
 

THE ROLE AND MECHANISM OF 

IMMUNOMODULATION BY INFLUENZA 

VIRUS AND ITS COMPONENTS IN THE 

PREDISPOSITION TO BACTERIAL 

DISEASE DURING INFLUENZA 

INFECTION 
 

Paula Maguire B.Sc. 

Thesis Submitted for Award of Doctor of Philosophy 

 
 

School of Nursing, Psychotherapy and Community Health 

Dublin City University 

 

The work of this thesis was carried out under the supervision of:  

Dr. Patricia Johnson 

Dr. Sinéad Loughran 

DECEMBER 2019 



 i 

DECLARATION 

 
I hereby certify that this material, which I now submit for assessment on the programme 
of study leading to the award of PhD is entirely my own work, that I have exercised 
reasonable care to ensure that the work is original, and does not to the best of my 
knowledge breach any law of copyright, and has not been taken from the work of others 
save and to the extent that such work has been cited and acknowledged within the text 
of my work. 

Signed: ___________________ (Candidate) ID No.: _____________  
 

Date: ________________



 ii 

ACKNOWLEDGEMENTS 

First and foremost, I’d like to thank my supervisor, Dr Patricia Johnson for all her help 

and guidance throughout this project. These past few years have not been smooth 

sailing, but you always had your door open, ready to help whenever needed. You always 

supported me and over the years tried to remind me to take breaks, with a reassuring, 

“This is a marathon, not a sprint”. 

 

I’d also like to thank my supervisor Dr Sinead Loughran for her support and constant 

positivity (not to mention expertise in trouble-shooting). I always felt better after a phone 

call with you and hope that some of your superwoman capabilities rub off on me. 

 

A special mention must go to Debbie, who was the best addition to the lab. Always there 

to have a good chat (rant) with and made life in the lab so much better for me. I’d also 

like to thank Robbie – for all the coffee and chats. Your attitude towards everything is so 

refreshing and I’m so glad I had you as a friend during this. 

 

I’d like to thank my family and friends for being so patient and supportive during the past 

few years. Ashleigh and Steve – not every friend would offer to proof read a PhD thesis, 

but that’s typical of who you guys are! Ash, you are forever the best lab buddy, even 

when we’re not working together anymore. Mam – thanks for always believing I can do 

anything (sometimes I even manage to believe it too) and always having my back. Kim 

and Ciara – I’ve been an absentee sister (very sorry), but you never complained and 

always took the reins so I could focus on my studies. You have always taken such good 

care of me and I’m very grateful for that. I’d also like to thank The Stauntons – each of 

you have been so wonderful and a great source of support in every way. 

 

Finally, I’d like to thank Patrick. You have never doubted me (even when I doubted 

myself). After a long day in the lab, you were always there, primed and ready to make 

me laugh. You’ve kept me sane and didn’t let me feel too sorry for myself when things 

weren’t going my way. I couldn’t have done this without you. 



 iii 

TABLE OF CONTENTS 
 

DECLARATION	............................................................................................................	i	

ACKNOWLEDGEMENTS	..............................................................................................	ii	

TABLE	OF	CONTENTS	................................................................................................	iii	

ABBREVIATIONS	.......................................................................................................	ix	

UNITS	......................................................................................................................	xii	

TABLES	....................................................................................................................	xiii	

FIGURES	...................................................................................................................	xv	

PUBLICATIONS	.........................................................................................................	xix	

PRESENTATIONS	.......................................................................................................	xx	

PRESENTATIONS:	POSTERS	..............................................................................................	xx	

PRESENTATIONS:	ORAL	...................................................................................................	xx	

GRADUATE	TRAINING	ELEMENTS	............................................................................	xxi	

ACCREDITED	MODULES:	..................................................................................................	xxi	

NON-ACCREDITED	MODULES:	..........................................................................................	xxi	

ABSTRACT	..............................................................................................................	xxii	

1.0	GENERAL	INTRODUCTION	....................................................................................	1	

1.1	OVERVIEW	...................................................................................................................	1	

1.2	INFLUENZA	VIRUS	........................................................................................................	2	

1.2.1	INFLUENZA	A	VIRUS	....................................................................................................	2	

1.2.1.1	Structure	of	Influenza	A	Virus	..................................................................................	3	

1.2.1.2	Life	Cycle	of	Influenza	Virus	.....................................................................................	5	

1.2.1.3	Pathogenesis	of	Influenza	Virus	...............................................................................	7	

1.2.1.4	Treatment	and	Prevention	of	Influenza	Virus	Infections	.........................................	8	

1.2.1.5	Antigenic	Shift	and	Drift	..........................................................................................	9	

1.3	SECONDARY	BACTERIAL	INFECTIONS	.........................................................................	12	

1.3.1	STREPTOCOCCUS	PNEUMONIAE	..............................................................................	12	

1.3.2	TREATMENT	OF	STREPTOCOCCUS	PNEUMONIAE	INFECTIONS	................................	13	

1.3.3	ANTIMICROBIAL	RESISTANCE	...................................................................................	14	

1.4	OVERVIEW	OF	THE	HOST	IMMUNE	RESPONSE	TO	PATHOGENS	..................................	16	

1.4.1	THE	INNATE	IMMUNE	RESPONSE	.............................................................................	16	

1.4.1.2	Cells	of	the	Innate	Immune	System	.......................................................................	17	



 iv 

1.4.1.3	Pattern	Recognition	Receptors	..............................................................................	18	

1.4.1.3.1	Toll	Like	Receptors	........................................................................................................	19	

1.4.1.4	Antigen	Presentation	.............................................................................................	20	

1.4.2	THE	ADAPTIVE	IMMUNE	RESPONSE	.........................................................................	22	

1.3.2.1	Humoral	Immunity	.................................................................................................	22	

1.4.2.1	Cell	mediated	Immunity	........................................................................................	23	

1.4.3	KEY	CYTOKINES	AND	TRANSCRIPTION	FACTORS	PRODUCED	IN	RESPONSE	TO	VIRAL	

AND	BACTERIAL	INFECTION	...............................................................................................	25	

1.4.3.1	Interferons	.............................................................................................................	25	

1.4.3.2	The	T	helper	17	and	T	helper	1	Response	in	Bacterial	Clearance	..........................	27	

1.4.3.2.1	Interleukin-23	................................................................................................................	28	
1.4.3.2.2	RAR-related	orphan	receptor	C	(RORC)	........................................................................	28	
1.4.3.2.3	Transforming	growth	factor-b	(TGF-b)	..........................................................................	29	
1.4.3.2.4	Interleukin-6	(IL-6)	........................................................................................................	29	
1.4.3.2.5	Interleukin-1b	(IL-1b)	....................................................................................................	30	
1.4.3.2.6	Interleukin-27	(IL-27)	....................................................................................................	30	
1.4.3.2.7	Interleukin-10	(IL-10)	....................................................................................................	31	
1.4.3.2.8	Interleukin-12p70	(IL-12p70)	........................................................................................	32	
1.4.3.2.9	Interleukin-17A	(IL-17A)	................................................................................................	32	
1.4.3.2.10	Interferon-g	(IFN-g)	.....................................................................................................	33	

1.4.3.3	The	Th17	Response	and	Type	I	and	Type	II	Interferons	in	Streptococcus	

pneumoniae	infection	.......................................................................................................	33	

1.4.4	THE	TH17	RESPONSE	AND	INFLAMMATION	.............................................................	34	

1.4.5	OVERVIEW	OF	NORMAL	IMMUNE	RESPONSES	TO	INFLUENZA	AND	STREPTOCOCCUS	

PNEUMONIAE	....................................................................................................................	35	

1.4.5.1	The	Normal	Immune	Response	to	Influenza	A	Virus	.............................................	35	

1.4.5.2	The	Normal	Immune	Response	to	Streptococcus	pneumoniae	............................	35	

1.4.5.3	The	Immune	Response	to	Influenza	and	Streptococcus	pneumoniae	Co-Infections

	...........................................................................................................................................	35	

1.5	MODELS	FOR	INFLUENZA	VIRUS	INFECTION	...............................................................	37	

1.5.1	EX	VIVO	HUMAN	IMMUNE	MODEL	..........................................................................	38	

1.6	OBJECTIVES	OF	STUDY	...............................................................................................	40	

2.0	FURTHER	DEVELOPMENT	OF	HUMAN	EX	VIVO	MODEL	AND	CHARACTERISATION	

OF	NEW	VIRAL	AND	BACTERIAL	STOCKS	..................................................................	41	

2.1	INTRODUCTION	.........................................................................................................	41	



 v 

2.2	MATERIALS	AND	METHODS	.......................................................................................	44	

2.2.1	ISOLATION	OF	PRIMARY	HUMAN	IMMUNE	CELLS	...................................................	47	

2.2.2	DETERMINATION	OF	CELL	VIABILITY	AND	YIELD	......................................................	48	

2.2.2.1	Background	............................................................................................................	48	

2.2.2.2	Method	..................................................................................................................	48	

2.2.3	SEPARATION	OF	CD14+	AND	CD3+	CELLS	FROM	PBMCs	USING	MICROBEAD	

SEPARATION	......................................................................................................................	49	

2.2.3.1	Background	............................................................................................................	49	

2.2.3.2	Method	..................................................................................................................	51	

2.2.4	VIRUS	INFECTION	OF	CD14+	ANTIGEN	PRESENTING	CELLS	.......................................	51	

2.2.5	STREPTOCOCCUS	PNEUMONIAE	STIMULATION	OF	CD14+	APCs	..............................	52	

2.2.6	CO-CULTURE	ASSAY	..................................................................................................	52	

2.2.6.1	Background	............................................................................................................	52	

2.2.6.2	Method	..................................................................................................................	53	

2.2.7	ENZYME-LINKED	IMMUNOSORBENT	ASSAY	(ELISA)	.................................................	53	

2.2.7.1	Background	............................................................................................................	53	

2.2.7.2	Method	..................................................................................................................	54	

2.2.8	REAL	TIME	POLYMERASE	CHAIN	REACTION	(qPCR)	..................................................	54	

2.2.8.1	Background	............................................................................................................	54	

2.2.8.2	RNA	Extraction	.......................................................................................................	55	

2.2.8.3	RNA	Quantification	and	Determination	of	Purity	..................................................	56	

2.2.8.4	cDNA	Synthesis	......................................................................................................	56	

2.2.8.4.1	Background	...................................................................................................................	56	
2.2.8.4.2	Method	.........................................................................................................................	56	

2.2.8.5	qPCR	Method	.........................................................................................................	57	

2.2.9	APOPTOSIS	STUDY	USING	FLOW	CYTOMETRY	..........................................................	58	

2.2.9.1	Background	............................................................................................................	58	

2.2.9.2	Method	..................................................................................................................	59	

2.2.10	WESTERN	BLOT	.......................................................................................................	60	

2.2.10.1	Background	..........................................................................................................	60	

2.2.10.2	Method	................................................................................................................	61	

2.2.11	STATISTICAL	ANALYSIS	............................................................................................	62	

2.3	RESULTS	....................................................................................................................	63	

2.3.1	CONFIRMATION	AND	QUANTIFICATION	OF	INFLUENZA	A	VIRUS	INFECTION	OF	

HUMAN	CD14+	APCs	..........................................................................................................	63	



 vi 

2.3.2	NEW	BATCHES	OF	STREPTOCOCCUS	PNEUMONIAE	INDUCE	INNATE	CYTOKINES	...	64	

2.3.3	A	NEW	BATCH	AND	CLINICAL	ISOLATE	OF	INFLUENZA	A	VIRUS	INHIBIT	INNATE	TH17	

AND	TH1	POLARISING	CYTOKINE	RESPONSES	TO	STREPTOCOCCUS	PNEUMONIAE	.........	64	

2.3.4	INFLUENZA	A	VIRUS	INHIBITION	IS	NOT	DUE	TO	ANTI-INFLAMMATORY	EFFECTS	OF	

IL-10	AND	TGF-b	................................................................................................................	66	

2.3.5	A	NEW	BATCH	AND	CLINICAL	ISOLATE	OF	INFLUENZA	A	VIRUS	HAVE	SIMILAR	

IMMUNOSUPPRESSIVE	EFFECTS	TO	PREVIOUS	ISOLATES	.................................................	67	

2.3.6	INHIBITION	OF	TH17	AND	TH1	INNATE	CYTOKINES	IS	NOT	DUE	TO	APOPTOSIS	OR	

PROTEIN	SYNTHESIS	SHUTDOWN	......................................................................................	68	

2.3.7	NEW	STRAINS	OF	INFLUENZA	A	VIRUS	INHIBIT	ADAPTIVE	TH17	AND	TH1	RESPONSES	

TO	STREPTOCOCCUS	PNEUMONIAE	..................................................................................	69	

2.3.8	NEW	BATCHES	AND	CLINICAL	ISOLATES	OF	INFLUENZA	A	VIRUS	STRAINS	HAVE	

SIMILAR	IMMUNOSUPPRESSIVE	EFFECTS	TO	PREVIOUS	ISOLATES	ON	ADAPTIVE	

RESPONSES	........................................................................................................................	71	

2.4	DISCUSSION	...............................................................................................................	73	

3.0	MECHANISMS	OF	IAV	INHIBITION	OF	TH17	AND	TH1	IMMUNE	RESPONSES	IN	

HUMAN	ANTIGEN	PRESENTING	CELLS	.....................................................................	77	

3.1	INTRODUCTION	.........................................................................................................	77	

3.2	MATERIALS	AND	METHODS	.......................................................................................	81	

3.2.1	ISOLATION	OF	PRIMARY	HUMAN	IMMUNE	CELLS	...................................................	81	

3.2.2	SEPARATION	OF	CD14+	CELLS	FROM	PBMCs	USING	MICROBEAD	SEPARATION	......	81	

3.2.3	VIRUS	INFECTION	OF	CD14+	ANTIGEN	PRESENTING	CELLS	.......................................	81	

3.2.4	STREPTOCOCCUS	PNEUMONIAE	STIMULATION	OF	CD14+	ANTIGEN	PRESENTING	

CELLS	..................................................................................................................................	82	

3.2.5	POLY(I:C)	TRANSFECTIONS	........................................................................................	82	

3.2.5.1	Background	............................................................................................................	82	

3.2.5.2	Method	..................................................................................................................	82	

3.2.6	TOLL	LIKE	RECEPTOR	AGONIST	STIMULATIONS	........................................................	82	

3.2.7	BIOINFORMATICS	.....................................................................................................	83	

3.2.8	REAL	TIME	POLYMERASE	CHAIN	REACTION	(qPCR)	..................................................	83	

3.2.9	ENZYME-LINKED	IMMUNOSORBENT	ASSAY	(ELISA)	.................................................	84	

3.2.10	STATISTICAL	ANALYSIS	............................................................................................	84	

3.3	RESULTS	....................................................................................................................	85	



 vii 

3.3.1	IFN-a	AND	IFN-b	mRNA	MESSAGE	IS	ABSENT	OR	WEAKLY	EXPRESSED	BY	HUMAN	

ANTIGEN	PRESENTING	CELLS	.............................................................................................	85	

3.3.2	IFN-a	AND	IFN-b	PROTEIN	IS	WEAKLY	INDUCED	IN	HUMAN	ANTIGEN	PRESENTING	

CELLS	..................................................................................................................................	86	

3.3.3	INFLUENZA	A	VIRUS	INFECTION	SPECIFICALLY	TARGETS	TLR2	PATHWAY	IN	HUMAN	

ANTIGEN	PRESENTING	CELLS	.............................................................................................	87	

3.3.4	INFLUENZA	A	VIRUS	INFECTION	INHIBITS	TLR4	AGONIST-INDUCED	TGF-b	IN	HUMAN	

ANTIGEN	PRESENTING	CELLS	.............................................................................................	91	

3.3.5	INFLUENZA	A	VIRUS	INFECTION	SPECIFICALLY	TARGETS	TLR9	PATHWAY	IN	HUMAN	

ANTIGEN	PRESENTING	CELLS	.............................................................................................	94	

3.3.6	INFLUENZA	A	VIRUS	INFECTION	SPECIFICALLY	TARGETS	TLR9-INDUCTION	OF	RORC	

IN	HUMAN	ANTIGEN	PRESENTING	CELLS	..........................................................................	98	

3.3.7	INFLUENZA	A	VIRUS	INFECTION	DOES	NOT	TARGET	TLR5	PATHWAY	IN	HUMAN	

ANTIGEN	PRESENTING	CELLS	.............................................................................................	99	

3.3.8	TREATMENT	WITH	A	TLR5	AGONIST	RESTORES	INHIBITED	IMMUNE	RESPONSES	TO	

HKSP	DURING	INFLUENZA	INFECTION	IN	HUMAN	ANTIGEN	PRESENTING	CELLS	...........	102	

3.4	DISCUSSION	.............................................................................................................	105	

4.0	THE	EFFECT	OF	HAEMAGGLUTININ	TREATMENT	ON	RESPONSES	TO	

STREPTOCOCCUS	PNEUMONIAE	AND	TLR	AGONISM	IN	HUMAN	CELLS	..................	110	

4.1	INTRODUCTION	.......................................................................................................	110	

4.2	MATERIALS	AND	METHODS	.....................................................................................	112	

4.2.1	ISOLATION	OF	PRIMARY	HUMAN	IMMUNE	CELLS	.................................................	112	

4.2.2	SEPARATION	OF	CD14+	AND	CD3+	CELLS	FROM	PBMCs	USING	MICROBEAD	

SEPARATION	....................................................................................................................	112	

4.2.3	STREPTOCOCCUS	PNEUMONIAE	STIMULATION	OF	CD14+	ANTIGEN	PRESENTING	

CELLS	................................................................................................................................	112	

4.2.4	HA	TREATMENT	OF	CD14+	ANTIGEN	PRESENTING	CELLS	.......................................	112	

4.2.5	TOLL	LIKE	RECEPTOR	AGONIST	STIMULATIONS	......................................................	113	

4.2.6	CO-CULTURE	ASSAY	................................................................................................	113	

4.2.7	ENZYME-LINKED	IMMUNOSORBENT	ASSAY	(ELISA)	...............................................	113	

4.2.8	STATISTICAL	ANALYSIS	............................................................................................	113	

4.3	RESULTS	..................................................................................................................	114	

4.3.1	HAEMAGGLUTININ	TREATMENT	INHIBITS	STREPTOCOCCUS	PNEUMONIAE	INDUCED	

INNATE	POLARISING	CYTOKINES	.....................................................................................	114	



 viii 

4.3.2	INHIBITION	BY	HAEMAGGLUTININ	TREATMENT	IS	NOT	DUE	TO	ANTI-

INFLAMMATORY	EFFECTS	OF	IL-10	AND	TGF-b	...............................................................	116	

4.3.3	HAEMAGGLUTININ	TREATMENT	INHIBITS	ADAPTIVE	TH17	AND	TH1	RESPONSES	TO	

STREPTOCOCCUS	PNEUMONIAE	.....................................................................................	117	

4.3.4	HAEMAGGLUTININ	TREATMENT	INHIBITS	INNATE	TLR2	AGONIST	INDUCTION	OF	

TGF-b	...............................................................................................................................	119	

4.3.5	HAEMAGGLUTININ	TREATMENT	DOES	NOT	INHIBIT	INNATE	TLR4	AGONISM	.......	121	

4.3.6	HAEMAGGLUTININ	TREATMENT	INHIBITS	INNATE	TLR9	AGONIST	INDUCTION	OF	IL-

23	.....................................................................................................................................	123	

4.3.7	HAEMAGGLUTININ	TREATMENT	DOES	NOT	INHIBIT	INNATE	TLR5	AGONISM	.......	125	

4.3.8	TREATMENT	WITH	A	TLR5	AGONIST	RESTORES	INHIBITED	IMMUNE	RESPONSES	TO	

HKSP	DURING	HAEMAGGLUTININ	TREATMENT	IN	HUMAN	ANTIGEN	PRESENTING	CELLS

	.........................................................................................................................................	127	

4.4	DISCUSSION	.............................................................................................................	130	

5.0	GENERAL	DISCUSSION	.....................................................................................	133	

5.1	NOVEL	FINDINGS	OF	THIS	STUDY	.............................................................................	143	

5.2	FUTURE	WORK	........................................................................................................	143	

REFERENCES	..........................................................................................................	146	

APPENDIX	1	–	CHAPTER	3	...........................................................................................	I	

APPENDIX	1.1:	THE	OPTIMAL	DOSE	OF	TLR2	AGONIST	........................................................	I	

APPENDIX	1.2:	THE	OPTIMAL	DOSE	OF	TLR4	AGONIST	.......................................................	II	

APPENDIX	1.3:	THE	OPTIMAL	DOSE	OF	TLR9	AGONIST	......................................................	III	

APPENDIX	1.4:	THE	OPTIMAL	DOSE	OF	TLR5	AGONIST	......................................................	IV	

APPENDIX	2	–	CHAPTER	4	..........................................................................................	V	

APPENDIX	2.1:	NEW	BATCHES	OF	HAEMAGGLUTININ	DISPLAY	SIMILAR	EFFECTS	TO	

PREVIOUS	BATCHES	...........................................................................................................	V	

APPENDIX	2.2:	NEW	BATCHES	OF	HAEMAGGLUTININ	HAVE	SIMILAR	

IMMUNOSUPPRESSIVE	EFFECTS	ON	ADAPTIVE	RESPONSES	TO	PREVIOUS	BATCHES	........	VII	

 

 



 ix 

ABBREVIATIONS 

Abs Absorbance 

AO Acridine orange 

APC Antigen presenting cell 

BMDC Bone marrow-derived immature DCs 

BSA Bovine serum albumin 

CD Cluster of differentiation 

cDNA Complementary deoxyribonucleic acid 

cRPMI Complete Roswell Park Memorial Institute 

DC Dendritic cell 

DNA Deoxyribonucleic acid 

dsDNA Double-stranded deoxyribonucleic acid 

dsRNA  Double-stranded ribonucleic acid 

EtBr Ethidium bromide 

ETDA Ethylenediaminetetraacetic acid 

ELISA Enzyme linked immunosorbent assay 

ER Endoplasmic reticulum 

FBS Foetal bovine serum 

FITC Fluorescein isothiocyanate 
gDNA Genomic deoxyribonucleic acid 

GM-CSF Granulocyte-macrophage colony stimulating factor 

HA Haemagglutinin 

HBSS Hanks balanced salt solution 

HKSP Heat killed Streptococcus pneumoniae 

HLA Human leucocyte antigen 

HPIV3 Human parainfluenza virus type 3 

HRP Streptavidin horseradish peroxidase 

IAV Influenza A Virus 

IBV Influenza B Virus 

IFN Interferon 

IFN-b Interferon-b 

IFNAR IFNa/b receptor 

IL Interleukin 

IRAK IL-1R-associated kinase 

IRF Interferon regulatory factor 



 x 

LAIV Live attenuated quandrivalent influenza vaccine 

LPS Lipopolysaccharide 

LRR Leucine-rich-repeat 

M Matrix protein 

mAb Monoclonal antibody 

MAL MyD88-adaptor-like 

MHC Major histocompatibility complex 

MLR Mixed lymphocyte reaction 

mRNA Messenger  ribonucleic acid 

MyD88 MyD88 innate immune signal transduction adaptor 

NA Neuraminidase 

NI Neuraminidase inhibitors 

NF-kB Nuclear factor-kB 

NK Natural Killer 

NP Nucleoprotein 

NS1 Non-structural protein 1 

NS2 Non-structural protein 2 

NEP Nuclear export protein 

OD Optical density 

PA Acidic polymerase 

PAMP Pathogen-associated molecular pattern 

PB Basic polymerase 

PBMC Peripheral blood mononuclear cell 

PBS Phosphate buffer saline 

PCR Polymerase chain reaction 

PCV Pneumococcal conjugate vaccine 

PI Propidium iodide 

PLY Pneumolysin 

PPV23 Pneumococcal polysaccharide vaccine 

PRR Pattern recognition receptor 

PS Phosphatidylserine 

QIV Quadrivalent influenza vaccine 

qPCR Quantitative polymerase chain reaction 

RAR Retinoic acid receptor 

RIG-I Retinoic acid inducible gene I 

RNA Ribonucleic acid 



 xi 

RORC RAR-related orphan receptor C (RORC) 

RLR RIG-I-like receptor 

RPMI Roswell Park Memorial Institute 

RSV Respiratory syncytial virus  

RT Reverse transcriptase 

RV Rhinovirus 

RVI Respiratory viral infection 

SEM Standard error mean 

S.p. Streptococcus pneumoniae 

TCID Tissue culture infectious dose 

TCR T cell receptor 

TGF Transforming growth factor 

Th T helper 

TICAM1 TIR-domain-containing adaptor protein inducing IFN-b 

TICAM2 TRIF-related adaptor molecule 

TIR Toll IL-1 Receptor 

TIRAP MyD88-adaptor-like 

TIV Trivalent influenza vaccine 

TLR Toll like receptor 

TMB Tetramethylbenzidine 

TNF Tumour necrosis factor 

TRAF TNFR-associated factor 

TRAM TRIF-related adaptor molecule 

Treg T regulatory cell 

TRIF TIR-domain-containing adaptor protein inducing IFN-b 

UV Ultraviolet 

vRNP Viral ribonucleoprotein particles 

 
 



 xii 

UNITS 

% Percentage 

°C Degrees Celsius 

CFU Colony forming units 

g Grams 

hr Hours 

mg Milligram 

ml Millilitre 

mm Millimetre 

mM Millimolar 

n Number 

ng Nanogram 

nm Nanometre 

U Units 

x g Gravitational force 

s Second 

µg Microgram 

µl Microlitre 

µm Micrometre 

µM Micromolar 

 
 



 xiii 

TABLES 

Table 2.1 List of reagents used in this study 44 

Table 2.2 List of equipment used in this study 47 

Table 2.3 Components and volumes used in preparation of RNA and 

primer mix 56 

Table 2.4 Components and volumes used in preparation of cDNA 

reverse transcription mix 57 

Table 2.5 Primer Sequences for H1N1 and H3N2 Nucleoprotein 57 

Table 2.6 Reagents and volumes used in preparation of qPCR 

experiment 58 

Table 2.7 Comparison of levels of induction between batches of Heat 

Killed Streptococcus pneumoniae 64 

Table 2.8 Comparison between inhibition of previous results against 

current results generated with new batches of H1N1 and clinical isolates 

of H3N2 68 

Table 2.9 Comparison between inhibition of previous results against 

current results generated with new batches of H1N1 and clinical isolates 

of H3N2 72 

Table 3.1 List of additional reagents to Table 2.1 (Chapter 2) used in 

this study 81 

Table 3.2 Reagents and volumes used in preparation of qPCR 

experiment 83 

Table 3.3 Relative cytokine concentrations across different TLR2 agonist 

doses 82 

Table 3.4 Relative cytokine concentrations across different TLR4 agonist 

doses 91 

Table 3.5 Relative cytokine concentrations in response to TLR9 agonist 95 

Table 3.6 Relative cytokine concentrations across different TLR5 agonist 

doses 100 

Table 4.1 List of additional reagents to Table 2.1 (Chapter 2) and Table 

3.1 (Chapter 3) used in this study 112 



 xiv 

Appendix Table 2.1 Comparison between inhibition of previous HA 

batch results against current results generated with new batches of HA VI 

Appendix Table 2.2 Comparison between inhibition of previous results 

against current results generated with new batches of HA VII 

 



 xv 

FIGURES 

Figure 1.1 The structure of Influenza A Virus. 4 

Figure 1.2 Classification and nomenclature of Influenza A Virus 5 

Figure 1.3 Life cycle of the Influenza virus. 7 

Figure 1.4 Antigenic drift in influenza virus. 10 

Figure 1.5 Antigenic shift in influenza virus. 11 

Figure 1.6 Predicted annual deaths attributable to Antimicrobial 

Resistance. 15 

Figure 1.7 Cells of the immune system. 18 

Figure 1.8 TLR signalling pathways. 20 

Figure 1.9 Differentiation of naïve T cell into Th cell subsets in a normal 

immune response. 21 

Figure 1.10 Structure of an antibody. 23 

Figure 1.11 Presentation of antigens to CD8 and CD4 T cells from 

APCs via MHC complexes. 25 

Figure 1.12 TLR signalling and NF-kB activation leading to 

downstream activation of type I IFNs through IRF3 and IRF7 signalling. 27 

Figure 1.13 Scheme of Human Immune Model. 39 

Figure 2.1 The grid of the Improved Neubauer Haemocytometer. 49 

Figure 2.2 The principles of magnetic bead separation. 50 

Figure 2.3 Scheme of Mixed Lymphocyte Reaction. 52 

Figure 2.4 Workflow of a sandwich ELISA principle. 54 

Figure 2.5 Schematic of probe-based qPCR. 55 

Figure 2.6 Schematic displaying the principles of flow cytometry. 59 

Figure 2.7 The Stages of Western Blot. 61 

Figure 2.8 H1N1 and H3N2 are confirmed to infect CD14+ APCs. 63 

Figure 2.9 Live IAV infection inhibits HKSP-induced IL-23, IL-6, IL-27, 

and IL-12p70. 65 

Figure 2.10 Live IAV infection does not inhibit HKSP-induced IL-1b. 66 

Figure 2.11 Live IAV infection does not increase anti-inflammatory 

cytokines. 67 



 xvi 

Figure 2.12 Inhibition by IAV of innate responses to S.p. is not due to 

apoptosis. 69 

Figure 2.13 Housekeeping protein, b-Actin is detected in all cells. 69 

Figure 2.14 Live H1N1 and H3N2 infection inhibits HKSP-induced IL-

17A and IFN-g. 70 

Figure 2.15 Levels of TGF-b and IL-10 do not increase during live IAV 

infection. 71 

Figure 3.1 IFN-a and IFN-b are not strongly induced in treated 

samples. 86 

Figure 3.2 IFN-a and IFN-b are not strongly induced in treated 

samples. 87 

Figure 3.3 Live IAV infection inhibits LTA-SA-induced IL-23 and TGF-b. 89 

Figure 3.4 LTA-SA-induced IL-6, IL-1b, IL-27, and IL-12p70 are not 

inhibited by live H1N1 or H3N2 infection. 90 

Figure 3.5 LTA-SA-induced IL-10 is not affected by live H1N1 or H3N2 

infection. 91 

Figure 3.6 Live H1N1 and H3N2 infection inhibits LPS-EB-induced 

TGF-b. 92 

Figure 3.7 LPS-EB-induced IL-12p70 and IL-10 are not affected by live 

H1N1 or H3N2 infection. 93 

Figure 3.8 LPS-EB-induced IL-23, IL-6, IL-1b, and IL-27 are not 

inhibited by live H1N1 or H3N2 infection. 94 

Figure 3.9 Live H1N1 and H3N2 infection inhibits ODN 2216-induced 

IL-23 and TGF-b. 96 

Figure 3.10 ODN 2216-induced IL-27, IL-6, IL-1b, IL-12p70, and IL-10 

are not affected by live H1N1 or H3N2 infection. 97 

Figure 3.11 LTA-SA-induced RORC expression is not inhibited by live 

H1N1 or H3N2 infection. 98 

Figure 3.12 ODN 2216-induced RORC expression is inhibited by live 

IAV infection. 99 

Figure 3.13 FLA-ST-induced cytokines are not inhibited by live IAV 

infection. 101 



 xvii 

Figure 3.14 TLR5 agonism restores inhibited HKSP-induction of IL-23, 

IL-27, and IL-12p70 during IAV infection. 103 

Figure 3.15 TLR5 agonism does not affect induction of IL-6, IL-1b, 

TGF-b, and IL-10 during HKSP-IAV co-infection. 104 

Figure 4.1 Influenza HA attenuates HKSP induction of IL-27 and IL-

12p70. 115 

Figure 4.2 Influenza HA does not affect HKSP induction of IL-23, IL-6, 

and IL-1b. 116 

Figure 4.3 Influenza HA does not increase levels of IL-10 and TGF-b. 117 

Figure 4.4 Influenza HA attenuates HKSP induction of IL-17A and IFN-

g. 118 

Figure 4.5 Influenza HA does not increase levels of HKSP induction of 

TGF-b and IL-10. 118 

Figure 4.6 Influenza HA attenuates LTA-SA induction of TGF-b. 119 

Figure 4.7 Influenza HA does not attenuate LTA-SA induction of 

cytokines. 120 

Figure 4.8 Influenza HA does not cause elevate levels of LTA-SA 

induction of IL-10. 121 

Figure 4.9 Influenza HA does not attenuate LTA-SA induction of 

cytokines. 122 

Figure 4.10 Influenza HA attenuates ODN 2216 induction of IL-23. 123 

Figure 4.11 Influenza HA does not attenuate ODN 2216 induction of 

cytokines. 124 

Figure 4.12 Influenza HA does not elevate levels of ODN 2216 induced 

of IL-10. 125 

Figure 4.13 Influenza HA does not attenuate FLA-ST induction of 

cytokines. 126 

Figure 4.14 TLR5 agonism restores inhibited HKSP-induction of IL-27 

and IL-12p70 during HA treatment. 127 

Figure 4.15 TLR5 increases induction of IL-23 and IL-1b during HKSP 

and HA co-treatment. 128 

Figure 4.16 TLR5 agonism does not affect induction of cytokines during 

HKSP and HA co-treatment. 129 



 xviii 

Appendix 1.1 TLR2 agonist (LTA-SA) induces pneumococcus-driven 

cytokines most consistently at a concentration of 20 µg. I 

Appendix 1.2 TLR4 agonist (LPS-EB) induces pneumococcus-driven 

cytokines most consistently at a concentration of 100 ng. II 

Appendix 1.3 TLR9 agonist (ODN 2216) induces pneumococcus-

driven cytokines at a concentration of 2 µM. III 

Appendix 1.4 TLR5 agonist (FLA-ST) induces pneumococcus-driven 

cytokines most consistently at a concentration of 100 ng. IV 



 xix 

PUBLICATIONS 

Maguire, P.T., Loughran, S.T., Harvey, R., Johnson, P.A. A TLR5 mono-agonist restores 

inhibited immune responses to Streptococcus pneumoniae during influenza virus 

infection in human monocytes. In submission to Journal of General Virology. 

