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Thesis Abstract 

 

The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising 

globally due to their increasing resistance to standard antibiotics. This results in the 

use of broader-spectrum drugs, prolonged patient ill-health and more nosocomial 

infections. E. coli sequence type 131 (ST131) is the predominant ExPEC clone 

worldwide. The antimicrobial resistance (AMR) gene repertoire of ST131 is evolving 

rapidly due to the widespread use of β-lactam (bla) antibiotics. Here, we performed a 

genomic investigation of an ST131 outbreak in a long-term care facility (LTCF) to 

describe transmission, within-host clonal diversity, genetic diversity of antibiotic 

resistance and the evolution of ST131 in the LTCF over a seven-year period. We 

analyzed the population structure and inferred the genealogical history of the LTCF 

isolates in the context of local hospital and global collections of ST131 to elucidate the 

epidemiology of ST131. We confirmed our initial hypotheses by reconstructing the 

evolutionary history of a much larger population consisting of >4000 global ST131 

genomes This provided a deeper resolution of their evolutionary trajectories and the 

adaptive mechanisms of AMR driven by their ESBL  genes, particularly cefotaximase 

(blaCTX).  We further investigated the intersection of the AMR genes (AMRGs) found 

in ST131 with that of the human microbiome to understand the extent of their loss, 

gain and spread across different bacterial species. Across all strains, a large number 

of ST131’s AMRGs were found in a total of 794 genes in the human microbiome. 

Various gene families were represented, including transporters, transcription factors, 

β-lactamases and cell wall biosynthesis enzymes. To establish the main culprit for the 

dynamic nature of the blaCTX-M genes, we performed long read sequencing using a 

GridION X5 instrument.  Analysis of long read-only assemblies revealed a clear and 

robust result on the genetic flanking context of blaCTX-M genes in both plasmid and 

chromosomes. Overall, our findings underpin the tremendous potential power for 

improving our current treatment of bacterial infections using high-throughput 

analysis of whole genome sequence data.   
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Thesis Overview 

 

In this thesis, we generated a series of phylogenomic workflows to investigate the 

evolution, population structure and antimicrobial resistance in ST131 populations. 

The sample datasets in the succeeding chapters were interrelated but were used 

independently of each other. 

 

A thorough background study on ST131 genomics was first conducted and recorded 

in the first chapter of the thesis. In Chapter 2, N=100 Irish/UK ST131 isolates were 

examined as an extension of the pilot study of the project. This collection served as 

the testing dataset for optimising the methods we used to analyse ST131 populations 

discussed in succeeding chapters. Using these 100 strains, we quantified 

recombination events in ST131 using three most commonly used platforms for 

examining HGT events in bacteria. 

 

A larger N=794 ST131 collection was then examined in Chapter 3. In this part of the 

study, we investigated an outbreak of extended spectrum β-lactamase (ESBL) 

producing E. coli ST131 in a long-term care facility (LTCF) in Ireland (n=90) and 

combined this data with Irish (n=48) and global (n=690) ST131 genomes to 

reconstruct the evolutionary history and further understand changes in population 

structure and recombination patterns over time. We uncovered an evidence for an 

extensive rearrangement of ESBL genes in plasmids and chromosome which 

contributed to the spread of diverse clones worldwide and a local outbreak in a LTCF 

in Ireland which spanned 4 years. 

 

As short DNA reads do not fully resolve the architecture of repetitive elements i.e. on 

plasmids, we performed long read sequencing of six E. coli ST131 isolated from six 

patients in Chapter 4. Majority of our long read assemblies revealed entire 

chromosomes and plasmids as single contigs in contrast to highly fragmented ones 

from short reads. Our results here highlighted diverse core and accessory genomes 

with blaCTX-M-15, blaCTX-M-14 and blaCTX-M-27 genes and showed that AMR genes 

exist in multiple different chromosomal and plasmid contexts even between closely-

related isolates within a clonal group such as E. coli ST131. 
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er the years, ST131 has radiated into genetically distinct subclades. In Chapter 5, we 

extracted all available high-quality global ST131 Illumina HiSeq read libraries, 

automated quality-control, genome de novo assembly and ESBL gene screening to 

explore the largest ST131 sample collection examined so far. We used published 

reference genomes, Nanopore and PacBio assemblies as well as k-mer-based methods 

to contextualise the core and accessory genome diversity to identify the key features 

in each main clade and subclade. Our findings here provided a deeper and more 

refined resolution of the hypervariable accessory genome, including plasmids and key 

ESBL genes in ST131. 

 

Finally, in chapter 6, the extent of AMR gene transfer between the human gut 

microbiome isolates and ST131 was explored. Additionally, a dynamic gene 

repertoire associated with the mobile resistome in the pathogen E. coli ST131 was 

examined. This assesses horizontal DNA transfer between E. coli ST131 and gut E. coli 

regarding plasmids, transposons and other mobile genetic elements (MGEs).  
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Chapter 1: Introduction to E. coli ST131 

Genomics 

 

1.1 Background on the Origin, Evolution and Structure of ST131 Population 

 

Antimicrobial resistance (AMR) poses an increasing challenge for treating infectious 

diseases. Recent advances in sequencing technologies and molecular genetics equip 

us with tools to assess the origins of infections and their transmission. The most 

common bacterial infection is brought about by Escherichia coli and its subgroup 

sequence type 131 (ST131), which possesses extensive resistance properties against 

antibiotics, is responsible for cases of global pandemic outbreaks (Nicolas-Chanoine 

et al. 2013). It also retains a broad arsenal of genes promoting antimicrobial tolerance. 

Preliminary data shows that ST131 is commonly isolated in nursing homes and 

hospitals, which may serve as reservoirs of drug-resistant bacteria that spread into 

the community (Price et al. 2013, Petty et al. 2014, Johnson, et al. 2013).  

 

Escherichia coli sequence type 131 (E. coli ST131 or ST131) is a pandemic multidrug-

resistant (MDR) E. coli sublineage. ST131 has a variety of virulence-associated genetic 

elements and has a broad capacity to cause urinary tract and bloodstream infections 

in both hospital and community settings (Olesen et al. 2014; Johnson, et al. 2013; 

Ludden et al. 2015; Zhong et al. 2015). E. coli isolates are generally classified into four 

phylogenetic groups: A, B1, B2 and D (Selander et al, 1986); ST131 corresponds to 

subgroup 1 of phylogenetic group (virulent) B2 (Figure 1.1). 

 

Previous genomic studies initially elucidated the complex clonal structure of small 

samples of ST131 (Price et al. 2013; Petty et al. 2014) and identified subclades with 

specific marker allele for the type 1 fimbriae fimH (Dr-binding fimbrial adhesin gene: 

H subclone assignments): H41 in clade A, H22 in clade B, and H30 in clade C (Johnson 

et al, 2013). H30 is the most prevalent, followed by H22 and then H41 (Johnson, et al. 

2013). Although these three are the most frequent types of fimH among isolated 

ST131 (Adams-Sapper, et al. 2013; Stoesser et al. 2016; Ben Zakour et al. 2016), other 
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types such as fimH35, H27, H31 and H94 were also recently observed in discrete B 

subclades, B1 to B5 (Nicolas-Chanoine et al. 2013) (Stoesser et al. 2016; Ben Zakour 

et al. 2016). This classification provides more opportunities to further investigate the 

unprecedented expansion of ST131 clone. 

 

One review (Pitout, JDD and Devinney, R., 2017) summarized the step-wise evolution 

of ST131 (Figure 1.2), which involves the insertion of prophages in the B subclade 

giving rise to B0. Recombination at parC1a and fimH30 and insertion of genomic 

islands, prophages facilitated by IncF2 plasmid gave rise to the C0. The start of 

fluoroquinolone (FQ) treatment gave rise the mutant genotypes parC1aAB and 

gyrA1AB associated with fluoroquinolone resistance (FQ-R) and eventual 

diversification of C into two highly virulent subclusters, C1 and C2. C2 has a gene 

encoding an extended spectrum beta-lactamase (ESBL) called cefotaximase-15 

(blaCTX-M-15). ST131 is comprised of strains with O25b (Rogers et al. 2011; Woodford, 

2011; Olesen et al. 2013) or O16 serotype, which have greater prevalence of another 

similar ESBL blaCTX-M-14, which are marginally less FQ-R but more commonly resistant 

to trimethoprim-sulfamethoxazole (Johnson et al. 2014; Matsumura et al. 2012), 

(Matsumura et al. 2013; Nicolas-Chanoine et al 2008; Petty et al 2014; Totsika et al 

2011, 2012).   
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Figure 1.1. Phylogenetic tree showing the four general phylogroups of E. coli. ST131 

strains (highlighted in pink) cluster together with other virulent strain in clade B2. 

The figure was adapted from Forde et al. 2014 and Schembri et al. 2015. 
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Figure 1.2. Stepwise evolution of Escherichia coli ST131 clades B, B0, C0, and C. 

Diagram is adapted from Pitout, JDD and Devinney, R., 2017. FQ, fluoroquinolones; GI, 

genomic islands; Inc, incompatibility; Phi, prophages; ST, sequence types.  
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Loss and gain of resistance-conferring genes via horizontal gene transfer (HGT) 

particularly that of a β-lactamase gene called blaCTX-M-15, has played a huge role in 

shaping ST131 (Petty et al. 2014). β-lactamases are bacterial enzymes that can 

degrade antibiotics with β-lactam compounds aimed to inhibit cell wall synthesis. The 

widespread use of β-lactams caused selection pressures in bacterial populations 

producing ESBLs that hydrolyze penicillins, early cephalosporins, oxyimino-thiazolyl 

cephalosporins (including third and fourth generation cephalosporins) and 

monobactams, but not cephamycins or carbapenems. Seven different SNPs at β-

lactamase genes are believed to have given rise to ESBLs. Early ESBLs were only able 

to hydrolyze ceftazidime but have eventually evolved to confer broad resistance to 

cefotaxime (a compound found in cephalosporins). An E. coli isolate obtained from a 

dog in Japan (used in a pharmacokinetic study of cephalosphorin) in 1986 was the 

first report of insensitivity to cefotaxime, though it was still susceptible to ceftazidime. 

Three years later in 1989, the first clinical case with cefotaximase-resistance was 

reported in Munich, Germany from an E. coli culture from an ear discharge of a four-

month old child. The enzyme in the isolate was hence given the name blaCTX-M-1 (CTX 

for cefotaximase and M means Munich). Since then, successive cases of blaCTX-M-1 

detection in bacteria have been reported globally.  

 

BlaCTX-M-15 is most common ESBL gene among ST131. A study of Enterobacteriaceae in 

Poland in 1998 first revealed its presence in E. coli samples (Baraniak, et al. 2002). 

Indeed, blaCTX-M-15 is the most common type of ESBL-producing genes in E. coli (Pitout 

and Laupland, 2008). These genes are embedded in transposon-like structures often 

contained in plasmids that carry additional armoury of resistance-associated 

elements (Canton and Coque, 2006) and when acquired, cause insusceptibility to 

other β-lactams, FQ, aminoglycosides, and trimethoprim-sulfamethoxazole (Johnson, 

et al. 2014). 

  

Greater resolution genomic analyses identified virulence factor acquisition events 

and revealed that the clonal expansion associated with drug resistance in ST131 and 

was estimated to have emerged in North America around 25 years ago, coinciding 

with the first use of FQ in 1986 (Stoesser et al. 2016; Ben Zakour et al. 2016). Strains 

belonging to Clade C are characterized by their high FQ-R due to double mutations 
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(Stoesser et al. 2016) at the “quinolone resistance-determining region” (QRDR) of the 

chromosomal genes that encode the FQ targets DNA gyrase and topoisomerase IV: 

gyrA and parC, respectively (Hooper, 2001; Ruiz et al. 2003; Johnson, et al. 2014). The 

presence or absence of blaCTX-M-15, defined further diversification of clade C into C1 

and C2, dated to 1987: some C1 strains contain blaCTX-M-3/14/27 while majority in C2 

(H30-Rx) had the blaCTX-M-15 gene (Ben Zakour et al. 2016) and display reduced 

susceptibility to third-generation cephalosporins limiting prophylactic options for 

this globally-disseminated clone. 

 

1.1.1. Reference genomes used for analysing E. coli ST131 populations 

 

The availability of reliable and high-quality reference genomes for E. coli ST131 

provides a better understanding of the characteristics of this multidrug-resistant 

pathogen.  I used three well-characterized genomes to analyse E. coli ST131 

populations in the succeeding chapters, in addition to NA114 in Chapter 2: the 

genome of the commensal strain, SE15 as the negative control of our comparative 

analysis, the highly-pathogenic EC958 as the positive control and the recently 

assembled and characterized high-quality genome of NCTC13441 as the main 

reference sequence (Table 1.1). 

 

• SE15 

The E. coli SE15 genome is a 4,717,338-bp circular chromosome with 4,338 predicted 

protein-coding genes and a 122-kb plasmid (pSE15) that encodes 150 protein-coding 

genes (Toh et al. 2010). It belongs to the phylogenetic group B2 although it lacks many 

virulence-associated genes such as α-hemolysin and cytotoxic necrotizing factor -- 

known toxins encoded by pathogenicity islands of uropathogenic E. coli strains. The 

complete genome of SE15 was determined using cappilliary (Sanger) libraries and 

454 pyrosequencing and assembles with Newbler assembler software (Margulies et 

al. 2005) and Phred-Phrap-Consed program (Gordon and Green 2013).   
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• EC958 

In contrast to SE15, EC958 strain is fluoroquinolone-resistant (FQ-R), encodes fimH30 

and blaCTX-M-15. The strain was isolated in March 2005 from a urine sample collected 

from an eight-year old girl presenting in the community in the United Kingdom 

(Totsika et al. 2011). The genome of EC958 is one of the most well-defined and well-

studied E. coli ST131 strains. EC958 consists of several virulence-associated genes 

that encode adhesins, autotransporter proteins and siderophore receptors. EC958 

was also shown to cause acute and chronic UTI (Totsika et al. 2013) and impairment 

of uterine contractility in mice (Floyd et al. 2012). Further, the serum resistome of E. 

coli EC958 has been extensively reviewed in (Phan et al. 2013).  

 

Reference 

genome 
Pathogenicity 

Sequencing 

platform 
Assembly type 

Genome 

size (bp) 

Number of 

chromosomal protein-

coding genes 

SE15 Commensal 

Sanger 

(capilliary) and 

454 

Pyrosequencing 

Newbler/Phred

-Phrap-Consed 
4,717,338 4,338 

EC958 Uropathogenic PacBio RS I 
PacBio's SMRT 

Portal v2.0.0 
5,109,767 4,982 

NA114 Uropathogenic 
Illumina Genome 

Analyzer (GA2x) 
Velvet 4,935,666 4,875 

NCTC13441 Uropathogenic PacBio RS PacBio 5,174,631 4,983 

 

Table 1.1. Reference genomes used in ST131 genomic studies.  

 

• NA114 

NA114 is another uropathogenic ST131 isolated from western Indian city of Pune 

(Jadhav et al. 2011), which genome sequence was identified using Illumina Genome 

Analyzer (GA2x v.1.6). Its chromosome is 4,935,666-bp long with a coding percentage 

of 88.4% with 4,875 protein coding sequences and has a GC content of 51.16% 

(Avasthi et al. 2011). NA114 was also found to have a 3.5 Kb plasmid and have 

multiple virulence–associated genes including sfa, aer, cnf, and an intact polyketide 

synthase (pks) island (Johnson et al. 2008).  
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• NCTC13441 

The genome of NCTC13441 is the most recent high-quality assembled E. coli ST131 

reference genome. NCTC13441 is a uropathogenic E. coli ST131 strain that has an 

ESBL blaCTX-M-15 gene and was collected from a clinical isolate in the UK (Public 

Health England). It belongs to the group of strains with serotype O25:H5 and contains 

the sequenced plasmid pEK499 (Woodford et al. 2009). NCTC13441 was previously 

used to show that the frequency of horizontal gene transfer via conjugation was ten 

times higher and more stable in E. coli ST131 blaCTX-M-15-producing than K. 

pneumoniae with New Delhi Metallo-β-lactamase-1 (NDM-1) (Warnes et al. 2012).  

 

1.1.2 Plasmids common to E. coli ST131 

 

Plasmids are circular self-replicating double-stranded DNA molecules that compose 

the majority of the bacterial accessory genome (Juhas et al. 2009; Hinnebusch and 

Tilly, 1993; Frost et al. 2005). Plasmids are classified as conjugative, non-conjugative, 

and mobilisable plasmids. Plasmids mediate antibiotic resistance gene circulation in 

bacteria. Cell-to-cell transfer of plasmids occurs by conjugation, where a plasmid from 

a donor cell is transferred to a recipient cell through a pilus. Pilus-encoding genes that 

are expressed in the plasmid of the donor cell. Another important plasmid protein is 

the relaxase that nicks one strand of the double-stranded plasmid; the nicked one 

strand is transported to the recipient cell via the pilus and replicated into double-

stranded plasmid. Upon acquisition of the new plasmid, the recipient cell then 

becomes conjugative as well. Although mobilisable plasmids also encode the relaxase, 

they are incapable of independent conjugation and rely on other plasmids’ machinery 

for transfer. Non-conjugative plasmids do not encode pilus- or relaxase genes and are 

unable to use other plasmids mechabinsms for transport.  

 

Plasmids are also categorised according to their replicon type. Plasmids encoding the 

same or similar origins of replication (ori) are rarely found in the same cell as they 

compete for the replication machinery. These competing plasmids are grouped in the 

same incompatibility (Inc) group (Shintani et al., 2015). The plasmids from the IncF 
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group were found to carry and mobilise AMR genes in E. coli ST131 (Johnson et al. 

2016), particularly IncF, IncI1, IncN and IncA/C groups (Carattoli, 2009; Nicolas-

Chanoine et al. 2008; Nicolas-Chanoine et al. 2014). These plasmid types associated 

with of β-lactamase genes such as blaCTX-M, blaOXA-1 and blaTEM-1. 

 

1.2 Types of sequence libraries used in this study 

 

DNA sequencing is the process of identifying the exact order of nucleotide bases 

(adenine (A), thymine (T), cytosine (C), guanine (G) in given segment(s) of DNA using 

different molecular methods. Whole genome sequencing determines the order of all 

of the DNA in an organism’s cell. In bacteria, it entails the identification of all the 

nucleotide bases in both the chromosome and plasmid(s). Whole genomic sequence 

data is the raw material used in the interdisciplinary field of genomics, which largely 

involves analysis of whole genome sequence data using high throughput 

bioinformatics algorithms to decipher gene functions and analyse the structure of the 

entire set of protein-coding regions in an organism.  

 

Sanger sequencing (aka the chain termination method), was the pioneer of all 

sequencing technologies. This strategy developed by Fred Sanger et al. in 1977 was 

used to complete the Human Genome Project. The process involves generation of 

several copies of the target DNA and making multiple fragments of various lengths. 

To mark the end of each fragment, Sanger sequencing uses fluorescent nucleotides as 

chain terminators (Sanger and Coulson 1975; Sanger, Nicklen and Coulson 1977). 

This traditional DNA sequencing method, however, failed to keep up with growing 

demand for deeper genome analyses and the increasing complexity of questions 

asked by researchers. This gap led to the development of second (more popularly 

known as the next-generation sequencing or NGS) and third generation sequencing 

technologies. Fundamentally, these two modern sequencing techniques 

revolutionized genome-sequencing. Among others, they allowed rapid and deeper 

sequencing of whole genomes and gave rise to the field of metagenomics, which 

investigates diverse microbial communities in humans, animals or the environment 

(https://www.illumina.com/science/technology/next-generation-sequencing.html). 

Below are the types of DNA sequence reads we employed in the analyses of ST131.  
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1.2.1 Short reads 

 

The most commonly used DNA sequence library type is the short paired-end (PE) 

read library commercialized by Illumina.  PE reads are the result of sequencing from 

both ends of a DNA fragment; the aligned forward and reverse reads are also called 

read pairs. Depending on the machine type/model used, PE reads are about 50-700 

nucleotides long and are cheaper than Sanger-sequenced libraries. A more accurate 

read alignment and identification of single-nucleotide polymorphisms/variations 

(SNPs/SNVs) are more easily achieved with the analysis of differential read-pair 

spacing because PE sequencing allows the removal of artefacts from routine PCR 

library preparation (Head et al. 2014). 

 

1.2.2 Long reads 

 

While short PE reads can cover majority of the genome with high accuracy, they lack 

the contextual information in resolving complex and repetitive regions. In achieving 

optimal benefits from whole genome sequencing, one could use a strategy that 

provides longer read lengths. Two widely used strategies developed by Pacific 

Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), can generate reads 

with lengths of several thousand base pairs (Jayakumar and Sakakibara 2017) and 

can fill the fill the gap that the PE reads may not resolve, though with less nucleotide-

specific accuracy: Pacbio reads were estimated to exhibit about 20% of error rates 

(Travers et al. 2010, Thompson et al. 2011) while ONT libraries were recorded to have 

about 35% (Goodwin et al. 2015).  

 

Longer reads do not necessarily mean more accurate genome assembly and mapping. 

It is essential to note that the quality of high molecular weight DNA as a starting 

material is the primary key to achieve high quality results more than the type of 

sequencer used. This includes prevention of DNA damage and fragmentation during 

library preparation (Pollard et al. 2018).   
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• PacBio sequences 

The first type of long-read sequencing technology is the single molecule real time 

(SMRT) sequencing developed by PacBio. This technology typically produces 

sequences that are about 100 Kb. As implemented in their Sequel and RS- II platforms, 

this SMRT system utilizes a scheme of massively parallel polymerases; each 

polymerase is bound to a single molecule of target DNA. This DNA molecule is 

circularized using a pair of hairpin sequencing adaptors called the SMRTbell. A CCD 

camera, powered by a zero-mode waveguide (Levene et al. 2003, Eid et al. 2009) is 

used to detect the signal from the fluorescent system of tagged bases and polymerase 

on the template DNA (Pollard et al. 2018).  

 

• ONT sequencing 

Oxford Nanopore Technologies (ONT) is a long read technology typically called 

Nanopore sequencing (Eisenstein 2012), and is implemented in their Flongle, MinION 

(Mikheyev and Tin 2014), GridION X5 and PromethION devices. In Nanopore 

sequencing, a nanopore is positioned in an electrically resistant polymer membrane 

(Deamer, Akeson and Branton 2016) An ionic current is passed through the pore by 

setting a voltage across this membrane. If a molecule such as ssDNA passes through 

the pore or near its aperture, a disruption in current with a distinct signal is created. 

Evaluating this time-dependent signature leads to the identification of the molecule 

that entered through the pore (https://nanoporetech.com/how-it-works). 

 

1.3 Methods for Investigating Bacterial Genome Evolution 

 

The lack of an adequate number of informative markers limits the resolution for 

profiling bacteria strains from identifying novel variations at other loci (Achtman 

2008). Although alternative methods have been proposed for distinguishing 

microbial strains (Coughlan et al. 2013; Downing 2015), bacterial genome sequencing 

has largely replaced classical tools e.g. Multilocus sequence typing (MLST) and Pulse 

field gel electrophoresis (PFGE), for microbial screening and analysis. Indeed, 

genomic sequencing is now becoming a routine in clinical microbiology (Page et al. 

2016).  
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Deep investigation of bacterial genomes is the most optimal strategy to tackle ST131. 

It allows prediction of major virulence markers and antimicrobial susceptibilities and 

elucidate this ST’s evolutionary and transmission history (Price et al. 2013; Petty et 

al. 2014; Salipante et al. 2015; Stoesser et al. 2013 and 2016; Ben Zakour et al. 2016). 

In this context, reviewed here are the methods we used to analyse ST131 genomes. 

Moreover, with the exponential growth of publicly available genome databases, the 

aim is to provide a better understanding of computationally robust, open-source and 

state-of-the-art methodologies from analysing many read libraries, including the 

processing of reconstructed prokaryotic genomes, particularly of E. coli ST131; the 

citations are however limited to studies that are of fundamental importance to the 

development of a certain strategy and to platforms that are either recent or best 

illustrates how that strategy works.  

 

1.3.1 Assessing read quality  

 

To get optimal genomic assessment results, raw read libraries processed by 

sequencing platforms need to eliminate adapter sequences, low-quality reads and 

other contaminants (Aronesty, 2011; Magoc et al. 2013). Often, these platforms’ 

varied sequencing chemistry and contaminants including DNA  from library 

preparation reagents (de Goffau et al. 2018) lead to issues that affect the quality of the 

reads: either read quality plummets at the end of the read or the quality of the second 

read is suboptimal compared to the first (http://www.ark-genomics.org/events-

online-training-eu-training-course/assessing-quality-illumina-data). Hence, it is 

highly important to perform quality control checks to ensure that the data is both 

accurate and reliable.   

 

The FASTX-Toolkit is a collection of Linux command line tools for processing FASTQ 

files and allows evaluation of base quality and nucleotide distribution in a sequence 

file (http://hannonlab.cshl.edu/fastx_toolkit/). A superior package that gives a more 

detailed read quality report is FastQC, developed by Babraham Bioinformatics 

Institute. FASTQC is a modular tool 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/) that provides a 

http://www.ark-genomics.org/events-online-training-eu-training-course/assessing-quality-illumina-data
http://www.ark-genomics.org/events-online-training-eu-training-course/assessing-quality-illumina-data
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straightforward way to do quality control on raw sequence data obtained from high-

throughput sequencing projects. It generates summary graphs and tables showing the 

quality of the sequencing library. Included in the report is the Phred quality score (Q 

score) that measures base calling accuracy and indicates if a given base is incorrectly 

called by the sequencer. Thus, a Q score is a function that is logarithmically related to 

the base calling error probability (P) such that Q =−log10P (Ewing B and Green P., 

1998). Compiling all the reports produced by FastQC is best implemented by MultiQC, 

which parses the summary statistics obtained from the results and log files produced 

after running other bioinformatics tools (Ewels et al. 2016).  

1.3.2 Sequence trimming, filtering and error correction  
 

The first step to avoid false positive and false negative results is to filter out duplicated 

reads, remove sequences that are short (<50 bp) or with low GC content, and exclude 

those with many ambiguously-called bases. Several assembly tools incorporate 

adapter removal and error-correction steps in their package, like Fastp, which 

includes a comprehensive features to do all-in-one pre-processing of raw fastq files: 

it removes low quality (Q<30), short (<50 bp; preventing the occurrence of sequence 

duplicates) or reads with many unknown bases in a single file, it cuts adapters and 

correct mismatched base pairs in overlapping regions of paired-end reads (Chen et al. 

2018A). 

  

Most genome assemblers involve the most basic step of generating a de Bruijn graph 

that represents all k-mers occurring in the input read data together with the overlap 

between them (Compeau et al., 2011). Thus, the resulting assembled genomic 

sequence can be traced back through the path of its de Bruijn graph (Heydari et al. 

2017). However, this task is significantly complicated with the presence of errors in 

sequence reads. This is because, if a single sequencing error in a read occurs in up to 

k erroneous k-mers in the de Bruijn graph, these k-mers produce artefacts in the graph 

resulting to spurious dead ends, parallel paths and chimeric connections (Zerbino and 

Birney 2008). In some instances, erroneous k-mers can greatly outnumber true k-

mers blurring the process of calling the right sequence in a read file (Heydari et al. 

2017). The tools for correcting these errors thus try to identify and correct these by 

creating a k-mer coverage frame from the input reads and replacing those with very 
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low coverage k-mers by similar k-mers with a much higher coverage. Further details 

of assembly software and process will be discussed in the succeeding sections.  

  

A number of independent read error correction tools were evaluated in great detail 

in a review by (Alic et al. 2016). Of all the software assessed in this paper, 

BayesHammer is the best perfoming. BayesHammer is designed for error-correction 

and uses algorithms based on Hamming graphs and Bayesian sub-clustering. 

Although it operates without an assumption of uniformity, it yields significant 

improvements over other available error correction tools (Nikolenko, Korobeynikov 

and Alekseyev 2013). In addition, BayesHammer performs excellent correction of 

both short and long reads that have non-uniform coverage—an advantage as to why 

this tool is incorporated in highly reliable assembly pipelines like SPAdes (Bankevich 

et al. 2012) and Unicycler (Wick et al. 2017).   

  

1.3.3 De novo assembly of genomes  

 

The complex genetic identity of bacterial strains is defined by their core 

(chromosomal) and variable accessory (usually contained in plasmids) genomes 

(Segerman et al. 2012). AMR in E. coli ST131 are influenced by several core genome 

mutations and plasmid genes encoding different ESBLs (Downing et al. 2015). A 

crucial step to understand ST131 genome diversity is the reconstruction of their 

genome sequences or de novo assembly.  

  

De novo genome assembly is done without prior information about the sequence 

length, layout or composition of the sample DNA (Alkan et al. 2011). A high-quality 

genome assembly serves as a foundation for research into broader scale studies on 

bacterial genomics. Most studies that explored ST131 genomes used de Bruijn graph-

based platforms to perform assemblies (Petty et al. 2014; Hargreaves et al. 2015; 

Sidjabat et al. 2015; Stoesser et al. 2013, 2016) likely because the method is 

straightforward and is much more efficient than OLC for piecing short reads together 

(Zerbino and Birney, 2008). De Bruijn graph methods use smaller sub-fragments (k-

mer) to lessen computational memory requirements through a smaller search space 

(Li et al. 2012). De novo assembly of genomes is achieved by linking contigs together 
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into scaffolds (Hunt et al. 2014) and finally correcting errors in the completed 

assembly (polishing).  

 

• Read assembly 

The first step in assembling a genome is to merge together of DNA reads into 

contiguous sequences (contigs) with the same base composition as the template DNA 

where the sequences were derived from. This process is often done in variable ways, 

often depending on several factors i.e. depth of sequence coverage, the number of 

times sequencing is done over each base in a genome. A coverage (or depth) of 30-

fold means that a particular nucleotide in a certain genomic position is read by 30 

fragments of the total sequence; the higher the coverage, the more accurate the 

inference of the base. Assessment of gene order and synteny, performing comparative 

and functional genomics or identifying recombination patterns are all dependent on 

an assembly with high quality continuity.   

  

• Scaffolding  

Scaffolding is joining contigs together into longer sequences termed as scaffolds. This 

step is computationally intensive and can be problematic with the presence of 

repetitive sequences (repeats) in the library. The solution is often to use multiple 

assemblers or run several parameters and select the one that gives the best summary 

statistics (Hunt et al. 2013). Genome assemblers are classified according to three 

methods: overlap layout-consensus (OLC; Flicek and Birney, 2009), de Bruijn graph 

(Li et al. 2012) or String graph (Myers, 2005). Further significant improvements have 

been made in assembly algorithms regarding reliability and efficiency of 

reconstructing genome architecture (Namiki et al. 2012; Bankevich et al. 2012; 

Boisvert et al. 2012; Peng, et al. 2012; Pell et al. 2012): with greater N50s, fewer 

rearrangements and break points, whereby the assembler cannot resolve the 

underlying sequence when a repeat region is larger than the fragment size (Page et 

al. 2016). The N50 is the size of the largest contig for which 50% of the total size is 

found in contigs of at least that length, otherwise known as the weighted median size 

of a contig.  
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• Contiguation  

Contiguation is the alignment, ordering and orienting of contigs/scaffolds to close 

gaps in the draft assembly. This process usually involves finding alignment positions 

and identification of syntenies in assembled contigs (Assefa et al. 2009). 

 

• Assembly polishing  

The availability of sufficient data produced by modern sequencing platforms allow us 

to conduct deeper genomic investigations of hundreds of bacterial genomes in a day. 

NGS technologies have proven their contribution by providing low-cost, high-

throughput short reads and the use of single molecule sequencing is now evolving to 

become the routine for generating whole genome assemblies. However, previous 

reviews of these technologies have extensively shown the unsuitability of NGS reads 

to assemble complex genomes and the susceptibility of long reads to cause 

frameshifts in ORFs (Watson 2018). Further, en masse typing of sequence variation in 

genes and genomic DNA challenges the robustness, sensitivity and scalability of 

current platforms for data processing (Mir and Southern, 2000).  

  

Ensuring the completeness and accuracy of a genome assembly is essential to avoid 

errors in downstream analyses. Incorporating this step-in assembly of genomes 

promotes correct identification of gene content and appropriate inference of genetic 

evolution and helps researchers make the most of the available sequence data type. 

Several assembly polishers were hence developed to improve draft assemblies and 

eliminate single bases and small insertion/deletion events (Ronen et al. 2012), gaps 

(Swain et al. 2012) and alignment discontinuities (Hunt et al. 2013). Pilon was 

developed to correct all these error types and merge multiple assemblies to a 

consensus high-quality assembly--more optimally when supplied with PE reads. 

Although computationally extensive, this tool was proven to accurately distinguish 

small variations as well as resolve large insertions and identify large sequence 

variants e.g. duplications (Walker et al. 2014). For long read assemblies, Racon has an 

independent consensus module for ensuring a high-quality assemblies from Pacbio 

and ONT reads (Vaser et al. 2017). Results of data simulation showed that Racon 

works best when partnered with Miniasm-assembled (Li 2016) genomes.   
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1.3.4 Genome assemblers  

 

Three main strategies can be used to improve assemblies: using PE reads from 

libraries with various insert size lengths, combining different types of short and long 

reads from Illumina and Pacbio/ONT (Wick et al. 2017) and utilizing a reference 

genome to fill the gaps in de novo assemblies (Nishito et al. 2008). The last strategy is 

termed as comparative assembly, which gets better results when the target genome 

is highly similar to the reference genome because it can resolve repeats more easily 

(Pop et al. 2004).  

  

Choosing the best assembler (or set of assemblers) is key to obtaining the most 

accurate reconstructed genome. GAGE-B (Genome Assembly Gold-standard 

Evaluations) evaluated the performance of assembly tools to identify which 

generated best assemblies of bacterial genomes from a single shotgun library. 

Moreover, GAGE-B assessed the appropriate coverage depths and other parameters 

used to produce optimal results, determining the difference between using a high 

coverage single library with those of multiple libraries, and analysed the effect of 

longer 250 bp MiSeq reads compared to 100 bp HiSeq reads regards the final 

assembly output. Assemblers assessed with GAGE-B included AByss v1.3.4 (Simpson 

et al. 2009), CABOG v7.0 (Miller et al. 2008), MIRA v3.4.0 (Chevreux et al. 2004), 

MaSuRCA v1.8.3 (Zimin et al. 2013), SGA v0.9.34 (Simpson and Durbin, 2012), 

SOAPdenovo2v2.04 (Luo et al. 2012),  SPAdes v2.3.0 (Bankevich et al. 2012) and 

Velvet v1.2.08 (Zerbino and Birney, 2008). The comparative evaluations revealed that 

MASurCA and SPAdes consistently generated contigs with the highest contig N50s 

with relatively few errors for both Illumina MiSeq and HiSeq assemblies of various 

bacterial species. However, GAGE-B highly depends on a template genome, which is 

unavailable when performing a de novo assembly (Magoc et al. 2013).   

 

More recently, a superior pipeline called Unicycler was developed to perform short 

read-only, long read-only and hybrid (short and long reads) assemblies. Included in 

this platform is an assembly polisher tested to work best with either SPAdes or 

Miniasm for short or long read assemblies respectively (Wick et al. 2017).  



38 

 

 

1.3.5 Assessment of assembly quality  
 

A way to assess assemblies without a reference sequence is by computing the 

maximum likelihood of an assembly given the error in the reads, the insert size 

distribution and the extent of unassembled data (Rahman and Pachter, 2013). This 

method had been initially proposed in earlier studies but did not take into account 

important parameters such as sequencing error (Myers, 2005; Medvedev and Brudno, 

2009).  

 

ALE (Assembly Likelihood Evaluation) and CGAL (Computing Genome Assembly 

Likelihoods) produce summary likelihood score of an assembly. CGAL does so by 

initially describing a probabilistic generative sequencing model that highlights 

different aspects of sequencing experiments (Rahman and Pachter, 2013) and ALE 

produces four likelihood scores for each base. FRCbam is another reference-free 

assembler evaluator can be employed to achieve the best assembly. FRCbam detects 

misassemblies or errors and ranks assembler performances by computing for the 

read and spanning coverages directly from BAM files. The misassemblies and errors 

are used to plot a feature response curve (FRCurve), overlaying these curves 

determines the best assembly (Vezzi et al. 2012).  

  

Calculating for the fragment coverage distribution (FCD) is another tuning parameter 

to evaluate assemblies: the FCD is the distribution of coverage depths for fragments 

that contain the base and is measured on a per-site basis. REAPR (Recognition of 

Errors in Assemblies using Paired Reads) is a reference-free algorithm developed to 

improve assembly quality evaluation of by constructing a FCD plot of the fragment 

depth taken from the fragments mapped to a target base. A fragment (f) is the sum of 

the reads and their insert; that is f = read1 + insert + read2. The difference between 

the expected (ie chromosome median) coverage (e) to the observed coverage (o) at a 

given base is the FCD error. This statistic determines whether the scaffold should be 

broken or merged at that base and computes e - f/b, where f is the local coverage based 

on a mean fragment length i, b is the coverage at the base such that o = f/b. The 

resulting FCD score is the sum of the e - f/b scores for -1.5*i bases to +1.5*i bases 
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around the given base. High FCD error across regions indicates errors in the assembly 

(Hunt et al. 2013). 

 

Quast works in a similar manner and extends its assembly evaluation by merging all 

the algorithms and parameters used by similar tools. It extends its evaluation power 

by including new metrics such as NA50, computing for the total number of 

misassemblies and misassembled contigs, and by quantifying the total predicted 

genes (Gurevich et al. 2013).  

  

1.3.6 Plasmid reconstruction  

 

Salient to the adaptation of a microorganism to its environment and adjustment to 

selective pressures are the genes that code for drug resistance and virulence, which 

are often encoded by plasmids. Difficulties in plasmid analysis and reconstruction 

arise due to their high sequence variation and repetitive sequences. Moreover, 

current genome-sequencing analysis protocols fail to evaluate genomic segments 

exchanged between plasmids and the chromosome, limiting the full evaluation of 

plasmid sequences and the pangenome (core and accessory genome) as a whole.  

