked 

depolarisation-elicited efflux of Rb+ through Kv1.1-1.2 containing channels (Fig. 4.10a) 

compared with Kv1.6-1.2, with data for the HEK expressed Kv1.1-1.2 channels 

corresponding to that recorded for TEA inhibition of the same channels expressed in CHO 

cells (Fig. 4.3). While the effect of 4-AP on the two channels was significantly different at 

1 and 10 mM, Kv1.1-1.2 was more inhibited at 1 mM and less at 10 mM (Fig 4.10b), 

demonstrating again that 4-AP does not distinguish these two heteromers produced from α 

subunits with very similar sensitivities to 4-AP (Grupe et al., 1990; Stuhmer et al., 1989). 

αDTX displayed similar efficacy towards both heteromers (Fig. 4.10c), hence the slightly, 

yet significant, enhanced sensitivity of Kv1.6-1.2 compared with Kv1.1-1.2 containing 

channels to αDTX as measured electrophysiologically was not replicated confirming that 

this toxin is not a distinguishing ligand. Importantly, the ability of DTXk to discriminate 

between the heteromers studied was confirmed by Rb+ efflux experiments, where strong 

inhibition of evoked Rb+ release through Kv1.1-1.2 containing channels was in stark 

contrast to the minimal reduction in supernatant Rb+ concentrations observed in wells 

containing channels made up of Kv1.6-1.2 subunits (Fig. 4.10d). Although some studies 

have reported lower potencies for inhibitors when measured by Rb+ efflux than 

electrophysiological recordings (Middleton et al., 2003), this is likely due to the different 

conditions used elsewhere because under the comparable conditions herein both methods 

gave similar results. Individual cells are selected when making electrophysiological 

recordings whereas Rb+ efflux data results from a whole population of cells. Where results 

do differ slightly (e.g. αDTX) this distinction between the 2 assays is likely the reason. It is 

also important to note that channels stably expressed in HEK cells gave more similar results 

with the two methods used than those transiently expressed in CHO cells, likely due to a 

more uniform population of channels. In the case of the peptide toxins, the risk of 

adherence to plasticware was also addressed by silanisation of all relevant assay materials. 

Overall, correspondence to the electrophysiological data again validates the Rb+ efflux 

method to screen K+ channel hetero-multimers for specific ligands.
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Figure 4.9│Pharmacological distinction of Kv1.1-1.2 and 1.6-1.2 containing channels 

through inhibition of their K+ currents. Channels were expressed in HEK cells using Kv1.6-

1.2, Kv1.1-1.2 or their individual constituent subunits. Currents were evoked by 

depolarising pulses (to +40 mV or +20 mV for 4-AP; 200 ms); the amplitudes recorded from 

10-20 pulses before and after drug application (a, TEA; b, 4-AP; c, αDTX; d, DTXk) were 

averaged and normalised. The resultant values for fractional inhibition of the K+ currents are 

presented (mean ± S.E.M) with at least 3 cells tested for every drug concentration. Lines on 

the TEA panel show results fitted with a Langmuir isotherm (a). The difference in inhibition 

of the two channels by αDTX is significant at both 10 (*, p=0.016) and 100 nM (**, 

p=0.048), but not at 1 nM (c). 
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Figure 4.10│Pharmacological inhibition of evoked Rb+ release from HEK cells expressing 

Kv1.1-1.2 or Kv1.6-1.2 containing channels. After loading transfected cells with Rb+, basal 

and stimulated release were measured in the presence and absence of blockers (a,TEA; b,4-

AP; c,αDTX and d,DTXk). Evoked increments were normalised and plotted ± S.E.M. [n = 

>16; in a and b, error bars fall within the data point for 1.1-1.2 and in a, the 1 mM value for 

Kv1.6-1.2 is obscured by that of Kv1.1-1.2]. In b, the effect of 4-AP on the channels differs 

significantly at 1 (*, p=<0.0001) and 10 (**, p=0.0256) mM, as measured by an unpaired t-

test. Basal efflux (as % of total) from untransfected cells and those expressing Kv1.6-1.2 or 

1.1-1.2 was 17.9 ± 0.9%, 8.9 ± 0.3% and 15.4 ± 1.3%, respectively. The slight decrease in 

unstimulated release from transfected cells is likely due to expressed K+ channels lowering 

the resting potential of the cells, thereby, reducing the outward driving force for Rb+. 

Stimulated Rb+ efflux for Kv1.6-1.2 and Kv1.1-1.2 were 69.2 ± 1.0% and 49.4 ± 2.1%, 

compared to 18.2 ± 0.6% for untransfected cells.  

 

a b 
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The ability of DTXk to discriminate between these two channels was further confirmed by 

displacement with unlabelled αDTX or DTXk of 125I-αDTX bound to intact cells. In the 

case of Kv1.1-1.2 channels, both αDTX and DTXk displaced the labelled toxin with the 

displacement curve for DTXk closely following that for αDTX (Fig. 4.11a). 125I-αDTX 

bound to the Kv1.6-1.2 containing channels was affected by unlabelled αDTX in a similar 

way to the Kv1.1-1.2 channels demonstrating a similar binding of the toxin to the two 

heteromers as demonstrated by electrophysiological and Rb+ efflux measurements (Fig. 

4.11b). However with Kv1.6-1.2 channels, DTXk gave only feeble competition of 125I-

αDTX binding with the highest concentration used displacing less than half of the bound 

toxin (Fig. 4.11b). This much weaker affinity of Kv1.6-1.2 for DTXk (at least 200-fold) is 

consistent with the known requirement for the presence of at least 1 Kv1.1 subunit for avid 

binding, and accords with its inability to block K+ current or Rb+ efflux through this 

channel.   

In summary, both of these channels share susceptibility to 4-AP and αDTX but 

replacement of Kv1.1 by Kv1.6 results in the loss of sensitivity to TEA and DTXk; thus, 

use of such ligands on neuronal preparations may allow pharmacological discernment of 

heteromeric channels with particular subunit compositions. 

 

4.8 Automation of the Rb+ efflux assay  

This was automated using the set up shown in Fig. 4.12. Each individual component can be 

programmed from the central computer (Fig. 4.12g) through individual software drivers 

which allow various protocols to be written for each component. CLARA software is used 

to link all the processes together into a complete assay cycle which can be repeated as many 

times as there are cell plates for analysis. Cell and compound plates, empty assay plates and 

racks of tips start in the Twister II plate racks (Fig. 4.12d). A deep well plate containing 

wash and stimulation buffers and a reservoir containing lysis buffer are placed on the 

Sciclone ALH 500 (Fig. 4.12a). On commencement of the assay cycle, the plate washer 

(Fig. 4.12e) and multidrop (Fig. 4.12f) are initialised, tips moved to the Sciclone and 

loaded onto the 96-well head, a compound plate is also moved to the Sciclone and a cell 

plate moved to the plate washer and washed – all using the Twister II Robotic arm (Fig. 

4.12c).
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Figure 4.11│ Differential displacement by dendrotoxink of 125I-αdendrotoxin bound to Kv1.1-1.2 

and 1.6-1.2 containing channels. HEK cells stably expressing Kv1.1-1.2 (a) or Kv1.6-1.2 (b) were 

incubated with a saturable concentration (2.5 nM) of 125I-αDTX and the indicated concentration of 

unlabelled αDTX or DTXk. Data points are the mean of triplicate measurements (see Materials 

and Methods). Curves represent a Langmuir isotherm fit to the data.  IC50 values from these fits 

were for αDTX: Kv1.1-1.2, 8.0 nM, Kv1.6-1.2, 5.7 nM and for DTXk: Kv1.1-1.2, 13.8 nM; 

Kv1.6-1.2, >3300 nM. The content of sites was calculated by subtracting non-saturable binding of 
125I-αDTX remaining after displacement by unlabelled αDTX from cells stably expressing Kv1.1-

1.2 and Kv.1.6-1.2, which represented 37 and 42% of the respective totals, to yield values of 0.08 

and 0.15 pmoles/mg of total cell protein. It is notable that the higher content of sites obtained for 

the cells expressing Kv1.6-1.2 than Kv1.1-1.2 channels underlies the larger stimulated Rb+ efflux 

from the former.  

a b 
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The cell plate is returned to the Sciclone and compound added. During the compound 

incubation time, the tips on the 96-well head are changed, an assay plate is  

brought to the Sciclone and the compound plate is disposed of (Fig. 4.12h). Wash or 

stimulation buffers are then added to the cell plate and, once the stimulation period has 

elapsed, the supernatants from the cell plate are transferred to the empty assay plate, the 

cell plate is moved to the washer, washed and returned to the Sciclone; tips are changed 

again and the lysis buffer is added. During lysis, the supernatant assay plate is moved to the 

multidrop, the contents diluted and returned to the plate racks. A second empty plate is 

moved to the Sciclone. Once lysates are collected, the second assay plate is diluted with the 

multidrop and it plus the cell plate are returned to the plate racks and the used tips removed. 

The cycle is then repeated for the prescribed number of cell plates. The tips for the 96-well 

head are provided in racks containing 384 tips. Therefore, once 4 sets of tips have been 

used the empty rack is placed in the waste, by being dropped through a hole in the table to 

the waste bin below, and a fresh tip box moved from the plate racks. There is an area on the 

Sciclone through which the used tips are dropped and collected in a container underneath 

(obscured by the plate racks in Fig. 4.12). 

 

4.9 Screening of a small library revealed many additional inhibitors of Kv1.1-1.2 and 1.6-

1.2 containing channels but none that could distinguish them like dendrotoxink 

The capacity of the automated Rb+ efflux assay was utilised for screening a small library of 

potential K+ channel blockers. For the purposes of the screen, these were divided into 

compounds known to block Kv1 containing channels (all peptide toxins), see Table 2.2 for 

details, and those that block other families of K+ channels (Table 4.3). In keeping with the 

screening protocols used in industry (e.g. at Xention Ltd., Cambridge, UK) a single 

concentration was employed for (nearly) all the toxins, for the initial screen. The peptide 

toxins to be screened inhibit channels that are sensitive to them in the low-sub nanomolar 

range, depending on the channel expression system and assays used. Thus, a concentration 

of 10 nM was chosen with the expectation that Rb+ efflux through sensitive channels would 

be substantially inhibited clearly revealing insensitive channels. The only exception was 

MCD peptide. While the published effective doses also differ (Table 2.2, references), they 

tend to be considerably higher than those for the other peptide toxins investigated, hence a  



 
101 

a 

b 

c 

e 

f 

d 

g 

h 

Figure 4.12│Robotic system used for automation of the Rb+ efflux assay. The system 

is composed of a Sciclone ALH 500 automated liquid handling system (a) and a 

Zymark Twister II microplate handler (c) with robotic arm (b) and plate racks (d). A 

Biotek ELX 405 cw plate washer (e) designed for washing plates containing cells was 

used for all washing steps. All large volume dilution steps were performed by a 

Thermo Scientific Multidrop 384 (f). Clara Software, with the appropriate drivers for 

each component, was used to run the system (g). Waste is disposed of through a hole 

in the table under which is a bin (h). 
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concentration of 100 nM was chosen. With a few exceptions, all of the Kv1 inhibitors 

blocked both the heteromers used in this study (Fig. 4.13). As with previous experiments 

(Fig 4.10), DTXk discriminated between the two channels. δDTX, the Dendroaspis 

angusticeps homologue of DTXk differentially inhibited the channels and two-way 

ANOVA analysis of the effect of DTXk and δDTX on the two heteromers revealed that 

there is a significant difference between the reaction of both the channels to both the toxins 

(p=0.0022). Despite the significant difference in inhibition of the channels by δDTX, the 

fact that the toxin blocks Rb+ efflux through both channels by more than 50% makes it an 

inappropriate distinguishing ligand (Fig. 4.13). Hence the startling specificity of DTXk is 

revealed. Reports published previously have shown β and γDTX to inhibit Kv1.1 and 1.2 

homomers expressed in Xenopus oocytes (Hopkins et al., 1996), a result not replicated in 

this study. This could be as a result of differences between the amphibian and mammalian 

expression systems, though more likely is due to discrepancies between the purification and 

identification of these toxins from the native venom.  

Inhibitors active against other families of K+ channels did not attenuate Rb+ efflux through 

the Kv1.1-1.2 and 1.6-1.2 containing channels tested (Fig 4.14), further reassurance for the 

reliability of the assay. This was with the exception of Lq2 (Fig. 4.14a) which blocks the 

inward-rectifier K+ channel, ROMK1 but also Kv1 channels (Lu and MacKinnon, 1997). 

As with the Kv1 channel blockers, 10 nM was used as the screening concentration unless 

available information on inhibition of the target channel type revealed the inhibitor to be 

less potent, in which case 100 nM was used. 

It is important to note that there is some scatter in the efflux data obtained from the screen 

performed. Firstly, a number of compounds block Rb+ efflux resulting in levels less than 

those in unstimulated wells (Fig. 4.13, e.g. MgTX and ShK). Secondly, in some cases, the 

supernatant concentration of Rb+ is not exactly 100% with toxins that do not inhibit the test 

channel (Fig. 4.13, e.g. DTXk on Kv1.6-1.2). Finally, there are instances of Rb+ release 

being greater than the concentrations measured from unchallenged, stimulated cells (Fig. 

4.14, e.g. BeKm I and E4031). As an added control for each 96-well plate of cells tested, 8 

wells were treated with 10 mM 4-AP to ensure that stimulated release was inhibited. There 

was a large amount of scatter in this result also, typically ranging from -10% – +10% of 

normalised evoked efflux (data not shown). As all effux data is normalised to evoked  
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Figure 4.13│Effect of various peptide toxins on Rb+ efflux through recombinant 

Kv1.1-1.2 and 1.6-1.2 channels stably expressed in HEK cells. Rb+ efflux 

experiments were performed, as described in Materials and Methods, to asses the 

activity of various peptide toxins (with know activity against Kv1 channels) towards 

these defined heteromeric channels. Results are expressed as mean ± S.E.M. 