 

McQuaid, S., Loughran, S., Power, P., Maguire, P., Szczygiel, A., Johnson, P. Low dose 

IL-2 induces CD56brightNK regulation of T cells via NKp44 and NKp46. In submission to 

Clinical and Experimental Immunology (CEI-2019-8012). 

 

Loughran, S.T., Power, P.A., Maguire, P.T., McQuaid, S.L., Buchanan, P.J., Jonsdottir, 

I., Newman, R.W., Harvey, R., Johnson, P.A. 2018. Influenza infection directly alters 

innate IL-23 and IL-12p70 and subsequent IL-17A and IFN-g responses to 

pneumococcus in vitro in human monocytes. PLoS ONE 13(9): e0203521. 

doi.org/10.1371/journal.pone.0203521. 

 

McQuaid, S., Loughran, S., Power, P., Maguire, P., Walls, D., Grazia Cusi, M., Orvell, 

C., Johnson, P. 2018. Haemagglutinin-neuraminidase from HPIV3 mediates human NK 

regulation of T cell proliferation via NKp44 and NKp46. J. Gen Virol. 99(6):763-767. doi: 

10.1099/jgv.0.001070. 



 xx 

PRESENTATIONS 

PRESENTATIONS: POSTERS 

Paula T. Maguire, Sinéad T. Loughran, Ruth Harvey, Patricia A. Johnson. Influenza and 

Secondary Bacterial Infections: How to Tackle Antimicrobial Resistance? School of 

Nursing and Human Sciences Research Expo 2018, Dublin City University. Dublin, 5th 

December 2018. 

 

Sinéad Loughran, Patrick Power, Paula Maguire, Samantha McQuaid, Richard Lalor, 

Ingileif Jonsdottir, Robert Newman, Patricia A. Johnson. Influenza and Secondary 

Bacterial Infections: How to Tackle Antimicrobial Resistance? 9th Annual Biological 

Research Society School of Biotechnology Research Day, Dublin City University. Dublin, 

27th January 2017. 

 

PRESENTATIONS: ORAL 

Paula T. Maguire, Sinéad T. Loughran, Ruth Harvey, Patricia A. Johnson. Antimicrobial 

resistance, influenza and Streptococcus pneumoniae. International Postgraduate 

Research Conference, Trinity College Dublin. Dublin, 15th-16th March 2018. 

 

Paula T. Maguire, Sinéad T. Loughran, Ruth Harvey, Patricia A. Johnson. Influenza and 

Secondary Bacterial Infections: How to Tackle Antimicrobial Resistance? School of 

Nursing and Human Sciences Lunchtime Research Seminar, Dublin City University. 

Dublin, 22nd March 2017. 

 

Sinéad Loughran, Patrick Power, Paula Maguire, Samantha McQuaid, Richard Lalor, 

Ingileif Jonsdottir, Robert Newman, Patricia A. Johnson. Influenza and Secondary 

Bacterial Infections: How to Tackle Antimicrobial Resistance? School of Nursing and 

Human Sciences Research Expo 2016, Dublin City University. Dublin, 23rd November 

2016. 



 xxi 

GRADUATE TRAINING ELEMENTS 

ACCREDITED MODULES: 

• Introduction to Animal Cell Culture Theory (BE525) (2.5 credits) 

• Biosafety and Lab Standard Operating Procedures (BE550) (5 credits) 

• Professional Communication for Graduate Researchers (GS611NS) (5 credits) 

• Intellectual Property and Commercialisation (GS601) (5 credits) 

• Advanced Experimental Data Processing (CS507A) (5 credits) 

NON-ACCREDITED MODULES: 

• Safe Lab Module I 

• Safe Lab Module II 

• Research Integrity Online Training (PS01)



 xxii 

ABSTRACT 

 

The role and mechanism of immunomodulation by influenza virus 

and its components in the predisposition to bacterial disease during 

influenza infection 

 
Paula Maguire 

 
 
Influenza A virus (IAV) infection predisposes individuals to severe infections with bacteria 
such as Streptococcus pneumoniae (S.p.). Research shows that influenza infection 
impairs the T helper 17 (Th17) immune response, which is critical in the clearance of 
S.p. infections. Studies have demonstrated a role for type I Interferons in the impaired 
Th17 immunity associated with IAV. The results presented in this thesis demonstrate 
that IAV infection significantly impairs S.p. driven innate and adaptive cytokines. 
However, this inhibition occurred in the absence of type I Interferons, suggesting an 
additional mechanism of Th17 immunomodulation associated with IAV. To establish how 
IAV inhibits these responses, we investigated the effect of IAV infection on specific innate 
immune Toll Like Receptors (TLRs), which are triggered by S.p. infection. We have 
identified that IAV targets TLRs (TLR2, TLR4, TLR9) in human monocytes, resulting in 
a reduction in TLR-induced cytokines. The effect of IAV is more profound on the TLR2 
and TLR9 pathways. We established IAV may be inhibiting the TLR9 pathway by 
targeting RORC, a Th17-specific transcription factor. We investigated if TLR5 agonism 
could restore IAV-inhibited immune responses. Levels of pneumococcus driven 
cytokines, which had previously been inhibited by IAV were not reduced in the presence 
of the TLR5 agonist, suggesting this may restore immune responses despite IAV 
inhibition. Finally, we sought to investigate the role of the influenza surface glycoprotein, 
haemagglutinin (HA) in innate and adaptive responses to S.p. and innate responses to 
TLR agonism. Pneumococcus driven innate and adaptive cytokines were significantly 
inhibited by HA, whilst certain TLR agonist driven cytokines were also inhibited by HA. 
Novel findings include determining that immune inhibition by IAV is not solely due to type 
I IFNs, and demonstrating that TLR5 agonism may be beneficial in circumventing 
immune inhibition by IAV and restoring Th17 responses.
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1.0 GENERAL INTRODUCTION 

1.1 OVERVIEW 

The overall aim of this project is to examine the effect of influenza A virus (IAV) infection 

on human immune responses to Streptococcus pneumoniae (S.p.). It has long been 

established that IAV infection predisposes individuals to secondary infections, 

particularly with capsular, extracellular bacteria such as S.p. [1–3]. These secondary 

infections can often prove fatal to both immunocompromised individuals and previously 

healthy individuals [4,5]. The mechanisms as to why this synergy occurs are not clearly 

understood. 

Vaccine administration is the primary mode of prevention of influenza infections, 

however these must be reformulated annually due to the virus constantly mutating [6,7]. 

Furthermore, the effectiveness of vaccines varies year by year (approximately 30-60% 

in Europe), therefore despite vaccine improvement, comprehensive prevention of 

influenza infection is not currently possible [8–13]. As influenza infections will continue 

to commonly occur, so too will secondary bacterial infections. Due to the high prevalence 

of secondary bacterial infections associated with IAV infections, patients are often 

prophylactically prescribed antibiotics upon presenting with viral infections such as 

influenza [14]. However, this is contributing to the considerable problem of antimicrobial 

resistance that we are already facing. Drug-resistant infections are increasing rapidly, 

therefore new treatment options must be explored [15]. 

The majority of research in this area has been carried out in animal models (including 

mice, ferrets, and guinea pigs), resulting in a deficit of research in human models. In an 

attempt to address this gap in the research, a human ex vivo model was used throughout 

the project. Key cytokines involved in the response to S.p. were chosen to analyse and 

differences in response to IAV infections were investigated. To provide mechanistic 

insights into how IAV inhibits responses to S.p., possible indirect and direct modes of 

inhibition were examined, including the role of type I IFNs, and key Toll Like Receptors 

(TLRs) involved in S.p responses. The effect of IAV on TLR-induction of the Th17-

specific cytokine, retinoic acid receptor (RAR)-related orphan receptor C (RORC) was 

determined to examine possible molecular mechanisms behind IAV inhibition. An 

additional IAV component (haemagglutinin), was examined to further explore possible 

modes of inhibition by IAV.
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1.2 INFLUENZA VIRUS 

The influenza virus is a respiratory virus belonging to the Orthomyxoviridae family of 

negative sense RNA viruses [16]. Influenza is a highly contagious, airborne disease and 

can be transmitted via direct/indirect contact, droplets, and aerosols [17], meaning the 

virus can spread easily from individual to individual. Influenza virus can cause both 

epidemics and pandemics [18]. Typical symptoms of influenza infection include high 

fever, cough, nasal inflammation, fatigue, and muscle pain [19,20]. However, serious 

complications can occur both in healthy individuals and within at-risk age groups, 

immuno-compromised individuals, and those with underlying conditions such as asthma 

[21]. Additionally, there is a huge economic burden due to influenza infection. In the 

United States alone, it is estimated that the average annual total economic burden of 

influenza was $11.2 billion [22]. Due to both health and economic reasons, controlling 

and preventing viral infections such as influenza has been a major area of research. The 

research has focused primarily on development of both vaccines and antiviral agents. In 

the 2009 influenza pandemic, neuraminidase inhibitors (NIs) were the major type of 

influenza antivirals used [23,24]. As these are merely a treatment and not a means of 

preventing influenza infection, vaccines are considered to be the most beneficial tactic. 

Most vaccines are inactivated and injectable [25]. Individuals must be vaccinated 

annually due to the ability of the influenza virus to mutate rapidly and older individuals 

require a stronger dose of haemagglutinin in trivalent vaccines in order to achieve 

immunity [26]. However, current vaccines will not be sufficiently beneficial in the event 

of an influenza pandemic and in the time it would take to develop a vaccine for a 

pandemic strain, millions of people could die. Therefore, it is of paramount importance 

that the immune responses to influenza infection are more clearly understood in order to 

develop better treatment strategies. 

There are four distinct classifications of influenza virus: Influenza A, Influenza B, 

Influenza C, and Influenza D [27]. The classifications are based on the antigenic 

specificity of their envelope proteins. Influenza A virus is the major type in circulation in 

humans as well as in birds, dogs, pigs, and horses, and is the focus of this study [28]. 

1.2.1 INFLUENZA A VIRUS 

Influenza A Virus is a respiratory virus, which is highly contagious and poses substantial 

public health risks due to its strong association with morbidity and mortality [18]. Global 

pandemics are notorious, for example in the 1918 pandemic, it is estimated that 
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approximately 50-100 million respiratory deaths occurred [29]. Current estimates state 

that 290,000-650,000 deaths are caused by seasonal influenza virus annually [30,31].  

1.2.1.1 Structure of Influenza A Virus 

Influenza A virus is comprised of a spherical, protein shell called a capsid, surrounded 

by a lipid envelope which forms the virion. Within the virion, there are eight separate 

segments of single-stranded RNA which each encode either one or two discrete proteins 

(Figure 1.1) [28,32]. The gene segments are surrounded by the nucleoprotein (NP), at 

the end of which are the polymerase proteins, basic polymerase 1 and 2 (PB1 and PB2) 

and acidic polymerase (PA). Basic polymerase 1 is involved in addition of nucleotides 

during nucleic acid synthesis. Basic polymerase 2 controls host-cell RNA recognition, 

and PA is thought to be involved in transcriptase protease activity [33]. Together, these 

form the viral ribonucleoprotein particles (vRNPs), which move to the host cell nucleus 

and are responsible for the initiation of viral transcription and replication of viral RNAs 

[16]. Two of the genomic segments encode two different surface glycoproteins called 

haemagglutinin (HA) and neuraminidase (NA) (Figure 1.1), which act as viral antigens 

[33]. There are 18 different HA subtypes and 11 different NA subtypes, which determine 

the subtype of the influenza virus based on the type of HA and NA expressed [34–36]. 

The main role of HA is to bind to sialic-acid receptors and to mediate entry into host cells. 

NA cleaves sialic acids and is also involved in budding of new virions from infected cells. 

Different segments also encode for NP, the matrix proteins (M1 and M2), non-structural 

protein 1 (NS1) and non-structural protein 2 (NS2) (also known as nuclear export protein 

(NEP)). Nucleoprotein binds to viral RNA, whereas M1 and M2 encode the primary 

element of the virion and function as an ion channel, respectively (Figure 1.1). NS1 is 

encoded by the smallest segment in the viral genome and it is involved in RNA transport, 

splicing, and translation [33]. Additionally, NS1 inhibits nuclear export of host cellular 

mRNA by  impeding cleavage of host mRNA at the polyadenylation cleavage site [37]. 

Viral mRNAs are not negatively affected by NS1 as their poly(A) tails are not generated 

by the host machinery, but are synthesised by the viral RNA polymerase [38,39]. 

NS2/NEP is encoded by the same segment as NS1, and was initially thought to have no 

structural function within the virion [40]. However it was subsequently found to interact 

with M1 [41], and to play a role in the export of vRNPs from the nucleus of the host cell 

[42]. 
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Figure 1.1 The structure of Influenza A Virus. Image taken from Nelson and Holmes, 2007 [33]. 

 

The nomenclature for influenza virus uses the following system as approved by the World 

Health Organisation in 1980 (Figure 1.2) [43]: 

• Antigenic type (A, B, C, D) 

• Host of origin (For non-human origin only) 

• Geographical origin (Taiwan, Panama etc.) 

• Strain number 

• Year of isolation 

• For influenza A viruses, haemagglutinin and neuraminidase antigen description 

in parentheses (H1N1) 
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Figure 1.2 Classification and nomenclature of Influenza A Virus 

1.2.1.2 Life Cycle of Influenza Virus 

The life cycle of the influenza virus can be divided into different stages: entry into the 

host cell, entry of vRNPs into the nucleus, transcription and replication of the viral 

genome, export of the vRNPs out of the nucleus, and viral budding [44]. The influenza 

virus HA binds to receptors containing sialic acid on the surface of the host cell, which 

initiates viral infection and subsequently triggers endocytosis. The HA component is 

composed of two subunits: HA1 and HA2, which are linked by disulphide bonds [45]. 

HA1 contains the receptor binding domain, and HA2 contains the fusion peptide [45]. 

The sialic acids on the cell membranes are bound to carbohydrates via two major 

linkages: a(2,3) and a(2,6). These linkages play a significant role in the HA binding 

specificity. Viruses adapted to infect humans mostly recognise the a(2,6) linkages, 

whereas viruses affecting birds and horses mostly recognise the a(2,3) linkages, and 

viruses affecting pigs recognise both [46]. The low pH within the endosome of the host 

cell, where molecules may be sorted for degradation, causes conformational changes of 

the HA molecule resulting in fusion of the viral and endosomal membranes [46]. 

Additionally, the acidity of the endosome causes a conformational change of the M2 

component causing it to function as an ion channel, which leads to acidification of the 

virion interior. The acidity releases vRNPs from the M1 component, which can enter the 

cytoplasm of the host cell (Figure 1.3) [47]. The vRNPs are subsequently transported to 
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the nucleus, where the viral RNA is transcribed and replicated by the viral RNA 

polymerase. As influenza RNA is composed of negative sense strands, it must initially 

be converted into positive sense RNA to be transcribed [48].  The PB2 viral component 

binds to the 5’ methylated cap of the host cell messenger RNA (mRNA) and the PA 

component of the virus, which has endonuclease activity, cleaves the host cell mRNA 

10-13 nucleotides downstream from the 5’ methylated cap [49–51]. Transcription of the 

viral mRNA is initiated from the cleaved 3’ end of the RNA fragment [51]. This process 

is known as “cap-snatching”. Six of the viral segments encode for a single transcript, and 

two (segments 7 and 8) encode for two transcripts each via alternative splicing. Segment 

7 encodes for M1 and M2, and segment 8 encodes for NS1 and NS2/NEP [40,52]. The 

new viral mRNA is exported back to the cytoplasm for translation into viral proteins. M1 

and NS1/NEP play an important role during nuclear export [53]. The viral surface proteins 

HA, NA, and M2 are translated in the endoplasmic reticulum (ER), glycosylated in the 

Golgi apparatus, and transported to the host cell membrane. Concurrently, the NS1 

protein prevents the host from producing host mRNAs, resulting in the inhibition of anti-

viral interferon-b (IFN-b) [38,54]. Once released from the nucleus, newly formed vRNPs 

form progeny virions at the cell membrane. The new virions are released from the cell 

by budding via cleavage of sialic acid residues by NA, and can go on to infect 

neighbouring cells [55]. 
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Figure 1.3 Life cycle of the Influenza virus. (a) Influenza A Virus haemagglutinin binds to host cell-surface 

sialic acid receptors and the virus is transported into the host cell, (b) where it is endocytosed causing vRNPs 

to be released into the cytoplasm. (c) The vRNPs are transported into the nucleus, where viral mRNA 

synthesis and transcription occur. (d) Viral mRNAs are transported back to the cytoplasm and translated into 

viral proteins. (e) The protein, NS1 inhibits the host from producing mRNAs such as Interferon-b. (f) The 

vRNPs are transported back to the cytoplasm and (g) once they reach the cell membrane, are integrated 

into new virus which are budded out and released from the host cell. Image taken from Das et. al., 2010 

[56]. 

1.2.1.3 Pathogenesis of Influenza Virus 

Influenza virus infects epithelial cells, causing functional changes in the respiratory tract, 

such as decreased oxygen exchange [57].  Many studies have demonstrated a link 
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between severe influenza infection and a strong activation of host inflammatory 

responses, such as high cytokine and chemokine expression in both humans and 

animals [58,59]. Typical clinical symptoms of influenza infection include sudden onset of 

fever, nasal inflammation, cough, headache, fatigue, muscle pain, and inflammation of 

the trachea and upper respiratory tract [19,20,60]. While acute symptoms and fever 

usually subside after 7-10 days, fatigue can persist for weeks [60]. Complications arising 

from influenza infection include bronchitis and pneumonia, which may result in death, 

especially in immunocompromised individuals [60–62]. Additionally, influenza infection 

predisposes patients to secondary bacterial infections [63–65]. 

1.2.1.4 Treatment and Prevention of Influenza Virus Infections 

Neuraminidase inhibitors (NIs) such as osteltamivir and zanamivir are a commonly used 

treatment of influenza infection [66,67]. Osteltamivir is an oral solution or capsule and is 

the primary drug used. It is usually prescribed only to those in an “at-risk” group such as 

pregnant and immunocompromised individuals [68]. The anti-viral properties of 

osteltamivir are most effective when administered within 48 hours of onset of symptoms 

[69]. Resistance to osteltamivir has been observed in H1N1 infections, but not in H3N2 

infections [70,71]. Where resistance does occur, zanamivir is prescribed. Zanamivir is 

administered via inhalation, and has not yet been approved in children younger than five 

years old [72]. Zanamivir treatment should be initiated within 36 hours of onset of 

symptoms [69]. Early administration of anti-viral drugs such as NIs can reduce the risk 

of complications from influenza infection [69,73,74], although NI treatment after 48 hours 

of onset of symptoms can still be beneficial if the patient has severe complications 

[75,76]. Although NIs can be very effective at reducing both the severity and symptom 

duration of influenza infections, serious adverse side-effects have been reported in 

recent years [77]. Such reactions include nausea, hypothermia, and neuropsychiatric 

reactions such as hallucinations, which appear from less than 1 hour after initiation of 

treatment [77–79], or delayed reactions such as renal, immune and psychiatric disorders, 

which tend to appear at least a few days after initiation of treatment [78]. 

Vaccination is the principal tactic in the prevention and regulation of influenza infections, 

but due the constant mutating virus, vaccines must be reformulated annually [6,7]. The 

seasonal influenza vaccine is formulated to protect against the three or four strains of 

influenza virus most likely to be in circulation during a particular year [25]. Influenza 

vaccines can be administered as an intramuscular or subcutaneous injection which 

contains an inactivated form of the virus, or as a nasal spray containing a live but 
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attenuated version of the virus [25]. There are three types of influenza vaccine available: 

an inactivated trivalent influenza vaccine (TIV) which contains antigens from two IAV and 

one influenza B virus (IBV) strain; an inactivated quadrivalent influenza vaccine (QIV) 

which contains antigens from two IAV and two IBV strains; and a live attenuated 

quadrivalent influenza vaccine (LAIV) [80]. The level of efficacy of influenza vaccines 

varies annually; in Europe, there is approximately a 30-60% rate of vaccine efficacy [8–

13]. Additionally, older individuals require a stronger dose of haemagglutinin in trivalent 

vaccines in order to achieve immunity [26]. 

1.2.1.5 Antigenic Shift and Drift 

Influenza is a recurring disease that re-emerges annually in a different configuration. The 

influenza virus has high mutation rates (1x10-3 - 8x10-3 substitutions per site annually) 

because the RNA polymerase lacks proof-reading ability [81]. These mutations result in 

amino acid alterations in the surface proteins HA and NA via processes known as 

antigenic drift and antigenic shift [82]. Antigenic drift occurs due to a small degree of 

RNA mutation and results in a minor change in a single virus [83]. This process causes 

annual influenza epidemics, resulting in millions of human infections due to the 

emergence of new virus strains (Figure 1.4). Antigenic shift, however is a process which 

causes major antigenic changes. It occurs during simultaneous infection of a cell with 

two different influenza viruses, resulting in a mixing or re-assortment of the genes 

between the different subtypes leading to a new virus which possesses a mixture of 

proteins from the original viruses (Figure 1.5). This process leads to influenza pandemics 

which occur due to the emergence of new viral subtypes. Infections may be spread 

between different species and are difficult to treat. The major changes to the surface 

proteins mean that the new influenza virus variations can avoid immune detection and 

invade host cells [84]. The mutations are also the reason why vaccines must be 

reformulated every year [6,7]. 
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Figure 1.4 Antigenic drift in influenza virus. In antigenic drift, genetic mutations in haemagglutinin and/or 

neuraminidase result in small antigenic changes over time.



 11 

 

 

Figure 1.5 Antigenic shift in influenza virus. In antigenic shift, during simultaneous infection with two different 

influenza viruses, the genes from the different viruses can mix, resulting in a new variant which contains a 

combination of proteins from the original viruses.
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1.3 SECONDARY BACTERIAL INFECTIONS 

As mentioned previously, approximately 290,000-650,000 deaths are caused by 

seasonal influenza virus annually [30]. Most of these deaths are due to secondary 

bacterial pneumonia, which may result in superinfection [18,85]. There is considerable 

evidence from animal models, and clinical data that IAV infection predisposes individuals 

to bacterial infection typically with capsular, extracellular bacteria such as S.p. and 

Staphylococcus aureus [1–3]. In the 1918 pandemic, the late 1960’s pandemic, and the 

2009 pandemic, the predominant bacterial co-pathogen was S.p. [20,86,87]. Globally, in 

seasonal IAV, the most common co-infecting bacteria is also S.p. [18]. It is widely 

believed that these co-infections are a major contributor to increased morbidity and 

mortality associated with both seasonal and pandemic outbreaks of influenza [18]. 

Influenza-bacterial co-infection can result in hospitalisation and/or death of both patients 

with pre-existing lung disease and previously healthy individuals [4,5]. Although a 

considerable effort has been made over the last decade, no real consensus has been 

reached as to why these secondary infections occur. Earlier studies have suggested that 

physiological damage to the respiratory epithelium, and increased adherence factors for 

S.p may be involved [1]. While these processes are likely to contribute to more enhanced 

colonisation, recent research has pointed to the role of immunological mechanisms in 

the susceptibility to invasive bacterial disease during influenza infection [1,88,89]. 

Impaired immunological responses have been suggested as contributing to 

susceptibility, such as reduced responsiveness of alveolar macrophages and elevated 

levels of anti-inflammatory IL-10 in mice [89–91]. Also, a neutrophil influx caused by viral 

and bacterial toxins may result in a cytokine storm leading to a destructive hyper 

inflammatory response in mice [92]. 

1.3.1 STREPTOCOCCUS PNEUMONIAE 

Streptococcus pneumoniae (also commonly referred to as pneumococcus) is a major 

human pathogen of global significance. Worldwide, between 2006-2016, S.p was the 

primary cause of lower respiratory infection morbidity and mortality, with approximately 

1,189,937 deaths being attributed to the pathogen in 2018 alone [93,94]. Streptococcus 

pneumoniae was also the leading cause of community-acquired pneumonia, which can 

lead to invasive pneumococcal disease such as septicaemia, bacteraemia, pneumonia 

and meningitis [95,96]. There have been more than 90 distinct serotypes of S.p 

discovered thus far. Certain serotypes are linked with higher mortality, such as serotype 
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3 [97]. The different serotypes are characterised by a discrete polysaccharide capsule. 

The polysaccharide capsule acts as an important virulence factor mainly via inhibition of 

phagocytosis [98]. The cytotoxic endotoxin, pneumolysin (PLY) is also a key virulence 

factor as it forms large pores in the membrane of mammalian cells [99]. Pneumolysin 

has been shown to be a vital component in the ability of S.p. to cause disease such as 

pneumococcal pneumonia, and meningitis, but may not be necessary for the 

advancement of secondary pneumococcal pneumonia following influenza virus infection 

[100–102]. Upon entering the nasal cavity, S.p. utilises the polysaccharide capsule to 

reduce entrapment in the mucus secretions, which allows S.p. access to the surface of 

the epithelium [103]. Streptococcus pneumoniae also produces enzymes, which include 

NA. The NA enzyme cleaves terminal sugars on host glycoproteins and glycolipids, 

which exposes receptors and aids bacterial adherence [104,105]. Colonisation of S.p. 

occurs most frequently in early childhood, with most infants carrying at least one 

serotype, either simultaneously or consecutively [104]. By adulthood, the rate of S.p. 

colonisation declines to below 10%, indicating that young children are the main carriers 

of S.p. [106].  

1.3.2 TREATMENT OF STREPTOCOCCUS PNEUMONIAE 

INFECTIONS 

Streptococcus pneumoniae infections are often treated with antibiotics such as 

amoxicillin, doxycycline and penicillin. Resistance to penicillin had become very 

common, however with the introduction of S.p. vaccines, resistance to penicillin began 

to decrease, before increasing again [107]. There are two distinct pneumococcal 

vaccines: the pneumococcal conjugate vaccine (PCV) and the pneumococcal 

polysaccharide vaccine (PPV23). The PCV is administered to all babies as part of the 

childhood immune schedule, and the PPV23 is administered to individuals over the age 

of 65 and those with certain medical conditions. The PPV23 protects against 23 different 

types of pneumococcal disease [108]. Vaccinating young children has been shown to 

result in “herd immunity”, which has benefitted those of all ages who do not receive the 

vaccine themselves [106]. Despite this, treatment of S.p. infections are becoming 

continually more complex due to S.p serotypes diverging from those covered by the 

pneumococcal vaccine and the emergence of antibiotic resistant strains of S.p. The 

increase in antimicrobial resistance (AMR) is an important clinical manifestation of 

particular concern [15]. Due to the high incidence of secondary bacterial infections 

associated with IAV, often patients are prophylactically prescribed antibiotics upon 
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presenting with viral infections [14]. Prophylactic administration of antibiotics is adding 

to the overall problem of AMR and should be addressed. 

1.3.3 ANTIMICROBIAL RESISTANCE 

Antimicrobial medicines are active against infections caused by a multitude of 

pathogens. Antimicrobial resistance occurs when the pathogens which cause infections 

survive exposure to a treatment that usually would kill them or prevent their growth. This 

enables the pathogens which have survived to spread. Antimicrobial resistance is one 

of the biggest health threats that humans currently face. Currently, approximately 

700,000 deaths every year are due to AMR, however it has been estimated that by 2050, 

the number of predicted deaths attributed to AMR will increase to 10 million annually, 

surpassing current deaths attributed to cancer and diabetes combined (Figure 1.6) [15]. 

Additionally, there are huge economic effects, as 100 trillion US dollars of economic 

output will be exposed due to the increase of antimicrobial-resistant infections, unless 

pre-emptive steps are taken to impede the increase in drug resistance. In the U.S., it 

costs the health system 20 billion US dollars as over two million bacterial infections are 

caused by strains which are resistant to the first-line antibiotic drug treatment [109]. 

Antibiotics are pivotal to a functioning healthcare system. If antibiotics continue to lose 

efficacy, fundamental medical procedures such as caesarean sections, joint 

replacements, organ transplants, and even chemotherapy may become too risky to 

perform [110]. Drug-resistant infections have typically been associated with hospitals, 

but more recently these infections have been observed in the wider community [111]. To 

prevent the global increase in drug-resistant infections, new treatments must become 

available to cope with the decrease in the efficacy of older medicines. Additionally, the 

mis-use of antibiotics should be addressed as over-prescribing of drugs and use of 

antibiotics in agriculture have been damaging. Many studies have detailed the increase 

in infections by antibiotic-resistant strains of S.p., resulting in major clinical implications 

[112]. 
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Figure 1.6 Predicted annual deaths attributable to Antimicrobial Resistance. Image taken from O’Neill, 2016 

[15].
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1.4 OVERVIEW OF THE HOST IMMUNE RESPONSE TO 

PATHOGENS 

Humans are exposed to pathogens every day, through inhalation, ingestion, and contact. 

Our ability to avoid constant infections depends on the immune system. The immune 

system is highly complex and is critical to the outcome of infections. However, 

concurrently, pathogens are attempting to evade detection by the immune system. The 

immune response can be separated into two arms; the innate immune response, which 

is rapid, but non-specific, and the adaptive immune response, which is slower, but very 

specific. The innate and adaptive immune responses work together and complement 

each other to provide the fastest and most effective immunity [113]. 