  

A method called PLACNET (plasmid constellation networks) has shed light on this 

issue by identifying, visualizing and analysing plasmids by creating a network of 

contig interactions, thus allowing comprehensive plasmid analysis. PLACNET uses 

three types of information to identify plasmids: (i) information about scaffold links 

and coverage in the WGS assembly, (ii) comparison to reference plasmid sequences, 

and (iii) plasmid-diagnostic sequence features such as replication initiator proteins. 

PLACNET combines these three types of data to produce a network that needs to be 

pruned manually to eliminate confounders. To identify the genomic sources, 

PLACNET searches or aligns assembled contigs against a database of ~6,000 publicly 

available chromosomal and plasmid genomes (Lanza et al. 2014; De Toro et al. 2014).   

 

Although understanding the information stored in scaffolds is essential, abundant 

details on plasmids can be mined from decoding the structure of the de Bruijn graph. 

Given a situation when there are no long reads, this information can be uncovered by 
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assembling plasmids from sequence reads. PlasmidSPAdes can improve plasmid 

recovery from across species by reassemblying their genomes, determining their 

plasmids and obtaining the corresponding GenBank entries with the plasmid 

annotations (Antipov et al. 2016).   

 

Plasmids may be underrepresented in long reads: in PacBio reads, a standard size-

selection protocol may exclude short DNA fragments. Unicycler’s graph-based 

scaffolding circularizes sequences, particularly those that are plasmid-derived, and 

results did not show duplicated sequences at the start/end of circular replicons (Wick 

et al. 2017). 

 

In cases when long read assembly pipelines fail to complete assembly, an application 

such as Circlator (Hunt et al. 2015) can be used to manually circularize plasmid-

derived scaffolds and distinguish them from chromosomal ones. Another solution 

used by mlplasmids is to use machine-learning (Arredondo-Alonso et al. 2018) to 

classify scaffolds as plasmid-derived or chromosome-associated contigs/scaffolds. 

Using support-vector machine (SVM) models on short read sequences, mlplasmids 

accurately classified contigs from assemblies of E. faecium, pneumoniae and E. coli as 

plasmid and chromosome; the results of their experiments showed that mlplasmids 

was the best classifier for the three bacterial species (Arredondo-Alonso et al. 2018).  

  

1.3.7 Read mapping  

 

Mapping is the alignment of sequence reads to reference sequence(s) such as a gene, 

a contig, a complete genome, transcriptome, or de novo assembly. The process 

involves predicting the position of each read relative to the reference genome. The 

quality of the alignment depends on the optimization of certain parameters such as 

the number of differences allowed between reference and query, the number of 

differences allowed in the seed, the number allowed and penalty for gap openings, 

and the number and penalty for gap extensions. The number of nucleotide differences 

should match the expected number of differences between two sequences being 

compared. Setting the value for this parameter means changing the number of 

mutations necessary to convert one string to another.  
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Read mapping algorithms are divided into two main categories: (i) hash table-based 

and (ii) Burrows-Wheeler Transform-based algorithms. Hashing algorithms 

transform a string into a key that allows a fast search during alignment (Figure 1.3). 

This process is computationally intensive and requires huge disk space: storing all k-

mers in a list, using a value of k significantly less than the read size is viewed as a 

solution. Burrows-Wheeler Transform-based algorithms include the use of suffix 

trees and suffix arrays. Suffix tree present one-to-one correspondence between the 

paths from root to tips, with the suffixes existing in a string, so that the string suffixes 

serve as a path joining the root to the tip in a given tree. A suffix array is used as an 

alternative to the suffix tree, which can use a lot of memory. A suffix array is the set of 

suffixes of the genome sorted lexicographically (Figure 1.4).  

 

Determining the best read-mapping tool for bacterial species is a continuing topic of 

research. One reason is due to the presence of genetic heterogeneity in a clonal 

population of cells, the quality control steps undertaken, differing coverage levels 

and sample-reference genome divergence. The most informative way of approach 

this is to de novo assemble and map the reads back to the assembly, where no 

difference should be expected if the assembly is perfect. A well-studied reference 

genome and its read libraries can be used to do this. Other studies have performed 

titrations of read mixes from multiple samples with known SNPs or simulated read 

errors/variants. Quantifying the percentage of reads mapped for simulated reads 

show that Smalt is better than BWA, especially as read diversity increases. Likewise, 

simulated Listeria reads (Ponstingl et al. 2010) show that Smalt, Burrows-Wheeler 

Aligner (BWA) (Li and Durbin 2009), MOSAIK (Lee et al. 2014) and SequenceSearch 

and Alignment by Hashing Algorithm (SSAHA) (Ning, Cox and Mullikin 2001) had no 

consistent differences for true SNP detection, and that Smalt was much better for 

eliminating false SNPs. Using Bowtie (Langmead et al. 2009) or Bowtie2 (Langmead 

and Salzberg 2012) is not recommended for bacterial genomes as both were they 

were designed to meet computational speed requirements i.e. in read mapping 

human reads rather than bacterial. Although the various E. coli genomics studies 

have used several different mappers, Smalt remains to be the most effective at 

present followed by BWA.   
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Figure 1.3. A hashing algorithm. (A) The genome is cut into overlapping 3-mers, and 

their respective positions in the genome are stored. (B) The read is cut into 3-mers. 

The 3-mers from the reads are compared to 3-mers from the genome using a hashing 

procedure. (C) Positions for each seed are sorted and compared to the other seeds. 

(D) Compatible positions are kept. Adapted from Schbath et al. 2012.  
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Figure 1.4. A suffix tree of the genome GATTACA. Dotted arrows indicate that the tree 

continues there. Double circle indicate that a suffix ends there. Adapted from Schbath 

et al. 2012.  

 

 

1.3.8 Variant calling  

 

Relative to eukaryotes, bacterial genomes are small and less complex, yet they remain 

to be one of the most difficult targets of genomic analyses (Audano, Ravishankar and 

Vannberg 2017). Acquisition of novel DNA segments through horizontal gene transfer 

(HGT) causes significant genomic changes (Vos et al. 2015) in a sample genome when 

compared with a reference. The standard method to identify single nucleotide 

polymorphisms (SNPs) or variant alleles (known as SNP/variant calling) is achieved 

by either mapping the raw reads to a reference genome or by assembling the query 

genome de novo then aligning it to the reference sequence.   



44 

 

Using genome assemblies to call SNPs as is useful for analysing individual genes, for 

constructing whole genome phylogenies Gardner and Hall, 2013) or if raw read data 

are not available. The Cortex variation assembler pipeline claims to perform this 

process best (Iqbal, Turner and McVean 2013). But mapping reads to a high-quality 

reference genome provides a deeper resolution when identifying SNPs because it is 

more feasible to quantify the depth of coverage and the proportion of mixed alleles 

using raw reads than an assembled genome. A review by (Sandmann et al. 2017) 

evaluated the top SNP calling applications, most of which are applicable to bacterial 

genome analyses such as the GATK HaplotypeCaller (DePristo et al. 2011), Platypus 

(Rimmer et al. 2014), LoFreq (Wilm et al. 2012), and SAMtools (Li et al. 2009). The 

assessment showed that none of these succeeded in calling all true SNPs and 

highlighted the need to improve variant calling strategies. 

 

In a situation where there is no available reference genome, or one is trying to map 

reads to a highly divergent region (Bertels et al. 2014), the approaches above cannot 

be applied. A possible solution to this is to use a program such as Kestrel, which takes 

the information within a set of k-mer frequencies over the read data. Kestrel can also 

characterize densely packed SNPs and large indels without performing mapping, 

assembly or generation of de Bruijn graphs (Audano, Ravishankar and Vannberg 

2017).  

  

1.3.9 Genome annotation  

 

Genome annotation or gene prediction opens doors to further investigate functional 

properties. Annotating genomes has to take into account several dimensions (Bryson 

et al. 2006). It involves identifying gene sequences including open reading frames 

(ORFs) and stop codons. The problem of genomic annotation is clearly defined as 

having an input sequence of DNA (X) -- each element (x) can be either of the four 

nucleotides A, T, C, G, that is X = (x1,…xn) ∑*, where ∑ = {A, T, C, G} and should be 

correctly labelled as a gene-coding region (Bandyopadhyay et al. 2008). The easiest 

way to identify genes is to look for ORFs -- continuous stretches of codons that code 

for a protein and are halted by a stop codon (UAA, UAG or UGA).  
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In contrast to eukaryotes, bacterial genomes have higher gene density with more than 

90% protein-coding regions (Wang et al. 2004). Determining the real genes within six 

frames of bacterial genome is therefore the main task of gene predictors. Identifying 

ORFs with the mean size of proteins (roughly 900 bp) is a way to locate genes (Allen 

et al. 2004): this strategy is effective for pin-pointing small genes but not those with 

long ORFs, so annotation pipelines require manual verification to predict tRNA, rRNA 

and ORFs.  

 

False positive annotations remain a concern, so predicted genes should be screened 

manually to correct start codon positions, gene names, gene products, frameshifts in 

the alignment and resolving issues on ORFs caused by overlapping sequences that are 

coding forward or reverse. Various annotation programs are available online (Goel et 

al. 2013; Seemann, 2013) and most run on several Hidden Markov Models (HMMs) 

and BLAST-based gene prediction models.  

  

The Rapid Annotations using Subsystems Technology (RAST) Server was designed to 

predict which sets of assertions of gene and protein function from a report to genes 

derived from other genomes (subsystems) match the genome of interest and uses this 

to construct the metabolic network. The results can be viewed in an environment that 

supports comparative analysis with other annotated genomes (Aziz et al. 2008). An 

extension and a modular implementation of this program called RASTtk (RAST tool 

kit) was created to handle annotation of batch genomes (Brettin et al. 2015). 

 

More recent studies on ST131 evolution used the Rapid Prokaryotic Genome 

Annotation (PROKKA) pipeline in gene prediction (Stoesser et al. 2016; McNally et al. 

2016). PROKKA annotates bacterial genomes rapidly using a quad-core desktop 

computer. It annotates a sequence by relying on external feature prediction tools such 

as Prodigal (Hyatt 2010) for coding sequences and Aragorn (Laslett and Caback, 

2004) for transfer RNA genes. When tested against RAST and another program called 

xBASE2 (Chaudhuri et al. 2008) to annotate E. coli K-12 genome, PROKKA produced 

the most accurate results in about six minutes (Seemann, 2014).    
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1.3.10 Recombination detection and analysis  

 

Bacterial recombination can occur after DNA enters a recipient (host) cell via 

conjugative transfer of plasmids (conjugation), uptake of naked genetic material from 

lysed cell by another living cell (transformation) or the recruitment of DNA material 

from a phage to the recipient cell (transduction). Additional HGT mechanisms include 

nanotubes and extracellular vesicles. Identifying these recombinant segments is 

important as the most frequently retained blocks after DNA exchange are genes 

associated with antibiotic resistance (Chewapreecha et al. 2014). Further, 

recombination facilitates DNA exchange between distantly related species and highly 

influences the evolution of novel strains.  A majority of the most virulent bacterial 

pathogens belong to monomorphic lineages that show little genetic diversity 

(Achtman 2008). These clones are thought to have survived population bottlenecks 

by losing and gaining genetic elements leading to the acquisition of new functions, 

which may or may not be beneficial to their evolution.  

 

High recombination frequencies may bring benefits but can cause disadvantages due 

to increased instability as the GC content of these blocks are usually different their 

sources and hence are prone to degradation (Chewapreecha et al. 2014; Nishida, 

2013). Moreover, analysis of imported sequence within closely-related isolates was 

proven to be more valuable in investigating genomic variation in bacteria (Smith 

1992) rather than merely identifying the movement of a segment from a donor to a 

recipient (Sneath et al. 1975).  

 

The genealogical history of a sample can be represented by a single phylogenetic tree 

based on a selected DNA substitution model. But with the presence of recombination 

events, a number of trees can be created based on different positions, which make it 

impossible to infer the true genealogy of a single strain (Griffiths and Marjoram, 

1997). Several statistical approaches have been utilized to assess heterogeneity 

caused by recombination or HGT. Recombination to mutation (r/m) ratios vary across 

bacterial species and are associated with higher SNP rates (Vos and Didelot, 2009). 

Here, the three most commonly used tools used to assess HGT events in ST131 are 

outlined:   
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• BRATNextGen  

Bayesian Recombination Tracker Next Generation (BRAT-NextGen) requires a 

MATLAB compiler and runs on a Bayesian change-point clustering model that 

identifies a tip with at given genomic region that is more distinct from the other 

isolates that may have evolved from mutation (Martinnen et al., 2012). BRATNextGen 

does not model HGT between the samples, and usually predicts HGT that occurred 

recently in the external branches of an ML tree. The recombination model 

configuration in the software is initialized by the taxa that were formed over a fixed-

width genomic interval to maximise variability on the branches so that separate 

imported segments are identified from the same ancestral origin. The clustering 

procedure estimates the transition probabilities from a non-recombining to non-

recombining (1-ƿ) or recombining (1-ƿ0) α clusters, such that ƿ0 = P(n+1=non-

recombining | n=non-recombining) from non-recombinant state. The results are 

summarized in a Proportion of Shared Ancestry (PSA) tree that highlights clusters 

with common recombination events. Statistical significance of the detected imported 

segments is assessed by permutation testing of SNPs.  

  

• ClonalFrameML  

ClonalFrame Maximum Likelihood (ClonalframeML) performs recombination 

inference in a maximum likelihood (ML) framework (Didelot and Wilson, 2015). It 

links with ML trees constructed with phylogenetics tool RAxML (Randomized 

Axelerated Maximum Likelihood; Stamakis, A. 2006). It initiates using the RAxML 

phylogeny followed by the reconstruction of ancestral sequences at internal nodes of 

the clonal genealogy, and any missing base calls in the observed sequences (Pupko et 

al. 2000). To obtain ML estimates of the recombination parameters and the branch 

lengths of the clonal genealogy, ClonalframeML uses the Baum-Welch Expectation-

Maximisation (EM) algorithm, and the per site importation events are determined 

using a Viterbi algorithm. Bootstrapping is used to quantify uncertainty in the 

parameters. ClonalframeML assumes the same values for the number of recombining 

segments (R/θ), the mean length of imported DNA (δ) and the mean divergence of 

imported tracts (ν) for all branches, and that the length of branch i, in terms of the 

expected number of mutations. Since it employs an ML tree, it measures the lengths 
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of branches and the recombination rate in units of expected numbers of mutations. 

The enhanced detail obtained from the computed phylogenetic branch lengths allows 

for accurate quantification of genetic diversity and dispersion along each internal and 

external branch (Swenson, 2009). The r/m ratio is computed as: 
𝑟

𝑚
 = 

𝑅


 x  x . 

ClonalframeML uses a HMM where each nucleotide was subject to recombination (or 

not) on the branch connecting the two genomes; the nucleotides that were unaffected 

by recombination are called unimported (U) and those that are subject to 

recombination are termed as imported (I).  

 

• Gubbins  

Gubbins uses a spatial scanning statistic to detect highly variable loci suggestive of 

recombination and constructs a ML phylogenetic tree based on non-variable sites of 

the bacterial genome (Croucher et al., 2015). This iterative algorithm is most suitable 

for the reconstruction of recent evolutionary history as it integrates all polymorphic 

site information in a given data set before identifying any horizontal gene transfer 

event. The polymorphic sites were first detected in the alignment file using (for this 

thesis) a GTR substitution model with a Gamma distribution (GTR+G) of site variation. 

Clustering of substitutions were identified by performing a non-parametric scan on 

each branch. Possible recombination events were determined as a set of sliding 

windows with elevated densities of base differences.  

  

1.3.11 Resolving Bacterial Population structure  

 

Population genetics accounts for the diversity of natural populations and formulate 

theories that cause that variability (Smith, 1989). A population is a group of 

organisms that share a common geographical niche and possesses the ability to 

interbreed or exchange genetic material either sexually or asexually. Distinguishing a 

pathogenic organism from another is paramount to clearly explain the epidemiology 

of infectious diseases (Wailan et al. 2018). In addition, assessment of the genetic 

relatedness of these organisms shed light to their population structure. The high rates 

of recombination events in bacterial populations often contribute to the complexity 
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of their structure. Indeed, the bacterial population structures can only be understood 

by accurately quantifying recombination (Spratt, 2004). 

  

Reconstructing phylogenies is a major hurdle in resolving population structure. This 

is due to the loss of phylogenetic signals in deep branches and the occurrence of 

frequent horizontal gene transfers and hidden paralogies. In a phylogenetic tree 

model for the evolution of a fixed population without acting selective forces, a single 

sample is represented as the lineage, and the lineages coalesce back in time at 

constant rate until only one lineage remains (Lawson, 2015). 

 

A Supertree approach developed by (Daubin, Gouy and Perrière 2002) tackles these 

limitations by taking into account molecular phylogenetic information of hundreds of 

genes and provides a way to cumulate all of the phylogenetic signal while considering 

its statistical significance. By building a phylogenetic tree of 45 strains, they were able 

to identify the core genes by phylogenetically analysing the congruence of tree 

topologies and use these gene sets to infer a consensus tree. Although, this approach 

provides excellent support for a number of bacterial lineages, some internal branches 

remain unresolved and some clustering of strains may only be due to systematic 

reconstruction artefacts (Daubin, Gouy and Perrière 2002).  

  

Several other techniques were developed to resolve bacterial population structure.  

One approach uses Bayesian statistical models implemented in BAPS (Bayesian 

Analysis of genetic Population Structure; Corander et al. 2008) and hierBAPS. BAPS 

initially fits genetic mixture and admixture models using a fixed number of 

populations, followed by comparing a priori specified biological hypotheses about the 

population structure and finally analyses the admixture using a genetic linkage model. 

HierBAPS models variation in DNA sequences and employs hierarchical clustering of 

DNA sequence data to uncover nested genetic population structures (Cheng et al. 

2013).  

 

The FastBAPS (Fast Hierarchical Bayesian Analysis of Population Structure) tool 

developed by (Tonkin-Hill et al. 2018) extends  BAPS and hierBAPS. FastBAPS rapidly 

assigns an approximate fit to a Dirichlet Process Mixture model (DPM) to cluster 
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multi-locus genotype data that are 10-100 times larger than previously examined in 

other clustering methods (Tonkin-Hill et al. 2018). 

 

Structure (Pritchard et al., 2000) uses multi-locus genotype data such as SNPs and 

microsatellites as inputs to investigate the structure of bacterial populations. 

Structure infers whether distinct groups or populations are present or absent, assigns 

isolates to the identified populations, identifies migrants and admixed isolates and 

provides an estimation of allele frequencies in a population in the presence of 

migrants or admixed isolates. 

 

Phylogenetic networks demonstrate definitive scenarios of evolutionary reticulation 

exhibited by HGT or recombination (Kloepper and Huson, 2008). SplitsTree infers 

phylogenetic networks using different input data like sequence alignment, a distance 

matrix or a group of phylogenetic trees (Huson and Bryant, 2006). It analyses 

hybridization or recombination networks using split decomposition (Bandelt and 

Dress, 1992) or NeighborNet (Bryant and Moulton, 2003) algorithms. Inference of 

population structure can also be done using dense haplotype data. This method is 

implemented in fineSTRUCTURE (Lawson et al. 2012), which uses a "chromosome 

painting" approach to characterize shared ancestry and considers that a stretch of 

DNA is transferred from one generation to another in chromosomes.   

  

These traditional genetic clustering algorithms, however, are not suitable for sub-

typing of low-variant (LV) bacterial populations over small timescales such as less 

than three years (Wailan et al. 2018). Further, the population clusters formed using 

these strategies require >10 SNV to achieve an acceptable confidence and are based 

on the assumption that loci are independent of each other. This problem is overcome 

by the R package rPinecone, which identifies sub-lineages within LV bacterial 

populations. To accurately distinguish sub-clusters from each other in a given 

population, rPinecone assesses the phylogenetic relationship between bacterial 

strains by computing for the root-to-tip and the SNV distances from ancestral nodes 

(Wailan et al. 2018).  
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1.3.12 Pangenome analysis  

 

The pangenome was first coined by (Tettelin et al. 2005), and is the entire genomic 

repertoire of a given phylogenetic clade. Another definition is that the pangenome is 

the set of all genes present in the genomes of a group of organisms (Lapierre and 

Gogarten 2009). Advances in genome sequencing allows for the classification of the 

pangenome into two parts: the core (usually chromosomal genes common to all 

strains) and the accessory (plasmid and mobile genetic elements, MGEs) genome 

(Rouli et al. 2015). McNally et al. (2016) emphasize the importance of analysing the 

pangenome as it gives a ‘super-resolution’ view into the evolution of bacterial 

population. Indeed, interrogating pangenomic datasets can provide a comprehensive 

genetic landscape and detailed insights into the genetic structure of prokaryotic 

genomes as well as identify their lineage- and niche-specific markers of evolution and 

adaptation (Page et al. 2015, Zhang and Sievert 2014, Kim et al. 2017). 

  

A number of approaches exist in performing pangenome analyses. One is Roary, which 

rapidly builds large-scale pan genomes to identify core and accessory genes in a single 

species. Roary uses one annotated assembly per sample (GFF/GFF3 format). The 

coding regions are then extracted and converted into protein sequences and 

iteratively pre-clustered using CD-HIT (Fu et al. 2012) to obtain a significantly reduced 

number of protein sequence set. Next, BLASTP aligns the sequences at a certain % 

identity set by the user (i.e. 95% by default). Similar groups of paralogs are separated 

into groups of true orthologs before a graph is constructed based on the relationships 

of the clusters and in the order of occurrence in the input sequences. This ordering 

step provides context for each gene. The samples finally are grouped according to the 

presence of gene in the accessory genome taking into account the contribution of 

isolates to the graph weighted by cluster size. Roary can construct the pangenome of 

thousands of bacterial samples on a standard computer without compromising on the 

accuracy of results (Page et al. 2015). Piggy extends Roary by detecting highly 

divergent (“switched”) intergenic regions (IGRs) upstream of genes (Thorpe et al. 

2018). 
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Similarly, PGAweb is a web interface for prokaryotic pangenome analysis: orthologous 

clustering, pan-genome profiling, sequence variation and evolution analysis, and 

functional classification, which helpful for featuring genomic structural dynamics and 

sequence diversity (Chen et al. 2018B).   

 

The algorithms implemented in by PopPUNK (Population Partitioning Using 

Nucleotide K-mers) examine the core and accessory genome variation by estimating 

the relative distances between pairs of isolates in large collections. PopPUNK does not 

align genomes but rather employs annotation data to analyse and cluster populations. 

The method is done using variable-length k-mer comparisons to differentiate 

between isolates’ shared and non-shared sequence and gene content at the level of k-

mers (Lees et al. 2018).  

  

In summary, quantitatively and qualitatively describing the high genetic variation in 

bacterial populations is complex. It requires identification of the relative 

contributions of the evolutionary processes that cause genetic variation (Feil and 

Spratt 2001), particularly recombination, and processes in the population like 

selection and genetic drift. While many of the tools described in this section were used 

in our subsequent analyses, some were excluded and were applied mostly due to 

difficulty in package installation, low computational efficiency in large datasets, or 

redundancy due to the similarity in tool approaches.  
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1.4 Research Questions 
 

This PhD project aimed to address the questions below by employing strategies 

developed for Population pylogenomics and Comparative genomics.  

  

1.4.1 Population Phylogenomics 
 

➢ What does the genome wide variation tell us about the demographic history of 

ST131 strains? 

➢ How has the gene composition of the ST131 genomes changed over time? 

➢ How has the acquisition of genes (e.g. common drug resistance genes) via 

clonal expansion or horizontal gene transfer contributed to the adaptation of 

ST131 to new niches? 

 

1.4.2 Comparative Genomics 
 

➢ Identify chromosomal/structural variations (SVs) that took place between 

isolate genomes. 

➢ Detect (and classify) the type of copy number variations.  

➢ Determine whether these changes are present in other isolates in the wider 

collection. 

➢  Identify genes/features shared by the strains in a genome set.  
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1.5 Pilot study: Population Structure, Evolution and Recombination of N=100 
E. coli ST131 Isolates from Long-term Care Facilities in Ireland/UK 

 
 

Several tools were used prior to the commencement of this project to identify the 

major clades of ST131 with distinct genetic characteristics (Price et al. 2013; Petty et 

al. 2014). This scheme classifying ST131 strains as from either clade A, B or C has been 

conventionally used (Price et al. 2013; Petty et al. 2014) and we will explore this in 

the succeeding chapters. For this pilot study, we applied several phylogenomic 

methods to resolve the structure of the 100 ST131.  

 

A number of methods including traditional classification schemes such as the 

multilocus sequence typing (MLST), whole-genome clustering systems and 

phylogenetics have been applied to understand the evolution of ST131. Although 

phylogenetic reconstruction may help in resolving ST131’s evolutionary history, it 

could be challenging as the clone, much like other bacteria, undergoes several 

instances of horizontal gene transfer and homologous recombination.  

 

The samples used in this section were taken from Catherine Ludden’s unpublished 

doctoral thesis (Ludden 2014) and was further genomically characterized to identify 

the structure of the population. Her research focused on investigating acquisition of 

ARM among ESBL-producing species from Enterobacteriaceae and aimed in 

determining the baseline prevalence of colonization, monitoring the colonization 

status at quarterly intervals, assessing risk factors associated with colonization and  

finally, characterising antimicrobial susceptibility of the certain antibiotic resistant 

bacteria in LTCFs. 

 

We also adapted and applied a classification system based on the blaCTX-M allelic 

content of strains to distinguish them from each other. Examining the blaCTX-M allele 

type in the representative strains of the major clades in the phylogeny of 100 ST131 

indicated that plasmid-bound blaCTX-M-14 may have been the predominant blaCTX-

M allele in Irish and UK ST131 isolates until it was partially displaced by a lineage 

with blaCTX-M-15, which was eventually integrated into their chromosomes. 

Identifying the genetic elements responsible for the blaCTX-M displacement and 
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integration will further clarify this initial observation and explored in detail in 

Chapters 3 and 4. 

1.5.1 Genomic data  

 
A collection of 100 ST131 isolates includes 90 from nursing homes in Ireland: 70 of 

them collected from 2005-2011. Swabbing of the residents was performed at 3-month 

intervals for a year. The Irish ST131 samples were initially planned to be collected 

from a total of 88 residents but only 51 of them were recruited and agreed to 

participate in the study conducted for the thesis of Catherine Ludden (Ludden 2014).  

 

Seventy (70) of the N=100 ST131 strains collected were found to have blaCTX-M-1, 

20 had blaCTX-M-9, 70 had TEM+, 4 with SHV+ and 20 with OXA-1+. The other 10 

were UK samples taken from the study of Clark et al. 2012. The strain NA114 was used 

as the reference genome in the analyses of these 100 strains.  

 

1.5.2 Inferring the genealogical history 
 
Non-recombinant SNPs of 100 Irish/UK ST131 strains were aligned to each other for 

phylogenetic reconstruction. An ML phylogenetic tree was generated for these 

genomes using RAxML (Randomized Axelerated Maximum Likelihood; Stamakis, 

2014) based on General Time Reversible and Gamma distribution (GTR+G) model 

visualized with Figtree v.1.4.3 (Rambaut, A., 2016).  A phylogenomic network was also 

drawn from the same non-recombining SNPs using uncorrected p-distances and 

visualized with Splitstree v4.14.2 (Huson and Bryant, 2006).  

 

1.5.3 Resolving the population structure 

 

Two main approaches were used to understand the population structure of these 100 

ST131 strains: [1] analysing of 8,687 genome-wide and 1,412 non-recombining SNPs 

using the change of the K likelihoods with Structure v.2.3.4 (Pritchard, Stephens & 

Donnelly, 2000). And [2] by determining the blaCTX-M allele of representative strains 

in a phylogenetic tree generated with RAxML and visualized using Figtree v. 1.4.3 

(Rambaut et al. 2016) and label the clusters where each sample belong to according 

to Ben Zakour et al. 2016's clade classification. 
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1.5.4 Results from the Pilot Study 
 

1.5.4.1  Classifying genetic clades according to their CTX-M allelic content 

clarifies the population structure of N=100 ST131 collection 
 

The second-order rate of change of the K likelihoods K from analysing 8,687 

genome-wide showed that the most likely number of genetic populations in the 100-

strain population were K=2 with cluster A and cluster B/C/C/AB/AC/O & K=5 with 

clusters A, B, C, AB and AC (Figure 1.5.1). Analysis of 1,412 non-recombining SNPs 

using the K method resulted to K=2 with cluster A and cluster B/C/C/AB/AC/O & 

K=7 with A, B, C, AB and AC and two groups (O and O) assigned to divergent sample 

UTI226 (Figure 1.5.1). The reconstructed phylogenomic networks for both genome-

wide (Figure 1.5.2A) and non-recombinant SNPs (Figure 1.5.2B) show the 5 major 

clades A, B, C, AB and AC with corresponding number of strains in each cluster. 

 

The ML phylogeny generated with RAxML based on the whole genomes of N=100 

ST131 (Figure 1.5.3) strains revealed three major clades with representative strains 

of varying blaCTX-M allelic background. The first and second main clusters contain 

plasmid-bound blaCTX-M-15 (represented by strain EC958) and blaCTX-M-15 

(represented by strain MU027565L), respectively. The third group is composed of 

representative strains (MJ005670W, MU022181B and MU004181Y) with 

chromosomal blaCTX-M-15. 
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Figure 1.5.1. 

Model-based 

classification of 

groups using 

Structure bar 

plots for non-

recombining SNPs 

for K=7 showed 

five main 

populations (A, B, 

C, AB and AC) and 

two groups 

assigned to 

divergent sample 

UTI226. 
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Figure 1.5.2A. Phylogenomic network of 100 E. coli genome-wide SNPs constructed using 

maximum likelihood method and General Time Reversible model in MEGA 6.0 and 

visualized with Splitstree v4.14.2. The branch lengths are measured in the number of 

substitutions per site using Uncorrected P distances. The ST131 subgroups classified 

using change of K likelihoods method of Structure v.2.3.4 are in red, blue, green, pink and 

black.  
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Figure 1.5.2B. Phylogenomic network of 100 E. coli genomes constructed from non-

recombining SNPs (B) using maximum likelihood method and General Time Reversible 

model in MEGA 6.0 and visualized with Splitstree v4.14.2. The branch lengths are 

measured in the number of substitutions per site with Uncorrected P distances. The C2/ 

H30Rx subgroups are in red, blue, green, pink and black.  
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Figure 1.5.3. Genome-wide maximum likelihood phylogeny of N=100 ST131 Irish and 
UK samples generated using RaxML (GTR+G substitution model) and visualized with 
Figtree v.1.4.3. Tips highlighted in red had plasmid-bound blaCTX-M-15; taxon in blue 
contains blaCTX-M-14 in its plasmid and the samples in green font contain chromosomal 
blaCTX-M-15.  
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Chapter 2: Recombination Analysis of N=100 E. 

coli ST131 Isolates from Long-term Care 

Facilities in Ireland/UK 

 

Abstract 

 

Increasing rates of morbidity and mortality cased by complications with bacteremia or 

sepsis affect hundreds of millions of human populations annually.  Extra-intestinal 

pathogenic Escherichia coli (ExPEC) commonly cause bloodstream and urinary tract 

infections. Antimicrobial resistance (AMR) has also developed among ExPEC, most 

particularly in the globally disseminated E. coli sequence type 131 clone. Several methods 

including phylogenetic reconstruction may help in resolving ST131’s evolutionary 

history. However, it could be challenging as the clone, much like other bacteria, 

undergoes several instances of horizontal gene transfer and homologous recombination. 

This chapter extends the pilot study performed in Chapter 1 and focused on developing 

the methods for recombination analysis in ST131 population. Here, we detected and 

analysed recombination events in N=100 ST131 isolates by comparing and contrasting 

three recombination detection software: BRATNextGen, Gubbins and ClonalframeML. We 

evaluated the performance of each software in estimating the relative recombination 

rates and other parameters that measure evolutionary processes in each strain.  
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2.1 Introduction 

 

Increasing rates of morbidity and mortality caused by complications of bacteremia or 

sepsis affect hundreds of millions of human populations annually (Russo and Johnson 

2003). Gram-negative bacterium associated with bloodstream and urinary tract 

infections are commonly caused by Extra-intestinal pathogenic Escherichia coli (ExPEC) 

(Pitout 2012). Antimicrobial resistance (AMR) in these ExPEC pathogens is also prevalent 

making matters worse. Resistance to first to last-line antibiotics has steadily increased 

due to the production of extended-spectrum β-lactamases (ESBL) by E. coli isolates 

particularly in a specific globally disseminated clone, E. coli sequence type 131 (ST131) 

(Jones et al. 1994; Turnidge J, 1996; Hummers-Pradier et al. 2005; Coque and Canton, 

2008; Nicolas-Chanoine et al. 2008; Coque et al. 2008; Johnson et al. 2010). Indeed, ST131 

is now known to be the most important cause of community-acquired and nosocomial 

infections. Deep genome sequencing and analysis are required to understand the origin, 

evolution and spread of ST131 (Downing 2015) and ultimately curb the infections caused 

by this clone. 

 

There are three mechanisms that brought about homologous recombination in bacteria: 

transduction, where a virus (bacteriophage) transfers DNA segment/s from the donor to 

the recipient, transformation where the donor DNA is freely taken up by the recipient 

from the environment, and conjugation where donor and recipient come into direct 

contact via the bacterial pilus (Vos and Didelot, 2009). Accurate inference of phylogenetic 

relationships within the ST131 clone therefore requires correctly detecting and 

accounting for recombination events (Didelot and Wilson 2015). 

 

In this chapter, we determined the population structure and inferred the genealogical 

history of N=100 ST131 collection using various approaches for phylogenomic analysis. 

This ST131 population includes 90 strains from long-term care facilities (LTCFs) and 

hospitals from Ireland and 10 community/hospital samples from the UK. We further 

detected and analysed recombination events in this population by comparing and 

contrasting three recombination detection software: BRATNextGen (Bayesian 

Recombination Tracker Next Generation; Marttinen et al. 2011), Gubbins (Genealogies 

Unbiased By recomBinations In Nucleotide Sequences; Croucher et al. 2014) and 
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ClonalframeML (Didelot and Wilson 2015) that classify SNPs as recombining or not. We 

sought to determine whether these tools yield consistent and accurate results, or which 

one will yield the most informative set of recombination parameter values. We evaluated 

the performance of each software in estimating the relative recombination rates and 

other parameters that measure evolutionary processes in each strain. This chapter 

extends the pilot study performed in Chapter 1 and focused on developing the methods 

for recombination analysis in ST131 population. 

 

2.2 Materials and Methods 

 

2.2.1 Data sources 
 
Data used in this chapter were taken from the genomic characterization of those from 

the pilot study (Ludden 2014) described in Chapter 1. A collection of N=100 ST131 

samples was used in the recombination analysis; n=90 of these ST131 were ESBL-

producing isolates. The initial study was conducted to identify the baseline prevalence 

of colonization, monitor the colonization status at quarterly intervals, assess the risk 

factors associated with colonization and  finally, characterise profiles for antimicrobial 

susceptibility of certain antibiotic resistant bacteria in LTCFs. The other n=10 were 

taken from Clark et al. (2012). 

 

2.2.2 Implementing BRATNextGen, ClonalframeML and Gubbins 

 

BRATNextGen (Marttinen et al. 2011) was implemented on a desktop as follows: the PSA 

tree was drawn from the aligned FASTA file containing 4,039 polymorphic sites. This step 

is followed by clustering, learning the recombination value and setting the 

hyperparameter, α indicates the amount of expected variation in a particular cluster and 

highly influences the number of clusters that will be generated in the process.  

 

Statistical significance for this run was estimated by creating 100 replicates.  

The tabular outputs of BRATNextGen contain the length of each detected recombinant 

segment with their positions in the genome, the distance (d) between the root of the tree 
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to any given leaf (representing the depth of phylogenetic heterogeneity in the branch) 

and the number of HGT events and their origins. 

 

Gubbins (Croucher et al. 2014) was initially ran in ICHEC server using modified settings: 

run_gubbins.py  ALL.test.fasta  -s RaxML_bootstrap.ALLtest.out.tre –u where the starting 

tree (-s) and timestamp (-u) were specified. Results of the run were then recorded in a 

set of output files. A python script in the package was used to generate a figure for 

visualizing the distribution of SNPs brought about by recombination I versus those that 

have arisen from point mutations (m). Recombinant tracts that were found in the same 

genomic location (with the same start-end coordinated) are considered “common” 

among the results of the recombination analysis platforms tested here. 

 

Assessment of the historical and recent recombination events using ClonalframeML 

(Didelot and Wilson 2015) was done by running the standard and per-branch models 

(respectively) using the commands below. The parameter kappa 

(transition/transversion ratio scaled by base frequencies) was initially calculated with 

RaxML. 

 

The transition:traversion ratio (indicated by the parameter kappa) was initially 

estimated to be 1.93 for all 4,039 SNPs (ALL) following phylogenetic reconstruction by 

the latest version of RAxML (tree output: RAxM_bootstrap.ALLtest.out.tre). The option –

em true directs the program to estimate the recombination parameters using a Baum-

Welch expectation maximization (EM) algorithm such that the parameters are shared by 

all branches. This option is replaced by –embranch true for getting the estimates of the 

recombination events in the outer branches; the -embranch_dispersion value is set to 0.1 

to 1.0 to check if any difference in the results will be observed. This option indicates the 

constraint on the changes of recombination parameters among the tree branches and is 

scaled from 0-1, with 0 being the most constrained (least dispersed). Correlation 

coefficients and Cohen’s d were computed to determine the relationship between and the 

effect of the dispersion values and/to both the delta and the recombination frequencies, 

respectively. The –emsim 100 estimates uncertainty in the EM algorithm requests for 100 

pseudobootstrap replicates. The results of the run are then recorded in a log file (i.e 

ALL.log.txt). Detected recombinant blocks in each internal and external branch were 
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drawn by running the R script in the package. The script was modified to change the 

background colour to white instead of the standard skyblue. 