(n=≥16). Two-way ANOVA analysis of the effect of δDTX and DTXk on both 

channels found that the channels were inhibited differently by the toxins and each 

toxin had a different effect (p=<0.0001 in both cases). Test concentrations used were 

derived from effective doses previously published (see section 4.9). Table 2.2 gives 

details of the toxins used and Kv1 homomers they are active against.  
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Table 4.3│Details of compounds known to block various K+ channel families 

Name Type Source Sensitive K+ channel type Refs 
Aa1 Peptide toxin Androctonus australis 

(scorpion) 
Shaker B (A-type) K+ channels 
(IC50 4.5µM) 

(Pisciotta et al., 
1998) 

Apamin Peptide toxin Apis mellifera  
(honey bee) 

Small conductance (SK), Ca2+-
activated K+ channels (IC50 SK1 
3.3 nM, SK2 83 pM) 

(Blatz and 
Magleby, 1986; 
Strobaek et al., 

2000) 

BDS-I Peptide toxin Anemonia sulcata 
(sea anemone) 

Rapidly inactivating (IA) Kv3.4 
K+ channels 
 (IC50 47 nM) 

(Diochot et al., 
1998) 

BDS-II Peptide toxin Anemonia sulcata 
(sea anemone) 

Rapidly inactivating (IA) Kv3.4 
K+ channels 
(IC50 56 nM) 

(Diochot et al., 
1998) 

BeKm-I Peptide toxin Buthus eupeus 
(scorpion) 

ERG1 K+ channels  
(IC50 3.3 nM) 

(Korolkova et 
al., 2001) 

E-4031 Methane- 
sulfonanilide 

class III antiarrhythmic drug Voltage gated (HERG) K+ 
channels (IC50 7.7 nM) 

(Zhou et al., 
1998) 

Ergtoxin Peptide toxin Centruroides noxius 
(scorpion) 

ERG1 K+ channels  (Scaloni et al., 
2000) 

Iberiotoxin Peptide toxin Buthus tamulus 
(scorpion) 

High conductance, Ca2+-activated 
K+ channels (IC50 250 pM) 

(Galvez et al., 
1990) 

Lq2 Peptide toxin Leiurus quinquestriatus var. 
hebraeus (scorpion) 

Voltage- and Ca2+-activated and 
Inward rectifier Kir 1 (ROMK1) 
K+ channels 

(Lu and 
MacKinnon, 

1997; Lucchesi 
et al., 1989) 

Maurotoxin Peptide toxin Maurus palmatus 
(scorpion) 

Voltage- and Ca2+-activated K+ 
channels 

(Castle et al., 
2003) 

Paxilline Tremorgenic 
alkaloid 
mycotoxin 

Penicillium paxilline 
(fungus)  

High conductance (MAXI-K), 
Ca2+-activated K+ channels 

(Knaus et al., 
1994) 

Penitrem A Fungal 
neurotoxin  

Aspergillus, Claviceps, 
Penicillium 
species (fungi) 

High conductance (MAXI-K), 
Ca2+-activated K+ channels 

(Knaus et al., 
1994) 

Scyllatoxin Peptide toxin Leiurus quinquestriatus var. 
hebraeus (scorpion) 

Small conductance (SK), Ca2+-
activated K+ channels 
(IC50 SK1 80 nM, SK2 287 pM) 

(Strobaek et al., 
2000) 

Slotoxin Peptide toxin Centruroides noxius 
(scorpion) 

High conductance (MAXI-K), 
Ca2+-activated K+ channels (Kd 
1.5 nM) 

(Garcia-Valdes 
et al., 2001) 

Tamapin Peptide toxin Mesobuthus tamalus 
(scorpion) 

Small conductance (SK), Ca2+-
activated K+ channels (IC50 24 
pM) 

(Pedarzani et 
al., 2002) 

Tertiapin Peptide toxin Apis mellifera  
(honey bee) 

Inward rectifier (GIRK, Ki 8.6 nM 
and ROMK1, 2.0 nM) K+ 
channels 

(Jin and Lu, 
1998) 

Tertiapin Q Peptide toxin Apis mellifera  
(honey bee) 

Inward rectifier (GIRK) and Ca2+-
activated (BK) K+ channels (IC50 

(Jin and Lu, 
1998; Kanjhan 

et al., 2005) 
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Figure 4.14│Blockers with activity against various families of K+ channels do not 

inhibit Rb+ efflux through Kv1.1-1.2 or 1.6-1.2 containing channels. Details of the 

compounds studied are given in Table 4.3. Doses of 10 nM (a) or 100 nM (b) were 

determined from published concentrations used when these molecules were applied to 

the channel type they are active against. Data plotted is mean ± S.E.M., n≥16. Lq2 

was the one exception that did block. 
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release calculated from just 16 wells - 8 unstimulated and 8 stimulated - it is not surprising 

that there is some scatter. Increasing the number of wells used for each condition should 

minimise this, but the number of wells used for such controls much be balanced with the 

number of compounds to be tested in each experiment. As the purpose of an initial screen is 

to establish only if a compound inhibits a specific channel or not, the quality of the data 

achieved herein is sufficient to support such conclusions. 

 

4.10 Assessment of the suitability and accuracy of Rb+ efflux for determining inhibitory 

constants of blockers  

Having ascertained that at a fixed concentration, 10 nM, a number of peptide toxins block 

both channels used in this study, the IC50 values were determined for some of the more 

potent inhibitors [AgiTXs, ChTX (with Lq2 included for comparison), MgTX and ShK]. 

Inhibition of evoked Rb+ efflux in the presence of various concentrations of each toxin 

(0.025–10 nM) was plotted using GraphPad Prism and the % evoked release remaining was 

fit with the Hill equation. IC50 values and Hill coefficients of the resultant slopes were 

determined from the line fit. Results obtained with the 2 channels were remarkably similar 

(Fig 4.15a-e and Table 4.4). All 3 AgiTXs inhibited K+ elicited Rb+ efflux with similar 

potencies; IC50 values were in the low nanomolar range with AgiTX-1 being the most 

potent and AgiTX-2 the least, with all values within a 10-fold concentration range. ChTX 

and Lq2 blocked the channels with potencies comparable to the AgiTXs. While Lq2 was 

more potent than ChTX, the difference was not sufficient to distinguish them. While none 

of these toxins proved able to distinguish the heteromers, these experiments demonstrate 

the suitability of Rb+ efflux for the determination of inhibitory constants of toxins that 

block in the nanomolar range, thereby, offering a much faster alternative to the more labour 

intensive electrophysiology techniques. The Hill coefficient values are close to 1 (Table 

4.4), demonstrating the expected independent binding of the toxin to the channel. 

For some toxins though, the lowest concentrations used were already blocking both 

channels and Hill coefficient values were greater than 1 (Fig. 4.16 and Table 4.4). MgTX 

and ShK potently inhibited Rb+ efflux through both the Kv1.1-1.2 and 1.6-1.2 containing 

channels with IC50s in the picomolar range. A minimum number of cells must be used in 

each well for Rb+ efflux to give a sufficient signal:noise ratio. In the case of these very 
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potent toxins, the smallest possible cell number could still be too high for the number of 

toxin molecules in a µl volume of a picomolar solution, based on the following estimated 

calculations: 

• ~8 nA current/cell x 1 pA predicted current/channel (Gutman et al., 2003a) = 8,000 

channels/cell 

• *100,000 cells/well x 8,000 channels/cell = 800 million channels /well 

• 1.3 femtomole channel/well in **80 µl solution = 16 pM channel concentration 

(* 50,000 cells/well left overnight; therefore, assume each cell divides once, ** 50 µl of 

compound added to well, plus a small amount of wash buffer remaining in each well) 

Toxin is added to cells for 10 min and even assuming that all toxin molecules are available 

for binding to the channels where there is a small or no excess of toxin, an infinitely longer 

incubation time would be required for such a process to occur. 
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Figure 4.15│Concentration response curves showing the effects of various toxins on 

Kv1.1-1.2 and 1.6-1.2 containing channels, as measured by Rb+ efflux. Curves were fit 

using a Hill plot allowing an unconstrained Hill slope. IC50 and Hill coefficients are 

shown in Table 4.4; values plotted are an average of n >16 ± S.E.M. 
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Table 4.4│IC50 and Hill coefficient values determined by Rb+ efflux 

for several toxins’ inhibition of Kv1.1-1.2 and 1.6-1.2 containing 

channels 
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Figure 4.16│Toxins that block Kv1.1-1.2 and 1.6-1.2 containing channels in the sub-

nanomolar range are too potent for accurate determination of inhibitory constants by the 

Rb+ efflux assay. Values plotted are an average of n >16 ± S.E.M. See Table 4.4 for IC50 

and Hill coefficient values.  
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4.11 Discussion 

4.11.1 Kv1.1-1.2 containing channels expressed in CHO cells are susceptible to various 

blockers as measured electrophysiologically and by Rb+ efflux 

To develop inhibitors of therapeutic value, it is necessary to determine the functional 

properties of Kv1 channels in neurons, as related to their structures. These channels are 

present in neurons as oligomers of 4 α subunits (Parcej et al., 1992), in most instances as a 

combination of more than 1 α subunit type (Shamotienko et al., 1997). It is, therefore, 

necessary to study such physiologically-relevant heteromers in order to identify their 

individual characteristics and profiles as distinct from the homomers usually studied e.g. 

(Grissmer et al., 1994; Gutman et al., 2005). Given that Kv1.2 and Kv1.1 are the most 

prevalent α subunits in brain (Scott et al., 1994a), Kv1.1 is always associated with Kv1.2 

(Shamotienko et al., 1997) and channels composed of only Kv1.1 and Kv1.2 α subunits 

have been identified in human brain (Coleman et al., 1999), this channel was chosen for 

study. Furthermore, several mutations have been reported in the Kv1.1 gene from patients 

with channelopathies (Lehmann-Horn and Jurkat-Rott, 1999). Recreation of this naturally-

occurring heteromer was achieved through linkage of the α subunit genes as described 

previously (Akhtar et al., 2002). cRNA generated from the Kv1.1-1.2-pSFV1 plasmid was 

electroporated into CHO cells, resulting in good transfection efficiency and surface 

expressed channels; this was demonstrated by immuno-staining with an antibody specific 

for Kv1.2 (Muniz et al., 1992) and biotinylation followed by Western blotting of the 

surface-expressed channels. Electroporation conditions were optimised such that ~50% of 

cells were transfected, this being sufficient expression for electrophysiological recordings, 

enabling functional characterisation of these mammalian-expressed channels, experiments 

not conducted in the earlier study (Akhtar et al., 2002). The channel expression level was 

also such that Rb+ efflux experiments could be conducted. The Rb+ efflux assay as 

described by (Terstappen, 1999) is non-radioactive, high capacity (due to the 96-well plate 

format) and capable of functional analysis of both native and recombinant channels. It 

allows robust and reproducible characterisation of ion channel modulating compounds. 

Employment of this assay for use with recombinant heteromeric channels offers a 

convenient method in the search for specific blockers, especially in comparison to labour 

intensive and costly electrophysiology techniques. In this study, the assay was optimised 
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for use with the Kv1.1-1.2 expressing CHO cells and the effects of various inhibitors were 

measured and compared to those obtained from electrophysiological recordings.  

The recombinant channel generally behaved as expected in response to blockers. However, 

there were some minor differences observed between the assay systems. 4-AP (10 mM) 

gave a more complete block of Rb+ efflux than K+ current, presumably due to dissimilar 

experimental conditions used, based on the reasoning detailed in (Armstrong and Loboda, 

2001). For example, the membrane potential was discharged with 75 mM K+ rather than by 

the more extensive depolarisation used electrophysiologically. Incomplete block as 

measured by the latter has been attributed to the use of very negative holding potentials and 

a partial relief of inhibition by large depolarisation (Armstrong and Loboda, 2001). 

Conversely, low concentrations of 4-AP (<1 mM) inhibited IK more than Rb+ efflux, 

perhaps due to a reduced effectiveness of this compound in the presence of Rb+ compared 

to K+ (Kirsch et al., 1986).  

The inhibition by TEA of Rb+ efflux resembles that seen electrophysiologically. In both 

instances, the expressed channel showed low susceptibility to TEA, with 20 mM giving 

only ~40% inhibition; this is likely due to the presence of 2 TEA-insensitive Kv1.2 

subunits (Gutman et al., 2005). While αDTX blocked the K+ current potently and almost 

completely as would be expected from the sensitivities of Kv1.1 and 1.2 homomeric 

channels to the toxin (Grissmer et al., 1994), equivalent levels of blockade required higher 

concentrations in the flux assay. This could be due to restricted diffusion of the toxin to 

cells, but as the cell number in each well was balanced between maintaining a monolayer 

while still providing sufficient channels for Rb+ efflux measurements, this possibility 

should be minimised. Perhaps, more likely, the effect is due to the adherence of some toxin 

to the cell plate and other plastics used during the course of the assay. 

Despite these limited discrepancies, this study has confirmed that Rb+ efflux can be used to 

determine the pharmacological profiles of recombinant K+ channels of defined subunit 

composition expressed in mammalian cells. The ability to investigate several blockers in a 

single experiment, conferred by the 96-well format, is particularly attractive for 

pharmacological applications. This, coupled with the recombinant technology validated 

herein for creating Kv1 channels of specific α subunit composition, should facilitate 

research into the pharmacological characteristics of native channels, thereby, revealing 
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heteromer-specific blockers. However, given the short useful life-span of the electroporated 

CHO cells (24 h) and the large numbers of cells that would be required for screening even a 

minimal library of potential blockers, a larger source of channels and longer lasting cells 

were necessary for harnessing the full potential of this technology. 

 

4.11.2 Heteromers composed of Kv1.1-1.2 and 1.6-1.2 stably expressed in HEK cells 

provide a plentiful source of channels for extensive biophysical and pharmacological 

characterisation  

To this end, stable cell lines were developed expressing Kv1.1-1.2 and 1.6-1.2 containing 

channels. The resultant channels, composed of the 3 most prevalent Kv1 subunits in brain, 

were profiled and revealed similar biophysical properties. There was, however, a change in 

activation when Kv1.1 was substituted with Kv1.6, resulting in Kv1.6-1.2 containing 

channels activating at somewhat more negative potentials. As Kv1.6 monomers activated at 

more positive potentials than Kv1.1, this result is unexpected. It illustrates the point that 

assumptions cannot be made as to the properties of heteromeric channels based on those of 

homomers. The pharmacology of these channels was of particular interest given the 

ultimate aim of this research - to find specific blockers of hetero-tetrameric combinations of 

Kv1 α subunits. Therefore, the effects of TEA, 4-AP, αDTX and DTXk were investigated. 