1.4.1 THE INNATE IMMUNE RESPONSE 

The innate immune response is the body’s first line of defence against pathogens 

including influenza and S.p. [16]. This response is critical, especially during the first few 

hours after exposure to a new pathogen. Innate immune responses are not specific to 

any particular pathogen, but can be mounted very rapidly. The innate immune response 

functions due to proteins and phagocytic cells which recognise conserved pathogenic 

features. The initial lines of innate defence are the physical and chemical barriers, such 

as the epithelial surface, mucosal membranes, and digestive enzymes. If the physical 

and chemical barriers fail to prevent the pathogen from invading further, then the 

pathogen will next encounter the innate immune cells, including numerous leucocytes, 

such as monocytes and natural killer (NK) cells [113]. These cells express receptors, 

often called pattern-recognition receptors (PRRs), which are germline-encoded and 

recognise highly conserved microbial molecules or pathogen-associated molecular 

patterns (PAMPs) which are essential for pathogen survival [114]. Examples of PAMPs 

include peptidoglycan, flagella, lipopolysaccharides (LPS), unmethylated CpG motifs, 

and teichoic acid, all of which are found in bacteria, along with dsRNA produced in virus-

infected cells [113,114]. In an influenza infection, the first innate barrier is the mucous 

layer, and once this layer is broken through, the virus targets respiratory epithelial cells. 

Upon entering the host cell, the virus is recognised by innate receptors which trigger 

signalling cascades resulting in the production of effector molecules which confer 

protection against the pathogen. Cells such as neutrophils, macrophages, and dendritic 

cells are early responders and are among the first line of cellular defence against the 

infection [115].  
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1.4.1.2 Cells of the Innate Immune System 

Innate immune cells are not specific to any pathogen, and are mounted very rapidly. 

Immune cells originate from hematopoietic stem cells in the bone marrow. Hematopoietic 

stem cells produce two specialised types of stem cell: lymphoid progenitor cells and 

myeloid progenitor cells. Lymphoid progenitor cells produce T cells, NK cells, and B cells, 

whereas myeloid progenitor cells produce various types of leucocytes (white blood cells), 

as well as red blood cells and platelets. The different types of leucocytes are 

granulocytes (basophils, eosinophils, and neutrophils), mast cells, and monocytes. The 

granulocytes circulate in the blood stream and move into the tissues when recruited. 

Mast cells mostly function in allergic responses. Monocytes are one of the key innate 

immune cells. Once monocytes leave the bloodstream and enter the tissues, a subset 

of innate immune cells differentiate from monocytes to become either macrophages or 

dendritic cells (DCs) (Figure 1.7). These have effector functions similar to other cells of 

the innate immune system but perform the additional function of antigen presentation to 

the adaptive arm of immunity. Much attention has been paid to this group of immune 

cells as they link innate and adaptive immunity and are pivotal in defining the ultimate 

outcome of the infection [116]. 

Innate cells detect pathogens by cell-surface receptors, such as Toll Like Receptors 

(TLRs), which differentiate between the pathogen and the host. Once receptors signal 

the detection of a pathogen, cytokines are released. The generation of monocytes, 

macrophages and DCs depends on the receptor activation and subsequent cytokine 

release. The induced cytokines can either act in autocrine mode, by affecting the 

behaviour of the cell that has released the cytokine, or in paracrine mode, which affects 

the behaviour of adjacent cells. Monocytes, macrophages, and DCs secrete cytokines 

such as interleukin-1 (IL-1), IL-6, and IL-12 [113,116]. It is pivotal that the immune system 

can detect and destroy pathogens without harming the host. Therefore, the immune 

system must be able to distinguish between “self” and “non-self”. The innate immune 

response relies on PRRs recognising PAMPs which are not found on the host cell. The 

most common PRRs in mammalian cells are TLRs [114,117]. 
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Figure 1.7 Cells of the immune system. Image taken from The McGraw-Hill Companies Inc., 2019 [118]. 

1.4.1.3 Pattern Recognition Receptors 

Innate immune cells sense pathogens through innate receptors known as PRRs. These 

receptors include TLRs, which are located in the cellular membrane and endosome, and 

retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), which are located in the 

cytoplasm [16]. These receptors have two main functions: initiation of pathogen 

phagocytosis, and stimulation of host cell gene expression, which increases innate 

immune responses [113]. 
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1.4.1.3.1 Toll Like Receptors 

The Toll-like receptors are an essential group of PRRs [117]. They are named “Toll-like” 

as they are homologues of the Drosophila Toll protein [119,120]. There are ten different 

types of TLR in humans (TLR1-TLR10), with each responding to an array of PAMPs from 

a variety of microbes. Toll-like receptor 1, 2, 4, 5, and 6 are expressed on the cell surface, 

whereas TLR 3, 7, 8 and 9 are expressed intracellularly [121,122]. Toll-like receptor 1, 

2, 4, 5, and 6 detect microbial components such as lipids, lipoproteins, and flagella. Toll-

like receptor 3, 7, 8, and 9 detect both microbial and viral components [122]. Toll-like 

receptor 2 (along with TLR1 or TLR6), detects pneumococcal cell wall components such 

as lipoteichoic acid (LTA) and lipoproteins [123,124]. Toll-like receptor 3 detects viral 

dsRNA, while TLR4 detects pneumolysin (PLY) [125–128]. Toll-like receptor 5 detects 

bacterial flagellin, and TLR9 detects bacterial and viral DNA comprising unmethylated 

CpG motifs [129,130]. Toll-like receptors are type I integral membrane glycoproteins, 

which are characterised by extracellular domains. Each extracellular domain contains 

various amounts of leucine-rich-repeat (LRR) motifs, and a C-terminal cytoplasmic 

signalling domain, termed the Toll IL-1 Receptor (TIR) domains [131,132]. Stimulation of 

a TLR causes the TIR domain to recruit specific adaptor molecules such as innate 

immune signal transduction adaptor (MyD88), MyD88-adaptor-like (MAL, also known as 

TIRAP), TIR-domain-containing adaptor protein inducing IFN-b (TRIF, also known as 

TICAM1), or TRIF-related adaptor molecule (TRAM, also known as TICAM2) (Figure 

1.8). The recruitment of the adaptor proteins triggers downstream signalling cascades, 

which induces inflammatory cytokine and chemokine expression, anti-pathogen 

proteins, and initiation of the adaptive immune response [133]. It is the combination of 

adaptor molecules which decides the response to the pathogen [115]. All TLRs recruit 

MyD88, apart from TLR3, which uses TRIF. Toll-like receptor 2 uses MAL to recruit 

MyD88, whereas TLR4 can use MAL or TRAM to recruit either MyD88 or TRIF [134,135]. 

Once MyD88 is stimulated, it recruits IL-1R-associated kinase 4 (IRAK-4) and IRAK-1 

[133,136]. Then, IRAK-1 associates with TNFR-associated factor 6 (TRAF6). MyD88-

dependent and TRIF-dependent signalling pathways lead to the activation of nuclear 

factor-kB (NF-kB), interferon regulatory factor 3 (IRF3) or IRF7 through complexes which 

result in the production of anti-viral interferons and cytokine secretion [115,133]. In 

addition to sensing pathogens through TLRs, innate cells also play a crucial role in the 

activation of the adaptive immune response, such as macrophages and DCs which 

specialise in antigen presentation to T cells  [113,116]. 
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Figure 1.8 TLR signalling pathways. All TLRs, except TLR3, recruit MyD88 to the TIR domain, which in turn 

recruits IRAK4 and IRAK1. IRAK1 then associates with TRAF6 and TAK1, leading to NF-kB activation, 

cytokine secretion, and production of anti-viral interferons. Image taken from O’Neill, 2007 [133]. 

1.4.1.4 Antigen Presentation 

Innate immune cells, such as DCs and macrophages, which differentiate from 

monocytes, sense pathogens through PRRs, however, they can also prime adaptive 

immune cells such as T cells to induce long-term immunity. T cells are distinct from other 

lymphocytes because of their T cell receptor (TCR), which contains two TCR chains (a 

and b), z-chain accessory molecule, and a CD3 co-receptor [116,137]. In a normal 

immune response, when a pathogen is sensed by the immune system, antigen-

presenting cells (APCs) such as DCs and macrophages present antigens to naïve T cells 

via their major histocompatibility complex (MHC) class II molecules. MHC Class II 

molecules are usually only expressed on APCs and function by “trapping” peptide 

antigens from pathogens and displaying it for T cell recognition. The antigen being 

displayed by the APC is recognised by the TCR on the naïve T cell, however additional 

signals must be produced for the T cell to become activated [116]. A separate co-

stimulatory signal must also be delivered by the APC to the T cell, usually by the B7 
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molecules (CD80/CD86) on the APC, which interact with the CD28 co-receptor on the T 

cell. This leads to T cell clonal expansion and depending on which innate cytokines are 

produced, differentiation into effector T cells such as T helper (Th) or T regulatory (Treg) 

cells (Figure 1.9). Depending on the antigen presented, the co-stimulators and cytokines 

that have been produced, Th cells will differentiate into Th1, Th2, and Th17 effector cells. 

Each of which, produce their own range of cytokines and mediate distinct functions 

[116,137,138]. Th1 cells respond to intracellular pathogens and secrete the cytokine IFN-

g, amongst others. Th2 cells respond to parasitic infections, and Th17 cells respond to 

extracellular bacteria and secrete the pro-inflammatory cytokine, IL-17 [139–142]. Treg 

cells are able to suppress innate and adaptive immune responses and can serve as a 

“self-check” to maintain immune homeostasis, primarily through the anti-inflammatory 

effects of IL-10 [137,143]. Ultimately, the innate immune response has a profound effect 

on the adaptive response which is subsequently elicited as APCs serve as the link 

between the innate and adaptive responses. 

 
Figure 1.9 Differentiation of naïve T cell into Th cell subsets in a normal immune response. APCs present 

antigens to naïve T cells, leading to differentiation into effector T cells such as Th1, Th2, and Th17. Image 

taken from Idris-Khodja et. al., 2014 [137].
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1.4.2 THE ADAPTIVE IMMUNE RESPONSE 

If the innate immune responses are unsuccessful in clearing infections, the adaptive 

immune response will be activated. The innate immune response is required to activate 

the adaptive immune response. Many of the same effector mechanisms are used in both 

the innate and the adaptive immune responses. The adaptive immune response is, 

however, much more specific in how the invading pathogens are targeted. The downside 

is that adaptive immune responses are slow to develop upon first exposure to a new 

pathogen, and can take at least a week before responses are effective, depending on 

the pathogen. Both the innate and the adaptive responses induce chemokines and 

cytokines to initiate inflammation. There are two arms of adaptive immunity: humoral 

immunity and cell mediated immunity. Humoral immunity is mediated by B cells, which 

mature in the bone marrow. Whereas cell mediated immunity involves T cells, which 

mature in the thymus. B cells express surface immunoglobulin receptors, and T cells 

express smaller antigen receptors. These distinct receptors allow B cells and T cells to 

execute different functions. Mature lymphocytes are constantly recirculating from the 

bloodstream through the spleen, lymph nodes, or mucosal lymphoid tissues, and back 

to the bloodstream via lymphatic vessels. The majority of adaptive immune responses 

are elicited when a recirculating T cell detects its specific antigen on the surface of an 

APC such as a dendritic cell or macrophage. As mentioned before, when a T cell detects 

an antigen, it proliferates and differentiates into antigen specific effector cells.  In 

contrast, B cells proliferate and differentiate into antibody-secreting cells. The specificity 

of the immune response mounted by lymphocytes is made possible due to the receptors 

on the cell surface. The B cells express the B cell antigen receptor (BCR), whereas T 

cells express the T cell receptor (TCR) [113,116]. 

1.3.2.1 Humoral Immunity  

After activation, the B cell secretes antibodies, which are identical to the BCR of the B 

cell. The B cell produces a considerable amount of antibodies in response to detection 

of an antigen. Antibodies are composed of two discrete regions: a constant region (Fc), 

and a variable region (Fab). There are five possible forms the constant region may take, 

whereas there is a very large number of forms the variable region may take. Antibody 

molecules are known as immunoglobulins. The two variable regions determine the 

antigen binding specificity of the antibody, whereas the constant region determines how 

the antibody destroys the pathogen once it has bound to it. Antibodies also contain two 
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identical heavy chains and two identical light chains (Figure 1.10). The heavy and light 

chains both contain variable and constant regions, with the variable regions of both the 

heavy and light chains combining to form the antigen binding site. Antibodies can protect 

the host in three ways: neutralisation, opsonisation, and complement activation. 

Production of antibodies are the only way B cells are involved in the adaptive immune 

response, whereas T cells have a diverse range of effector functions [113,116]. Influenza 

is primarily cleared from the body via humoral immunity through secretory IgA localised 

at the respiratory epithelium, and IgG in the serum [25,144]. 

 
Figure 1.10 Structure of an antibody. Each antibody contains heavy (H) chains and light (L) chains, which 

are linked together by disulphide bonds. Each chain contains a variable region and a heavy chain.  

1.4.2.1 Cell mediated Immunity  

The function of T cells is in cell mediated immune responses. The TCR, although related 

to immunoglobulin, is very different. It is specifically adapted to detect antigens from 

pathogens (or non-self proteins) that have entered the host cells.  In order for cell-

mediated responses to occur, the T cell must directly interact with cells bound to the 

antigen which it will recognise. Cytotoxic T cells recognise any virus-infected cells, and 

kill the infected cell before viral replication is completed. The molecule called CD8 is 

mostly expressed on the surface of cytotoxic T cells. Th cells typically express the CD4 

molecule on the cell-surface. Th cells, as mentioned before, have a special function in 

clearing infections. Th cells can be further divided into sub-groups based on the type of 
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pathogens they detect. For instance, the role of Th1 cells is in controlling intracellular 

bacterial infections. Th1 cells activate macrophages, and release cytokines such as IFN-

g, IL-2, and tumour necrosis factor (TNF)-b, which recruit more macrophages to the 

infection site [113,116,137]. Th2 cells control and support B cell activation and inhibit cell 

mediated immunity, by producing cytokines such as IL-4, IL-5, IL-10, and IL-13 [137]. As 

previously mentioned, Th17 cells have a distinct role in bacterial clearance by recruiting 

neutrophils and macrophages, and are the primary producers of the cytokine IL-17 [145–

147]. T cells perform their functions by sensing peptide antigens from foreign proteins 

which have been displayed by molecules on the infected host cell surface. The molecules 

which display the peptide antigens are known as MHC molecules. There are two types 

of MHC molecule: MHC Class I and MHC Class II, which mostly share their major 

structural features, but differ in various smaller ways. MHC Class I are expressed on all 

cell types, with the exception of red blood cells. MHC Class II molecules are usually 

expressed on APCs (macrophages and DCs). Both classes of MHC molecule “trap” 

peptide antigens in clefts which are formed by two outer extracellular domains 

combining. Once the peptide is trapped, the MHC molecule can display it to T cells. Once 

a T cell containing a receptor specific for the peptide recognises the peptide, it can then 

interact with the APC. The key differences between MHC Class I and MHC Class II 

molecules is the type of peptides that they trap. MHC Class I molecules trap peptides 

originating from proteins synthesised in the cytosol, such as those from viruses [116]. 

MHC Class II molecules trap peptides originating from extracellular proteins (Figure 

1.11). MHC Class I molecules are recognised by cytotoxic T cells, which kill the infected 

cell. Whereas MHC Class II molecules are recognised by specific effector Th cells [116]. 

The activation of the specific effector Th cells is supported by co-receptors that 

differentiate between the two classes of MHC molecule. As discussed above, the co-

receptors include the CD8 co-receptor of cytotoxic T cells, which binds to MHC Class I 

molecules, and the CD4 co-receptors of Th cells, which bind to MHC Class II molecules. 

Upon target recognition, the relevant T cells are stimulated to release their specific set 

of effector molecules such as cytokines. The molecules the T cell releases will either 

directly influence the target cell or will recruit other effector cells [116]. 
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Figure 1.11 Presentation of antigens to CD8 and CD4 T cells from APCs via MHC complexes. Endogenous 

antigens are usually presented to CD8 T cells via MHC Class I molecules, whereas exogenous antigens are 

usually presented to CD4 T cells via MHC Class II molecules. Image taken from Stiehm R.E., 2012 [148]. 

1.4.3 KEY CYTOKINES AND TRANSCRIPTION FACTORS 

PRODUCED IN RESPONSE TO VIRAL AND BACTERIAL 

INFECTION 

 

1.4.3.1 Interferons 

Immune cells, such as macrophages, DCs, and NKs secrete large quantities of 

cytokines, including interferons (IFNs) [149–154]. The IFN family of antiviral cytokines 

are key during viral infections such as influenza. IFNs play a huge role in determining 

the outcome of influenza virus infection severity [155,156]. There are three types of IFNs, 

which are classified based on their amino acid sequence, and the type of receptor they 

signal through. The types are simply termed: type I IFNs, type II IFNs, and the newly 

described, type III IFNs. Type I IFNs include the subtypes IFN-a and IFN-b. In humans, 

there are thirteen distinct IFN-a proteins and a single IFN-b protein [157]. Type I IFNs all 

signal through a shared receptor; the IFNa/b receptor (IFNAR) and this signalling triggers 

downstream responses which provide anti-viral protection by inhibiting viral replication 
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[2]. Type I IFN induction is modulated by IRF family members [158–160]. IRF3 exists in 

the cytoplasm in an unactivated form, however it becomes phosphorylated during 

infection and contributes to early IFN-b production, which in turn triggers IRF7 synthesis. 

Production of IRF7 occurs through activation of the Janus-activated kinase (JAK) and 

signal transducer and activator of transcription (STAT) pathway, known collectively as 

JAK-STAT [161,162]. The IRF7 production leads to a subsequent increase in  IFN-b 

expression, resulting in IFN-a production in a “positive amplification loop” (Figure 1.12) 

[163,164]. Type II IFNs (IFN-g) are pro-inflammatory cytokines which modulate immune 

responses. IFN-g is secreted from T cells and NK cells, and is involved in directing the 

adaptive immune response [114,116,165]. Type III IFNs were only very recently 

discovered, and are termed IFN-l1, IFN-l2, and IFN-l3 [166]. Type III IFNs are not 

highly homologous to type I IFNs (15-20% homology), however their induction, 

signalling, and biological functions are very similar. Type I IFNs and type III IFNs are 

directly induced following virus infections and are the key IFNs secreted during influenza 

virus infection, both in vivo and in vitro [167,168]. 

To circumvent the anti-viral response elicited by the host, IAV has evolved numerous 

strategies such as inhibiting IFNs. The NS1 protein inhibits the host production of IFN 

and is generated by influenza in the early stages of IAV infection [169,170]. NS1 inhibits 

IFN by blocking the activation of transcription factors such as NF-kB and IRF3, which 

are essential in the production of type I IFNs [171,172]. This contributes to evasion of 

the host’s innate immune responses. 

 



 27 

 
Figure 1.12 TLR signalling and NF-kB activation leading to downstream activation of type I IFNs through 

IRF3 and IRF7 signalling. Image taken from Tartey et. al., 2015 [173]. 

1.4.3.2 The T helper 17 and T helper 1 Response in Bacterial 

Clearance 

The Th17 response has been identified as critical in the effective clearance of S.p. from 

the lung [88,174,175]. Th17 cells are distinct from Th1 and Th2 cells, which control 

intracellular bacterial infections and parasitic infections respectively. Th17 cells are the 

primary producers of interleukin-17 (IL-17, also known as IL-17A), a pro-inflammatory 

cytokine, with a specific role in the recruitment of neutrophils and macrophages [145–

147]. It is well known that the cytokines, transforming growth factor-b (TGF-b), IL-6 and 

IL-1b drive Th17 differentiation, while IL-23 conserves the expansion and commitment 

to the Th17 lineage, thus increasing the production of IL-17A [176–181]. IL-27 has been 

shown to function both as an inducer of Th17 cells and an inhibitor of Th17 cells [182]. 

The anti-inflammatory cytokine, IL-10 inhibits production of IL-12 and Th1 differentiation, 

and has also been shown to inhibit Th17 responses [183,184]. IL-12p70 is a pro-

inflammatory cytokine, which promotes Th1 differentiation through the production of IFN-

g, both of which are important in the response to microbial pathogens [185].  
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1.4.3.2.1 Interleukin-23 

Interleukin-23 (IL-23) is a member of the IL-12 cytokine family, and is important for the 

expansion and maintenance of Th17 cells. IL-23 is comprised of an IL-23p19 subunit 

and an IL-12p40 subunit which also serves as a subunit for IL-12 [186]. IL-23 signals 

through IL-23R and IL-12Rb1, stimulates signalling through the JAK-STAT pathway, and 

phosphorylates the transcription factor, STAT3 [187]. In mice, TGF-b and IL-6/IL-21 

induce the surface expression of IL-23R on Th17 cells, which IL-23 subsequently 

interacts with [177,188,189]. Exposure to these cytokines induces expression of retinoic 

acid receptor (RAR)-related orphan receptor-gt (RORgt), and thus, encourages 

expression of IL-23R and IL-17 in mice [190]. IL-23R signalling stimulates 

phosphorylation of STAT3 in humans, which induces transcription of IL-23R and RAR-

related orphan receptor C (RORC), which encodes RORg. This creates a positive 

feedback loop, and leads to controlled expression of genes which control the activation 

of T cells [187,191–193]. T cell activation in the presence of IL-23 promotes the 

expansion of Th17 cells in mice [194]. 

1.4.3.2.2 RAR-related orphan receptor C (RORC) 

RAR-related orphan receptor C (RORC) is the gene in humans which encodes for two 

protein isoforms: RAR-related orphan receptor gamma (RORg) and RORgt, previously 

known as RORC1 and RORC2, respectively [195]. RORgt, which is exclusively 

expressed in the thymus, is a transcription factor, which has been identified as a potential 

master regulator for driving Th17 cell differentiation in both mice and humans [190,196–

201]. Expression of RORgt is induced by TGF-b and IL-6 or IL-21 in a STAT3-dependent 

manner in humans and mice [190,202–204], which is key for the expression of IL-17 

[190]. In mice, an additional transcription factor, RORa has also been implicated in Th17 

differentiation [205], however the influence of RORa in humans appears to be weaker 

[206]. As mentioned above, RORgt also plays an important role in the upregulation of IL-

23 [190]. Interestingly, in mice and humans, IL-27 has been shown to inhibit RORC 

expression in a STAT1-dependent manner, which resulted in IL-17A and IL-17F 

inhibition [207]. 
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1.4.3.2.3 Transforming growth factor-b (TGF-b) 

Transforming growth factor-b (TGF-b) is a multifunctional cytokine, belonging to the 

transforming growth factor family of cytokines. It has both pro-inflammatory and anti-

inflammatory capabilities. It acts as an immune regulator, and regulates functions 

ranging from tumour cell recognition, to suppression of autoimmune responses. TGF-b 

can regulate T cells to maintain homeostasis [208]. In humans, TGF-b is essential for 

the differentiation of Th17 cells. TGF-b can synergise with either IL-21 or IL-6 and IL-23, 

to induce RORC, which is the human version of RORgt in mice [204,209]. Human naïve 

T cells must be exposed to TGF-b in order to express IL-23R [204,209,210]. TGF-b is 

secreted by many cell types including macrophages and Tregs [211]. Although, essential 

for differentiation of Th17 cells, once the infection has been cleared, TGF-b negatively 

regulates Th17 responses to maintain homeostasis [208]. When TGF-b is synergised 

with IL-6, the Th17 response is induced, however, when TGF-b is secreted alone, the 

Th17 response is inhibited [176]. 

1.4.3.2.4 Interleukin-6 (IL-6) 

Interleukin-6 (IL-6) is predominantly a pro-inflammatory cytokine, part of the IL-6 family 

of cytokines. The biological functions of IL-6 are mediated by the receptor complex, 

which consists of the IL-6 binding type I transmembrane glycoprotein, known as IL-6R, 

and the type I transmembrane signal transducer protein gp130. Initially, IL-6 binds to the 

membrane-bound non-signalling a-receptor IL-6R (mbIL-6R). The IL-6/IL-6R complex 

subsequently binds to two molecules of gp130, resulting in IL-6 signal transduction 

through JAK/STAT activation [212]. Macrophages, neutrophils, and certain T cells 

express IL-6R on the cell surface, however gp130 is universally expressed [213]. IL-6 is 

critical during the transition from innate immunity to adaptive immunity. IL-6 is key in the 

initial attraction of neutrophils immediately after detection of microbial products, however 

after 24-48 hours, the infiltration of neutrophils is replaced by macrophages, DCs and T 

cells to prevent tissue damage. This occurs due to proteolytic processing of IL-6R, which 

causes a change from neutrophil recruitment to monocyte recruitment. The change 

occurs by inhibiting neutrophil-attracting chemokines such as CXCL1, and inducing 

monocyte-attracting chemokines such as CXCL5 [214–216]. Additionally, IL-6 has a role 

in preventing T cells from apoptosis, which relies on STAT3 [217,218]. IL-6 is also 

fundamental in the differentiation of B and T cells. IL-6 enhances B cell helper 



 30 

functionality of CD4+ T cell by induction of IL-21 [219,220]. IL-6 can skew T cell 

differentiation towards Th17 responses by synergising with TGF-b, which inhibits TGF-

b-mediated differentiation of naïve T cells into Treg cells, and thus induces Th17 cells 

[176,177]. TGF-b increases IL-6 induced STAT3, which enhances expression of RORgt, 

leading to Th17 differentiation [221]. The combination of IL-6 and IL-1b is necessary for 

the enhancement of the Th17 lineage, but these cytokines together have also been 

implicated in the pathogenic effects of Th17 cells [191,204]. In such instances, IL-6 

upregulated IL-23R in naïve CD4+ T cells via STAT3 [191]. It has been demonstrated 

that the differences between differentiation of Th17 cells and the maintenance of Th17 

cells is due to the alternative IL-6 signalling pathways. Th17 differentiation is mediated 

by classic signalling of IL-6 (via the membrane-bound IL-6R), whereas Th17 

maintenance is mediated by “trans”-signalling of IL-6 (via a soluble IL-6R) [222]. 

1.4.3.2.5 Interleukin-1b (IL-1b) 

Interleukin-1b (IL-1b) is a strong pro-inflammatory cytokine and a member of the IL-1 

family of cytokines. It is key in host responses to infection, however the margin between 

host defence and damage to the host is very narrow [223]. IL-1b is produced and 

secreted by many different cell types such as monocytes and macrophages [224]. 

Initially, an inactive precursor called pro-IL-1b is produced in response to PAMP 

recognition through PRRs on macrophages [225]. The production of pro-IL-1b is a 

priming step and a further PAMP must be recognised before the active IL-1b molecule 

can be secreted [224]. When pro-IL-1b is cleaved by the pro-inflammatory protease, 

caspase-1, active IL-1b is rapidly secreted [226,227]. During extracellular bacterial 

infections, IL-1b is produced, and it induces and amplifies IL-17A production from Th17 

cells [178]. 

1.4.3.2.6 Interleukin-27 (IL-27) 

Interleukin-27 (IL-27) is a member of the IL-12 family of cytokines, which initially was 

shown to contribute to Th1 immunity [228]. However, later studies have shown that IL-

27 has the ability to supress Th1, Th2, and Th17 responses [229–233]. The contradictory 

effects of IL-27 on Th17 responses may, in part, be due to the transcription factors, 

STAT1 and STAT3.  STAT1 is known to be a strong inhibiter of Th17 responses, whereas 
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STAT3 is known to be a strong inducer of Th17 responses [203,233–236]. IL-6 induces 

both STAT1 and STAT3 strongly. IL-27 also induces both STAT1 and STAT3, and it has 

been suggested that it may be the ratio of phosphorylated STAT1/STAT3 that dictates 

whether IL-27 will exert pro- or anti-Th17 effects [182]. IL-27 functions as a heterodimer 

comprising p28 and EBV-induced gene 3 (Ebi3), which are homologous to IL-12p35, and 

p40, respectively [228,237]. The IL-27R complex consists of the gp130 molecule of IL-

6R, and a unique subunit IL-27R. The IL-27R complex as stated above, activates STAT1 

and STAT3 via phosphorylation, which is mediated by the JAK pathway [238,239]. IL-27 

inhibits Th17 differentiation by blocking up-regulation of RORgt in naïve T cells in a 

STAT1 dependent manner in mice [207]. Although, IL-27 can prevent Th17 

differentiation, it does not affect already committed Th17 cells. However, IL-27 also 

stimulates T cell production of anti-inflammatory, IL-10, which can directly control Th17 

cell production  [238,240,241].  

1.4.3.2.7 Interleukin-10 (IL-10) 

Interleukin-10 (IL-10) is an anti-inflammatory cytokine, which is broadly expressed [242]. 

Treg cells are the main producers of IL-10, and IL-10 is typically considered to be a 

cytokine with inhibitory effects on Th17 responses which protect against the pathogenic 

effects associated with Th17 cell production [211,243,244]. However, studies have 

shown that Th17 cells can also produce IL-10 [245,246]. IL-10 has been shown to reduce 

lung pathology of severe influenza infection in mouse models [247]. Additionally, IL-10 

has also been shown to enhance the susceptibility to secondary bacterial infections 

following influenza infection in mice [89]. IL-10 can control Th1 and Th17 immune 

responses in mice [241,246,248,249]. IL-27 can strongly induce production of IL-10 by 

immune cells, and type I IFN can induce production of IL-10 during infection [207,247]. 

IL-10 is expressed by both innate and adaptive cells such as DCs, macrophages, NK 

cells, and as mentioned before, Th17, and Treg cells [183]. The anti-inflammatory effects 

of IL-10 are mediated through the IL-10 receptor (IL-10R), which is composed of two 

subunits (IL-10R1 and IL-10R2). Interaction between IL-10 and IL-10R activates the 

JAK/STAT pathway. IL-10 induces phosphorylation of STAT3 and STAT1 [183,250–

252]. 
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1.4.3.2.8 Interleukin-12p70 (IL-12p70) 

Interleukin-12 (IL-12) is a member of the IL-12 family of cytokines and is composed of 

two chains; p40 and p35 [253,254], of which the former also serves as a subunit for IL-

23 [186]. The IL-12 receptor (IL-12R) also comprises of two chains IL-12Rb1 and IL-

12Rb2, signalling through which activates the JAK-STAT pathway [255]. During 

microbial infection, DCs and macrophages are the main producers of IL-12 [256]. IL-

12p40 is produced in considerable excess over the p35 subunit of IL-12 and IL-23 [253]. 

IL-12 is a strong inducer of IFN-g from T cells and plays an important role in inducing 

Th1 differentiation [257]. In turn, IFN-g also has the ability to enhance IL-12 production, 

which forms a positive-feedback loop during Th1 responses [254]. The pro-inflammatory 

effects of IL-12 are often mediated by IFN-g. Although, IL-12p70 is a Th1 cytokine, it has 

been shown to be triggered by S.p. [258–260]. 

