
 ABSTRACT 

Gait analysis is the measurement, processing and systematic interpretation of biomechanical parameters that characterize human 

locomotion. It supports the identification of movement limitations and development of rehabilitation procedures. Accurate Gait 

analysis is important in sports analysis, medical field, and rehabilitation. Although Gait analysis is performed in several laboratories 

in many countries, there are many issues such as: (i) the high cost of precise Motion Capture systems; (ii) the scarcity of qualified 

personnel to operate them; (iii) expertise required to interpret their results; (iv) space requirements to install and store these systems; 

as well as difficulties related to the measurement protocols of each system; (vi) limited availability (vii) and the use of markers can 

be a barrier for some clinical use cases (e.g. patients recovering from orthopedics surgeries). In this work, we present a low cost 

and more accessible system based on the integration of a Multiple Microsoft Kinect sensors and multiple Shimmer inertial sensors 

to capture human Gait. The novel multimodal system combines data from inertial and 3D depth cameras and outputs spatiotemporal 

Gait variables. A comparison of this system with the VICON system (the gold standard in Motion Capture) was performed. Our 

relatively low-cost marker-less multimodal motion generates a complete 360-degree skeleton view. We compare our system with 

the VICON via gait spatiotemporal variables: Gait cycle time, stride time, Gait length (distance between two strides), stride length, 

and velocity. The system was also evaluated with knee and hip joint angles measurement accuracy. The results show high 

correlation for spatiotemporal variables and joint angles inside the 95% bootstrap prediction when compared with VICON. 
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1. INTRODUCTION 

AIT is a repetitive sequence of movements of lower limbs that moves the body forward, while simultaneously maintaining 

stability of the body[1]. During Gait, one limb acts as a movable support, in contact with the ground, while the contralateral 

limb advances in the air. It is a cyclic movement as limbs invert their roles with each successive step [2]. In general, Gait analysis 

involves the measurement, processing, and systematic interpretation of biomechanical parameters that characterize human 

movement. Through Gait analysis, it is possible to identify limitations in movement and provide information to guide rehabilitation 

and pre-habilitation procedures for orthopedics surgeries. Currently, Gait analysis is performed in biomechanical laboratories. The 

data from three-dimensional kinematic systems can be obtained through synchronized infrared and high-speed cameras [3]. It is 

also possible to capture ground reaction force data via force platforms[4]. The combination of joint movement and angles, in 

addition to spatiotemporal kinematic and individual anthropometric characteristics, can be used to describe Gait. All these variables 

can be assessed through Motion Capture technologies[5]. 

Motion Capture (MoCap) is a term used to describe the process of digitalizing motion, transposing it into a digital format using 

camera-based and wearable systems [6]. There are two main types of optical (based on cameras) MoCap technologies: marker-

based MoCap and marker-less-based MoCap, defined based on the need (or not) to use landmark markers to detect position. 

Moreover, each technology has its pros and cons in Gait evaluation [7]. Both “outside in” MoCap system types (marked-based and 

marker-less) are not very portable but can be very precise. For example, a powerful marker-based MoCap technologies such as the 

VICON [8], supports precise, clear, and accurate gait assessment [9, 10]. MoCap technologies have been used in cinema, game 

creation, and in health to evaluate performance of athletes or clinical analysis [11]. This technology records the actions and 

movements of actors with reference markers placed on specific locations of the body, followed by post processing via specialized 

 
*Primary corresponding author: Thiago Braga Rodrigues t.brodrigues@research.ait.ie 

Debora Pereira Salgado d.psalgado@research.ait.ie  

Dr. Ciarán Ó Catháin ciaranocathain@ait.ie 

Prof. Noel O’Connor noel.oconnor@dcu.ie 

Dr. Niall Murray nmurray@research.ait.ie 

 

1 Faculty of Engineering & Informatics, Athlone Institute of Technology, Dublin Road, Athlone, |Co. Westmeath, Ireland 

2 Faculty of Science & Health, Athlone Institute of Technology, Dublin Road, Athlone, |Co. Westmeath, Ireland 

3 Insight Centre for Data Analytics, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland 

Human Gait Assessment using a 3D Marker-less 

Multimodal Motion Capture System 

Thiago Braga Rodrigues*[0000-0002-2017-4492]1, Debora Pereira Salgado1, Ciarán Ó Catháin2, Noel O’Connor3,  

Niall Murray1 

G 

mailto:t.brodrigues@research.ait.ie
mailto:d.psalgado@research.ait.ie
mailto:nmurray@research.ait.ie


software[8]. The participant performs movements in Gait laboratories with cameras that captures the light reflected by markers. 

Movements in such systems are a function of the movement of the reflective markers [12]. Despite the fact that this type of system 

is highly precise and widely applied in various domains, it has some drawbacks: (a) high cost,  some marker-based MoCap can 

cost more than $150,000.00 [13]; (b) complex set up (e.g. it takes time and expertise to set up the system and to add markers at 

subject before the session); (c) occlusion of markers can occur during the movements or unknown experimental artifacts [7]. In 

case of occlusions, further processing to fill the gaps is required.  