4-AP and αDTX had similar effects on both channels, consistent with the published effects 

of these blockers on the parental Kv1.1, 1.2 and 1.6 homomeric channels (Gutman et al., 

2005; Harvey, 1997). TEA was less effective at blocking Kv1.6-1.2 than Kv1.1-1.2 

containing channels as expected given the increased susceptibility of Kv1.1 subunits 

compared with Kv1.6. When measured electrophysiologically, this difference was 

sufficient to distinguish the 2 channels. However, while Rb+ efflux results revealed a 

difference in sensitivities, it was not as pronounced as found with the former. DTXk proved 

to be the most effective discriminating ligand, from both electrophysiological recordings 

and Rb+ efflux results. Furthermore, while DTXk displaced 125I-αDTX from Kv1.1-1.2 

containing channels, this was not the case with those containing Kv1.6-1.2. This data 

clearly establishes the distinguishing properties of DTXk. Taken together, these results 

demonstrate the unique properties of the 2 heteromeric channels studied and emphasise the 
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importance of investigating K+ channels composed of α subunit combinations mimicking 

those found in neuronal channels. 

The agreement between Rb+ efflux and the more conventional electrophysiology results 

demonstrated with HEK-expressed channels, and the provision of large numbers of 

channels with this expression system, led to automation of the assay resulting in a truly 

high-throughput screening system. Such added capacity was utilised to perform a small 

scale screen of some blockers known to inhibit some Kv1 and other families of K+ channels. 

Examination of the Kv1 α subunits sensitivities of the known Kv1 blockers demonstrated 

some predictability for effects on Kv1.1-1.2 and Kv1.6-1.2 containing channels. However, 

despite previously reported action of β and γDTX on both Kv1.1 and Kv1.2 homomers 

expressed in oocytes, no inhibition was seen herein. While differences in post-translational 

modifications between amphibian and mammalian expression systems could contribute to 

this, or inconsistencies in the identification of these toxins when purified from venom, this 

discrepancy demonstrates yet again the importance of studying physiologically-relevant 

heteromeric channels and not extrapolating from homomers. Inhibitors that block other 

families of K+ channels did not affect the Kv1 channels used in this study. In this case Lq2, 

a blocker of ROMK1 channels (Lu and MacKinnon, 1997), was an exception. However, 

Lq2 is purified from the same venom of ChTX and has close sequence homology, differing 

at only 8 positions (Lucchesi et al., 1989). It is, therefore, not surprising that both these 

toxins exhibit similar effects on the expressed channels.   

Having performed a successful screen, the quantitative potential of Rb+ efflux was 

deciphered by examining inhibitory constants from concentration response measurements. 

While toxins that block at picomolar concentrations are too potent for such measurements, 

requiring instead electrophysiological analysis, toxins that block these channels with IC50 

values in the nanomolar range are ideal for such analysis. The outcome demonstrates the 

value of Rb+ efflux as a means of decreasing the number of samples to be tested using more 

time consuming techniques, and its potential for quantitative analysis in some situations. 

This validated approach can now be applied to more Kv1 constructs to determine 

pharmacological profiles and garner further information in the search for heteromer- 

specific ligands. 
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Chapter 5 

Comparison of the pharmacological profiles of channels composed of a 

Kv1.X-1.2 series of dimers 

 

 

5.1 Overview 

In the search for blockers with specificity for neuronally-expressed Kv1 channel 

heteromers, it is important to understand the influence of combinations of α subunits within 

tetramers, on their inhibitory activities. To achieve this, Kv1.1-1.2, 1.2-1.2, 1.3-1.2, 1.4-1.2 

and 1.6-1.2 containing channels were expressed in HEK cells, their surface targeting 

confirmed by immuno-fluorescence and pharmacological profiles determined using Rb+ 

efflux. Saturable binding of 125I-αDTX to cells expressing the recombinant proteins further 

established the presence of intact channels on the plasmalemma; abilities of various other 

toxins to antagonise the binding of the radioactive probe were found to be comparable with 

Rb+ efflux results. 

 

This study explored the effects of heteromeric combinations of α subunits on blockade of 

channels by various peptide toxins, results that cannot be determined solely by examining 

the previously reported interactions of relevant parental homomers with the requisite 

inhibitor. It is clear that a heteromeric channel consisting of some toxin-sensitive subunits 

cannot be assumed to be inhibited by that compound. Indeed, the presence of some 

insensitive subunits in a heteromer can reduce or prevent inhibition despite inclusion in the 

channel of subunits sensitive to the toxin in question. Identifying the effects of heteromeric 

α subunit compositions on peptide toxin inhibition is an important step in the design of 

blockers specific for oligomeric channel subtypes.  

 

5.2 Plasma membrane targeting of Kv1.X-1.2 containing channels revealed by immuno-

staining 

COS cells transfected with Kv1.X-1.2-pIRES2-EGFP plasmids, prepared using the cassette 

cloning system (see Materials and Methods and Chapter 6), were labelled with IgGs 

specific to external epitopes of Kv1.2 (Tiffany et al., 2000) (Fig. 5.1 left hand panels).  
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Figure 5.1│ Fluorescent micrographs showing surface expression of channels containing 5 

different Kv1.X-1.2 dimers. COS cells, transfected with Kv1.1-1.2- (a), Kv1.2-1.2- (b), 

Kv1.3-1.2- (c), Kv1.4-1.2- (d) or Kv1.6-1.2-pIRES2-EGFP (e) were double labelled using an 

antibody reactive with external epitopes of Kv1.2 (Tiffany et al., 2000) (left panels) and a 

monoclonal antibody specific for an intracellular epitope of Kv1.2 (right panels). The surface 

labelling visualised (red) was distinguished from the total (green) using anti-species IgGs 

coupled to AF 594 or 488, respectively (a-e). f, Only background signals were seen upon 

omission of primary antibodies, representing the signal resulting from EGFP expression in 

transfected cells. Top panel shows DAPI stained nuclei, the bottom panel, EGFP signal from 

a transfected cell. With these exposure conditions, the EGFP fluorescence visible is 

concentrated mainly around the nucleus of the cell and clearly does not interfere with the 

specific signals resulting from antibody labelling. 

a 
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After cell permeabilisation, a monoclonal Kv1.2 antibody directed against a cytoplasmic 

domain was used to label the total channel population (Fig. 5.1 right hand panels). 

Secondary antibodies conjugated to AF 594 and 488, respectively, were used. Despite a 

large population of internal channels for each construct, a significant proportion of each of 

the channels was targeted to the cell surface. Different patterns of staining resulted from the 

2 antibodies used. While surface channels are labelled all over the plasma membrane, in the 

total field there is a strong signal from the internal channels, concentrated around the 

nucleus. Omission of the primary antibodies resulted in an absence of signals at this 

exposure, and in doing so revealed the EGFP signal due to the pIRES2-EGFP constructs 

(Fig. 5.1f). This result shows clearly that such fluorescence does not interfere with the 

antibody labelling. 

 

5.3 Saturable binding of 125I-αdendrotoxin demonstrates that the surface expressed 

channels are correctly assembled 

Suspensions of cells expressing the Kv1.X-1.2 constructs were incubated with increasing 

concentrations of iodinated toxin in the presence and absence of unlabelled αDTX. 

Subtraction of the non-specific binding from the total generated the saturable component. 

Thus, 125I-αDTX was shown to bind to the channels tested in a saturable manner (Fig. 5.2), 

evidence that correctly folded and assembled tetrameric channels are present on the cell 

surface (Tytgat et al., 1995). The KD and Bmax values for the five constructs are listed in 

Table 5.1. The KD value (0.6 nM) obtained for Kv1.1-1.2 containing channels (Fig. 5.2a) 

was comparable with results previously obtained for concatenated Kv1.1 and 1.2 subunits 

(0.5 nM) (Akhtar et al., 2002). Kv1.6-1.2 containing channels behaved similarly (KD = 0.6 

nM), as might be expected due to the presence of 4 αDTX-sensitive α subunits (Fig. 5.2e). 

Surprisingly, toxin interaction with Kv1.2-1.2 heteromers resulted in a higher KD (1.7 nM), 

perhaps as a result of the transient nature of the channel expression (Fig. 5.2b). The KD of 5 

nM for Kv1.3-1.2 containing channels could be attributed to the presence of αDTX 

insensitive Kv1.3 subunits in the channels (Fig. 5.2c). Likewise, this was also the case for 

Kv1.4-1.2 containing channels (KD = 4.3 nM) (Fig 5.2d). The presence of a positively 

charged lysine residue in the pore region of the 1.4 subunits obviously electrostatically 

reduces the toxin’s affinity. The low unsaturable binding levels are likely due to enhanced  
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Channel KD (nM) Bmax (pmol/mg) 

Kv1.1-1.2 0.6 0.04 

Kv1.2-1.2 1.7 0.2 

Kv1.3-1.2 5.0 0.2 

Kv1.4-1.2 4.3 0.3 

Kv1.6-1.2 0.6 0.05 

 

 

 

 

surface expression of these channels, imbued by the presence of Kv1.4 subunits (Manganas 

and Trimmer, 2000). This is supported by a higher Bmax value than the other constructs 

(Table 5.1). It should be noted that both Kv1.2-1.2 and Kv1.3-1.2 channels had a much 

higher level of surface expressed channels, presumably due to the larger quantities of DNA 

required to achieve saturable toxin binding when expressing these constructs compared 

with Kv1.1-1.2 and 1.6-1.2 containing channels. 

 

 

 

Figure 5.2│ Saturable binding of 125I-αdendrotoxin to intact HEK cells transfected with 

various heteromeric Kv1 channel constructs. a, Stably expressed Kv1.1-1.2 containing 

channels, b, c and d, transiently expressed Kv1.2-1.2, 1.3-1.2 and 1.4-1.2 containing 

channels respectively. e, Kv1.6-1.2 heteromers stably expressed. Total binding 

(resulting from increasing concentrations of 125I-αDTX) was quantified with a filtration 

assay; non-saturable binding was measured in the presence of 1 µM unlabelled αDTX; 

substraction of the 2 values yields the saturable component. Insets show a Scatchard plot 

of the saturable binding. Data was analysed using GraphPad Prism nonlinear regression 

to yield KD values. 

Table 5.1│ KD and Bmax values for saturable binding of 125I-αdendrotoxin to 

HEK cells expressing Kv1.X-1.2 containing channels 
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5.4 Effects of various Kv1 inhibitors on the functionality of Kv1.X-1.2 heteromeric channels 

cannot be predicted from inhibition of their parental homomers 

Rb+ efflux experiments were performed on HEK cells transiently transfected with Kv1.2-

1.2- and 1.3-1.2-pIRES2-EGFP and a stable cell line expressing Kv1.4-1.2-pIRES2-EGFP. 

The 3 constructs were prepared by the modular cloning described in Materials and Methods 

and Chapter 6. Stable cell lines expressing Kv1.2-1.2 and 1.3-1.2 containing channels were 

also developed but the level of expression was insufficient to give an adequate signal:noise 

ratio in the Rb+ efflux assay. The effects of peptide toxin inhibitors with known activity on 

Kv1 channels (Table 2.2) were investigated and combined with results obtained previously 

for Kv1.1-1.2 and 1.6-1.2 containing channels (Fig. 4.3, 4.13, 4.14) but this screen also 

included ShK-Dap22, a derivative of the sea anemone toxin ShK, described in (Kalman et 

al., 1998; Middleton et al., 2003). β and γDTX failed to inhibit flux through any of the 

recombinant channels at the concentration tested despite the presence of Kv1.2 subunits, 

contrary to their previously attributed activity on Kv1.1 and 1.2 containing channels 

(Hopkins et al., 1996). DTXk, which only blocks channels containing Kv1.1 (Akhtar et al., 

2002), inhibited Rb+ efflux only through Kv1.1-1.2. Notably, its homologue δDTX from 

Dendroaspis angusticeps behaved similarly, not attenuating Rb+ release through Kv1.2-1.2, 

1.3-1.2 or 1.4-1.2 containing channels. However, in contrast to DTXk, it blocked Kv1.6-1.2 

channels significantly more (p<0.0001). Both these toxins were isolated from venom in-

house and are very pure, giving single peaks on ion-exchange and reverse phase 

chromatography. Although the peptide sequences of these toxins differ in only 3 places 

(Table 2.1), these residues are on the channel-binding face of the toxin and this clearly has 

a marked effect on the activity (Harvey, 1997; Imredy and MacKinnon, 2000).  

Literature to date reports kaliotoxin (KTX) to have inhibitory activity on IK through 

channels possessing Kv1.1 or 1.3 (Grissmer et al., 1994). The inhibition of Rb+ efflux 

through Kv1.1-1.2 and 1.3-1.2 containing channels in this screen is, therefore, to be 

expected; however, efflux via Kv1.6-1.2 was also reduced. Given that Kv1.2-1.2 is not 

similarly affected, it can be presumed that this effect is due to Kv1.6 subunits being 

sensitive to this toxin, an observation not previously recorded. However, it would be 

worthwhile to try higher concentrations of KTX on Kv1.2-1.2 containing channels to 

ascertain if the small amount of block seen in these measurements is real or more likely due 
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Figure 5.3 │Inhibition of Rb+ efflux through channels made up from the Kv1.X-1.2 

dimer series expressed in HEK cells. The effects of various peptide toxin blockers of 

Kv1 channels on Rb+ efflux from HEK cells expressing Kv1.1-1.2-, Kv1.2-1.2-, Kv1.3-

1.2-, Kv1.4-1.2- and Kv1.6-1.2-pIRES2-EGFP constructs, were quantified by AAS. 

Evoked (stimulated-basal) efflux was normalised to that for an unchallenged control 

and data plotted as average (n = 16) ± S.E.M., with measurements performed on at least 

2 different days. All toxins were tested at 10 nM with the exception of MCD peptide 

where a 100 nM dose was used - in line with previously reported effective doses 

(Grissmer et al., 1994). Rb+ efflux through Kv1.6-1.2 containing channels was inhibited 

significantly more by δDTX compared with DTXk (p<0.001) as measured by an 

unpaired t-test. 
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to data scatter; experiments not performed herein due to the large amounts of toxin required 

and the associated expense. The other toxins tested inhibited channels in accordance with 

known α subunit sensitivies with the exception of the toxins described in-depth in the 

coming sections. Across all the toxins tested, Kv1.4-1.2 containing channels gave unusual 

results. While in most cases the presence of insensitive subunits does not prevent channel 

inhibition, this is not the case for Kv1.4-1.2 containing channels. Kv1.4 homomers are not 

blocked by any known peptide toxin (see below) and their presence in a heteromeric 

channel appears to greatly reduce or prevent blockade of the sensitive subunits. TsTX-Kα is 

a potent blocker of Kv1.2 channels (Hopkins, 1998) [as well as Kv1.3 (Rodrigues et al., 

2003)] but while it inhibited all the other Kv1.X-1.2 containing channels, it proved 

relatively ineffective towards Kv1.4-1.2, blocking less that 20% of the Rb+ efflux. This 

effect is seen with all toxins tested including ShK which was once reported to block Kv1.4 

channels (Kalman et al., 1998) although that result has not been replicated elsewhere. 