1.4.3.2.9 Interleukin-17A (IL-17A) 

Interleukin-17 A (IL-17A) is part of the IL-17 family of cytokines. The family consists of 

the cytokines IL-17A-IL-17F, and all have a role in inflammatory responses. IL-17A is 

produced by immune cells such as Th17 cells and gdT cells, and plays a crucial role in 

host defence against microbial infections [147,261–264]. The IL-17A receptor (IL-17RA) 

is a type I transmembrane protein, which is ubiquitously expressed [265]. Signalling 

through this receptor activates downstream signalling pathways and leads to the 

production of pro-inflammatory cytokines such as IL-6 [266]. Studies have shown that IL-

17A is not sufficient to mediate IL-17A signalling, and IL-17RA must heterodimerise with 

IL-17RC in order for IL-17A to signal through it [267]. IL-17A activates NF-kB, which is 

dependent on TRAF6 and TAK1 [268]. IL-17A can generate signalling cascades which 

lead to neutrophil recruitment, inflammation, and host defence. However, IL-17A can 

also be damaging to the host through excessive inflammation, mostly by synergising with 

other cytokines [264,269]. High levels of IL-17A have been linked with development of 

autoimmune inflammatory conditions such as multiple sclerosis (MS), psoriasis and 

asthma, amongst others [270–272]. IL-17A can be negatively regulated by TRAF4 and 

TRAF3 through competitive binding [273,274]. As mentioned above, IL-17A is important 

in host defence against extracellular bacterial pathogens, functioning via neutrophil 

recruitment [147]. IL-17A is crucial in the clearance of S.p. [175]. There are subtle 

differences between mouse and human with regards to the pathway leading to IL-17 
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production, for instance with divergence reported in the stimulations required to induce 

RORgt. In mice, TGF-b and IL-6 induce RORgt, however there is contradictory evidence 

regarding the human pathway [190]. Some studies in humans have found that TGF-b 

and IL-21 are more successful in inducing RORC [204], whereas others have 

corroborated results found in mouse models [209,210,275]. 

1.4.3.2.10 Interferon-g (IFN-g) 

Interferon-g (IFN-g), also known as type II IFN, is a potent pro-inflammatory cytokine, 

which is produced by many cells including Th1 cells. It is also produced by macrophages, 

DCs, NKs and antigen-activated T cells [276–278]. IFN-g production is regulated by IL-

12p70 [257]. IL-12p70 is a very efficient inducer of IFN-g, even at low concentrations 

[279]. In T cells, IL-12 synergises with IL-2 and stimulates the TCR-CD3 complex, 

resulting in activation of the CD28 receptor and rapid production of IFN-g [254]. In T cells, 

there are two distinct pathways which induce IFN-g; one is induced via receptors such 

as TCRs, and CD3, the other is induced by IL-12 in combination with IL-18 [280–283]. 

In turn, IFN-g also induces expression of IL-12Rb2 by T cells [284], resulting in a positive 

feedback loop. IFN-g has many roles including activation of phagocytes and stimulation 

of antigen presentation through MHC Class I and II expression [285,286]. IFN-g is key in 

defence against microbial pathogens [287]. However, there is contradictory evidence 

concerning the role of IFN-g in S.p. infections, which are detailed below.  

1.4.3.3 The Th17 Response and Type I and Type II Interferons in 

Streptococcus pneumoniae infection 

Viral induction of type I and type II interferons, which are strongly produced in the late 

response to IAV infection have been shown to inhibit Th17 responses in mice [2,3]. A 

study in mice found that without functional IFNAR signalling, mice were more resistant 

to secondary bacterial pneumonia and superinfection post-influenza than mice with 

functional IFNAR signalling [2]. However, in contrast to these reports, it has been shown 

that IFN-a expression prior to respiratory infection with S.p. improved the outcome of 

pneumococcal infection in mice, and that IFNAR signalling can be crucial for S.p. 

bacterial clearance in mice [288–292]. There are also conflicting reports as to the effects 

of type II IFN (IFN-g) during S.p. infection in mice. It has been shown that IFN-g did not 
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have a protective role against S.p., as IFN-g receptor-deficient (IFN-gR-/-) mice were 

found to have significantly fewer pneumococci in their lungs than wild-type mice, and 

IFN-g-/- mice had fewer colony-forming units present in the lungs than wild-type mice 

[293]. Another study found that in the presence of an influenza infection, IFN-g produced 

in the lung by T-cells inhibited macrophage-mediated bacterial clearance, which is 

essential in the clearance of pneumococci, resulting in an increase in susceptibility to 

secondary bacterial infections [3]. In contrast to these studies, it has been shown that IL-

12 and IFN-g can mediate protective effects against S.p. by promoting neutrophil 

accumulation [185]. Additionally, IFN-g produced by neutrophils during S.p. infection was 

important in host defence as mice deficient in IFN-g had impaired bacterial clearance 
[294]. There have been a significant number of studies carried out in animal models, 

however there is a scarcity of studies in human models. Due to this lack of research in 

human models coupled with the discrepancies in the effect of IFNs on Th17 responses, 

more research must be carried out so that this complex relationship can be fully explored. 

1.4.4 THE TH17 RESPONSE AND INFLAMMATION 

A properly functioning immune system is necessary, not just for controlling infections, 

but for maintaining the balance of “self” and “non-self” recognition. Often the immune 

system can over-compensate, meaning a “normal” immune response will be mounted, 

but will be directed at non-infectious antigens, as is the case with allergic reactions. The 

same issue occurs in autoimmune diseases, where the immune system mounts a 

response incorrectly against a “self” antigen. Or in transplant rejection, where the body 

is correctly recognising the transplant tissue as “non-self”, but the correct responses 

would be detrimental to the host, and not beneficial [113,116]. As mentioned above, the 

Th17 response is vital in the clearance of bacterial infections from the lung due to the 

production of the cytokine, IL-17 [88,174,175]. However, IL-17 has also been shown to 

be responsible for the development of inflammation in a range of autoimmune diseases 

such as rheumatoid arthritis (RA), psoriasis, and Crohn’s disease [198,295–297]. As 

there is a balance to be struck between the benefits of Th17 responses and harmful 

effects of it, future treatments targeting the Th17 pathway (either in an agonistic or 

antagonistic fashion) should be carefully considered. 
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1.4.5 OVERVIEW OF NORMAL IMMUNE RESPONSES TO 

INFLUENZA AND STREPTOCOCCUS PNEUMONIAE 

As with other pathogens, the innate immune response acts as the first line of defence 

against both IAV and S.p. As mentioned before, PAMPs from these pathogens are 

recognised by PRRs which trigger activation of the innate immune system, resulting in 

the production of cytokines and anti-viral and anti-microbial molecules [96,298–300]. 

1.4.5.1 The Normal Immune Response to Influenza A Virus 

Once PAMPs from IAV are recognised by innate PRRs, transcription factors such as 

IRF3 and IRF7 are activated, which trigger anti-viral interferon and cytokine production 

[115,133]. Both T cells and B cells are important in the adaptive immune response to 

IAV infection. With the help of type I IFNs, CD8 T cells differentiate into cytotoxic T cells, 

which kill IAV-infected cells [298,301–303]. CD4 T cells also contribute to adaptive 

immunity against IAV by aiding B cell activation and production of antibodies [304]. CD4 

T cells can also differentiate into Th1 cells, which secrete anti-viral cytokines such as 

IFN-γ [305]. B cells generate antibodies which enable viral destruction [306]. 

1.4.5.2 The Normal Immune Response to Streptococcus pneumoniae 

PRRs such as TLRs recognise S.p. infection and once activated, they regulate the 

production of pro-inflammatory cytokines. The pro-inflammatory cytokines, in turn, recruit 

neutrophils and macrophages and initiate adaptive immunity [96,307]. In response to 

S.p. infection, CD4 T cells differentiate into Th17 cells, which recruit neutrophils and 

macrophages to the site of infection by the production of IL-17 [145–147,308]. In addition 

to T cells, B cells also play a role in the adaptive response to S.p. Once naïve B cells are 

stimulated by polysaccharides from S.p., they can secrete the S.p. specific IgA antibody, 

which opsonises S.p., and encourages phagocytosis [309,310].  

1.4.5.3 The Immune Response to Influenza and Streptococcus 

pneumoniae Co-Infections 

Both IAV and S.p. are significant respiratory pathogens which cause considerable 

damage to public health [18,93,94]. Individually, each pathogen can be highly 
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pathogenic, however when these pathogens co-occur, the damage caused by this 

synergy is often far more critical. There have been many hypotheses as to why this 

occurs, such as damage to the epithelium, and cytokine storms. However, more recently, 

impaired immune responses have been implicated [57,311–315]. 
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1.5 MODELS FOR INFLUENZA VIRUS INFECTION 

Many studies performed in this field are performed in animal models, particularly mice 

[102,316–319]. Although these models provide useful insights into in vivo responses, the 

research can often be contradictory [102,316], with the relevance of mouse models being 

called into question [320,321]. A study which compared immune responses of laboratory 

mice to those of wild mice found striking differences between them and questioned not 

only the relevance of using laboratory mice to model human responses, but also to model 

wild mice responses [322]. Additionally, knock-down or gene-deficient mice are often 

used, however the results obtained from these studies must be reported with care due 

to the complex nature of immune responses. As immune responses to pathogens often 

cause collateral damage (such as an increase in neutrophils during viral infection), 

knock-down models can be vulnerable to mis-interpretation of causal relationships [323]. 

Many have suggested that ferrets are the appropriate animal to use to model influenza 

and bacterial co-infections as they are susceptible to infection with human influenza 

viruses, whereas mouse models require prior host adaptation of the human viruses 

[324,325]. Additionally, ferrets can transmit the virus to other non-infected ferrets, and 

they have a high proportion of a(2,6) linkages, which are the linkages preferred by 

human adapted viruses [326]. However, there are limitations to these models. Due to the 

size of the animal, their associated housing requirements are higher than other smaller 

animals, which in turn increases the cost of these studies. This results in small group 

sizes, which mean that any statistical analyses performed are very limited [327]. 

Although, animal models have paralleled certain human immune responses, research 

should also be performed in human models to help corroborate such studies. 

For many years, the standard in vitro assays have been to culture DCs in the presence 

of IL-4 and granulocyte-macrophage colony stimulating factor (GM-CSF) to represent 

the monocyte derived DC [328–331]. However, the relevance of these conventional DCs 

in vivo is unclear as stimulations involving IL-4 is unlikely to characterise the cytokine 

environment present at the site of a viral infection [332,333]. As type I IFN are produced 

in response to viral infections [334,335], many studies have cultured DCs in the presence 

of type I IFN (IFN-DC) [332,336,337]. However, IFN-DCs have extra characteristics 

which mark them as distinct from DCs in vivo [336,338,339]. Due to these issues, our 

lab group sought to develop a human immune model which would more closely reflect 

the in vivo human response to viral infections. 
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1.5.1 EX VIVO HUMAN IMMUNE MODEL 

Our lab group have developed an ex vivo human immune model (Figure 1.13), which 

has been used in published work, based on the isolation of primary human immune cells 

and purification of CD14+ monocytes which are directly infected/stimulated, without pre-

priming of the immune response [333,340,341]. In a previous study, our lab group 

comprehensively compared the maturation profiles (phenotypic expression, cytokine 

production, apoptosis, and T cell proliferation) of directly infected-untreated monocytes, 

IL-4 treated DCs, IFN-treated DCs, and DCs following co-culture with supernatant from 

influenza infected lung epithelial cells. The different cells and treatments were chosen 

as they are all commonly used to model what happens at the site of infection, however 

their suitability has been questionable. That study found that direct influenza infection of 

monocytes and monocytes cultured with supernatants from influenza infected lung 

epithelial cells induce distinct DC subsets compared with influenza infection of artificially 

generated IL-4-treated DCs and IFN-treated DCs. Additionally, differences also occurred 

in T cell responses to each DC subset, showing that the model used for generating DCs 

is critical in the outcome of influenza infection as different DCs may respond differently 

to the same virus. This can create conflicting data. It was concluded that artificially 

generated DCs (such as those treated with IL-4 and IFN) skewed immune responses to 

influenza infection, whereas direct influenza infection of monocytes mimic those 

generated from supernatants from influenza infected epithelial cells and appear to more 

accurately mimic those generated in vivo. This model is based on comprehensive 

analysis of the marker signals produced by influenza infected lung epithelial cells which 

will influence the extravasation and maturation of monocytes from the periphery [333]. 

The purified CD14+ monocytes act as antigen presenting cells (APCs) upon stimulation 

and as the link between the innate and adaptive immune responses. Thus, in this study 

we chose to infect primary human monocytes isolated from healthy volunteers directly 

with influenza and assess the impact these infections have on innate responses to 

different stimulants. Going forward isolated CD14+ monocytes, will be referred to as 

APCs. To ascertain the adaptive responses, a mixed lymphocyte reaction (MLR) was 

used, which is commonly used in the investigation of human T cell responses [333,342–

347]. In this assay, as per previous studies [333,342], infected/treated APCs from one 

donor were co-cultured with human primary T cells from a different donor resulting in an 

allogeneic response due to the mismatched MHC antigens. This model uses allogeneic 

T cells as opposed to an antigen-specific response assay as there is likely to be too few 

autologous T cells recognising IAV and S.p. in circulation in the periphery of healthy 

donors, which would be insufficient to perform a whole study across a variety of 
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treatments. By using allogeneic T cells, a sufficiently strong signal is produced to mount 

responses for analysis (personal communication: Dr Johnson). 

 
Figure 1.13 Scheme of Human Immune Model. Step 1: Blood donations are obtained from healthy human 

donors from the Irish Blood Transfusion Service. Step 2: Whole blood is separated into distinct components 

using gradient centrifugation [348]. Step 3: Peripheral blood mononuclear cells (PBMCs) are removed which 

contains a suspension of mixed monocytes. Step 4: CD14+ monocytes are separated from PBMCs using 

magnetic microbead separation and can be used for infections or stimulations. Step 5: CD14+ monocyte 

suspension can be harvested for downstream applications.  
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1.6 OBJECTIVES OF STUDY 

Influenza A Virus and Streptococcus pneumoniae are both major pathogens which pose 

substantial public health problems [18,93,94]. Although each pathogen can individually 

cause serious infections, when these pathogens synergise, the combined effect often 

becomes overwhelming for the immune system, leading to critical complications. 

Influenza-S.p. co-infection can result in hospitalisation and/or death of both patients with 

pre-existing lung disease or previously healthy individuals [4,5]. The mechanisms behind 

this synergy are still not understood, which has prevented the development of 

appropriate therapeutic treatments. 

The overall aim is to further understand the mechanisms that trigger susceptibility to 

bacterial disease during IAV infection. We sought to investigate if IAV infection can alter 

appropriate innate and adaptive immunity to S.p. in humans and whether this may lead 

to an increase in anti-inflammatory cytokines. Subsequently, we sought to investigate 

whether observed inhibition of S.p. responses was dependent or independent of type I 

IFN responses. The next objective was to investigate if IAV infection targets specific 

TLRs involved in sensing S.p. infection, and whether TLR5 agonism can restore inhibited 

responses to S.p. With a view to determining possible targets for IAV to mediate 

inhibition, the Th17 response transcription factor, RORC was examined. Additionally, the 

effect of the IAV component, HA, is of great interest as it is used as in vaccines. We aim 

to determine the effect of HA on S.p. responses and on responses to TLR agonists. 

 

Objectives: 

• Establish immune responses to new clinical isolates and batches of influenza 

and S.p. and further characterise the model, 

• Confirm or rule out the involvement of type I IFN by extensive examination of 

mRNA and protein, via quantitative polymerase chain reaction (qPCR) and 

ELISA, respectively, 

• Identify responses to individual S.p.-associated TLR agonists in humans (ex vivo 

human immune model), 

• Establish if influenza selectively targets S.p.-associated TLR signalling in 

humans, 

• Ascertain whether TLR5 agonism may be useful in circumventing IAV-inhibition 

of S.p. responses and, 

• Examine effect of HA on S.p. responses and responses to TLR agonism.  
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2.0 FURTHER DEVELOPMENT OF HUMAN EX VIVO 
MODEL AND CHARACTERISATION OF NEW VIRAL AND 
BACTERIAL STOCKS 

2.1 INTRODUCTION 

One of the most prevalent respiratory viral pathogens is influenza. Current estimates 

state that approximately half a million deaths are caused by seasonal influenza virus 

annually [30,31]. Most of these deaths are due to secondary bacterial pneumonia 

[18,85]. The secondary bacterial infections are typically caused by capsular, extracellular 

bacteria such as S.p. [1–3]. Initially, Th1 cells were thought to be the crucial cell group 

in clearing bacterial infections [266], however, recently Th17 cells have been identified 

as critical in the effective clearance of S.p. from the lung [88] and further studies have 

revealed that IAV infection has been shown to inhibit the Th17 response in mice [2,349].  

A large proportion of the research carried out in this field is performed in animal models, 

particularly mice with relatively few studies performed in human models [102,316–319]. 

Much of the research that is performed in human models use pre-treated DCs, however 

such treatments have been shown to skew immune responses [333]. Due to this, our lab 

group developed an ex vivo human immune model with which to examine viral infections 

such as IAV. Additionally, the model was developed with the intention of utilising it to 

distinguish if certain strains of IAV may be more likely to lead to a predisposition to 

secondary bacterial infections. The human ex vivo model was previously used to 

examine the effect of IAV infection on responses to S.p. That study used both a lab-

adapted H1N1 virus (H1N1/A/PR8/24) and clinical isolates of IAV 

(H3N2/A/Wisconsin/67/2005 or H3N2/A/Panama/2007/99) along with in-house 

generated heat killed S.p. It demonstrated that IAV inhibited important pneumococcus 

driven innate cytokines in human APCs and adaptive cytokines in T cells [350]. However, 

for subsequent studies, a new batch of the lab-adapted H1N1 virus and a new clinical 

isolate of H3N2 (H3N2/A/Uruguay/716/2007) were obtained from the National Institute 

for Biological Standards and Controls (NIBSC). Additionally, new batches of 

commercially bought S.p. (Invivogen) were used instead of in-house generated S.p. for 

this study. Due to known differences in immune responses to different IAV strains and 

bacterial subtypes, any further studies using new batches of IAV and S.p. needed to be 

further characterised using the human immune model [302,309,351]. 
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To confirm the ability of IAV to infect APCs, an assay was developed to detect for the 

presence of the IAV nucleoprotein, which is essential for viral replication and is 

intracellularly expressed during influenza infection [340,352]. 

To assess the impact on innate APC responses that direct Th17/Th1/Treg responses, 

secreted cytokines (IL-23, IL-6, IL-1b, TGF-b, IL-27, IL-12p70, and IL-10) were measured 

in the supernatants of untreated cells or cells stimulated with heat inactivated S.p., 

infected with live H1N1 or H3N2 alone or in combination with S.p. exposure. IL-23, IL-6, 

IL-1b, and TGF-b are essential in Th17 responses to S.p. Although, TGF-b induces the 

Th17 response, it is also an anti-inflammatory cytokine which, in the absence of IL-6, 

can inhibit the pro-inflammatory Th17 response [176,353]. Interleukin-27 (IL-27) is of 

interest as it was initially shown to contribute to Th1 immunity [228,354], although later 

studies have shown that it may also be involved in Th17 differentiation [182]. IL-12p70 

is involved in the Th1 response through the production of type II interferon (IFN-g) 

[257,355] and IL-10 induces Tregs and has been shown to inhibit Th1 and Th17 responses 

[241,246,248,249,356]. 

Innate immune cells can prime adaptive immune cells such as Th cells to induce long-

term immunity [116,137]. In a normal immune response, when a pathogen is sensed by 

the immune system, APCs present antigens to naïve T cells via their MHC class II 

molecules. The antigen is recognised by the naïve T cell, which leads to T cell clonal 

expansion and differentiation into effector T cells such as Th17/Th1 or Treg cells, 

depending on which innate cytokines are produced [116,137,138]. The innate cytokines 

have a profound effect on the adaptive response which is subsequently elicited 

[116,137,138]. 

To examine the adaptive immune responses to new clinical isolates of live IAV and S.p. 

infection, a mixed lymphocyte reaction (MLR) was used. This reaction is commonly used 

to investigate T cell responses [116,333,342–347,357–359]. In this assay, 

infected/treated APCs from one donor were co-cultured with T cells from a different 

donor, resulting in an allogeneic response due to mis-matched MHC antigens. To assess 

the impact on adaptive T cell responses that direct Th17/Th1/Treg responses, secreted 

cytokines (IL-17A, IFN-g, TGF-b, and IL-10) were measured in the supernatants of 

untreated cells or cells stimulated with heat inactivated S.p., live H1N1 or H3N2 alone or 

in combination with S.p., H1N1 HA or H3N2 HA alone or in combination with S.p. 

Th17 cells are the primary producers of IL-17A, which has a specific role in the 

recruitment of neutrophils and macrophages [145–147]. IL-17A plays a crucial role in 

host defence against microbial infections and is crucial in the clearance of S.p. 

[147,175,261–264]. IFN-g is a potent pro-inflammatory cytokine, which is produced as 
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part of the Th1 response by antigen-activated T cells, macrophages, and DCs [276–278]. 

IFN-g production is regulated by IL-12p70 [257]. IL-12p70 is a very efficient inducer of 

IFN-g, even at low concentrations [279]. IFN-g has many roles including activation of 

phagocytes and stimulation of antigen presentation through MHC Class I and II 

expression [285,286]. IFN-g is key in defence against microbial pathogens [287]. 

However, there is contradictory evidence concerning the role of IFN-g in S.p. infections. 

 

Specific aims of this chapter were to: 

• Confirm ability of new batch of H1N1 and new clinical isolate of H3N2 to infect 

APCs, 

• Determine the variability of infectivity of influenza from donor to donor, 

• Establish innate and adaptive immune responses to a new bank of influenza 

strains and HKSP, 

• Investigate the effect of new influenza strains on responses to HKSP, 

• Determine role of anti-inflammatory cytokines on HKSP and IAV co-infections 

and, 

• Establish the levels of apoptosis in HKSP-treated and IAV-infected human 

immune cells using flow cytometry. 
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2.2 MATERIALS AND METHODS 

Table 2.1 List of reagents used in this study 
Product Catalogue Number Company 
Anti-beta Actin antibody ab8227 

Abcam, UK Prism Ultra Protein Ladder ab116027 
Goat anti-rabbit IgG H&L (HRP) ab6721 
FITC Annexin V Apoptosis 
Detection Kit I  556547 

BD Becton Dickson, UK 
FACSFlow Sheath Fluid 342003 
FACS Clean Solution 340345 
FACSRinse Solution 340346 
5 ml Polystyrene Round-Bottom 
Tube 362054 

Sodium pyruvate 11360-039 

Bio-sciences Ltd., Dun 
Laoghaire, Ireland 

RPMI 1640 Medium GlutaMAX 
Supplement 61870-101 

Lymphoprep 1114545 
Hanks Balanced Salt Solution 
(HBSS) 24020091 

Invitrogen Human IL-23 ELISA kit 88-7237-88 
Invitrogen IL-12p70 Human 
ELISA kit, High Sensitivity BMS2E8HS 

Penicillin Streptomycin (5,000 
U/ml) 15070063 

Clear Flat-Bottom Immuno Non-
sterile 96-well maxi-sorp plate  442404 

1X TMB solution 00-4201-56 
ThermoScientific Reagent 
Reservoirs 95128093 

Sealing Tape for 96-well plate 15036 
Dulbecco’s phosphate buffered 
saline (10X) 14000059 

RPMI 1640 Medium GlutaMAX 
Supplement, HEPES 72400021 

Nuclease-Free Water (Not DEPC-
treated) AM9938 

RNaseZAP Rnase 
Decontamination Solution (250 
ml) 

AM9780 

SuperSignal™ West Dura 
Extended Duration Substrate 37075 

Invitrolon™ PVDF/Filter Paper 
Sandwich LC2005 

Pierce BCA Protein Assay Kit 23225 
BoltTM 4-12% Bis-Tris Plus Gels, 
12-well NW04122BOX 

20X BoltTM MES SDS Running 
Buffer B0002 

4X BoltTM LDS SDS Sample 
Buffer B0007 
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10X BoltTM Sample Reducing 
Agent B0009 

Foetal calf serum (FCS) S1830-500 Bio-sera, France 
H1N1 NP Primers N/A Eurofins Genetic 

Services, UK H3N2 NP Primers 
Ethidium Bromide (Eb) 10714181 

Fisher Scientific, Dublin, 
Ireland 

Sodium Chloride (NaCl), Extra 
Pure 10112640 

Sodium Chloride (NaCl) 10735921 
Glass cloverslip No. 1 (22 mm x 
22 mm) 12333128 

Bovine serum albumin (BSA) 
protease-free powder 1287-1630 

1X Phosphate Buffered Saline 
(PBS), pH 7.4 10173433 

Water, Nuclease-free, Molecular 
Biology Grade 15835408 

RIPA Lysis and Extraction Buffer 
100mL 10017003 

Halt Protease and Phosphate 
Inhibitor Cocktail (100X) 10085973 

Sulphuric acid (H2SO4) 84721 Fluka, Germany 
Heat Killed Streptococcus 
pneumoniae (HKSP) tlrl-hksp Invivogen, Toulouse, 

France 
Potassium dihydrogen phosphate 
(KH2PO4) 

1.04871.1000 Merck, Damstadt, 
Germany 

CD14+ microbeads 130-050-201 
Miltenyi Biotech, Surrey, 

UK 
CD3+ microbeads 130-050-101 
LS separation column 132-042-401 
Pre-separation filters 130-041-407 
Promega GoScript Reverse 
Transcription System A5000 MyBio, Kilkenny, Ireland 

Live H1N1(A/PR/8/34) N/A NIBSC, UK Live H3N2(A/Uruguay/716/2007) N/A 
RNeasy Plus Mini Kit  74134 Qiagen, Manchester, UK Qiashredder 97654 
RNase-Free DNase Set  79254 

R&D Systems, UK 

Human IL-10 Duoset ELISA DY217B 
Human IL-1b Duoset ELISA DY201 
Human IL-27 Duoset ELISA DY2526 
Human TGF-b Duoset ELISA DY240 
Human IL-17A Duoset ELISA DY317 
Human IFN-g Duoset ELISA DY285B 
Faststart Essential DNA Probes 
Master 06402682001 

Roche Diagnostics, UK Lightcycler 8-Tube Strips (Clear) 06327672001 
UPL Human GAPD Gene Assay 05190541001 
50 ml falcon tubes (non-skirted) 62.547.004 

Sarstedt, Wexford, Ireland 

50 ml falcon tubes (skirted) 62.559.001 
15 ml polypropylene tubes 62.554.001 
0.2 µm filters 83.1826.001 
1.5 ml screw-cap microtube 72.692.005 
5 ml pipette 86.1253.001 
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10 ml pipette 86.1254.001 
25 ml pipette 86.1685.001 
Pipette tip, 10 µl 70.113.0 
Pipette tip, 20-200 µl 70.760.012 
Pipette tip, 100-1,000 µl 70.762 
T75 Suspension flask 83.3911.502 
Cardboard boxes 95.64.997 
24-well suspension tissue culture 
plate 83.3922.500 

24-well adherent tissue culture 
plate 83.3922 

0.2 mL Biosphere PCR tubes 72.737 
Filter tips 0.1-20 µl 70.1116.210 
Filter tips 2-200 µl 70.760.211 
Filter tips 100-1000 µl 70.762.211 
Ethelenediaminetetraacetic acid 
(EDTA) AC09656 Scharlau, Chemie, S.A., 

Barcelona, Spain Potassium chloride (KCl) P00200 
Hepes H4034 

Sigma Aldrich, Wicklow, 

Ireland 

Acridine Orange (Ao) A9231 
Trizol T9424 
TMB Substrate Solution  T8665 
Tween-20 P1379 
Sodium phosphate dibasic 
(Na2HPO4) 

71636 

2-Mercaptoethanol M3148 
2-Propanol for molecular biology, 
99.5% I9516-4X25ML 

Ethanol BioUltra for molecular 
biology, 99.8% 51976-500ML-F 

Universal Probe Library Probe 09 4685075001 
BD Cell Strainers 352340 Unitech, Dublin, Ireland 
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Table 2.2 List of equipment used in this study 
Equipment Model Company 
Flow Cytometer FACSCalibur BD Becton Dickson, UK 
Steri-cycle CO2 incubator  Hepa Class 100 Bio-sciences Ltd., Dun 

Laoghaire, Ireland PowerEase® 90W Power 
Supply (230 VAC) 

PS0091 

X25 Pipette Filter 10193923 Fisher Scientific, Dublin, 
Ireland 

MJ Research Inc. Thermal 
Cycler 

PTC-100 Lab Care Service, UK 

Nanodrop 
Spectrophotometer ND-1000 Mason Technology, 

Dublin, Ireland 
Midi MACS Separation 
Unit 130-042-302 Miltenyi Biotec, Gladbach, 

Germany MACS Multistand 130-042-303 
Haemocytometer Improved, 2 grids Neaubaurer 
Fluorescent microscope Eclipse E200 Nikon, U.S.A. 
Alpina BIO1300 Class II 
Microbiological Safety 
Cabinet 

50138 NSP Laboratory, Meath, 
Ireland 

Lightcycler Nano qPCR 
Instrument 04717651001 Roche Diagnostics, UK 

Four-digit hand tally 
counter 

Z169021-1EA Sigma Aldrich, Wicklow, 
Ireland 

Centrifuge Hettich Universal 320R 
Plate reader  Victor 2 Perkin Elmer 
Heraeus centrifuge Fresco 17 ThermoScientific 

2.2.1 ISOLATION OF PRIMARY HUMAN IMMUNE CELLS 

Buffy coats from healthy donors were obtained from the Irish Blood Transfusion service 

(at St James’ hospital, Dublin). The peripheral venous blood (approximately 50 ml) was 

mixed with 5 ml of a 5% solution of EDTA in 1X PBS and diluted 1:2 with HBSS 

containing 1% FBS, and 10 µM HEPES buffer. This diluted blood was layered onto 14 

ml of density gradient medium LymphoprepTM (Axis-shield, Norway) and centrifuged at 

400 x g for 25 minutes (with accelerator and break switched off to prevent the layers from 

mixing). LymphoprepTM has a density of 1.077 g/ml and provides a gradient which 

enables the blood components to be separated according to their density. During 

centrifugation, erythrocytes and granulocytes sediment through the LymphoprepTM to the 

bottom of the tube due to their higher density. The lower density mononuclear cells form 

a discrete cloudy layer at the interface of the sample. With blood components separated 

according to density, the buffy coat layer was removed using a Pasteur pipette and the 

cells were washed twice with 10 ml of supplemented HBSS, with centrifugation at 800 x 

g for 5 minutes. Cell pellets were resuspended in 5 ml of complete Roswell Park 
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Memorial Institute (cRPMI)-1640 medium (RPMI 1640 supplemented with 10% FBS, 10 

mM HEPES, and 100U penicillin/ml). To remove clumps from the peripheral blood 

mononuclear cells (PBMCs), the cells were filtered through a 40 µm filter and washed 

through with cRPMI. The cell yield and viability was calculated as per Section 2.2.2. 

2.2.2 DETERMINATION OF CELL VIABILITY AND YIELD 

2.2.2.1 Background 

Acridine orange (AO) is a cell permeable nucleic acid binding dye. It emits green 

fluorescence under halogen or UV light when bound to double stranded DNA (dsDNA) 

of live cells, and emits a red fluorescence when bound to single stranded DNA or RNA. 

Thus, live cells will appear green, and non-viable cells will appear red/orange [360,361]. 

Ethidium bromide (EtBr) is a DNA intercalator, which inserts itself between the base pairs 

in the double helix. It stains dsDNA and under halogen or UV light, fluoresces orange. 

EtBr only stains cells with permeable membranes (such as cells in the final stages of 

apoptosis), and therefore can detect dead cells. 

