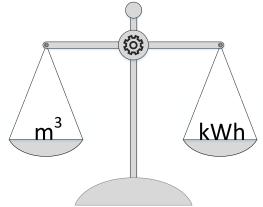
The 16th IWA Leading Edge Conference on Water and Wastewater Technologies

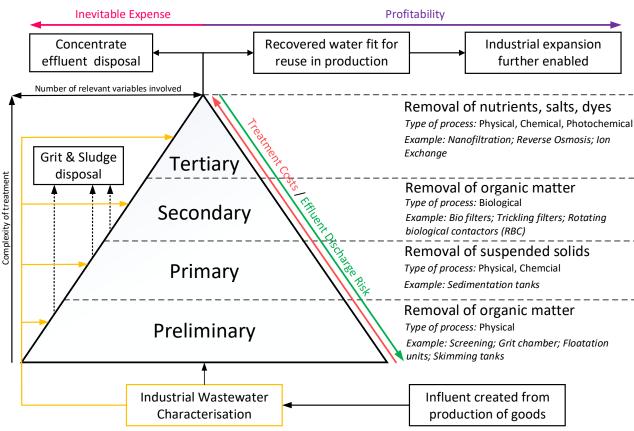
10 - 14 June 2019 / Edinburgh, United Kingdom

A Techno-economic Evaluation of Incorporating Energy Recovery Devices Within Continuous-batch Reverse Osmosis Processes

MÍCHEÁL CAIRNS, LORNA FITZSIMONS, YAN DELAURE, DUBLIN CITY UNIVERSITY 12th June 2019

This project has received funding from the European Unions's Horizon 2020 research and innovation programme under grant agreement no 689785.


RESEARCH OVERVIEW


- Industrial motives encouraging industrial wastewater (IW) treatment?
 - Potable water costs
 - Wastewater disposal costs
 - Stringent environmental legislation
 - Rapid industrial expansion requirements

- The viability of treating IW is usually a function of many site specific conditions and variations:
 - Production process variations
 - Heterogeneous wastewater characterisation
 - Varying IW treatment process operating conditions
- Based upon these factors, to what extent does wastewater recovery become feasible for SME scale industrial users?

CONVENTIONAL IW TREATMENT PROCESS

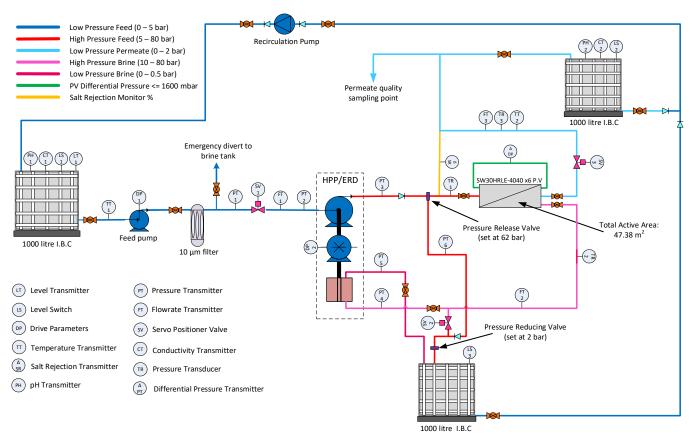
- Tertiary treatment is usually required before water recovery is possible.
- At this end stage, process costs must be minimised otherwise treatment becomes less feasible.
- Industrial users seek innovative solutions that emphasise both water recovery and resource recovery valorisation.

THE SALTGAE TREATMENT PROCESS

ACTIVATED CARBON

TREATED WATER STORAGE TANK

- To develop and demonstrate a techno-economically viable solution for the treatment of saline wastewaters.
- DEMO SITE ARAVA R&D - ISRAEL Demo site details: SaltGae WP2 SYSTEM wastewater Site Koto Buffer task in a Calle ALGAE POND Ljubljana Milan SE Israel Location WW Type Aquaculture TRAFFICTRATIONUNT TRANSFER TANK Tannery Dairy Pump to DAF Flow control Frecuency Power Units 2 (1+1R) Flow 5 m3/h mping to Buffer to min (1+18) ow 5 mbh mage 0.9 Bar Flowrate Paring to Permethone Container Diff. Lange Parin Flow: 4014 100 TO B 1 20 25-35 Floc cutent Davis (m³/day) eperation Unit Flow, 141h Salinity 25-50 2-30 2-5 (g/l) -----**Organics** 10,000 5,000 1,000 $(mg 0^2/l)$ PHOTOCATAL SYSTEM WP3 SYSTEM