Prevention of expected channel inhibition by the presence of Kv1.4 is less pronounced with 

some toxins e.g. MgTX, HgTX and DTXI. Further investigations are necessary to 

determine the extent to which the binding of these toxins are affected by the presence of 

Kv1.4 subunits. Overall though, it appears that Kv1.4 subunits act, to a greater or lesser 

extent, in a “repulsive” manner in the inhibitory actions of toxins on heteromeric channels.  

 

5.5 Inhibitors of other families of K+ channels do not inhibit these Kv1 channels, with a few 

exceptions    

In the main, the K+ channel inhibitors used in this screen (see Table 4.3 for details) did not 

attenuate Rb+ efflux (Fig. 5.4a,b). As observed in other screening experiments there was 

some scatter in the data (see Chapter 4), in many cases with Rb+ concentrations in 

supernatants being higher than in the unchallenged control wells; this resulted in evoked 

release greater than 100%. Generally, this was more pronounced for transiently-expressed 

channels, reinforcing the notion that this is likely due to data variability rather than 

measured channel modulatory effects of the compounds in question. However in some 

more extreme cases, e.g. Penitrem on Kv1.2-1.2, the potential of channel opening activity 

could be investigated. As was observed with Kv1.1-1.2 and 1.6-1.2 containing channels 

(Fig. 4.14), Lq2 blocked other members of the Kv1.X-1.2 family with the exception of 
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Kv1.4-1.2 (Fig. 5.4a) where less than 20% inhibition of Rb+ efflux was observed. This 

corresponds to the actions of the related ChTX, raising the assumption that these toxins 

target the same Kv1 α subunits. Given that the 2 toxins are isolated from the same venom 

and have significant sequence homology differing at only 8 positions (Lucchesi et al., 

1989), this is not unlikely. Experiments on Kv1.4-1.2 containing channels with ChTX and 

Lq2 using a range of concentrations, would determine if Lq2 more potently inhibits Kv1.4 

containing channels – a result suggested from this initial screening data. Maurotoxin 

(MoTX) is a potent blocker of the intermediate-conductance Ca2+-activated K+ channel, 

hIKCa1 (Visan et al., 2004), but there have also been reports of its ability to block Kv1.1, 

1.2 and 1.3 homomers (Kharrat et al., 1996). This toxin was initially screened against 

Kv1.1-1.2 and 1.6-1.2 containing channels (Fig. 4.14). However, no inhibition of Rb+ 

efflux was observed, even in the case of Kv1.1-1.2 where only reportedly sensitive subunits 

were present in the channel. The same result was observed with Kv1.3-1.2 containing 

channels and, not surprisingly, Kv1.4-1.2. However, Rb+ efflux was attenuated through 

channels consisting of only Kv1.2 subunits (Kv1.2-1.2), highlighting the sometimes 

unexpected interaction between peptide toxins and heteromeric Kv1 channels.    

 

5.6 Screening agitoxins against the Kv1.X-1.2 series reveals previously unknown 

sensitivities of Kv1 α subunits 

Three AgiTXs have been isolated from the venom of the scorpion Leiurus quinquestriatus 

var. hebraeus (Garcia et al., 1994). To date, AgiTXs -1 and -2 have been shown to be 

active on Kv1.1, 1.3 and 1.6 and AgiTX-3 inhibits Kv1.3 channels (Cayabyab et al., 2000; 

Garcia et al., 1994; Suarez-Kurtz et al., 1999). In this study, AgiTX-1 inhibited Rb+ efflux 

through Kv1.2-1.2 containing channels (Fig. 5.5a). Given that this is a homomeric Kv1.2 

channel, the result suggests that the toxin also has activity against Kv1.2 subunits. This was 

not the case for AgiTXs 2 and 3 which did considerably inhibit Rb+ efflux through the 

Kv1.2-1.2 channels. While there appears to be some decrease in Rb+ efflux through Kv1.2-

1.2 channels with these toxins, this is likely due to data scatter as the channel is transiently 

expressed and the error bars are considerable. Likewise, AgiTX-3 was shown to have the 

same effects as AgiTX-2 on the heteromeric channels investigated, implying the same  
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Figure 5.4│Effects of various blockers of other K+ channel families on Rb+ efflux through the 

Kv1.X-1.2 channels. MoTX was found to be an interesting blocker of Kv1.2-1.2. Evoked Rb+ 

release in the presence of 10 nM (a) or 100 nM (b) test compound (detailed in Table 4.3), was 

normalised to unchallenged efflux. Data plotted are average (n = 16) ± S.E.M.   
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range of α subunit targets (Fig. 5.5a). It is clear that the presence of Kv1.4 subunits in the 

heteromers examined proves repulsive to these toxins, as there was no inhibition of Rb+ 

efflux by AgiTX-2 or -3 through Kv1.4-1.2 containing channels. In the presence of AgiTX-

1, flux was inhibited by ~20%. While this is possibly due to scatter in the data, it could also 

be a result of a limited effect of this toxin imbued by its action on the Kv1.2 subunits in the 

channel. As these results were obtained with just a single concentration of the respective 

toxins (10 nM), 125I-αDTX displacement experiments were performed to further evaluate 

this result (Fig. 5.5b). Inhibitory constants (Ki) of the various peptide toxins investigated 

were calculated according to the equation: Ki = (IC50)/{1+ [L*]/K D}, where the IC50 value 

was taken from the sigmoidal concentration-response curves for the displacement of 125I-

αDTX, drawn and analysed using GraphPad Prism and [L*] is concentration of radioactive 

ligand, in this case 2.5 nM. Ki values are listed in the figure legend and in Table 5.2. 

Kv1.1-1.2 and 1.6-1.2 containing channels are most potently blocked by all 3 AgiTXs, with 

K is less than 1 nM. Though Kv1.3-1.2 heteromers were less sensitive to the toxins, they 

were still inhibited in the low nanomolar range. While knowledge of the interaction of these 

toxins with channels possessing various α subunits was expanded, these toxins do not fulfil 

the criterion set for this search; that is ability to distinguish the heteromers examined. 

 

5.7 Noxiustoxin gives a similar displacement of 125I-αdendrotoxin from Kv1.2-1.2 and 1.3-

1.2 containing channels in contrast to Rb+ efflux results 

NxTX has been shown to block Kv1.2 and Kv1.3 elicited IKs with a KD of 2 and 1 nM, 

respectively (Grissmer et al., 1994). However in this study, while Rb+ efflux through 

Kv1.2-1.2 channels was inhibited completely by 10 nM toxin, the same was not the case for 

Kv1.3-1.2 containing channels, where only 35% block was observed (Fig. 5.6a). As both 

homomeric channels have very similar sensitivities to NxTX, this result was unexpected 

and, therefore, 125I-αDTX displacement experiments were performed and inhibitory 

constants determined (Fig. 5.6b). Under these experimental conditions, however, the toxin 

potency was virtually identical for both channels (Kv1.2-1.2, Ki = 0.1 nM; Kv1.3-1.2, Ki = 

0.2 nM, see Table 5.2).    
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Figure 5.5│Comparison of the influences of agitoxins on the series of Kv1.X-1.2 

containing channels expressed in HEK cells. Results obtained for the inhibition of Rb+ 

efflux (a) (taken from Fig. 5.3), were confirmed by displacement of bound 125I-αDTX 

(b). b, Averages (n = 4) are plotted ± S.D. Kis are as follows, for AgiTX-1: 1.1-1.2 

(0.8 nM), 1.2-1.2 (1.6 nM), 1.3-1.2 (6.9 nM), 1.6-1.2 (0.9 nM); for AgiTX-2: 1.1-1.2 

(0.6 nM), 1.3-1.2 (1.6 nM), 1.6-1.2 (0.1 nM) and for AgiTX-3: 1.1-1.2 (0.3 nM), 1.3-

1.2 (16.2 nM), 1.6-1.2 (0.2 nM). 
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Figure 5.6│Contrary to Rb+ efflux results, noxiustoxin inhibits 125I-αdendrotoxin 

binding to Kv1.2-1.2 and 1.3-1.2 containing channels with very similar potency. While 

blockade of evoked Rb+ release through Kv1.3-1.2 channels was only 35% compared 

with 100% for 1.2-1.2 (a), displacement of 125I-αDTX by the toxin from both channels 

was almost identical (b). Toxin displacement data is plotted as mean ± S.D., n = 4.   

a b 
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 Kv1.1-1.2 Kv1.2-1.2 Kv1.3-1.2 Kv1.4-1.2 Kv1.6-1.2 

Agitoxin-1 0.8 1.6 6.9  0.9 

Agitoxin-2 0.6  1.6  0.1 

Agitoxin-3 0.3  16.6  0.2 

Noxiustoxin  0.1 0.2   

ShK-Dap22 2.3    38.0 

Maurotoxin  0.9 0.1   

αdendrotoxin    1.9  

Hongotoxin    0.8  

Margatoxin    0.6  

 

 

 

 

5.8 ShK and its derivative ShK-Dap22 have different potencies and selectivities for channels 

comprising the Kv1.X-1.2 series 

As described above (Fig. 5.7a), 10 nM ShK gave a 100% inhibition of Rb+ efflux through 

all Kv1.X-1.2 channels with the exception of Kv1.4-1.2, due presumably to the presence of 

“inhibitory” Kv1.4 subunits. While the derivative ShK-Dap22 blocked Kv1.1-1.2, 1.3-1.2 

and 1.6-1.2 containing channels (Fig. 5.7b), it showed a reduced potency compared with 

wild type ShK at the same concentration. This was expected given the results from previous 

studies (Kalman et al., 1998; Middleton et al., 2003). Both toxins failed to significantly 

block Rb+ efflux through Kv1.4-1.2 containing channels (Fig 5.7a,b), suggesting that these 

toxins are also “repelled” by the presence of Kv1.4 subunits in a channel. Once again, the 

small (~10%) reduction of flux seen with ShK on these channels (Fig. 5.7a) could be due to 

data scatter or the presence of Kv1.2 subunits, which ShK inhibits. Most interestingly, 

ShK-Dap22 did not attenuate evoked Rb+ release (Fig. 5.7b) from Kv1.2-1.2 channels in 

agreement with published data showing the low affinity of Kv1.2 homomers to this toxin 

(Middleton et al., 2003). This result was confirmed by its inability to displace 125I-αDTX 

bound to the same channels (Fig. 5.7c). This was not the case for displacement of 125I-

αDTX from Kv1.1-1.2 or 1.6-1.2 containing channels, though the potency of the toxin was  

Table 5.2│K i values (nM) for the displacement of 125I-αdendrotoxin from various Kv1.X-1.2 

containing channels expressed on the surface of HEK cells 
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less than has been seen with other peptide toxins (K i = 2.3 and 38.0 nM for Kv1.1-1.2 and 

1.6-1.2 containing channels respectively, Table 5.2), resulting in large amounts of non-

displaceable binding even with 1 µM ShK-Dap22 (Fig. 5.7c). Taken together this data 

demonstrates the lower potency of the ShK derivative, but its selectivity for Kv1.1-1.2 (and 

to a lesser extent Kv1.6-1.2) containing channels over Kv1.2 homomers is in agreement 

with previous reports (Middleton et al., 2003). 

 

5.9 Maurotoxin is distinct from other venom-derived peptide toxins studied herein in its 

effects on heteromeric compared to homomeric channels 

Given reports that MoTX inhibits IK through Kv1.1, 1.2 and 1.3 channels expressed in 

Xenopus oocytes (Kharrat et al., 1996), it was surprising that only Rb+ efflux through 
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Figure 5.7│ShK-Dap22 is less potent but more selective than the wild type ShK. The 

different potencies and selectivities of ShK and ShK-Dap22 were measured by 

inhibition of Rb+ efflux through Kv1.X-1.2 containing channels (a and b; data from 

Fig. 5.3). The selectivity of ShK-Dap22 is confirmed with 125I-αDTX displacement 

experiments (c). Average values are plotted ± S.D.; n = 4.  
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Kv1.2-1.2 and not Kv1.1-1.2 and 1.3-1.2 channels was inhibited by this toxin, as 4 sensitive 

subunits are present in the latter (Fig. 5.4a/5.8a). Displacement by 1 µM MoTX of 125I-

αDTX bound to these channels was quantified to asses this result (Fig. 5.8b). As expected, 

this very large dose of toxin did not displace appreciable amounts of labelled αDTX from 

Kv1.1-1.2 (or Kv1.6-1.2) containing channels. However, this was not the case for those 

containing Kv1.3-1.2 (and 1.2-1.2 as expected from the Rb+ efflux results). Therefore, 

experiments were performed to compare the Kis of displacement (Fig. 5.8c). While MoTX 

more potently displaced 125I-αDTX from Kv1.3-1.2 compared with Kv1.2-1.2 containing 

channels, there was less than a 10-fold difference between them (Kv1.2-1.2, 0.9 nM and  
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Figure 5.8│Inhibition by maurotoxin of Kv1.2 containing heteromeric channels is 

influenced by the presence of other subunits. Rb+ efflux data shows MoTX blocks 

Kv1.2 homomeric channels and not those containing Kv1.2 with other subunits (a – 

taken from Fig. 5.4). b, An excess (1 µM) of MoTX (□) does not substantaially 

displace 125I-αDTX (■) bound to the Kv1.1-1.2 and 1.6-1.2 containing channels (mean 

± S.D., n = 4). Ki values for Kv1.2-1.2 and 1.3-1.2, the 2 MoTX sensitive channels, 

were compared (0.9 and 0.1 nM respectively); averages are plotted ± S.D., n=4 (c). 
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Kv1.3-1.2, 0.1 nM, Table 5.2). Furthermore, the total amount of radio-labelled toxin 

displaced for Kv1.3-1.2 heteromers was limited, with high levels of non-displaceable 

binding remaining. Taken together, this data demonstrates that MoTX inhibition of 

heteromeric combinations of channels differs from that of other Kv1 blockers examined. 