Some MoCap technologies do not require the use of reflective markers. Such techniques are less restrictive, thus giving the 

impression of greater freedom of movement to the user and can overcome the problem of occlusion artifacts. However, complexity 

lies in the precise representation of the movement when compared with marker-based capture[6]. The operation of the marker-less 

MoCap is based on the analysis of the silhouette of the image of the actor who is performing the movement in contrast to the 

background of the image. The marker-less MoCap technique has been widely used in devices that efficiently perform the task of 

translating human motion into a 3D coordinate point that can be mapped by the computer[14]. In short, it has been proved the 

potential of marker-less MoCap technologies in clinical studies which require accurate motion knowledge of subject for diagnosing 

locomotion difficulties and potential improvements in their performance. The Microsoft Kinect (Kinect)[15], first introduced in 

November 2010, is a marker-less RGB-D MoCap device developed for the Xbox 360 and Xbox One. The most important functions 

of MS-Kinect are associated with tracking the user's movements against the interface. For such functionality, hardware components 

such as an infrared light emitter, multiple video cameras, an infrared camera, a vector of microphones, a three-axis accelerometer 

and a camera tilt motor are used [16]. For instance, validity and accuracy of the Kinect in clinical assessment is strong regarding 

postural control and standing balance, neurological rehabilitation. Beyond the scope of biomechanics and rehabilitation, such 

camera-based systems can play an important role in computer vision recognition [17, 18]. It is acknowledgeable that MoCap 

systems are used in assistance of different languages, sign language, and also identification of items and in improving road safety 

[19-22].  

Although Gait laboratories have become more precise with the development of accurate MoCap devices like VICON system, 

the cost of equipment is inhibitive for wide scale adoption [23]. A multimodal Gait analysis system that can provide valid data and 

feedback using inexpensive MoCap devices like the Kinect and inertial sensors would be a welcome alternative to these expensive 

systems for Gait laboratories. The use of low-cost MoCap such as the multimodal Gait analysis system proposed in this work can 

be an alternative for motion analysis, orthopedics as in prevention, diagnostics, and rehabilitation of chronic injuries [24].  

The aims of this study include, as main contribution the application of a multimodal system in Gait analysis to extract Gait 

features by combination of inertial and 360o skeletons. A comparison between our system and the gold standard VICON system in 

terms of Gait angles and spatiotemporal Gait is performed. In addition, our system overview outlines the designed and developed 

synchronization modules, and real-time streaming protocol and fusion of accelerometer, gyroscope, and magnetometer data for 

quaternion representation in R4.  The remainder of this paper is structured as follows: discussion of results and comparison across 

some related work, conclusion which includes future work and potential applications. 

2. RELATED WORK 

First, we review some related Motion Capture works including marker-less systems, inertial based systems, and combined 

multimodal systems. 

2.1 Marker-less technologies 

Marker-less MoCap technologies have being used in Gait analysis to detect Gait events and also in rehabilitation. Some marker-

less technologies apply RGB cameras in Gait. In[25], a 2D marker-less Gait analysis was proposed using a single depth camera. 

Their system had an upright calibration protocol and tracks pelvis and feet segments. They compared their results with a marker-

based technology with correlation between 0.82 and 0.99. Their system contained spatiotemporal variables and stride time error 

less than 0.02s. The authors in [26] have proposed a Gait analysis system composed by only a single RGB camera. The 

methodology applied generates a silhouette using particles filtering from a synthetic image. The authors reported that the sample 

rate was quite low (20hz) and as a result, they could not get angle changes of more than 5o between two frames. They reported 

results for longitudinal displacement of the knee and ankle. Their comparison with the system with VICON system was presented 

via graphical differences with no calculations. Some movements and joints are occluded due to the limitation of using a single 

view camera. In[27], a multi Kinect system was developed for Gait assessment. This technique converted skeleton frames from a 

single Kinect into a feature vector. This work considered “center of mass” (COM) as center of hip, shoulder and spine joints. They 

also captured stride times, and angular velocities in different phases of stride.. Their system was compared with reference values 

from Kinect and did not consider any other comparison method with a gold standard system like the VICON system. The results 

have shown that multiple Kinects can be applied to capture human movement and assess Gait. They have applied the system to 

capture spatiotemporal Gait variables and found correlation of 0.97 for right stride length, 0.83 for left stride length, and 0.92 for 

Gait time. Our results have shown correlation of 0.99 for Gait time and 0.95 for right and left stride length. In our work, we strictly 

compared the multimodal approach (optical mark-less combined with inertial sensors) with the marker-based VICON system.   

In [28], the authors proposed a low-cost marker-less MoCap system using a single Microsoft Kinect to obtain 3D joint position 



and extract Gait spatiotemporal features. Their method defined toe contact to mark starting and ending points of a full Gait cycle 

(full walk) and generated Gait variables. They considered the variables of: speed; step length (distance between two steps); step 

time; stride length (distance between two strides); and stride time. This study defined what are some of the most important Gait 

spatiotemporal variables in use today. They compared the system with the 3DMA (3D Motion Analysis) system [29] and concluded 

that poor detection of anatomic landmarks in lower body caused the system to be inaccurate to get some variables such as step 

time (diff between Kinect and 3DMA -0.17), and stride time (diff between Kinect and 3DMA -0.20).  