 

 

2.3 Results 
 

2.3.1 ClonalframeML had higher sensitivity in detecting recombinant SNPs than 

BRATNextGen and Gubbins 

 

The patterns of base substitutions caused by recombination and point mutations in the 

genomes of 100 ST131 isolates were analysed using BRATNextGen, ClonalframeML and 

Gubbins. These tools were tested for accurate and consistent values for recombination 

parameters.  Supplementary Table S2.1A and B present the key features of each algorithm 

in estimating genetic variations in a sample population; while all three can detect the 

donated regions to the core genome of an isolate. 

 

Graphical representations of recombinant regions detected by the three software are 

shown in Figure 2.1. BRATNextGen generated a PSA tree which highlights clusters with 

common recombination events and show a total of 154 recombinogenic tracts in the 

isolates. The colours of the detected segments indicate the cluster in which the segment 

is most prevalent. Two major clusters were formed after the run. The cyan-coloured 

tracts, for example, are shared by more taxa in the upper cluster while the red tracts are 

more abundant on the lower clade; grey bars are the missing SNPs in the analysis (Figure 

2.1). ClonalframeML identified 222 recombinant segments throughout the reconstructed 

phylogeny of the population: 152 are products of recent recombination events and 70 

were introduced in the ancestral branches. These tracts are shown in red while true 

events were shown in blue (Figure 2.2). Using the ML tree by RAxML v7.2.8, Gubbins 

generated a reconstructed phylogeny showing panels relating to 195 predicted laterally 

transferred genetic segments (165 in the external branches while 30 in the internal ones). 

Each column relates to a base in the reference genome while each row corresponds to a 

branch in the ML tree. Predicted recombinations that occur on an internal branch shared 

by multiple taxa through common ancestry are shown in red blocks. The blue blocks, on 

the other hand, represent recombination events on terminal branches and are unique to 

individual samples (Figure 2.3). 
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Figure 2.1. Results for recombination analysis of the 100 E. coli ST131 samples using BRATNextGEn. The PSA treeis shown on the left. The 
tree is cut at threshold of 0.1 to produce 7 clusters. On the right, the horizontal colored bars show the recombination events for each 
isolate. The colors of the detected segments indicate the cluster in which the segment is most prevalent. Grey bars show missing SNPs.  
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Figure 2.2. Lateral gene transfer assessed by ClonalframeML using the maximum likelihood phylogeny generated from the whole genome 
alignment of 100 isolates. The panels represent the pattern of predicted recombinations from the analyses using RAxML phylogenetic tree 
reconstruction. Each column relates to a base in the reference genome; each row represents an isolate in the phylogeny. True events are 
shown in blue and segments detected by ClonalFrameML are shown in red. Grey bars show missing SNPs.
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Figure 2.3. Representation of recombination events along the genome for each branch of the reconstructed phylogeny produced by 
Gubbins. The scale bar underneath the phylogenies represent a phylogenetic distance of 57 point mutations. Red blocks indicate predicted 
combinations occurring on an internal branch, which are therefore shared by multiple isolates through common descent. Blue blocks 
represent recombinations that occur on terminal branches, which are unique to individual isolates.
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BRATNextGen does not compute recombination frequencies, so we compared the 

recombination to mutation ratios (r/m) estimated by Gubbins (Supplementary Table 

S2.1A and B) and ClonalframeML (Supplementary Table S2.2A and B). Although results 

for both agree that recombination rather than mutation occurred more often  (r/m>1), 

Gubbins had a slightly more conservative estimate of the donation frequency (~1.18) in 

contrast to the value calculated by ClonalframeML (~1.87; Table 2.1).  

 
Sample 
Count 

R/Θ δ (bp) ν r/m 

Gubbins CfML Gubbins CfML Gubbins CfML Gubbins CfML 

100 0.028 0.273 16506.72 816.6 0.003 0.014 1.177 1.874 

Table 2.1. Summary of recombination parameters computed by Gubbins and 

ClonalframeML (CfML). Shown are the quantified recombinogenic SNPs (R), the 

recombination to mutation ratio (r/m), the mean DNA import length (δ), the mean 

divergence of recombinant segment (ν) and the number of SNPs caused by point 

mutation (Θ) in both recent (external branches) and ancestral (internal branches). 

 

The reverse was true for determining the average length of imported segments: Gubbins 

estimated the mean length in the 100 isolates of 16.5 Kb, while it was only 816.6 bp with 

ClonalframeML. This computation was confounded by some samples with relatively large 

import sizes detected by Gubbins (i.e. MR002251M-47.6-A-Galway-Galway-X-1-AC: 

~63.9kb) and a few with none, whereas ClonalframeML had a better resolution of exact 

recombinant tract boundaries. MU053687K-54.4-A-Ardrahan-Galway-Resident2-1-A, 

for example, had no donated segment according to Gubbins but had an imported ~79.84 

bp tract based on ClonalframeML. Although we found that the number of tracts was 

higher when the –embranch dispersion value was increased, there was no conclusive 

correlation between the mean recombinant tract length and recombination per branch.  

 

We were not able to detect recombinogenic regions using BRATNextGen (Figure 2.4A) 

hence we excluded the results obtained using this program and based our recombination 

analysis of these 100 ST131 using ClonalframeML and Gubbins in the external and 

internal branches (Figure 2.4B). Both programs detected 21 segments on the external 

branches and two on the internal ones, and four were shared by both internal and 

external branches.  
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Figure 2.4. Number of recombinant tracts detected by BRATNextGen, ClonalframeML 

(CfML) and Gubbins (Gbns) in the internal and external branches of Irish/UK N=100 

ST131 population. No tracts that were found in the same genomic location (common 

tracts) were detected between BRATNextGen, ClonalframeML and Gubbins (A) hence 

BRATNextGen was excluded in the analysis (B).  
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2.4 Discussion 

 

The frequency and impact of recombination events complicates bacterial population 

structure interpretation. This was the case in the 100 ST131 here, with a recombination 

to mutation ratio greater than 1.0. The three recombination detection programs we 

tested on the 100 ST131 suggested that recombination more than mutation may be a key 

factor elevating the genetic heterogeneity of this collection. Additionally, all three tools 

were found to be computationally viable in a large bacterial genome dataset (unlike the 

original ClonalFrame). We used Gubbins and ClonalframeML more in subsequent studies 

because of ClonalframeML’s higher sensitivity in detecting recombinogenic SNPs, and 

Gubbins’s widespread use by the community in bacterial genome analysis pipelines. 

BRATNextGen can be utilized for identifying whether the detected segments originated 

from the data set at hand or were introduced from an unknown external source but was 

not applied further in thesis. 

 

This chapter showed that phylogenetic methods such as RAxML can be effective in 

dissecting complex bacterial population structure using genomic data, but that model-

based methods like Structure may not be. This may be because of the lack of core genome 

variation in a closely related collection, and discrete nature of recombination signals that 

only affected small portions of the core genome overall but were at a much higher 

concentration in the accessory genome.  

 

This study was not explored further because it used the NA114 genome published by 

Avasthi et al. (2011) as a reference, but it emerged during our work that this reference 

was fundamentally flawed due to improper assembly methods (Forde et al. 2014). This 

genome had been used to identify the SNP set we examined in 2012 but was only 4.9 Mb 

in length mainly due to contig misplacement and the lack of appropriate gaps at contig 

edges, and so was missing 200 Kb compared to other references (Petty et al. 2013, Forde 

et al. 2014); this likely affected studies that used the NA114 genome as a reference such 

as Price et al. (2013). Consequently, an alternate reference genome was used in Chapters 

3-6.  
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2.5 Supplementary Tables 
 

The supplementary tables of this chapter are publicly available on Figshare: 

https://figshare.com/s/6e8ff1247c95a69683bc. 

 

Supplementary Table S2.1. Recombination to mutation ratio (r/m), the mean DNA 

import length (δ) computed by Gubbins in both recent (external branches (A)) and 

ancestral (internal branches (B)). 

 

Supplementary Table S2.2. Recombination to mutation ratio (r/m), the mean DNA 

import length (δ) and the mean divergence of recombinant segment (ν) computed by 

ClonalframeML in both recent (external branches (A)) and ancestral (internal branches 

(B)).  
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Chapter 3: Genomic surveillance of E. coli ST131 
reveals the evolutionary history of epidemic 

antimicrobial resistant clones 
 

Abstract 
 
Escherichia coli sequence type 131 (ST131) is a pandemic clonal group that is evolving 
rapidly with increasing trends in antimicrobial resistance. Here, we investigated an 
outbreak of extended spectrum β-lactamase (ESBL) producing E. coli ST131 in a long-
term care facility (LTCF) in Ireland (n=90) and combined this data with global (n=704) 
ST131 genomes to reconstruct the evolutionary history and further understand changes 
in population structure and recombination patterns over time. Three major ST131 clades 
circulating worldwide named A, B and C were identified here, of which the latter was the 
largest cluster accounting for 686/794 (86%) isolates and was associated with 
ciprofloxacin resistance, the presence of ESBL genes, diverse plasmids and transposable 
elements. Clade C had various evolutionary events influenced by plasmid flux, 
recombination and local rearrangements. C subclades also had distinctive changes in 
plasmid content and ESBL gene variants (blaCTX-M-14 vs blaCTX-M-15) including a 
chromosomal insertion of blaCTX-M-15 at the mppA gene identified in an Irish LTCF lineage 
using long-read sequencing. ISEcp1 transposed the blaCTX-M-15 gene from an IncFIA 
plasmid and subsequently this C2 subtype clonally expanded, causing an outbreak in this 
LTCF. We conclude that within the pandemic ST131 was been diversifying over a 7- year 
period with a mutation rate of 4.14x10-7 SNPs/site annually. There was evidence that 
extensive rearrangement of ESBL genes in plasmids in chromosome occurred which 
contributed to the spread of diverse clones worldwide and a local outbreak in a LTCF in 
Ireland which spanned four years. 
 
Publication: for submission to mBio in 2019 with Ludden C, Jamrozy D, Zhou Z, Pickard 
D, Horner C, Morris D, Parkhill J, Peacock SJ, Achtman M, Dougan G, Downing T, Cormican 
M.  
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3.1 Introduction 

 

Escherichia coli is the leading cause of urinary tract infections and bloodstream infections 

(BSIs) (Tumbarello et al. 2010, Burns et al. 2012), with the number of E. coli BSIs 

continuing to increase in Europe and the United States since the early 2000s (Public 

Health England 2017, Gagliotti et al. 2011, Poolman and Wacker 2016, Thaden et al. 2016, 

ECDC 2017). This has been associated with the emergence and dissemination of 

antibiotic-resistant E. coli producing extended-spectrum β-lactamases (ESBL-E. coli) 

conferring resistance to many beta-lactam antibiotics, including cephalosporins (Thaden 

et al. 2016, ECDC 2017). Infections caused by ESBL-E. coli are associated with higher 

morbidity and mortality, longer hospital stays and higher healthcare costs compared to 

infections with antibiotic-susceptible E. coli (Tumbarello et al. 2010, Schwaber and 

Carmeli 2007, Rottier et al. 2012, Roberts et al. 2009).  

 

The global spread of ESBL-E. coli is largely attributed to the dissemination of E. coli 

strains carrying the blaCTX-M-15 gene, especially E. coli O25b:H4-ST131. Genomic 

analyses estimated that ST131 emerged in North America over 30 years ago, coinciding 

with the first use of fluoroquinolone (FQ) in 1986 (Stoesser et al. 2016, Ben Zakour et al. 

2016). Previously, three major lineages of ST131 were identified that differed mainly 

based on their fimH alleles: A (mainly fimH41), B (mainly fimH22) and C (mainly fimH30) 

(Matsumura et al. 2017). Clade C has predominated since the 2000s, corresponding with 

the rapid dissemination of the blaCTX-M-15 allele (Matsumura et al. 2017, Canton et al. 

2012). Clade B also contains the subclade B0 which differs phylogenetically from the 

remaining B isolates by carrying fimH27 and is considered ancestral to Clade C 

(Matsumura et al. 2017, Canton et al. 2012, Kallonen et al. 2017). Clade C consists of three 

subclades termed C0, C1 and C2. Clade C0 has been reported as ancestral and is composed 

of FQ-susceptible isolates. In contrast, clades C1 (also known as H30R) and C2 (also 

known as H30Rx) are characterised by a double mutation at the gyrA and parC genes 

conferring high-level resistance to FQ (Stoesser et al. 2016, Matsumura et al. 2017, Price 

et al. 2013). Clade C2 is sub-divided from C1 based on specific SNPs at fimH30 as 

previously described and is associated with the blaCTX-M-15 gene (Price et al. 2013, 

Zerbino and Birney 2008).  
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ST131 has principally been associated with the hospital setting, though in recent years it 

has also been reported at high prevalence in the community (Vidal-Navarro et al. 2010, 

Rogers et al. 2011, Tchesnokova et al. 2018). There is increasing evidence that ST131 is 

common in the elderly and that long-term care facilities (LTCFs) are important reservoirs 

for ESBL-producing ST131. Reported rates of multidrug-resistant (MDR) E. coli ST131 

carriage in residents of LTCFs include 55% in Ireland, 36% in the UK and 24% in the 

United States (Ludden et al. 2015, Brodrick et al. 2017, Burgess et al. 2015). It is projected 

that the proportion of the European Union population aged ≥ 65 years and ≥ 80 years will 

increase to 29% and 11.5 % by 2060, respectively (Suetens 2012). This will likely lead to 

a rise in the number of people residing in LTCFs, potentially expanding the reservoir of 

ESBL-producing ST131. Infection control measures targeting E. coli have focused 

primarily on hospitals, and there is still a limited understanding of E. coli transmission 

dynamics within LTCFs, and between hospitals and LTCFs (Brodrick et al. 2017, Burke et 

al. 2012). To develop effective strategies for containment and prevention of infections, it 

is necessary to improve our ability to detect transmission events and to monitor the 

emergence of new clones. Here, we used short and long read genome sequencing to 

investigate an ESBL-E. coli ST131 outbreak in a LTCF in Ireland. We describe the genetic 

basis of antibiotic resistance and the evolution of ESBL-E. coli ST131 over a seven-year 

period. We focused our analyses on ST131 clade C because of its high frequency in this 

LTCF, and its MDR profile. We analysed the population structure and inferred the 

evolutionary history of the LTCF isolates in the context of a local hospital and global 

collections of E. coli ST131 to further our understanding of its epidemiology. 
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3.2 Methods 

 
Author contributions: This chapter is a collaborative work between several researchers 

working on bacterial genomics and clinical microbiology. I was involved in all methods, 

bioinformatic processing, genomic analysis, interpreting results, drafting the paper, 

editing the paper and visualization of the results. First-authorship is shared between 

myself and Catherine Ludden, who  helped in securing project funding, conceptualization, 

interpreting results, drafting the paper and editing the paper. Dorota Jamrozy assisted 

with temporal phylogenetic analyses. Zhemin Zhou helped with initial bioinformatic and 

genomic analyses. Mark Pickard, Carolyne Horner, Dearbhaile Morris, Mark Achtman, 

Sharon Peacock and Gordon Dougan were in volved in conceptualization, sample 

collection and study design. Julian Parkhill and Martin Cormican were in volved in 

conceptualization, study design, project management and paper writing. Tim Downing 

helped with bioinformatics, genomics analyses, interpreting results and paper writing. I 

completed a significant component of the work in this multi-partner chapter and was 

involved in all aspects. 

 

3.2.1 Irish bacterial isolate collection and short read genome sequencing 
 

A total of 90 E. coli ST131 isolates from Ireland were isolated and sequenced. Among 

these 90, 69 were sampled from 63 residents during 2005-2011 from a single LTCF with 

an outbreak of ESBL-producing E. coli in 2006 (Pelly et al. 2006) and 21 were clinical 

isolates from the referral hospital (Galway University Hospital: n=8 hospitalized patients, 

n=11 residents of other Irish LTCFs, and n=2 community isolates submitted from general 

practitioners).  

 

Bacterial genomic DNA for the 90 isolates was extracted using the QIAxtractor (Qiagen, 

Valencia, CA, USA) according to the manufacturer's instructions. Library preparation was 

conducted according to the Illumina protocol and sequenced (96-plex) on an Illumina 

HiSeq 2000 platform (Illumina, San Diego, CA, USA) using 100 bp paired-end reads. On 

average, 5,014,175 (range 3,489,126-8,166,084) raw sequence reads were generated per 

isolate, with a mean insert size of 260 (range 244-280).   
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3.2.2 Complementary datasets 
 
For context, DNA read libraries and associated metadata were retrieved for 704 E. coli 

ST131 isolates, 14 of which were BSIs from four referral hospitals in Ireland and 4/14 

isolates were obtained from the referral hospital (Galway University Hospital). The 

remaining global 690 were isolated between 1967 and 2014 and included 167 

(clinical=155, environmental=7, unknown=5) isolates obtained from global collections 

(Price et al. 2013, Hull et al. 1981), 297 from a UK LTCF (Brodrick et al. 2017), and 226 

were associated with BSI in the UK (Kallonen et al. 2017, Brodrick et al. 2017) 

(Supplementary Table 3.1). 

 

3.2.3 Long read sequencing, assembly and annotation 
 

DNA was extracted using the phenol-chloroform method (Hull et al. 1981) and sequenced 

using a PacBio RSII Instrument (Pacific Biosciences, Menlo Park, CA, USA) for five isolates 

(ERR191646, ERR191657, ERR191663, ERR191724 and ERR191697). Sequence reads 

were assembled using HGAP v3 (Chin et al. 2013) of the SMRT analysis software v2.3.0 

(https://github.com/PacificBiosciences/SMRT-Analysis), circularized using Circlator 

v1.1.3 (Hunt et al. 2015) and Minimus 2 (Sommer et al. 2007), and polished using the 

PacBio RS_Resequencing protocol and Quiver v1 

(https://github.com/PacificBiosciences/SMRT-Analysis). This assembled the plasmids 

for each of the isolates used as references for short read mapping. NCTC13441’s HDF5 

files were converted to FASTQ with 308,854 reads using pbh5 tools (smrtanalysis 

v2.3.0p4). These reads were screened for PacBio adapter sequence using Cutadapt v1.9.1 

and corrected using BayesHammer from SPAdes v3.0.0 with a seed k-mer of 127, yielding 

a total of 41,813 reads.  

 

3.2.4 Genome assembly, read mapping, AMR gene identification and plasmid 
typing of the 794 
 

De novo assembly of short read data for the 794 libraries was performed using 

VelvetOptimiser v2.2.5 (Gladman and Seemann 20018) and Velvet v1.2 (Zerbino and 

Birney 2008). An assembly improvement step was applied to the assembly with the best 

N50, whose contigs were scaffolded using SSPACE (Boetzer et al. 2011) and contig gaps 

reduced using GapFiller  (Boestzer et al. 2012). The assembly pipeline generated an 
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average total length of 5,166,846 bp (range 4,697,700-5,460,279 bp) from 97 contigs 

(range 31-486) with an average contig length of 59,340 bp (range 11,186-1,661,401 bp) 

and an N50 of 227,849 bp (range 30,788-763,538 bp) (Supplementary Table 3.5). 

Assemblies annotated using Prokka v1.5 (Seemann 2014) and a genus-specific database 

from RefSeq (Pruitt et al. 2012). 

 

The 794 short read libraries were mapped to NCTC13441 genome (accession 

ERS530440) (Brodrick et al. 2017), PacBio assemblies and reference plasmids using 

SMALT v7.6 (http://www.sanger.ac.uk/resources/software/smalt/). The genomic 

locations of the blaCTX-M genes and nearby MGEs were examined by aligning the short 

and long read assemblies using BLAST to the blaCTX-M-positive TU isoforms, including 

one with a split mppA gene containing the TU (Supplementary Figure 3.3). The two 

observed mppA isoforms were recorded as T for truncated (separated 327 bp and 1290 

bp segments) or I for intact (Supplementary Table 3.1). SNP screening at mppA across 

the 794 showed limited variation: just one doubleton and four singleton SNPs. 

 

AMR genes in the 794 were identified by alignment with the 2,158 gene homolog subset 

of the Comprehensive Antibiotic Resistance Database (CARD) v1.1.5. Plasmid 

incompatibility group and replicon types were identified (Supplementary Table 3.6) by 

comparing the genomes against the PlasmidFinder database (accessed date 16/03/17) 

(Carattoli et al. 2014) with a 95% identity threshold. 

 

3.2.5 Quality control, genome assembly and read mapping of 54 Irish read 
libraries  
 

Adapter sequences in the libraries of the 54 Irish Clade C reads were trimmed with 

Trimmomatic v0.36 (Bolger et al. 2014) using a Phred score threshold of 30 (Q30), a ten 

bp sliding window and a minimum read length of 50 bp. On average, these had 2,400,763 

reads initially, of which 7.8% were removed by trimming. These were corrected using 

BayesHammer in SPAdes v3.9. The effects of removing low-quality bases and reads was 

quantified using FastQC v0.11.5 with MultiQC v1.3, which showed base-correction 

removed an additional 14.3% of reads on average, leaving a mean of 1,898,990 per 
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library. This showed levels of base quality and potential contaminants were consistent 

across the libraries. 

 

Read libraries of the Irish 54 were assembled into contigs using SPAdes v3.9 with a k-mer 

of 77 (Bankevich 2012). This optimal k-mer maximised the N50 value determined by 

Quast v5.0 (Gurevich et al. 2013). The contigs were ordered and scaffolded based on the 

NCTC13441 reference chromosome, plasmid and annotation using ProgressiveMauve 

(Darling et al. 2010), producing an average scaffold N50 of 177,758±12,199 (mean±SD) 

bp with a mean assembly length of 5,434,674±153,210 bp and an average of 234 contigs 

per library. 

 

A total of 59,536 bases at low complexity repeats, homopolymers, sites within 1 Kb of 

chromosome edges, bases within 100 bp of a contig edge, or at tandem repeats were 

masked from the NCTC13441 reference chromosome using Tantan v0.13 

(www.cbrc.jp/tantan/), which was indexed using SMALT v7.6 using a k-mer of 19 with a 

skip of one, as were all reference sequences here. The short read libraries were mapped 

to reference sequences using SMALT v7.6, and the resulting SAM files were converted to 

BAM format, sorted and PCR duplicates removed using SAMtools v1.19. The MGE, mppA 

and blaCTX-M gene structures were examined by alignment as above so that local copy 

number changes, mapping breakpoints and read pileups could be screened by mapping 

Illumina reads to the PacBio and contig references. The local gene structure was 

visualised with R v3.5.2 and the MARA Galileo AMR database (Partridge et al. 2009, 

Tsafnat et al. 2009).  

 

3.2.6 Phylogenetic analysis of 794 isolates 
 

To construct phylogenies reflecting the genealogical relationships and evolutionary 

changes, SNPs were identified using Gubbins v2.3.4 (Croucher et al. 2014). The SNPs 

arising by mutation were used to create a maximum-likelihood midpoint-rooted 

phylogeny using RAxML v8.0.19 (Stamakis 2014) using a General Time Reversible + 

gamma (GTR+G) substitution model with 100 bootstraps across 362,009 sites. 

Phylogenetic trees were visualised with iToL (http://itol.embl.de) (Letunic and Bork 

2016) and FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) (Rambaut et al. 
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2016). For the 54 Irish Clade C collection, a phylogeny was created as above with RAxML 

with 100 bootstraps, and a network was constructed using uncorrected p-distances with 

Splitstree v4.14.2 (Huson and Bryant 2005), visualized with FigTree. 

 

The 362,009 core SNP sites were also used as the sparse matrix using the default 

parameters of a hierarchical Bayesian clustering algorithm implemented in Fastbaps v1.0 

(Fast Hierarchical Bayesian Analysis of Population Structure; Tonkin-Hill et al. 2019) in 

R v3.5.3 with packages ape v5.3, ggplot2 v3.1.1, ggtree v1.14.6 (Yu et al. 2017), maps 

v3.3.0 and phytools v6.60. 

 

3.2.7 Inference of subclade common ancestry and historical population size 
changes 
 

To reconstruct time-calibrated phylogeny ST131 we used a core genome alignment of 

794 isolates that contained 8,567 SNPs after the exclusion of regions representing MGEs, 

recombinant tracts and sites with an uncalled genotype across >1% of sequences. Each 

sequence in the alignment was annotated with the year of isolation. The strength of the 

molecular clock signal was measured by linear regression of the root-to-tip genetic 

distance against year of sampling using TempEst (Rambaut et al. 2016), which revealed 

a correlation coefficient of R2 = 0.4. Bayesian inference of phylogeny was performed with 

BEAST v2.4.7 (Bouckaert et al. 2014) based on a GTR+G nucleotide substitution model. 

To optimise computing efficiency in a large dataset, model selection was implemented on 

a subset of isolates (n=205) that tested two clock rates (strict versus relaxed uncorrelated 

lognormal) across three population models (constant, exponential and Bayesian skyline). 

Five replicates for each of the six models were tested. The MCMC chain was run for 50 

million generations, sampling every 1,000 states. Log files from the five independent runs 

per model option were assessed for convergence using Tracer v1.5, and combined after 

removal of the burn-in (10% of samples) using LogCombiner. The relaxed lognormal 

clock with Bayesian skyline model was the best fit, consistent with previous work (von 

Mentzer et al. 2014) and so this was used to model the evolutionary history across all 794 

isolates with 15 replicates. The maximum clade credibility (MMC) tree was generated 

with TreeAnnotator.   
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3.2.8 Summary workflows 
 
For simplicity, the methods described in the above sections of this chapter are illustrated 

in the following flow diagrams. Processing of N=90 Irish ST131 samples and its subsets 

are shown in Figure 3.2.8.1 while the analyses of the total N=794 ST131 libraries 

,composed of the N=90 Irish isolates and the n=704 global ST131 from previous studies, 

are presented in Figure 3.2.8.2. 

 

 

 

Figure 3.2.8.1. Illumina HiSeq libraries of N=90 ST131 (blue) isolates that caused an 

outbreak in Irish nursing homes were rid of adapters and base calling errors (read quality 

control), de novo assembled, annotated with AMR genes and plasmid types and finally 

aligned to NCTC13441 reference genome. Long reads of a subset of this N=90 ST131 with 

N=5 samples (orange) were sequenced using Pacbio long read sequencing technology to 

ultimately used as supporting reference genomes, following read quality control. Another 

subgroup from the N=90, which contains n=54 strains (green) were processed using the 

same methods for read quality control before mapping their Illumina Hiseq reads to 

NCTC13441 and reference AMR genes. 
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Figure 3.2.8.2.  The global context of the N=90 ST131 (blue) from Irish nursing homes 

was analysed by including n=704 (grey) more ST131 strains in the collection. The total 

N=794 ST131 (pink) Illumina Hiseq libraries were de novo assembled, annotated with 

blaCTX-M genes, fimH types, gyrA-parC mutations, and aligned to the reference genome 

NCTC13441. The alignment was then used to identify the non-recombinant (core) SNPs 

by running Gubbins. These core SNPs were then employed to generate a maximum 

likelihood phyogeny using RAxML and drawn using iTol. Unique genetic clusters with the 

reconstructed phylogenetic tree was identified using a hierarchichal Bayesian clustering 

implemented in Fastbaps. Finally, the evolutionary secnarios in the N=794 ST131 

population were dated using BEAST (Bayesian Evolutionary Analysis by Sampling Trees).  
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3.3 Results 

 

3.3.1 ESBL gene profiles among an E. coli ST131 outbreak in Ireland 
 

In this study, we focused on the genetic profiles of 90 E. coli ST131 (local collection) 

isolated between 2005 and 2011 in Ireland, of which 69 were from one LTCF where an 

outbreak of ESBL-E. coli was first detected in 2006 (Pelly et al., 2006). The other isolates 

were from other LTCFs (n=9), the referral hospital (n=10) and the community (n=2) 

(Supplementary Table 3.1). Initial screening of the 90 isolates indicated that 64 were 

blaCTX-M-15-positive, 17 were blaCTX-M-14-positive, one was blaCTX-M-27-positive, and four 

were positive for both blaCTX-M-15 and blaCTX-M-14 (Supplementary Table 3.1). Resistance to 

meropenem and ertapenem was not detected. Ribosomal sequence typing (rST) 

demonstrated a high incidence of rST1850 (44/90, 49%) (Supplementary Table 3.1), 

suggesting emergence of a unique local epidemic clone. 

  

3.3.2 ST131 clade C predominates in Ireland and elsewhere 
 

We analysed the 90 isolates from the local collection in the context of a global collection 

of 704 E. coli ST131 genomes that contained four additional isolates from the referral 

hospital described in the local collection and 10 isolates from other hospitals in Ireland. 

To better understand the global population structure of E. coli ST131, we reconstructed 

the phylogeny of all 794 isolates based on a core genome alignment containing 12,518 

SNPs (Figure 3.1). This recapitulated the three established ST131 clades (A, B and C) 

(Johnson et al. 2017) and showed that most isolates were from C (n=686, 86.4%) 

followed by B (n=75, 9.4%) and A (n=33, 4.2%). The clade classification was supported 

by previously described fimH allelic differences (Price et al. 2013): clade A was largely 

fimH41 (30 out of 33), clade B fimH22 (60 out of 70), subclade B0 fimH27 (4 out of 5) and 

clade C fimH30 (679 out of 686) (Table 3.1).  
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Figure 3.1. Maximum likelihood 

phylogeny of n=794 global ST131 

showed three main clades A (n=33), B 

(n=70), B0 (n=5) and C (n=686) with 

three common subclades in C: C0 

(n=14), C1 (n=111) and C2 (n=561). 

The mid-point rooted phylogram was 

constructed with RAxML from the 

chromosome-wide SNPs arising by 

mutation, and visualized with iTol. 

Allelic profiling of fimH, gyrA-parC, the 

H30Rx phenotype, and clade 

classification are represented in 

colored strips around the phylogenetic 

tree.
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fimH allele A B B0 C0 C1 C2 Total 
H41 30      30 
H22  60 1    61 
H27   4    4 
H30 (non-Rx)    12 111  123 
H30Rx      55

6 

556 
Other 3 10  2 1 4 20 
Total 33

3 

70 5 14 112 56

0 

794 
 

Table 3.1. The entire ST131 set (n=794) consisted of three main clades sub-divided into 

six subclades: A (n=33), B (n=70), B0 (n=5), C0 (n=14), C1 (n=111) and C2 (n=561). The 

frequencies of the four most common fimH allele types are shown: H41, H22, H27 and 

H30; the rest are listed as “other”. No FQ-resistance mutations were detected in 

fimH22/27/41. 

 

FQ-resistance alleles gyrA1AB and parC1aAB (Hull et al. 1981) were present in nearly all 

C1 (96%) and C2 (99.7%) isolates, along with the fimH30 allele, contrasting with their 

absence from the clades A, B, and B0 (Supplementary Table 3.1). This indicated that the 

Clade C ancestor acquired the fimH30 allele and then differentiated into FQ-S (H30S or 

C0) and FQ-R (H30R or C1, H30Rx or C2) subclades. A limited number of C1 (n=1) and C2 

(n=4) isolates had lost the FQ-R gyrA1AB-parC1aAB genotype, consistent with 

intermittent recombination at these and the fimH genes (Stoesser et al. 2016). 

 

Considerable diversity within Clade C was demonstrated by the genetic clusters 

identified by Fastbaps (Figure 3.2 and Table 3.2): C0 (n=14, Fastbaps clusters 2-5 and 

11), C1 (n=111, Fastbaps cluster 10), and C2 (n=560, Fastbaps clusters 7-9). All 104 Irish 

ST131 from the National Collection (local = 90, additional Irish isolates = 14, see 

Methods) were from clade C and there were no major differences in the rates of C0, C1 

and C2 in the National collection (1%, 23% and 75%, respectively) compared to the 

global isolate collection (2%, 12%, 70%, respectively).
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Figure 3.2. Phylogenetic 

reconstruction of 686 strains 

from Clade C with B0 as the 

outgroup. This shows 3 common 

subclades in C: C0 (n=14), C1 

(n=111) and C2 (n=561) where 

the latter had three distinct 

subgroups: C2_7 (n=362, 

Fastbaps cluster 7), C2_8 (n=86, 

Fastbaps cluster 8) and C2_9 

(n=113, Fastbaps cluster 9). 

Colored strips surrounding the 

phylogram represent the clade 

classification, Fastbaps clusters, 

blaCTX-M allelic profile, mppA state 

(intact or truncated) and the 

country of origin of each strain. 

The highlighted “Irish LTCF” 

clade was in C2_8.
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3.3.3 Phylogenetic reconstruction of three genetically distinct ST131 subclade C2 
groups  
 

Subclade C2 was structured into three Fastbaps clusters: 7 (n=362, named C2_7), 8 (n=86, 

C2_8) and 9 (n=113, C2_9) (Figure 3.2, Table 3.2). Most of the isolates in the National 

Collection (n=104) were represented by C2_8 (n=53, 51%), followed by C2_7 (n=17, 

16%) and C2_9 (n=8, 8%). Within the global collection most isolates were C2_7 (n=345, 

50%), with less in C2_8 (n=33, 5%) and C2_9 (n=105, 15%) (Figure 3.3). This showed 

C2_7 was more common globally than in Ireland (odds ratio = 3.1, p<6.5x10-6), and C2_8 

was more widespread in Ireland than elsewhere (odds ratio = 10.6, p<2.2x10-16) (Figure 

3.3).  

 

This difference was paralleled by the rST results, which showed that rST1503 was highly 

predictive of C2_7 globally (319 out of 345, 92.5%) and in Ireland (16 out of 17, 94%). 

Similarly, rST1850 was highly associated with C2_8 in Ireland (n=45, 85%), but less so 

for the global collection (11 out of 33, 33%, Table 2). This limited resolution suggests 

rMLST (ribosomal Multilocus Sequence Typing) has insufficient discrimination to 

accurately reflect the evolutionary history of clonal pathogens like ST131, and that core 

genome analysis was more informative.   
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Figure 3.3. ST131 from the eight subclades (n=794) showed differing frequencies across 

country of origin (top) and year of isolation (middle and bottom). The subclades were A 

(n=33), B (n=70), B0 (n=5), C0 (n=14), C1 (n=111), C2_7 (n=362), C2_8 (n=86) and C2_9 

(n=113). The ST131 were sampled during 1967-2014. The figures were generated using 

the ggplot2 and ggjoy packages in R v.3.5.2.   



116 

 

 Subclade C0 C1 C2_7 C2_8 C2_9 Totals 
 Fastbaps 

clusters 

2-5,11 10 7 8 9 

National 

collection 

rST1503 1 24 16 1 7 49 

rST1850    45  45 

Other rSTs  1 1 7 1 10 

Total 1 25 17 53 8 104 

Global 

collection 

rST1503 11 82 319 21 101 535 

rST1850    11  11 

Other rSTs 2 4 26 1 4 37 

Total 13 86 345 33 105 582 
        

 Totals 14 111 362 86 113 686 

 

Table 3.2. The entire ST131 set (n=794) was largely composed of isolates from clade C 

(n=686, 86% of total) that was categorised into five subclades by Fastbaps clustering: C0 

(n=14, clusters 2-5 and 11), C1 (n=111, cluster 10), C2_7 (n=362, cluster 7), C2_8 (n=86, 

cluster 8) and C2_9 (n=113, cluster 9). The National (n=104) and global (n=690) ST131 

had two main ribosomal sequence types (rSTs): rST1850 associated with the Irish C2_8 

LTCF set (85%), and rST1503 that often corresponded to C2_7 (92.5%). Fastbaps clusters 

2, 3, 4 and 5 in C0 represented one isolate each – only cluster 3 was blaCTX-M-15-positive.  

 

3.3.4 Long read sequencing uncovers chromosomal transposition of blaCTX-M 
genes 
 

Five isolates from the Irish collection were selected for long-read sequencing to more 

accurately determine the location and genomic environment of the blaCTX-M-14 and blaCTX-

M-15 genes. Four of five samples selected were blaCTX-M-15 positive and members of Clade 

C2, of which three belonged to the predominant LTCF subclade (C2_8) and one from the 

predominant global clade (C2_7). The remaining long-read sequenced isolate was from 

Clade C1 and was blaCTX-M-14-positive. Each of the PacBio assemblies were used as 

references for Illumina read mapping for the collection of 794 isolates. The three C2_8 

PacBio genomes (ERR191646, ERR191657, ERR191663) demonstrated chromosomal 

insertion of a 2,971 bp ISEcp1-blaCTX-M-15-orf477Δ-Tn2 transposon unit (TU) 

(Supplementary Figure 3.1), similar to integration sites described previously (Johnson et 

al. 2010, Johnson et al. 2017). This TU was transposed into the 1,617 bp mppA gene 
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(encoding murein peptide permease A), which was split into 327 bp and 1290 bp 

segments (at NCTC13441 genome coordinates 2,522,100-2,523,713 bp). No direct 

repeats flanking the blaCTX-M-15 element were observed. The blaCTX-M-15 was separated 

upstream by a 48 bp spacer sequence from a fragmented ISEcp1 upstream adjacent to 

IS26, and downstream blaCTX-M-15 was separated by 46 bp spacer from an orf477 segment, 

which was flanked by an incomplete Tn2 and IS26 elements at the 3’ and 5’ ends 

(Supplementary Table 3.2, Supplementary Figure 3.1), suggestive of one-ended 

transposition or a deletion following transposition (Johnson et al. 2010, Johnson et al. 

2017). The fourth assembly from C2_7 (ERR191697) contained a blaCTX-M-15 gene on an 

IncFII/FIA plasmid with an incomplete Tn2 element and a fragmented ISEcp1 (p_blaCTX-

M-15-orf477Δ-Tn2) flanked by IS26 elements (Supplementary Table 3.2, Supplementary 

Figure 3.1). The fifth assembly was from C1 (ERR191724) and had a blaCTX-M-14-positive 

pV130-like IncFII plasmid (100% identity) with an intact ISEcp1 at the 5’ end and an 

incomplete copy of IS903B at the 3’ end (p_ISEcp1-blaCTX-M-14-IS903B) (Supplementary 

Table 3.2, Supplementary Figure 3.1). 