 

5.10 αdendrotoxin does not attenuate Rb+ efflux through the Kv1.4-1.2 channel, but the 

expressed protein binds 125I-αdendrotoxin and this is displaced by several toxins 

Despite the lack of substantial inhibition of Kv1.4-1.2 containing channels by various 

Kv1.2 inhibiting toxins in Rb+ efflux experiments, 125I-αDTX bound saturably to this 

channel with low levels of non-specific binding (Fig. 5.2d,). In the presence of some toxins 

(HgTX and MgTX), however, there did appear to be some reduction in Rb+ efflux, found to 

be statistically significant (Fig. 5.9). To test the consistency of these results, displacement 

of 125I-αDTX by these toxins was quantified (Fig. 5.9b). The resultant Ki values reflect the 

degree of inhibition of Rb+ efflux (in nM; αDTX, 1.9; HgTX, 0.8; MgTX, 0.6, Table 5.2). 

These results not only demonstrate the possibility of using αDTX as a radio-ligand for 

Kv1.4 containing channels when sensitive subunits are present, but also suggest that MgTX 

and HgTX may have some properties that render them less susceptible to “repulsion” by 

Kv1.4 than other peptide toxins examined. 
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Figure 5.9│ Comparison of 125I-αdendrotoxin displacement from Kv1.4-1.2 

containing channels by 3 peptide toxins. Kv1.4-1.2 containing channels proved 

insensitive to several Kv1.2 blocking toxin when measured by Rb+ efflux (a). 

Increased inhibition of Rb+ efflux by both HgTX and MgTX was statistically 

significant compared with block by αDTX; HgTX, p=0.0216 (*), MgTX, 

p=0.0001 (**), as measured by an unpaired t-test. b, Displacement of radio-

labelled αDTX by the same unlabelled, HgTX and MgTX are expressed as 

averages (n = 4) ± S.D. 
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5.11 Discussion 

Potential future therapeutics for the treatment of the many conditions involving hypo-

excitability of subtypes of Kv1 channels require absolute specificity for their target, given 

the wide expression of these channels. As the majority of Kv1 channels isolated from 

mammalian brain are heteromeric combinations of α subunits, it is these channel 

compositions that need to be mimicked when considering targets for drug screening. 

Understanding the interaction of blockers with heteromeric as opposed to homomeric 

channel combinations, provides necessary insights for the design of these important 

inhibitors. 

Kv1.2 is the most prevalent subunit in brain (Scott et al., 1994a) and is present in most 

heteromers whose compositions have been determined (Coleman et al., 1999; Shamotienko 

et al., 1997). Therefore, different subunits were combined with it, to produce the interesting 

Kv1.X-1.2 series. The cassette cloning system described in Chapter 6 and (Shamotienko et 

al., 2008) was used to make the constructs (Kv1.2-1.2, 1.3-1.2 and 1.4-1.2) which had not 

been investigated in previous studies. The extensive characterisation of channels resulting 

from these constructs confirms the efficacy of the modular cloning system for expressing 

constructs with any number of positions filled, as the constructs used here had only 2 

positions filled and expressed functional channels, confirming that the ORF was maintained.  

In an attempt to understand the interactions of the peptide toxins used in this study with 

heteromeric channels, screening of numerous Kv1 blocking peptide toxins was performed 

using a Rb+ efflux assay. Inhibition of Rb+ efflux was monitored in channels composed of 

subunits not previously shown to be sensitive to the toxins in question. In this way, the 

study served to increase the number of Kv1 α subunits known to be susceptible to some of 

the inhibitors screened. Of course, this assumes that sensitivities of homomeric Kv1.X 

channels can be extrapolated from results achieved with heteromeric combinations of Kv1 

α subunits. While such conclusions are likely correct, it is important that the same 

assumptions are not made to predict heteromer pharmacology from examining homomeric 

combinations of channels alone. Nevertheless, in this study further target subunits for the 

AgiTXs, KTX and the ChTX homologue Lq2 have been putatively identified. 

The “repulsive” effect of the Kv1.4 subunit on peptide toxin binding to channels containing 

it was also clearly demonstrated. That is, Rb+ efflux through the Kv1.4-1.2 containing 
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channels was reduced to a far lesser extent than the other channels examined. Based on 

results obtained from the other members of the Kv1.X-1.2 series, toxins with activity 

against Kv1.2 subunits including but not limited to αDTX, ChTX, ShK and TsTX-Kα, 

would have been expected to block Rb+ efflux. However, this was not the case as these 

toxins (10 nM) inhibited release by no more than 20%. Interestingly, some toxins did have 

a more pronounced effect and these were investigated further. When performing 125I-αDTX 

binding experiments on the Kv1.X-1.2 containing channel series, Kv1.4-1.2 was also 

included despite the fact that αDTX did not inhibit flux. Surprisingly, the 125I-αDTX bound 

specifically (KD=4.3 nM) to the expressed channel, albeit with reduced affinity. This 

allowed displacement experiments to be performed confirming the Rb+ efflux result that 

MgTX and HgTX have some inhibitory activity towards this channel. The interaction of 

αDTX as measured with Rb+ efflux compared to toxin displacement experiments is 

surprising. Perhaps, the presence of Kv1.4 subunits increases the time required for toxin 

binding and, therefore, the 10 min toxin incubation used for Rb+ efflux experiments is not 

sufficient but the 1 h incubation time used for radio-labelled toxin experiments is. An 

interesting next step is to see if the “repulsive” effect of Kv1.4 is altered in relation to the 

number of subunits present in a channel.  

Importantly, there were several instances where the specificity of a toxin for a particular 

heteromer could not be predicted from published sensitivities of the relevant parental 

homomers. The selectivity of the ShK derivative ShK-Dap22 for Kv1.1 and 1.2 containing 

heteromeric channels compared with either of the homomers, as previously reported 

(Middleton et al., 2003), was reproduced in this study for Kv1.1-1.2 compared with Kv1.2-

1.2 containing channels (i.e. Kv1.2) homomers. Most surprising and truly unique though, 

was MoTX. Only Rb+ efflux through Kv1.2-1.2 channels was blocked despite the fact that 

Kv1.1 and 1.3 subunits have also been shown to be sensitive to this toxin (Kharrat et al., 

1996). Kv1.2 is the most sensitive of the 3 subunits, perhaps explaining why Rb+ efflux 

through channels composed solely of this subunit (the Kv1.2-1.2 heteromers) was blocked. 

While of the remaining subunits, previously published data (Kharrat et al., 1996) suggests 

IK through Kv1.1 is more sensitive to block by MoTX than K+ current through Kv1.3 

channels, when 125I-αDTX displacement experiments were performed the opposite result 

was obtained. That is, while toxin binding to Kv1.1-1.2 was very poorly displaced by 
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MoTX, the toxin was more effective on Kv1.3-1.2 containing channels. The unusual 

features of this toxin certainly warrant further investigation. Perhaps it is more effective on 

homomeric as compared with heteromeric combinations of channels. Identification of the 

structures and residues responsible for this surprising selectivity could provide vital 

information for the manipulation of other more promiscuous but potent blockers.  
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Chapter 6 

Concatenating tetramers of Kv1 α subunits to mimic those expressed 

neuronally unveils novel K+ channel characteristics of authentic 

therapeutic targets 

 

 

6.1 Overview 

Many ion-channels, receptors, transporters and enzymes are heteromeric proteins, some of 

which are composed of structurally-related subunits. In most cases, specific channel 

subtypes or combinations are localised to particular tissues (Coleman et al., 1999), 

presumably to fulfill a defined function imbued by such controlled composition. When 

looking for new therapeutics, development of blockers specific for such localised oligomers 

should decrease side effects. The versatile and novel methodology described herein for 

concatenating subunits allows expression and functional characterisation of such proteins, 

providing native-like targets for drug screening. 

This technology was developed for the study of hetero-tetrameric Kv1 channels with 

subunit compositions mimicking those identified in mammalian brain (Coleman et al., 1999; 

Koch et al., 1997; Koschak et al., 1998; Shamotienko et al., 1997). Functional analysis of 

such recombinant channels facilitated determination of the characteristic profiles of these 

channels which can be used to elucidate the molecular entities responsible for K+ currents 

recorded from neurons.  

 

This chapter describes the generation of 4 concatenated tetrameric combinations of Kv1 α 

subunits. Initially, three of these channels were extensively characterised and shown to 

traffic to the surface of HEK cells and yield functionally uniform channels whose K+ 

currents could be distinguished by inactivation profiles and responses to selective blockers. 

This work has been submitted for publication in (Shamotienko et al., 2008). Experiments 

further investigating the effect of various toxins on Kv1.4 containing channels, begun in the 

previous chapter, involved the use of a fourth tetrameric channel. 
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6.2 The modular cloning system 

This was designed to prepare concatenated constructs of Kv1.X genes, encoding any pre-

determined stoichiometry and composition of α subunits. It involved linking constituents in 

the same ORF, using a proven inter-subunit linker originating from the Xenopus β-globin 

gene (Akhtar et al., 2002), making this approach potentially applicable to any multi-protein 

complex. 

 

6.2.1 Generation and engineering of a bank of α subunit genes Initial PCR of Kv1.1, 1.2, 

1.3 and 1.6 DNAs yielded single bands of the expected molecular mass of 1.5 kbp with 

Kv1.4 giving a larger size of 2.0 kbp. Amplified products were individually cloned into the 

polylinker of pβUT2 situated between the 5’ and 3’ UTRs of the Xenopus β-globin gene. 

Subsequent amplification of individual subunits within pβUT2 was carried out using 

primers designed against these flanking UTRs (Table 3.1); additionally, pairs of restriction 

sites were introduced to allow positional cloning of individual subunits (with flanking UTR 

elements) into the MCS of the pIRES expression plasmids (Fig. 6.1a). The first gene of 

each tetramer was inserted as domain I between Nhe I and Bgl II sites, with cloning being 

achieved using UTR-specific primers that encompass their sequences. Similarly, cloning of 

each of the constituent sequences into the remaining three domains could be accomplished, 

utilising the requisite pairs of restriction sites (Fig. 6.1a). Unlike the genes in domains I-III, 

the occupant of the last slot contained two stop codons. Thus, all four groups of UTR-

specific primers differed only by domain–specific flanking restriction sites. Since each half-

linker contained 30 nucleotides plus 3 (after assembly) for restriction sites, each two 

neighbouring subunits in the assembled oligomers (regardless of their domain) were 

separated by 78 nucleotides, including 6 each for Xba I and Xho I sites. Each product from 

the second round of PCR showed single DNA bands of the expected sizes when subjected 

to agarose electrophoresis. 

 

6.2.2 Domain-specific assembly of gene cassettes into pIRES plasmids and expression of 

concatenated Kv1 channels Assembly of cassettes containing α subunit genes can be started 

from any of the 4 cloning domains. Similarly, any constituent can be cut-out and replaced  
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Figure 6.1│ Concatenation of Kv1.X genes, expression and surface targeting in HEK cells of 

intact tetrameric Kv1 channels. a, Schematic - attachment to Kv1 genes of half-linkers and 

restriction sites for assembly of concatemers in pIRES2-EGFP or -DsRed. UTRs of Xenopus β 

globin gene and restriction sites for the enzymes specified were added to the ends of the Kv1.X 

inserts by PCR to allow position-specific cloning into the plasmids. Complete linkers form during 

the assembly of concatemers retaining all the sequences in the same ORF. b, HEK cells were 

transfected with pIRES2 reporter plasmids containing the Kv1 inserts specified and after 48 h 

subjected to SDS-PAGE followed by Western blotting with the antibodies specified, and 

visualisation using ECL reagents. Samples from cells transfected with pIRES2-EGFP containing 

the following constructs are shown in lanes: 1, Kv1.2; 2 Kv1.2-1.2; 3 & 4, Kv1.1-1.1-1.2-1.2. c, 

Biotinylation of surface proteins. Lanes: 2, surface biotinylated and affinity-isolated Kv1.1-1.1-

1.2-1.2; 1, total protein from the non-biotinylated cells. d, Western blots of cells transfected with 

tetrameric constructs in pIRES2-DsRed; Kv1.4-1.6-1.1-1.2, (lanes 1, 3, 5, 7, 9), Kv1.4-1.6-1.3-1.2 

(lanes 2, 4, 6, 8, 10). Lysates prepared from untransfected cells showed no reactivity against the 

antibodies used for the blotting (data not shown). Mobilities of standard proteins are indicated (b-

d). 

a 
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with another desirable Kv1.X gene; in fact, the structures of all the constructs were easily 

verified by restriction mapping (Fig. 6.2). For convenience, assembly was started at domain 

IV by incorporating the Kv1.2 gene (+ stop codons) into pIRES2-EGFP; upon expression, 

this gave a band with a Mr ~ 60-65 kDa, as revealed by SDS-PAGE and Western blotting 

(Fig. 6.1b), a size expected for this partially-glycosylated subunit. A homo-dimeric 

expressed protein with a Mr ~ 120 kDa (Fig. 6.1b) resulted from placing Kv1.2 (-stop 

codon) into domain III of the plasmid. Insertion of Kv1.1 (- stop codon) into domain II of 

Kv1.2-1.2, followed by incorporation of Kv1.1 (-stop codon) into domain I produced a full 

Kv1.X tetramer. After expression, this yielded a protein of Mr ~ 240 kDa detected by 

antibodies specific for Kv1.1 and 1.2 (Fig. 6.1b). Likewise, direct immuno-blotting of 

lysates from HEK cells transfected with pIRES2-DsRed containing Kv1.4-1.6-1.1-1.2 or 

Kv1.4-1.6-1.3-1.2 visualised a major band in each case corresponding to Mr ~ 240 kDa, 

when probed with antibodies specific for each of the constituent subunits (Fig. 6.1d). Some 

immuno-blots detected double bands corresponding, perhaps, to glycosylated forms 

characteristic of Kv1.4-containing channels (Shi and Trimmer, 1999). The successful 

generation of 3 hetero-tetrameric channels (the fourth is described later) exemplifies the 

usefulness of this strategy for assembling multi-component constructs which, in turn, 

allowed new structure-activity studies.  