The studies above inform that the tracking of a single view MoCap has some limitations: the device cannot distinguish the frontal 

and back view of an individual, and, because the skeleton is generated by position estimation, errors in the detection can occur for 

lateral views. In addition, different joints have variations in accuracies e.g. lower joints are less accurate against upper joints[30].  

To overcome the limitations outlined above and to have a 360o of tracking area, increasing the field of view and skeleton 

detection, numerous authors have proposed the use of multiples Kinects for Gait analysis in their studies. In [31], a multi Kinect 

system was developed for gait assessment comparing results with VICON. The results have shown that multiple Kinects can be 

applied to capture human movement and assess Gait. They have applied the system to capture spatiotemporal gait variables and 

found correlation of 0.97 for right stride length, 0.83 for left stride length, and 0.92 for Gait time. Our results have shown correlation 

of 0.99 for Gait time and 0.95 for right and left stride length. 

Although these authors found out that their system can track motion in one, two or more viewpoints, their system was not capable 

of tracking full 360o motion and did not consider the view from the back. The proposed Gait system from this work considers the 

full 360o view from users and can capture 3D, spatial and temporal Gait variables. 

2.2 Inertial-based Technologies 

Inertial measurement Units (IMUs) are electronic devices capable of measuring different parameters of a body like acceleration, 

force, angular rate, and magnetic field around an object. IMUs can provide accurate temporal Gait variables using its internal 

sensors like accelerometers, gyroscopes, and magnetometers [32]. In [33], the authors used 9DOF IMUs for Gait temporal 

assessment and concluded that IMUs could be used to assess temporal Gait parameters with high correlation between IMUs and 

gold standard systems (0.97 for Gait time and 0.82 for stride time).  

 The authors in [34] developed a real-time estimation of temporal Gait variables using 6DOF IMUs and have correlation results 

of 0.93 for stride time, and 0.97 for velocity against the GAITRite (GR) system [35][34][33][33][33][33][33].  These studies have 

shown that IMUs can offer a low-cost tool for temporal Gait variables. To have a system that can provide spatial and temporal gait 

variables at same time, a multimodal system can be a low-cost alternative for the gold standard Gait systems.    

 Our recent published work has dealt with fusing IMU and multiple depth sensors for Gait angles. We compared results of a 

single Kinect, fused Kinect, IMU, and combined sensors with Vicon system. We reported principal component analysis of knee 

and hip angles, which resulted in comparison across individual sensors. The full paper is available at [24].   

Considering these works and to the best of the author’s knowledge, the novelty of the system proposed here lies in the fact that: 

(a) no works in the literature have integrated IMUs with a fused Kinect skeleton from multiple Kinect by the combination of 3D 

points (x, y, z) and quaternion orientation (w, i, j, k) generating in a 360o view; (b) it presents a real-time wireless synchronization 

and streaming protocol for multiple IMUs; (c) it supports easy set up and is low cost; (d) it provides 3D and kinematic data with 9 

degrees of freedom; (e) it enables fully body reconstruction; (f) it provides accurate join angles; (g) it is marker-less and can be 

used in any environment. To examine the utility of our system, we compared our system with VICON. In the next section, we 

introduce our Gait system and discuss the results of system testing. The proposed system framework, signal processing, and 

experimental protocol is also described. 



3. PROPOSED HUMAN GAIT ASSESSMENT SYSTEM  

 In this section, we give experimental and computational specifications of the Gait system and discuss coordinate 

transformations, MK skeleton fusion, IMU synchronization and angle evaluation. 

3.1 System setup 

The Gait assessment system captures and combines metadata of 4 MS Kinect cameras, and data from 4 Shimmer IMU. The 

multimodal architecture is composed by a Multi Kinect module, and an IMU module as per Fig.1. It also contains real-time 

synchronization protocol and an orientation filter [36] .  

A) Multi Kinect Module  

Being aware of the limitations of a single Kinect such as occluded joints and limited area of movement (only front view), a 

module containing 4 MS Kinects was developed. Each Kinect was powered by its own computer (4 quadcore Intel Core i7, 16GB 

DDR3 RAM, 3.2Ghz and Graphics Processing Unit running the Kinect for Windows SDK 2.0[37]). The master server 

communicated with each of the MS Kinects via Transmission Control Protocol (TCP). The master processed the data from each 

MS Kinect and generates the fused 3D skeleton. Each MS Kinect captures a skeleton from one view perspective and the Multi-

Kinect fusion enables full human body MoCap in 4 views being achieving 360o. The Multi Kinect system contains 3 components: 

input, processing, and output as per Fig.1. The input component consists of 4 skeletons (one for each Kinect). The processing 

component is responsible for synchronization, calibration, noise reduction, and skeleton fusion. The output component returns the 

original 4 skeleton data and a fused 360° skeleton. For calibration purposes, every two adjacent Kinects were erected perpendicular 

to each other and all Kinects were kept at same height (0.8 meters). The distance between MS Kinects in a square arrangement 

was 4.1 meters and the diagonal distance was 6m as per Fig. 2. This arrangement remained consistent for all experiments. 

 
Fig. 2.  Kinect arrangement setup. This setup was provided to ensure accurate data capture and synchronization. 