INVESTIGATION DETAILS

- Objectives:
 - To design and manufacture a pilot scale reverse osmosis (RO) test rig.
 - Investigate optimal treatment control strategies for varying IW compositions.
 - Complete a detailed evaluation study between closed loop water recuperation and its respective energy requirements.
 - Review the effects of site specific conditions and variations on RO performance.
- Plan:
 - Use Process Power Energy analysis to investigate IW treatment and freshwater. extraction at the relevant flowrates and salinities.
 - Use this data to conclude as to whether ERDs are feasible within the treatment of small scale industrial saline flows.

REVERSE OSMOSIS SUBSYSTEM P&ID

- A single-pass configuration designed for trialling/testing high pressure pumps (HPPs) and energy recovery devices (ERDs) under realistic RO operating conditions.
- All ERD class types can be trialled accurately within the system.
- Processing can be performed under batch, semi-batch and continuous operations.

PROCESS ANALYSIS

inspiring change

POWER ANALYSIS

the international water association

1700

736.7

1915

696.3

1838

618.5

1497

2357

860

24.45

2145

1338

95.97

81.46

91.00

64.27

112.01

80.89

Units

l/h

Watts

30,000 mg/l

1200

534.7

1084

499.4

1017

446.4

810.04

1395.6

576.04

38.39

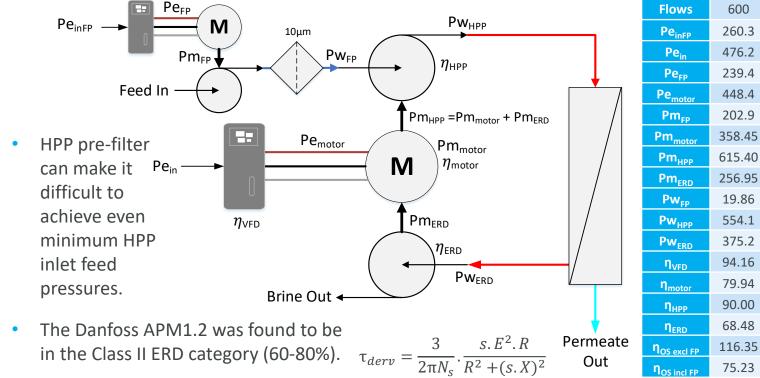
1298

844.7

93.81

79.65

93.00

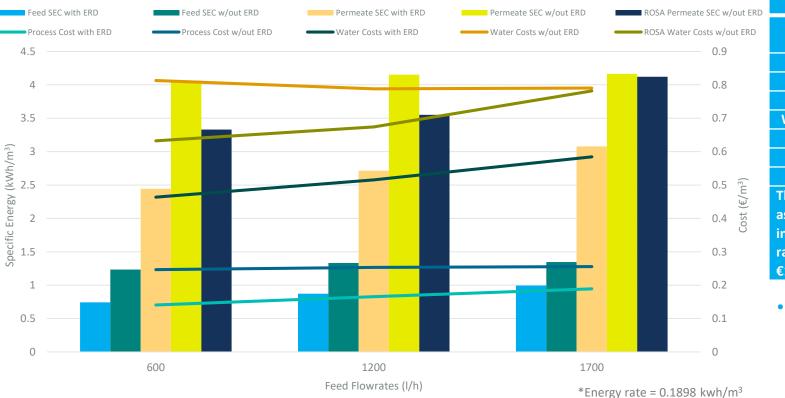

68.19

119.74

80.18

Salinity

Power consumption roadmap at 30 g/l:



-						
	ns	111	iTil		i Ti	- E + C
						1.5

%

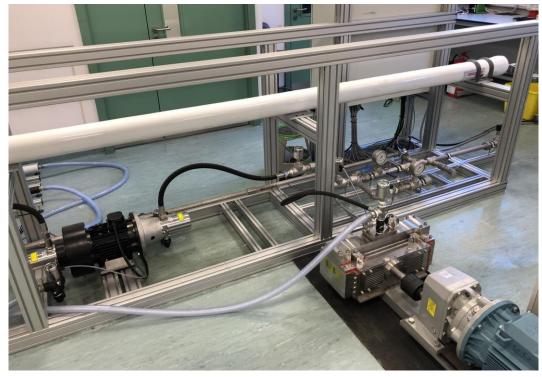
ENERGY ANALYSIS

Specific Energy Consumption (SEC) of various flowrates at 30 g/l salinity (excluding feed pump)

FRD cost savings

ERD COST Savings						
Flow	Reduction					
(l/h)	(%)					
600	39.87					
1200	35.59					
1700 26.05						
Water cost savings						
600	53.62					
1200	48.46					
1700	41.55					
These values						
assume an						
industrial water						
rate of approx.						
€1/m ³ (Ireland)						

Do these figures include CAPX and OPEX?