 

6.3 Intact and active tetrameric channels are targeted to the plasma membrane of HEK 

cells 

For utilising recombinant Kv1 channels as targets for future drug screening, it was 

important to establish whether the concatenated oligomers traffic intact to the plasma 

membrane in active form when expressed in mammalian cells. Labelling of COS cells 

expressing Kv1.1-1.1-1.2-1.2 with IgGs specific for external epitopes of Kv1.2, followed 

by fluorescent microscopy, demonstrated clear staining on the cell surface (Fig. 6.3a,b – 

left hand panels). When the same cells were then permeabilised and incubated with a 

monoclonal antibody specific for a cytosolic epitope of Kv1.2, all the channels became 

stained (Fig. 6.3a). Repeating this with a monoclonal antibody specific for an intracellular 

epitope of Kv1.1 confirmed the presence of both subunits in the expressed channels  
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Figure 6.2│Restriction mapping of Kv1.X tetrameric constructs and intermediates 

formed during the concatenation. a, Sequential release from pIRES2-EGFP Kv1.1-1.1-

1.2-1.2 of Kv1.1, Kv1.1-1.1, Kv1.1-1.1-1.2 or Kv1.1-1.1-1.2-1.2 inserts by digestion 

with Nhe l and Bgl II, EcoR I, Sal I or BamH I, as seen in lanes 1-4 from an agarose 

(1%) gel electrophoretogram. b, Sequential release of Kv1.4, Kv1.4-1.6, Kv1.4-1.6-

1.1 or Kv1.4-1.6-1.1-1.2 inserts from the final pIRES2-DsRed Kv1.4-1.6-1.1.-1.2, and, 

Kv1.4, Kv1.4-1.6, Kv1.4-1.6-1.3 or Kv1.4-1.6-1.3-1.2 inserts from Kv1.4-1.6-1.3-1.2-

pIRES2-DsRed by digestion with Nhe l and Bgl II, EcoR I, Sal I or BamH I, as seen in 

lanes 5-8 and 9-12 respectively also from an agarose (1%) gel electrophoretogram. M, 

kbp markers, from the top; 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.5, (in a and b). Note 

tetramer band is larger than vector band in lanes 4, 8 and 12. 

 

a b 
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Figure 6.3│Surface expression of 3 hetero-tetrameric Kv1 channels in COS cells. 48 h 

post transfection with Kv1.1-1.1-1.2-1.2-pIRES2-EGFP (a,b), Kv1.4-1.6-1.1-1.2- (c) 

or Kv1.4-1.6-1.3-1.2-pIRES2-DsRed (d), COS cells were labelled using an antibody 

reactive with external epitopes of Kv1.2 (Tiffany et al., 2000), visualised with anti-

rabbit AF 594 (left panels). Following permeabilisation of the same cells, monoclonal 

antibodies specific for intracellular epitopes of Kv1.2 (a), 1.1 (b) or Kv1.4 (c,d) and 

anti-mouse AF 488 (right panels) were used to reveal the total channel population. 

Only background signals were seen upon omitting the primary antibodies; in the case 

of pIRES2-DsRed constructs (c,d), no background fluorescent signal from the DsRed 

was visible under these conditions.   
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(Fig. 6.3b). As the majority of staining occurred intracellularly in each case (Fig. 6.3a.b), it 

was necessary to biochemically analyse the minority of channels on the surface to ascertain 

whether their protein profile differed from that of the total population (Fig. 6.1b,c). This 

was accomplished by biotinylation of the surface components in intact transfected HEK 

cells. Precipitation of the solubilised biotinylated proteins with streptavidin agarose, SDS-

PAGE and Western blotting revealed that only the intact tetrameric channel (Kv1.1-1.1-1.2-

1.2) was expressed on the surface (Fig. 6.1c). With the other two hetero-tetramers used in 

this study, surface expression was also demonstrated by fluorescent microscopy (Fig. 

6.3c,d). Evidence for a correctly-folded and assembled tetrameric channel on the 

plasmalemma was provided by the avid binding of αDTX to the intact cells (Fig. 6.4a). 

Intact HEK cells expressing Kv1.1-1.1-1.2-1.2 displayed saturable interaction with 125I-

labelled αDTX (KD = 0.74 nM); in view of this affinity corresponding to that (0.5 nM) 

previously reported for channels composed of tandem-linked Kv1.1-1.2 in (Akhtar et al., 

2002) and in Chapter 5 (0.6 nM), binding is not affected by this concatenation. The content 

of sites (0.13 pmoles/mg protein) (Fig. 6.4a) reflects a similar level of expression of 

tetramer compared to that observed for cells stably expressing dimeric constructs (Sokolov 

et al., 2007). This is considerably lower than the 1.22 pmoles/mg observed for the same 

combination of subunits in a previous study (Akhtar et al., 2002), however in that instance 

the construct was expressed via electroporation with viral particles and co-expressed with 

Kvβ2.1 which both increase the surface expression of channels. Saturable interaction of 
125I-αDTX with cells expressing Kv1.4-containing constructs, Kv1.4-1.6-1.1-1.2 or Kv1.4-

1.6-1.3-1.2, could not be reliably detected by this method with minimal specific binding 

observed (Fig. 6.4d), consistent with a rapid dissociation observed for αDTX from Kv1.4-

containing channels (see below). This is surprising, however, given the measurable binding 

of the toxin to Kv(1.4-1.2)2 described in Chapter 5. 

 

6.4 Hetero-tetrameric constructs express uniform populations of Kv1 channels  

Functional properties of concatenated Kv1 heteromers were examined by whole-cell 

voltage-clamped recordings from transfected HEK cells. The resultant currents indicated 

proper assembly of the recombinant channels. Kv1.1-1.1-1.2-1.2 gave an IK consistent with 

a single population of channels; depolarising voltage steps from a holding potential of -100  
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Figure 6.4│ Radiolabelled αdendrotoxin binding to tetrameric channels expressed on HEK 

cells. Saturable binding (▼) of 125I-αDTX to intact HEK cells, expressing Kv1.1-1.1-1.2-

1.2, quantified with a filtration assay (a); relatively low values were recorded for non-

saturable (▲) binding compared with the total (■). Inset shows a Scatchard plot of the 

saturable binding. b, Competition of 2.5 nM 125I-αDTX binding (mean ± SD; n = 4) to 

transfected cells as in (a) by αDTX, DTXk or TsTX-Kα. c, Representative plot showing the 

relative potencies of ShK and ShK-Dap22  in antagonising 2.5 nM 125I-αDTX binding to the 

K+ channels as in (b). d, Binding of 2.5 nM 125I-αDTX to cells expressing Kv1.4-1.6-1.1-

1.2 or Kv1.4-1.6-1.3-1.2 was measured in the absence (total, ■) and presence (αDTX, □; 

DTXk ■) of 1 µM competing unlabelled toxins (mean ± SD; n = 4). Very little specific 

binding was observed, probably due to the fast dissociation of the radio-ligand from these 

channels. 



 
143 

mV triggered outward delayed-rectifying IK typical of Kv1 channels. Sigmoidally-shaped 

activation currents were observed which could be fit by the power of a single exponential 

function (Fig. 6.5a, Table 6.1), indicative of channels undergoing multiple conformational 

transitions at similar rates before their opening (Hodgkin and Huxley, 1952). The observed 

slow inactivation of IK (Fig. 6.5b) accords with a lack of an N-type, fast inactivation 

domain (Jan and Jan, 1997). Upon return to negative voltage, IK decayed with a mono-

exponential time-course (Fig. 6.5c, Table 6.1), again, consistent with a uniform population 

of underlying channels. Activation-gating accelerated as the voltage step was increased, 

and at values positive to +20 mV increased with a voltage dependence of 0.24 elementary 

charges (Fig. 6.5d). Likewise, upon release of membrane potentials to less than -60 mV,  

  
Kv1.1-1.1-1.2-1.2 

 

 
Kv1.4-1.6-1.1-1.2 

 
Kv1.4-1.6-1.3-1.2 

 
τ-Activation at 0 mV (ms) 
 

 
1.9 ± 0.1 

(n=3) 

 
1.5 ± 0.1 

(n=5) 

 
1.8 ± 0.1 

(n=7) 
 
τ-Inactivation at 0 mV, fast (ms)  
 

 
540 ± 20 

(n=5) 

 
45 ± 8 
(n=7) 

 
47 ± 0.1 
(n=5) 

 
τ-Inactivation at 0 mV, slow (ms) 
 

 
6200 ± 500 

(n=5) 

 
260 ± 20 

(n=7) 

 
270 ± 6 
(n=5) 

 
V½ (mV) 
 

 
-12 ± 1 
(n=13) 

 
-19 ± 0.8 
(n=10) 

 
-23 ± 0.6 
(n=10) 

 
Slope (k) (mV) 
 

 
15 ± 0.8 
(n=13) 

 
11 ± 0.7 
(n=10) 

 
10 ± 0.5 
(n=10) 

 

Table 6.1│Biophysical and pharmacological properties of 3 hetero-tetrameric K+ channels.  

Values for activation and inactivation were calculated by fitting power and double-exponential 

functions, respectively. Values for V½ and slope k were calculated from Boltzmann equation 

fitting of the gk–V relations from peak outward currents. 
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Figure 6.5│ Kv1.1-1.1-1.2-1.2 construct expresses functionally uniform channels on HEK 

cells. a, K+ currents (IK) in response to depolarising steps (grey traces) from -40 to 80 mV in 20 

mV increments fit with the power of an exponential function (black lines). b, Inactivation of IK 

during a pulse to 0 mV (grey traces), fit with a double exponential function (black line). c, 

Deactivation of IK at -80, -100 or -120 mV (grey traces) after 50 ms at +60 mV, fit with mono-

exponential functions (black lines). d, Time constants (n=3) associated with activation (>-50 

mV) or deactivation (<-50 mV); lines are fits of exponential functions. e, Conductance-voltage 

relationship of outward K+ peak currents (n=15) after 100 ms at indicated voltage; dashed line 

is a Boltzmann fit. f, Concentration dependence of TEA inhibition of IK (n=4) during voltage 

steps to +60 mV for 50 ms. Inhibition in each cell was normalised (○) to a saturating value of a  

a b c 

d e 

f g
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the deactivation became progressively faster with a voltage dependence of -0.81 elementary 

charges. Analysis of the steady-state conductance-voltage relation (gK-V) revealed a 

conductance profile well-fitted by a single Boltzmann function (Fig. 6.5e), with an 

activation midpoint and slope (Table 6.1) intermediate to those for homomers of the 

parental Kv1.1 or Kv1.2 subunits (Sokolov et al., 2007). 

 

6.5 Biophysical profiles and susceptibilities to inhibitors can be used to distinguish these 

heteromeric channels 

The sensitivities of IK to various blockers were examined. TEA, a characterised K+ channel 

blocker, binds just external to the K+ conduction pore with all 4 subunits contributing to 

this interaction (Lenaeus et al., 2005). The TEA dose-response of IK from Kv1.1-1.1-1.2-

1.2 was well fit by a Langmuir binding isotherm (Fig. 6.5f) giving a dissociation constant 

of 8.4 mM, a value intermediate to that of Kv1.1 and 1.2 homo-tetramers (Sokolov et al., 

2007). Similarly αDTX, DTXk, 4-AP, TsTX-Kα and ShK-Dap22 inhibited this IK (Fig. 

6.5g), in accord with their known interactions with Kv1.1- and 1.2-containing channels 

(Middleton et al., 2003; Sokolov et al., 2007).  Congruently, 125I-αDTX was readily 

displaced from this channel by DTXk, αDTX, TsTX-Kα (Fig. 6.4b) (Kis = 2.0, 0.6 and 0.1 

nM, respectively) or ShK-Dap22 (Fig. 6.4c). The greater potency of ShK than its derivative 

ShK-Dap22 (Ki = 0.04 compared with 4.0 nM) is consistent with their abilities to inhibit 

homomeric Kv1 channels (Middleton et al., 2003), and the results obtained in Chapter 5 for 

the displacement of radio-labelled αDTX by ShK-Dap22 from Kv1.1-1.2 heteromers (2.3 

nM). A reported pattern (Middleton et al., 2003) of ShK-Dap22 binding to Kv1.1/1.2 

concatemers was indicative of a mixture of channels being expressed; in contrast, 

displacement herein of 125I-αDTX from Kv1.1-1.1-1.2-1.2 indicates that this concatemer is 

fit with Langmuir isotherm (dashed line). g, Reduction by various agents of IK from Kv1.1-1.1- 

1.2-1.2 (open bar), homomeric Kv1.1 (grey bar) or Kv1.2 (black bar) during voltage steps to +60 

mV for 50 ms (n ≥ 5). ShK-Dap22 measurements were conducted in a solution used previously 

(Sokolov et al., 2007). Greater inhibition by ShK-Dap22 of the hetero-tetramer compared to the 

homomers was statistically significant [Kv1.1, p=0.01 (*); Kv1.2, p=0.001 (**) – measured by a 

Student’s t-test]. 
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more uniform (Fig. 6.4c). One subpopulation of Kv1.1/1.2 hetero-tetramers is known to 

bind ShK-Dap22 with an unexpectedly high affinity (Middleton et al., 2003). Accordingly, 

30 pM ShK-Dap22 substantially blocked IK from Kv1.1-1.1-1.2-1.2 yet proved ineffective at 

this low concentration against either Kv1.1 or 1.2 homomers (Fig. 6.5g), mirroring the 

displacement by this toxin of 125I-αDTX bound to Kv1.1-1.2 and Kv1.2-1.2 containing 

channels (see Chapter 5). This pronounced selectivity for the hetero-oligomer illustrates the 

potential utility of ShK-Dap22 in differentiating K+ currents.  

Unlike Kv1.1-1.1-1.2-1.2, IK mediated by Kv1.4-1.6-1.1-1.2 and Kv1.4-1.6-1.3-1.2 

channels displayed fast inactivation over tens of ms (Fig. 6.6a-c, Table 6.1) imbued by the 

free N-terminus of the leading Kv1.4 subunit (Rettig et al., 1994). Surprisingly, this rapid 

decay occurred in the presence of one Kv1.6 subunit, which possesses a domain known to 

disallow N-type fast inactivation in heteromers containing Kv1.4 (Roeper et al., 1998). It is 

possible that the functionality of this domain was attenuated due to its N-terminus being 

constrained in the second concatenated domain. Analysis of the currents elicited by 

depolarising voltage steps revealed similar gK-V relations for these channels (Fig. 6.6d, 

Table 6.1), well fitted by a single Boltzmann function, consistent with a uniform 

population of expressed channels. The dose responses for inhibition of these two channels 

by TEA showed somewhat different sensitivities (Fig. 6.6e); both sets of data were well-

described by a Hill slope of 1 with KD values for Kv1.4-1.6-1.1-1.2 and Kv1.4-1.6-1.3-1.2 

of 36 and 78 mM, respectively. Despite Kv1.3 and 1.4 homo-tetramers being insensitive to 

αDTX (Stuhmer et al., 1989), these heteromeric channels retained some sensitivity to 100 

nM of this toxin with 78% block (± 5%; n = 8) of IK from Kv1.4-1.6-1.1-1.2 and 70% block 

(± 2%; n = 9) of IK from Kv1.4-1.6-1.3-1.2. However, these 2 currents recovered rapidly 

upon toxin washout with respective τdissociation values of 12 s (± 3; n = 4) and 9 s (± 2; n = 8). 