 
 

Fig. 1.  Gait System diagram containing 4 Kinect skeletons and 4 IMU data as inputs and a fused 360o skeleton, angles, and Gait spatiotemporal variables as 
outputs. 



Coordinate Transformations 

To use more than one Kinect at same time, the local 3D coordinate system of each Kinect must refer to same 3D global coordinate 

system. For this experiment, we chose the frontal Kinect (K0xyz) as the “master” Kinect and all other Kinects coordinate systems 

were changes into the K0 global coordinate system. For this purpose, transformation matrix must be discovered for each Kinect 

(K1-K3)xyz into K0xyz as in (eq. 1). Using the coordinate transformation relationship as per (eq. 3), one Kinect’s skeleton coordinate 

system can be transformed to the second Kinect’s skeleton coordinate system by applying a transformation matrix. As a result, the 

skeleton coordinates in both Kinect skeleton are representing the same coordinate data system. To discover the coordinate 

transformation matrix, we adopted a closed-form solution using unit quaternions to get a 4×4 transformation matrix[38]. 

Considering: 

𝑀𝐴𝐵 = (

𝑅[0][0] 𝑅[0][1] 𝑅[0][2] 𝑇𝑥

𝑅[1][0] 𝑅[1][1] 𝑅[1][2] 𝑇𝑦

𝑅[2][0] 𝑅[2][1] 𝑅[2][2] 𝑇𝑧

0 0 0 1

)          (1) 

 

a) MAB – 4x4 transformation matrix to change one local Kinect A into a global coordinate B. 

b) R[m][n] – The 3x3 rotation matrix 

c) T – The 3x1 translation vector 

 

To discover the transformation matrix of each Kinect (local coordinate system) into the K0 global coordinate system, we applied 

(eq. 2). 

𝐵𝑖 = 𝑠𝑅 ∗ 𝐴𝑖 + 𝑇 (2) 

(
𝑥′
𝑦′

𝑧′

) = 𝑠 (

𝑅[0][0] 𝑅[0][1] 𝑅[0][2]

𝑅[1][0] 𝑅[1][1] 𝑅[1][2]

𝑅[2][0] 𝑅[2][1] 𝑅[2][2]

) ∗ (
𝑥
𝑦
𝑧
) + (

𝑇𝑥
𝑇𝑦
𝑇𝑧

) (3) 

d) Bi – 3xN matrix representing the unit quaternion of the Kinect global 3D point 

e) Ai – 3xN matrix representing the unit quaternion of the Kinect local 3D point 

f) s – Scale factor if needed (default 1) 

To obtain the transformation matrix and calibrate one Kinect skeleton to K0 skeleton, at least four joints must be detected by 

the two calibrating Kinect at the same time. However, in order to ensure proper calibration, we only assume that captured skeleton 

data is reliable when the person is standing in front Kinect sensor, and two adjacent Kinects can track all 20 joints at the same time 

in a trial. To get the most accurate transformation matrix, 120 frames of reliable skeleton data are captured to get the matrix with 

minimum coordinate difference. The sum of the 20 joints coordinate difference values between calibrated Kinect and KO is 

calculated as per (eq. 4). 

𝐶𝐷𝑉𝑖 = ∑ ([

𝐴𝑗 . 𝑥

𝐴𝑗. 𝑦
𝐴𝑗. 𝑧

1

] − 𝑀𝐴𝐵 ∗  [

𝐵𝑗 . 𝑥

𝐵𝑗 . 𝑦
𝐵𝑗 . 𝑧

1

])19
𝑗=0 , (𝑖 = 0,119) (4) 

g) CDVi – The ith coordinate difference sum in 120 frames 

h) Aj – The jth joint vector of Kinect A 

i) Bj – The jth joint vector of Kinect B 

 By comparing 120 sums of the coordinate difference values, the transformation matrix with minimum coordinate difference sum 

is chosen. Noted that because sampling frequency of the multi Kinect system is around 35Hz, an oversampling to 40Hz was 

employed to synchronize the multimodal system.  

The Multi Kinect Skeleton Fusion  

Each Kinect skeleton contains 20 3D joints. The Kinect SDK provides the joint tracking state of every joint and it is important 

in our study to determine each transformation matrix. This property has three values: “Tracked”, “Inferred”, and “NotTracked”. 

“Tracked” indicates that the joint is detected by the depth frame. “Inferred” indicates the joint is not being captured by the depth 

frame but there is a calculation to determine joint. “NotTracked” indicates that the joint position is indeterminable. This led us to 



calculate the skeleton confidence (SC) when generating transformation matrixes as in (5). This property is used to filter unreliable 

data (Skeletons with many “Inferred” and “NotTracked” joints) from Multi Kinects.  

𝑆𝐶𝑘 = ∑ 𝐽𝑆𝑗
19
𝑗=0 , (𝑘 = 0,… ,3;  𝑗 = 0,… ,19) (5) 

a) SCk – The skeleton confidence from the kth Kinect  

b) JSj – The jth joint tracking state (1 if “Tracked”, else 0) 

A single Kinect is ideal to track a user from a frontal side. Hence, for the back-side detection, the Kinect SDK still captures the 

user as a frontal view, capturing a noncurated skeleton. Based on the SC, we reduce 2 points for the SC calculation if it is a “back” 

Kinect (K2) as in (eq. 6). 