 

3.3.5 Genomic context of blaCTX-M-15 the Irish collection highlight genetically 
diverse C subclades 
 

Our findings indicated that the chromosomal blaCTX-M-15 TU inserted into the chromosome 

was a potentially unique characteristic of the Irish LTCF C2_8 isolates, in contrast to the 

plasmid-associated blaCTX-M-15 in other C2 isolates, and plasmid-associated blaCTX-M-14 in C1 

identified by the PacBio sequencing (Supplementary Figure 3.1). This was tested in 54 

Clade C isolates from the Irish LTCF by resolving the exact genomic architecture of 

regions with the blaCTX-M by genome assembly and mapping reads to construct a 

phylogeny (Supplementary Figure 3.2). Assemblies of the 54 were compared with the 

PacBio references and NCTC13441 (ERR718783) and the blaCTX-M, ISEcp1, Tn2, IS903B, 

and mppA copy numbers were inferred from read mapping distributions, including 

verification of reads spanning the genetic elements and TU boundaries (Supplementary 

Figure 3.3). Of the 54, 38 were blaCTX-M-15-positive (all C2), nine were blaCTX-M-14-positive 

(all C1), five had no blaCTX-M gene (n=3 from C2, n=2 from C1), and two had both blaCTX-M-

15 and blaCTX-M-14 genes (ERR191646 and ERR191657 from C2_8) (Supplementary Figure 

3). C2_8 isolates (n=29) had a chromosomal insertion of blaCTX-M-15 (Supplementary 
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Figure 3.4), contrasting with C2_7 (n=9) that typically had a fragmented ISEcp1 with a 

plasmid-associated blaCTX-M-15 gene like the C2_8 and C2_7 PacBio reference strains 

references (Supplementary Figure 3.5). The C2_9 (n=5) isolates had a plasmid-bound 

blaCTX-M-15 gene adjacent to a 496 bp ISEcp1 fragment (p_shortISEcp1-blaCTX-M-15-orf477Δ-

Tn2, Supplementary Figure 3.5). Like the PacBio C1 assembly above, the C1 (n=11) 

isolates had a plasmid-associated ISEcp1-blaCTX-M-14-IS903B TU with three ISEcp1 copies 

along with a duplicated blaCTX-M-14 gene, though two were blaCTX-M-negative. 

 

Examining the rest of the collection in the same way showed that the mppA TU insertion 

was unique to the 41 Irish LTCF isolates in Clade C2_8 and this mutation was not found 

among any of the other 63 isolates from Ireland either in LTCF, community or hospitals. 

This is consistent with a pattern of clonal expansion in the LTCF. Of the 690 global 

isolates, 11 of the 19 with a disrupted mppA gene were blaCTX-M-15-positive and clustered 

within the clonally expanded C2_8 mppA-insertion lineage. The remaining eight were 

independent events: six had no blaCTX-M gene and one had a blaCTX-M-19 gene. Across all 794, 

C2 had a high rate of blaCTX-M-15-positives isolates, reiterating the correlation of blaCTX-M-15 

with the expansion of C2, with incidences of 84% in C2_7 isolates (303 out of 362), 83% 

in C2_8 (71 out of 86), and 67% in C2_9 (76 out of 113).  

 

3.3.6 Time of origin of the ST131 clones 
 

The estimated time of the most recent common ancestor (TMRCA) of different 

phylogenetic groups was investigated with BEAST. We estimated a mutation rate of 

4.14x10-7 SNPs/site/year (95% highest posterior density [HPD] intervals 3.74-4.57x10-

7), equivalent to 1.858 mutations/genome/year. A dated phylogeny (Figure 3.4) of all 794 

isolates estimated a TMRCA for ST131 of around 1901 (95% HPD intervals 1842-1948). 

Clade C originated in 1985 (95% HPD 1980-1989). The FQ-R C1/C2 ancestor originated 

in 1992 (95% HPD 1989-1994), more recently than previous estimates of 1987 (12) and 

1986 (Kallonen et al. 2017). Following this event, C1 and C2 diversified in parallel around 

1994 (95% HPD 1991-1996, 95% HPD 1992-1995, respectively). C2 is composed of 

divergent subclades C2_7, C2_8 and C2_9. C2_7 diversified from the C2_8/9 lineage in 

1995 (95% HPD 1993-1997). Finally, a group of strains radiated within C2_8 and formed 

a “displacement clade” (Figure 3.4A).  
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The TMRCA of the C2_8 clade was estimated at around 2003 (95% HPD 2001-2005) and 

all isolates in this clade contained a chromosomal blaCTX-M-15 inserted between a truncated 

mppA gene. The “displacement clade” within the C2_8 subcluster comprised of 41 Irish 

LTCF isolates from the local collection which had a unique TU insertion in the mppA. This 

is in addition to ten other Irish isolates from clinical or community sources (n=51 in total) 

with a mutant mppA but showed a different TU insertion.  The 11 blaCTX-M-15-positive 

isolates that clustered with the Irish C2_8 isolates also had a disrupted mppA gene and 

were from the UK (n=8) and Canada (n=3). Together, these 62 shared a TMRCA of around 

1998 (95% HPD 1997-2001), indicating that the mppA insertion may have occurred in 

the ancestral branch dating to 1996-1998 in the UK or North America (Figure 3.4B).  

 

This evidence highlighted a single genetic origin of the ancestral C2_8 lineage in the Irish 

LTCF (Figure 3.4), though it was rare until 2009 (Table 3.3), potentially presenting 

opportunities for multiple introductions of C2_8. Prior to 2008, C1_10 was most common, 

consistent with a pattern of replacement by C2_8 with the mutant mppA insertion that 

clonally expanded. Nine out of 12 isolates from this facility detected between 2005-2007 

belonged to C1_10. This was the group of isolates corresponding with the outbreak 

identified in 2006. Conversely, in the 57 samples isolated from 2008-2011, all were blaCTX-

M-15 positive, and 36 were classified in C2_8 (four of which were also both blaCTX-M-14-

positive), seven in C2_9 and eight in C2_7. In the global isolates, in contrast to the LTCF, 

C2_8 accounted for only 5% of isolates, whereas C1_10 and C2_7 accounted for 14% and 

49% (respectively) with no evidence of this clonal displacement outside of the LTCF.  
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Clade C0 C1_10 C2_7 C2_8 C2_9 Total 

2005   1   1 

2006 1 7    8 

2007  2  1  3 

2008  2  2  4 

2009    12  12 

2010  6 5 17 7 35 

2011   2 4  6 

Total 1 17 8 36 7 69 

 

Table 3.3. The numbers of isolates from the LTCF in Ireland (n=69) across the ST131 

clades showed that C1_10 was most common at the outset of the study, and that C2_8 

became more prevalent after 2008, suggesting a possible replacement and clonal 

expansion of this lineage.  
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Figure 3.4. Bayesian maximum clade credibility tree of E. coli ST131 isolates. (A) 

Phylogeny of 794 isolates analysed in this study. The tree is annotated with column 

representing major phylogenetic clades (Clades) as well as subclades within clade C 

(clade C clusters). The estimated TMRCA for major clades is shown on the tree. Branches 

of the cluster representing isolates from the Irish LTCF displacement clone are coloured 

in red. (B) A higher resolution view of the Irish LTCF displacement clone, annotated with 

colour strips representing isolate’s country of origin.    
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3.4 Discussion 

 

Here, we traced the genomic background of ESBL-E. coli ST131 isolates collected from 

residents of a LTCF in Ireland where an outbreak was recognised in 2006. The 

relationship between the isolates was first identified based on indistinguishable pulsed 

field gel electrophoresis (PFGE) patterns among 18 patients (Pelly et al. 2006). Since the 

outbreak was detected in 2006, there has been extensive progress in the higher 

discriminatory power of genome-sequencing compared to PFGE and other typing tools, 

such as MLST (Salipante et al. 2015, Rumore et al. 2018, Ludden et al. 2019). To gain a 

further understanding of the origins of the outbreak and to observe changes in E. coli 

population structure in LTCF residents, we performed whole genome sequencing of all 

ST131 ESBL-E. coli isolates submitted from the LTCF over seven years. We compared 

these to 35 other ST131 isolated in Ireland; 9 from other LTCFs, 2 from the community 

and 24 from hospitals including 14 from the referral hospital and 10 from 3 other 

hospitals, in addition to 690 ST131 from global datasets.  

 

We identified distinct genetic clusters within this set of 794 closely related isolates based 

on core genome phylogenetic signals, and as in previous studies (Stoesser et al. 2016), 

we identified subclade C2 as the most abundant ST131 group accounting for 71% of the 

entire collection. Four genetic subgroups were common in the specific LTCF, one from 

subclade C1 (C1_10) and three from C2 (C2_7, C2_8, C2_9). The resident ST131 lineage 

(C1_10) in the LTCF in the period 2005-2007 was the cause of the initial outbreak 

investigation, but surprisingly a newly introduced ST131 variant (C2_8) was much more 

common by 2009, indicating displacement of blaCTX-M-14-positive C1 isolates and clonal 

expansion by a genetically distinct blaCTX-M-15-positive C2 lineage within the LTCF. This 

pattern of clonal displacement has not yet been published for E. coli, but is common in 

other species such as methicillin-resistant Staphylococcus aureus (MRSA) where it can 

be driven by inter-hospital transfer of patients (Hsu et al 2015).  

 

In this study, we analysed the largest global collection of whole genome data on ST131 E. 

coli and estimated the emergence of ST131 in approximately 1901. The clonal expansion 

of C2 in 1994 identified here was similar to Kallonen et al (2017) and Zakour et al. (2016), 

who reported 1990 and 1987, respectively. We dated the C2_8 LTCF lineage to have 
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emerged in 2001-2005 and we postulate that the clone originated in the UK or North 

America in 1996-1998. This was consistent with the first observation of blaCTX-M-15-

positive cephalosporin-resistant E. coli isolated in 2001 in three locations in Britain and 

Northern Ireland (Mushtaq et al. 2003, Livermore et al. 2003). However, C2_8 was 

generally not as successful as C2_7, which emerged around the same time (1995) and 

disseminated globally. It has been suggested that the evolution of C2 subclades has been 

shaped by the acquisition of IncFII plasmids encoding blaCTX-M-15 (Stoesser et al. 2016), 

which was also observed here for C2_7. We extend this by showing that blaCTX-M-15 in 

C2_8 was mobilized from IncFII plasmids by ISEcp1-mediated transposition to the 

chromosome at mppA in a TU structured as ISEcp1-blaCTX-M-15-orf477Δ-Tn2. The high 

copy number and fragmented pattern of ISEcp1, which enabled a chromosomal insertion, 

was found for different blaCTX-M alleles in E. coli and may be linked to altered expression 

of the gene on the chromosome relative the plasmid (Matsumura et al. 2017, Canton et al. 

2012). Our work shows although ST131 is disseminated globally, evolutionary events 

have resulted in the clonal expansion of new lineages, such as C2_7 globally and C2_8 

locally in one LTCF. This has coincided not only with the horizontal gene transfer of 

plasmids encoding blaCTX-M-15 or blaCTX-M-14, but also the chromosomal insertions 

like blaCTX-M-15 in C2_8 followed by vertical transmission, and also blaCTX-M-14 5’ of 

the chromosomal rlmL gene in one C1 isolate (ERR191666).  

 

In conclusion, we investigated an outbreak of ESBL E. coli ST131 in a LTCF in Ireland and 

observed changes in this LTCF different to the global pattern. We found that the outbreak 

began with a Clade C1 strain encoding blaCTX-M-14 gene on a plasmid, and that this 

lineage was displaced by a Clade C2 strain with a chromosomally-encoded blaCTX-M-15 

gene. Both lineages associated with the LTCF are resistant to broad-spectrum 

cephalosporins and the selective forces in this specific niche driving lineage displacement 

are unclear.   
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3.5 Supplementary Tables and Figures 

 

Supplementary tables for Chapter 3 are publicly available on Figshare: 

https://figshare.com/s/0fcc2204056feffafb39. 

 

 

Supplementary figure 3.1. (a) blaCTX-M-15 element on the IncFII/FIA pEK499 reference, 

(b) blaCTX-M-15 element on the IncFII/FIA subclade C2_7, (c) blaCTX-M-15 chromosomal 

element in C2_8 isolates. All Clade C2_8 PacBio genomes contained the same blaCTX-M-15 

chromosomal element, therefore only one is shown (d) a blaCTX-M-14 element on IncFII 

subclade C1 plasmid. The region encoding blaCTX-M-14 and blaCTX-M-15 are highlighted in a 

black box. Arrows indicate the orientation of features, with the forward direction 

defined as the direction of transcription for genes, towards the main part of the attC site 

for cassettes, in integrons towards attI for 5' flanking regions, away from the cassette 

array for 3'-flanking regions, relative to the direction of transcription of the transposase 

gene for insertion sequences and transposons (Tn) (ie, inverted repeat left to inverted 

repeat right) and to the direction of the reverse transcriptase for Group II introns. The 

missing end of a feature is shown by a zig-zag line. The inset shows the area bounded by 

the dashed line in more detail.  

https://figshare.com/s/0fcc2204056feffafb39
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Supplementary figure 3.2. A phylogenomic network of the 54 Irish Clade C samples’ 

chromosomal mutational SNPs built using RAxML and ClonalframeML and drawn with 

FigTree v.1.4.3. The phylogeny of the n=54 was rooted using the topology of n=794, 

which C1 as the most divergent lineage, with C2_9 diverging next, followed by C2_8 and 

C2_7, though here the smaller sample size meant that the ancestral lineage was unclear 

and so could be approximated by the C1-C2 origin, where the ancestor likely had a 

plasmid with a 1,655 bp ISEcp1 5’ of a blaCTX-M-15 gene. The blaCTX-M-15 gene changes are 

in red, the blaCTX-M-14 gene mutations are in green, and the ISEcp1 differences are in blue. 

The subclades C1, C2_7, C2_8 and C2_9 are shown, and the scale bar shows five 

substitutions per Mb.  
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Supplementary Figure 3.3. Read mapping copy numbers for 33 of the 54 the Irish 

isolates from C2_7 (n=6 shown), C2_9 (all n=5 shown), C2_8 (n=15 shown) and C1 (n=7 

shown) across ISEcp1 elements (blue), the blaCTX-M-15 gene (red), the blaCTX-M-14 gene 

(pink) or the mppA gene (green). C2_8 all had consistent coverage of the chromosomally 

inserted TU isoform ISEcp1-blaCTX-M-15-shortTn2 spanning mppA and typically had with 

ISEcp1 fragments of 1,203 bp, 529 bp, 76 bp and 76 bp. The C2_9 isolates had a 496 bp 

ISEcp1 element and a blaCTX-M-15 gene. Most C2_7 isolates had no ISEcp1 and one blaCTX-M-

15 gene. C1 had the TU isoform p_ISEcp1-blaCTX-M-14-IS903B with a duplicated ISEcp1 

element and duplicated blaCTX-M-14 gene. Reads from non-C2_8 libraries mapped at mppA 

in the TU isoform, but with gaps indicating no contiguous mapping to the blaCTX-M-15 gene.  
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Supplementary Figure 3.4. C2_8 (n=27) with a chromosomal ISEcp1-blaCTX-M-15 at 

the mppA gene. Read mapping copy number for n=27 C2_8 isolates showing that all had 

1+ ISEcp1 elements (blue) 5’ of a blaCTX-M-15 gene (red) with consistent coverage spanning 

the mppA gene (green) including reads spanning each elements’ breakpoints, with the TU 

isoform chr_shortISEcp1-blaCTX-M-15-shortTn2. Most (n=13, top panel) had ISEcp1 

fragments of 1,203 bp, 529 bp, 76 bp and 76 bp with one blaCTX-M-15 gene, though within 

this some had one or two extra 76 bp ISEcp1 fragments on their plasmids, including 

8289_1#24 (ERR191657 in Table 3, not shown here) and 8289_1#53 (not shown here). 

8289_1#24 had a blaCTX-M-14 gene, and had 74-77 bp ISEcp1 fragments on its plasmid, as 

well as 76 bp, 529 bp and 1203 bp ISEcp1 segments on its chromosome. 8289_1#5 

(ERR191638) also had its blaCTX-M-15 gene was 57,725 bp distant from the ISEcp1 

fragments. 8289_1#38 (ERR191671), 8289_1#61 (ERR191694) and 8289_1#95 

(ERR191728) had a 76 bp ISEcp1 fragment adjacent to the chromosomal blaCTX-M-15 gene 
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at 27,742 bp (8289_1#38), 6,835 bp (8289_1#61) and 32,815 (8289_1#95) from the 

other ISEcp1 copies, consistent with recombination between ISEcp1 segments. A minority 

(n=7, second panel) were like this previous group, but without the 529 bp ISEcp1 

fragment. Another set (n=5, third panel) had a full 1,655 bp ISEcp1 element with no 

fragmentation. One isolate (8289_1#54, fourth panel) had three full 1,655 bp ISEcp1 

elements on both its chromosome and plasmid, and fragments of 76 bp and 74 bp 

adjacent to the blaCTX-M-15 gene. One isolate (ERR1917 29, 8289_1#96, fifth panel) had 

three blaCTX-M-15 gene copies and a first ISEcp1 fragment 529 bp where the TU was 

inverted and duplicated, and separate from a 1,203 bp ISEcp1 at mppA, suggesting that 

recombination between the chromosomal and plasmid ISEcp1 IRs may have transferred 

the blaCTX-M-15 gene back to the plasmid. The table (right) shows the ISEcp1 assembly 

coordinates, spacer DNA lengths, and blaCTX-M-14 assembly coordinates.  
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Supplementary Figure 3.5. Read mapping copy number for n=9 C2_7 and n=5 C2_9 

isolates showing one from C2_7 (8289_1#3, ERR191636, top) had a three ISEcp1 copies 

(blue) and a duplicated blaCTX-M-15 gene (red), but no contiguity if reads mapping across 

to mppA (green) unlike C2_8. These had the TU isoform p_blaCTX-M-15-orf477Δ-Tn2. The 

majority of C2_7 (n=6, second diagram) had no ISEcp1 and one blaCTX-M-15 gene. Two C2_7 

isolates (third diagram) had no ISEcp1 and no blaCTX-M-14 gene. All n=5 C2_9 isolates 

(bottom diagram) had a 496 bp ISEcp1 element (blue) 5’ of a blaCTX-M-15 gene (red), but no 

contiguity if reads mapping across to mppA (green) unlike C2_8. One (8289_1#52, blue) 

had a partial amplification of this TU. The table (right) shows the ISEcp1 assembly 

coordinates, 50 bp spacer length and blaCTX-M-14 assembly coordinates. ERR191636 from 

C2_7 had no homology to pV130 or pEK499, and the assemblies of eight other isolates 

from C2_7 (n=3), C2_8 (n=4) and C2_9 (n=1) had no detected pV130 or pEK499 

homology.  
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Chapter 4: Complete assembly of Escherichia coli 
ST131 genomes using long DNA reads 

demonstrates antibiotic resistance gene 
variation within diverse plasmid and 

chromosomal contexts 
 

Abstract 
 
The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising 
globally, which is a major public health concern. ExPEC strains that are resistant to 
antimicrobials have been associated with excess mortality, prolonged hospital stays and 
higher healthcare costs. E. coli ST131 is a major ExPEC clonal group worldwide with 
variable plasmid composition and has an array of genes enabling antimicrobial resistance 
(AMR). ST131 isolates frequently encode the AMR genes blaCTX-M-14/15/27, which are often 
rearranged, amplified and translocated by mobile genetic elements (MGEs). Short DNA 
reads do not fully resolve the architecture of repetitive elements on plasmids to allow 
MGE structures encoding blaCTX-M genes to be fully determined. Here, we performed long 
read sequencing to decipher the genome structures of six E. coli ST131 isolated from six 
patients. Most long read assemblies generated entire chromosomes and plasmids as 
single contigs, contrasting with more fragmented assemblies created with short reads 
alone. The long-read assemblies highlighted diverse accessory genomes with blaCTX-M-15, 
blaCTX-M-14 and blaCTX-M-27 genes identified in three, one and one isolates, respectively. One 
sample had no blaCTX-M gene. Two samples had chromosomal blaCTX-M-14 and blaCTX-M-15 
genes, and the latter was at three distinct locations, likely transposed by the adjacent 
MGEs: ISEcp1, IS903B and Tn2. This study showed that AMR genes exist in multiple 
different chromosomal and plasmid contexts even between closely-related isolates 
within a clonal group such as E. coli ST131. 
 
Publication: mSphere 2019 with Ludden C, Feltwell T, Judge K, Parkhill J, Downing T.   
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4.1 Introduction 

 

Reported cases of bloodstream and urinary tract infections caused by extraintestinal 

pathogenic Escherichia coli (ExPEC) are increasing globally at an alarming rate (Poolman 

and Wacker 2016). As a key source of ExPEC isolates worldwide, E. coli sequence type 

131 (ST131) is regarded as a serious threat to public health, given its high level of 

antimicrobial resistance (AMR), as well as the broad spectrum of infections it causes in 

community and hospital settings (Pitout et a. 2018; Goswami et al. 2018). 

 

E. coli ST131 is virulent (Ender et al. 2009) and has an expansive range of virulence 

factors (Van der Bij et al. 2012; Calhau et al. 2013), especially those linked to 

uropathogenic E. coli (UPEC) (Goswami et al. 2018; Totsika et al. 2011; Ben Zakour et al. 

2016). AMR and virulence genes allow ST131 to adapt to drug selection pressure and to 

survive in extraintestinal niches and are often encoded on mobile genetic elements 

(MGEs) (Forde et al. 2015), which means the exact set of virulence and AMR genes in a 

single ST131 isolate may vary (Ben Zakour et al. 2016; Johnson et al. 2010). ST131 

encodes a range of extended-spectrum β-lactamases (ESBLs) that hydrolyse third-line 

drugs including cephalosporins, the most common of which encode cefotaximase blaCTX-

M-15. Within ST131, clade C2 has more AMR genes than other clades and is typically blaCTX-

M-15-positive, differentiating it from clade C1 that can be blaCTX-M-14 or blaCTX-M-27-positive 

(Goswami et al. 2018; Ben Zakour et al. 2016). 

 

Most ST131 AMR genes are reported to be encoded on plasmids: circular self-replicating 

double-stranded DNA molecules that constitute part of the bacterial accessory genome 

(Juhas et al. 2009; Frost et al. 2005; Hinnebusch and Tilly 1993). Plasmids can reduce 

bacterial cell fitness, but a number of post-segregation killing and stable plasmid 

inheritance mechanisms allow the stable maintenance of IncF plasmids in ST131 

(Woodford et al. 2009; Nicolas-Chanoine et al. 2014; Phan et al. 2015). The chromosomal 

integration of plasmid genes is most commonly facilitated by transposons, which can 

ensure acquisition and conservation of such elements if there is no subsequent local 

recombination (Harrison and Brockhurst 2012; MacLean andSan Millan 2015).  
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Identifying plasmid conjugation, recombination and transposition could have value in 

tracking AMR genes associated with disease outbreaks and antibiotic treatment failures. 

Plasmids may be classified using incompatibility (Inc), relaxase (MOB) and mating pair 

formation system typing (Shintani et al. 2015), but difficulties in plasmid genetic analysis 

and reconstruction arise with short read data due to rearrangements driven by 

recombination, dense arrays of repetitive elements including transposable elements 

(TEs), changes in gene copy numbers, and high sequence variation. Methods using short 

reads alone may fail to detect genomic segments exchanged between plasmids and the 

chromosome, limiting evaluation of the core and accessory genomes.  

 

Whole genome sequencing has provided a high resolution of the genomic epidemiology 

of ST131 and plasmid-mediated AMR outbreaks (McNally et al. 2016). However, short 

reads alone are insufficient to resolve plasmids that often have numerous small MGEs of 

~1 kb or less in size, e.g. TEs and insertion sequences (ISs) (Wick et al. 2017). Complex 

transposable units (TUs) consisting of multiple TEs or ISs can mobilise AMR genes by 

transposition, and this can sometimes be followed by recombination within the TU 

between one of the inverted repeats (IRs) flanking the TE and the IR of another local TE 

or an adjacent homologous sequence, resulting in different TU structures, locations and 

copy numbers. At present, the exact resolution of complex structural rearrangements of 

repetitive TUs containing AMR genes may be impossible with short reads (Arredondo-

Alonso et al. 2018). Consequently, plasmid assembly is a challenge requiring accurate 

long reads and sufficient coverage to distinguish between independent plasmids with 

regions of sequence identity (Wick et al. 2017; Judge et al. 2016). 

 

Long reads, such as those generated using Oxford Nanopore Technologies (ONT) or 

Pacific Biosciences platforms can provide a solution to this plasmid assembly problem 

(Leggett and Clark 2017; Roer et al. 2018; Goldstein et al. 2018). Here, we sequenced six 

ST131 using the ONT GridION X5 platform. Using the resulting high-coverage sequence 

data, we reconstructed and annotated the plasmids and chromosomal regions carrying 

blaCTX-M genes, as well as their genetic context and copy numbers.  
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4.2 Methods 

 

Author contributions: As indicated by the in the published paper, I was involved in 

conceptualization, all methods, bioinformatic processing, genomic analysis, interpreting 

results, drafting the paper, editing the paper and visualization the results. Catherine 

Ludden helped with sample acquisition in Cambridge. Theresa Feltwell assisted with 

bacterial culturing and DNA isolation. Kim Judge arranged and managed the Nanopore 

GridION sequencing. Julian Parkhill contributed to project management and paper 

writing. Tim Downing helped with project design, bioinformatics and paper writing. I 

completed the majority of the work in this chapter and was involved in all aspects. 

 

4.2.1 Sample collection 

 

Six ESBL-producing E. coli ST131 clinical strains were isolated in June-October 2015 from 

patients at Addenbrooke’s Hospital, Cambridge, as part of a study on antibiotic resistance 

(Table 4.1). Five samples were from faeces, and one was from blood. These were short-

read sequenced in a multiplex run on an Illumina HiSeq 2500 platform and processed as 

previously outlined (Ludden et al. 2017).  

 

4.2.2 High molecular weight DNA extraction 

 

Frozen stocks of the six isolates were streaked onto LB agar plates and grown overnight 

at 37oC. Single colonies were subcultured onto LB agar plates and incubated overnight at 

37oC. DNA was extracted using a Lucigen Masterpure Complete DNA and RNA 

Purification kit. For each sample, a swab was used to sweep half a plate of pure colonies 

and suspended in 1x phosphate buffer solution (PBS). Samples were processed according 

to the manufacturer’s instructions, with elution in 70ul of Nuclease Free water. Pipetting 

was minimised to reduce shearing of the DNA prior to sequencing.   
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Table 4.1. Sample collection source, sampling date and sequence read accession numbers. 

Strain Source 
Sampling 

date 
Accession numbers FigShare long read 

library locations Short reads Long reads 

VRES1160 Faeces 26/08/2015 ERR1878359 ERR3284709 https://ndownloader.figshare.com/files/14039495 

VREC0693 Faeces 03/06/2015 ERR2137889 ERR3284704 https://ndownloader.figshare.com/files/14039639 

VRES0739 Faeces 05/06/2015 ERR1878196 ERR3284708 https://ndownloader.figshare.com/files/14039354 

VREC1013 Faeces 19/08/2015 ERR2138591 ERR3284705 https://ndownloader.figshare.com/files/14039333 

VREC1073 Blood 26/08/2015 ERR2138200 ERR3284706 https://ndownloader.figshare.com/files/14039345 

VREC1428 Faeces 22/10/2015 ERR2138475 ERR3284707 https://ndownloader.figshare.com/files/14039351 
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4.2.3 Oxford Nanopore library preparation and sequencing 

 

DNA was quantified using a Quant-iT™ HS (High Sensitivity) kit (Invitrogen). DNA purity 

was checked using a Nanodrop (ThermoFisher) and fragment size was confirmed by 

FEMTO Pulse (Nano Life Quest). The sequencing libraries were prepared using 1 µg DNA 

per sample and ligation sequencing kit 1D SQK-LSK109 with the barcoding extension kit 

EXP-NPB104 according to ONT protocols. The samples were combined using equimolar 

pooling and loaded onto a single 9.4.1 MIN-106 flow cell and sequenced on the GridION 

X5 platform under standard conditions. 

 

4.2.4 Illumina library preparation and sequencing 

 

The short reads used in this study were created as follows: bacterial genomic DNA was 

extracted using the QIAxtractor (Qiagen, Valencia, CA, USA) according to the 

manufacturer's instructions. Library preparation was conducted according to the 

Illumina protocol and sequenced (96-plex) on an Illumina HiSeq 2500 platform (Illumina, 

San Diego, CA, USA) using 100 bp paired-end reads. 

 

4.2.5 Oxford Nanopore base-calling and adapter trimming 

 

The resulting fast5 read files (available at www.ncbi.nlm.nih.gov/sra/PRJEB30511, 

accession numbers ERR3284704-ERR3284709) were transferred to a separate Linux 

server 4.4.0 (Ubuntu 16.04.4) for analysis. Basecalling was performed during the GridION 

run using ONT’s Guppy v0.5.1 and the resulting fast5 from the initial run was converted 

to fastq format with Albacore v2.0 (ONT). The statistical data of the sequencing run was 

processed with MinIONQC v1.3.5 (Lanfear et al. 2018) based on the default Q score cut-

off of seven. Adapters and chimeric reads were removed from fastq files using Porechop 

v0.2.4 (Wick et al. 2017b) with demultiplex settings (Figure 4.1). Standard outputs were 

saved as log files and were then parsed. The quality of the final fastq files was assessed 

using FastQC v0.11.8 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

and MultiQC v1.4 (Ewels et al. 2016). 
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Figure 4.1. Overview of genome assembly 
using Oxford Nanopore reads to recover 
plasmids with antibiotic resistance genes 
and mobile genetic elements (MGEs). 
Oxford Nanopore fast5 sequences were 
basecalled and converted to fastq format 
using Albacore v.2.0 and Guppy v.0.5.1. 
Forward, reverse and middle adapters 
were removed using Porechop v.0.2.4. The 
genomes were assembled using Unicycler 
v.4.6 (optionally including Illumina short 
reads for comparison). The probability that 
the resulting contigs were chromosomal or 
plasmid-associated was measured using 
mlplasmids. Contigs were annotated using 
the Comprehensive Antibiotic Resistance 
Database (CARD) and Multiple antibiotic 
Resistance Annotator (MARA) to resolve 
precise plasmid structure, blaCTX-M gene 
alleles, copy numbers and their adjacent 
regions.  
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4.2.6 Genome assembly and improvement 

 

We assembled the genomes using the conservative, normal and bold modes of the long 

read-only assembly pipeline in Unicycler v4.6. Previous work has suggested that 

Unicycler outperforms alternatives (Wick et al 2017a) that struggle to resolve plasmids 

(George et al. 2017). This workflow included the assembly polisher, Racon, which ran 

iteratively to minimise error rates of called bases (Wick et al. 2017b). For comparison, 

short read-only and hybrid assemblies were also created using Unicycler v4.6. Briefly, 

during short read-only assembly, Unicycler v4.6 employed SPAdes v3.12 to assemble 

short reads then used Pilon v1.22 to polish the assembly. In hybrid assemblies, Unicycler 

v4.6 used Miniasm to piece long reads together first and applied SPAdes v3.12 to 

incorporate short reads and bridge gaps. Pilon was run 3-10 times for short read 

assemblies and 5-10 times for hybrid ones, until no further changes were required to 

achieve the most contiguous and completed genome assemblies. The average number of 

changes by Pilon was 74.3, 100.2 and 125.3 for short read assemblies, and 234.5, 257.7 

and 377.0 across conservative, normal and bold modes (respectively). 

 

4.2.7 Genome assembly assessment and error rate quantification 

 

The quality of resulting assemblies was assessed using Quast 3.0 (Gurevich et al. 2013) 

according to the total assembly length, number of contigs, N50, GC content and degree of 

replicon circularization. Assembly graphs were visualized with Bandage (Wick et al. 

2015). The resulting contigs in each assembly were classified as chromosomal or plasmid 

using machine learning algorithms implemented in mlplasmids (Arredondo-Alonso et al. 

2018). Genome completeness was examined using the numbers of single-copy universal 

orthologous genes using Benchmarking Universal Single-Copy Orthologs (BUSCO) v3 

with the gammaproteobacteria_odb9 database (Waterhouse et al. 2017). 

 

4.2.8 Read depth estimation 

 

The read depth of each replicon was estimated by aligning the short Illumina and long 

Oxford Nanopore reads to the completed genomes using Smalt v0.7.6 and BWA-MEM 

v0.7.17 (with the flag –x ont2d for ONT reads), respectively. SAMtools v1.7 was used to 
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process the SAM files to BAM format, remove duplicates, and identify the coverage at each 

base of each assembly. The median value for each replicon was noted and was normalized 

using the median chromosomal depth of the same assembly. 

 

4.2.9 Genome annotation 

 

The genomes were annotated using Prokka v1.13.3 (Seemann 2014). BlaCTX-M alleles and 

their contexts were detected using the Multiple Antibiotic Resistance Annotator (MARA) 

(Partridge and Tsafnat 2018) and by aligning the assemblies against the Comprehensive 

Antibiotic Resistance Database (CARD v3.0) to screen for matches with 100% ID only. 

Information on the detected AMR features and MGEs are retrieved from Galileo AMR 

(https://galileoamr.arcbio.com/mara/feature/list). Plasmid identification and typing 

was carried out using PlasmidFinder v2.0 (Carattoli et al. 2014). The plasmid-derived 

contigs from the assembled genomes were compared using BLAST v2.6.0 using a 

database of 10,892 complete plasmids (Brooks et al. 2019). Their sequence similarity  

and annotation were visualised using EasyFig v2.2.2 (Sullivan et al. 2011).  

 

4.2.10 Phylogenetic analysis 

 

To provide a phylogenetic context for these six isolates, the short Illumina reads of 63 

from Ben Zakour et al. 2016 and 56 from Matsumura et al. 2017 published ST131 short 

read libraries were cleaned and trimmed using Fastp v0.12.3 (Chen et al. 2018a), as were 

the six isolates’ short read libraries from this study. These 125 libraries were de novo 

assembled with Unicycler v4.6 using NCTC13441 as a reference and annotated using 

Prokka. The 126 genomes were processed using Roary v3.11.2 (Page et al. 2015) with a 

95% BLAST v2.6.0 identity threshold to create a core genome alignment containing 4,457 

SNPs using MAFFT v7.310 (Katoh and Standley 2013) spanning 3,250,343 bases and 

3,350 genes of the NCTC13441 chromosome (a length similar to (McNally et al. 2016)). 

This core genome was used to construct a maximum likelihood phylogeny using RAxML 

v8.2.11 with the GTR model with gamma rate heterogeneity (Stamatakis 2014). Clade 

classification of the six isolates was based on published ST131 phylogenetic analysis (Ben 

Zakour et al. 2015) with associated classification and blaCTX-M allele data from (Ben 

Zakour et al. 2016) and (Matsumura et al. 2017).  
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4.3 Results 

 

4.3.1 Oxford Nanopore long read quality control and filtering 

 

High molecular weight DNA from six E. coli ST131 isolates was sequenced using long 

Oxford Nanopore reads and short Illumina reads to assemble their genomes allowing for 

plasmid reconstruction and resolution of AMR genes, MGEs and associated 

rearrangements. The ONT GridION X5 sequencing generated 8.9 Gbases in total across 

1,406,087 reads (mean length of 6.3 Kb, Table 4.2).  

 
 

Parameter All reads Reads with Q≥7 

Total bases  8,908,946 8,193,921 
Total reads 1,406,087 1,142,067 

Mean length (bp) 6,336 7,175 
Median length (bp) 2,273 2,897 

Mean Q score 9.1 10.2 

Median Q score 10.0 10.5 
Reads >100 Kb 85 81 

 
Table 4.2. Quality parameters indicated high-quality read libraries for the six ST131 

samples from GridION X5 sequence data. A total of 264,020 of low-quality reads (with 

Q<7) totalling 715,024,800 bases were excluded. 

 

The number of reads generated per hour, total yield of bases over time, read length 

distribution, and read Q score distribution was examined (Figure 4.2a-h). Half of the 

reads were produced within 14 hours of sequencing, with the remainder produced over 

the subsequent 34 hours (Figure 4.2d). A median read length of 5.5 Kb for reads Q 

(quality) score > 7 was achieved within one hour of sequencing (Figure 4.2e), and the 

median Q score declined slightly as the run proceeded (Supplementary Figure 4.2f). An 

average of 30-fold theoretical coverage from 954 Mbases with Q > 7 was exceeded in this 

GridION run within three hours.   
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Figure 4.2a-g. Summary plots of the GridION X5 sequencing run for all (blue) and filtered 

(green) nanopore reads generated using MinIONQC. The graphs in (a) show the read 

count (y-axis) with the mean and median read length and the number of bases and reads 

per channel (x-axis), the overall read count (y-axis) vs length (x-axis) in (b) and read 

count (y-axis) vs the mean Q score (x-axis) in (c). Plots were also drawn to present the 

total amount of bases called (x-axis; d), the mean read length (x-axis; e) and the mean Q 

score (x-axis; f) per hour (in their y-axes); the total amount of bases (y-axis) contained in 

a minimum read length (x-axis) is shown in (g). 
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Half of the bases with Q ≥ 7 were on reads of 18 Kb or longer (Figure 4.3). These metrics 

indicated sufficient GridION data in terms of quantity and quality. Initial screening 

removed reads with Q < 7, leaving 1,142,067 reads with 8.2 Gbp with a mean Q score of 

10.2 and a mean length of 7.2 Kb for analysis. This included 81 reads longer than 100 Kb, 

including one of 155,312 bases. This corresponded to 257-fold theoretical coverage for 

six 5.3 Mb genomes.  

 

 
Figure 4.3. Summary of the GridION X5 sequencing run output showing the read length 

on a log10 scale (x-axis) versus the mean Q score of each read (y-axis) where points are 

coloured by events per base. The horizontal red line shows reads with lengths > 10 Kb 

and the vertical red line read with Q scores > 10. Together, this area showed the large 

number of long high-quality reads generated in this study. This plot emphasises that a 

high proportion of the bases were accurately called: these were subsequently used for 

downstream analysis.  
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The initial number of reads per library ranged from 127,118 to 510,253 and these were 

filtered using a series of steps to ensure that the reads used for each of the six assemblies 

had high quality. Bases were successfully called at an average of 97.9% of reads (Table 

4.3). Identifying the consensus demultiplexed, duplicate-free and adapter-free reads 

from Porechop v0.2.4 eliminated a further 2.9% of the basecalled reads, yielding 120,123 

to 487,482 reads per library (Table 4.3).  