Notably, DTXk discriminated between the two Kv1.4 containing tetramers even though the 

sole difference between them is the replacement of Kv1.1 with Kv1.3 in domain III. 

Consistent with the exclusive inhibition by DTXk of channels containing Kv1.1 (Akhtar et 

al., 2002), its inclusion was shown to greatly enhance susceptibility of IK to this toxin (Fig. 

6.6a,b,f). Indeed, DTXk at low concentrations (≤ 10 nM) almost exclusively blocked IK 

mediated via the Kv1.1-containing tetramer while, at 100 nM, this toxin gave only partial  
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Figure 6.6│Similar Kv1.4-containing hetero-tetrameric channels are distinguishable by 

dendrotoxink and tetraethylammonium. a and b, The effect of 10 nM DTXk on IK from Kv1.4-

1.6-1.1-1.2 and Kv1.4-1.6-1.3-1.2 induced by 500 ms voltage steps from -100 to 0 mV. Control 

trace in black; drug effect in gray. c, Representative current traces of Kv1.4-1.6-1.1-1.2 in 

response to depolarising steps from -100 to +80 mV in 20 mV increments; for clarity, similar 

data from Kv1.4-1.6-1.3-1.2 is not shown. d, gk-V relations assembled from peak outward 

currents from Kv1.4-1.6-1.1-1.2 (●) and Kv1.4-1.6-1.3-1.2 (○). e, Concentration dependence for 

TEA inhibition of IK from Kv1.4-1.6-1.1-1.2 (●) or Kv1.4-1.6-1.3-1.2 (○) assayed by pulses to  
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inhibition of IK from Kv1.1-free hetero-oligomer (Fig. 6.6f). Hence, DTXk can clearly 

differentiate between these otherwise indistinguishable channel subtypes. 

 

6.6 Increasing the number of Kv1.4 α subunits in a channel heightens the resistance to 

inhibition by peptide toxins  

A fourth tetramer, Kv1.4-1.2-1.2-1.2, was also expressed to provide a comparison with 

Kv(1.4-1.2)2 in examining the effect of the number of Kv1.4 subunits on a channel’s 

pharmacology. HEK cells were transiently transfected with Kv1.4-1.2-1.2-1.2-pIRES2-

EGFP using Lipofectamine 2000, and for Kv(1.4-1.2)2 channels, a HEK stable cell line was 

used. Inhibition of Rb+ efflux through these 2 channels was quantified in the presence of 

several concentrations of various toxins (Fig. 6.7). In earlier studies (see Chapter 5), Kv1.4-

1.2 containing channels were found to be virtually insensitive to most toxins at 10 nM. 

Therefore, the dose of toxins used for these experiments was increased. KTX, which blocks 

neither Kv1.4 nor Kv1.2 homomers was also used to ensure that any attenuation of Rb+ 

efflux observed was not due to non-specific effects resulting from high toxin doses. As was 

expected, neither channel was blocked by 500 nM of this toxin (Fig. 6.7). As αDTX, HgTX 

and MgTX have been most extensively characterised on Kv1.4-1.2 channels in experiments 

so far (Chapter 5), they were tested here. Also included was the Dendroaspis polylepis 

homologue of αDTX, DTX I. In all cases, channels containing only 1 copy of Kv1.4 were 

more sensitive to inhibition than those containing 2, the extent of which varied depending 

on the toxin used (Fig. 6.7). Consistent with MgTX and HgTX being the most potent 

blockers of Kv1.4-1.2 channels, they also inhibited Kv1.4-1.2-1.2-1.2 to a greater extent. 

Most interesting was the difference between the homologues αDTX and DTXI. At 10 nM, 

αDTX had little effect on Rb+ efflux through either channel, whereas at this concentration, 

DTX I clearly distinguished them. A ten-fold increase in concentration of this toxin saw any  

0 mV (n=5) and fit by the Langmuir isotherm as in Fig 6.5f. f, Inhibition by 3 DTXk 

concentrations of IK from Kv1.4-1.6-1.1-1.2 (open bar) or Kv1.4-1.6-1.3-1.2 (grey bars), 

assayed at ≤ 0 mV showed a significant sensitivity difference, measured by a Student’s t-tet [1 

nM, p=0.00029 (*); 10 nM, p=0.0002 (**); 100 nM, p=0.00034 (***)]. 
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Figure 6.7│A comparison of the effect of Kv1.4 subunits on the inhibition of Rb+ efflux through 

Kv1.4- and 1.2-containing channels by various peptide toxins. Averages (n=16) are plotted ± 

S.E.M. KTX, which is unable to block either Kv1.4 or Kv1.2 is included to ensure that 

attenuation of evoked Rb+ efflux by high concentrations of other toxins is specific. 
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“repulsive” effect of Kv1.4 abolished with the channel containing only 1 copy; complete 

block was observed - a result not achieved by MgTX nor HgTX. While 

electrophysiological refinement of these results will be needed, it appears that toxins are 

affected differently both by the presence of Kv1.4 and the number of subunits. It could be 

argued that differences observed between the 2 channels could be as much a result of an 

increase in the sensitive Kv1.2 subunits, as a decrease in “repulsive” Kv1.4. However, a 

demonstration previously that the presence of only 1 sensitive subunit in a channel confers 

near maximal activity of DTXk (Akhtar et al., 2002), makes this unlikely. 

 

6.7 Discussion 

A long-term aim of re-creating native Kv channel heteromers is to understand their 

pharmacology and, eventually, develop drugs to aid identification of subtypes in vivo; 

control of α subunit stoichiometry is crucial for this. The extensive validation of 3 ‘native-

like’ Kv1 heteromers demonstrated that the concatenation can generate uniform populations 

of channels, allowing measurement of their biophysical and pharmacological parameters 

for the first time. The successful expression of these representative channels, containing 

combinations of 5 neuronally-predominant α subunits, highlights that this technology 

should be able to recreate any subtype of the numerous K+ channel families found in 

various tissues (Gutman et al., 2003b). As extensive future developments are required to 

generate these Kv1 channels associated with the requisite β subunit partners (Rettig et al., 

1994; Shamotienko et al., 1997), criteria adopted herein for the purpose of subtype 

identification rely largely on pharmacological characteristics known to be unaffected by 

these cytoplasmically-located auxiliary proteins.  

It was clearly demonstrated here that the properties of hetero-tetramers are not necessarily 

predictable from the parental homo-tetramers; by showing that Kv1.1-1.1-1.2-1.2 displays 

greater susceptibility to ShK-Dap22 than the respective homomers. Despite the fact that the 

selectivity of peptide toxins for heteromeric channels has been largely unknown, these 

toxins have been widely used to dissect native currents. For example, Kv1.1 and 1.2 

subunits have been shown to have a role in µ opioid receptor-mediated inhibition of 

GABAergic inputs into basolateral amygdala neurons (Finnegan et al., 2006). αDTX, DTXk 

and TsTX-Kα inhibited the effect of the µ opioid receptor agonist D-Ala2, N-MePhe4, Gly-
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ol-enkephalin (DAMGO), on miniature inhibitory post synaptic currents, decreasing their 

frequency (Finnegan et al., 2006). Given that all 3 toxins proved effective, it seems likely 

that they are acting on Kv1 hetero-tetramers containing at least one Kv1.1 and one Kv1.2 α 

subunit. 

Although Kv1.4 and Kv1.3 homo-tetramers are insensitive to αDTX and DTXk (Grissmer 

et al., 1994; Hopkins, 1998), the native-like heteromers containing these subunits were 

found to be blocked by either toxin, provided subunit(s) from sensitive homomers were 

present. This newly-revealed pharmacology makes Kv1.4-containing heteromers candidates 

for native, rapidly-inactivating DTX-sensitive currents, such as those found to shape the 

action potentials in the axon initial segment of layer 5 pyramidal neurons (Kole et al., 2007), 

or the low-threshold IK of the medial nucleus of the trapezoid body of the calyx of Held 

(Dodson et al., 2002). In particular, similar biophysical and pharmacological properties 

make Kv1.4-1.6-1.1-1.2 a candidate to shape temporal precision in octopus cells of the 

mammalian cochlear nucleus (Dolganiuc et al., 2000). Improved interpretation of these and 

other attempts to establish the molecular identity of native channels will be greatly aided by 

empirical determination of the pharmacology of physiologically-relevant heteromers, a 

process initiated by the advances achieved here. 

Examining the pharmacological influence of Kv1.4 subunits in heteromeric channels (in 

this and Chapter 5) revealed MgTX and HgTX to be more potent than the other toxins 

investigated on Kv1.4-1.2 containing channels. However, at low (10 nM) doses on Kv1.4-

1.2-1.2-1.2 channels, DTXI was as effective as MgTX and HgTX and more so at higher 

concentrations. While Kv1 blockers isolated from scorpion toxins (including MgTX and 

HgTX) inhibit channels by physically occluding the pore, the DTXs are hypothesised to 

bind off-centre, interacting predominantly with 3 subunits (Imredy and MacKinnon, 2000). 

This could be an advantageous feature for DTXs when blocking channels containing only 1 

Kv1.4 subunit, as this “repulsive” element could be avoided, perhaps explaining the potent 

block of Kv1.4-1.2-1.2-1.2 by DTXI. However, αDTX did not have the same effect 

suggesting that the nature of DTX binding to Kv1 channels is not the sole factor. That said, 

proportionally the αDTX elicited attenuation of Rb+ efflux through Kv1.4-1.2-1.2-1.2 was 

more so than Kv1.4-1.2 with increased toxin concentration. While DTXI and αDTX, differ 

by only five residues, studies to date have shown that three of these changes occur in a 
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region important for DTXI binding to channels [see Table 2.1, Fig. 2.5, (Katoh et al., 2000; 

Wang et al., 1999a)]. While this is used explain the increased binding of DTXI to rat brain 

membranes compared with αDTX, it does not explain the potency of DTXI binding to 

channels containing one Kv1.4 subunit. Presumably, the smaller the area that contacts with 

a channel, the easier it would be to avoid the repellent lysine residue present in Kv1.4 

subunits. Future site-directed mutagenesis studies of the DTXI Lys19/Tyr/17/Trp37 triad of 

residues would be necessary to determine whether this extra binding site is in fact 

responsible for the enhanced inhibition of Kv1.4-1.2-1.2-1.2 channels by DTXI. The 

construction of concatemers consisting of one Kv1.4 subunit and various combinations of 

other α subunits would answer questions as to the role of other subunits in this enhanced 

inhibition. 

The new cassette cloning methodology described in this Chapter allows quick and easy 

generation of constructs to address technical questions, such as the influence of the number 

of Kv1.4 subunits in a channel on peptide toxin binding, as examined here with the 

expression of a fourth tetramer. It is now possible to design and produce a series of 

constructs which would allow specific questions to be answered, thereby, increasing 

understanding of the interactions of brain Kv1 channels with their inhibitors. Furthermore, 

this technology could be applied to examine the biophysical properties of such channels, for 

example investigating the effect on inactivation kinetics, of various combinations of Kv1.4 

and 1.6 subunits in heteromers. 

To date, no neuronal currents produced by heteromeric Kv1 channels have had their 

underlying subunit compositions unambiguously identified. The large number of selective 

Kv1 toxins now available, in combination with this new concatenation technology, 

provides a route towards that long-sought goal. Here, the successful expression of 

tetrameric combinations of 5 α subunits, and trafficking to the surface as single proteins 

such that their distinguishing characteristics were measurable, represents a major first step. 

Moreover, these recombinant channels now serve as authentic drug targets for therapeutics 

to control neuronal excitability and synaptic transmission. 
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Chapter 7 

General Conclusions 

 

 

Developing tools for studying Kv1 channels, and finding inhibitors of therapeutic value, 

require determination of the functional properties of structurally-defined channels. The 

necessity for investigating neuronally-occurring heteromeric α subunit combinations is 

clearly demonstrated in this study. Recombinant expression of oligomers with the requisite 

defined stoichiometry requires concatenation of α subunit genes. Such channels provide 

authentic targets for drug discovery, and heteromer-specific blockers can be used for 

elucidating the molecular basis of neuronal K+ currents.  

 

In this study, expression of Kv1.1-1.2 α subunit containing channels via electroporation of 

CHO cells with cRNA prepared from pSFV1-Kv1.1-1.2 provided the necessary proof of 

concept for such an approach. Previous studies had demonstrated that when expressing 

such dimeric constructs 2 copies of the resultant protein combine to form a tetrameric 

channel of the expected size (Akhtar et al., 2002). Binding of radio-labelled αDTX to the 

channels in this study further confirms the tetrameric assembly, as 4 α subunits are required 

for binding of the toxin (Tytgat et al., 1995). The most selective blockers identified, thus far, 

for the Kv1 channel family are pore-blocking peptide toxins isolated from venoms. As 

these bind to the external surface of channels provided by α subunits, the internally-acting 

auxiliary β subunits which do not affect the pharmacological properties were not included. 

Expression levels of surface targeted, intact proteins in mammalian cells proved adequate 

for functional characterisation of the resultant channels via electrophysiological recordings, 

experiments not performed in the previous study (Akhtar et al., 2002). A source of 

recombinant channels for setting up and optimising a non-radioactive Rb+ efflux assay was 

also provided by this method. Results achieved with this and the more time-consuming 

electrophysiological protocols were generally in agreement but with some inconsistencies 

likely due to inherent differences in the assays (see below). Despite this, both assays 

identified the blocking ability of the same compounds.  
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Development of HEK cell lines stably expressing the Kv1.1-1.2 construct and other Kv1.X-

1.2 containing channels provided a more convenient and plentiful source of targets for 

screening potential inhibitors. Initially, biophysical and pharmacological properties of 

Kv1.1-1.2 and 1.6-1.2 containing channels were compared identifying DTXk as a 

distinguishing ligand. With more similar protocols employed, and a more consistent source 

of channels provided by stable cell lines, there was greater consistency between the data 

from electrophysiological and Rb+ efflux assays (see below). The improved source of 

recombinant channels, coupled with further Rb+ efflux assay validation, facilitated the 

setting-up of an automated system for Rb+ efflux measurements of these and the other 

Kv1.X-1.2 containing channels resulting in a truly high-throughput assay platform.  