𝑆𝐶𝑘 = {
𝑆𝐶𝑘 − 2, 𝑖𝑓  𝑘𝑡ℎ = 𝐾2 "𝑏𝑎𝑐𝑘" 
𝑆𝐶𝑘,                                        𝑒𝑙𝑠𝑒 

, (𝑘 = 0,… ,3) (6) 

 Due to this limitation, not all Kinects can track a reliable skeleton of the user and the most reliable skeleton is selected as main 

skeleton. For being the “main” Kinect, K0 has the highest priority, followed by K1, K3, and K2. 

 Each 2 adjacent Kinects are fused to generate a fused skeleton. The joint weight of each joint of two Kinects are then calculated. 

To do calculate joint weights, each skeleton confidence and tracking states of both skeletons are combined as in (eq. 7) and based 

on the joint weight, smother fused skeletons are generated as per (eq. 8). The final fused skeleton is composed of all joints of the 

smoother skeletons. 

𝐽𝑊𝑘𝑗 = {
𝑆𝐶𝑘 , 𝑖𝑓  JS𝑗 = "𝑇𝑟𝑎𝑐𝑘𝑒𝑑" 

𝑆𝐶𝑘/2,                               𝑒𝑙𝑠𝑒 
 (7) 

c) SCk – The skeleton confidence from the kth Kinect  

d) JSj – The jth joint tracking state (1 if “Tracked”, else 0) 

SJ⃗⃗⃗  j =
JW1j.TAS⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  1j +JW2j.TAS⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  2j 

JW1j+JW2j
  (8) 

e) SJ⃗⃗⃗  j – The jth smoothed joint coordinate vector  

f) JW1 and JW2 – The jth joint weights of the two adjacent Kinects 

g) TAS⃗⃗ ⃗⃗ ⃗⃗  ⃗
1j and TAS⃗⃗ ⃗⃗ ⃗⃗  ⃗

2j  – The jth joint’s coordinate vectors of the two adjacent Kinects 

B) Inertial Measurement Unit Module and Synchronization  

  The IMU module in our work contains 4 Shimmer IMU sensors[39]. Data from these 4 sensors was captured using Bluetooth 

following the capture protocol we developed. A multi-function MATLAB script was developed to perform the following capture 

protocol:  

• Sampling frequency of all sensors was defined to be 40Hz to generate the quaternion and avoid sensor drifting.  

• Internal configuration of each IMU to 9DOF; 

• Synchronization between the sensors;  

• Enabling start/stop of the IMU system data capture.  

 More specifically in terms of internal configuration of each IMU, 10 streams of data were captured: (i) 3D acceleration from 

accelerometer (Accxyz); (ii) 3D angular velocity from gyroscope (Gyroxyz); (iii) 3D magnetic field from a magnetometer (Magxyz), 

and (iv) a timestamp. As discussed later in this section, the Accxyz, Gyroxyz, Magxyz, were fused to provide quaternion representation.   

 The Shimmer IMU has enough internal memory to store sessions but each of the sensors has its own time clock. Hence, 

synchronization of all 4 IMU during data capture is required. An algorithm was designed and implemented to achieve 

synchronization. Pseudo code for this algorithm is provided in Algorithm 1. The function provided in the algorithm can promote 

real-time wireless synchronization and streaming protocol for multiple IMUs. This protocol fuses, in real-time, accelerometer, 

gyroscope, and magnetometer 3D data and generates the quaternion orientation. The data is synchronized with the computer CPU 

clock ensuring no data is lost. 



Angle Evaluation 

To represent orientation of a rigid body or frame coordinates in 3D space, a quaternion representation was employed. This 

complex number representation can define any spatial rotation around a fixed point or coordinate system. A quaternion 𝑞 =
 [𝑞0 𝑞1 𝑞2 𝑞3], can be used to get an angle θ about a fixed Euler axis as per (eq. 9) and Fig. 3. To get the angle between two joints 

with Shimmer, quaternion matrixes were obtained by the fusion of the 3 Shimmer internal modules (Accxyz, Gyroxyz, Magxyz,) using 

a Madgwick-based orientation filter[36].  

The quaternion generated by the function can represent spatial rotation of each shimmer and represents angle in each axis. 

Having each Euler angle, it is then possible to reference one Shimmer to another and get the angle between two sensors. The angle 

between two IMU was used as part of the walking evaluation during experiments. The integration of the multi Kinect skeleton and 

IMU Modules was achieved by combining unit quaternions from 2 Kinect joints Kxyz (for each) and quaternions from the IMU 

located in the mid-point of those 2 joints q = [q0 q1 q2 q3] (for each) by rotating the quaternion q around vector v directing the 

two Kinect joints (v = K1 - K2) as per eq. 10 and Fig. 4. The fusion can output projected angles in frontal, lateral and sagittal 

planes by converting the current rotated quaternion of each IMU to direction cosine matrixes and apply to the Euler angle as per 

Algorithm 1: Real-time multi IMU streamer and synch 

function MultiIMU(comPorts, jointNames, captureTime) 

Input: com Ports (one for each IMU), joint names, and 

capture time 

Output: The .csv files containing each IMU data 

1:  if all sensors are connected through BT protocol then 

2:   Define IMU Handle Class instance; 

3:   Define sample rate to 40hz; 

4:   Set internal board to 9DOF; 

5:   Enable IMU internal sensors (Acc, Gyro, Mag); 

6:   Synchronize IMU clocks with PC clock 

7:   if IMUs are ready to capture then 

8:    Start assessment and capture 

9:    Audio alert 

10:   while elapsedTime < captureTime do 

11:    Write data in CVS file 

12:    IMU quaternion sensor fusion  

13:   end while 

14:   Stop assessment and capture 

15:   Audio alert 

14: Write the percentage of received packets to detect 

any lost information 

15:   end 

16:  Disconnect IMU 

21:  end 

22: end 
 
 

 

 
Fig. 3.  Rotation angles from IMU. 