2.2.2.2 Method 

An EtBr/AO solution was made by adding EtBr stock solution (0.8 ml of 4 mg/ml solution) 

to AO stock solution (2 ml of 1 mg/ml solution). The solution was made up to 200 ml with 

Sodium chloride (NaCl) with 0.85% weight/volume. The Improved Neubauer 

Haemocytometer slide was used to determine the number of cells in a specified volume. 

The haemocytometer slide contains a grid etched into its surface, which consists of nine 

1 mm2 squares. The defined volume of an area in the grid can be calculated from the 

area of the grid and the height between the grid and the cover slip (0.1 mm) (Figure 2.1). 

Cells to be counted were diluted in EtBr/AO and pipetted onto the haemocytometer 

beneath a cover slip, ensuring the cell solution covered the total surface of the grid. The 

number of live (green) and dead (orange) cells was determined by counting the cells in 

the four corners of the grid. The yield was calculated using the following formula: 

Average	cell	number 	×	 dilution	factor 	×	104	=Cell	number/ml	 
The 104 value is the volume correction factor for the haemocytometer (each square is 1 

mm2 and the depth is 0.1 mm 



 49 

 
Figure 2.1 The grid of the Improved Neubauer Haemocytometer. The grid is etched onto the surface of the 

haemocytometer. The cells present in a certain area can be counted and based on the volume of the area, 

the cell number can be calculated. Image taken from Haemocytometer Counting Chambers [362]. 

2.2.3 SEPARATION OF CD14+ AND CD3+ CELLS FROM PBMCs 

USING MICROBEAD SEPARATION 

2.2.3.1 Background 

Magnetic microbead separation is based on antibodies coupled to magnetic beads. The 

conjugated antibodies are incubated with a cell suspension, and bind to the cells 

expressing the corresponding epitope.  After incubation, the cell suspension is passed 

through a column which is placed in a magnetic field (MidiMAC). Magnetically labelled 

cells are retained in the column due to magnetic forces, and unlabelled cells flow through 

the column. To recover the labelled cells from the column, the column is removed from 

the magnetic field and the cells are forced through the column using a plunger and 

collected (Figure 2.2) [363]. 
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Figure 2.2 The principles of magnetic bead separation. 1. Cells of interest are labelled with MACS 

microbeads; 2. Cells are separated in a column; 3. Positively labelled cells are collected. Image taken from 

MACS Miltenyi [363]. 
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2.2.3.2 Method 

CD14+ APCs and CD3+ T cells were separated from human PBMCs, using CD14+ 

microbeads and CD3+ microbeads, respectively by MACS in accordance with 

manufacturer’s instructions (Miltenyi Biotec, UK). Briefly, PBMCs were centrifuged at 800 

x g for 5 minutes and resuspended in MACs buffer (sterile 1X PBS supplemented with 

0.5% BSA and 2 mM EDTA) (80 µl of buffer/1x107 cells), and incubated with 150-250 µl 

of CD14+ or CD3+ microbeads for 30 minutes at 4°C. Following incubation, cells were 

washed with 5 ml of MACs buffer, and centrifuged at 800 x g for 5 minutes. The pellet 

was resuspended in MACs buffer (500 µl of buffer/1x108 cells). For positive selection of 

CD14+ APCs or CD3+ T cells, LS columns were attached to a magnet. The column was 

washed with 3 ml of MACs buffer, and the cell suspension was added to the column. The 

column was washed three times with 3 ml of MACs buffer. After all the MACs buffer had 

eluted through the column, the column was removed from the magnetic field, and the 

positively labelled cells were flushed out of the column with a plunger. Cells were 

centrifuged at 800 x g for 5 minutes and pellet was resuspended in appropriate volume 

of cRPMI to give a concentration of 1x106 cells/ml.  

2.2.4 VIRUS INFECTION OF CD14+ ANTIGEN PRESENTING 

CELLS 

CD14+ APCs which had been separated from PBMCs (as per Section 2.2.3.2) were 

cultured in cRPMI at a concentration of 1x106 cells/ml. Two strains of live IAV were used 

in this study: H1N1 (A/Puerto-Rico/8/34) and H3N2 (A/Uruguay/716/2007) provided by 

Ruth Harvey (NIBSC, UK). CD14+ APCs at a density of 1x106 cells/ml were infected with 

IAV for 2 hours at 37°C, then subsequently washed (centrifuged at 3,000 x g for 5 

minutes) following incubation to remove excess virus. The cells were resuspended in 1 

ml of fresh cRPMI and cultured on a 24-well plate for 24 hours, alone, or in combination 

with Heat Killed S.p. (as per Section 2.2.5). 
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2.2.5 STREPTOCOCCUS PNEUMONIAE STIMULATION OF CD14+ 

APCs 

CD14+ APCs at a density of 1x106 cells/ml which had been separated from PBMCs (as 

per Section 2.2.3.2) were exposed to Heat Killed S.p. (HKSP) (107 CFU) (Invivogen), 

alone or in combination with live IAV-infected APCs (as per Section 2.2.4) for 24 hours. 

2.2.6 CO-CULTURE ASSAY 

2.2.6.1 Background 

Mixed lymphocyte reaction (MLR) is an assay commonly used to examine T cell 

responses. In a MLR, CD3+ T cells isolated from one donor are co-cultured with CD14+ 

APCs from a different donor (Figure 2.3). During co-culture, the CD3+ T cells will 

proliferate in response to the “non-self” MHC molecules from the CD14+ APCs [116]. 

 
Figure 2.3 Scheme of Mixed Lymphocyte Reaction. A blood donation obtained from a healthy human donor 

is used to isolate PBMCs using gradient centrifugation. CD14+ APCs are separated from PBMCs, 

infected/stimulated and incubated for 24 hours. A blood donation from a different healthy human donor is 

used to isolate PBMCs. CD3+ T cells are separated from PBMCs. CD14+ APCs are removed from incubation, 

and co-cultured with CD3+ T cells for a further 24 hours. 
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2.2.6.2 Method 

After incubating CD14+ APC for 20-24 hours as described before, cells were centrifuged 

at 2,000 x g for 5 minutes. These cells were resuspended in cRPMI and seeded in 24 

well cell culture adherent plates. Co-cultures of CD3+ T cells and CD14+ APCs were 

performed at 5:1 ratios (1x106 cells/ml of CD3+ T cells and 2x105 cells/ml of CD14+ 

APCs). As a negative control, CD3+ T cells alone were also cultured. Co-cultures were 

incubated for 24 hours at 37°C. All experiments were performed in triplicate on adherent 

24 well cell culture plates. 

2.2.7 ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) 

2.2.7.1 Background 

Sandwich ELISA measures the amount of cytokine produced in the cells supernatant. A 

fixed quantity of capture antibody (mAb), specific for the cytokine being detected is bound 

to a 96-well plate. The capture antibody is diluted in buffer and incubated overnight. The 

plate is washed to remove unbound antibody and a blocking buffer is added to prevent 

non-specific binding. The plate is washed again and recombinant cytokine standards of 

known concentration, and samples of unknown concentration are added to the plate. 

The standards and samples can either be incubated overnight at 4°C or incubated for 2 

hours at room temperature. If present, the cytokine of interest binds to the capture 

antibody during incubation. The plate is washed to remove unbound antigens or 

cytokines and a biotinylated detection antibody specific for the cytokine is added to the 

plate and incubated for 2 hours at room temperature. The detection antibody binds to 

the cytokine of interest during incubation. The plate is washed again and streptavidin-

horseradish-peroxidase (HRP) is added to the plate. During incubation, streptavidin 

binds to biotin with high affinity and is conjugated to HRP. Following HRP incubation, the 

plate is washed a final time and the substrate, tetramethylbenzidine (TMB), is added to 

the plate. As HRP is an enzyme which catalyses the oxidation of its substrate TMB by 

hydrogen peroxide, a blue compound will be formed if the cytokine-antibody is present. 

The intensity of the blue colour increases with the concentration of the cytokine of 

interest. See Figure 2.4 for a workflow of the ELISA methodology. The reaction is 

stopped by the addition of a stop solution (sulphuric acid) and the absorbance/optical 

density of the samples is measured at 450 nm using a plate reader. The absorbance is 

proportional to the concentration of the cytokine in the sample. The cytokine standard 

concentrations are plotted against the absorbance to produce a standard curve, from 
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which the concentrations of the unknown samples can be extrapolated from the curve 

using their absorbance readings. 

 
Figure 2.4 Workflow of a sandwich ELISA principle. Capture Antibodies are coated in the well and any 

antigen/cytokine present in a sample binds to the capture antibody. A biotinylated detection antibody binds 

to the immobilised antigen/cytokine and an enzyme binds to the mobilised detection antibody. A substrate 

is added which forms a coloured product. The rate of colour changes is proportional to the concentration of 

antigen/cytokine in the sample. 

2.2.7.2 Method 

Supernatant from treated cells (as above) was used to detect for the following cytokines 

using ELISA kits; IL-23, IL-12p70 (Biosciences), IL-6, IL-1b, IL-27, TGF-b, IL-10, IL-17A, 

and IFN-g (R&D systems) according to manufacturer’s protocol. Samples and standards 

were plated either in duplicate to ensure accurate quantitative results were obtained. 

2.2.8 REAL TIME POLYMERASE CHAIN REACTION (qPCR) 

2.2.8.1 Background 

PCR is a method for synthesising and amplifying specific DNA sequences. To begin, the 

DNA is denatured by heating to 95°C, which separates the DNA into single strands of 

DNA. Primers for the PCR reaction are designed against a stretch of nucleotides within 

the target gene sequence. These primers anneal to their complementary DNA strands 

when the mixture is heated to the appropriate temperature (usually 50-60°C) and flank 

the target DNA sequence to be amplified. A DNA polymerase enzyme such as Taq 
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polymerase catalyses the elongation of the primers when the mixture is heated. As the 

enzyme is thermostable, it can withstand the high temperatures required during the PCR. 

The denaturation, annealing, and elongation steps are cycled numerous times in order 

to amplify the PCR product. 

Real Time PCR (qPCR) provides relative and absolute quantification of gene expression. 

Small amounts of cDNA are amplified using the same methodology as conventional 

PCR.  

In qPCR, a fluorophore and primers, which will bind to the amplified PCR product are 

added to the mixture, in the thermal cycler machine that contains sensors which can 

measure fluorescence (Figure 2.5). The fluorophore will fluoresce after it has been 

excited at the appropriate wavelength, which can be measured, allowing the 

amplification of one or more products to be analysed at the same time. This data can 

subsequently be analysed to calculate the relative gene expression in multiple samples. 

 
Figure 2.5 Schematic of probe-based qPCR. After DNA denaturation, the probes hybridise to the single-

stranded DNA and the primers also anneal to the single-stranded DNA. As the new strand of DNA is 

extended, the probe is cleaved from the DNA, resulting in fluorescence emission. 

2.2.8.2 RNA Extraction 

To perform experiments such as quantitative polymerase chain reaction (qPCR), 

successful extraction of high quality RNA is critical. All work surfaces were covered with 

bench protector and cleaned using RNase Zap (Biosciences Ltd.) and 70% ethanol 

(Sigma Aldrich). RNase free filter pipette tips (Sarstedt) were used throughout. 
Appropriate PPE was worn and gloves were changed regularly. RNA extractions were 
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performed using either the RNeasy mini kit (Qiagen), including DNase digestion using 

the RNase-free DNase kit (Qiagen), or using the RNeasy Plus mini kit (Qiagen) as per 

manufacturer’s instructions. Cells were lysed and homogenised using a QIAshredder 

(Qiagen) and a vortex. Ethanol is added to the lysate which provides ideal binding 

conditions. The lysate is loaded into the RNeasy silica membrane and the RNA binds to 

it. The RNeasy Plus mini kit (Qiagen) removes genomic DNA contamination using a 

gDNA Eliminator spin column, removing the need for separate DNase treatments 

(Qiagen, 2017). RNA was eluted in 30 µl of nuclease-free water (Biosciences Ltd.). 

2.2.8.3 RNA Quantification and Determination of Purity 

Extracted RNA (1 µl) was quantified using a Nanodrop Spectrophotometer (Mason 

Technology) at 260 nm and 280 nm. Purity of RNA was estimated using the A260:A280 

ratio and the A260:A230 ratio. Pure RNA will have a A260:A280 ratio of ~2.0 and a A260:A230 

ratio of 1.8-2.2 [364]. Isolated RNA was stored at -80°C. 

2.2.8.4 cDNA Synthesis 

2.2.8.4.1 Background 

cDNA synthesis is performed using the enzyme reverse transcriptase, which creates 

complementary DNA based on the pairing of RNA base pairs to the DNA complements. 

Total RNA (extracted as per Section 2.2.8) was used in cDNA synthesis performed using 

the GoScript Reverse Transcription System (Promega) as per manufacturer’s 

instructions, with deviations as below.  

2.2.8.4.2 Method 

Mastermix was prepared as per Table 2.3 and Table 2.4. 

Table 2.3 Components and volumes used in preparation of RNA and primer mix 
Component Volume (µl) 
Experimental RNA* X 
Oligo(dT) primer 1.0 
Random primer 1.0 
Nuclease-Free Water* X 
Total Volume 11.5 

*Volume depended on specific RNA concentration of each sample. At least 100 ng of RNA was used per 
reaction 
 



 57 

RNA/primer mix was heated at 70°C for 5 minutes and immediately chilled in ice water 

for another 5 minutes. Mixture was centrifuged for 10 seconds and stored on ice until 

reverse transcription mix was added. 

 
Table 2.4 Components and volumes used in preparation of cDNA reverse 
transcription mix 
Component Volume (µl) 
GoScriptTM 5X Reaction Buffer 4 
MgCl2 1.5 
PCR Nucleotide Mix 1.0 
Recombinant RNasinâ Ribonuclease 
Inhibitor 

1.0 

GoScriptTM Reverse Transcriptase 1.0 
Total Volume 8.5 

 

RNA and primer mix (11.5 µl) was combined with reverse transcription mix (8.5 µl). The 

mixture was heated to allow for annealing in a heat block at 25°C for 5 minutes; heated 

to allow for extension in a heat block at 42°C for 1 hour; and the reverse transcriptase 

was inactivated in a heat block at 70°C for 15 minutes. Samples were frozen at -20°C. 

2.2.8.5 qPCR Method 

cDNA samples were amplified using the Lightcycler Nano (Roche Diagnostics) with the 

Faststart Essential DNA Probes Master System (Roche Diagnostics) and RealTime 

Ready Assays (Roche Diagostics/Sigma Aldrich). Expression of H1N1 nucleoprotein 

(NP) and H3N2 NP using a probe (Sigma-Aldrich) and primer sequences as below (Table 

2.5), was normalised to the expression of the reference gene, GAPDH. 

 
Table 2.5 Primer Sequences for H1N1 and H3N2 Nucleoprotein 

H1N1 NP Forward Primer GGTGCTGCAGTCAAAGGAGT 
H1N1 NP Reverse Primer CCCACGTTTGATCATTCTGA 
H3N2 NP Forward Primer GGTGCTGCAGTCAAAGGAAT 
H3N2 NP Reverse Primer CCCCGTTTGACCATTCTG 
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A 20 µl volume reaction was set up for each sample using 2 µl of cDNA as a template. 

The reaction was set up as follows: 

Table 2.6 Reagents and volumes used in preparation of qPCR experiment 
Reagent Volume (µl) 
Probes Master Mix 10.0 
Gene of Interest Forward Primer 0.5 
Gene of Interest Reverse Primer 0.5 
Gene of Interest Probe 1.0 
Reference Gene Primer 0.5 
Reference Gene Probe 0.5 
cDNA  X 
PCR Grade Water X 

 

 

The following run settings were set up on the Lightcycler Nano: 

1. Hold at 95°C for 600 seconds (ramp 4°C/s) 

2. Two-step amplification repeated for 50 cycles:  

a. 95°C for 10/20 seconds (ramp 5°C/s) 

b. 60°C for 30/40 seconds (ramp 4°C/s) 

3. Hold at 40°C for 30 seconds (ramp 2.2°C/s) 

2.2.9 APOPTOSIS STUDY USING FLOW CYTOMETRY 

2.2.9.1 Background 

Flow cytometry is a technique used to rapidly analyse various characteristics of individual 

cells as they pass laser beams of light. This technique produces both quantitative and 

qualitative data, including information about cell size, DNA/RNA content, and expression 

of protein markers. To analyse protein expression, cells are incubated with antibodies 

conjugated to fluorescent dyes which bind to the protein of interest. When these labelled 

cells pass by a light source, the fluorochromes are excited to a higher energy state 

resulting in an emission of light energy, enabling detection of protein. Multiple 

fluorochromes can be used to measure several cell properties at once. During analysis, 

cell suspension which have been labelled with fluorochomes are forced into a laminar 

flow stream which is created by sheath fluid. The laminar flow enables the cells to be 

individually spaced in the stream of liquid. As each cell passes the laser beam, the cell 

scatters the laser light and the fluorochromes fluoresce at different wavelengths. The 

scattered light is detected by photomultiplier tubes and subsequently digitised (Figure 

2.6) [365]. Analysis of apoptosis can be achieved using flow cytometry by using stains 
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such as Annexin V and propidium iodide (PI). In apoptotic cells, the membrane 

phospholipid phosphatidylserine (PS) is translocated to the outer plasma membrane and 

exposed to the external cellular environment. Annexin V is a phospholipid-binding protein 

which has a high affinity for PS, and binds to cells with exposed PS. Annexin V can be 

used as a probe in flow cytometry when conjugated to fluorescein isothiocyanate (FITC), 

a commonly used fluorochrome. FITC Annexin V staining can identify early apoptosis as 

externalisation of PS occurs in the early stages of apoptosis. The vital dye, PI, can be 

used to identify late apoptosis or necrosis. Viable cells which have their membranes 

intact exclude PI are not permeable to PI, whereas the membranes of dead and 

damaged cells are permeable to PI. Therefore, viable cells will be FITC Annexin V and 

PI negative, cells in early apoptosis are FITC Annexin V positive but PI negative, and 

cells in late apoptosis/necrosis are both FITC Annexin V and PI positive [366–369]. 

 
Figure 2.6 Schematic displaying the principles of flow cytometry. The sample is transported from the sample 

tube through the flow cytometer for analysis through sheath fluid. At the interrogation point, the cell interacts 

with the laser light which causes the light to scatter. The light scatter can be measured and are called forward 

angle scatter (FSC) and side angle scatter (SSC). The laser light will also excite any fluorophores associated 

with the cell, resulting in fluorescence emission, which is collected by the detector and processed using 

software. Image taken from ThermoFisher [370]. 

2.2.9.2 Method 

Apoptosis studies were performed using the FITC Annexin V Apoptosis Detection Kit I 

(BD Biosciences) as per manufacturer’s instructions. CD14+ cells were centrifuged at 
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2,000 x g for 5 minutes and washed twice in ice-cold 1X PBS. Cells were resuspended 

in 1X Binding buffer at a concentration of 1x106 cells/ml and 100 µl of the solution (1x105 

cells) was transferred to a 5 ml culture tube and 5 µl of both FITC Annexin V and PI were 

added to the solution. The solution was vortexed and incubated at RT in the dark for 25 

minutes. 1X Binding buffer (400 µl) was added to each tube and the solutions were 

analysed using the flow cytometer, FACSCalibur (BD Becton Dickenson). Data was 

analysed using Cellquest software. The following controls were used to set up 

compensation and quadrants: unstained cells, cells stained with FITC Annexin V (no PI), 

cells stained with PI (no FITC Annexin V). 

2.2.10 WESTERN BLOT 

2.2.10.1 Background 

Western blot is a common method used to detect specific proteins in a cell lysate. Initially, 

cell lysates are prepared from cells using extraction buffer and the protein concentration 

is quantified. The protein extract is diluted with loading buffer, which consists of glycerol 

(which aids the loading of the sample into the gel), and a dye (such as bromophenol 

blue, which is added to visualise the sample). The sample is heated to fully denature the 

proteins and subsequently loaded to separate the proteins according to size by SDS-

PAGE. After gel electrophoresis, the proteins are transferred to a stable support 

membrane (such as nitrocellulose). During the transfer, voltage is applied to transfer the 

proteins from the gel to the membrane. Once the proteins are transferred, the membrane 

is incubated in a blocking buffer (made with BSA or non-fat dried milk) to prevent non-

specific binding. Specific proteins are then detected by primary antibodies which bind to 

their corresponding protein on the membrane. The primary antibody is then detected by 

a secondary antibody, which is usually a horseradish-peroxidase-linked secondary 

antibody. When a chemiluminescent agent is added to this, a reaction occurs, forming a 

luminescent product proportional to the amount of protein. This can be imaged using a 

variety of techniques including using photographic film which when placed on the 

membrane is exposed to the light from the reaction, creating an image of the antibodies 

bound to the blot (Figure 2.7) [116,371,372]. 
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Figure 2.7 The Stages of Western Blot. (A) Separation of protein by SDS-PAGE. (B) Proteins are transferred 

from the gel to the membrane. (C) The protein on the membrane is detected using primary and secondary 

antibodies, which reacts with an enzyme to emit light. (D) The proteins are imaged. Image taken from Novus 

Biologics [373]. 

2.2.10.2 Method 

Cells were lysed on ice in radio-immunoprecipitation assay (RIPA) lysis and extraction 

buffer supplemented with 1X Halt protease and phophatase inhibitor cocktail 

(ThermoFisher Scientific). Cell suspension was vortexed and spun in a centrifuge for 

13,300 x g for 15 minutes at 4°C. Supernatant was removed and frozen at -80°C. Protein 

samples were quantified using the Pierce BCA Protein Assay Kit (ThermoFisher 

Scientific) as per manufacturer’s instructions. 4X Bolt LDS Sample Buffer and 10X Bolt 

Reducing Agent was added to protein samples with deionised water to make final volume 

up to 40 µl. Samples were boiled at 95°C for 5 minutes. Samples were loaded and SDS-

PAGE was performed using Bolt 4-12% Bis-Tris Plus Gels. Proteins were transferred to 

0.45 µm PVDF membrane and blocked in 5% non-fat dry milk (NFDM) in TBS-T for 2 

hours at room temperature and probed with Human Anti-b-Actin (Abcam) (1/5000 

dilution) in 5% NFDM in TBS-T overnight at 4°C. Membrane was washed and incubated 

with Goat Anti-Rabbit IgG H&L (HRP) (Abcam) (1/10000 dilution) in TBS-T for 1 hour at 
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room temperature. Membrane was washed and incubated in SuperSignal West Dura 

Extended Duration Substrate (ThermoFisher Scientific) for 5 minutes at room 

temperature and developed in a dark room. 

2.2.11 STATISTICAL ANALYSIS 

Statistical analyses were performed using GraphPad Prism version 6.0 for Mac 

(GraphPad Software). Data was normalised by setting untreated sample readings to ~1 

and comparing treated sample readings to that value, thus providing relative 

concentrations. A One-Way ANOVA was fitted to the data and comparisons of interest 

were made using a Sidak test to adjust for multiple testing, using a 5% significance 

interval; p-values less than 0.05 were considered significant and are represented as 

follows: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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2.3 RESULTS 

2.3.1 CONFIRMATION AND QUANTIFICATION OF INFLUENZA A 

VIRUS INFECTION OF HUMAN CD14+ APCs 

The influenza nucleoprotein (NP) is a highly conserved viral protein, which is essential 

for viral replication. As NP is expressed intracellularly during influenza infection, it can 

serve as an indicator to confirm IAV infection [340,352]. To confirm that live IAV could 

infect CD14+ APCs, RNA was isolated from virally infected CD14+ APC cell pellets. cDNA 

synthesis was performed on isolated RNA and IAV NP expression was determined using 

qPCR as per Section 2.2.8. Primers specific for both H1N1 and H3N2 NP were chosen 

and amplification of the gene was normalised to gene expression of the housekeeping 

gene, GAPDH. No NP (H1N1 or H3N2) was detected in untreated cells. H1N1 NP was 

detected in H1N1-infected cells and H3N2 NP was detected in H3N2-infected cells 

(Figure 2.8). Expression of NP was very consistent between H1N1-infected donors and 

H3N2-infected donors, although higher levels of NP expression was detected in H1N1-

infected donors. 

 
Figure 2.8 H1N1 and H3N2 are confirmed to infect CD14+ APCs. The levels of H1N1 and H3N2 NP mRNA 

expression by CD14+ cells following 24 hr treatment with live H1N1 or H3N2 or untreated as a control were 

determined by qPCR. Cq values of H1N1 and H3N2 NP were normalised to the expression of GAPDH and 

plotted on a scatter dot plot, where higher Cq values indicates lower abundance. Each range of dots 

represents normalised expression of NP + SEM of 2 experimental repeats of each treatment in the same 

donor (n=3). Fold expression was not calculated as NP was not amplified in untreated samples. 
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2.3.2 NEW BATCHES OF STREPTOCOCCUS PNEUMONIAE 

INDUCE INNATE CYTOKINES 

Previously S.p. was cultured and heat-killed by personnel in the lab [350]. However, for 

these studies, commercially bought HKSP (Invivogen) was used throughout. The level 

of induction of new batches was compared to previous results by cross-checking fold-

change in cytokine expression of HKSP-treated cells relative to untreated cells, which 

were normalised to ~1.0 (Table 2.7). The level of HKSP induction of IL-23, IL-6, and 

TGF-b were very similar between batches of HKSP. The level of induction of IL-27, IL-

12p70, IL-10, and IL-1b by the new batch of HKSP was not as high as the previous one, 

however strong induction still occurred.  

 
Table 2.7 Comparison of levels of induction between batches of Heat Killed 
Streptococcus pneumoniae 
Cytokine Previous HKSP* New HKSP** 
IL-23 2.27 2.64 
IL-6 1.13 1.04 
IL-27 2.18 1.35 
IL-12p70 4.36 1.32 
IL-1b 3.00 1.84 
IL-10 3.57 1.58 
TGF-b 0.92 0.96 

*n=9; **20 

2.3.3 A NEW BATCH AND CLINICAL ISOLATE OF INFLUENZA A 

VIRUS INHIBIT INNATE TH17 AND TH1 POLARISING CYTOKINE 

RESPONSES TO STREPTOCOCCUS PNEUMONIAE 

It is widely accepted that IAV infection inhibits immune responses to S.p. in humans and 

mouse models [1–3,18]. Having confirmed the ability of IAV to infect isolated CD14+ 

APCs (Figure 2.8), the effect of IAV on immune responses to S.p. was examined. Here, 

it is shown that IAV inhibits innate immune responses to S.p. in primary human immune 

cells. This inhibition has involved cytokines in the Th17 response. It should be noted that 

although IL-27 is not traditionally known to be a Th17 cytokine, it has been shown that 

under certain circumstances, it is capable of inducing Th17 differentiation [182]. 

Supernatants from treated CD14+ APCs were analysed for the following cytokines using 

ELISA (as per Section 2.2.7). Significant inhibition of HKSP-induced IL-23, IL-6, IL-27 

(n=20) (Figure 2.9 A-C) by a new batch of H1N1 and a new clinical isolate of H3N2 
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occurred. Significant inhibition of HKSP-induced IL-12p70 (n=10) (Figure 2.9 D) by a 

new batch of H1N1. No inhibition of HKSP induced IL-1b by IAV occurred (Figure 2.10) 

(n=20). 

 

 
Figure 2.9 Live IAV infection inhibits HKSP-induced IL-23, IL-6, IL-27, and IL-12p70. The levels of (A) IL-

23, (B) IL-6, (C) IL-27, and (D) IL-12p70 secreted by CD14+ APCs following 24 hr treatment with HKSP, live 

H1N1 or H3N2 alone or in combination with HKSP or untreated as a control were determined by ELISA. 

Each column represents normalised mean cytokine levels + SEM of 3 technical repeats of each treatment 

in every donor. Each ELISA represents normalised results from 20 donors (n=20). Statistical analyses were 

performed to compare cytokine levels secreted by cells exposed to HKSP alone versus cells exposed to 

HKSP in combination with either live H1N1 or H3N2 by fitting a One-Way ANOVA to the data and using a 

Sidak test to adjust for multiple testing (*p<0.05, **p<0.01, ***p<0.001). 
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Figure 2.10 Live IAV infection does not inhibit HKSP-induced IL-1b. The levels of IL-1b secreted by CD14+ 

APCs following 24 hr treatment with HKSP, live H1N1 or H3N2 alone or in combination with HKSP or 

untreated as a control were determined by ELISA. Each column represents normalised mean cytokine levels 

+ SEM of 3 technical repeats of each treatment in every donor. Each ELISA represents normalised results 

from 20 donors (n=20). Statistical analyses were performed to compare cytokine levels secreted by cells 

exposed to HKSP alone versus cells exposed to HKSP in combination with either live H1N1 or H3N2 by 

fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing. 

2.3.4 INFLUENZA A VIRUS INHIBITION IS NOT DUE TO ANTI-

INFLAMMATORY EFFECTS OF IL-10 AND TGF-b 

In addition to a direct effect on Th17 related cytokines, the balance of anti-inflammatory 

(T regulatory responses) to pro-inflammatory responses can impact on the development 

of protective Th17 responses to S.p. infection [89,208]. To assess if IAV altered the levels 

of HKSP-induced anti-inflammatory cytokines, we assessed the levels of IL-10 and TGF-

b. IL-10 is an essential immune system regulator by inducing Treg cells which limit 

inflammatory responses that could otherwise cause tissue damage [211,243,244]. TGF-

b is a pleiotropic cytokine which acts as an immune modulator. In the presence of IL-6, 

TGF-b drives differentiation of Th17 cells, however it can also exert anti-inflammatory 

effects to prevent pathogenic effects of Th17 cells, which would inhibit the Th17 response 

[176,208].  

Supernatants from treated CD14+ APCs were used to detect for cytokines using ELISA 

(as per Section 2.2.7). H1N1 infection significantly inhibited HKSP-induced IL-10 (Figure 

2.11 A) (n=20), although there was little difference between influenza strains. IAV did not 

inhibit HKSP-induced TGF-b (Figure 2.11 B) (n=20). The inhibition of the Th17 response 
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cannot be attributed to the anti-inflammatory effects of IL-10 and TGF-b as S.p. induction 

of these cytokines was not elevated. This further supports the previous conclusions that 

the inhibition of Th17 polarising responses is not due to an indirect effect of anti-

inflammatory regulation. 

 
Figure 2.11 Live IAV infection does not increase anti-inflammatory cytokines. The levels of (A) IL-10 and 

(B) TGF-b secreted by CD14+ APCs following 24 hr treatment with HKSP, live H1N1 or H3N2 alone or in 

combination with HKSP or untreated as a control were determined by ELISA. Each column represents 

normalised mean cytokine levels + SEM of 3 technical repeats of each treatment in every donor. Each ELISA 

represents normalised results from 20 donors (n=20). Statistical analyses were performed to compare 

cytokine levels secreted by cells exposed to HKSP alone versus cells exposed to HKSP in combination with 

either live H1N1 or H3N2 by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for 

multiple testing (*p<0.05). 

2.3.5 A NEW BATCH AND CLINICAL ISOLATE OF INFLUENZA A 

VIRUS HAVE SIMILAR IMMUNOSUPPRESSIVE EFFECTS TO 

PREVIOUS ISOLATES 

Previous studies carried out in the Viral Immunology Lab demonstrated that IAV inhibited 

important pneumococcus driven cytokines in human APCs [350]. Upon receipt of a new 

batch of H1N1 and a new clinical isolate of H3N2 from the NIBSC, previous studies were 

repeated to further the human ex vivo immune model to determine if any differences 

occurred between IAV batches and clinical isolates (Table 2.8). The level of inhibition of 

HKSP responses by IAV was compared between different batches and clinical isolates 

by cross-checking differences in fold-change cytokine expression between HKSP-

treated cells and HKSP and IAV co-treated cells. The new results obtained for IL-23, IL-
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27, IL-1b, and TGF-b were in keeping with what was previously obtained. However, 

previously only H3N2 significantly inhibited HKSP-induced IL-6, whereas both new 

strains of IAV significantly inhibited HSKP-induced IL-6. Previously, both strains of IAV 

inhibited pneumococcus induction of IL-12p70, however only the new strain of H1N1 

inhibited pneumococcus-driven IL-12p70. Additionally, the new strain of H1N1 also 

inhibited HKSP-induced IL-10, which was not previously shown. 