 

Strain 
Initial reads 

(fast5) 
Basecalled 

(fastq) 
Adapter-free 

(fastq) 
Average length 

(bp) 

VRES1160 358,829 351,636 345,033 7,037 
VREC0693 208,478 204,904 194,413 8,982 
VRES0739 163,349 160,693 155,900 9,171 
VREC1013 510,253 497,646 487,482 6,657 
VREC1073 313,627 304,218 298,658 7,256 
VREC1428 127,118 124,539 120,123 9,301 

 
Table 4.3. Number of reads generated from GridION X5 sequencing data per library that 

passed filtering during basecalling with Albacore v2.0 and those that were adapter-free 

(using Porechop v0.2.4). The latter totalling 1,601,609 reads were used for downstream 

analyses. 80,045 reads were excluded during basecalling or adapter-trimming. 

 

4.3.2 Long read genome assembly illuminates highly diverse accessory genomes 

 

We compared short read-only, long read-only and hybrid assembly outputs from 

Unicycler v.4.6 using the long Oxford Nanopore reads and short Illumina reads to identify 

the most contiguous assemblies per sample across all three Unicycler modes 

(conservative, normal and bold).  All six genome assemblies produced chromosomes of 

4.81-5.38 Mb with differing numbers of plasmids with lengths spanning 4-156 Kb (Figure 

4.4; Table 4.4). The numbers of contigs produced by long read assemblies of two samples 

(VREC0693, VRES0739) corresponded exactly to the chromosome and plasmids. The 

others had either one (VREC1073, VRES1160, VREC1013) or two (VREC1428) additional 

chromosomal contigs (Table 4.2).   
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Strain 

Genome 
length 

(bp) 

Number of contigs 

N50 
Chromosome 

size (Mb) 

Number 
of 

plasmids 

Plasmid 
sizes (Kb) Assembled 

Minimum 
possible 

VRES1160 5,326,801 6 5 5,126,679 5.23 4 62, 16, 5, 4 
VREC0693 5,260,741 3 3 5,039,909 5.04 2 132, 89 
VRES0739 4,806,912 3 3 4,797,749 4.81 2 5, 4 
VREC1013 5,223,433 3 2 3,699,451 5.14 1 90 
VREC1073 5,539,158 3 2 5,286,804 5.38 1 156 
VREC1428 5,236,419 7 5 4,924,536 5.13 4 92, 5, 5, 4 

 
Table 4.4. Total size of assemblies, chromosomes and plasmids found in each strain 

based on their optimal whole genome assemblies using the GridION X5 long reads. Each 

assembly had seven or less contigs, and in three cases no fewer contigs were possible, 

consistent with full genome assembly (for VREC0693, VRES0739 and VREC1073). The 

optimal assembly with Unicycler used long reads alone (in bold mode), with exception of 

VREC1013, where a hybrid combining short Illumina reads with long Oxford Nanopore 

reads was best, with minor manual screening. 

 

For five samples, the long read assemblies produced 2-7 contigs (with a median of three) 

with nearly identical results across modes, whereas the short read assemblies resulted 

in 76-230 contigs (a median of 124), and the hybrid assemblies also had more contigs (6-

191 with a median of 44). For VREC0739 and VREC1428, the short read libraries resulted 

in over-bridging of contigs making it harder to classify contigs as chromosomal or 

plasmid-associated, perhaps because long reads already provided sufficient genome 

coverage and the assembler inserted the contigs produced by short reads at short 

homologous repetitive regions.  
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Figure 4.4. The assembly graphs of six E. coli ST131 genomes showed many connected 

edges for those created from short Illumina HiSeq reads only (left) but near-complete 

assemblies for those made with long Oxford Nanopore read-only (centre) and the hybrid 

assemblies of most of the strains (right). The assemblies were generated with Unicycler 

v.4.6 and were visualised using Bandage. Circularized contigs indicated complete 

assemblies. 

 

For VREC1013, the hybrid assembly improved the long read assembly such that the final 

optimised version had three rather than 22 contigs and a smaller length (5.36 Mb, Table 

4.5), after manual sequence alignment eliminated seven false-positive short contigs. Five 

contigs had depths of coverage <8% of the chromosomal median and may were the result 

of contig overbridging during assembly. Pairwise alignment of these five contigs with 

BLAST against the assembly showed that they had near-perfect matches with other 

contigs, showing that they were effectively duplicate contigs, and thus few reads mapped 
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to them. In contrast, the other four valid contigs acted positive controls and showed high 

homology to their own contigs only. As a result, duplicate contigs were removed from the 

VREC1013 hybrid assembly used for subsequent analyses. 

 

Contigs were classified as chromosomal or plasmid-derived using mlplasmids given a 

probability threshold of 60% (Arredondo-Alonso et al. 2018), with further screening for 

plasmid-related gene content using MARA, CARD and PlasmidFinder (Table 4.5). The 

largest plasmid was a 156.3 Kb IncFIA one in VREC1073, its sole plasmid. VREC1428 and 

VRES1160 had 92.8 and 61.9 Kb IncFIA plasmids, respectively, along with three small Col 

plasmids each (Table 4.4). VREC0693 had a 132.0 Kb IncFIB plasmid and an 88.8 Kb IncB 

plasmid - IncB plasmids have the same Rep domains as IncFII plasmids (Partridge et al. 

2018). VREC3013 had one 89.9 Kb IncFII plasmid. VRES0739 alone had no large plasmid, 

which was verified with the short read data. 



159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.5. Contigs were classified as chromosomal or plasmid-derived using the mlplasmids prediction value. Each contig were aligned against CARD 
to identify the presence/absence of blaCTX-M alleles and their copy numbers. Plasmid types were identified using PlasmidFinder. 

Strain Prediction 
Prediction 
value (%) 

Contig 
ID 

Length 
(bp) 

blaCTX-M 
allele 

blaCTX-M 
count 

Plasmid 
type 

Median 
Depth 

Normalized 
Depth 

VRES1160 

Chromosome 98 1 5,126,679   - 258 1.00 

Chromosome 70 2 113,086   - 213 1.00 

Plasmid 70 3 61,934 15 1 IncFIA 282 1.10 

Plasmid 85 4 15,803   ColRNAI 420 1.64 

Plasmid 81 5 5,203   ColRNAI 11 0.04 

Plasmid 83 6 4,096   Col8282 473 1.85 

VREC0693 

Chromosome 98 1 5,039,909 15 3 - 258 1.00 

Plasmid 61 2 132,042   IncFIB 213 0.83 

Plasmid 60 3 88,790   IncB 282 1.09 

VRES0739 

Chromosome 98 1 4,797,749   - 171 1.00 

Plasmid 96 2 5,162   Col156 436 2.55 

Plasmid 74 3 4,001   - 303 1.77 

VREC1013 

Chromosome 97 1 3,699,451   - 300 1.00 

Chromosome 97 2 1,434,037   - 335 1.00 

Plasmid 84 4 89,945 15 1 IncFII 1015 3.27 

VREC1073 

Chromosome 98 1 5,286,804   - 214 1.00 

Plasmid 68 2 156,298   IncFIA 172 0.80 

Chromosome 60 3 96,056 14 1 - 213 1 

VREC1428 

Chromosome 98 1 4,924,536   - 126 1.00 

Chromosome 97 2 103,034   - 57 1.00 

Chromosome 96 3 101,160   - 41 1.00 

Plasmid 64 4 92,750 27 1 IncFIA 85 0.67 

Plasmid 92 5 5,147   ColRNAI 168 1.33 

Plasmid 99 6 5,143   Col156 207 1.64 

Plasmid 73 7 4,649   ColRNAI 239 1.90 



160 

 

 

 

Assembly Mode Metric VRES1160 VREC0693 VRES0739 VREC1013 VREC1073 VREC1428 

Short 
read-
only 

Conservative  

Total length (bp) 5,142,342 5,146,205 5,181,497 5,208,807 4,967,093 5,375,468 

Number of contigs 168 159 200 148 117 230 

N50 (bp) 124,175 132,865 138,725 134,439 157,528 135,303 

#mismatches / 
100 Kb 

1.32 1.32 65.4 1.5 285.81 0.69 

#indels / 100 Kb 0.06 0.02 1.84 0.08 261.91 0.04 

Normal  

Total length (bp) 5,158,728 5,171,710 5,227,751 5,240,888 4,989,316 5,416,180 

Number of contigs 110 106 123 94 76 148 

N50 (bp) 206,138 190,908 213,071 189,184 222,158 170,443 

#mismatches / 
100 Kb 

4.64 0.93 69.86 4.25 284.14 2.96 

#indels / 100 Kb 0.21 0.14 2.33 0.36 262.1 0.04 

Bold  

Total length (bp) 5,159,662 5,163,846 5,207,686 5,226,735 4,977,746 5,411,973 

Number of contigs 124 120 146 108 86 140 

N50 (bp) 206,044 190,808 212,979 190,412 222,051 184,466 

#mismatches / 
100 Kb 

3.07 1.78 67.11 1.96 287.37 2.03 

#indels / 100 Kb 0.16 0.06 2.03 0.13 262.26 0.11 

Long 
read-
only 

Conservative  

Total length (bp) 5,326,801 5,260,741 4,806,912 6,307,464 5,539,158 5,236,419 

Number of contigs 6 3 3 22 3 7 

N50 (bp) 5,126,679 5,039,909 4,797,749 5,073,008 5,286,804 4,924,536 

#mismatches / 
100 Kb 

276.23 241.39 2,772.51 344.5 0 332.79 

#indels / 100 Kb 252.29 264.7 265 306.03 0 289.71 

Normal  

Total length (bp) 5,326,801 5,260,741 4,806,912 6,307,464 5,539,158 5,236,419 

Number of contigs 6 3 3 22 3 7 

N50 (bp) 5,126,679 5,039,909 4,797,749 5,073,008 5,286,804 4,924,536 

#mismatches / 
100 Kb 

276.23 241.39 2772.51 344.5 0 332.79 

#indels / 100 Kb 252.29 264.7 265 306.03 0 289.71 

Bold  

Total length (bp) 5,326,801 5,260,741 4,806,912 6,307,464 5,539,158 5,236,419 

Number of contigs 6 3 3 22 2 7 

N50 (bp) 5,126,679 5,039,909 4,797,749 5,073,008 5,286,804 4,924,536 

#mismatches / 
100 Kb 

276.23 241.39 2772.51 344.5 0 332.79 

#indels / 100 Kb 252.29 264.7 265 306.03 0 289.71 

Hybrid 

Conservative  

Total length (bp) 5,272,824 5,275,251 5,215,332 5,323,049 5,055,625 5,492,517 

Number of contigs 52 6 191 34 51 107 

N50 (bp) 1,444,640 5,048,264 426,378 2,673,977 1,423,856 749,550 

#mismatches / 
100 Kb 

1.63 242.24 2,764.2 2.04 285.57 3.7 

#indels / 100 Kb 0.32 265.38 263.44 0.09 263.18 0.02 

Normal  

Total length (bp) 5,276,305 5,275,251 5,291,108 5,327,833 5,098,966 5,516,886 

Number of contigs 42 6 110 33 44 74 

N50 (bp) 1,746,191 5,048,264 72,0730 2,675,388 1,762,353 1,243,293 

#mismatches / 
100 Kb 

1.56 242.24 44.59 2.28 284.11 1.65 

#indels / 100 Kb 0.28 265.38 4.07 0.13 266.82 0.02 

Bold  

Total length (bp) 5,293,427 5,275,251 5,267,003 5,223,433 5,115,410 5,550,270 

Number of contigs 23 6 32 3 22 47 

N50 (bp) 3,801,465 5,048,264 1,222,073 3,699,451 4,958,323 1,266,683 

#mismatches / 
100 Kb 

271.47 242.24 2,770.38 321.64 283.97 296.99 

#indels / 100 Kb 252.55 265.38 264.11 268.47 268.27 268.29 

 
Table 4.6. Comparison of short read-only, long read-only and hybrid genome assemblies 

generated using the conservative, normal and bold modes of Unicycler v.04.6. Assemblies 
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were assessed according to their total length, number of contigs produced, N50 (bp), 

numbers of mismatches per 100 Kb and numbers of indels per 100 Kb. 

 

 
 
Figure 4.5. Two of the ST131’s blaCTX-M genes were on chromosomal contigs (VREC0693 

and VREC1073). VRES1160 and VREC1013 had IncFIA and IncFII plasmids, respectively, 

both of which had blaCTX-M-15 genes. VREC1428 had an IncFIA plasmid with blaCTX-M-27 

gene. VRES0739 is not shown because it was blaCTX-M-negative and had no large plasmid. 

The contigs were classified as chromosomal or plasmid-derived by mlplasmids so that 

the blaCTX-M genes and their genetic flanking context could be examined. Annotation was 

derived from Galileo™ AMR based on the Multiple Antibiotic Resistance Annotator 

(MARA) and database. The blaCTX-M variants are labelled and encircled in red (blaCTX-M-15), 

purple (blaCTX-M-14) or green (blaCTX-M-27). 

 

By mapping the long reads to the optimal assemblies, the read coverage of each 

chromosome and plasmid was estimated (Table 4.5). Each chromosome had between 

126- and 310-fold median coverage, and the median coverage levels of large plasmids 

ranged from 85- to 282-fold, except for VREC1013’s IncFII plasmid that had 1,015-fold 

coverage and a normalized depth of 3.3-fold. The normalised depth of plasmids compared 

to chromosomes suggested some cells in VREC1428 and VREC1073 may have lost their 

IncFIA plasmid, and the same for VREC0693 and its IncFIB plasmid. However, the IncFIA 
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plasmid in VRES1160 and the IncB plasmid in VREC0693 had higher than expected copy 

numbers (by 9% after normalisation), potentially indicating stable plasmid retention.  

 

Across five assemblies in the Unicycler normal mode, the median indel error rates for 

short reads and hybrid assemblies were similar (0.21 and 0.28 per 100 Kb, respectively), 

but was much higher for long read assemblies (265.0 per 100 Kb, Table 4.6). Likewise, 

the median mismatch error rates for short reads and hybrid assemblies were comparable 

(4.25 and 2.28 per 100 Kb, respectively), but was much higher for long read assemblies 

(332.8 per 100 Kb, Table 4.6). These rates excluded VREC1073, for which some Quast 

metrics were zero values. Similarly, the recovery of conserved BUSCO genes was far 

higher for hybrid assemblies (>99.5%) than for long read ones (>82.3%).  

 

4.3.3 The dynamic locations and genomic contexts of blaCTX-M genes in long read 

assemblies 

 

The optimised assemblies provided an improved view of the genomic context of each 

blaCTX-M allele, whose effectiveness as a marker for ST131 clade classification and origin 

(Ben Zakour et al. 216) we explored here. The deeper resolution of genome architecture 

revealed surprising differences in blaCTX-M gene context (Figure 4.5; Table 4.5), including 

the discovery of chromosomal blaCTX-M genes in VREC0693 (three copies of blaCTX-M-15) 

and VREC1073 (one copy of blaCTX-M-14). All blaCTX-M genes were complete (876 bp) with 

adjacent ISEcp1 (1,658 bp with flanking IRs of 14-16 bp) and Tn2 (5.8 Kb) elements: 

ISEcp1 and Tn2 can transpose blaCTX-M and other ESBL genes (Lartigue et al. 2006; Barlow 

et al. 2008). The VRES0739 genome did not contain any region homologous to blaCTX-M, 

most likely because it had lost an IncF plasmid, unlike the other isolates. 

 

VRES1160, VREC0693 and VREC1013 all had blaCTX-M-15 genes linked to isoforms of 

ISEcp1, IS26 and Tn2, implicating them in driving transposition of the TU (Figure 4.6). 

Each was similar to the ST131 clade C2 ISEcp1-blaCTX-M-15-orf477Δ TU (Ben Zakour et al. 

2016; Petty et al. 2014) but with distinct structural differences. VRES1160’s single blaCTX-

M-15 gene was at 2,296 bp on its IncFIA plasmid and was flanked by ISEcp1 to its 5’ and 

Tn2 followed by IS26 at its 3’ end, with another Tn2 5’ of ISEcp1. VREC0693’s three 

chromosomal blaCTX-M-15 genes were not tandem repeats (chromosomal locations 
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2,781,074, 3,696,068 and 3,970,927), but each of these TUs were identical: all had ISEcp1 

at the 5’ ends and truncated Tn2s at the 3’ ends. VREC1013’s sole blaCTX-M-15 gene was 

located at 13,226 bp on its IncFII plasmid and was flanked by a truncated ISEcp1 at its 5’ 

end and Tn2 at its 3’ end, with IS26 copies 5’ and 3’ of these segments. 

 

 

VREC1428’s single blaCTX-M-27 gene was on its IncFIA plasmid at position 6,018, and 

VREC1073’s single chromosomal blaCTX-M-14 gene started at contig position 19,746 

(Figure 4.6). Both their blaCTX-M genes were flanked by a truncated ISEcp1 at the 5’ ends 

and a shortened IS903B at the 3’ ends suggesting that ISEcp1 and IS903B may have 

facilitated the transposition of the TU from the plasmid. Similar blaCTX-M gene 

transposition events have been observed in ST131 clade C1 (Ben Zakour et al. 2016). 

 

Alignment of the plasmid-derived contigs of VRES1160 (IncFIA) to VREC1013 (IncFIB) 

showed that the blaCTX-M-15-positive plasmids were much more similar (>83% identity) 

relative to VREC1428’s blaCTX-M-27-positive IncFIA plasmid, which was more distinct 

(Figure 4.7). In addition, VREC1428’s plasmid had traI and traD genes indicating 

conjugation machinery (Table 4.7) as well as high homology to at least one published 

plasmid, unlike VRES1160’s and VREC1013’s plasmids. This suggested that the 

VRES1160 and VREC1013 plasmids had homology corresponding well with blaCTX-M gene 

and subclade classification, and that they were structurally different to published 

plasmids due to recombination. 
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VRES1160 (subclade C2, 61,934 bp blaCTX-M-15+ plasmid) 
 
 
 
 
VREC1013 (subclade C2, 89,945 bp, blaCTX-M-15+ plasmid). 
 
 
 
 
 
 
VREC1428  (subclade C1, 92,750 bp blaCTX-M-27+ plasmid) 
 
 
 
 
 
VREC0693 (subclade C2, 5,039,909 bp blaCTX-M-15+ chromosome with 3 distinct blaCTX-M-

15 genes in red - single chromosome is split below for visualisation) 
 
 
 
 
 
 
VREC1073 (subclade C2, 
96,056 bp blaCTX-M-14+) 
 
 
Figure 4.6. The contigs from the most optimal assembly mode of Unicycler v.4.6 of five 

out of six E. coli ST131 samples were identified as chromosomal or plasmid-derived using 

mlplasmids. These were annotated with blaCTX-M genes and their genetic flanking context 

using Galileo™ AMR based on the Multiple Antibiotic Resistance Annotator (MARA) and 

database (Seemann 2014); all blaCTX-M variants are labelled accordingly and encircled in 

red (blaCTX-M-15), purple (blaCTX-M-14) or green (blaCTX-M-27). The definition of the other 

elements are listed at https://galileoamr.arcbio.com/mara/feature/list. The long 

VREC0693 chromosome is split into two parts so that the gene annotation is visible. 
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Figure 4.7. Pairwise comparisons of the three blaCTX-M-positive plasmid-associated contigs showed high sequence identity for the two 
from subclade C2 (VREC1013 and VRES1160) relative to one from C1 (VREC1428, top). The BLAST result was visualised with EasyFig 
v2.2.2 such that the middle blocks connecting regions of the contigs represent nucleotide homology: blue for homologous regions in the 
same direction, and yellow for inversions. Gaps or white spaces denote unique loci or regions present in a contig but not in the other. Gene 
models are in green with the direction of transcription shown by arrows. Genes of interest are labelled above each arrow. The blaCTX-M-27 
grey (top) is in mauve and the two blaCTX-M-15 genes (middle, bottom) are in red. The table below shows the contig size, plasmid type and 
the number of genes per strain. The list and products of the annotated genes are in Table 4.8.   
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Table 4.7. List of genes (with count # indicated by “_”) in the plasmid contigs of 

VREC1013, VRES1160 and VREC1428. The blaCTX-M (bla), traI and traD genes are in bold. 

Only isolate VREC1428 had traI and traD genes indicating conjugative capacity. 

VREC0693, VRES0739 and VREC1073 contigs did not have tra genes. 

 

VREC1428 VREC1013 VRES1160 

pemI xerD_1 bla_1 

pemK ccdA tmrB 

bla vapC_1 cat 

nqrC vapC_2 bla_2 

lolD kdgT_1 aacA4 

agp kdgT_2 tetA_1 

hemR ridA tetA_2 

repB_1 yagE pinR 

repB_2 ugpA sopB_1 

mmuM cpdA sopB_2 

rocC tnpA repE 

ccdA yknY ccdB 

ccdB tpd ccdA 

sopB_1 xerD_2 pifC_1 

sopB_2 dhfrI_1 pifC_2 

klcA ant1_1 pifC_3 

traD_1 folP repB_1 

traD_2 srpC repB_2 

traD_3 bla xerD 

traD_4 xerD_3 chrA 

traD_5 xerC folP 

traD_6 dhfrI_2 mdtJ 

traI_1 ant1_2 xerC 

traI_2 umuC tetA_3 

traI_3 lexA tetR 

traI_4 klcA neo 

traI_5  tnpR 

traI_6    

traI_7    

finO     
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Table 4.8. Protein products encoded by the genes found in plasmids of VREC1013, 

VRES1160 and VREC1428 (Figure 4.7).  

 

Gene Protein product 

agp Glucose-1-phosphatase 
ccDA Antitoxin (Plasmid maintenance) 
chrA Response regulator 
finO Fertility inhibition protein 
folP Dihydropteroate synthase 

hemR Hemin TonB-dependent receptor 
klcA Antirestriction protein 

lolD 
Lipoprotein-releasing system ATP-

binding 

neo 
Aminoglycoside 3'-
phosphotransferase 

nqrC 
Na(+)-translocating NADH-quinone 

reductase 
pemK mRNA interferase 
pifC Transcriptional repressor protein 
pinR Serine recombinase protein 

repB Replication protein 
repE Replication initiation protein 
rocC Amino-acid permease 
sopB Inositol phosphate phosphatase 
tetA Tetracycline resistance protein 
tmrB Tunicamycin resistance protein 
tnpR Transposon gamma-delta resolvase 
traD Coupling protein 

traI 
Multifunctional conjugation 

protein 
xerC Tyrosine recombinase protein 

xerD Tyrosine recombinase protein 
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4.3.4 Long plasmid homology search and alignment  
 

We examined the six long contigs (lengths > 20 Kb) classified as plasmid-derived by 

aligning them with a database of 10,892 complete plasmids (Carattoli et al. 2014) to 

identify the most similar plasmids using BLAST matches spanning more than one gene 

(match length > 1,000 bp) with a sequence ID threshold of 95%. This showed the most 

similar plasmids were isolates were spread across Enterobacteriaceae for five and one 

was in Gammaproteobacteria Shewanella bicestrii (VRES1160’s plasmid), and that 

relatively high matching levels were detected for VREC0693’s and VREC1428’s plasmids, 

but not for VREC1013, VREC1073 nor VRES1160. The best match to blaCTX-M-15-positive 

VRES1160’s IncFIA 61,934 bp plasmid was to S. bicestrii strain JAB-1’s 193,338 bp 

plasmid pSHE-CTX-M (NZ_CP022359) that had a length for matches >1 Kb of 30,225 bp. 

The best match to VREC0693’s IncFIB 132,042 bp plasmid was to Klebsiella pneumoniae 

strain Kpn555’s 142,858 bp plasmid pKPN-7c3 (NZ_CP015131) that had a length for 

matches >1 Kb of 98,455 bp.  The best match to VREC0693’s IncB 88,790 bp plasmid was 

to Salmonella enterica strain ST4/74 was for an 86,908 bp plasmid TY474p2 

(NC_017675) that had a length for matches >1 Kb of 77,323 bp. The best match to blaCTX-

M-15-positive VREC1013’s IncFII 89,945 bp plasmid was to E. coli strain M19’s 11,321 bp 

plasmid D (NZ_CP010225) that had a length for matches >1 Kb of 5,925 bp. The best 

match to VREC1073’s IncFIA 156,298 bp plasmid was to Klebsiella pneumoniae strain 

SKGH01 84,941 bp plasmid unnamed 3 (NZ_CP015503) that had a length for matches >1 

Kb of 39,187 bp. The best match to blaCTX-M-27-positive VREC1428’s IncFIA plasmid was 

to Shigella sonnei strain 2015C-3566 was for a 55,820 bp plasmid 

unnamed1(NZ_CP022458) that had a length for matches >1 Kb of 53,995 bp.  

 

4.3.5 Phylogenetic context of analysed isolates 

  

Comparison of these six samples with 119 published ST131 (Ben Zakour et al. 2016; 

Matsumura et al. 2017) as short read assemblies scaffolded using reference genome 

NCTC13441 showed that all clustered in ST131 clade C (Figure 4.8). There was sufficient 

resolution across 4,457 core genome SNPs to confidently assign them to subclades C1 

(n=1) or C2 (n=5) (Figure 4.9). VRES1160, VREC0693, VREC1013, VRES0739 and 

VREC1073 clustered with C2, whereas the blaCTX-M-27-positive VREC1428 was in C1. 
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VRES1160, VREC0693 and VREC1013 all had IncF plasmids (IncFIA, IncFIB, IncFII) and 

blaCTX-M-15 genes, consistent with C2 are typically blaCTX-M-15-positive, which was observed 

for 77% of C2 isolates here (48 out of 62). However, VREC1073 was in C2 but had an a 

blaCTX-M-14 gene, contradicting this pattern and was the sole blaCTX-M-14-positive C2 isolate 

found here. The core genomes of VRES0739 and VREC0693 were identical, implying that 

VRES0739 has very recently lost its (blaCTX-M-positive IncF) plasmid. The sole isolate 

clustering with C1 was VREC1428, which had an IncFIA plasmid with a blaCTX-M-27 gene, 

and so may belong to the emerging subclade C1-M27 as evidenced by the presence of 

prophage-like regions like M27PP1/2 (Matsumura et al. 2017).  
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Figure 4.8. Phylogram of the six ST131 genomes showed that all 

except VREC1428 were in ST131 subclade C2 (red: VRES1160, 

VREC1073, VRES0739, VREC0693 and VREC1013). VREC1428 

clustered in subclade C1 (purple). No new isolate was in C0 

(green). The phylogram was built with RAxML v.8.2.11 and iTOL 

v4.3 using 3,603 non-recombinant SNPs from Gubbins v.2.3.4 

where branch support was performed by 100 bootstrap 

replicates, and the scale bar indicates the number of 

substitutions per site. Clade classification was based on 

phylogenetic analysis by (Ben Zakour et al. 2016) by including 

the reference NCTC13441, n=63 isolates from (Ben Zakour et al. 

2016) and n=56 from (Page et al. 2015) with associated 

classification and blaCTX-M allele data. The right-hand part shows 

blaCTX-M-15 (red), blaCTX-M-14 (purple) and blaCTX-M-27 alleles 

(green). The six isolates’ names are in large bold text. This mid-

pointed rooted phylogeny included reference genome isolates 

EC958 and NCTC13441 (both in C2) and a clade B isolate as an 

outgroup (Figure 4.3). The C2 isolates were mainly blaCTX-M-15-

positive (48 out of 62, including VRES1160, VRES0739, 

VREC0693 and VREC1013), bar 13 that were blaCTX-M--negative 

and one that was blaCTX-M-14-positive (VREC1073). The C0 

isolates were mainly blaCTX-M-15-negative (13 out of 15), as were 

the C1 (30 out of 40) isolates except for four that were blaCTX-M-

27-positive, three that were blaCTX-M-15-positive and three that 

were blaCTX-M-14-positive. 
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Figure 4.9. The phylogenetic context of the six ST131 genomes (names are in large bold 

font) showed that all except VREC1428 were in ST131 subclade C2 (red inner ring: 

VRES1160, VREC1073, VRES0739, VREC0693 and VREC1013). VREC1428 clustered in 

subclade C1 (purple inner ring). No new isolate clustered in C0 (green inner ring), B (blue 

inner ring) or an intermediate cluster (grey inner ring). Clade classification was based on 

phylogenetic analysis by (Ben Zakour et al. 2016) by including the reference NCTC13441, 

n=63 isolates from (Ben Zakour et al. 2016) and n=56 from (Matsumura et al. 2017) with 

associated classification and blaCTX-M allele data. VREC1073, and VREC0693 had 

chromosomal blaCTX-M genes. The outer ring shows blaCTX-M-15 (red), blaCTX-M-14 (purple) 

and blaCTX-M-27 alleles (green). The phylogeny was built with RAxML v8.2.11 using 4,457 

SNPs from a core genome alignment generated with Roary v3.11.2 and was visualised 

with iTOL v4.3. Branch support was performed by 100 bootstrap replicates, and the scale 

bar indicates the number of substitutions per site. This mid-pointed rooted phylogeny 

includes reference genome isolates EC958 and NCTC13441 (both in C2). 
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4.4 Discussion 
 

My study resolved the plasmid architecture of several recent E. coli ST131 isolates, 

allowing investigation of AMR gene location, copy number and potential transposon-

driven rearrangements. This advance was facilitated by the careful DNA handling during 

extraction to produce large volumes of high molecular weight DNA that was pure and free 

from contamination, which was avoided by performing separate extraction steps to 

obtain small plasmids (Lemon et al. 2017) overcoming a limitation for MinION 

sequencing (Wick et al. 2017a). 

 

The long read genome assemblies illuminated significant variation in plasmids, MGEs and 

blaCTX-M gene composition that was not captured by short reads. ST131 is a globally 

pandemic E. coli clonal group (Nicolas-Chanoine et al. 2014) with diverse sources of 

transmission (Roer et al. 2018). Phylogenetic comparison with published genomes (Ben 

Zakour et al. 2016; Matsumura et al. 2017) showed that five out of six isolates were from 

subclade C2 with one from C1. The emergence of clade C has been associated with IncF 

plasmids, and clade C2 with ISEcp1 and Tn2 elements flanking blaCTX-M-15 genes (Stoesser 

et al. 2013; Branger et al. 2018). Our long read assemblies showed the excision of the 

entire TU from the IncFIB plasmid and chromosomal integration at three distinct 

locations for VREC0693, and similarly chromosomal translocation of the blaCTX-M-14 gene 

from an IncFIA plasmid for VREC1073, mediated by ISEcp1 and IS903B based on previous 

work (Ben Zakour et al. 2016). These transposition events were likely driven by 

recombination at adjacent transposable elements. This highlights the value of long read 

sequencing to resolve the location of blaCTX-M genes and that chromosomal translocations 

are not rare in ST131. 

 

A high resolution of the AMR gene structure, context and copy number is highly predictive 

of AMR phenotypes (Greig et al. 2018) and could lead to new insights into AMR 

mechanisms. However, the high indel and mismatch errors in long Oxford Nanopore 

reads (George et al. 2017; Lemon et al. 2017; Greig et al. 2018; Wang et al. 2014) limits 

power to identify AMR isoforms that could permit genome-based antimicrobial 

susceptibility testing (Partridge et al. 2018; Tamma et al. 2018; Tyson et al. 2015). Here, 

the five ONT assemblies together had an average of 447-fold higher indel and 48-fold 
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higher mismatch error rates than those for the corresponding Illumina reads, similar to 

previous work with MinION reads (Judge et al. 2016), and this impacted gene 

identification. Consequently, short reads and assembly polishing methods remain 

important for SNP identification and error detection until long read error rates can be 

reduced (Su et al. 2018).  

 

My findings illustrated the diversity of AMR gene context even within recently emerged 

clones such as ExPEC ST131. The detection of multiple instances of chromosomally 

integrated ESBL genes using long reads here for blaCTX-M-15 in E. coli has parallels 

elsewhere for blaOXA-181 in blaCTX-M-15-positive K. pneumoniae (Lutgring et al. 2018) and so 

highlights chromosomal ESBL gene ISEcp1-mediated transposition as a potential 

adaptive mechanism in Enterobacteriaceae. Further studies are needed with larger 

sample sizes to identify the rates and mechanisms of these dynamic changes.  

 

The sample size issue will be tackled directly in Chapter 5 by assembling the genome of a 

large number (4,071) of E. coli ST131. This is possible in part due to my work in this 

Chapter, the first to perform near-complete assembly of ST131 genome using long reads, 

and so is a novel contribution in this area. This is reflected in its publication in mSphere. 

Given these long read scaffolds and confirmation of the phylogenetic context of C1 and 

C2 along with their blaCTX-M gene isoforms, short read assembly can reveal the frequencies 

of known isoforms in ST131 globally. The latter may be limited in discovering novel ESBL 

context and associated, which was directly investigated in this chapter.  
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4.5 Data Summary 

 

1. Illumina reads accession numbers: ERR2138475, ERR2138200, ERR2138591, 

ERR1878196, ERR2137889 and ERR1878359 in the European Nucleotide Archive 

(ENA) under BioProjects PRJEB21499 and PRJEB19918. 

 

2. ONT reads accession numbers: ERR3284704, ERR328470, ERR3284706, 

ERR3284707, ERR3284708 and ERR3284709 - see 

www.ebi.ac.uk/ena/data/view/PRJEB30511 in  

the ENA or www.ncbi.nlm.nih.gov/sra/PRJEB30511 in the SRA under BioProject 

PRJEB30511; see also Figshare https://doi.org/10.6084/m9.figshare.7554293.v1 

 

3. Unicycler assemblies: Figshare https://doi.org/10.6084/m9.figshare.7560458.v2  
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Chapter 5: The origin, evolution and population 
structure of 4,071 E. coli ST131 genomes 

Abstract 

 
Escherichia coli ST131 is a major cause of infection with extensive antimicrobial 
resistance (AMR) associated with the widespread use of beta-lactam antibiotics. This 
drug pressure has driven extended-spectrum β-lactamase (ESBL) gene acquisition and 
evolution in pathogens like ST131 and so a high resolution of the origin, evolution and 
spread of both ST131 and its ESBL genes is essential. These ESBL genes are embedded in 
mobile genetic elements (MGEs), which aid their transfer to new plasmid or 
chromosomal locations, during which these ESBL genes may be amplified, truncated or 
mutated. Plasmid recombination and conjugation can mobilise these ESBLs in MGEs 
further, thus entailing large-scale genomic epidemiology to investigate these processes 
more precisely. ST131 is as a paradigm for gram-negative bacteria that have a 
monomorphic core genome contrasting with a dynamic ESBL, MGE and plasmid 
composition. We extracted all available high-quality ST131 Illumina HiSeq read libraries 
to resolve the global population structure of ST131’s three genetically distinct clades (A, 
B and C) and their subclades. We applied rigorous quality-control, genome de novo 
assembly and ESBL gene screening to the largest ST131 collection examined of 4,071 
genomes. We reconstructed their evolutionary relationships across their core and 
accessory genomes by exploiting the published reference genomes, Nanopore and PacBio 
assemblies to use k-mer-based methods to contextualise pangenome diversity. We focus 
on the subclades of the most abundant clade (C) to provide a deep resolution of the 
epidemiology and genomic context of key ESBL genes. We show that core genome 
diversity within subclades is not correlated with that of the hypervariable accessory 
genome, including plasmids and key ESBL genes. Our findings underpin the potential to 
improve our understanding of the ESBL gene origin, evolution and spread using 
evolutionary pangenomics that may inform on accessory genome changes linked to 
emerging ST131 outbreaks.  
 
Publication: in preparation for mBio 2019 with Downing T.  
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5.1 Introduction 

 

Infections caused by multidrug-resistant (MDR) Escherichia coli sequence type (ST) 131 

(the ST131 complex) are increasing worldwide (de Kraker et al. 2013, Poolman & Wacker 

2016). ST131 are a type of extraintestinal pathogenic E. coli (ExPEC) that causes a 

significant amount of bloodstream and urinary tract infections globally and typically 

possess extended-spectrum β-lactamase (ESBL) (Banerjee & Johnson 2014), or more 

rarely carbapenemase (Peirano et al. 2011) genes. MDR ST131 is a major cause of ExPEC 

infections, because it has a range of virulence factors (Totsika et al. 2011, Van der Bij et 

al. 2012, Calhau et al. 2013, Ben Zakour et al. 2016, Goswami et al. 2018) and thus may 

be more pathogenic (Dautzenberg et al. 2016). ST131 is reported from around the globe, 

both in healthcare settings and in the community and is nearly always fluoroquinolone 

resistant (FQ-R) (Ben Zakour et al. 2016, Stoesser et al. 2016). The most predominant 

lineage within ST131 is known as clade C: this is FQ-R and has a H30 variant of the type 

1 fimbrial adhesin gene (fimH30) (Price et al. 2013, Petty et al. 2014). In contrast to the 

FQ-susceptible clades A and B, C can offset fitness costs of antimicrobial resistance 

(AMR), plasmid acquisition and maintenance through compensatory mutations at 

regulatory regions (McNally et al. 2016).  

 

Understanding the mechanisms of AMR, host colonisation and pathogenicity in MDR 

ST131 requires a deep investigation of its population structure, selective process and the 

mechanisms by which its ESBL genes spread (Ben Zakour et al. 2016, Stoesser et al. 

2016). Exploring the evolutionary origins, transmission and spread of outbreaks requires 

extensive sampling to contextualise the variation at key genes while simultaneously 

inferring the epidemiology and population structure (Croucher and Didelot, 2015). High-

resolution large-scale bacterial epidemiology inferred from genomic data can address 

these questions (Lees et al. 2018).  

 

Historically, E. coli population structure was inferred from allelic variation at seven 

housekeeping genes to assign ST complexes via MLST (multi-locus sequence typing) 

(Wirth et al. 2006), or at 51 ribosomal genes for rST (ribosomal MLST) (Jolley et al. 2012). 