 
Fig. 4.  Quaternion integration. 3D points from Kinect(xyz) are combined with 

quaternion q = [q0 q1 q2 q3]. 
  



eq 11. The projection angle of any IMU is achieved by trigonometry of the right-angle triangle of IMUxyz of the directional vector 

from Kinect on the desired plane. 

[
𝜙
𝜃
𝛹

] =  

[
 
 
 
 arctan

2(𝑞0 𝑞1 +𝑞2 𝑞3 )

1−2(𝑞1
2+𝑞2

2)

arcsin (2(𝑞0 𝑞2 − 𝑞3 𝑞1 ))

𝑎𝑟𝑐𝑡𝑎𝑛
2(𝑞0 𝑞3 +𝑞1 𝑞2 )

1−2(𝑞2
2+𝑞3

2) ]
 
 
 
 

 (9) 

 
𝜙 − 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑥 𝑎𝑥𝑖𝑠
𝜃 − 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑦 𝑎𝑥𝑖𝑠
𝛹 − 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑧 𝑎𝑥𝑖𝑠

 

 

𝐷𝐶𝑀 = [

(𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2) 2(𝑞1𝑞2 + 𝑞0 𝑞3) 2(𝑞1𝑞3 − 𝑞0 𝑞2)

2(𝑞1𝑞2 − 𝑞0 𝑞3) (𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2) 2(𝑞2𝑞3 + 𝑞0 𝑞1)

2(𝑞1𝑞3 + 𝑞0 𝑞2) 2(𝑞2𝑞3 − 𝑞0 𝑞1) (𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2)

](10) 

 

[

𝑣1
′

𝑣2
′

𝑣3
′

] = [𝐷𝐶𝑀] [

𝑣1

𝑣2

𝑣3

] (11) 

4. EXPERIMENTS 

4.1 Protocol 

The experiments with the Gait system adhere to the approach taken in numerous related works in the literature [40-42] and the 

protocol employed had the following stages:  

• Participants recruitment. 

• Information and consent forms. 

• Joint measurements. 

• Plug-in Gait marker placement[43]. 

• 8 to 12 Trials per participant (including 1 trial for calibration). 

For this study, 8 healthy participants completed 12 trials each, providing a total of 96 individual datasets. For each trial, the 

participant was asked to jump on a force plate, walk towards the direction of the first Kinect K0 and finish with a second jump. 

During each trial, motion was captured using our Gait system and VICON simultaneously, hence allowing direct comparison 

between the two systems. 

 
Fig. 5.  IMU sensor placement and Euler rotation angle. Each IMU sensor has 

its own coordinate system and was calibrated before trials to ensure they are in 
the same coordinate system.  

  

 
Fig. 6. Static trials. These trials calibrated all streams of data: Vicon and Gait 

system. Raw data from each sensor was also saved for all trials.  
  



Before the experiment, an information sheet was given to each participant to explain the experiment, purposes of the project, 

and data confidentiality. The participant was also required to sign a consent form. As part of the set-up stage of the participant, 

reflective markers were placed on the body following the Plug-In-Gait methodology from VICON[43]. Each marker placement 

and measurement took approximately 45 minutes. After mark placement, joint measurements were taken on the following body 

segments: arms, legs, height, hip, and shoulders. Finally, the 4 Shimmer IMUs were attached to the participant's body located at 

mid-points of chest, sacrum, thigh, and tibia (Fig. 5). Before the data collection participants, static trials were performed to calibrate 

the Multi Kinect system, the IMUs, and VICON systems (Fig. 6). A single trial was achieved when the participant completed a 

full gait cycle 0-100%. The three streams of data (Kinects, Shimmer, and VICON) were normalized and synchronized for data 

processing.   

5. RESULTS AND DISCUSSION 

 Because the analysis was done with different inputs, the dataset for processing consisted of 3 main frames of information: Multi-

Kinect system, Shimmers, and VICON. The Multi Kinect dataset of 5 skeletons (4 single Kinect Skeletons and 1 fused Kinect 

Skeleton) was stored in a .csv file. Each skeleton was composed of 20 joint points. Data from Shimmer IMU was stored in a matrix 

format as described on section III C. The VICON dataset, like Kinect, was in 3D position format, and was captured (VICONxyz) 

on a per reflective marker basis. During each trial, some of the markers were occluded (a known problem with VICON). Hence, 

post the test, each VICON trial needed to be processed separately, frame per frame, ensure all gaps were filled using spline fill and 

pattern fill gap filling operations[44]. 