CONCLUSIONS

Findings:

- Minimum HPP inlet feed pressures can be difficult to maintain at higher feed flowrates when coupled with pre-filter fouling. Overtime this can cause alarm to HPP failure.
- The APM1.2 ERD was slightly more efficient at lower feed flowrates but has trade offs such as reduced permeate recovery and quality. This increases brine hydraulic power.
- Higher feed flowrates require longer Start Up / Shut Down sequences. Transient periods must be kept minimal with respect process steady state durations. t_{SU}+ t_{SD} <= 475 s/ m³.
- A low flow batch operation will use the minimum amount of energy during processing but it is still uncertain if these conditions are favourable for industrial clients.
- For optimal IW treatment to exist, process solutions must adapt their treatment strategies towards the objective of producing site specific "water fit for use".
- These strategies require the advancement of many discipline areas in order to be realised.
- Will more stringent legislation accelerate IW treatment from the "value" to "crisis" path?
- Further work still required:
 - HPP vs HPP/ERD performance and energy benchmarking.
 - The range limits of recycling brine concentrate using a semi-batch loop configuration.
 - Life Cycle Cost Analysis Assessing the entire RO process cost including its CAPX and OPEX.

FUTURE RESEARCH AIMS

Dual HPP/ERD configuration for consecutive pump benchmark testing under realistic RO operating conditions.

- Saltgae HPP:
 - A novel self reciprocating HPP which does not require any feed pump.
 - No ERD integration allows for greater permeate flowrates to be achieved.
 - This enhanced flexibility in treatment can be optimised to suit more demanding and time dependant sitespecific water needs.

Q & A

Questions?

This research was undertaken as part of the Saltgae H2020 project to develop techno-economically viable solutions for saline wastewaters (http://saltgae.eu/H2020-Water-1b-2005, Grant Agreement no. 689785).

REFERENCES

- Typical piston axial pump efficiency curve:
- Inlet feed conditions of different HPP+ERDs:

7. Pressure

7.1 Inlet pressure

7.1.1 APP pump: The pressure at the pump inlet (I) must be in the range: 0.5 - 5 bar (7.3 - 72.5 psi).

7.1.2 APM motor: The pressure at the motor inlet (I) must be in the range: 10 - 80 bar (145 - 1160 psi).

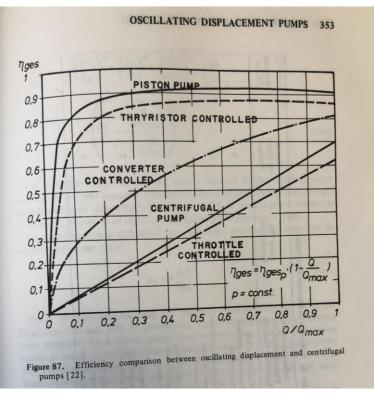
7.2 Outlet pressure

- 7.2.1 APP pump: The pressure at the pump outlet (O) must be in the range: 20 80 bar (290 1160 psi).
 7.2.2 APM motor: The pressure at the motor outlet (O) must be in the range: 0.5 5 bar (7.3 72.5 psi)

Danfoss SWPE APP1.8/APM1.2

Table 12: Inlet pressure [bar] depending on size

Size	Limits		Wan	ning	Shutdown	
	Min.	Max.	Min.	Max.	Min.	Max.
14	2,5	10,0	2,3	9,0	2,0	10,0
20	3,0	10,0	2,8	9,0	2,5	10,0
65	3,5	10,0	3,3	9,0	3,0	10,0


Salinnova Salino Pressure Centre

Power analysis equations used:

$$P_{in} = \sqrt{3}. V_{rms}. I_{rms}. PF \qquad P_m = \tau. \omega$$

$$P_w = Q.\sigma \qquad \qquad \eta_{OS} = \frac{Pw_{HPP}}{Pe_{in} + Pe_{inFP}}$$

Cheremisinoff. Nicholas - Fluid flow: Pipes, pumps and channels