Outbreak investigation necessitates sufficient biomarker density to allow isolate 

discrimination that is only possible with whole genome sequencing, which also allows 
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profiling of all AMR genes (Sintchenko & Holmes 2015, Revez et al. 2017). A recent 

example of this applying cgMLST (core genome MLST) incorporated most (2,512) genes 

in the E. coli core genome: (Zhou et al. 2019). Computational efficiency has limited 

previous work, including one with 288 ST131 genomes in the context of 9,479 diverse E. 

coli such that only one specimen per rST was examined across 1,230,995 SNPs found in a 

2.33 Mb core genome (Zhou et al. 2019). Given that rST1503 alone may account for 

approximately 81% of ST131 and that outbreaks may comprise a single rST (Ludden, 

Decano et al. 2019), investigating large isolate collections of individual STs can inform on 

past, present and emerging MDR ST131 outbreaks.  

 

Deciphering the evolutionary relationships of a large ST131 collection based on its core 

genome provides a stable foundation to explore their accessory genomes. The gradual 

evolution of ST131 has been punctuated by plasmid conjugation, plasmid recombination 

and mobile genetic element (MGE) rearrangements of the cefotaximase (CTX-M) class of 

ESBLs (Canton et al. 2012, Decano et al. 2019) allowing resistance to 3rd-generation 

cephalosporins, particularly by blaCTX-M-14/15/27 in ST131 (Mathers et al. 2015). This 

accessory genome dynamism is correlated strongly with the high prevalence of blaCTX-M-

15-positive ST131 subclade C2, the most common subclade (Kallonen et al. 2017). ESBL 

and other virulence factor genes likely drive extraintestinal niche colonisation but vary 

across environments depending on MGE-driven mobility (Johnson et al. 2010, Ben 

Zakour et al. 2016, McNally et al. 2016, Kallonen et al. 2017). When coupled with host 

immunity, this environmental niche context results in negative frequency-dependent 

selection (NFDS) acting on the ST131 accessory genome, leading to a dynamic AMR gene 

repertoire (McNally et al. 2019) that has not yet to be explored in ST131’s subclades. 

Consequently, the evolutionary pangenomics of ST131’s clades and subclades can 

identify genetic changes corresponding to key transmission events whose phylogenetic 

pattern can be linked to outbreaks.  

 

As identified in Chapter 5, investigating a large number of E. coli ST131 genomes has not 

yet been achieved at the scale planned here. This extended work on long read sequencing 

and assembly given the known ESBL gene isoforms, plasmids and subclade genetic 

similarities.  Here, we aggregated all available ST131 sequence read libraries. I automated 

quality-control, genome de novo assembly, DNA read mapping and ESBL gene screening 
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in the largest ST131 sample collection examined thus far to reconstruct the core genome 

phylogenetic history as a basis to evaluate the distribution of clades and subclades across 

geographic region over time. We establish that the two most common C subclades (C1 

and C2) have been and continue to co-circulate globally and that their ancestral blaCTX-M 

gene composition and context is flexible. We further show that the diversity of accessory 

genomes in isolates with virtually identical core genomes may be a function of the 

environment because MDR ST131’s open pangenome has extensive AMR gene mobility.   
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5.2 Methods 

 

5.2.1 Study selection and data extraction 

 

4,870 E. coli ST131 genomes and linked metadata were collected using an automated 

text-mining algorithm that used a Python implementation of Selenium (Selenium-

python.readthedocs.io) to extract data related to available E. coli ST131 samples from 

Enterobase (https://enterobase.warwick.ac.uk, Alikhan et al. 2018) on 10th September 

2018 in a manner previously described (Kinderis et al. 2018). This ST131 data was used 

to query the European Nucleotide Archive (ENA) (www.ebi.ac.uk/ena) and NCBI Short 

Read Archive (SRA) databases. Only read libraries that were complete or not labelled as 

“traces” were selected for downloading as FASTQ files (Figure 5.1) from the ENA or SRA. 

Of the initial 4,870 read libraries, 4,264 were paired-end (PE) Illumina Hiseq and four 

were PacBio, in addition to PacBio-sequenced NCTC13441 genome that was used as a 

reference here. Although 495 libraries were available that were predominantly 

sequencing on Illumina MiSeq platforms, these were not examined to avoid platform-

specific artefacts.  
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Figure 5.1. Methods summary of population structure of ST131 genomes. N=4,870 read 
libraries were downloaded from Enterobase on 10 September 2018: 718 were 
incomplete or have no FASTQ files and were hence excluded for downstream processing, 
four were long read libraries (Pacbio) and the rest were short paired-end reads 
(Illumina). The adapters of the four Pacbio and 4,147 Illumina reads were trimmed using 
Cutadapt and Fastp pipeline, respectively. The resulting adapter-free reads were 
assembled using Unicycler. The assembled genomes were annotated and screened for 
AMR genes (including blaCTX-M-14 and blaCTX-M-15) and their genetic context. Pangenome 
analysis was based on Roary and Prokka annotation files. Cleaned reads were mapped to 
the pangenome reference sequence from Roary to estimate gene copy numbers. 
Phylogenetic reconstruction was performed by running RAxML based on the core 
genome alignment of the samples; distinct sub-clusters from the produced phylogeny 
were then determined using Fastbaps (Fast Hierarchical Bayesian Analysis of Population 
Structure). Distances between the core and accessory genomes of the collection was 
estimated using PopPUNK (Population Partitioning Using Nucleotide K-mers). 
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5.2.2 Illumina HiSeq read data quality control, trimming and correction 

 

Of these 4,264 PE Illumina HiSeq quality-checked read libraries, 4,147 passed stringent 

quality control screening. Quality filtering of Illumina reads was implemented using Fastp 

v.0.12.3 (Chen et al. 2018) to trim sequencing adapters, remove reads with poor base 

quality scores (phred score <30) or ambiguous (N) bases, correct mismatched base pairs 

in overlapped regions and cut poly-G tracts at 3' ends. Individual bases in reads were 

corrected by BayesHammer in SPAdes v.3.11.1 using algorithms based on Hamming 

graphs and Bayesian sub-clustering (Nikolenko et al. 2013). Quality control metrics were 

examined at each step: on individual FASTQ files using FastQC v0.11.8 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/), and across the whole collection 

as a batch report using MultiQC v1.4 (Ewels et al. 2016). 117 Illumina Hiseq libraries were 

removed after this process. 

 

5.2.3 Illumina HiSeq read library genome assembly 
 

The 4,147 Illumina Hiseq libraries passing quality control were de novo assembled using 

the bold mode of Unicycler v4.6 that merged contigs where possible (Wick et al. 2017). 

This used SPAdes v3.12 (Bankevich et al. 2012) to generate the initial assembly polished 

by Pilon v1.22 (Walker et al. 2014). Pilon ran iteratively until no further corrections were 

required by the optimal assembly for each sample. This approach was similar to that 

implemented by Enterobase (Alikhan et al. 2018), though it uses BBMap in BBTools 

(Bushnell 2016), SPAdes v3.10 and BWA (Li and Durbin 2010) during assembly (Zhou et 

al. 2019).  

 

5.2.4 Reference PacBio genome quality control and assembly 
 

The reference genome was NCTC13441, which was isolated in the UK in 2003 and 

belonged to ST131 subclade C2 (Brodrick et al. 2018). It was previously assembled into 

a 5,174,631 bp chromosome with 4,983 protein-coding genes and one pEK499-like type 

IncFIA/FIIA plasmid with two blaCTX-M-15 gene copies (accession ERS530440). Although 

four further PacBio read libraries were initially included to test genome assembly 

contiguity and ESBL gene context using longer read libraries, only one passed assembly 
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annotation screening (AR_0058, accession SRR5749732, Sheppard et al. 2018). Its 

adapters were removed using Cutadapt v.1.18 (Martin 2011) followed by excluding 

duplicate reads with Unicycler v4.6. Base correction was implemented during Unicycler 

genome assembly with SPAdes v3.12, and its assembly was iteratively polished by Racon 

v1.3.1 (Vaser et al. 2017) until no further corrections were required. This additional 

5,132,452 bp reference assembly had just five contigs, was in a different subclade (C1) 

compared to NCTC13441, had no ISEcp1, and had 5,506 genes.  

 

5.2.5 Genome assembly quality investigation 
 

For the 4,147 Illumina Hiseq and single PacBio assembly, assembly quality was verified 

with Quast v.5.0 (Gurevich et al. 2013) based on N50, numbers of predicted genes and 

open-reading frames, and numbers of contigs with misassemblies. The quality of these 

short read de novo assemblies was comparable to previous work whose requirements 

required assembly length in the range 3.7-6.4 Mb with <800 contigs and <5% low-quality 

sites (Zhou et al. 2019).  

 

5.2.6 Genome annotation identifies 4,071 assemblies for final examination 
 

Initial annotation of the 4,147 Illumina Hiseq assemblies using Prokka v1.10 (Seeman 

2014) suggested 77 assemblies had a distinct gene composition, indicating that they 

should not be included further because they were either genetically divergent, did not 

assemble adequately, or had sub-standard read libraries. As a result, 4,070 Illumina Hiseq 

genome assemblies were selected for the atlas and aligned against the reference genome 

NCTC13441 and PacBio assembly AR_0058 (Supplementary Table S5.2). This identified 

4,829 genes on average per assembly with a minimum of 3,942 and maximum of 5,749 

(Supplementary Figure S5.1). The variation in numbers of genes per assembly was 

largely explained by the total assembly length (r2=0.959).  

 

5.2.7 Pangenome analysis to identify the core and accessory genomes 
 

We created a pangenome based on the above 4,072 annotation files using Roary v.3.11.2 

(Page et al. 2015) with a 100% BLAST v2.6.0 identity threshold using the MAFFT v.7.310 

(Katoh & Standley 2013) setting. The pangenome output generated a concatenated core 
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CDSs alignment spanning 1,244,619 bases and 3,712 genes scaffolded using NCTC13441, 

which was used for comparison of the core and accessory genomes, and core genome 

phylogenetics. Pangenomes for each clade and C subclade were also created for accessory 

(cloud) genome comparison. 

 

5.2.8 Phylogenetic reconstruction to verify subclade assignments 
 

The evolutionary relationships between the strains were inferred by generating a 

maximum likelihood phylogeny based on the core genome alignment of 4,071 genome 

assemblies with NCTC13441 as a reference across 1,244,619 sites containing 26,946 

alignment patterns (from 30,029 SNPs) for 50 iterations of RAxML v8.2.11 (Stamatakis 

2014) with a GTR model and gamma substitution rate heterogeneity. 3,585 (88%) of 

genome assemblies were genetically unique. The total execution time on an Ubuntu 16.04 

computer server with 256 Gb RAM using 52 threads was 24.43 days. The resulting 

phylograms were drawn and annotated using iTol v4.3.2.  

 

5.2.9 Population structure and subclade assignment 
 

Clade classifications were initially based on published ST131 fimH phylogenetic analysis 

that associated clade A with fimH41, B with fimH22, B0 with fimH27, and C with fimH30 

(Price et al. 2013). To classify the C subclades for a large dataset that can be dissected as 

a sparse matrix, we used using genetic clustering based on a hierarchical Bayesian 

clustering algorithm implemented in Fastbaps v1.0 across the 30,029 core genome SNPs 

(Tonkin-Hill et al. 2018) in R v3.5.3 with packages ape v5.3, ggplot2 v3.1.1, ggtree v1.14.6 

(Yu et al. 2017), maps v3.3.0 and phytools v6.60. This used default parameters except for 

a Dirichlet prior variance of 0.006.  

 

5.2.10 ESBL gene screening and contig visualisation 
 

ESBL gene screening across the 4,071 assemblies’ total of 505,761 contigs was 

implemented to detect contigs with blaCTX-M-14/15/27 genes using BLASTn alignment of 

these three genes individually and the Comprehensive Antibiotic Resistance Database 

(CARD v3.0) requiring 100% identity for any match versus each assembled contig. 

Selected blaCTX-M-14/15/27-positive contigs were visualised using the Multiple Antibiotic 



192 

 

Resistance Annotator (MARA) (Partridge & Tsafnat 2018), R v3.5.2 and EasyFig v2.2.2 

(Sullivan 2011) to examine the local gene structure. Frequencies of ST131 clades, 

subclades and their blaCTX-M-14/15/27 genes over geographic region and time were 

examined with R packages dplyr v8.0.1, forcats v0.4.0, ggplot2 v3.1.1, ggridges v5.1, grid 

v3.5.2, plotly v4.9.0, plyr v1.8.4, purr v0.3.2, questionr v0.7.0, readr v1.3.1, rentrez v1.2.1, 

stringr v1.4.0, tibble v2.1.1, tidyr v0.8.3, tidyverse v1.2.1 and XML v3.98-1.19.  

 

5.2.11 Accessory genome composition across clades and subclades 
 

The relative pairwise genetic distances of the core (π) and accessory (a) genomes were 

compared across the pangenome of all 4,071 assemblies, for each clade, each C subclade 

and all blaCTX-M-positive clade C samples using Poppunk (Population Partitioning Using 

Nucleotide Kmers, Lees et al. 2019). Poppunk has high power to distinguish closely 

related genomes (Lees et al. 2019) and used variable length DNA k-mer comparisons with 

Mash v2.1 (Ondov et al. 2016) and a Gaussian mixture model to examine the correlation 

of π and a per pair of samples. This annotation- and alignment-free approach 

complemented the Fastbaps, RAxML and Roary results.  

 

In addition, we determined the expected shell gene number (E[ap]) from the Roary output 

for a given pooled set of samples p originally from groups i=1..k based on the shell gene 

number of group i (ai) weighted by the corrected for the deficit in core (ci) and soft core 

(si) gene numbers: 

𝑬[𝒂𝒑] =
∑ 𝒏𝒊𝒂𝒊
𝒌
𝒊=𝟏

∑ 𝒏𝒊
𝒌
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−
∑ 𝒏𝒊(𝒄𝒊 − 𝒄𝒑)
𝒌
𝒊=𝟏

∑ 𝒏𝒊
𝒌
𝒊=𝟏

−
∑ 𝒏𝒊(𝒔𝒊 − 𝒔𝒑)
𝒌
𝒊=𝟏

∑ 𝒏𝒊
𝒌
𝒊=𝟏

 

 
The percentage excess was determined as: (ap - E[ap])/E[ap]. Similarly, the expected cloud 

gene number E[dp] was computed from the cloud gene number of group i (di) weighted 

by the sample size (ni) adjusted for the difference in core (ci), soft core (si) and shell (ai) 

gene numbers: 

𝑬[𝒅𝒑] =
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Again, the percentage excess was determined as: (dp - E[dp])/E[dp]. 
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We quantified pangenome openness (alpha) from Δn = kN-alpha where Δn was the number 

of newly added genes across N genome assemblies with n genes in total as estimated by 

Roary with R packages poweRlaw v0.70.2, igraph v1.2.4.1 and VGAM v1.1.1. This power-

law regression approximates Heaps’ law well, such that an open pangenome has alpha < 

1, and a closed one alpha > 1 (Tettelin et al. 2008, Park et al. 2019). Previously, diverse E. 

coli had alpha = 0.625 where the latter was largely stable with a slight decline as N 

increased (Park et al. 2019), and similarly alpha was approximately 0.877 for ST131 clade 

C, 0.898 for B, 0.958 for A, and 0.951 for all combined, suggesting alpha was higher when 

genetically distinct clades were combined (McNally et al. 2019).  
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5.3 Results 
 

5.3.1 Collation, screening and generation of 4,071 high quality draft ST131 genome 

assemblies  

 

We collated SRA and ENA accession IDs and linked metadata on 4,870 global ST131 

strains from Enterobase using a text mining algorithm on 10th September 2018. Of these, 

4,267 were genome-sequenced using Illumina HiSeq or PacBio platforms from 188 

BioProjects. Following thorough filtering steps, a final collection of 4,071 high quality de 

novo genome assemblies whose DNA was isolated in 1967-2018 from diverse sources 

across 170 BioProjects (Supplementary Table S5.1) were created for investigation and 

further analyses (Supplementary Table S5.2). 721 assemblies were not examined further 

because they were sequenced using a different platforms (Illumina MiSeq), or had poor 

library base quality metrics. 

 

These 4,070 Illumina HiSeq read libraries assembled using the Unicycler v.0.4.6 pipelines 

(bold mode) generated draft genomes with a mean N50 of 195,830±57,037 bp (mean ± 

standard deviation), a mean assembly length of 5,136,890±121,402 bp, an average of 

124.3±74.8 contigs, and an average of 4,829±142 genes (Supplementary Table S5.2). The 

final assembly was generated from PacBio reads (AR_0058) to make five contigs with a 

N50 of 4,923,470 bp and an assembly length of 5,132,452 bp.  

 

5.3.2 A ST131 core genome of 3,712 genes and an accessory genome of 22,525 

genes 

 

We assembled the 4,071 assemblies’ pangenome using NCTC13441 as the reference with 

Roary (Page et al. 2015) resulting in 26,479 genes, most of which were rare. The hard 

core genome was composed of 3,712 genes present in all samples (100%), though an 

additional 242 comprised the soft core genome (present in ≥95% of samples) 

(Supplementary FigureS5.3). 22,525 CDSs formed the accessory genome, along with 242 

in the soft core (>95% of samples), 1,018 shell genes found in 15-95% of samples, and 

21,507 (81% of the total) cloud genes in <15% of samples.  
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5.3.3 Population structure classification shows three dominant ST131 C subclades  

 

Of the final 4,071 assemblies, clades A (n=414, 10.1% of the total), B (n=420, 10.3%) and 

B0 (n=13, 0.3%) were relatively rare in comparison to the 3,224 assigned to clade C 

(79%). This was based on fimH typing that showed 91% of clade A had fimH41, 66% of 

clade B had fimH22, 99% of clade C had fimH30, and unexpectedly all 13 isolates in 

subclade B0 were in fimH30, rather than fimH27 (Table 5.1). Nine isolates were fimH54, 

of which eight were in clade B (Matsumura et al. 2017). 

 

ST131 subclades within the main clades were determined by clustering based on 30,029 

core SNPs with Fastbaps v1.0 (Figure 5.2). This came from the core genome of 3,712 

genes spanning 1,244,619 bp of the reference NCTC13441 chromosome and did not 

include the 242 soft core genes whose absence may have been due to assembly errors or 

other artefacts (Supplementary Figure S5.1). This divided the 4,071 isolates into nine 

genetically distinct subclades (clusters 1-9) and two groups of unassigned isolates 

(clusters 10 and 11) (Supplementary Figure S5.2). Clade A was mainly assigned to cluster 

2 (n=407, 98.3%) and seven were unassigned (cluster 11). Clade B isolated were in 

clusters 1 (n=90, 21.4%), 3 (n=96, 22.9%), 5 (n=64, 15.2%), 7 (n=115, 27.4%) and 8 (n=4, 

1.0%), with an additional 51 (12.1%) that were unassigned (n=34 in cluster 10, n=17 in 

cluster 11). Subclade B0 strains entirely belong to cluster 8, suggesting that this group 

could be considered one of a number of lineages in clade B.  

 

Although clade C was dominant, it had only three main subclades determined by 

Fastbaps. C0 (n=52) was mainly assigned to cluster 11, consistent with its heterogeneous 

classification (Ben Zakour et al. 2016). C1 was composed of 1,121 isolates, 1,113 of which 

were in cluster 6 (referred to as C1_6) with eight unassigned in cluster 10 (Figure 5.3). 

C2 had 2,051 isolates, of which 1,651 were assigned to cluster 9 (C2_9) and 386 to cluster 

4 (C2_4). One C2 genome was assigned to cluster 6 and 13 to cluster 10, perhaps due to 

SNP calling accuracy. 

 

Clade/ 
subclade 

Fastbaps 
Cluster 

IDs 

Isolate 
count 

fimH allele 

41 22 30 Others 

A 2 414 376   38 



196 

 

B 1, 3, 5, 7, 8 420 8 277  135 
B0 8 13   13  

C0 - 52   51 1 

C1 6 1,121   1,111 10 

C2 4, 9 2,051   2,032 19 

Total  4,071 384 277 3,207 203 

 
Table 5.1. Number of ST131 in clades A, B, B0 and subclades C0, C1 and C2. Isolates from 

clade A mainly had fimH41 and were assigned to Fastbaps cluster 2. Clade B tended to 

have fimH22 as well as others and were assigned to multiple Fastbaps groups. Clade C 

mainly had fimH30 or fimH-like alleles and were assigned to Fastbaps cluster 6 for C1 

(aka C1_6), or clusters 4 and 9 for C2 (aka C2_4 and C2_9). 
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5.3.4 ST131 subclades’ relative frequencies stable over time 

 

Previous work has shown that accessory genome NFDS driven by AMR gene acquisition, 

ecological niche colonisation ability and host antigen recognition has stabilised the 

relative frequencies of ST131 and its clades over time, relative to other STs (Kallonen et 

al. 2017, McNally et al. 2019). This pattern was present in this study in the clades (A, B, 

C) and three main C subclades, C1_6, C2_4 and C2_9 for 2002-2017 where sufficient 

annual sampling was available (Supplementary Figure S5.4): clade A was first sampled 

here in Japan in 2004, and C2_4 in 2008 in the USA, their relative rates soon stabilised 

after emergence, consistent with NFDS. 53% of the 4,071 had no source information and 

only 12% of the remainder was from non-human sources, suggesting that although a 

relatively higher rate of clade B isolates were from animal sources (OR=9.0) here, this 

may be a consequence of biased sampling.  
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Figure 5.2. Maximum likelihood phylogeny of n=4071 global ST131 (a) and the distribution of E. coli ST131 samples across continents 
and sources over time (b). The phylogram showed clades A (n=414), B (n=420), the intermediate subclade B0 (n=13) and C (n=3,224; 
n=52 of these were from C0, n=1,121 were from C1 and 2,051 belong to C2). The mid-point rooted phylogram was constructed with 
RAxML from the 30,029 chromosome-wide SNPs arising by mutation and visualized with iTol. The colored strips surrounding the tree 
represent the subgroups formed from hierarchical Bayesian clustering generated using Fastbaps and the major type of each strain. The 
histograms in (b) show that 2,051 out of the 4,071 ST131 genomes isolated from 1999 to 2018 belong to C2. 
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Figure 5.3. Phylogenetic reconstruction (a) and the geographic distribution of n=3,224 Clade C strains over time (b). Clade C0 isolates in 

(a) were from Fastbaps cluster 11 (n=52) while a singleton belonged to cluster 10. Of the 1,121 C1 samples, 1,113 form the Fastbaps 

cluster 6 and eight were more closely related to cluster 10. The C2 subclades corresponded to Fastbaps clusters 9 (C2_9, n=1,651 samples) 

and 4 (C2_4, n=386). 2,416 from Clade C had blaCTX-M-14, blaCTX-M-15, or blaCTX-M-27 genes: 177 blaCTX-M-14, 1,790 blaCTX-M-15 and 424 blaCTX-M-

27.  
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5.3.5 Epidemic ST131 subclades C1 and C2 co-circulating globally 

 

Subclades C1 and C2 were prevalent globally with no evidence of population structure, 

suggesting they were (and are) a co-circulating epidemic, likely associated with frequent 

host switching (McNally et al. 2016). This comes from the 819 isolates from Europe, 499 

from North America, 294 from Asia, 80 from Oceania, 20 from South America, 12 from 

Africa - the remaining 2,347 (58%) of the 4,071 had no recorded geographic information. 

Annual sampling peaked at 255 in 2014: these had a broad geographic origin including 

countries in Asia, Africa, Europe, North America and Oceania (Figure 5.3; Supplementary 

Table S5.2). There were minor differences in the relative rates of C1_6, which was more 

common in North America (OR=1.57, 95% CI 1.25-1.96, p=0.0004) and less common in 

Europe (OR=0.67, 95% CI 0.53-0.81, p=0.0004), and also for C2_4, which was more 

frequent in Asia (OR=1.75, 95% CI 1.18-2.56, p=0.019) and less common in North 

America (OR=0.61, 95% CI 0.40-0.91, p=0.042). 

 

The most likely origin of clade C can be based on the common ancestor with clade B, 

whose sample distribution in 1967-1997 was solely in the USA across five Fastbaps 

clusters here (1, 3, 5, 7, 10) until one isolate in Spain in 1998. This is because previous 

work has timed origins of clade C in 1985, the fimH30 allele to 1986, the FQ-R C1/C2 

ancestor with mutations at the DNA gyrase and DNA topoisomerase genes to 1991 

(Ludden, Decano et al. 2019) (or potentially earlier in 1986, Kallonen et al. 2017), 

consistent with a North American origin of C. However, the earliest isolate from clade C 

in our data was isolated in Norway in 1999 from a cancer patient (ERR1912633 from 

C2_9) that was FQ-R with no blaCTX-M gene but did have a blaTEM-1B one (Knudsen et al. 

2017). C1_6 was first detected in 2002 in Japan in a blaCTX-M-14-positive sample, and C0 

later in 2008 in Nepal.  
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Subclade Number 

blaCTX-M allele numbers per isolate mppA 

14 14+15 15 15+27 27 Intact Truncated 

A 414 65 1 66 2 51 414  

 % 15.7 0.2 15.9 0.5 6.5 100  

B 420 7 1 9  1 409 11 

 % 1.7 0.2 2.1  0.2 97.4 2.6 

C0 52   46  1 52  

 %   88.5  2.0 100  

C1_6 1113 149 6 59 3 418 1,108 3 

 % 13.4 0.5 5.3 0.3 37.6 99.6 0.3 

C2_4 386 12 3 339 7 1 382 1 

 % 3.1 0.8 87.8 1.8 0.3 99.0 0.3 

C2_9 1651 16 6 1,338  4 1,561 90 

 % 1.0 0.4 81.0  0.2 94.5 5.5 

 
Table 5.2. Genetic characterization of ST131 subclades’ blaCTX-M-14/15/27 genes. Also 

shown is the chromosomal gene mppA as intact or truncated, where truncation of this 

gene may indicate chromosomal insertion of a TU containing a blaCTX-M-15 gene. Seven 

samples (0.2% of all) had undetermined mppA contexts due to small contig sizes. 

Subclade B0 (n=13) is not shown because it had no blaCTX-M genes and all its mppA genes 

were intact (Supplementary Figure S5.5).  

 

5.3.6 Variable prevalence of blaCTX-M-14/15/27 genes across time, geography and 

ST131 subclades 

 

Alignment of the 4,071 assemblies blaCTX-M-14/15/27 genes with BLAST and CARD showed 

that these genes were more common in clades A (45%) and C (75%) than B (4%) (Figure 

5.1), and that a limited number of isolates were both blaCTX-M-14/15-positive (0.4%) or 

blaCTX-M-15/27-positive (0.3%), but none were blaCTX-M-14/27-positive (Table 5.2). Clade A 

had higher rates of blaCTX-M-14/15 alleles than blaCTX-M-27 ones, perhaps because the former 

were detected in isolates from A in 2005-6 versus 2011 for the latter, and blaCTX-M-27 in 

clade A was slightly more common in Asia.   
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Two thousand four hundred eight (2,408) clade C samples had blaCTX-M genes: 1,782 

blaCTX-M-15, 424 blaCTX-M-27, 177 had blaCTX-M-14, 15 blaCTX-M-14/15, and 10 blaCTX-M-15/27 

(Figure 5.4). The rate of blaCTX-M-positive isolates was highest in C2_4 (93.8%) followed 

by C0 (90%), C2_9 (82.6%) and then C1_6 (57%) (Supplementary Figure S5.7). The 

earliest blaCTX-M-positive clade C strain was from a human isolate in Canada (ERR161284 

from C2_9, Supplementary Table S5.2, Petty et al. 2014). For this C2_9 group, 81% (1,338 

of 1,651) were blaCTX-M-15-positive with limited geographic or temporal structure 

(Supplementary Figure S5.6c). Two C2_9 samples that also had blaCTX-M-14 genes were 

from Japan, as was one that had blaCTX-M-14 only and another that had blaCTX-M-27 only 

(Matsumura et al. 2016). Similarly, the majority of C2_4 assemblies (339 or 386, 88%) 

were blaCTX-M-15-positive, with no geographic or temporal structure indicating their global 

spread (Supplementary Figure S5.6b). This reiterates that the C2 ancestor was blaCTX-M-

15-positive and that subsequent gains of other blaCTX-M genes were likely local conjugative 

events.  

 

C1_6 had a different blaCTX-M gene rates to C2, most probably because its earliest 

acquisition of blaCTX-M-15 was 2008 here, whereas blaCTX-M-14-positive isolates were found 

from 2002 and blaCTX-M-27-positive ones from 2004 (Supplementary Figure S5.6a). This 

later date for blaCTX-M-27 may be because it differs from blaCTX-M-14 by a single D240G 

mutation that arose sometime before 2000, and this allows higher ceftazidime resistance 

and is shared with blaCTX-M-15 (Bonnet et al. 2003). BlaCTX-M-15 was marginally more 

common in Europe (OR=3.3, 95% CI 1.38-8.70, p n/s), and blaCTX-M-14 was more common 

in Asia (OR=4.4, 95% CI 2.21-8.85, p=0.00007), whereas blaCTX-M-27 was common globally. 

Consequently, blaCTX-M-27 (38%) was much more common in C1_6 than blaCTX-M-14 (14%) 

or blaCTX-M-15 (6%) (Table 5.2). In addition, C1_6 was only found in Japan in 2002-2004, 

before detection in China and Canada (both 2005), Europe by 2007 and Africa by 2008. 

This historical context is associated with the 11,894 bp M27PP1 region in the C1-M27 

lineage (Matsumura et al. 2016), numbering 421 here. 
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Figure 5.4. Distribution of ST131 samples that belong to subclades C1_6, C2_4 and C2_9 over geography (country) and time (year; a) and 

the type of blaCTX-M allele that they contain (b). Samples from C1_6 are represented by green dots/squares, those from C2_4 are indicated 

by blue dots/squres; red dots/pink squares are strains from C2_9. Data were plotted and drawn using R v.1.1.463 for (a) and Tableau 

v.10.1 for (b). 
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5.3.7 Genomic locations and structures of the blaCTX-M-14/15/27 genes’ contigs across 
ST131 subclades 
 

Screening all 505,761 contigs from the 4,071 assemblies for blaCTX-M-14/15/27-positive ones 

identified different local structures and multiple genomic contexts. These contigs with 

blaCTX-M genes were annotated with Prokka and MARA so that isoforms in C1_6, C2_4 and 

C2_9 could be examined. C2 isolates generally had blaCTX-M-15 genes in a transposition unit 

(TU) flanked by a 1,658 bp 5’ ISEcp1 and 3’ a orf477 as a 2,971 bp ISEcp1-blaCTX-M-15-

orf477Δ TU, usually with a 5.8 Kb Tn2 at the 3’ end (Supplementary Figure S5.8). Some 

isolates had incomplete TU cassettes due to the small contig lengths recovered from short 

reads, but this TU structure was verified previously using long reads in Chapter 4 (Decano 

et al. 2019). 

 

Normally this TU is encoded on an IncF plasmid (F2:A1/ B-), but selected C2_9 isolates 

had a chromosomal insertion of a blaCTX-M-15 gene here (Supplementary Figure S5.9). 

Previously, an outbreak detected in C2 isolates from Europe and North America had this 

TU chromosomally inserted at the mppA gene (Ludden, Decano et al. 2019). Here, we 

found 13 additional C2_9 isolates with the same insertion that had both time and 

geographic data, indicating that this genetic lineage was present in Thailand (Stoesser et 

al. 2016), Singapore and the Democratic Republic of Congo in 2014 (Irenge et al. 2019), 

consistent with a global circulation pattern (Supplementary Figure S5.6c, Supplementary 

Figure S5.5) from an origin in about 1998 (Ludden, Decano et al. 2019). One C2_4 isolate 

from Pakistan in 2012 had this TU inserted at mppA (SRR1610051, Sheppard et al. 2018), 

affirming that insertions at mppA will recur due to local sequence homology to ISEcp1’s 

14-bp 3’ inverted repeat (IRR) (Lartigue et al. 2006, Canton et al. 2012, Poirel et al. 2013).  

 

5.3.8 Inter-clade but not intra-clade accessory genome divergence 

 

Previous work suggests that the accessory genome was specific to ST complexes because 

it was associated with ecological niche specialisation driving NFDS such that pangenome 

variation was higher in C than B than A, even though B was more diverse than A or C 

(McNally et al. 2016). We compared the ST131 clades and subclades’ accessory genomes 

to determine diversity levels in terms of the core and intermediate (15-95%) frequency 
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shell genes, pangenome openness and accessory gene overlap. Clade C’s more recent 

origin corresponded to a larger core genome (3,916 genes) that was higher in subclades 

C0 (4,031), C2_4 (4,109) and C2_9 (4,019) but not C1_6 (3,843), consistent with an older 

origin for C1 than C2 (Stoesser et al. 2016). Most of the 22,525 accessory genes across the 

4,071 assemblies were cloud genes that had a low frequency of <15% across the 

collection (21,507 or 95.5%) (Supplementary Figure S5.3). Across the three clades and 

four C subclades, cloud gene rates were proportional to group sample size, symptomatic 

of an open pangenome increasing sub-linearly without convergence (Supplementary 

Figure S5.10), for which sample number explained most (r2=0.846, p=0.00012) of 

variation in cloud gene number, but not core (r2=0.162), soft core (r2=0.258) nor shell 

(r2=0.001) gene numbers (Table 3).  
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Our 4,071 genome assemblies had more open pangenomes compared to related work 

(McNally et al. 2019) with alpha = 0.823 (Supplementary Figure S5.10). As expected, 

clade A had a less open pangenome (0.807) than B (0.762, Table 5.3), and like previous 

studies B in this collection had fewer core (3,771 genes) but more shell and cloud genes 

(Supplementary Figure S5.11). Clade C (0.806) was less open than clade B here, whereas 

previously 648 clade C ST131 had a more open pangenome than 140 clade B isolates and 

70 from clade A (McNally et al. 2019). One factor was that here alpha was relatively stable 

once >250 genomes were sampled (Supplementary Figure S5.10), like previous findings 

(Park et al. 2019). A second was that the average alpha for all 4,071 as increasing 

numbers were added was similar to the estimate above (0.8123±0.024), though the 

variance of alpha was inversely proportional to sample size (Table 5.4). Within C here, 

the most prevalent subclade C2_9 had a less open pangenome (0.822) than C2_4 (0.696) 

or C1_6 (0.755), suggesting that a third factor may be the dependency of pangenome 

openness with a more recent origin. 

 

NFDS predicts that accessory genes are maintained intermediate levels, presumably due 

to functional relevance to the ecological niche (McNally et al. 2019). This was supported 

by the high correlation of pairwise core and accessory genome distances across the 4,071 

assemblies between clades A, B and C measured with Poppunk (Lees et al. 2019), 

consistent with work on a diverse E. coli dataset including 218 ST131 (Kallonen et al. 

2018). A higher alpha corresponding with more population structure was supported by 

a lower alpha for the more recent lineage C2_4 compared to the other clusters. 

Consequently, we examined pangenome openness using Roary results for clade and 

subclade combinations and found that C combined with B (0.813) showed less population 

structure than when combined with A (0.835), consistent with previous work (Table 5.3). 

Given the pangenome openness for the subclades individually, the alpha values for C2_4 

with C1_6 (0.760) or C2_9 (0.808), and for C1_6 and C2_9 combined (0.819) showed 

proportionally similar pangenome differences (Table 5.4).  

 

To explore the accessory gene overlap further, the observed numbers of cloud and shell 

genes were compared to the expected values weighted by the numbers of pooled samples 

adjusted for gene category changes (Methods). Given the relatively conserved core 

genomes adjusted for cloud gene rates, pooled groups with extensive population 
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structure resulting in accessory genome divergence should have more shell genes, 

contrasting to h a lack of population structure where there would be no excess of shell 

genes. Pairwise combinations of A, B and C had a 17-61% cloud gene excess proportional 

to pooled sample sizes, and shell gene levels indicating higher divergence between A with 

B (shell gene excess 6%) or C (1%) than for B and C whose deficit of 6% indicated some 

shell gene overlap.  