To compare VICON and each Kinect three tasks needed to be completed: (1) select Kinect joints that can be related to VICON 

reflective markers (e.g. same body segment; right arm, right leg, hip); (2) change VICON local coordinate system into Kinect 

global coordinate system following the same closed solution for unit quaternions as per[38]; (3) synchronize both systems with an 

external event. For (3), as outlined above, a jump in a force plate was used and as such each event captured by the force plate 

generated a trigger for the system. 

 As per Fig. 7, 12 joints were selected via the Plug-in-Gait and were compared with respective Kinect joints. These were: right 

shoulder (3_RSHO), shoulder centre (5_CLAV), left shoulder (6_LSHO), spine (10_STRN), right hip (12_RASI), left hip 

(13_LASI), right knee (14_RKNE), left knee (15_LKNE), right ankle (16_RANK), left ankle (17_LANK), right foot (18_RTOE), 

and left foot (19_LTOE); all of which are important for GAIT variable extraction and analysis. Each VICON marker is attached 

onto skin whist Kinect joints are inferred in the anatomic position of each joint as per Fig. 8.  

5.1 Gait Prediction and Confidence Bands 

Hip and knee angles were evaluated as these joints are weight-bearing joints and most susceptible to require bone surgical 

interventions[45-47]. To evaluate angles from all data sets, two approaches were used: first, having three distinct points in space 

and second: from the quaternion function and Euler angles from two IMU. The angle between 3 points is equivalent of the angle 

between two vectors defined by same 3 points. 

 

 
Fig. 7.  (a) Kinect joint index, (b) VICON Plug-in-Gait marker placement. 

Each Kinect joint was related to a VICON marker. 

 

 
Fig. 8.  3D plot of VICON and Multi Kinect points. Each VICON point is 

captured by an external marker onto skin. The Kinect joint is inferred by the 
real 3D anatomic position. 

  



Gait analysis often utilizes continuous curves to evaluate a full Gait cycle. The cycle happens when the participant steps on the 

ground (heel strike), removes the heel stepping with other foot (initial swing), and step on the ground with the same foot in heel 

strike (terminal swing)[48]. Gait angle data is not composed of single points and cannot be statistically evaluated using common 

statistical analysis[49]. When dealing with single observations of data, prediction intervals are made for a probability interval. For 

continuous data, the analogous prediction contains a new prediction every time a new curve is added from population[50]. This 

method is called bootstrap and can give prediction intervals for Gait curves at any confidence interval[51]. 

 
Fig. 9. Knee flexion angles from Multi Kinect module (red) and confidence 

bands of 95% . 

 
Fig. 10. Knee flexion angles from IMU module (red) and confidence bands of 
95% . 

  

 
Fig. 11. Knee flexion angles from Gait system (blue) and confidence band of 

95%. 
 

 
Fig. 12. Hip flexion angles from Multi Kinect module (red) and confidence 

band of 95%. 

 

 
Fig. 13. Hip flexion angles from IMU module (red) and confidence band of 95%. 

 

 
Fig. 14. Hip flexion angles from Gait system (blue) and confidence band of 
95%. 

 



 Fig. 9, Fig. 10, and Fig. 11 present 95% bootstrap prediction band of VICON compared with Multi Kinect, IMU, and Gait 

system. The graphs in red represent the Multi Kinect and IMU outputs whereas the blue represents the Gait System representation. 

The flexion angles are defined in full Gait cycle. Fig. 12, Fig. 13, and Fig. 14 show the comparison for hip flexion angles for 95% 

bootstrap prediction band. The area between two black curves represent the VICON prediction band. Any curve outside this area 

does not fit the VICON curve, hence it cannot be used to evaluate angles. From the figures presented, the x axis shows the 

percentages of Gait from 0 to 100%. The initial phase 0% happens when the heel contacts the ground and 100% when the same 

heel contacts the ground. The y axis represents flexion angles of hip and knee.  

 For the Knee and Hip flexion curves from Multi Kinect module (Fig. 9 and Fig. 12), since there is a processing time in generating 

a fused skeleton, filtering noise, and calibrating coordinates, there is also a delay in outputting of Gait graphs and might be an issue 

where applications demand a precise timing information. The use of the MSc Kinect in applications at higher speed (e.g. Spiriting, 

fast movements, sports mechanics) is discouraged. The prediction band informs that for initial knee flexion angles (0o - 20o) and 

maximum flexion (60o - 80o degrees), the MK module was outside the prediction band and could not represent the VICON curve 

for all degrees. The hip flexion curve for the 60o - 80o angles is also outside the prediction band of VICON.  

 For the Knee and Hip flexion curves from IMU module (Fig. 10 and Fig. 13), there is no delay in outputting Gait graphs. The 

IMUs can provide information at higher sample rates when compared with Kinect. Initial flexion angles from knee and hip are 

outside prediction band. The IMU module can represent Gait graphs of hip and knee. However, they cannot represent 3D points 

and could not be used in applications where 3D and body representation are essential.   