 
Table 2.8 Comparison between inhibition of previous results against current 
results generated with new batches of H1N1 and clinical isolates of H3N2 

Cytokine 
H1N1 H3N2 

Previous* New** Previous* New** 
IL-23 0.45 0.82 0.4 0.67 
IL-6 0.11 0.05 0.12 0.06 
IL-27 0.47 0.37 0.75 0.23 
IL-1b -0.02 0.05 0.19 0.03 
IL-12p70 2.55 0.28 3.32 0.06 
IL-10 -0.05 0.28 0.25 0.22 
TGF-b 0.07 0.02 0.02 0.00 

Yellow indicates inhibition of HKSP by IAV, whereas blue indicates no inhibition. Numerical values represent 

the difference between HKSP relative concentrations and HKSP and IAV relative concentrations. Negative 

numbers indicate that co-treated cells induced higher amounts of cytokine than HKSP alone treated cells. 

*n=9; **n=20 

2.3.6 INHIBITION OF TH17 AND TH1 INNATE CYTOKINES IS NOT 

DUE TO APOPTOSIS OR PROTEIN SYNTHESIS SHUTDOWN 

Apoptosis a method of “programmed” cell death and is a normal process which occurs 

during cell development, aging, and as a mechanism to maintain homeostasis. It can 

also occur as a defence mechanism in certain immune responses [374,375]. To ensure 

that the inhibition of Th17 and Th1 innate cytokines in our human ex vivo model was not 

due to apoptosis, an apoptosis study was performed as per Section 2.2.9. Levels of 

apoptosis were not increased in cells treated with HKSP and IAV, compared with HKSP 

alone. The Th17/Th1 response inhibition was not due to an increase in apoptosis (Figure 

2.12). To ensure that inhibition of innate immune responses was not due to protein 

synthesis shutdown, a western blot was performed as per Section 2.2.10. As the 

housekeeping protein, b-Actin was detected in all cells, regardless of treatment, this 

indicates that protein synthesis shutdown did not occur (Figure 2.13).  This points to IAV 

infection having a direct effect on immune pathways which are key in clearing S.p. 

infection, which is not as a result of apoptosis or protein synthesis shutdown. 
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Figure 2.12 Inhibition by IAV of innate responses to S.p. is not due to apoptosis. CD14+ APCs following 24 

hr treatment with HKSP, live H1N1 or H3N2 alone or in combination with HKSP (or untreated as a control) 

were dual stained with FITC Annexin V and propidium iodide. The percentages of viable, early apoptotic, 

and necrotic/late apoptotic after treatments were determined using flow cytometry. Each column represents 

mean % cell number + SEM of 3 experimental donors (n=3). 

 
Figure 2.13 Housekeeping protein, b-Actin is detected in all cells. b-Actin protein produced by CD14+ APCs 

following 24 hr treatment with HKSP, live H1N1 or H3N2 alone or in combination with HKSP (or untreated 

as a control) was determined by western blot. 

2.3.7 NEW STRAINS OF INFLUENZA A VIRUS INHIBIT ADAPTIVE 

TH17 AND TH1 RESPONSES TO STREPTOCOCCUS 

PNEUMONIAE 

After pathogen recognition by the immune system, APCs present pathogen antigens to 

naïve T cells via their MHC class II molecules. The TCR on the naïve T cell recognises 
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the antigen, which leads to T cell clonal expansion and differentiation into Th effector 

cells such as Th1 and Th17 cells [116,137,138]. Th1 cells produce IFN-g, which is a 

crucial cytokine involved in defence against microbial pathogens [287]. As mentioned 

previously Th17 cells are the main producers of IL-17, which is critical in the clearance 

of S.p. from the lung [88]. Here, it is demonstrated that IAV inhibits adaptive immune 

responses to S.p. in primary human immune cells. The inhibition has occurred in 

cytokines involved in both the Th1 and Th17 responses. Supernatants from treated co-

cultures (CD14+ APCs and CD3+ T cells) were used to detect for cytokines using ELISA 

(as per Section 2.2.7). Significant inhibition of HKSP-induced IL-17A and IFN-g (Figure 

2.14 A and B) (n=3) by new strains of IAV occurred. This inhibition occurred in the 

absence of elevated anti-inflammatory cytokines, TGF-b and IL-10 (Figure 2.15 A and 

B) (n=3). 

 
Figure 2.14 Live H1N1 and H3N2 infection inhibits HKSP-induced IL-17A and IFN-g. The levels of (A) IL-

17A and (B) IFN-g secreted by CD14+ APC and CD3+ T cell co-cultures following 24 hr treatment with HKSP, 

live H1N1 or H3N2 alone or in combination with HKSP or untreated as a control were determined by ELISA. 

Each column represents normalised mean cytokine levels + SEM of 3 technical repeats of each treatment 

in every donor. Each ELISA represents normalised results from 5 donors (n=5). Statistical analyses were 

performed to compare cytokine levels secreted by cells treated with HKSP alone versus cells treated with 

HKSP in combination with either live H1N1 or H3N2 by fitting a One-Way ANOVA to the data and using a 

Sidak test to adjust for multiple testing (*p<0.05, **p<0.01). 
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Figure 2.15 Levels of TGF-b and IL-10 do not increase during live IAV infection. The levels of (A) TGF-b 

and (B) IL-10 secreted by CD14+ APC and CD3+ T cell co-cultures following 24 hr treatment with HKSP, live 

H1N1 or H3N2 alone or in combination with HKSP or untreated as a control were determined by ELISA. 

Each column represents normalised mean cytokine levels + SEM of 3 technical repeats of each treatment 

in every donor. Each ELISA represents normalised results from 5 donors (n=5). Statistical analyses were 

performed to compare cytokine levels secreted by cells treated with HKSP alone versus cells treated with 

HKSP in combination with either live H1N1 or H3N2 by fitting a One-Way ANOVA to the data and using a 

Sidak test to adjust for multiple testing. 

2.3.8 NEW BATCHES AND CLINICAL ISOLATES OF INFLUENZA A 

VIRUS STRAINS HAVE SIMILAR IMMUNOSUPPRESSIVE 

EFFECTS TO PREVIOUS ISOLATES ON ADAPTIVE RESPONSES 

Previous studies carried out in the Viral Immunology Lab demonstrated that IAV inhibited 

S.p. driven adaptive cytokines secreted by human APC-T cells [350]. Upon receipt of 

new strains of live H1N1 and H3N2 from the NIBSC, previous studies were repeated to 

further develop and characterise the ex vivo human immune model for adaptive 

responses and to determine if any differences occurred (Table 2.9). The new results 

obtained for IL-17A, IFN-g, TGF-b and IL-10 were in keeping with what was previously 

obtained for IAV. 
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Table 2.9 Comparison between inhibition of previous results against current 
results generated with new batches of H1N1 and clinical isolates of H3N2 

Cytokine H1N1 H3N2 
Previous* New** Previous* New** 

IL-17A 0.25 0.36 0.56 0.39 
IFN-g 0.86 0.35 1.23 0.44 
TGF-b 0.13 0.01 0.06 0.02 
IL-10 -0.82 0.77 0.19 0.33 

Yellow indicates inhibition of HKSP by IAV, whereas blue indicates no inhibition. Numerical values represent 

the difference between HKSP relative concentrations and HKSP and IAV relative concentrations. Negative 

numbers indicate that co-treated cells induced higher amounts of cytokine than HKSP alone treated cells. 

*n=9; **n=5.  
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2.4 DISCUSSION 

T helper 17 cells have been identified as critical in the effective clearance of extracellular 

bacteria from the lung, particularly S.p. [88]. The majority of the research performed in 

this field is carried out in animal models [102,316–319]. However, the suitability of these 

models is questionable [320–322,327]. As many of the results obtained from animal 

models, are not reproduced in any human model, the viral immunology group in DCU 

developed an ex vivo human immune model [333,340,341], which was subsequently 

used to model influenza and S.p. co-infections [350]. This research demonstrated that 

IAV inhibited key pneumococcus driven innate cytokines secreted by human APCs and 

adaptive cytokines by T cells [350]. This study was performed with a lab-adapted virus 

and a clinical isolate of IAV and in-house generated HKSP. As new batches of H1N1, a 

new clinical isolate of H3N2, and commercially bought HKSP were being used for 

subsequent studies, additional characterisations of these was carried out. This was both 

to further develop the human model, but also to ensure that similar levels of immune 

induction/inhibition by new batches and clinical isolates of HKSP and IAV, respectively 

was occurring. As these studies use blood donations from healthy human donors, 

variability of immune responses was an initial concern due to donors being constantly 

exposed to a variety of pathogens.  To combat this potential variability, a very high 

number of donors were used (n=20). This ensured that the new HKSP/IAV was being 

characterised in a robust manner and that accurate development of the model occurred, 

leading to a more complete indication of immune responses. 

To initially ensure that the new strains of IAV were infecting isolated CD14+ APCs, qPCR 

was used to detect for both H1N1 and H3N2 NP expression. As NP is expressed 

intracellularly during IAV infection, it serves as a reliable indicator to confirm IAV infection 

[340,352]. H1N1 and H3N2 NP was not detected in untreated cells, as expected. H1N1 

NP was detected in all H1N1-infected cells, and H3N2 NP was detected in all H3N2-

infected cells, with very little variability between donors. Expression of H3N2 NP was 

lower than H1N1 NP. This is most likely due to H1N1 being a laboratory-generated virus, 

whereas H3N2 is a clinical isolate. Levels of infectivity across donors was very 

reproducible, indicating that the ability of the viruses to infect APCs is not variable. It can 

be concluded that the inter-batch expression of the viral protein, NP, is very consistent.  

To compare induction of immune responses by a new commercially bought HKSP to 

previously in-house generated HKSP, relative concentrations of key innate cytokines in 

response to the old and new batches were compared to one another (Table 2.7). 

Induction of IL-23, IL-6, and TGF-b was very similar between batches of HKSP. Induction 

of IL-27, IL-10, IL-1b, and IL-12p70 was not as strong in response to the new batch of 
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HKSP compared to the previous batch. However, despite this, induction of these 

cytokines was still strong.   

Important innate Th17 polarising cytokines were studied, along with a Th1 polarising 

cytokine (IL-12p70). Anti-inflammatory cytokines, which maintain the balance between 

Th17 cells and Tregs were also examined as they can inhibit Th17 responses 

[241,246,248,249,356]. Interleukin-23 (IL-23), IL-6, IL-1b, and TGF-b are essential in 

Th17 responses to S.p., however, TGF-b is also involved in anti-inflammatory responses 

via induction of Treg cells which can inhibit Th17 responses as part of cell regulation and 

maintenance of homeostasis [176,353]. IL-12p70 is involved in the Th1 response 

through the production of IFN-g, about which there is conflicting reports on its effect on 

the clearance of S.p. [3,185,293,294]. IL-27 has been implicated in both Th1 and Th17 

responses [182,228,354]. IL-10 is an anti-inflammatory cytokine which can inhibit Th1 

and Th17 responses [241,246,248,249,356]. 

Supernatants from immune cells were analysed using ELISA to determine the levels of 

secreted cytokines present. Influenza A Virus inhibited pneumococcus driven IL-23, IL-

6, IL-27, and IL-12p70. Both H1N1 and H3N2 inhibited HKSP-induced IL-23, IL-6, and 

IL-27. Additionally, H1N1 inhibited HKSP-induced IL-12p70 and IL-10. The inhibition of 

IL-27 is of particular interest, due the complex modes of action of this cytokine. IL-27 is 

a multi-functional cytokine and depending on certain immune signals, its effects may 

differ greatly. The apparent contradiction of the role of IL-27 has been attributed to the 

ratio between the transcription factors; STAT1 and STAT3 [182]. IL-27 can induce robust 

levels of STAT1, which strongly inhibits the Th17 response, however this pathway 

requires IFNAR signalling. Indeed, in the absence of STAT1, IL-27 induces 

phosphorylated STAT3, which strongly activates the Th17 response [376]. Thus, the 

inhibition of these responses cannot be attributed to IL-27, as it itself has been inhibited 

directly by influenza. As mentioned above, IL-12p70 was only inhibited by the new batch 

of H1N1 and not by the new clinical isolate of H3N2, which differs from previous results. 

This discrepancy may actually be due to differences between the level of induction of IL-

12p70 by new HKSP compared with previously used HKSP which was cultured in-house. 

Previous induction of IL-12p70 by HKSP (cultured in-house) was much higher than the 

induction by commercially bought HKSP.  

Due to the anti-inflammatory effects of IL-10 and TGF-b, levels of these cytokines were 

analysed to determine a role, if any, in the inhibition of these innate cytokines. Elevated 

levels of IL-10 and TGF-b were not detected in treated samples, therefore the inhibition 

of the Th17 cytokines could not be due to the anti-inflammatory effects of these 

cytokines. Indeed, with the new viral stocks, an inhibition of HKSP-induced IL-10 by 
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H1N1 occurred. These results were compared to previous studies which had been 

carried out by other personnel in the lab (Table 2.8). Previous results demonstrated that 

IAV inhibited HKSP-induced IL-6, IL-23, IL-27, and IL-12p70, but did not inhibit IL-1b, IL-

10 or TGF-b [350]. In keeping with previous results, pneumococcus-driven IL-23 and IL-

27 were inhibited by new H1N1 and H3N2 and pneumococcus-driven IL-6 was inhibited 

by H3N2. However, the new batch of H1N1 also inhibited pneumococcus-driven IL-6 and 

IL-10. A reason for this may simply be that certain batches of influenza are more 

immunosuppressive than others, resulting in inhibition of a larger selection of cytokines. 
Overall, the conclusions of these studies are consistent with previous results that IAV 

inhibits early Th17 polarising cytokines in human APCs. 

To examine the level of apoptosis across different treatments in our human ex vivo 

model, an apoptosis study was performed using flow cytometry. The level of apoptosis 

was not increased in cells co-treated with HKSP and IAV (Figure 2.11). The level of 

apoptosis was lower in these cells than in cells treated with HKSP alone. As cells treated 

with HKSP alone produce an abundance of cytokines, yet have a higher level of 

apoptosis, it can be deduced that apoptosis is not causing the inhibition of cytokines in 

cells-co-treated with HKSP and IAV. The level of apoptosis in HKSP-alone treated cells 

seemed curious. However, these cells strongly induce IL-23 and IL-1b and studies have 

shown that elevated levels of IL-23 and IL-1b can induce apoptosis [377–379]. This may 

be to prevent pathogenic effects caused by these cytokines. Additionally, to rule out 

protein synthesis shutdown, a western blot was performed, which determined that b-

Actin protein production was stable across treatments, indicating that protein synthesis 

shutdown did not occur (Figure 2.12). As inhibition cannot be attributed to either anti-

inflammatory effects of IL-10 and TGF-b, apoptosis, or protein synthesis shutdown, this 

may point to IAV directly targeting the innate Th17 pathway.  

Innate immune cells can prime T cells to induce long-term immunity [116,137]. 

Recognition of antigens by T cells leads to T cell clonal expansion and differentiation into 

effector T cells such as Th or Treg cells, depending on which cytokines are produced. Th 

cells include Th1 cells and Th17 cells, which produce their own range of cytokines, 

including IFN-g and IL-17, respectively [116,137–142]. Both IL-17A and IFN-g were 

studied due to their importance in the adaptive Th17 and Th1 responses to bacteria. The 

anti-inflammatory cytokines (TGF-b and IL-10) were also studied. Supernatants from 

immune cells were analysed using ELISA to determine the levels of secreted cytokines 

present. Both H1N1 and H3N2 inhibited HKSP-driven IL-17A and IFN-g. There were no 

significant differences between treatments for TGF-b and IL-10, therefore inhibition of IL-

17A and IFN-g cannot be attributed to anti-inflammatory effects of these cytokines. The 



 76 

adaptive results were compared to previous studies, which had been carried out with 

different batches and clinical isolates of IAV (Table 2.9). Previous results demonstrated 

that IAV inhibited IL-17A and IFNg, but did not affect TGF-b or IL-10 [350]. Corroborating 

previous work, HKSP-driven IL-17A and IFN-g were inhibited by new batches and clinical 

isolates of IAV, but neither TGF-b or IL-10 were affected.  

Overall, the conclusions of these studies are consistent with previous results that IAV 

inhibits innate responses that drive Th17 and Th1 polarisation, which results in inhibition 

of adaptive Th17 and Th1 responses by human APCs, and by APC-T cell co-cultures.  

This points to IAV directly affecting early immune responses and is an important result 

especially due to the nature of the human model being employed. It also leads to 

important questions as to how the virus is inhibiting these responses. 
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3.0 MECHANISMS OF IAV INHIBITION OF TH17 AND TH1 
IMMUNE RESPONSES IN HUMAN ANTIGEN 
PRESENTING CELLS 

3.1 INTRODUCTION 

We have demonstrated that IAV inhibits S.p. induced innate and adaptive cytokines in 

human APCs and T cells, respectively. The cytokines which have been inhibited are 

involved in the Th17 and Th1 immune responses, which are effective in the clearance of 

bacterial infections. This inhibition was shown to not be due to the indirect effects of the 

anti-inflammatory cytokines IL-10 and TGF-b or due to apoptosis. However, there are 

other effects (both direct and indirect) of IAV infection that may have been responsible 

for the immune inhibition.  

During viral infection, cells such as macrophages and DCs which differentiate from 

monocytes and are involved in the innate immune response secrete large quantities of 

IFNs, which play a pivotal role in anti-viral responses against influenza infection [149–

156]. However, the role type I IFNs play on immune responses to S.p. have been 

conflicting, with different studies claiming either protective or detrimental effects due to 

their presence. As we have demonstrated early inhibition of S.p. immune responses by 

IAV, the possibility that this inhibition may be due to type I IFNs had to be explored, as it 

was unknown whether type I IFN would be induced at such an early stage in our ex vivo 

human immune model. Type I IFNs include the subtypes IFN-a and IFN-b. In humans, 

there are thirteen distinct IFN-a proteins and a single IFN-b protein [157]. Type I IFNs 

signal through a shared receptor; IFNAR, signalling through which triggers downstream 

anti-viral responses [2]. Type I IFN induction is modulated by IRF3 and IRF7 [158–160]. 

IRF3 contributes to early IFN-b production, which triggers synthesis of IRF7. Production 

of IRF7 leads to an increase in  IFN-b expression, resulting in IFN-a production in a 

“positive amplification loop” [163,164]. As mentioned previously, some studies have 

shown that type I IFNs inhibit Th17 responses in humans and mice [2,3,380,381]. One 

study found that without functional IFNAR signalling, mice were more resistant to 

secondary bacterial pneumonia post-influenza infection than mice with functional IFNAR 

signalling [2]. For many years, IFN-b has even been used as a treatment for MS due to 

its ability to inhibit Th17 responses [380,381]. However, contrary to these studies, it has 

also been shown that IFN-a expression prior to respiratory infection with S.p. improved 

the outcome of pneumococcal infection in mice, and that IFNAR signalling can be crucial 
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for S.p. bacterial clearance in mice [288–292]. Additionally, the influenza viral protein 

NS1 is known to inhibit type I IFNs [38,54]. There have been a significant number of 

studies carried out in animal models, however there is a scarcity of studies in human 

models, therefore there is a need to study this further in order to fully explore this complex 

relationship. 

To address whether type I IFNs were involved in the indirect inhibition of Th17 responses 

in our ex vivo human model, we sought to determine the expression levels of type I IFN 

mRNA and protein. An extensive examination of mRNA via quantitative polymerase 

chain reaction (qPCR) was performed. The experimental procedure was designed to 

ensure that all of the subtypes were able to be detected. To detect for type I IFN protein, 

ELISA was performed to detect for the presence of IFN-a and IFN-b protein. 

Due to the conflicting reports surrounding the role of type I IFNs in S.p. infections, we 

also sought to determine other possible reasons to explain the early inhibition of S.p. 

responses by IAV. This led us to examine the normal immune response to S.p., with a 

view to identifying aspects of immunity that IAV could be targeting. 

Once a pathogen enters the host cell, it is recognised by innate receptors such at TLRs 

on immune cells or on infected cells, which trigger signalling cascades resulting in the 

production of effector molecules such as cytokines which protect against the invading 

pathogen [115,116]. Once the pathogen is sensed by receptors such as TLRs on or 

within APCs, the APCs become activated, secrete distinct cytokines, and present 

antigens to naïve T cells, which leads to T cell clonal expansion and differentiation into 

effector T cells such as Th17 cells. The initial innate sensing has a profound effect on 

the type of adaptive response which is subsequently elicited [116,137,138]. 
Toll-Like Receptors are involved in sensing pathogens such as S.p. and IAV, and TLR 

signalling helps the immune system mount appropriate responses. There are ten 

different types of TLRs in humans (TLR1-TLR10), with each responding to an array of 

PAMPs from a variety of microbes. TLR 1, 2, 4, 5, and 6 are expressed on the cell 

surface, whereas TLR 3, 7, 8 and 9 are expressed intracellularly [121,122].  TLR2, TLR4, 

and TLR9 are the three TLRs which specifically sense various components of S.p. TLR2 

recognises pneumococcal cell wall components such as lipoteichoic acid (LTA) and 

lipoproteins [123,124]. TLR4 recognises pneumolysin (PLY), and TLR9 recognises 

pneumococcal DNA comprising unmethylated CpG motifs [126–128,130]. 

It was hypothesised that IAV may be directly targeting individual S.p. associated TLRs 

(TLR2, TLR4, and TLR9). Therefore, to assess this, individual mono-agonists to these 

S.p. associated TLRs were carefully selected to activate specific TLR responses in our 

human model. Each agonist chosen is a mono-stimulant to ensure definitive stimulation 

of each TLR. Dose responses were initially performed to determine the optimum 
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concentration of each TLR agonist to use in further experiments. Once the optimum dose 

of each TLR agonist had been established, cells were infected with live IAV and 

stimulated with TLR agonists to determine if IAV had the ability to directly suppress TLR 

activation of immune responses. The supernatants from TLR stimulated cells were used 

for ELISA to detect for the presence of pneumococcus driven-cytokines which have been 

shown to be inhibited by IAV previously. 

To complement this research, we also sought to determine if IAV was directly targeting 

the transcription factor, RORC. RORC has a very specific role in the development of 

Th17 cells and IL-17 production, but also plays a role in the upregulation of IL-23 

expression [187,190–193,196–201]. To determine possible mechanisms whereby IAV is 

targeting immune pathways, the effect of IAV on TLR-induction of RORC was examined. 

RORC was of interest due to its unique role in Th17 differentiation. 

Additionally, recent research has revealed the effects of TLR5 signalling (which is not 

associated with S.p. detection) on bacterial infections, suggesting that it may induce 

protective responses [382–384]. Furthermore, administration of TLR5 agonists elicited 

protection in mice against a range of bacterial infections such as Clostridium difficile, 

vancomycin-resistant Enterococcus, and S.p. [385–387]. Most recently, it has been 

shown that a TLR5 agonist has improved the efficacy of antibiotics in treating IAV and 

S.p. co-infections in mice [388], although the mechanisms by which TLR5 signalling 

induce these responses is not known. As there is currently a lack of research being 

performed in human models, we have therefore sought to establish if a TLR5 agonist 

can be used in our human model to restore previously observed inhibition of S.p-induced 

cytokines by IAV [350]. 

The findings presented in this chapter are entirely novel. We have demonstrated that 

IAV infection inhibition of Th17 and Th1 polarising cytokines are not due to anti-viral type 

I IFNs. Additionally, this is the first study to examine the effect of live IAV on TLR 

induction of cytokines secreted by human APCs, with additional research performed on 

RORC, of which largely only the mouse variant ROR-g has been studied.  

 

Specific aims of this chapter were: 

• Determine expression levels of type I IFN mRNA and protein in our ex vivo human 

model using qPCR and ELISA, respectively, 

• Characterise immune responses to TLR agonists by performing dose-response 

analyses to establish appropriate concentrations of each TLR agonist used, 

• Determine if IAV affects specific TLR-activation of immune responses, 

• Examine the effect of IAV on TLR-induced RORC, and 
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• Determine if a TLR5 agonist may be used to restore IAV-inhibited immune 

responses to HKSP.  
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3.2 MATERIALS AND METHODS 

Table 3.1 List of additional reagents to Table 2.1 (Chapter 2) used in this 
study 

Product Catalogue 
Number Company 

Poly(I:C) HMW tlrl-pic 

Invivogen, Toulouse, 

France 

LyoVec transfection reagent lyec-1 
Lipoteichoic acid from Staphylococcus 
aureus (LTA-SA) tlrl-slta 

Ultra-pure Lipopolysaccharide from E. 
coli (LPS-EB) tlrl-3pelps 

Class A CpG oligonucleotide (ODN 
2216) tlrl-2216-1 

Flagellin from Salmonella typhimurium 
(FLA-ST) tlrl-stfla 

Human IFN-b DuoSet ELISA DY814 R&D Systems, UK 
Human Interferon-a ELISA 41100-1 
Realtime Ready Catalog Assay - IFNA2 
Human Gene 145795 

Roche Diagnostics, UK Realtime Ready Catalog Assay - IFNB 
Human Gene 145797 

Realtime Ready Catalog Assay – 
RORC Human Gene 102571 

UPL Human GAPD Gene Assay 5190541001 Sigma Aldrich, Wicklow, 
Ireland 

3.2.1 ISOLATION OF PRIMARY HUMAN IMMUNE CELLS 

Human PBMCs were isolated from healthy human donors as per Section 2.2.1. and cell 

yield was determined as per Section 2.2.2. 

3.2.2 SEPARATION OF CD14+ CELLS FROM PBMCs USING 

MICROBEAD SEPARATION 

CD14+ cells were purified from PBMCs as per Section 2.2.3. 

3.2.3 VIRUS INFECTION OF CD14+ ANTIGEN PRESENTING 

CELLS 

Viral infection of CD14+ APCs was performed as per Section 2.2.4. 
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3.2.4 STREPTOCOCCUS PNEUMONIAE STIMULATION OF CD14+ 

ANTIGEN PRESENTING CELLS 

CD14+ APCs were exposed to HKSP as per Section 2.2.5. 

3.2.5 POLY(I:C) TRANSFECTIONS 

3.2.5.1 Background 

Transfection is a technique whereby nucleic acids are delivered directly into the 

cytoplasm by non-viral methods. Transfection can be performed using chemical 

reagents, cationic lipids, and physical methods. Cationic lipids work as the cationic head 

of the lipid associates with negatively charged phosphates on the nucleic acid. The 

phospholipid structure encourages fusion with negatively-charged cellular membranes 

which aid in delivery of the nucleic acid into the cell [389,390]. Poly(I:C) is a TLR3 agonist 

and due to the intracellular location of TLR3, transfection was performed. Poly(I:C) was 

used as a suitable positive control for experiments concerning IFN-a and IFN-b as 

Poly(I:C) is known to induce robust, early, interferon responses.  

3.2.5.2 Method 

Poly(I:C) at a concentration of 1 µg/ml, was mixed with 100 µl LyoVecTM solution and 

incubated at RT for at least 15 minutes. Isolated CD14+ APCs at a density of 106 cells/ml 

were stimulated with the Poly(I:C) and LyoVecTM solution (Invivogen) and incubated for 

24 h at 37°C. 

3.2.6 TOLL LIKE RECEPTOR AGONIST STIMULATIONS 

Lipoteichoic acid from Staphylococcus aureus (LTA-SA) (Invivogen) was used as a TLR2 

agonist at a range of doses from 15 µg to 40 µg for initial dose response experiments. 

Ultra-pure Lipopolysaccharide from E. coli (LPS-EB) (Invivogen) was used a TLR4 

agonist at a range of doses from 50 ng to 250 ng. Ultra-pure LPS-EB was chosen to 

ensure that no stimulation of TLR2 also occurred. Class A CpG oligonucleotide (ODN 

2216) was used as a TLR9 agonist at a concentration of 2 µM to determine if immune 

responses could be induced. Flagellin from Salmonella typhimurium (FLA-ST) was used 

as TLR5 agonist at 100 ng and 200 ng. Dose responses were performed with the various 
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doses of each agonist to determine optimal concentrations. A final concentration of 20 

µg of LTA-SA was chosen as the optimal concentration. A final concentration of 100 ng 

of LPS-EB was chosen as the optimal concentration. A concentration of 2 µM of ODN 

2216 was used in all experiments. A final concentration of 100 ng of FLA-ST was chosen 

as the optimal concentration. Isolated CD14+ cells at a density of 106 cells/ml were 

stimulated with various agonists at chosen doses and incubated for 24 h at 37°C. 

3.2.7 BIOINFORMATICS 

Thirteen human IFN-a mRNA sequences, corresponding to each subtype were retrieved 

from Pubmed [391]. Each sequence was compared to one another using BLAST to 

identify homologous sequences (IFNA1 – NM_024013.2; IFNA2 – NM_000605.3; IFNA4 

– NM_021068.2; IFNA5 – NM_002169.2; IFNA6 – NM_021002.2; IFNA7 – 

NM_021057.2; IFNA8 – NM_002170.3; IFNA10 – NM_002171.2; IFNA13 – 

NM_006900.3; IFNA14 – NM_002172.2; IFNA16 – NM_002173.3; IFNA17 – 

NM_021268.2; IFNA21 – NM_002175.2). Homologous sequences were used to ensure 

any primers/probes targeted every subtype to aid in downstream applications. 

3.2.8 REAL TIME POLYMERASE CHAIN REACTION (qPCR) 

cDNA samples were amplified as per Section 2.2.8 with deviations. Expression of IFN-a 

(Assay ID: 145795), IFN-b (Assay ID: 145797), and RORC (Assay ID: 102571) was 

normalised to the expression of the reference gene, GAPDH. The chosen IFN-a assay 

detected a sequence which is common to all IFN-a subtypes.  The chosen RORC assay 

detected both variants (ROR-g and ROR-gt). 

A 20 µl volume reaction was set up for each sample using 2-8 µl of cDNA as a template. 

The reaction was set up as follows: 

 

Table 3.2 Reagents and volumes used in preparation of qPCR experiment 
Reagent Volume (µl) 
Probes Master Mix 10.0 
Gene of Interest Probe/Primer Mix 2.0 
Reference Gene Primer 0.5 
Reference Gene Probe 0.5 
cDNA  X 
PCR Grade Water X 
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The following run settings were set up on the Lightcycler Nano: 

1. Hold at 95°C for 600 seconds (ramp 4.4°C/s or 4.0°C/s) 

2. Two-step amplification repeated for 50 cycles:  

a. 95°C for 10/20 seconds (ramp 4.4°C/s or 5.0°C/s) 

b. 60°C for 30/40 seconds (ramp 2.2°C/s or 4.0°C/s) 

3. Hold at 40°C for 30 seconds (ramp 2.2°C/s) 

The fold change in gene expression was calculated using the equation: 2(-DDCq). 