 

When designing protocols for high-throughput screening measurements, several factors 

must be taken into consideration depending on the experiment priorities. The purpose of 

such a screen is to test as many compounds as possible in the search for inhibitors and, in 

doing so, only analyse promising leads by more time-consuming methods. To achieve this 

aim, the protocol employed must be balanced between getting maximum information on a 

particular compound, with the possibility of missing potential blockers but having a more 

time/cost effective assay and, therefore, screening more compounds. With these 

considerations in mind, a single concentration of toxin was applied initially in this study, 

determined from previously established effective ranges. In some instances, this may have 

resulted in distinguishing toxins not being identified but in these cases the degree of 

distinction is likely not sufficient for future therapeutic consideration. For example, some 

toxins may block all channels at the selected dose, but distinguish between them at much 

lower concentrations. The considerations detailed above were also taken into account when 

dealing with variations in the data obtained. In an initial screen, a yes or no answer is 

required as to whether the test compound inhibits the channel in question. Some scatter in 

the data is acceptable as long as this decisive outcome can be achieved. Therefore, the 

numbers of wells used in the plate for control and each toxin are chosen on this basis. 

Increasing the number of wells for each condition should reduce data scatter but that will 

reduce the quantity of compounds that can be screened per plate. The use of stable cell lines 

for these experiments gave more consistent results with smaller error bars, thereby, 
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reducing the scatter in the data. Having performed the initial screen, the automated assay 

can be exploited further both to clarify any unusual results and to obtain additional 

information about channel inhibition by the compounds in question. In this study, the Rb+ 

efflux assay was validated for determining inhibitory constants for interesting blockers, 

information which can confirm their discrimination of different channels, refining the pool 

of toxins chosen for further analysis. Likewise, the action of toxins that appeared to inhibit 

Kv1.4 containing channels was confirmed simply by increasing the number of 

concentrations of toxin tested (the cost of toxin is prohibitive for full dose response curves). 

 

In the main, results achieved from Rb+ efflux experiments were consistent with those 

determined by electrophysiological and radio-labelled toxin binding techniques. There were 

some exceptions which are important to note and address. In experiments conducted with 

CHO cells, differences existed in the sensitivities measured by the various methods for the 

Kv1.1-1.2 containing channels when inhibited by 4-AP and αDTX. While Rb+ efflux 

through these channels was almost completely blocked by 4-AP IK was not, with a 

component of the current seemingly insensitive. Some possible reasons for this are 

addressed in the Chapter 4 Discussion. Reassuringly, these dissimilarities were not evident 

upon repeating these experiments with channels stably expressed in HEK cells. Likewise, 

discrepancies in sensitivity of the CHO-expressed channel to αDTX when measured by the 

2 techniques were not evident in the HEK expressed channels. Use of BSA in solutions and 

silanised plastic for Rb+ efflux experiments in HEK cells may have reduced adherence of 

the toxin to plasticware used, thereby increasing the amount available for binding to the 

channels. There were also some differences between Rb+ efflux and radio-labelled toxin 

results. For example, MoTX did not block Rb+ efflux through Kv1.3-1.2 channels but did 

displace 125I-αDTX bound to the same channels; NxTX displaced the labelled toxin bound 

to both Kv1.2-1.2 and 1.3-1.2 with same efficacy but Rb+ flux through the latter was 

inhibited to a much lesser extent. Displacement but not inhibition of flux by a toxin could 

be attributed to the use of higher concentrations in the former but this does not explain the 

observed binding of 125I-αDTX to Kv1.4-1.2 containing channels where little flux inhibition 

was achieved, even at increased concentrations, or the fact that the same labelled toxin did 

not bind specifically to tetramers containing just 1 copy of Kv1.4 (Kv1.4-1.6-1.1-1.2 and 
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Kv1.4-1.6-1.3-1.2). While it is possible that the longer incubation with toxin in the 

displacement experiments compared with the flux assay could help to overcome the 

“repulsive” action of Kv1.4 subunits, the lack of binding to channels containing only 1 

copy of this subunit is confusing. Given the increased size of the tetrameric construct 

compared with that of the dimer and the subsequent reduction in expression levels (data not 

shown), it is possible that there was not sufficient channel expression to bind appreciable 

amounts of toxin. The fast dissociation constant of the unlabelled toxin from these channels, 

as measured electrophysiologically, could also contribute but this would be expected to be a 

factor when measuring binding to the channels made from dimers, evidence of which was 

not clear from the results obtained. 

 

The pharmacological characterisation of 5 Kv1.X-1.2 containing oligomers was an 

important step in elucidating the interactions of peptide toxins with heteromeric rather than 

homomeric channels. The Rb+ efflux data obtained from experiments performed with many 

peptide toxins on this channel series, gave some insight into the contribution to toxin 

inhibition of the various α subunits within the channel. It is, thus, deduced that the 

composite subunits can be termed necessary, permissive or repulsive. In many instances, 

the presence of only one copy of a subunit with sensitivity for a toxin will result in block of 

the channel; such subunits are deemed “necessary”. Also, in the majority of cases, any 

other α subunits in the channel that are insensitive to the toxin in question do not have a 

negative effect on the block, and, therefore, could be described as “permissive”. One 

exception to this is Kv1.4. No known toxins inhibit Kv1.4 monomers. Furthermore, the 

presence of even one copy of this subunit in a channel can negate the effects of three 

sensitive or “necessary” subunits. Thus, in such instances Kv1.4 can be termed “repulsive”. 

It was also revealed that the peptide toxins investigated can behave in an unexpected 

fashion highlighting the importance of screening heteromeric combinations of α subunits. 

MoTX for example, has been shown to inhibit IK from Kv1.2, and to a lesser extent 1.1 and 

1.3 homomers expressed in Xenopus oocytes (Kharrat et al., 1996). It could, therefore, be 

hypothesised that at least one of these three subunits would be “necessary” in a heteromer, 

that any Kv1.6 subunits present would be “permissive” and presumably any Kv1.4 subunits, 

“repulsive”. However, MoTX blocked Rb+ efflux through Kv1.2 homo-tetramers only and 
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did not inhibit Kv1.1-1.2 or 1.3-1.2 containing channels despite the presence of 2 pairs of 

sensitive subunits in each. This could be attributed to potency. However, in radio-ligand 

displacement studies, MoTX displaced 125I-αDTX from Kv1.3-1.2 containing channels 

(albeit with high levels of non-specific binding remaining) as well as channels containing 

only Kv1.2 subunits, but not channels composed of two copies of Kv1.1-1.2. This suggests 

that the toxin may be more sensitive to homomeric combinations of channels. An important 

next step would be to investigate inhibition by MoTX of Kv1.1 and 1.3 homomers in the 

same assay to confirm the homomeric selectivity of the toxin. Taken together this 

demonstrates, again, the necessity of working with physiologically relevant α subunit 

combinations when studying the interactions between channels and their inhibitors. 

 

While concatenating 2 α subunit genes provides channels composed of two copies of each 

subunit, many heteromers isolated from mammalian brain are composed of three or four 

different α subunits. The next step in studying native-like Kv1 channels, therefore, was the 

concatenation and expression of four α subunit genes in a single construct. The cassette 

cloning system described herein is a simple and convenient system for achieving this goal. 

Its modular nature allows easy swapping of one or more subunits, potentially with those 

found to be mutated in diseased states, and the strategy of holding all the domains in the 

same ORF means constructs can be expressed with any number of the positions filled – 

demonstrated by expression of some of the dimeric channels. The tetramers produced to 

date were biophysically and pharmacologically characterised and proved distinguishable 

based on the resultant profiles. For the first time, these novel properties allowed putative 

definition of the molecular basis of several K+ currents recorded from neurons (see Chapter 

6 Discussion). Profiling of more native combinations will no doubt aid in this task.   

 

This thesis sought to define the pharmacology of heteromeric Kv1 channels mimicking 

those in mammalian brain, to progress towards the ultimate goal of finding specific 

blockers of channels as a source of potential therapeutics. Selective inhibition of channel 

subtypes would also lead to a better understanding of their role in neurons. To date the 

inhibitory activites of peptide toxins have been studied mainly on homomeric Kv1 channels. 

It was therefore necessary to understand the interaction of these blockers with channels 
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composed of heteromeric combinations of α subunits. Recombinant expression of various 

dimeric combinations of α subunits provided a source of channels and a Rb+ efflux assay 

was validated for the quantitive and qualitative analysis of the pharmacological properties 

of the proteins. Generation of stable cell lines and automation of the Rb+ efflux assay made 

large scale screening of potential blockers a possibility. Following proof of concept studies, 

the pharmacology of the Kv1.X-1.2 dimer series was extensively characterised. This 

process increased the known number of Kv1 α subunits sensitive to some of the toxins 

investigated. Furthermore, the contributions of the various subunits in a channel to toxin 

inhibition were described and toxins identified that did not fit the pattern. Identification of 

the features responsible for these unusual characteristics could prove useful in the design of 

heteromer-specific blockers. Development of a modular cloning system for the expression 

of all four α subunits of a Kv1 heteromer allows the expression of any neuronally isolated 

channel, thereby providing an invaluable range of authentic targets for the development of 

therapeutics. Characterisation of the biophysical and pharmacological profiles of three such 

channels allowed putative identification of the α subunit combinations responsible for 

recorded neuronal currents, an important step forward in K+ channel research. 

 

Going forward, this novel cloning system must be exploited fully to produce a range of 

targets for further studies. While investigation of externally binding pore blocking peptides 

only requires the expression of α subunit genes, it is desirable to improve the recombinant 

technology to express the associated β subunits, thereby fully recreating native channels. 

The development of stably expressing cell lines would allow the employment of more, high 

throughput techniques such as automated patch-clamp (Qpatch) for biophysical and 

pharmacological profiling. In continuing the work described herein the first step would be 

to use the new cloning system to produce constructs that once expressed as stable cells lines 

could be used to answer questions raised in this thesis. Investigating the interaction of Kv1 

homomers (especially Kv1.1 and 1.3) with MoTX, would confirm or reject the hypothesis 

that MoTX preferentially inhibits channels composed of homomeric rather than 

heteromeric combinations of subunits. In a similar way, constructs containing one Kv1.4 

subunit and various combinations of other subunits could be used to examine the influence 

of subunits other than Kv1.4 on the inhibition of Kv1.4 containing channels by, for 
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example, HgTX, MgTX, αDTX and DTXI. With as many constructs as possible expressed 

stably, the scope for the techniques that can be used to profile them is increased.  

Site-directed mutagenesis is a logical next step to build on the information gained during 

the course of this study. A possible approach for investigating the potency of DTXI on 

channels containing one Kv1.4 subunit is given in the discussion of Chapter 6. When 

profiling the pharmacology of the Kv1.X-1.2 series of dimers the most unexpected results 

came from MoTX. This was the one toxin that does not fit with the “necessary”, 

“permissive” and “repulsive” model for predicting the pharmacology of Kv1 channels 

composed of heteromeric combinations of α subunits. Scorpion toxins that block ion 

channels contain three or four disulphide bridges with most K+ channel blockers containing 

three. The position of these bonds is highly conserved: for three disulphide-bridged toxins; 

C1-C4, C2-C5, C3-C6 and for four bridged toxins; C1-C5, C2-C6, C3-C7, C4-C8. 

However, MoTX not only has 4 disulphide bridges but they are also in different places; C1-

C5, C2-C6, C3-C4 and C7-C8. This results in the α helix being connected to different 

strands of the β-sheet instead of the same strand. This affects the position of some residues 

and therefore could affect the pharmacological properties of the toxin (Fajloun et al., 2000). 

While mutagenesis studies to return the disulphide bridges to the conserved positions 

resulted in less potent inhibition of Kv1.2 and 1.3 homomers (Fajloun et al., 2000), there is 

no evidence as to the effect this would have on heteromeric combinations of channels. 

Perhaps the altered bridging is what confers the toxin with its unusual pharmacological 

profile and similar alterations to other more potent but less selective blockers could result in 

greater selectivity perhaps combined with enhanced potency. The high-throughput assay 

described in this thesis together with the cloning strategy for the quick and easy assembly 

of tetrameric combinations of α subunits will allow the screening of large numbers of 

mutants against many combinations of Kv1 channels. While a peptide toxin is unikely to be 

used in a clinical situation, it could act as a template for the design of a small molecule with 

the same key functional groups. Alternatively, the channel expression and screening 

technologies described herein could be used to search compound libraries from a variety of 

sources in the search for lead compounds for future therapeutics.        
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Appendix A: Composition of buffers for K+ channel surface labelling 
 

 

         PBS      Blotto  

 

138 mM NaCl     10 mM Tris - pH 8.0 

26.7 mM KCl     0.15 M NaCl 

14.7 mM KH2PO4    4% non-fat milk powder 

81 mM Na2HPO4 

       

pH 7.4        

 

 

 

Mounting Medium 

  

p-Phenylenediamine (10 mg/ml) in PBS, pH 9.0, diluted 1:10 in glycerol, mixed in the dark, 

aliquoted and stored at -20°C. 

 

 

 



 
175 

Appendix B: Composition of buffers for the Rb+ flux assay when using 

CHO cells 

 

 

          Rb+ Loading Buffer        25 mM Hepes Wash Buffer 

  

5.4 mM RbCl      0.1 mM KCl 

 150 mM NaCl      155.3 mM NaCl 

 2 mM CaCl2      2 mM CaCl2 

 0.8 mM NaH2PO4     0.8 mM NaH2PO4 

 1 mM MgCl2      1 mM MgCl2 

 5 mM Glucose      5 mM Glucose 

 25 mM Hepes      25 mM Hepes 

 

 pH 7.4       pH 7.4 

 

 

     75 mM K+ Stimulation Buffer   Ionization Prevention Buffer 

 

 75 mM KCl      1 % HNO3 

 80.4 mM NaCl     0.1% CsCl 

 2 mM CaCl2 

 0.8 mM NaH2PO4 

 1 mM MgCl2 

 5 mM Glucose 

 25 mM Hepes 

 

 pH 7.4 
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Appendix C: Composition of buffers for the Rb+ flux assay when using 

HEK cells 

 

 

        Modified Wash Buffer    Modified Stimulation Buffer  

 

 0.1 mM KCl      75 mM NaCl 

149.9 mM NaCl     75 mM KCl 

2 mM CaCl2      2 mM CaCl2 

1 mM MgSO4      1 mM MgSO4 

5 mM Glucose      5 mM Glucose 

10 mM Hepes      10 mM Hepes 

 

pH 7.4       pH 7.4 

 

 

150 mM K+ Modified Stimulation Buffer                       Ionization Prevention Buffer 

  

150 mM KCl                                                                   0.1 % CsCl  

0 mM NaCl 

2 mM CaCl2                                                                                         

1 mM MgSO4 

5 mM Glucose 

10 mM Hepes 

 

pH 7.4 

 
 
 