 The proposed Gait system by the combination of MK and IMU could provide knee and hip angles from Gait as per Fig. 11 and 

Fig. 14. From these graphs, we can see visual representation of the Gait cycle graphs of the Gait System. The current analysis 

examined knee and hip angles as these are the main weight bearing joints related to human Gait. Based on the 95% bootstrap 

prediction, our Gait system is capable of replicating angles in the sagittal plane of knee and hip and kept the output within the 

prediction bands. Different analysis of Gait angles across different modules of the system was published in our previous work [24]. 

Spatiotemporal analysis was also provided for a complete human Gait analysis. 

5.2 Spatiotemporal results  

To evaluate the Gait system, in addition to Gait graphs, it is also important to evaluate spatial variables like Gait and stride 

length, and temporal variables such as Gait cycle time, stride times, and velocity. For those variables, we have performed an 

analysis of spatiotemporal variables of walk. All variables of Gait were also compared with the VICON system.  

Table I shows results for spatiotemporal Gait variables. It includes statistic results for an independent t-test. Assuming equal 

variances, we have found that both groups VICON and Gait system are comparable, thus the system outputs similar values. We 

found out lower accuracy of the MS Kinect for some lower joints like ankles and toes. This could interfere on the capability of the 

system to provide Gait length (r = 0.88). We found out the high correlation for Gait cycle time (r = 0.99), thus the system could 

constantly capture the human Gait from all trials. Considering works in literature [27, 31, 33], our system is capable of outputting 

spatiotemporal variables with higher correlation between Gait system and VICON. The literature on [25], an impressive work on 

Multiple Kinects, which has not compared their results with a gold standard system, reported results of 0.97 for right stride length, 

0.83 for left stride length, and 0.92 for Gait time. Our results have shown correlation of 0.99 for Gait time and 0.95 for right and 

left stride length, which was a positive result. 

TABLE I 
SPATIOTEMPORAL RESULTS – VICON VS. GAIT SYSTEM 

Variable Group Mean Sd 

 

Sig (2-tailed) 

Pearson’s 

Correlation 

(r) 

Gait Cycle (s) VICON 1.308 0.037 0.714 0.996 

 Gait System 1.300 0.036   

Right Stride (s) VICON 0.709 0.022 0.390 0.956 

 Gait System 0.700 0.014   

Left Stride (s) VICON 0.598 0.025 0.901 0.908 

 Gait System 0.600 0.029   

Gait length (m) VICON 0.958 0.152 0.840 0.886 
 Gait System 0.941 0.160   

Stride length (m) VICON 0.585 0.046 0.087 0.950 

 Gait System 0.535 0.053   

Velocity (m/s) VICON 0.734 0.127 0.892 0.919 

 Gait System 0.724 0.130   

This table compares VICON with the Gait System. The results from the sigma value explains 

that there is no significant difference between two groups.  
Spatiotemporal units are defined; s = seconds, m = meters, m/s = meters per second of Gait cycle. 



6. CONCLUSION 

In this work, we have presented a low-cost GAIT analysis system based on the integration of a Multi Kinect system and Shimmer 

inertial sensors. The novel multimodal system fuses IMU sensors (acceleration, gyroscope, and magnetometer) to get quaternion 

orientation and combines IMU data with 3D points of Multiple Microsoft Kinects (which employ RGB-D cameras and skeleton 

data) and output spatiotemporal Gait variables. It also includes a novel synchronization protocol for integration and synchronization 

of the multimodal modules in the entire system.  

A summary of capabilities of our Gait system with other techniques described in this paper is shown in Table II. MoCap 

Technologies such as Vicon have high levels of precision and accuracy, however, difficulties with set up,  high cost, and the use 

of markers provided barriers for use in applications  and fields. Our system considers the use of IMUs as a form to enhance joint 

angles, it is marker-less which makes set up quick and easy, and provided accurate spatiotemporal Gait variables. Applications of 

the multimodal Gait system are beyond low-cost Gait analysis, it includes rehabilitation feedback, and Virtual and Augmented 

Reality applications which are topics of our future works. 

The system performance was compared with the gold standard VICON system. Table II informs that the VICON system is 

capable to promote 3D information and can provide all Gait variables, however it still uses markers to capture 3D points and it is 

not low-cost. Our system price is around 5.000 EUR, while gold standard system is around 150.000 EUR. Both modules of the 

proposed Gait system can contribute to have a marker-less system, complete 3D and 360o, and can provide Gait spatiotemporal 

variables.  

In summary, this paper presents analysis and discussion on signals differences between our proposed system and VICON; as 

well as angle estimation from inertial sensors integration. Our analysis has demonstrated the utility of our multimodal system 

(inclusive of its limitations). Based on this, many potential use cases of the Gait system can be proposed. The proposed system is 

cheaper; is easy to set up; shows clear and easily interpretable results; is marker-less; supports 360 degrees of motion analysis; is 

easily portable and does not require large set up space or environment. Analysis and consideration of the results infers that our 

system was capable of replicating Gait angles of Knee and Hip with 95% bootstrap confidence interval. Spatiotemporal results 

showed similarity with significant results of 99% on Gait cycle time (s), 95% on right stride time (s), 90% on left stride time (s), 

88% on Gait length (m), 95% on stride length (m), and 91% on Gait velocity (m/s).Future work of this project will include the use 

of Gait analysis system the use it in real-time as an immersive multimedia haptic/Augmented Reality feedback tool for Gait re-

education. 
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