 

Within and across the C subclades, the pairwise core and accessory genome distance 

correlation did not hold because their accessory genomes varied extensively even if the 

core genomes were nearly identical (Figure 5.5). The older lineages C1_6 and C2_9 had a 

large cloud gene excess (41%) but a small shell gene one (3%), indicating extensive 

accessory gene sharing that was absent with C2_4 was compared with both C1_6 (22%) 

and C2_9 (23%) (Table 5.4). This more unique shell gene set in C2_4 was also found when 

this was compared with A (41% excess) or B (5%) in contrast to rates for C1_6 (16% with 

A, -8% with B) and C2_9 (16% with A, -11% with B). These results highlighted that the 

diverse accessory genes present in any given isolate was independent of the core genome 

composition, but that the panel of potential accessory genes within each clade was 

estimatable. They also suggested that newer lineages like C2_4 that are initially rare may 

initially possess more open pangenome due to NFDS and will gain more mixed accessory 

genomes like the other ST131 groups if they share environmental niches due to NFDS. 
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 Clades All A B C A & B A & C B & C C0 C1_6 C2_4 C2_9 

Gene set #isolates 4,071 414 433 3,200 847 3,616 3,635 52 1,113 384 1,651 

Total  26,479 12,163 16,323 21,304 18,639 22,912 25,084 6,427 16,490 10,322 15,485 

Core c 3,712 3,798 3,771 3,916 3,708 3,738 3,776 4,031 3,843 4,109 4,019 

Soft core s 242 292 281 334 232 260 325 447 424 380 354 

Shell a 1,018 764 1,437 731 1,317 980 881 766 571 642 566 

Cloud 
d 21,507 7,309 10,834 16,323 14,573 17,934 20,102 1,183 11,652 5,191 10,546 

weighted[d] 14,726.3   10,135.9 9,111.0 15,281.9 15,660.2     

Shell 
a 1,018 764 1,437 731 1,317 980 881 766 571 642 566 

weighted[a] 805.1   580.1 1,108.0 734.4 814.7     

Core Deficit 175.4   52.8 76.2 164.4 122.7     

Soft core Deficit 81.5   49.0 54.4 69.2 2.7     

Shell Deficit -206.9   -150.9 -209.0 -245.1 -65.8     

Shell E[a] 1,062.1   681.9 1,238.6 967.9 940.0     

Shell Difference -4.1%   7.2% 6.3% 1.2% -6.3%     

Cloud E[d] 14,776.3   10,086.8 9,032.7 15,270.4 15,719.7     

Cloud Difference 45.6%   61.8% 61.3% 17.4% 27.9%     

Openness alpha 0.8231 0.8066 0.7619 0.8059 0.8132 0.8349 0.8128 0.9392 0.7549 0.6957 0.8222 

Openness mean_alpha 0.8123 0.7798 0.7985 0.7658     0.7490 0.7541 0.7989 

Openness SD_alpha 0.0244 0.0451 0.0463 0.0310     0.0171 0.0767 0.0378 

Table 5.3. The pangenome composition of ST131 clades and subclades showed stable core, soft core and shell genomes with open 
pangenomes (alpha). The ST131 clades and subclades dynamic cloud gene rates near-linearly correlated with sample size following a 
power law model. For pooled groups with independent genomes, the fractions of core, soft core and shell genes should decrease 
proportionally and that for cloud genes should increase. If a pool group had a near-identical accessory genome, the fractions of core, soft 
core and shell genes would be constant with a cloud gene set that was dependent on the pooled sample size. The excess percentage was 
expressed as a function of the expected numbers. The difference between the observed and expected shell and cloud gene set counts 
showed the percentage excess genes where the expected value was the weighted average of the pooled groups. The B0 subclade (n=13) 
was included with clade B above. Eight C1 (C1_10) and 16 C2 (C2_6 and C2_10) isolates were not examined in this analysis because they 
were not assigned to clear clusters during Fastbaps analysis.  
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Figure 5.5. Majority of Clade C isolates have more diversity across their accessory 

genome compared to their core genome. Each plot shows the distribution of core (π, x-

axis) and accessory genome pairwise distances (a, y-axis) as blue dots with contour 

indicating dot density. Top left: All 4,071 assemblies displayed pairwise differences such 

that the contours indicated the three main clades: A at π=0.0038, a=0.15; B at π=0.0014, 

a=0.18; C at both π=0.0005, a=0.08 and π=0.0001, a=0.09. Top right: All 2,416 blaCTX-M-

positive clade C strains were grouped with the other clade C isolates. Middle left: The 52 

subclade C0 isolates had a peak density at π=0.001, a=0.055. Middle right: The 1,113 C1_6 

isolates had a peak density mainly at π≤0.001, a=0.06. Bottom left: The 386 C2_4 isolates 

had peak densities at π=0.0006, a=0.045 and π=0.0001, a=0.04. Bottom right: The 1,651 

C2_9 isolates had peak densities at π=0.0007, a=0.065 and π≤0.0001, a=0.09. 
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  Subclades C2_4 & 
C2_9 

C1_6 & 
C2_4 

C1_6 & 
C2_9 

A, B & 
C2_9 

A, B & 
C2_4 

A, B & 
C1_6 

Gene set #isolates 2,035 1,497 2,764 2,498 1,233 1,960 
Total    16,637 18,315 20,346 22,200 19,933 23,368 
Core c 4,023 3,875 3,914 3,754 3,740 3,681 

Soft core s 358 406 348 196 215 242 
Shell a 733 772 658 1,098 1,405 1,113 

Cloud d 11,523 13,262 15,426 17,152 14,573 18,332 
weighted[d] 9,535.5 9,994.7 10,991.4 11,911.4 11,627.5 12,914.3 

Shell a 733 772 658 1,098 1,405 1,113 

weighted[a] 580.3 589.2 568.0 820.6 1,104.6 893.4 

Core Deficit 13.0 36.2 34.1 159.5 92.9 103.7 
Soft core Deficit 0.9 6.7 34.2 116.6 63.1 99.0 

Shell Deficit -152.7 -182.8 -90.0 -277.4 -298.1 -219.6 

Shell E[a] 594.2 632.2 636.3 1,096.8 1,260.6 1,096.1 
Shell Difference 23.4% 22.1% 3.4% 0.1% 11.5% 1.5% 
Cloud E[d] 9,396.8 9,854.8 10,969.7 11,910.3 11,485.4 12,897.4 
Cloud Difference 22.6% 34.6% 40.6% 44.0% 26.9% 42.1% 

Openness    0.8080 0.7598 0.8188 0.8476 0.7918 0.8188         

  Subclades A & 
C2_9 

A & 
C2_4 

A & 
C1_6 

B & 
C2_9 

B & 
C2_4 

B & 
C1_6 

Gene set #isolates 2,065 800 1,527 2,084 819 1,546 

Total  
 

17,755 14,578 19,011 20,683 17,972 21,843 
Core c 3,778 3,789 3,680 3,823 3,812 3,711 

Soft core s 267 266 294 274 231 336 
Shell a 1,015 1,308 1,007 855 1,332 894 

Cloud d 12,695 14,573 14,030 15,731 12,597 16,902 
weighted[d] 9,897.0 6,274.1 10,474.5 10,605.8 8,161.7 11,422.9 

Shell a 1,015 1,308 1,007 855 1,332 894 

weighted[a] 605.7 703.5 623.3 747.0 1,060.7 813.5 

Core Deficit 196.7 158.3 150.8 144.5 117.6 111.8 
Soft core Deficit 74.6 68.2 94.2 64.8 96.3 47.9 

Shell Deficit -409.3 -601.2 -383.7 -108.0 -268.0 -80.5 

Shell E[a] 877.0 930.0 868.3 956.3 1,274.6 973.3 
Shell Difference 15.7% 40.7% 16.0% -10.6% 4.5% -8.2% 
Cloud E[d] 9,759.0 5,899.3 10,335.9 10,707.1 8,107.6 11,502.2 
Cloud Difference 30.1% 147.0% 35.7% 46.9% 55.4% 46.9% 

Openness    0.8351 0.7573 0.7880 0.8246 0.7842 0.8195 

Table 5.4. The pangenome composition of ST131 clades and subclades comparisons 

showed stable core, soft core and shell genomes with open pangenomes (alpha). The 

excess percentage was expressed as a function of the expected numbers. The difference 

between the observed and expected shell and cloud gene set counts showed the 

percentage excess genes where the expected value was the weighted average of the 

pooled groups. The B0 subclade (n=13) was included with clade B above. Eight C1 

(C1_10) and 16 C2 (C2_6 and C2_10) isolates were not examined in this analysis because 

they were not assigned to clear clusters by Fastbaps.  
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5.4 Discussion 
 

In Chapter 4 (published in mSphere), we showed the diverse AMR contexts of blaCTX-M 

alleles at plasmids and chromosomes in ST131. We sequenced six clade C ST131 strains 

using Oxford Nanopore technology. While my results provided a high resolution of the 

blaCTX-M genomic locations and local structures, the sample size was small. Analysing the 

largest ST131 sample collection so far thus strengthens this previous chapter.  

 

By collating all available ST131 genomes to produce 4,071 high quality draft assemblies, 

we reconstructed their phylogenetic relationships using a core genome of 3,712 genes to 

show that ST131 is dominated by subclades C1 and C2. Although they have different 

origins and thus had different ancestral ESBL gene compositions, these subclades have 

been co-circulating globally since at least 2002 with relatively stable globally frequencies, 

with minor differences in rates presumably due to differing evolutionary patterns after 

emerging in North America (Stoesser et al. 2016). This worldwide circulation coupled 

with NFDS (McNally et al. 2019) suggests new genetic types with different host adhesion 

abilities (as seen by fimH30, Paul et al. 2013) or AMR variants (like FQ-R or blaCTX-M-15) 

will become an additional co-circulating lineage, and we found such a pattern in our study 

for the minority C2 subgroup called C2_4. 

 

Our analysis confirmed that clade A had variable blaCTX-M gene isoforms where present 

(39%) but clade B seldom was blaCTX-M-positive (4%) in spite of its high diversity, 

suggestive of potential differences in niche specialisation but no difference in source 

types were evident across clades in this study. Subclades C0 and C2 were typically (81-

88%) blaCTX-M-15-positive in contrast to subclade C1 had either blaCTX-M-14 (14%) or blaCTX-

M-27 (38%) genes where present. Although the C1 ancestor may have been blaCTX-M-14-

positive, the higher ceftazidime resistance of blaCTX-M-27 (Bonnet et al. 2003) may explain 

its higher incidence in C1 that we can expect to continue into the future. 

 

We previously highlighted our observations of chromosomally inserted blaCTX-M-15 mostly 

unique to a clade from an Irish outbreak (Chapter 3). We noted a similar pattern in our 

bigger sample population: the same Irish samples formed a subgroup with this unique 

chromosomal insertion at mppA, with some exceptions dispersed across different clades. 
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The clonal expansion of the C2_9 isolates with the 2,971 bp ISEcp1-blaCTX-M-15-orf477-Tn2 

TU mppA chromosomal insertion has spread worldwide. Prior to 1991, ESBL-positive 

isolates were blaSHV-positive (Piddock et al. 1997), and subsequently this TU was 

obtained from Kluyvera (Humeniuk et al. 2002, Barlow et al. 2008), was detected in 

Enterobacteriaceae in 1999 in India (Karim et al. 2001), and the first plasmid sequenced 

containing it was isolated in 1999-2000 in Canada from extended-spectrum 

cephalosporin-resistant ST131 (Boyd et al. 2004). This reiterates that tracking plasmid, 

MGEs and ESBL genes must be a key component of disease monitoring to consider 

potential future ST131 outbreaks’ spectrum of AMR. 

 

Horizontal DNA transfer has allowed E. coli to adapt to new ecological niches (Chen et al. 

2006) and contributes to its dynamic accessory genome (Welch et al. 2002). Our low ratio 

of core (3,712) to accessory (22,525) genes was consistent with previous work 

(Chaudhuri et al. 2010) and showed that cloud gene number is a function of isolate 

number with a median of 2.1 genes per additional isolate in this large collection of 4,071. 

Similarly, a more diverse set of 1,509 E. coli including 266 ST131 had a core genome of 

1,744 genes (>99% of isolates) and 62,753 cloud genes (Kallonen et al. 2017), and an E. 

coli-Shigella core genome had 2,608 genes among a total of 128,193 genes (Park et al. 

2019). Likewise, a previous study of 283 predominantly ST131 ExPEC samples had a total 

of 16,236 genes in an open pangenome, with a core of 3,079 genes (Salipante et al. 2015), 

21% less than the core gene complement here. These pangenome compositions are 

comparable to other Proteobacterial collections (Livingstone et al. 2018).  

 

Although the ST131 accessory genome had 22,525 genes, the NFDS hypothesis posits that 

the 1,018-shell gene set of intermediate (15-95%) frequency genes may drive adaptation 

to new hosts and environments (McNally et al. 2019). The open pangenome (Medini et al. 

2005) and level of shell gene sharing across clades supported inter-clade structure 

resulting from ecological specialisation, with clade A more different to B and C. Within C, 

we found C2_9 had a smaller set of shell genes, perhaps symptomatic of stronger host-

environment NFDS. The more recently emerged C2_4 lineage had a shell gene set more 

distinct from C1_6 and C2_9, indicating that core and accessory gene relationships may 

differ within subclades. We illustrated this by showing that the inter-clade correlation of 

accessory genome distance with that of the core across isolate pairs was not found within 
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subclades. Moreover, isolates from C1 and C2 within minimal core genome differences 

often had divergent accessory genomes (Achtman 2012), implying that approaches using 

core genes may miss the constellation of changes at plasmids, AMR genes and MGEs 

(Lanza et al. 2014) and thus that outbreaks can be better understood using pangenomic 

epidemiology (Stoesser et al. 2016). 

 

This study’s atlas of ST131 genomes will aid in tracing of historical and current 

transmission in humans, for which resolving inferred evolutionary transmissions to the 

level of genealogies may be limited by sampling depth (Hanage 2019). Clonal outbreaks 

may reflect transmission patterns shared by a common ancestral sample or gene and can 

be enhanced by adding epidemiological information to prospective and routine genome-

sequencing data (Raven et al. 2019) to allow inference of past, present and emerging 

fitness in different lineages (Azarian et al. 2018). 

 

Overall, Chapter 5’s results confirm ST131’s rapid global dissemination driven by ESBL 

genes. Future work could explore ideas in a  recent study showing that case notification 

data can produce accurate estimates of a pathogen’s reproductive number over time, 

comparable to actually analysing the genomes throughout the duration of an outbreak 

(Duchêne et al. 2019). Analyses of the metadata alone enabled the authors to simulate 

birth-death process and infer epidemiological dynamics (Duchêne et al. 2019). Given 

numerous large-scale pathogen sequencing projects (Harrison et al. 2019) like 

GenomeTrackr, which has over 317,000 sequenced isolates as of 31st March 2019 and is 

adding >9,500 more per month, more rapid analytic methods are essential to tackle 

infection outbreaks more effectively by harnessing global epidemiological information. 

These now entail global coordination of data processing and bioinformatic interpretation 

to maximise the output from large datasets to identify, trace and control disease 

outbreaks (Pijnacker et al. 2019).  



214 

 

5.5 Data summary 

 

All raw sequence data (reads and/or assembled genomes) for the E. coli genomes 

analysed in this publication are publicly available under the project numbers given in 

Supplementary Table S5.2, with more detail on their Bioproject IDs and associated study 

DOIs in Supplementary Table S5.3.  

 

An interactive version of the phylogeny generated by Poppunk using k-mer genetic 

distances for all 4,071 ST131 assemblies is available in MicroReact at 

https://microreact.org/project/oD6K_fL2d. The tree file (Newick format) is also avaiable 

for download via this link.  
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5.6 Supplementary Tables and Figures 

 

Supplementary tables for Chapter 5 are publicly available in Figshare: 

https://figshare.com/s/d7f57048f104aa45ae79. 

 

Supplementary Table S5.1. Metadata of 4,071 high quality ST131 genomes used in 

this study downloaded from Enterobase.  

 

Supplementary Table S5.2. Quality statistics of the final ST131 read libraries used in 

this study. Shown are the proportion of duplicate reads, the average GC content, mean 

sequence length (bp) and total number of sequences (millions) per library.  

 

Supplementary Table S5.3. Bioproject IDs and associated study DOIs of published 

studies where the genomes in this study were sourced from. 
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Supplementary Figure S5.1.  Number of genes in the 4,071 ST131 genomes (along with NCTC13441) annotated using Prokka showed 

that (a) this identified 4,829 genes on average per assembly with a minimum of 3,942 and maximum of 5,749. (b) Of the total 26,479 gene 

clusters detected using Roary, 3,712 comprised the core genome (blue) spanning 1,244,619 bases based on pangenome analysis, with 242 

soft core genes (yellow), 1,018 shell genes (navy) and 21,507 cloud genes (light blue). 
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Supplementary Figure S5.2. Hierarchical sub-clustering of 4,071 strains using Fastbaps based on 30,029 SNPs. Grouping is indicated by 

numerical numbers in bold red font on top of the blue bars. There were nine major clusters found while two (clusters 10 and 11) were 

dispersed among the major clades
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Supplementary Figure S5.3. Pangenome construction showed (left) that few new genes discovered (black bars) as the number of 

genomes included increased (x-axis), but that the number of unique genes associated with the cloud gene set increased consistently 

(dashed line). (Right) The core genome composition across all 4,071 assemblies was stable once >200 genomes were included (solid line), 

whereas the total number of cloud genes increased at a much higher rate (dashed line).  
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Supplementary Figure S5.4. Frequencies of ST131 subclades C1_6, C2_4 and C2_9 
(top) and clades (bottom) over time showed relatively equal rates per year.   
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Supplementary Figure S5.5. Distribution of the ESBL blaCTX-M-15 allele among C2_4 and 

C2_9 strains and their geographic (country) and temporal (isolation year) origins. Data 

were plotted and drawn using Tableau v.10.1. 

 
 
 

 
Supplementary Figure S5.6. Distribution of blaCTX-M-14, blaCTX-M-15 and blaCTX-M-27 among 

ST131 samples from C1_6 (a), C2_4 (b) and C2_9 (c) and their geographic location 

(country) over time (isolation year). BlaCTX-M-14was 1st acquired by strain in Japan in 2004 

co-occurring with an isolate that was noted with blaCTX-M-27 in the same year. Initial 

records of blaCTX-M-15 were in C2 strains (both C2_4 and C2_9) in Canada in 2000. Data 

were plotted and drawn using Tableau v.10.1. 
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Supplementary Figure S5.7. Bubble graph of ST131 subclades C1_6, C2_4 and C2_9 and 

their corresponding blaCTX-M alleles (blaCTX-M-14 in orange, blaCTX-M-15 in turquoise, blaCTX-M-

27 in green, and blaCTX-M-14/15 together in red). Data were plotted and drawn using Tableau 

v.10.1. 
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Supplementary 

Figure S5.8. 

Representative 

example of the blaCTX-M-

14/15/27-positive contigs’ 

AMR genes and MGEs 

annotated using Prokka 

and MARA. Some 

contigs were too short 

to show additional 

annotations, which can 

be estimated based on 

the longer contigs. (a) 

C1_6 isolates had the 

most frequent 

incidence of blaCTX-M-14-

positive contigs that 

were typically in 

ISEcp1-blaCTX-M-14-

IS903B TUs, though 

with variations such as 

a 3’ IS903C element 

instead. (b) C2 isolates 

tended to have a blaCTX-

M-15 gene flanked by a 5’ 

ISEcp1 and a Tn2 or 

the orf-477-Tn2 in 

tandem at the 3’ as a 

2,971 bp ISEcp1-blaCTX-M-15-orf477Δ-Tn2 TU. These were most likely on an IncF plasmid 

for the plasmid-encoded variants, but many within C2_9 had this TU chromosomally 

inserted at the mppA gene due to local sequence homology with ISEcp1’s 14-bp 3’ 

inverted repeat (IRR). (c) C1_6 isolates also had the highest incidence of blaCTX-M-127-

positive contigs that typically had a similar ISEcp1-blaCTX-M-14-IS903B as per (a).
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Supplementary Figure S5.9. Chromosomal insertion of blaCTX-M-15 was indicated by the truncation of the mppA gene and was usually 

observed among C2 ST131 strains. Intact mppA was shown in blue bars while the truncated ones were in red and were mainly observed 

in recent (2003-2017) samples from C2_9 group. 
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Supplementary Figure S5.10. Top: 
The average number of genes in the 
ST131 pangenome (y-axis) 
increased sub-linearly as the 4,071 
genomes were added (x-axis) 
indicating an open pangenome for 
the whole collection (black) and the 
clades and subclades: A (blue), B 
(green), C (grey), C1_6 (red), C2_4 
(orange) and C2_9 (brown). Middle: 
The alpha value varied with 
numbers of genomes sampled 
(shown for >30 genomes) and 
attained stability once the number 
examined exceeded 2500 (x-axis, 
shown on a log10 scale): the average 
alpha for all was 0.8123±0.024; for 
clade A 0.780±0.045; for clade B 
0.796±0.046; for clade C 
0.766±0.031; for C1_6 0.749±0.017; 
for C2_4 0.754±0.077; and for C2_9 
0.799±0.038. Bottom: Across the 
4,071 genome assemblies, alpha was 
estimated as 0.8196 such that the 
median number of new genes added 
per isolated was 2.1: the blue line 
indicates the regression slope alpha. 
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Supplementary 
Figure S5.11. A 
phylogeny of all 
ST131 (left) with 
their corresponding 
pangenome gene 
presence (blue) and 
absence (white) 
frequencies 
represented for 
each of the 26,479 
genes detected. In 
the latter matrix, 
the 3,712 core genes 
are shown first, 
followed by the 242 
soft core genes, 
1,018 shell genes 
found in 15-95% of 
samples, and 21,507 
cloud genes in 
<15% of samples. 
Clades B (top and 
bottom clusters 
separated by green 

lines) and A (second from bottom separated from C by a red line) had core genome differences compared to clade C (middle bounded by 
green and red lines). 
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Chapter 6: A dynamic gene repertoire associated 
with the mobile resistome in the pathogen E. coli 

ST131 
 
 

Abstract 
 
The human gut microbiome includes beneficial, commensal and pathogenic bacteria that 
possess antimicrobial resistance (AMR) genes and exchange these predominantly 
through conjugative plasmids. Escherichia coli is a significant component of the 
gastrointestinal microbiome and is typically non-pathogenic in this host niche. In 
contrast, extra-intestinal pathogenic E. coli (ExPEC) including E. coli sequence type 
131(ST131) may occupy other environments like the urinary tract or bloodstream where 
they express genes allowing for virulence, pathogenicity and AMR. Although ST131 
isolates access extra-intestinal locations by faecal-oral routes, the extent to which they 
share AMR genes with other non-pathogenic gut E. coli has not yet been investigated at 
the genomic level. Here, we examined the extent of AMR gene sharing between gut E. coli 
and ST131 using a reference resistome of well-characterized preterm infant AMR genes 
to discover an extensive shared resistome across pathogenic and non-pathogenic 
isolates. In addition, individual ST131 show extensive resistome diversity highlighting 
that the core genome may not predict AMR phenotypes well. In addition, we show that 
ST131’s key plasmids (pEK204, pEK499 and pEK516), which drive AMR gene transfer 
are highly variable within ST131 clade C. Furthermore, resolving the structures, copy 
numbers and locations of key ST131 transposons responsible for the mobilizing the 
resistome, particularly blaCTX-M genes, indicates opportunities for tracking AMR gene 
evolution through the prism of MGE mutation. This work shows that MGE and plasmid 
structure vary widely in ST131 clade C by determining blaCTX-M gene-related transposon 
isoforms, copy numbers and genomic locations, resistome overlap with non-pathogenic 
E. coli, and plasmid structure across diverse samples. Our results thus highlight the 
importance of examining the accessory genome in detail as well as the likelihood that 
ST131 will become more multidrug-resistant in the future.   
 
Publication: in preparation for Access Microbiology in 2019 with Buthaina AlAwadi, Cian 
Smyth, Genevieve Smith, Hawriya AlFoori, Louisse Mirabueno, Maddy Nelson, Zoe Vance, 
and Tim Downing.   
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6.1 Introduction 

 

The genomes of bacterial, archaeal, viral, protozoan, fungal and helminth (worm) 

microbes in and on humans constitute the human microbiome. The human microbioata 

have been increasingly linked to human infection risk, immunity and health status and so 

their genomics, the microbiome, have a profound influence on the development of disease 

and maintaining immune and metabolic homeostasis (Clemente et al. 2012).The 

microbiome is involved in beneficial tasks, such as food breakdown, and interaction with 

the host’s immune system in the gastrointestinal tract (or gut), which is packed with 

beneficial, commensal and pathogenic microbes. A balanced community of 

microorganisms is crucial to the host’s health, and dysbiosis of this balance is associated 

with inflammatory diseases and infections (Thursby and Juge, 2017); although the 

dysbiotic imbalance is not yet clearly defined (Olesen & Alm 2016). Extra-intestinal 

pathogenic E. coli (ExPEC), cause disease as a result of their virulence factors which allow 

persistence in diverse host niches (Ben Zakour et al. 2016). Consequently, in the context 

of this work, dysbiosis can be associated with ExPEC infection (Bäumler & Sperandio 

2016), rather than alternative interpretations (Hooks & O’Malley 2017). 

 

E. coli are prevalent in the human microbiome. Most notably, they are one of the first 

bacteria colonising an infant’s intestine (Penders et al. 2006). E. coli are a very diverse 

bacterial species. An estimated 500-1000 commensal strains are believed to reside in the 

intestine alone (Conway and Cohen, 2015) and be involved in preventing pathogens from 

colonising the host by producing bacteriocins (Hudault et al. 2001). Pathogenic strains, 

such as the E. coli sequence type 131 (ST131), have also been found in the human 

microbiome. ST131 has been subdivided into multiple clades according to the fimH allele 

(Adams-Sapper et al. 2013; Price et al. 2013; Tchesnokova et al. 2013). FimH encodes a 

type 1 fimbrin D-mannose specific adhesin protein, a virulence factor involved in the 

attachment to host tissue, which consequently improves colonisation in the host (Petty 

et al. 2014). The C clade encodes the fimH30 allele and is particularly virulent due to the 

clade’s acquisition of a plasmid carrying a β-lactamase gene (blaCTX-M-15) (Johnson et al. 

2013; Ben Zakour et al. 2016). BlaCTX-M-15 is of particular interest due to its increased 

ability to hydrolyse cephalosporins (Poirel et al., 2002).  
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The resistome is the set of antimicrobial resistance (AMR) genes present in a genome. 

ExPEC with an expansive resistome may render the treatment of serious infections with 

antibiotics useless, and so in this chapter, we examined the shared resistome in ST131 

and selected E. coli from GI tract microbiome samples. It is hypothesized that frequent 

exposure to low doses of drugs in the environment arising from livestock growth 

promotion or water effluent has expanded the resistome in many microbes existing 

within humans. These resistomes are also likely shaped by high doses of β-lactam (and 

other) antibiotics to treat infections, resulting in extended-spectrum β-lactamase (ESBL) 

gene acquisition by pathogenic and commensal bacteria alike.   

 

ESBLs are generally located in plasmids (Cantón et al. 2012), which makes these genes 

mobile and susceptible to be transferred to non-pathogenic cells. Plasmids are circular 

self-replicating DNA molecules that can mediate the transfer of genes allowing AMR and 

virulence between bacterial cells by conjugation (Hinnebusch & Tilly 1993). Some of 

which are lysins, toxins and adhesins that allow for attachment and colonisation in the 

host cell. They can be classified based on their incompatibility (Inc) group, and ST131’s 

plasmids most commonly belong to the IncF group (Shintani et al. 2015). IncF plasmids 

aid transfer of AMR genes between cells and were found by Johnson et al. (2016) to have 

played a major role in the evolution of ST131. Although plasmids in ST131 typically 

encode genes for post-segregation killing and stable inheritance to ensure their 

propagation, they can be lost or may recombine with other plasmids in the same cell 

(Woodford et al. 2009, Phan et al. 2015, Nicolas-Chanoine et al. 2014). As a result of this 

mixing and their extensive array of mobile genetic elements (MGEs) (Frost et al. 2005), 

plasmids may rearrange extensively even within a clonal radiation as shown in Chapter 

3. 

 

The resistome is also defined by MGEs, particularly ISEcp1 and IS26 in E. coli (Smet et al. 

2010), which implement a mix of replicative (copy-and-paste) and conservative (cut-and-

paste) self-replicating transposition processes at genomic regions with segments 

homology to the IS’s inverted repeats (IRs) (Naito and Pawlowska, 2015). These IS 

elements have three main structures: one encoding the transposition enzyme called 

transposase (TnpA) in the middle with two short flanking IRs (Griffiths et al. 2000). 

ISEcp1 belongs IS family IS1380 (Smet et al. 2010). As outlined in Chapter 3, ISEcp1, 
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IS903D and IS26 mediate ESBL gene transfer and thus must be explored along with the 

plasmid and AMR genes to better understand the mobile resistome causing acute ST131 

infections. 

 

In Chapter 5, I examined genomic diversity in a large panel (4,071) of E. coli ST131. This 

identified blaCTX-M gene and accessory genome changes as key factors differentiating 

ST131 subclades. In addition, it showed that such ESBL genes are highly mobile in ST131, 

and so exploring sequence variation at transposons, blaCTX-M genes and plasmids was an 

emergent question not tackled in that chapter. from large-scale genomic epidemiology to 

factors mobilising the ST131 resistome.  

 

In this chapter, we sought to quantify the extent of AMR gene sharing between E. coli gut 

microbiome samples and pathogenic E. coli ST131. In addition, examined here are plasmid 

genetic structures in contigs with blaCTX-M genes using representative samples from 

Chapter 5 with a comparison of non-pathogenic isolates including ones from the human 

microbiome project.  

 

Using functional genomics, a previous work by Gibson et al. in 2016 identified analysed seven 

hundred and ninety-four (N=794) previously uncharacterised contigs from draft assemblies 

that were associated with resistance to sixteen antibiotics. The samples were derived from 

preterm infant microbiomes (Gibson et al. 2016). The contigs containing AMR genes were 

used as reference dataset in succeeding analyses in this chapter. 
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6.2 Methods 
 

Author contributions: I was involved in conceptualization, genomic analysis, 

interpreting results, drafting the paper, editing the paper and visualization the results. 

Buthaina AlAwadi, Caitriona Woods, Cian Smyth, Genevieve Smith, Hawriya AlFoori, 

Leigh Campbell, Louisse Mirabueno, Maddy Nelson and Zoe Vance implemented 

bioinformatic methods, genomic analysis and interpreted results. Tim Downing helped 

with project design, bioinformatic processing, genomic analysis and paper writing. 

 

6.2.1 E. coli genome isolate collection 

 

We examined 12 E. coli isolates in this chapter: three were established ST131 reference 

genomes: SE15, NCTC13441 and EC958 (Table 6.1). SE15 (O150:H5, fimH41) was a 

commensal isolate lacking many virulence-associated genes, unlike the other two, and 

was a genetic outgroup denoting the basal ST131 clade A. As outlined in Chapter 1, it has 

a 122-kb plasmid (pSE15) with 150 protein-coding genes (Toh et al. 2010). SE15 shares 

86% of its chromosomal genes with three uropathogenic E. coli genomes (CFT073, UTI89, 

UT536). NCTC13441 and EC958 were blaCTX-M-15-positive genomes from subclade C2, 

with pEK499 in NCTC13441 (Woodford et al. 2009), and a larger plasmid pEC958 and a 

smaller one (pEC958B) in EC958 (Forde et al. 2014). pEC958A (HG941719) in isolate 

EC958 from a UK blaCTX-M-15-positive UTI that has 85% similarity to pEK499 and is 

missing the latter's second tra region due to an IS26-mediate blaTEM-1 insertion (Phan et 

al. 2015, Forde et al. 2014). Across its 135.6 Kb length, it has 142 genes and it belongs to 

Inc group F1A/F2.  
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Name 
Sequence 

type 
Assembly type 

ST131 
clade 

Phenotype and 
source 

SE15  
Sanger and 454 

sequencing 
A 

Commensal, non-
pathogenic (faeces) 

NCTC13441 ST131 PacBio sequencing C2_7 Pathogenic (UTI) 
EC958  PacBio sequencing C2_7 Pathogenic (UTI) 

3_2_53FAA - HMP assembled contigs - Crohn’s disease (gut) 
83972 ST73 HMP assembled contigs - Asymptomatic UTI 

 
Table 6.1. The three E. coli reference genomes and two Human Microbiome Project 

assembled contigs used in this study. EC958 and NCTC13441 were MDR pathogenic UTIs, 

whereas SE15 was a commensal strain acting as a negative control.  

 

Samples 3_2_53FAA (sometimes called EC3_2_53FAA) and 83957 (sometimes called 

EC83972) were from the Human Microbiome Project (HMP) (The NIH HMP Working 

Group et al., 2009) (Table 6.1). Strain 3_2_53FAA was a colon biopsy from a 52-year-old 

male Canadian diagnosed with Crohn’s disease. 83972 was from the urine of a Swedish 

girl with a three-year history of asymptomatic bacteriuria that failed to show any 

symptoms and had a stable renal function (Rudick et al. 2014). 

 

Five samples were ST131 genome assemblies representing subclades C1 and C2, all of 

which were FQ-R pathogenic isolates from 2005-2010 (Table 6.2). Two from C1 were 

blaCTX-M-14-positive, and the five from C2 were blaCTX-M-15-positive, bar 8289_1#24 that 

had a blaCTX-M-14 gene too. All were isolated from urine except 8289_1#34, which was a 

rectal swab. All belonged to rST1503 except 8289_1#24, which was in rST1850.  

 

ID Accession Name Clade 
blaCTX-M mppA %Matching 

Year 
gene(s) gene pV130a pEK499 

8289_1#35 ERR191668 MU027534Q C1 14 I 71 57 2008 

8289_1#3 ERR191636 MU028688W C2_7 15 I 0 0 2005 

8289_1#34 ERR191667 MU005425 C2_7 15 I 74 18 2010 

8289_1#24 ERR191657 MU004181Y C2_8 14 & 15 T 68 0 2009 

8289_1#27 ERR191660 MJ003268P C2_9 15 I 100 58 2010 

 

Table 6.2. The five E. coli ST131 short read genome assemblies used in this study.  
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6.2.2 Resistance gene sources 

 

A resistome based on Gibson et al. 2016’s study on preterm infant microbiota was used 

as the reference database to identify overlapping AMR genes between E. coli microbiome 

and ST131 species in the sample collection. The resistome database had 794 AMR genes 

from 401 stool samples longitudinally collected from 84 preterm infants throughout 

antibiotic therapy, and so all were associated with specific antibiotic resistances. 

Resistance to 16 antibiotics was functionally assessed by Gibson et al. (2016) from 

metagenomics expression libraries that assembled 2,004 contigs encompassing these 

794 AMR genes, 79% (n=627) were classified for the first time (Gibson et al. 2016).  

 

6.2.3 Illumina library quality control and read mapping 
 

Similar to the methodology applied in the previous chapters, paired-end Illumina HiSeq 

libraries were screened for low quality (phred score < 30) and short (< 50 bp) reads using 

Trimmomatic v0.36 (Bolger et al., 2014) and were further corrected using BayesHammer 

from SPAdes v3.9 (Bolger et al., 2014). The read libraries were mapped to reference 

sequences with SMALT v7.6 (www.sanger.ac.uk/resources/software/smalt/), and the 

resulting SAM files were converted to BAM format, sorted and PCR duplicates removed 

using Samtools v1.19 (Li et al., 2009). The reads for each isolate were indexed using the 

median read length for each read library for calibrating, and then mapped to reference 

AMR genes using GROOT (Graphing Resistance genes Out Of meTagenomes) (Rowe & 

Winn 2018) to the CARD (Jia et al., 2017), ARG-ANNOT (Gupta et al., 2014) and ResFinder 

(Zankari et al., 2012) databases (Table 6.3).  
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Library 
Number 
of reads 

Read length 

Median Mean SD 

8289_1#34_1 
2,145,896 

101 99.3 6.5 

8289_1#34_2 100 97.7 8.0 

8289_1#3_1 
1,824,030 

101 99.4 6.5 

8289_1#3_2 100 97.6 8.2 

8289_1#35_1 
2,297,624 

101 99.4 6.5 

8289_1#35_2 100 97.7 8.0 

8289_1#24_1 
20,14250 

101 99.3 6.5 

8289_1#24_2 100 97.7 8.1 

NCTC13441 2,857,729 43 42.5 1.4 

SE15 418,045 218 192.2 67.3 

EC958 1,514 1,486 1,401.6 549.2 

 
Table 6.3. Read length summary statistics for each corrected FASTQ library. SD stands for 

standard deviation. Paired-end read library were mapped individually as per GROOT 

guidelines, and are denoted as _1 and _2. The read distributions differed for NCTC13441, 

SE15, and EC958 because they were generated using long read approaches.  
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6.2.4 Homology-based resistome screening and comparison 
 

Contig annotation and protein domain recognition was implemented using the Pfam 

v27.0 and ProSite databases using InterProScan v5.22-61 (Jones et al. 2014). The 

Comprehensive Antibiotic Resistance Database (CARD) is organized via the antibiotic 

resistance ontology (ARO) (McArthur et al. 2013) and its protein homolog dataset 

(n=2,239 genes, Jia et al. 2017) was aligned with the isolates’ genomes to annotate the 

resistomes in detail using BLAST v2.2.31. Hits with a bit score >500 and >99% homology 

were considered as valid matches. Detected genes and elements were verified and 

visualized with Artemis (Carver et al., 2012) and the Artemis Comparison Tool (ACT) 

(Carver et al., 2005). The alignments were visualized using R’s VennDiagram v1.6.1, 

Seqinr v3.4-5, UpSetR v1.4.0 and WriteXLS v5.0.0 packages.  

 

6.2.5 Source of plasmids prevalent in ST131 

 

Sequence and annotation files for pEK499 (NC_013122.1, EU935739), pEK516 

(NC_013121.1, EU935738) and pEK204 (NC_013120.1, EU935740) were downloaded. 

Each of these three plasmids had similarities and differences and all three are common 

mediators of AMR genes in ST131 (Lanza et al. 2014). All have genes allowing for stable 

plasmid inheritance and post-segregation killing. Detection of replicon types in the 

plasmids was completed using PlasmidFinder (Carattoli et al. 2014). Each E. coli sequence 

library was mapped as above to each plasmid to verify local AMR gene and MGE genetic 

structure and determine copy number levels, which were visualized with Artemis (Carver 

et al. 2012) and R v3.4.2. Plasmid and gene sequence similarity was calculated using the 

Sequence Identity and Similarity (SIAS) tool (http://imed.med.ucm.es/Tools/sias.html). 

 

6.2.6 Transposable elements common in ST131: IS26 and ISEcp1  

 

Reference sequences for ISEcp1 and IS26 were aligned with ST131 plasmids pEK499, 

pEK516, pEK204 and pEC958 and the NCTC13441 chromosome. The reference ISEcp1 

and IS26 sequences were extracted from the NCTC13441 genome with SAMtools. The 

transposable elements were aligned using BLAST, and their genomic locations and copy 

numbers were visualized using SnapGene v4.3 (from GSL Biotech, snapgene.com). The 
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evolutionary relationships reflected in phylogenies were constructed using T-coffee 

alignments in ape v5.2 in R v.1.1.463. 

 

The ISEcp1 and IS26 structures on the NCTC13441 plasmid (161,069 bp) were 

examined in detailed to identify the IRR, tnpA and IRL sequences associated with these 

transposons. For IS26, the transposase gene spans 705 bp. In ISEcp1, the tnpA gene is 

longer (1,262 bp) and is bounded by 14-bp IRs with IRL 5’ of it and IRR at the 3’ end. 

ISEcp1 uses IRL with alternative IR-like sequences to initiate transposition (Lartigue et 

al. 2006). 

 

 
 
Figure 6.1. The structure of IS26 (top) and ISEcp1 (bottom) in the NCTC13441 plasmid. 

IS26 (820 bp) is smaller than ISEcp1 (1.6 Kb). The x-axis represents the NCTC13441 

plasmid coordinates.   
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6.3 Results 
 
This chapter examined the similarity in plasmid structure, transposon copy number and 

AMR gene content in a panel of E. coli genome assemblies. This linked a defined set of 

published AMR genes to ST131 genomes and to microbiome E. coli samples to inform on 

the resistome overlap between pathogenic and non-pathogenic isolates. 