3.2.9 ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) 

Supernatant from treated cells was used to detect for the following cytokines using ELISA 

kits; IFN-a, IFN-b, IL-6, IL-1b, IL-27, TGF-b, IL-10 (R&D systems), IL-23, and IL-12p70 

(Biosciences) according to manufacturer’s protocol. Samples and standards were plated 

either in duplicate or triplicate to ensure accurate quantitative results were obtained. 

3.2.10 STATISTICAL ANALYSIS 

Statistical analyses were performed as per Section 2.2.11.  
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3.3 RESULTS 

3.3.1 IFN-a AND IFN-b mRNA MESSAGE IS ABSENT OR WEAKLY 

EXPRESSED BY HUMAN ANTIGEN PRESENTING CELLS 

Many previous studies in mice have shown that late type I IFNs are responsible for the 

inhibition of the essential Th17 response [2,3]. To investigate if type I IFNs were involved 

in the inhibition of the Th17 response in our human ex vivo model, we used qPCR to 

detect for the gene expression of the type I IFN subtypes: IFN-α and IFN-β. In humans, 

there are thirteen distinct IFN-α proteins and a single IFN-β protein [157], therefore 

extensive bioinformatics research was carried out (Section 3.2.7) to ensure that all 13 

subtypes of IFN-α could be detected. Each IFN-a mRNA sequence was retrieved from 

Pubmed and compared to one another to identify a homologous sequence. Once 

identified, a probe/primer (Roche Diagnostics, 2016) was chosen which would amplify 

the homologous IFN-a sequence and the IFN-b sequence. Poly(I:C) was used as a 

positive control to validate the experiments as it is sensed by TLR3 and is a strong 

inducer of type I IFNs. Interferon-a mRNA was undetectable in 3 out of 4 donors, with 

very low levels detectable in just one donor compared to cells treated with Poly(I:C) 

(Figure 3.1 A). Interferon-b mRNA was detected at very low levels by all cell samples 

compared to the positive control in all donors (n=4) (Figure 3.1 B). 



 86 

 
Figure 3.1 IFN-a and IFN-b are not strongly induced in treated samples. The levels of (A) IFN-a and (B) 

IFN-b mRNA expression by CD14+ APCs following 24 hr treatment with HKSP, live H1N1 or H3N2 alone or 

in combination with HKSP or untreated and 1 µg Poly(I:C) as controls were determined by qPCR. Each 

column represents mean amplification of genes of interest normalised to the mean expression of the 

reference gene, GAPDH (n=4). To show the amplification of IFN-a and IFN-b by cells other than the positive 

control, the x-axis was split into two sections with varying ranges. 

3.3.2 IFN-a AND IFN-b PROTEIN IS WEAKLY INDUCED IN HUMAN 

ANTIGEN PRESENTING CELLS 

As IFN-a and IFN-b mRNA was detected, albeit at a low level, the level of IFN-a and 

IFN-b protein expression was measured. To determine if type I IFN protein was being 

produced, ELISAs were performed to detect for the presence of IFN-a and IFN-b protein 

(Section 3.2.9). Neither IFN-a or IFN-b protein was strongly detected in any samples, 

apart from the Poly(I:C) treated samples (positive control), which induced a strong 

response (Figure 3.2). Very low levels of IFN-a protein was secreted by all cells, apart 

from those treated with HKSP, and co-treated with HKSP and H3N2, where none was 

detected (Figure 3.2 A). IFN-b was detectable in very low amounts in all cells and was 

induced strongly by Poly(I:C) stimulation (Figure 3.2 B). 
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Figure 3.2 IFN-a and IFN-b are not strongly induced in treated samples. The levels of (A) IFN-a (n=3) and 

(B) IFN-b (n=4) secreted by CD14+ APCs following 24 hr treatment with HKSP, live H1N1 or H3N2 alone or 

in combination with HKSP or untreated and 1 µg Poly(I:C) as controls were determined by ELISA. Each 

column represents normalised mean cytokine levels + SEM of 3 technical repeats of each treatment in the 

same donor. 

3.3.3 INFLUENZA A VIRUS INFECTION SPECIFICALLY TARGETS 

TLR2 PATHWAY IN HUMAN ANTIGEN PRESENTING CELLS 

It has been demonstrated in mice that in the absence of TLR2 signalling, transmission 

of S.p. occurred more efficiently during co-infection with influenza [316]. Both human and 

mouse models have shown that TLR2 senses S.p. infections [123,124,392]. TLR2 

recognises pneumococcal cell wall components such as lipoteichoic acid (LTA) and 

lipoproteins [123,124]. To characterise the immune response to TLR2 agonism in our 

human ex vivo model, the optimum dose of the TLR2 agonist was determined by 

performing dose responses using a range of concentrations from 15 µg/ml to 30 µg/ml 

(Table 3.3 and Appendix 1.1). Other studies varied in concentrations used (1-100 µg/ml) 

[393–398]. Resulting from these assays, LTA-SA was used as a TLR2 agonist at a 

concentration of 20 µg/ml. 

  

Table 3.3 Relative cytokine concentrations across different TLR2 agonist doses 

Relative cytokine 
conc. (n=3) 

TLR2 agonist Concentration (µg/ml) 
15 20 30 

IL-23 0.815 1.009 0.897 
IL-6 0.968 0.958 0.932 

IL-27 1.117 1.130 1.089 
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We sought to establish if IAV had an effect on TLR2 agonism in human APCs. We 

separated PBMCs of buffy coats from healthy human donors and have demonstrated 

that IAV infection inhibits LTA-SA induced responses in human APCs 24 hours post-

infection. We found that the H1N1 subtype of IAV significantly inhibited LTA-SA induced 

Th17 polarising IL-23 (Figure 3.3 A), whereas both IAV subtypes of IAV significantly 

inhibited LTA-SA induced Th17 polarising TGF-b (Figure 3.3 B) (n=9). There were no 

significant effects on the Th17 polarising cytokines, IL-6 (Figure 3.4 A) and IL-1β (Figure 

3.4 B), or on the multi-functional cytokine, IL-27 (Figure 3.4 C) (n=9). There was also no 

effect on the Th1 polarising cytokine, IL-12p70 (Figure 3.4 D) (n=5). There was no 

increase in the anti-inflammatory cytokine, IL-10 from cells co-treated with LTA-SA and 

IAV (Figure 3.5) (n=9).
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Figure 3.3 Live IAV infection inhibits LTA-SA-induced IL-23 and TGF-b. The levels of (A) IL-23 and (B) TGF-

b secreted by CD14+ APCs following 24 hr treatment with a TLR2 agonist (LTA-SA), live H1N1 or H3N2 

alone or in combination with LTA-SA or untreated as a control were determined by ELISA. Each column 

represents normalised mean cytokine levels + SEM of 3 technical repeats of each treatment in every donor. 

Each ELISA represents normalised results from 9 donors (n=9). Statistical analyses were performed to 

compare cytokine levels secreted by cells treated with LTA-SA alone versus cells treated with LTA-SA in 

combination with either live H1N1 or H3N2 by fitting a One-Way ANOVA to the data and using a Sidak test 

to adjust for multiple testing (*p<0.05). 
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Figure 3.4 LTA-SA-induced IL-6, IL-1b, IL-27, and IL-12p70 are not inhibited by live H1N1 or H3N2 infection. 

The levels of (A) IL-6 (n=9), (B) IL-1b (n=9), (C) IL-27 (n=9), and (D) IL-12p70 (n=5) secreted by CD14+ 

APCs following 24 hr treatment with a TLR2 agonist (LTA-SA), live H1N1 or H3N2 alone or in combination 

with LTA-SA or untreated as a control were determined by ELISA. Each column represents normalised mean 

cytokine levels + SEM of 3 technical repeats of each treatment in every donor. Statistical analyses were 

performed to compare cytokine levels secreted by cells treated with LTA-SA alone versus cells treated with 

LTA-SA in combination with either live H1N1 or H3N2 by fitting a One-Way ANOVA to the data and using a 

Sidak test to adjust for multiple testing. 
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Figure 3.5 LTA-SA-induced IL-10 is not affected by live H1N1 or H3N2 infection. The levels of IL-10 secreted 

by CD14+ APCs following 24 hr treatment with a TLR2 agonist (LTA-SA), live H1N1 or H3N2 alone or in 

combination with LTA-SA or untreated as a control were determined by ELISA. Each column represents 

normalised mean cytokine levels + SEM of 3 technical repeats of each treatment in every donor. Each ELISA 

represents normalised results from 9 donors (n=9). Statistical analyses were performed to compare cytokine 

levels secreted by cells treated with LTA-SA alone versus cells treated with LTA-SA in combination with 

either live H1N1 or H3N2 by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for 

multiple testing. 

3.3.4 INFLUENZA A VIRUS INFECTION INHIBITS TLR4 AGONIST-

INDUCED TGF-b IN HUMAN ANTIGEN PRESENTING CELLS 

Studies have shown that TLR4 is triggered in response to S.p. infection by recognising 

PLY in both human cell lines and mice [126–128]. To characterise the immune response 

to TLR4 agonism in our human ex vivo model, the optimum dose of the TLR4 agonist 

was determined by performing dose responses using a range of concentrations from 50 

ng/ml to 250 ng/ml (Table 3.4 and Appendix 1.2). Other studies varied in concentrations 

used (20-200 ng/ml) [399–402]. Resulting from these assays, LPS-EB was used as a 

TLR4 agonist at a concentration of 100 ng/ml. 

  

Table 3.4 Relative cytokine concentrations across different TLR4 agonist doses 

Relative cytokine 
conc. (n=3) 

TLR4 agonist Concentration (ng/ml) 
50 100 150 250 

IL-23 6.829 7.974 7.693 4.771 
IL-6 1.095 1.084 1.068 1.037 

IL-27 2.888 4.626 2.646 2.179 
IL-12p70 2.688 4.321 2.914 3.522 
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Cytokines involved in the Th17 response to S.p. infection were analysed to determine if 

IAV affected responses to LPS-EB, which is a TLR4 agonist. We demonstrated, using 

isolated PBMCs from healthy human donors that the TLR4 mono-agonist does not 

induce a very strong immune response and that IAV inhibits LPS-EB-induction of the 

multi-functional cytokine, TGF-b secreted by these cells (n=9) (Figure 3.6). LPS-EB 

induction of IL-12p70 was reduced by H3N2, although not significantly (n=5) (Figure 3.7 

A). There was a slight increase in anti-inflammatory IL-10 (Figure 3.7 B) (n=9) from cells 

treated with LPS-EB and IAV, although this increase was not statistically significantly. 
LPS-EB induction of IL-23 (Figure 3.8 A), IL-6 (Figure 3.8 B), IL-1b (Figure 3.8 C), or IL-

27 (Figure 3.8 D) were not inhibited by IAV. 

 
Figure 3.6 Live H1N1 and H3N2 infection inhibits LPS-EB-induced TGF-b. The levels of TGF-b secreted by 

CD14+ APCs following 24 hr treatment with a TLR4 agonist (LPS-EB), live H1N1 or H3N2 alone or in 

combination with LPS-EB or untreated as a control were determined by ELISA. Each column represents 

normalised mean cytokine levels + SEM of 3 technical repeats of each treatment in every donor. Each ELISA 

represents normalised results from 9 donors (n=9). Statistical analyses were performed to compare cytokine 

levels secreted by cells treated with LPS-EB alone versus cells treated with LPS-EB in combination with 

either live H1N1 or H3N2 by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for 

multiple testing (**p<0.01, ***p<0.001). 
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Figure 3.7 LPS-EB-induced IL-12p70 and IL-10 are not affected by live H1N1 or H3N2 infection. The levels 

of (A) IL-12p70 and (B) IL-10 secreted by CD14+ APCs following 24 hr treatment with a TLR4 agonist (LPS-

EB), live H1N1 or H3N2 alone or in combination with LPS-EB or untreated as a control were determined by 

ELISA. Each column represents normalised mean cytokine levels + SEM of 3 technical repeats of each 

treatment in every donor. Each ELISA represents normalised results from 5 donors (n=5). Statistical 

analyses were performed to compare cytokine levels secreted by cells treated with LPS-EB alone versus 

cells treated with LPS-EB in combination with either live H1N1 or H3N2 by fitting a One-Way ANOVA to the 

data and using a Sidak test to adjust for multiple testing. 
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Figure 3.8 LPS-EB-induced IL-23, IL-6, IL-1b, and IL-27 are not inhibited by live H1N1 or H3N2 infection. 

The levels of (A) IL-23, (B) IL-6, (C) IL-1b, and (D) IL-27secreted by CD14+ APCs following 24 hr treatment 

with a TLR4 agonist (LPS-EB), live H1N1 or H3N2 alone or in combination with LPS-EB or untreated as a 

control were determined by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 

technical repeats of each treatment in every donor. Each ELISA represents normalised results from 9 donors 

(n=9). Statistical analyses were performed to compare cytokine levels secreted by cells treated with LPS-

EB alone versus cells treated with LPS-EB in combination with either live H1N1 or H3N2 by fitting a One-

Way ANOVA to the data and using a Sidak test to adjust for multiple testing. 

3.3.5 INFLUENZA A VIRUS INFECTION SPECIFICALLY TARGETS 

TLR9 PATHWAY IN HUMAN ANTIGEN PRESENTING CELLS 

It has previously been reported in mice that specific ligands for TLR9 protect against 

influenza, and that TLR9 plays a protective role in the early stages of S.p. infection 

[130,403]. To characterise the immune response to TLR9 agonism in our human ex vivo 
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model, the TLR9 mono-agonist (ODN 2216) was used to stimulate primary human 

immune cells at a concentration of 2 µM (Table 3.5 and Appendix 1.3). Other studies 

varied in concentrations (1-2.5 µM) [120,404–408]. Resulting from these assays, ODN 

2216 was used as a TLR9 agonist at a concentration of 2 µM. 

  

Table 3.5 Relative cytokine concentrations in response to TLR9 agonist 

Relative cytokine conc. (n=3) TLR9 agonist Concentration (µM) 
2 

IL-23 7.139 
IL-6 1.003 

IL-27 1.206 
IL-12p70 0.884 

 

This TLR9 mono-agonist was used to stimulate primary human immune cells to 

determine if IAV affected TLR9 agonism. We demonstrated that IAV infection inhibited 

ODN 2216 induced responses from human APCs. Both H1N1 and H3N2 inhibited IL-23 

(n=9) and TGF-b (n=9) (Figure 3.9 A and B). There was a reduction of ODN 2216-

induced IL-27 by IAV (n=9) (Figure 3.10 A), although this was not statistically significant. 

There was no inhibition of ODN 2216 induced IL-6 (Figure 3.10 B) and IL-1β (Figure 3.10 

C) (n=9). ODN 2216 induction of IL-12p70 was not inhibited by IAV (n=5) (Figure 3.10 

D). There was no increase in the anti-inflammatory cytokine, IL-10 (n=9) (Figure 3.10 E).
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Figure 3.9 Live H1N1 and H3N2 infection inhibits ODN 2216-induced IL-23 and TGF-b. The levels of (A) IL-

23 and (B) TGF-b secreted by CD14+ APCs following 24 hr treatment with a TLR9 agonist (ODN 2216), live 

H1N1 or H3N2 alone or in combination with ODN 2216 or untreated as a control were determined by ELISA. 

Each column represents normalised mean cytokine levels + SEM of 3 technical repeats of each treatment 

in every donor. Each ELISA represents normalised results from 9 donors (n=9). Statistical analyses were 

performed to compare cytokine levels secreted by cells treated with ODN 2216 alone versus cells treated 

with ODN 2216 in combination with either live H1N1 or H3N2 by fitting a One-Way ANOVA to the data and 

using a Sidak test to adjust for multiple testing (**p<0.01). 
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Figure 3.10 ODN 2216-induced IL-27, IL-6, IL-1b, IL-12p70, and IL-10 are not affected by live H1N1 or 

H3N2 infection. The levels of (A) IL-27 (n=9), (B) IL-6 (n=9), (C) IL-1b (n=9), (D) IL-12p70 (n=5), and (E) IL-

10 (n=9) secreted by CD14+ APCs following 24 hr treatment with a TLR9 agonist (ODN 2216), live H1N1 or 

H3N2 alone or in combination with ODN 2216 or untreated as a control were determined by ELISA. Each 

column represents normalised mean cytokine levels + SEM of 3 technical repeats of each treatment in every 

donor. Statistical analyses were performed to compare cytokine levels secreted by cells treated with ODN 

2216 alone versus cells treated with ODN 2216 in combination with either live H1N1 or H3N2 by fitting a 

One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing. 
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3.3.6 INFLUENZA A VIRUS INFECTION SPECIFICALLY TARGETS 

TLR9-INDUCTION OF RORC IN HUMAN ANTIGEN PRESENTING 

CELLS 

RORC is a transcription factor specific to the Th17 response, which plays an important 

role in the upregulation of IL-23 expression [187,190–193,196–201]. As TLR2 agonist 

and TLR9 agonist induction of IL-23 has been inhibited by IAV (Figures 3.1 A and 3.9 

A), we sought to investigate if this was due to IAV targeting expression of RORC in 

human APCs. The RORC gene encodes for two protein isoforms (RORg and RORgt), 

therefore the assay chosen targeted both variants. We have determined that IAV does 

not inhibit TLR2-induction of RORC (Figure 3.11), however IAV does inhibit TLR9-

induction of RORC (Figure 3.12). 

 
Figure 3.11 LTA-SA-induced RORC expression is not inhibited by live H1N1 or H3N2 infection. The levels 

of RORC mRNA expression in CD14+ APCs following 24 hr treatment with a TLR2 agonist (LTA-SA), live 

H1N1 or H3N2 alone or in combination with LTA-SA or untreated as a control were determined by qPCR. 

Each column represents mean amplification of gene of interest normalised to the mean expression of the 

reference gene, GAPDH (n=3). Statistical analyses were performed to compare RORC mRNA expression 

in cells treated with LTA-SA alone versus cells treated with LTA-SA in combination with either live H1N1 or 

H3N2 by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing. 
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Figure 3.12 ODN 2216-induced RORC expression is inhibited by live IAV infection. The levels of RORC 

mRNA expression in CD14+ APCs following 24 hr treatment with a TLR9 agonist (ODN 2216), live H1N1 or 

H3N2 alone or in combination with ODN 2216 or untreated as a control were determined by qPCR. Each 

column represents mean amplification of gene of interest normalised to the mean expression of the 

reference gene, GAPDH (n=3). Statistical analyses were performed to compare RORC mRNA expression 

in cells treated with ODN 2216 alone versus cells treated with ODN 2216 in combination with either live 

H1N1 or H3N2 by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing 

(****p<0.0001). 

3.3.7 INFLUENZA A VIRUS INFECTION DOES NOT TARGET TLR5 

PATHWAY IN HUMAN ANTIGEN PRESENTING CELLS 

A TLR5 agonist has previously been shown to improve the efficacy of antibiotics in the 

treatment of IAV and S.p co-infections in mice [388]. To characterise the immune 

response to TLR5 agonism in our human ex vivo model, the optimum dose of the TLR5 

agonist was determined by performing dose responses using concentrations of 100 

ng/ml and 200 ng/ml (Table 3.6 and Appendix 1.4). Other studies varied in 

concentrations used (20-200 ng/ml) [395,409–411]. Resulting from dose response 

assays, FLA-ST was used as a TLR5 agonist at a concentration of 100 ng/ml. 
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Table 3.6 Relative cytokine concentrations across different TLR5 agonist doses 

Relative cytokine conc. 
(n=3) 

TLR5 agonist Concentration (ng/ml) 
100 200 

IL-23 2.268 1.933 
IL-6 1.018 1.020 

IL-27 0.804 0.759 
IL-1b 1.246 1.208 

 

The TLR5 agonist (FLA-ST) was used to stimulate cells and to determine if IAV had an 

effect on TLR5 agonsim in human APCs. We have demonstrated that IAV does not inhibit 

FLA-ST induced IL-23, TGF-β, IL-6, IL-1β, IL-27, IL-12p70, and IL-10 (Figure 3.13). 
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Figure 3.13 FLA-ST-induced cytokines are not inhibited by live IAV infection. The levels of IL-23, IL-6, IL-

1b, IL-27, IL-12p70, and IL-10 secreted by CD14+ APCs following 24 hr treatment with a TLR5 agonist (FLA-

ST), live H1N1 or H3N2 alone or in combination with FLA-ST or untreated as a control were determined by 

ELISA. Each column represents normalised mean cytokine levels + SEM of 3 technical repeats of each 

treatment in every donor. Each ELISA represents normalised results from 5 donors (n=5). Statistical 

analyses were performed to compare cytokine levels secreted by cells treated with FLA-ST alone versus 

cells treated with FLA-ST in combination with either live H1N1 or H3N2 by fitting a One-Way ANOVA to the 

data and using a Sidak test to adjust for multiple testing. 
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3.3.8 TREATMENT WITH A TLR5 AGONIST RESTORES 

INHIBITED IMMUNE RESPONSES TO HKSP DURING INFLUENZA 

INFECTION IN HUMAN ANTIGEN PRESENTING CELLS 

Having established that TLR5 mono-agonism is not inhibited by IAV, we sought to 

establish if this TLR5 agonist could be used to restore previously observed inhibition of 

S.p.-induced cytokines by IAV [350]. We used a TLR5 agonist (FLA-ST) to stimulate cells 

to determine if IAV inhibition of HKSP could be circumvented in human APCs. We 

demonstrated that TLR5 stimulation restored IAV-inhibited HKSP-induced IL-23 (Figure 

3.14 A) and IL-27 (Figure 3.14 B) (n=5). Stimulation with FLA-ST increased IL-12p70 

levels to above those observed by HKSP treated cells alone (Figure 3.14 C) (n=5). TLR5 

mono-agonist treatment did not have any effect on levels of IL-6 (Figure 3.15 A), IL-1β 

(Figure 3.15 B), TGF-b (Figure 3.15 C), and IL-10 (Figure 3.15 D) (n=5). 
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Figure 3.14 TLR5 agonism restores inhibited HKSP-induction of IL-23, IL-27, and IL-12p70 during IAV 

infection. The levels of (A) IL-23, (B) IL-27, and (C) IL-12p70 secreted by CD14+ APCs following 24 hr 

treatment with HKSP, live H1N1 or H3N2 in combination with HKSP, live H1N1 or H3N2 in combination with 

HKSP and a TLR5 agonist (FLA-ST), or untreated as a control were determined by ELISA. Each column 

represents normalised mean cytokine levels + SEM of 3 technical repeats of each treatment in every donor. 

Each ELISA represents normalised results from 5 donors (n=5). Statistical analyses were performed to 

compare cytokine levels secreted by cells treated with HKSP in combination with either live H1N1 or H3N2 

versus cells treated with live H1N1 or H3N2 in combination with HKSP and FLA-ST by fitting a One-Way 

ANOVA to the data and using a Sidak test to adjust for multiple testing (**p<0.01, ***p<0.001, ****p<0.0001). 
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Figure 3.15 TLR5 agonism does not affect induction of IL-6, IL-1b, TGF-b, and IL-10 during HKSP-IAV co-

infection. The levels of (A) IL-6, (B) IL-1b, (C) TGF-b, and (D) IL-10 secreted by CD14+ APCs following 24 

hr treatment with HKSP, live H1N1 or H3N2 in combination with HKSP, live H1N1 or H3N2 in combination 

with HKSP and a TLR5 agonist (FLA-ST), or untreated as a control were determined by ELISA. Each column 

represents normalised mean cytokine levels + SEM of 3 technical repeats of each treatment in every donor. 

Each ELISA represents normalised results from 5 donors (n=5). Statistical analyses were performed to 

compare cytokine levels secreted by cells treated with HKSP in combination with either live H1N1 or H3N2 

versus cells treated with live H1N1 or H3N2 in combination with HKSP and FLA-ST by fitting a One-Way 

ANOVA to the data and using a Sidak test to adjust for multiple testing. 
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3.4 DISCUSSION 

There are conflicting reports surrounding type I IFNs and their role in the predisposition 

to secondary bacterial infections. It has been shown that type I IFNs induced by IAV 

infection inhibit Th17 responses in mice [2,3], however other studies have shown that 

IFN-a expression prior to respiratory infection with S.p. improved the outcome of 

pneumococcal infection in mice, and that functional IFNAR signalling can be crucial for 

S.p. clearance [288–292].  In addition, we have previously demonstrated that IAV 

infection of human APCs inhibits pneumococcus responses within 24 hours of co-

infection/stimulation when type I IFNs are reported to be inhibited in mice [2,412]. This 

inhibition of responses to S.p. was shown to not be due to the anti-inflammatory effects 

of IL-10 and TGF-b. We sought to establish the levels of type I IFN mRNA message and 

protein induced in our ex vivo human model. To effectively answer the question of 

whether the immune inhibition occurs in the absence of type I IFNs in our human model, 

a robust experiment needed to be designed to detect all the species of type I IFN mRNA 

involved. Extracted RNA from treated samples was used to synthesise cDNA and 

subsequently perform qPCR. A probe and primers which amplified a sequence 

homologous to all 13 different human subtypes of IFN-a was chosen to ensure a 

definitive result.  

In 3 out of 4 donors, IFN-a mRNA could not be detected, except by Poly(I:C) controls. In 

the one donor where mRNA was amplified, very low levels were detected, apart from the 

Poly(I:C) controls, which induced very strong expression of IFN-a. In cells co-treated 

with HKSP and IAV, IFN-a mRNA levels were lower than those in cells treated with HKSP 

alone. Very low IFN-b mRNA was detected by all cells, with robust induction by Poly(I:C). 

The levels of IFN-b mRNA induced by cells co-treated with HKSP and IAV was not 

significantly higher than those treated with HKSP alone. The inhibition cannot be 

attributed to IFN-a expression as minor amplification only occurred in one donor and that 

amplification was extremely low by cells co-infected with IAV and HKSP. Additionally, 

IFN-b expression also cannot be the reason for the inhibition as the mRNA levels were 

not above basal levels. Indeed, the type-I IFN amplification was so low, that the x-axis 

had to be split into sections for the amplification to be observed against the Poly(I:C) 

control.  

As weak IFN-a and IFN-b gene expression was detected through qPCR, ELISA was 

used to detect for the presence of IFN-a and IFN-b protein production. Supernatants 

from treated samples were analysed to determine the levels of secreted IFN-a and IFN-

b cytokines. Very low levels of both IFN-a and IFN-b protein was detected, apart from 
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Poly(I:C) control samples, which induced robust levels of IFN-a and IFN-b. Low levels of 

IFN-α protein were secreted by cells co-treated with H1N1 and HKSP, but no IFN-α 

protein was detected in cells co-treated with H3N2 and HKSP. Levels of IFN-β protein 

was detected in cells co-treated with HKSP and IAV, however these were below levels 

in untreated cells. The presence of low levels of IFN-α protein by cells co-treated with 

HKSP and H1N1 cannot be responsible for the inhibition of HKSP responses as little to 

no IFN-α protein was detected in cells co-treated with HKSP and H3N2, where the same 

inhibition occurs. The presence of IFN-β protein cannot explain the attenuation of the 

Th1 and Th17 responses as these are below basal levels, which were present in all cells, 

including untreated and HKSP treated cells, in which we observed robust Th17 innate 

immune responses. In addition, a previous study in human cells demonstrated that basal 

levels of IFN-β are insufficient to inhibit Th17 responses [412]. The low levels of type I 

IFN being produced may be due to the viral component NS1, which is synthesised during 

infection and is known to inhibit the production of type I IFN [38,54]. These results 

suggest that type I IFN production is not responsible for the early inhibition of S.p. by 

IAV. 

As the inhibition of HKSP responses does not appear to be due to type I IFN, it points to 

IAV having a direct effect on immune responses. To investigate possible pathways which 

IAV could be targeting, we researched how the immune response to S.p. is usually 

mounted. Toll-Like Receptors are extremely important in the recognition of both IAV and 

S.p. amongst many other pathogens. These TLRs trigger signalling cascades in APCs 

which determine the kind of adaptive immune response that will be elicited 

[116,137,138]. In this study, we have sought to determine if IAV specifically targets 

specific S.p. associated TLRs. In addition, work in mouse models have established that 

a TLR5 agonist can have beneficial therapeutic effects when combined with antibiotic 

administration in the treatment of IAV and S.p. co-infections [388]. Therefore, we have 

endeavoured to determine whether a TLR5 agonist can be used to restore IAV inhibited 

immune responses to S.p. in primary human monocytes [350]. It has been established 

that the TLRs involved in sensing S.p. are TLR2, TLR4, and TLR9 [96]. Therefore, we 

examined the effects of IAV on TLR induction of cytokines involved in the Th17 response 

to S.p. in human APCs.  The results obtained demonstrate that IAV targets aspects of 

each of the S.p. associated TLR pathways. 

The TLR2 and TLR9 pathways appear to be inhibited more strongly by IAV than the 

TLR4 pathway. However, the TLR4 mono-agonist was not as strong of an inducer of 

these cytokines. TLR2- and TLR9-induced IL-23 is inhibited by both strains of IAV. The 

inhibition of IL-23 is interesting as we have previously shown that IAV inhibits HKSP-

induced IL-23 (Chapter 2). IL-23 is necessary for the expansion and commitment to the 
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Th17 lineage. IL-23 is particularly important in induction of the cytokine IL-17A, which is 

pivotal in the response to S.p. [413,414].  

Both H1N1 and H3N2 inhibited TGF-b induction by each of the TLRs studied. TGF-b is 

a multifunctional cytokine which exhibits both pro-inflammatory and anti-inflammatory 

properties [177,415]. This cytokine is involved in the differentiation of both Th17 cells 

and Treg cells in a concentration-dependent manner [416]. At low concentrations, TGF-b 

synergises with IL-6 to promote Th17 expression and at high concentrations, TGF-b 

represses Th17 expression in favour of Treg expression [416]. As TLR-induced TGF-b 

has been inhibited by both strains of IAV, it may have a negative effect on Th17 

differentiation. It is interesting that TLR agonism of TGF-b was inhibited by IAV, and yet 

in a previous study (and in Chapter 2), whole HKSP-induction of TGF-b was not inhibited 

by IAV [350]. It is possible that whole HKSP contains components that activate pathways 

related to TGF-b which IAV either cannot or does not target. As different TLRs often 

dimerise with each other [417], it may be that IAV can target individual (mono)TLR 

activation of TGF-b, but that it cannot exert the same inhibitory effects on TLRs when in 

heterodimer conformation (which is likely with whole S.p.). It should be noted that IL-6, 

the cytokine with which TGF-b synergises has not been affected in any way as it has 

neither been strongly induced by any of the TLR agonists or inhibited by IAV. It may be 

that IL-6 is not induced by mono-agonists. It may require heterodimer activation in order 

to be induced above basal level. TLR-induced IL-6, IL-1b, and IL-27 were not affected 

by IAV, thus suggesting that IAV is having a specific effect on TLR-induced IL-23 and 

TGF-b. 

As IAV inhibited S.p., TLR2, and TLR9 induction of IL-23, this cytokine was researched 

further to determine why IL-23 specifically may be targeted by IAV. IL-23 signals through 

IL-23R and IL-12Rb1, which leads to phosphorylation of STAT3 [187]. Phosphorylation 

of STAT3 leads to induction of RORC, which is a Th17-specific transcription factor. 

RORC in turn, induces further expression of IL-23R, which increases IL-23 cytokine 

induction in a positive-feedback loop [187,190–193]. As RORC has been shown to be 

important in the induction of IL-23, we sought to determine if RORC induction by both 

TLR2 and TLR9 was inhibited by IAV. We have demonstrated that TLR2 agonist 

induction of RORC was not significantly inhibited by IAV. Indeed, TLR2 agonist induction 

of RORC was inconsistent, with one donor inducing very high levels of RORC in 

response to TLR2 agonism, whereas two donors did not induce RORC past basal levels. 