 

6.3.1 Variable resistome overlaps necessitate an explicit reference gene set  

 

To relate the Gibson et al. (2016) resistome with existing AMR databases and test the 

robustness of a general resistome comparison, the 794 AMR genes were aligned with 

CARD. Using a panel of seven ST131 C1 (n=2) and C2 (n=5) libraries, the reads for each 

individual sequence file were mapped to the CARD, ARG-ANNOT and ResFinder 

databases using GROOT (Rowe & Winn 2018). This discovered considerable variation in 

the numbers and type of AMR genes determined by each database (Table 6.4). For 

comparison, faecal isolate S250 from ST131 clade B (Nicolas-Chanoine et al. 2017) had 

zero AMR genes in ARG-ANNOT and ResFinder, and five in CARD. This highlighted 

extensive potential AMR gene diversity unique to the C subclade that was highly variable 

within it.  

 

 
 

Sample Subclade ARG-ANNOT CARD ResFinder 

8289_1#35 C1 44 52 45 
8289_1#3 C2_7 17 39 22 
8289_1#34 C2_7 9 17 15 
8289_1#24 C2_8 56 71 55 
8289_1#27 C2_9 6 9 6 

 
Table 6.4. Number of AMR genes identified in non-reference ST131 strains from clade 

by sequence similarity search against AMR databases ARG-ANNOT, CARD and ResFinder.   
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Consequently, we used the 794 AMR genes from (Gibson et al. 2016) as a reference set of 

contigs associated with antibiotic-resistance in preterm infants denoting the resistome 

of interest for this chapter. These came from 2,004 AMR contigs experimentally tested 

for resistance to 16 antibiotics, and 79% of the 794 were novel genes, highlighting an 

opportunity to investigate an established preterm infant resistome, rather than an 

undefined resistome in these established but inconsistent AMR gene databases. 

 

6.3.2 An extensive shared resistome between ST131 and microbiome assemblies 
 
The resistome overlap was initially compared between the three long read sequence 

libraries of the two ST131 C2 reference genomes (NCTC13441 and EC958) and the SE15 

reference genome from ST131 clade A relative to the two HMP. This initial analysis of five 

isolates distinguished a specific pathogenic resistome from a shared resistome (Figure 

6.2). The latter encompassed 244 AMR genes shared by all five, where the most frequent 

gene function was to resist penicillin (98), then chloramphenicol (59), next 

cephalosporins (42), followed by tetracycline (37) and then monobactams (8). This 

showed that non-pathogenic isolated including HMP samples 83972 and 3_2_53FAA 

along with commensal SE15 possessed an extensive resistome such that pathogenic 

ST131 genomes only had 7% additional AMR genes. 

 

 

Figure 6.2. E. coli chromosomal AMR gene 

overlap showed an extensive shared 

resistome of 244 genes across three ST131 

samples and two HMP samples (83972 and 

3_2_53FAA). NCTC13441 and EC958 from 

subclade C2 had 17 and 18 genes 

(respectively) unique to their genomes, 

along with two genes shared with 83972.  
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Most chromosomal AMR genes unique to the C2 reference genomes encoded penicillins, 

but with notable differences within these two isolates with closely related core genomes. 

All 17 of the genes unique to NCTC13441 were annotated as blaTEM or blaOXY and therefore 

were Ambler class A β-lactamases (Table 6.5), whereas 14 out of the 18 unique to EC958 

were annotated as blaCMY (AmpC) and so were Ambler class C ones. EC958 also had two 

genes encoding monobactam enzymes, one for tetracycline-resistance, and another for 

cephalosporin-resistance (Table 6.6). This difference in Ambler class AMR gene type 

indicated that NCTC13441 may have been exposed to more beta-lactam compounds, 

facilitating ESBL gene gain, but that EC958 may have encountered higher levels of 

cephalosporins, and so acquired more AmpC genes.  

 

The HMP samples 3_2_53FAA and 83972 shared a ceftazidime-R gene encoding 

peptidoglycan glycosyltransferase Ftsl (contig 5_F2_CZ.13:475-2241), which could be a 

PBP isoform (Sun et al. 2014). Two contigs were shared between NCTC13441, EC958 and 

the 3_2_53FAA and 83972 microbiomes, one was homologous to marR (contig 

4_C8_AP.19:94-609) and the other to a Klebsiella phosphonate C-P lyase system gene 

phnK that may act as an ABC transporter (1_E2_AP.3:1-459). The sole contig shared 

across SE15, NCTC13441 and EC958 alone (1_E2_PE.16:67-363) had an AraC domain: 

araC genes are in most Enterobacteriaceae. 

 
 

AMR Contig IDs Antibiotics Gene/Allele 

1_H5_AP.1:151-1026 AP - Ampicillin OXY-1-1 

1_F7_AX.35:206-1081 AX - Amoxicillin 
OXY-1-2 

1_G7_AZ.7:473-1348 AZ - Aztreonam 

1_A2_AXC.6:575-1444 AXCL - Amoxicillin+Clavulanate 
OXY-2-3 

1_A2_AZ.2:593-1126 AZ - Aztreonam 

4_D5_TE.10:5256-6155 TE - Tetracycline OXY-6-2 

1_B6_AP.5:907-1782 AP - Ampicillin  
5_F2_PI.107:117-992 PI - Piperacillin OXY-6-4 

2_B7_PI.9:1-501 PI - Piperacillin  

5_F2_PI.56:2439-3146 PI - Piperacillin TEM-57 

1_C6_PI.2:2496-3188 PI - Piperacillin TEM-104 

1_B6_PI.2:389-1249 PI - Piperacillin TEM-116 

5_B1_AP.7:103-963 AP - Ampicillin 
TEM-215 

4_B7_AX.4:127-987 AX - Amoxicillin 

4_C8_AP.12:3312-3698 AP - Ampicillin  
1_F7_PE.7:2887-3369 PE - Penicillin G TEM-220 
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4_C8_PI.1:1834-2316 PI - Piperacillin  

 
Table 6.5. The 17 AMR contigs unique to NCTC13441 were mainly Ambler class A β-

lactamases. 

 

AMR Contig IDs Antibiotics Gene/Allele 

4_B7_PE.29:3-161 PE - Penicillin G CMY-37 

5_F2_PE.9:1100-2296 PE - Penicillin G 
CMY-51 

4_B7_PE.8:1042-2187 PE - Penicillin G 

1_A2_AXC.2:1124-2269 AXCL - Amoxicillin+Clavulanate 
CMY-66 

2_B8_PE.6:1479-2624 PE - Penicillin G 

5_F2_AP.20:1330-2040 AP - Ampicillin 
CMY-67 

5_F2_AP.23:2-217 AP - Ampicillin 

1_H5_AP.3:223-1368 AP - Ampicillin  
2_B8_AX.7:1708-2418 AX - Amoxicillin  
2_B8_AX.7:2393-2854 AX - Amoxicillin CMY-85 

1_H5_AXCL.2:1315-2460 AXCL - Amoxicillin+Clavulanate  
2_B8_PI.1:1082-2227 PI - Piperacillin  

5_D1_AP.16:231-722 AP - Ampicillin 
CMY-98 5_D1_AXCL.7:358-1503 AXCL - Amoxicillin +Clavulanate 

5_D1_AXCL.17:2312-3022 AXCL - Amoxicillin+Clavulanate 

5_B1_CZ.6:140-1285 CZ - Ceftazidime 
CMY-101 

4_B7_PE.24:1-315 PE - Penicillin G 

1_H5_PI.9:561-1040 PI - Piperacillin CMY-105 

 
Supplementary Table 6.6. The 18 AMR contigs unique to EC958 were mainly Ambler 

class C β-lactamases. 

 

To evaluate the shared and specific resistome in more detail, this resistome comparison 

based on the 794 AMR genes from (Gibson et al. 2016) was extended by comparing these 

five with four ST131 genome assemblies (8289_1#3, 8289_1#24, 8289_1#27, 

8289_1#34) using a BLAST. This found 294 AMR-related contigs in total and 

demonstrated that the ST131 isolates had far more AMR genes (248-285) (Table 6.7). It 

also indicated that most isolates from C2_7 (8289_1#3, 8289_1#34 and NCTC13441) 

contained identical sets of AMR-related contigs (n=267), which as previously did not have 

18 blaCMY (AmpC) genes present in EC958 alone, which had 285 in total. This comparison 

highlighted an extensive shared resistome of 207 genes where 3_2_53FAA also had an 

additional 39 AMR genes absent in 83972, and only two genes were associated with 

ST131 isolates alone (Figure 6.3). A larger number of AMR genes (n=10) were present in 
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all subclade C2 isolates, in addition to eight blaOXY genes present in all these, bar 

8289_1#27. The sole isolated that was both blaCTX-M-14-positive and blaCTX-M-15-positive 

(8289_1#24) had nine extra blaTEM genes.  

 

E. coli sample (clade) Number of unique AMR contigs present 

83972 (HMP) 208 
EC3_2_53FAA (HMP) 247 

SE15 (A) 248 
8289_1#27 (C2_9) 259 
NCTC13441 (C2_7) 267 
8289_1#3 (C2_7) 267 

8289_1#33 (C2_7) 267 

8289_1#24 (C2_8) 276 
EC958 (C2_7) 285 

 
Table 6.7. Unique NICU AMR contigs identified by BLAST where AMR contigs were 

classified as present where their E-value < 1e-10. 

 

6.3.3 Extensive AMR, plasmid persistence and conjugation gene differences 

between common ST131 plasmids 

 

The functional gene properties in relation to AMR, plasmid persistence and conjugation 

were examined by searching for homologous sequences in CARD for the three most 

common ST131 plasmids: pEK204, pEK499 and pEK516. These were verified in the 

plasmid’s annotation files. This showed that each has different features: pEK204 alone is 

conjugative, pEK499 has the most AMR genes, and pEK516 is similar to pEK499 but has 

certain plasmid persistence genes present in pEK204 but absent in pEK499 (Table 6.8). 

Using the two HMP genome assemblies and SE15 as a commensal outgroup, we 

subsequently examined in more detail the genes on these plasmids present in ST131 

clade C. 

 

IncF2/F1A plasmid pEK499 lacks a traX gene for conjugation and was associated the 

historical acquisition of a blaCTX-M-15 gene in ST131 that is tightly correlated with its 

pandemic nature (Livermore et al. 2007). It is 117.5 Kb and has 185 genes, including ones 

encoding blaCTX-M-15, blaTEM-1 and blaOXA-1. This plasmid is stably inherited because it has 
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post-segregation killing gene hok and modulator mok, toxin-antitoxin system genes 

(pemI-pemK, ccdA-ccdB), and two copies of virulence-associated genes, vagC and vagD. 



252 

 

Figure 6.3. An UpsetR 
overlap of preterm infant 
AMR genes across four 
ST131 subclade C2 genome 
assemblies (8289_1#3, 
8289_1#24, 8289_1#27, 
8289_1#34), two ST131 
reference genomes and two 
microbiome assemblies 
(EC83972 and 3_2_53FAA). 
The main diagram showing 
the intersection sizes (y-
axis) and the numbers of 
AMR genes per category 
showed that the majority 
(207) of AMR genes were 
shared across isolates. The 
lower diagram indicates 
the numbers of AMR 
contigs per dataset, the 
sample name, the subclade 
and the corresponding 
categories by a filled black 
circle. 
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The other blaCTX-M-15-positive plasmid (pEK516) is structurally similar to pEK499 with 

~75% similarity (Woodford et al. 2009). This plasmid is shorter at 64.6 Kb, is in Inc group 

F2A, and has 103 genes including ones encoding blaCTX-M-15, blaTEM-1 and blaOXA-1 like 

pEK499. This plasmid is stably inherited too because it has type I partitioning locus (parM 

and stbB) absent in pEK499, which are also in pEK204. It also has toxin-antitoxin system 

genes pemI/K. Although pEK516 is non-conjugative and lacks traX and traC, it retains 

traA/B/D/E/K/L/M/P/V/Y, including traP encoding conjugative transfer system protein 

TraP.  

 

The third (pEK204) is 93.7 Kb, has 112 genes and is in Inc group I1. It is structurally 

similar to IncI1 plasmid R64 (Woodford et al. 2009). Notably, pEK204 has a tra region 

(transfer genes) adequate for conjugation, though some tra genes may be lost during 

culturing (Woodford et al. 2009). This plasmid is stably inherited too because it has the 

type I partitioning locus (parM and stbB). PEK204 encodes a 9.3 Kb region containing 

blaTEM-1b and also an inactive Tn3-tnpA transposase-encoding element with an in-frame 

ISEcp1-blaCTX-M-3 insertion with a 5’ orf477-tnpA-tnpR structure. BlaCTX-M-3 differs from 

blaCTX-M-15 by a single R240G substitution, and so the blaCTX-M-3 genes detected here were 

likely to encode blaCTX-M-15. The 14 bp IRL at the 5’ end of ISEcp1 and IRR at the distal end 

of the inverted orf477 element assists in mobilising blaCTX-M-3, however an additional IRR 

at a impB gene 3’ of the blaTEM-1b gene (7.4 Kb further away) also allows mobilisation of 

this whole 9.3 Kb unit (Dhanji et al. 2011), which has been found in IncFIA, IncFIA-FIB, 

IncN and IncY plasmids and arose on pCOL1b-P9-like plasmid (Woodford et al. 2009). 

ImpB is an error-prone DNA subunit functioning (with ImpA) like the UmuDC error-

prone DNA repair system to combat mutations from UV radiation (Runyen-Janecky et al. 

1999).  
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Group Name Gene product function pEK499 pEK516 pEK204 
A

M
R

 g
en

es
 

aac(3)-II 
aminoglycoside N(3')-acetyltransferase III; resistance to 
gentamicin, netilmicin, tobramycin, sisomicin 

 1  

aac(6′)-Ib-
cr 

aminoglycoside N(6')-acetyltransferase type Ib-cr; 
quinolone resistance 

1 1  

aadA5 aminoglycoside resistance protein 1   

catB4 
chloramphenicol acetyltransferase; inactivates 
chloramphenicol 

1 1  

ctx-m-15 extended spectrum beta-lactamase 1 1  

ctx-m-14 extended spectrum beta-lactamase    

ctx-m-3 extended spectrum beta-lactamase   1 

dfrA7 dihydrofolate reductase type VII; trimethoprim resistance 1   

mph(A) 
macrolide 2-phosphotransferase; inactivates 
erythromycin 

1   

oxa-1 beta-lactamase OXA-1 precursor 1 1  

sulI 
dihydropteroate synthase; sulfonamide resistance 
protein 

1   

tem-1 beta-lactamase 1 1 1 

tetA tetracycline resistance protein class A 1 1  

Se
g

re
g

a
ti

o
n

 g
en

es
 

ccdA and 
ccdB 

plasmid maintenance protein CcdA and CcdB; Antitoxin 
component of a type II toxin-antitoxin (TA) system which 
inhibits the post-segregational killing (PSK) of plasmid-
free cells 

1   

hok post-segregation killing protein (small toxic polypeptide) 1 1  

mok modulator of post-segregation killing protein 1 1  

parM 
plasmid segregation protein; stable plasmid inheritance 
protein A synonym StbA in pC15-1a 

 1 1 

pemI 
stable plasmid inheritance transcriptional 
regulator/antitoxin 

1 1  

pemK 
stable plasmid inheritance protein toxin-antitoxin system 
pemI-pemK/toxin 

1 1  

stbB 
similar to stable plasmid inheritance protein B [plasmid 
R100] 

 1 1 

vagC 
virulence-associated protein vagC (1/2); toxin addiction 
system; antitoxin 

1   

vagD 
virulence-associated protein vagD (1/2); toxin addiction 
system; toxin 

1   

C
o

n
ju

ga
ti

o
n

 

ge
n

es
 

traC 
conjugal transfer ATP-binding protein; associated with 
conjugal transfer 

1  1 

traX 
responsible for the N-terminal acetylation of F pilin; 
involved in F pilus assembly 

  1 

 
Table 6.8. AMR, segregation and conjugation genes in pEK499, pEK516 and pEK204 (top). 

1 indicates presence. The blaTEM-1b gene was 860 bp in pEK204 and 728 bp in pEK499 and 

pEK516. Genes parM and stbB were 980 bp in pEK204 but were 962 bp in pEK499 and 

pEK516. 
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6.3.4 Variable pEK499 and pEK516 gene differences within ST131 distinct from 

microbiome samples 

 

Plasmid pEK499 was aligned with the two HMP samples, SE15 and five ST131 clade C 

genome assembles: 8289_1#3, 8289_1#24, 8289_1#27, 8289_1#34 and 8289_1#35. In 

addition, the reads for these five ST131 clade C libraries were mapped to pEK499 to infer 

their local copy numbers. SE15’s pECSF1 (aka pSE15) plasmid was from a commensal 

isolate to serve as a genetically distinct outgroup (Toh et al 2010). This plasmid is 122.3 

Kb long and is in Inc group F2A/F1B and has 150 genes, none of which are associated 

with AMR (Toh et al. 2010). 

 

This showed that the Clade C samples had larger segments homologous to pEK499 

relative to SE15 and the HMP samples, but that plasmid structure remained highly 

variable with these five clade C isolates (Figure 6.4). The segregation genes at 16-18 Kb 

were partially absent in some clade C samples except for 8289_1#24 and 8289_1#27. The 

(inactive) conjugation (tra) genes at 22-36 Kb were largely conserved in all ST131 and 

SE15, except for 8289_1#34. Genes encoding blaTEM, blaOXA-1 and blaCTX-M-15 were at 40, 58 

and 63 Kb (respectively). This indicated that blaTEM was in 8289_1#3, 8289_1#24 and 

8289_1#35, and that blaOXA was in 8289_1#24, 8289_1#27, 8289_1#34 and 8289_1#35, 

such that 8289_1#35 from subclade C1 and 8289_1#24 from subclade C2 had the most 

diverse complement of ESBL genes. 

 

Like pEK499, Clade C samples had extended regions similar to pEK516 relative to SE15 

and the HMP samples, particularly for 8289_1#3 (Figure 6.5). The pEK516 region at 22-

61 Kb is inverted but very similar to pEK499 and was largely present in the clade C 

isolates and SE15 here, though 8289_1#34 had notably less homology at the (inactive) 

conjugation (tra) genes at 33-40 Kb and segregation genes at 45-48 Kb. Regions adjacent 

to the genes encoding blaOXA-1, blaCTX-M-15 and blaTEM were at 12, 20 and 24 Kb 

(respectively) had higher levels of copy number variation. As above, 8289_1#3, 

8289_1#24 and 8289_1#35 had blaTEM, and 8289_1#24, 8289_1#27, 8289_1#34 and 

8289_1#35 had blaOXA. 
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Figure 6.4. Regions of similarity and normalized copy number variation for pEK499 

(117,536 bp). A coloured cladogram (left) shows the genetic relationships of the isolates 

examined where the two most divergent ones (3_2_53FAA in dark green and 83972 in 

cyan) did not have pEK499, and the commensal SE15 (navy) had limited regions of 

similarity. The ST131 isolates BLAST alignments did show higher levels of similarity for 

8289_1#34 in beige, 8289_1#3 in light green, 8289_1#35 in grey, 8289_1#24 in pink and 

8289_1#27 in mauve, though different regions were homologous across the samples. 

Genes encoding blaTEM, blaOXA-1 and blaCTX-M-15 were at 40, 58 and 63 Kb (respectively). 

The regions of high copy number were IS1 (at 41 and 103 Kb) and IS66 (at 113 Kb) 

elements. The annotation is modified from Woodford et al. (2009). 
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Figure 6.5. Regions of similarity and normalized copy number variation for pEK516 

(64,471 bp). A coloured cladogram (left) shows the genetic relationships of the isolates 

examined where the two most divergent ones (3_2_53FAA in dark green and 83972 in 

cyan) did not have pEK516, and the commensal SE15 (navy) had reduced regions of 

similarity. The ST131 isolates BLAST alignments had higher levels of similarity for 

8289_1#34 in beige, 8289_1#3 in light green, 8289_1#35 in grey, 8289_1#24 in pink and 

8289_1#27 in mauve, though variable regions were homologous across the samples. 

Genes encoding blaOXA-1, blaCTX-M-15 and blaTEM were at 12, 20 and 24 Kb (respectively) 

highlighted with black boxes. The regions of high copy number were IS1 (32 Kb) and 

ISPsy5 (with unannotated genes at 43-45 Kb) elements shown by black boxes.  

 

6.3.5 Extensive pEK204 homology to a single ST131 clade C isolate 

 

Long regions homologous to pEK204 were found in 8289_1#27 among the isolated 

examined here (Figure 6.6). This sample had the complete I1 replicon, oriT region, tra 

region, shufflons subject to site-specific recombinase activity. 8289_1#27 also had a pilL-

pilV cluster encoding a second major pilin subunit of the type IV family associated with 
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enhanced cell adherence and biofilm formation in enteroaggregative and Shiga toxin-

producing E. coli (Dudley et al. 2006). The regions absent from 8289_1#27 encoded 

polymerase and UV protection proteins (at 13-15 Kb) and segregation genes parM and 

stbB (at 18-20 Kb, along with hypothetical genes).  

 

The longer complete ISEcp1-blaCTX-M-15-orf477-tnpA-tnpR-blaTEM structure was present in 

8289_1#3 (C2_7) only, whereas inferred further transposition by ISEcp1 meant that 

8289_1#34 in the same genetic group (C2_7) had lost it and the blaTEM gene, as did 

8289_1#27 (C2_9) even though it had most of the rest of pEK204. 8289_1#35 (C1) had 

ISEcp1 and blaTEM only, unlike 8289_1#24 (C2_8) that had two copies of the blaCTX-M-15 

gene, three ISEcp1 copies in total, and part of the tnpR. The conserved regions shared 

across the clade C set encoded a DNA polymerase V subunit and UV protection and 

mutation gene (at 17 Kb), a methylase gene (at 22 Kb), and essential maintenance gene 

and segregation genes (at 27 Kb). 

 

6.3.6 Mobilization of AMR genes driven by ISEcp1, IS26 and IS903D 

 

IS26 had the highest copy number of the three transposons examined here: it had 19 

copies in pEC958 (n=8), pEK516 (n=5) and pEK499 (n=6), but none in pEK204 nor any 

on the NCTC13441 chromosome. Two main IS26 isoforms were present (Figure 6.7): one 

with nine copies across pEC958 (n=4), pEK516 (n=2) and pEK499 (n=3); and the other 

with nine copies across pEC958 (n=3), pEK516 (n=3) and pEK499 (n=3); along with a 

single slightly divergent IS26 in pEC958. Most were 820 bp, though the most divergent 

one in pEC958 in green was longer due to the insertion of ISEcp1 (1,332 bp), splitting 

IS26 at its IRs. IS26 was also found in the 3_2_53FAA HMP accessory genome, which had 

an IRR 4 Kb from a tnpA gene, which was 26.5 Kb from another IRR copy. 

 

8289_1#3 had four extensively rearranged plasmid-bourne IS26-like structures, 

indicating previous activity. The first was a pair of adjacent IRRs, like the second that also 

had a tnpA and a 3’ IRR. The third was a single IRR, and the fourth was a tnpA 8 Kb from 

another tnpA copy that in turn was 23 Kb from a IRR copy. 8289_1#3 also had a remnant 

of ISEcp1’s 50 bp IRR 42.5 Kb from the main copy, symptomatic of an excised ISEcp1.  
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Figure 6.6. Regions of similarity and normalized copy number variation for pEK204 

(93,732 bp). A coloured cladogram (left) shows the genetic relationships of the isolates 

examined where the two most divergent ones (3_2_53FAA in dark green and 83972 in 

cyan) did not have pEK516, and the commensal SE15 (navy) had only small regions of 

similarity. The ST131 isolates had small regions of similarity based on BLAST alignments, 

bar 8289_1#27 that possessed plasmid regions similar to pEK204. The blaCTX-M gene was 

at 8 Kb, blaTEM was at 13 Kb, followed by mixed conjugation and segregation genes at 36-

70 Kb, before a high copy number region at 75-77 Kb encoding an IS66 element and 

unannotated genes. The annotation is modified from Woodford et al. (2009). 

 

Two main isoforms of ISEcp1 (lengths 1,556-1,655 bp) were also present as single copies 

in the NCTC13441 chromosome, pEK204, pEK499 and pEK516 (Figure 6.8). The 

chromosomal and pEK204 ones were closely related and were distinct from the other 

isoform on the pEK499 and pEK516 plasmids. A single ISEcp1 was located at bases 

37,109-38,748 on pEC958 . 
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In the ST131 clade C isolates, all had at least one ISEcp1 copy. 8289_1#24 was inferred to 

have undergone multiple arrangements because it’s plasmid copy was re-structured with 

the tnpA gene 93 Kb from an IRR that was 89 Kb 5’ from an IRL with another 8 Kb to 

another IRL copy (Figure 6.9). The chromosomal copy had a duplicated tnpA and two IRL 

copies, presumably due to independent recombination events.  

 
 
Figure 6.7. Phylogenetic 

relationship of 19 copies of IS26 

element obtained from four ST131 

plasmids (pEK499, pEC958, 

pEK516, pEC958). This showed two 

main clusters of isoforms. The 

plasmid coordinates of the copies 

are shown (start-end).  

 
 

 
 
 

 
Figure 6.8. Phylogenetic relationship 

of four ISEcp1 copies in three ST131 

plasmids (pEK499, pEK516, pEC958) 

and the NCTC13441 chromsome. 

This showed two main clusters of 

isoforms.  

 
 

 



261 

 

 
 
Figure 6.9. ISEcp1 TE structure of 

8289_1#24 had two copies, one on the 

chromosome (top) and one on the 

plasmid (bottom). Both had been 

rearranged by multiple recombination 

events. 
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6.4 Discussion 
 

There was an extensive shared resistome between ExPEC E. coli ST131 compared to non-

pathogenic and microbiome E. coli, indicating likely gene transfer between commensal 

and pathogenic bacteria inhabiting the human gut and urinary tract (Ben Zakour et al. 

2016). This resistome was based on a set of functionally characterised contigs isolated 

from preterm infant faeces after antibiotic-resistance profiling, thus providing a direct 

link between genotype and phenotype indicating resistance to penicillin, 

chloramphenicol, cephalosporin, tetracycline and monobactam compounds. 

Asymptomatic E. coli HMP 83972 is used for therapeutic urinary bladder colonization in 

patients because it is protective against super-infection with more virulent strains 

(Sundén et al. 2006, Sundén et al. 2010) and here had both the fewest AMR genes and has 

no large plasmids, putatively due to virulence gene loss during adaptation to 

commensalism (Zdziarski et al. 2010).  

 

Horizontal DNA transfer and subsequent recombination is a common mechanism of 

genome evolution and adaptation in bacteria generally (Robinson and Enright 2004, 

Brochet et al. 2008, Chen et al. 2014) and in E. coli specifically (Milkman 1997, Cooper 

2007, Tenaillon et al. 2010, Didelot et al. 2012, Dixit et al. 2015, Tchesnokova et al. 2019) 

as well as the human microbiome (Smillie et al. 2011, Lloyd-Price et al. 2017). Notably in 

E. coli generalized transduction via phages may contributed significantly to transfer of 

smaller DNA segments (Dixit et al. 2015, Didelot et al. 2012) because E. coli is not 

naturally component for DNA uptake via transformation. 

 

There is extensive of E. coli gene transfer in the gut and of gene exchange with spreading 

to the bloodstream (Tamburini et al. 2018). A blaCTX-M-1-positive Incl1 plasmid spread 

between E. coli subtypes in the gut of a cystic fibrosis patient (Knudsen et al. 2018). 

Additionally, a blaOXA-48-positive IncL/M-type plasmid from K. pneumoniae was received 

by E. coli (Gottig et al. 2015, Willemsen et al. 2016). And a range of sulphonamide- and 

ampicillin-resistance genes (sul2, blaTEM-1b) were transferred on a pNK29 plasmid within 

E. coli subtypes in the human gut (Trobos et al. 2009, Karami et al. 2007). MGEs also play 

a role in this: for instance, ISKpn19 initiated replicative transposition at a known IR 

between IS3000 and ISAba125 elements in E. coli producing blaNDM-5 (New Delhi Metallo-
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beta-lactamase) (Xie et al. 2018). This gene can be encoded by IncF2 plasmids and uses 

IS26-mediated recombination for mobilisation and rearrangement (Pitart C et al 2015). 

 

The ST131 clade C isolates investigated here had notably higher levels of AMR genes than 

the HMP samples and commensal SE15. Some of these were transferred from other 

species, such as blaOXY from Klebsiella oxytoca and blaCTX-M from Kluyvera (Lartigue et al. 

2006). These clade C genome assemblies possessed highly conserved core genomes, but 

nonetheless showed numerous differences in AMR gene content, which correlated with 

their putative mobilizers, MGE transposition, plasmid recombination and conjugation. 

Reference NCTC13441 had numerous blaTEM or blaOXY β-lactamase genes, contrasting 

with EC958’s greater concentration of cephalosporin-resistance blaCMY (AmpC) genes, 

even though these isolates’ core genomes had high identity (Decano et al. 2019, Chapter 

4).  

 

This was also illustrated by the acquisition of an IncI pEK204-like plasmid in one clade C 

isolate (8289_1#27), which contained a type IV pilus biosynthesis locus (pil) allowing 

better epithelial cell adhesion and superior biofilm formation (Dudley et al. 2006). Given 

that clade C’s fitness advantage has been tightly associated with the fimH30 fimbrial 

adhesin profile (Petty et al. 2014), the emergence of additional conjugation machinery on 

a conjugative plasmid in ST131 is a concern.  

 

The rearranged structures found for ISEcp1 and IS26 indicated that chromosomally or 

plasmid-bourne AMR genes in transposable elements can vary in ST131 further. This has 

implications for clinical typing if this relies on archaic techniques like MLST or rST that 

will have limited information on AMR phenotypes. This was illustrated by blaCTX-M-14-

positive 8289_1#35 from subclade C1 and blaCTX-M-14/15-positive 8289_1#24 from 

subclade C2, which had duplicated tra regions and a higher diversity of distinct ESBL 

genes compared to the other ST131 clade C isolates, which may be driven by 

transposition-mediated recombination in 8289_1#24.  

 

This chapter emphasized the potential relevance of accessory genome screening with 

scope for developing diagnostics tracking plasmid and MGE types in addition to those 

existing for AMR genes (Durrant et al. 2019). Tracking transmission patterns within 
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closely related infection outbreaks may be better informed by linking plasmid replicon 

data with transposon types in addition to AMR profiles. 

 

In addition, given that the jumbled nature of E. coli genomes is hypothesized to be a 

product of type I restriction/modification system enzyme fragmentation of horizontally 

transferred DNA (McKane and Milkman 1995, Loenen et al. 2014, Dixit et al. 2015), 

further work can explore further conjugated DNA processing in the cell, how recombinant 

DNA is regulated, and what the fitness effects result.  
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Chapter 7: Thesis Summary, Conclusions and 
Future Work 

 
 

7.1 Thesis Summary 
 

In chapter 1, I conducted a comprehensive background study on ST131 evolution and the 

strategies used for phylogenomic analyses of ST131 populations.  This was followed by a 

pilot study involving 100 ST131 strains in Chapter 2 to optimise genomic methods that 

were planned to apply to the subsequent analyses in the project.  

 

In chapter 3, a UTI outbreak in Irish nursing homes was investigated by performing a 

deep evaluation of the samples’ evolutionary history. Using short read data, we  

attempted to identify the origin and date of emergence of the strains that form clade with 

genetetic characteristics different from the rest of previously samples global ST131 

isolates.  

 

In chapter 4, the architecture of pathogenic ST131 carrying bla genes  was resolved using 

long read sequences. In association with my collaborators at the Sanger Institute, I 

applied new high-resolution Oxford Nanopore DNA sequencing technology to six ST131 

samples from infected patients and compared the output to Illumina short reads. This 

was to tackle  infections more effectively by improving our understanding of what 

plasmids are being exchanged and their exact antibiotic resistance gene contents. A 

combination of methods showed that drug-resistance genes on plasmids were highly 

mobile in this chapter because they can jump into ST131’s chromosomes. We found that 

the plasmids are very elastic and undergo extensive rearrangements even in closely 

related samples. We also confirmed the chromosomal  insertion of blaCTX-M-15  gene 

and its flanking elements.  This application of DNA sequencing technologies illustrated at 

a new level the highly dynamic nature of ST131 genomes. 

 

In chapter 5, the largest whole genome collection of ST131 by far was analysed by 

identifying their origin, evolution and population structure. We provided a deep 
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resolution of the epidemiology and genomic context of key ESBL genes. We also showed 

that the core genome is highly stable in contrast to its hypervariable accessory genome. 

 

In chapter 6, we quantified the degree of AMR gene sharing between gut E. coli and ST131. 

We also showed that ST131’s key plasmids that play a major role in AMR gene transfer 

are highly variable within ST131 clade C. The results in this chapter indicate that 

resolving the structures, copy numbers and locations of key ST131 provide opportunities 

for better surveillance of AMR in ST131 populations. 

 

Overall, this thesis provided a robust evidence of inter-clonal diversity using whole 

genomes and emphasized that long read assembly resolved plasmid transposition, 

chromosomal insertion of AMR genes and the complete genome architecture of ST131. 

Moreover, using the strategies I developed throughout my PhD study, I was able to 

resolved the population structure of ST131 using the largest collection thus far.  

 

7.2 Avenues for Future Work 
 

This project can be further extended by applying the methods developed for clinical 

metagenomics and by adapting culture-independent sequencing approaches of clinical 

samples for rapid diagnostics, informing antibiotic treatment, and studies of bacterial 

evolution. This entails the application of [1] culture-independent sequence-based 

approach, [2] the use of Oxford nanopore long read sequencing across a larger sample 

size (as PacBio is 20-fold more expensive) (Kim et al. 2019), [3] bacterial genome 

assembly where taxonomic binning is not required (Nicholls et al. 2019) and [4] 

determining antibiotic sensitivity of all 4,000 or more ST131 samples.  

 

Future work could examine what accessory gene (Ben Zakour et al. 2016) and core gene 

regulatory (McNally et al. 2016) changes may result in new clonal expansions in the 

descendant lineages and identify molecular adaptations to gastrointestinal or urinary 

tract environments (McNally et al. 2019). It should also reducing ST131 sampling bias by 

expanding numbers of non-human isolates and diversity of geographic region sampled, 

which can help resolve potential sources of E. coli’s ESBL genes like blaCTX-M-15, for which 
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there was no evidence of retail meat (Randall et al. 2016) or livestock (Ludden et al. 2019) 

as sources for BSIs thus far, though transfer of bacteria may occur (Roer et al. 2019).  

 

Another aspect where the results of this thesis could be useful is  drug discovery. I have 

drafted a project proposal to collaborate with Dr. Zamin Iqbal’s group and Dr. Nassos 

Typas to explore this area.  

 

 The potential of using antibacterial drug combinations to enhance drug effectivity has 

been recently modelled using Gram-negative Escherichia coli, Salmonella enterica serovar 

Typhimurium and Pseudomonas aeruginosa (Brochado et al. 2018). In this proposed 

project, I plan to collaborate with the group that pioneered these experiments and apply 

their strategies to identify the optimal drug combinations and antibiotic effectivity 

against ST131 uropathogens. The work is divided into two stages (Figure 7.1) under a 

strict timeline to achieve optimal delivery of results. The first stage, which involves 

sample collection to antibiotic resistance profiling will be performed at EMBL Heidelberg 

while the 2nd stage that comprises sample sequencing and further downstream data 

analyses will be performed at EBI in Hinxton, UK.  

 

 

Figure 7.1. Proposed workflow of the upstream (Stage 1) and downstream (Stage 2) 

processes for investigating the gene-drug (genotype-phenotype) relationships in E. coli 

sequence type (ST) 131. The 1st stage will be performed with Dr.  Nassos Typas Group 

and will involve sample collection to antibiotic resistance profiling of strains that were 

both untreated and treated (wild type) with drug (antibiotics) combinations. The 2nd 
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stage that includes sequencing to downstream data analyses will be implemented with 

Dr. Zamin Iqbal’s Group. Clinical and environmental bacterial strains will be collected 

from clinical and environmental sources. These isolates will be classified at the species 

level using metagenomics strategies. Multi-locus sequence typing of all recovered E. coli 

will then be performed to distinguish E. coli ST131 from the other sequence types 

followed by the treatment of several drug combinations. Treated and non-treated 

samples will be sequenced using Illumina HiSeq; the resulting raw read libraries will be 

rid of sequencing the adapters and their base errors corrected. All “clean” read libraries 

that will pass the quality assessment will then be assembled. Draft genomes will be 

annotated to determine the variation in the AMR gene type/mutations as well as SNPs in 

virulence-associated elements in both the wild type and the treated isolates.  

7.3 Conclusions and Final thoughts 
 
My entire PhD work strongly advocates that improved treatments of antibiotic-resistant 

bacterial infections require massive investment in high-throughput genomics. The 

sustained use of ciprofloxacin and third generation cephalosporins will continue to 

enrich for virulent clades such as ST131 Clade C2 lineages. The collective data and results 

presented in this thesis highlight the global need to reduce the selective pressure from 

these antimicrobials. The diversity of ST131 lineages and resistance elements indicates a 

need for surveillance strategies to identify ST131 subclones, plasmids and transposable 

elements. The characterisation of those specific properties that make specific lineages 

successful in particular contexts remains one of the key challenges in understanding the 

dynamics of emergence and spread of new variants of common bacterial species. Focused 

attention to successful strains could help to explore these interactions and control the 

epidemic of antimicrobial resistance. 
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Appendix 
 
The phylogenetic trees in Chapters 3, 4 and 5 that were generated using iTol v.4 

(https://itol.embl.de/)  can be accessed via my account username “aedecano”. 

 

The scripts for processing the data in this thesis are publicly available on my Github 

(https://github.com/) account, “aedecano”. 

 

The Supplementary information i.e Supplementary tables of this thesis can be viewed and 

downloaded from my Figshare account, 

https://figshare.com/authors/Arun_Decano/5793341. The files are labelled with 

“Ch” and the relevant chapter number they belong to (e.g. Ch2 for the data belonging to 

Chapter 2). 
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