RORC has been shown to be induced at different time points, therefore, it is possible 

that induction of RORC in response to TLR2 agonism is peaking at an earlier time [206]. 

It may be of interest to explore different time-points with regard to TLR2 agonist induction 
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of RORC to give more clarity. Additionally, we have demonstrated that TLR9 agonist 

induction of RORC is significantly inhibited by IAV. The inhibition of RORC is most likely 

why TLR9-induction of IL-23 is inhibited, and may also be why S.p. induction of IL-23 is 

inhibited. As RORC expression is induced by phosphorylation of STAT3, and inhibited 

by phosphorylation of STAT1, the effect of IAV on STAT3 and STAT1 phosphorylation 

may shed further light on the mechanisms behind IAV inhibition of S.p. and associated 

TLR responses. IAV-mediated inhibition of TLR-induction of RORC has not been 

demonstrated by human APCs previously. 

TLR5 agonism has been shown to elicit protection in mice against multiple bacterial 

pathogens including Clostridium difficile, vancomycin-resistant Enterococcus, and S.p. 

[385–387]. Additonally, TLR5 agonism has improved the efficacy of antibiotics in treating 

IAV and S.p. co-infections in mice  [388]. TLR5 is activated in response to flagellin [418], 

and therefore is not activated in response to S.p. infections. Due to the encouraging 

results using TLR5 agonism as a treatment in mice, we sought to investigate what effect 

TLR5 agonism may have on immune responses S.p. and IAV co-infection in human 

APCs. 

We have established that the TLR5 pathway is not targeted by IAV as cytokine secretion 

is not impaired by IAV infection. Indeed, IL-23, which is inhibited by IAV, is induced 

robustly by a TLR5 agonist, even in the presence of IAV. As this pathway is not affected 

by IAV and to address the gap in the research using human models, we examined TLR5 

agonism in a simulated co-infection with IAV and S.p. in human APCs. TLR5 agonism 

restored IAV-inhibited levels of HKSP-induced IL-23 and IL-27, and induced levels of IL-

12p70 to above those observed in HKSP- treated cells alone.  

In this chapter, we have demonstrated that IAV infection can directly inhibit immune 

responses, which is independent of anti-viral type I IFNs. Here, we are presenting a novel 

mechanism in restoring immune responses to S.p.  in human APCs. The effect of IAV 

infection on S.p. associated TLRs has not been examined in human APCs previously. 

Additionally, we have also presented a possible mechanism where IAV is targeting the 

normal immune response to S.p. through the RORC analysis. This may be beneficial in 

determining new therapeutic targets. 

Results in mouse models have been very promising, however due to differences in 

fundamental immune responses between mice and humans, it is imperative that similar 

investigations be carried out in human models. The results obtained in our human ex 

vivo model corroborate those observed in mouse models, and additionally have provided 

some mechanistic insight as to how IAV may be inhibiting immune responses to S.p. 

This study highlights the importance of the additional treatment strategies that may be 

possible by utilising certain TLR agonists. However, caution must be used when 
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considering the therapeutic benefits of this agonist, as increases in the cytokine IL-23 

and other Th17 polarising cytokines have been associated with pathogenesis. This 

includes the development of inflammation in a range of autoimmune diseases such as 

rheumatoid arthritis, psoriasis, and Crohn’s disease [198,295–297].
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4.0 THE EFFECT OF HAEMAGGLUTININ TREATMENT 
ON RESPONSES TO STREPTOCOCCUS PNEUMONIAE 
AND TLR AGONISM IN HUMAN CELLS 

4.1 INTRODUCTION 

Previous studies carried out in the Viral Immunology Lab demonstrated that the IAV 

glycoprotein, HA, downregulated bacterial LPS-induced IL-12p70 in mouse bone-

marrow derived DCs (BMDCs) [341]. This study aimed to explore the role of 

immunomodulation in the enhanced predisposition to bacterial superinfection during IAV 

infection [341]. HA is a key viral antigen, which along with NA is a glycoprotein on the 

surface of IAV [33]. HA plays a pivotal role in mediating viral entry into host cells, whilst 

NA removes host sialic acid residues and helps to release newly formed virions from 

infected cells [33]. Additionally, HA is commonly used as a target in the development of 

vaccines. Vaccines are designed to target both structural elements of the HA protein: the 

head and the stalk. The head is the main target of antibodies which protect against 

influenza [6,419]. Vaccination is the principal tactic in the prevention and regulation of 

influenza infections, but due to the constant mutating virus, vaccines must be 

reformulated annually [6,7].  

In Chapter 2, we presented results which demonstrate that in human APCs and T cells, 

IAV inhibits S.p. induced innate and adaptive cytokines. Furthermore, this inhibition was 

not due to elevated levels of anti-inflammatory cytokines or an increase in apoptosis. In 

Chapter 3, we subsequently established that this inhibition was also not due to inhibitory 

effects of type I IFNs. In addition, we determined that the inhibition may be due to 

downward pressure on S.p. associated TLRs by IAV. As previous work using HA was 

carried out using a gram-negative bacteria in a murine model [341], the effect of HA on 

responses to S.p., which is gram-positive was examined in our human ex vivo model to 

determine if HA may be key in the IAV-inhibition of S.p. responses. As the influenza 

vaccine and pneumococcal vaccines are frequently administered simultaneously [108], 

the effect of HA on pneumococcal responses was of particular interest. Importantly, as 

IAV has been shown to target specific TLR pathways (as described in Chapter 3), the 

effect of HA on the same TLR agonists was examined. Furthermore, as a TLR5 agonist 

(flagellin) is currently being developed as an adjuvant to influenza vaccines [420–422], 

the effect of HA on TLR5 agonism was also determined.  

This research may clarify whether different HA conformations influence how 

immunosuppressive certain strains of IAV are. This may be beneficial in the prediction 
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of how different strains may be more or less likely to predispose individuals to secondary 

bacterial infections. 

Specific aims of this chapter: 

• Establish innate and adaptive immune responses to new batches of influenza 

HA, 

• Compare immune responses to H1N1 HA with H3N2 HA, 

• Further investigate the effect of new HA batches on responses to S.p.,  

• Determine the effect of HA treatment on S.p. associated TLR agonism, and 

• Study the effect of TLR5 agonism on cells treated with HA.  
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4.2 MATERIALS AND METHODS 

Table 4.1 List of additional reagents to Table 2.1 (Chapter 2) and Table 3.1 
(Chapter 3) used in this study 

Product Catalogue 
Number Company 

H1HN1 A/PR/8/34 HA N/A NIBSC, UK H3N2 A/Uruguay/716/2007 HA N/A 

4.2.1 ISOLATION OF PRIMARY HUMAN IMMUNE CELLS 

Human PBMCs were isolated from healthy human donors as per Section 2.2.1. and cell 

yield was determined as per Section 2.2.2. 

4.2.2 SEPARATION OF CD14+ AND CD3+ CELLS FROM PBMCs 

USING MICROBEAD SEPARATION 

CD14+ APCs and CD3+ T cells were purified from PBMCs as per Section 2.2.3. 

4.2.3 STREPTOCOCCUS PNEUMONIAE STIMULATION OF CD14+ 

ANTIGEN PRESENTING CELLS 

CD14+ APCs were exposed to HKSP as per Section 2.2.5. 

4.2.4 HA TREATMENT OF CD14+ ANTIGEN PRESENTING CELLS 

CD14+ APCs which had been separated from PBMCs (as per Section 2.2.3) were 

cultured in cRPMI at a concentration of 1x106 cells/ml. Two strains of HA were used in 

this study: H1N1 HA (A/Puerto-Rico/8/34) and H3N2 (A/Uruguay/716/2007) provided by 

Ruth Harvey (NIBSC, UK). CD14+ APCs at a density of 1x106 cells/ml were treated with 

H1N1 HA or H3N2 HA at concentrations of 1 µg/ml and 3 µg/ml, alone or in combination 

with HKSP for 24 hours (as per Section 2.2.5). 
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4.2.5 TOLL LIKE RECEPTOR AGONIST STIMULATIONS 

TLR treatments were performed as per Section 3.2.6. 

4.2.6 CO-CULTURE ASSAY 

Co-cultures of CD3+ T cells and CD14+ APCs were performed as per Section 2.2.6. 

4.2.7 ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) 

Supernatant from treated cells was used to detect for cytokines using ELISA as per 

Section 2.2.7. 

4.2.8 STATISTICAL ANALYSIS 

Statistical analyses were performed as per Section 2.2.11. 
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4.3 RESULTS 

4.3.1 HAEMAGGLUTININ TREATMENT INHIBITS 

STREPTOCOCCUS PNEUMONIAE INDUCED INNATE 

POLARISING CYTOKINES 

A key component of IAV is the surface glycoprotein HA, of which there are 18 distinct 

subtypes [33,35,36]. Changes in HA subtypes are part of what causes the emergence 

of new strains of IAV, which result in not only new seasonal IAV strains but also 

pandemic strains [83,84]. As previous studies have demonstrated that HA treatment 

inhibited Gram-negative LPS-induction of IL-12p35 in mouse BMDCs [341], we sought 

to investigate if HA treatment may also inhibit Gram-positive S.p. induction of cytokines 

in our human ex vivo model. 

Here, it is shown that HA treatment inhibits certain HKSP induced innate polarising 

cytokines in primary human immune cells. The inhibition has occurred in cytokines 

involved in the Th17 response and Th1 response. Supernatants from treated CD14+ 

APCs were used to detect for cytokines using ELISA (as per Section 4.2.7). HA treatment 

inhibited HKSP-induction of IL-27 (Figure 4.1 A) and IL-12p70 (Figure 4.1 B) (n=5). HA 

treatment did not inhibit HKSP-induction of IL-23 (Figure 4.2 A), IL-6 (Figure 4.2 B), or 

IL-1b (Figure 4.2 C) (n=5). Results generated using new batches of HA were compared 

to those generated using previous batches of HA to determine if similar innate responses 

between different batches and subtypes occurred. The results show that similar immune 

responses occur with the new HA batch when compared to the previous HA batches 

(Appendix 2.1).
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Figure 4.1 Influenza HA attenuates HKSP induction of IL-27 and IL-12p70. The levels of (A) IL-27 and (B) 

IL-12p70 secreted by CD14+ APCs following 24 hr treatment with HKSP, H1N1 HA (1 µg/ml or 3 µg/ml) or 

H3N2 HA (1 µg/ml or 3 µg/ml) alone or in combination with HKSP or untreated as a control were determined 

by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 technical repeats of each 

treatment in every donor. Each ELISA represents normalised results from 5 donors (n=5). Statistical 

analyses were performed to compare cytokine levels secreted by cells exposed to HKSP alone versus cells 

exposed to HKSP in combination with either H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) 

by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing (*p<0.05, 

**p<0.01, ****p<0.0001).
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Figure 4.2 Influenza HA does not affect HKSP induction of IL-23, IL-6, and IL-1b. The levels of (A) IL-23, 

(B) IL-6, and (C) IL-1b secreted by CD14+ APCs following 24 hr treatment with HKSP, H1N1 HA (1 µg/ml or 

3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) alone or in combination with HKSP or untreated as a control were 

determined by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 technical 

repeats of each treatment in every donor. Each ELISA represents normalised results from 5 donors (n=5). 

Statistical analyses were performed to compare cytokine levels secreted by cells exposed to HKSP alone 

versus cells exposed to HKSP in combination with either H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml 

or 3 µg/ml) by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing. 

4.3.2 INHIBITION BY HAEMAGGLUTININ TREATMENT IS NOT 

DUE TO ANTI-INFLAMMATORY EFFECTS OF IL-10 AND TGF-b 

To assess if HA treatment altered levels of HKSP-induced anti-inflammatory cytokines, 

the levels of IL-10 and TGF-b were assessed. As mentioned previously, IL-10 can induce 

Treg cells which limit inflammatory responses [211,243,244]. TGF-b can exert both pro- 

and anti-inflammatory effects [176,208]. The 3 µg dose of H3N2 HA significantly inhibited 

HKSP-induced IL-10 (Figure 4.3 A) (n=5). HKSP-induction of TGF-b was not affected by 

HA treatment (Figure 4.3 B) (n=5). The inhibition of the Th17 response cannot be 
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attributed to the anti-inflammatory effects of IL-10 and TGF-b as HKSP induction of IL-

10 was also inhibited and no increase in TGF-b was observed. 

 
Figure 4.3 Influenza HA does not increase levels of IL-10 and TGF-b. The levels of (A) IL-10 and (B) TGF-

b secreted by CD14+ APCs following 24 hr treatment with HKSP, H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA 

(1 µg/ml or 3 µg/ml) alone or in combination with HKSP or untreated as a control were determined by ELISA. 

Each column represents normalised mean cytokine levels + SEM of 3 technical repeats of each treatment 

in every donor. Each ELISA represents normalised results from 5 donors (n=5). Statistical analyses were 

performed to compare cytokine levels secreted by cells exposed to HKSP alone versus cells exposed to 

HKSP in combination with either H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) by fitting a 

One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing (*p<0.05). 

4.3.3 HAEMAGGLUTININ TREATMENT INHIBITS ADAPTIVE TH17 

AND TH1 RESPONSES TO STREPTOCOCCUS PNEUMONIAE 

As mentioned previously, HA is a key component of IAV [33,35,36]. Here, it is shown 

that HA treatment inhibits adaptive immune responses to HKSP in a co-culture of CD14+ 

APCs and CD3+ T cells. The inhibition has occurred in cytokines involved in the Th17 

and Th1 responses. Supernatants from treated co-cultures (APC-T cells) were used to 

detect for cytokines using ELISA (as per Section 4.2.7). HA treatment inhibited HKSP-

induction of IL-17A (Figure 4.4 A) and IFN-g (Figure 4.4 B) (n=3). This inhibition occurred 

in the absence of elevated anti-inflammatory cytokines, TGF-b (Figure 4.5 A) and IL-10 

(Figure 4.5 B) (n=3). Adaptive immune responses to new batches of HA were compared 

to adaptive immune responses to previous batches of HA. Results indicate that very 

similar immune responses occur to both previous batches and new batches of HA 

(Appendix 2.2). 
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Figure 4.4 Influenza HA attenuates HKSP induction of IL-17A and IFN-g. The levels of (A) IL-17A and (B) 

IFN-g secreted by CD14+ APC and CD3+ T cell co-culture following 24 hr treatment with HKSP, H1N1 HA (1 

µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) alone or in combination with HKSP or untreated as a 

control were determined by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 

technical repeats of each treatment in every donor. Each ELISA represents normalised results from 3 donors 

(n=3). Statistical analyses were performed to compare cytokine levels secreted by cells exposed to HKSP 

alone versus cells exposed to HKSP in combination with either H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA 

(1 µg/ml or 3 µg/ml) by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple 

testing (*p<0.05, **<p0.01, ***p<0.001). 

 

 

 
Figure 4.5 Influenza HA does not increase levels of HKSP induction of TGF-b and IL-10. The levels of (A) 

TGF-b and (B) IL-10 secreted by CD14+ APC and CD3+ T cell co-culture following 24 hr treatment with 

HKSP, H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) alone or in combination with HKSP 

or untreated as a control were determined by ELISA. Each column represents normalised mean cytokine 

levels + SEM of 3 technical repeats of each treatment in every donor. Each ELISA represents normalised 

results from 3 donors (n=3). Statistical analyses were performed to compare cytokine levels secreted by 

cells exposed to HKSP alone versus cells exposed to HKSP in combination with either H1N1 HA (1 µg/ml 

or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) by fitting a One-Way ANOVA to the data and using a Sidak test 

to adjust for multiple testing (*p<0.05, ***p<0.001. ****p<0.0001). 
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4.3.4 HAEMAGGLUTININ TREATMENT INHIBITS INNATE TLR2 

AGONIST INDUCTION OF TGF-b 

As demonstrated in Chapter 3, IAV infection inhibited TLR2-induced innate polarising 

cytokines. As HA treatment has inhibited HKSP-induction of both IL-27 and IL-12p70, 

the effect of HA on TLR2 agonism was examined. Here, it is shown that HA treatment 

(both subtypes) at a concentration of 3 µg/ml inhibits TLR2-induction of TGF-b (Figure 

4.6) (n=3), however other cytokines tested were not affected (Figure 4.7) (n=3). This 

inhibition was not due to elevated levels of IL-10 (Figure 4.8) (n=3). 

 
Figure 4.6 Influenza HA attenuates LTA-SA induction of TGF-b. The levels of TGF-b secreted by CD14+ 

APCs following 24 hr treatment with a TLR2 agonist (LTA-SA), H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA 

(1 µg/ml or 3 µg/ml) alone or in combination with LTA-SA or untreated as a control were determined by 

ELISA. Each column represents normalised mean cytokine levels + SEM of 3 technical repeats of each 

treatment in every donor. Each ELISA represents normalised results from 3 donors (n=3). Statistical 

analyses were performed to compare cytokine levels secreted by cells exposed to LTA-SA alone versus 

cells exposed to LTA-SA in combination with either H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 

3 µg/ml) by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing 

(**p<0.01, ***p<0.001). 
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Figure 4.7 Influenza HA does not attenuate LTA-SA induction of cytokines. The levels of IL-23, IL-6, IL-1b, 

IL-27, and IL-12p70 secreted by CD14+ APCs following 24 hr treatment with a TLR2 agonist (LTA-SA), H1N1 

HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) alone or in combination with LTA-SA or untreated 

as a control were determined by ELISA. Each column represents normalised mean cytokine levels + SEM 

of 3 technical repeats of each treatment in every donor. Each ELISA represents normalised results from 3 

donors (n=3). Statistical analyses were performed to compare cytokine levels secreted by cells exposed to 

LTA-SA alone versus cells exposed to LTA-SA in combination with either H1N1 HA (1 µg/ml or 3 µg/ml) or 

H3N2 HA (1 µg/ml or 3 µg/ml) by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for 

multiple testing. 
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Figure 4.8 Influenza HA does not cause elevate levels of LTA-SA induction of IL-10. The levels of IL-10 

secreted by CD14+ APCs following 24 hr treatment with a TLR2 agonist (LTA-SA), H1N1 HA (1 µg/ml or 3 

µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) alone or in combination with LTA-SA or untreated as a control were 

determined by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 technical 

repeats of each treatment in every donor. Each ELISA represents normalised results from 3 donors (n=3). 

Statistical analyses were performed to compare cytokine levels by cells exposed to LTA-SA alone versus 

cells exposed to LTA-SA in combination with either H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 

3 µg/ml) by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing. 

4.3.5 HAEMAGGLUTININ TREATMENT DOES NOT INHIBIT 

INNATE TLR4 AGONISM 

In Chapter 3, it was shown that IAV infection inhibited TLR4-induced innate TGF-b. To 

determine whether HA might be playing a role in this inhibition, the effect of HA treatment 

on TLR4 agonism was examined. Here, it is shown that HA treatment (both subtypes) 

did not affect (either negatively or positively) TLR4-induction of cytokines (Figure 4.9) 

(n=3). 

Untre
ate

d

20
 ug LTA-S

A

HA 1 
µg

HA 3 
µg

20
 ug LTA-S

A + 
HA 1 

µg

20
 ug LTA-S

A + 
HA 3 

µg

HA 1 
µg

HA 3 
µg

20
 ug LTA-S

A + 
HA 1 

µg

20
 ug LTA-S

A + 
HA 3 

µg
0.0

0.5

1.0

1.5

R
el

at
iv

e 
IL

-1
0 

C
on

c.

IL-10

H1N1 HA
H3N2 HA



 122 

 
Figure 4.9 Influenza HA does not attenuate LTA-SA induction of cytokines. The levels of IL-23, TGF-b IL-6, 

IL-1b, IL-27, IL-12p70, and IL-10 secreted by CD14+ APCs following 24 hr treatment with a TLR4 agonist 

(LPS-EB), H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) alone or in combination with LPS-

EB or untreated as a control were determined by ELISA. Each column represents normalised mean cytokine 

levels + SEM of 3 technical repeats of each treatment in every donor. Each ELISA represents normalised 

results from 3 donors (n=3). Statistical analyses were performed to compare cytokine levels secreted by 

cells exposed to LPS-EB alone versus cells exposed to LPS-EB in combination with either H1N1 HA (1 

µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) by fitting a One-Way ANOVA to the data and using a 

Sidak test to adjust for multiple testing. 
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4.3.6 HAEMAGGLUTININ TREATMENT INHIBITS INNATE TLR9 

AGONIST INDUCTION OF IL-23 

In Chapter 3, live IAV inhibited TLR9-induction of both IL-23 and TGF-b. To further 

establish if HA was a factor in this inhibition, cells were treated with a TLR9 agonist and 

different concentrations and subtypes of HA. It was established that H1N1 HA treatment 

at both concentrations inhibited TLR9-induction of IL-23 (Figure 4.10) (n=3). HA 

treatment had no effect on TLR9-induction of other cytokines (Figure 4.11) (n=3). No 

increase in anti-inflammatory IL-10 was observed in any treatments (Figure 4.12) (n=3). 

 
Figure 4.10 Influenza HA attenuates ODN 2216 induction of IL-23. The levels of IL-23 secreted by CD14+ 

APCs following 24 hr treatment with a TLR9 agonist (ODN 2216), H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 

HA (1 µg/ml or 3 µg/ml) alone or in combination with ODN 2216 or untreated as a control were determined 

by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 technical repeats of each 

treatment in every donor. Each ELISA represents normalised results from 3 donors (n=3). Statistical 

analyses were performed to compare cytokine levels secreted by cells exposed to ODN 2216 alone versus 

cells exposed to ODN 2216 in combination with either H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml 

or 3 µg/ml) by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing 

(***p<0.001, ****p<0.0001). 
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Figure 4.11 Influenza HA does not attenuate ODN 2216 induction of cytokines. The levels of TGF-b IL-6, 

IL-1b, IL-27, and IL-12p70 secreted by CD14+ APCs following 24 hr treatment with a TLR9 agonist (ODN 

2216), H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) alone or in combination with ODN 

2216 or untreated as a control were determined by ELISA. Each column represents normalised mean 

cytokine levels + SEM of 3 technical repeats of each treatment in every donor. Each ELISA represents 

normalised results from 3 donors (n=3). Statistical analyses were performed to compare cytokine levels by 

cells exposed to ODN 2216 alone versus cells exposed to ODN 2216 in combination with either H1N1 HA 

(1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) by fitting a One-Way ANOVA to the data and using a 

Sidak test to adjust for multiple testing. 
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Figure 4.12 Influenza HA does not elevate levels of ODN 2216 induced of IL-10. The levels of IL-10 secreted 

by CD14+ APCs following 24 hr treatment with a TLR9 agonist (ODN 2216), H1N1 HA (1 µg/ml or 3 µg/ml) 

or H3N2 HA (1 µg/ml or 3 µg/ml) alone or in combination with ODN 2216 or untreated as a control were 

determined by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 technical 

repeats of each treatment in every donor. Each ELISA represents normalised results from 3 donors (n=3). 

Statistical analyses were performed to compare cytokine levels by cells exposed to ODN 2216 alone versus 

cells exposed to ODN 2216 in combination with either H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml 

or 3 µg/ml) by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing. 

4.3.7 HAEMAGGLUTININ TREATMENT DOES NOT INHIBIT 

INNATE TLR5 AGONISM 

A TLR5 agonist as an adjuvant to the influenza vaccine is currently being developed and 

clinical trials are ongoing [420–422]. In Chapter 3, live IAV was shown to not have an 

inhibitory effect on TLR5 agonism. However, as HA is a common component of IAV 

vaccines, and TLR5 agonism has also been proposed for use prophylactically and in 

vaccines, any possible interactions between HA and flagellin should be explored [385]. 

It was established that HA treatment did not inhibit TLR5-induction of Th17 and Th1 

polarising cytokines (Figure 4.13) (n=3). Additionally, no increase in anti-inflammatory 

IL-10 was observed across any treatments (Figure 4.13) (n=3). 
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Figure 4.13 Influenza HA does not attenuate FLA-ST induction of cytokines. The levels of IL-23, TGF-b IL-

6, IL-1b, IL-27, IL-12p70, and IL-10 secreted by CD14+ APCs following 24 hr treatment with a TLR5 agonist 

(FLA-ST), H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) alone or in combination with FLA-

ST or untreated as a control were determined by ELISA. Each column represents normalised mean cytokine 

levels + SEM of 3 technical repeats of each treatment in every donor. Each ELISA represents normalised 

results from 3 donors (n=3). Statistical analyses were performed to compare cytokine levels secreted by 

cells exposed to FLA-ST alone versus cells exposed to FLA-ST in combination with either H1N1 HA (1 µg/ml 

or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) by fitting a One-Way ANOVA to the data and using a Sidak test 

to adjust for multiple testing. 
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4.3.8 TREATMENT WITH A TLR5 AGONIST RESTORES 

INHIBITED IMMUNE RESPONSES TO HKSP DURING 

HAEMAGGLUTININ TREATMENT IN HUMAN ANTIGEN 

PRESENTING CELLS 

Pneumococcal vaccines are often administered simultaneously with influenza vaccines, 

however as new vaccines may soon, not only contain HA, but also flagellin as an 

adjuvant, the immune responses to this combination was explored. Additionally, as 

demonstrated earlier in this chapter, HA treatment inhibited HKSP-induction of IL-27 and 

IL-12p70. In Chapter 3, TLR5 agonism has been shown to restore IAV-inhibited immune 

responses to HKSP, therefore the effect of TLR5 agonism on HA and HKSP co-treatment 

was examined. Here, it is shown that TLR5 agonism restored HKSP-induced IL-27 

(Figure 4.14 A) and IL-12p70 (Figure 4.14 B) (n=3). Additionally, TLR5 agonism 

increased levels of IL-23 (Figure 4.15 A) and IL-1b (Figure 4.15 B) to above those 

observed in HKSP alone-treated cells. No significant effects occurred with respect to 

secretion of IL-6, TGF-b and IL-10 (Figure 4.16). 

 
Figure 4.14 TLR5 agonism restores inhibited HKSP-induction of IL-27 and IL-12p70 during HA treatment. 

The levels of (A) IL-27 and (B) IL-12p70 secreted by CD14+ APCs following 24 hr treatment with HKSP, 

H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) in combination with HKSP, H1N1 HA (1 

µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) in combination with HKSP and a TLR5 agonist (FLA-ST), 

or untreated as a control were determined by ELISA. Each column represents normalised mean cytokine 

levels + SEM of 3 technical repeats of each treatment in every donor. Each ELISA represents normalised 

results from 3 donors (n=3). Statistical analyses were performed to compare cytokine levels secreted by 

cells treated with HKSP in combination with H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) 

versus cells treated with H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) in combination with 

HKSP and FLA-ST by fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple 

testing (**p<0.01, ****p<0.0001). 
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Figure 4.15 TLR5 increases induction of IL-23 and IL-1b during HKSP and HA co-treatment. The levels of 

(A) IL-23 and (B) IL-1b secreted by CD14+ APCs following 24 hr treatment with HKSP, H1N1 HA (1 µg/ml 

or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) in combination with HKSP, H1N1 HA (1 µg/ml or 3 µg/ml) or 

H3N2 HA (1 µg/ml or 3 µg/ml) in combination with HKSP and a TLR5 agonist (FLA-ST), or untreated as a 

control were determined by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 

experimental repeats of each treatment in the same donor (n=3). Statistical analyses were performed to 

compare cytokine levels secreted by cells treated with HKSP in combination with H1N1 HA (1 µg/ml or 3 

µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) versus cells treated with H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA 

(1 µg/ml or 3 µg/ml) in combination with HKSP and FLA-ST by fitting a One-Way ANOVA to the data and 

using a Sidak test to adjust for multiple testing (*p<0.05). 
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Figure 4.16 TLR5 agonism does not affect induction of cytokines during HKSP and HA co-treatment. The 

levels of TGF-b IL-6, and IL-10 secreted by CD14+ APCs following 24 hr treatment with HKSP, H1N1 HA (1 

µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) in combination with HKSP, H1N1 HA (1 µg/ml or 3 µg/ml) 

or H3N2 HA (1 µg/ml or 3 µg/ml) in combination with HKSP and a TLR5 agonist (FLA-ST), or untreated as 

a control were determined by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 

technical repeats of each treatment in every donor. Each ELISA represents normalised results from 3 donors 

(n=3). Statistical analyses were performed to compare cytokine levels secreted by cells treated with HKSP 

in combination with H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) versus cells treated with 

H1N1 HA (1 µg/ml or 3 µg/ml) or H3N2 HA (1 µg/ml or 3 µg/ml) in combination with HKSP and FLA-ST by 

fitting a One-Way ANOVA to the data and using a Sidak test to adjust for multiple testing.
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4.4 DISCUSSION 

An important component of IAV is the surface glycoprotein HA, which along with NA, are 

key viral antigens [33]. The HA protein serves as a target for vaccine development, which 

is the principal tactic in the prevention and regulation of influenza infections. However, 

vaccines must be reformulated annually due to the constant mutations within the virus 

[6,7]. As HA treatment has been shown to inhibit Gram-negative LPS-induction of IL-

12p35 in BMDCs [341], the effect of HA treatment on Gram-positive S.p. induction of key 

polarising cytokines involved in the Th17 and Th1 responses were examined.  

Supernatants from immune cells were analysed to determine the levels of secreted 

cytokines. Both H1N1 and H3N2 HA inhibited HKSP-induced IL-27, whereas only H1N1 

HA inhibited HKSP-induced IL-12p70. HKSP-induction of IL-27 was inhibited by both 

subtypes of HA and at both concentrations. The 1 µg dose of H1N1 HA inhibited HKSP-

induction of IL-12p70. HA treatment did not inhibit HKSP-induction of IL-23, IL-6, or IL-

1b. IL-12p70 is a Th1 polarising cytokine and additionally IL-27 has been shown to have 

a role in Th1 immunity [354,423]. As HA has inhibited HKSP-induction of both IL-12p70 

and IL-27, but not any other cytokines, it appears that HA targets cytokines involved in 

the Th1 response more than the Th17 response. It may be that the viral component is at 

least partially responsible for IAV inhibition of Th1 responses to S.p., but it does not play 

a role in the inhibition of Th17 responses. 

As IL-10 and TGF-b can exert anti-inflammatory effects, levels of these cytokines were 

analysed to determine a role, if any, in the inhibition of these innate cytokines. Elevated 

levels of IL-10 and TGF-b were not detected in treated samples in this study. In fact, 

HKSP-induction of IL-10 was slightly inhibited by the 3 µg dose of H3N2 HA (although 

fold-change was very low). Anti-inflammatory effects of TGF-b and IL-10 cannot be 

responsible for any inhibition of HKSP responses by HA treatment. This corroborates 

previous research which showed that pre-incubation of BMDCs with anti-IL-10 did not 

revert HA inhibition of LPS induction of IL-12 [341]. 

To examine adaptive immune responses to HA, both IL-17A and IFN-g were studied. As 

mentioned before, these were chosen as they are the key cytokines in the Th17 and Th1 

responses to bacteria [116,137–142]. The 3 µg concentration of H1N1 and H3N2 HA 

inhibited HKSP-induced IL-17A. All HA treatments inhibited HKSP-induced IFN-g. As 

with live IAV, no differences in TGF-b levels were observed. HKSP-induction of IL-10 

was not elevated in responses to HA treatment. Indeed, HKSP-induced IL-10 was 

inhibited by H1N1 and H3N2 HA treatment. As with studies performed on the innate 

response, the effect of HA treatment seems to be more immunosuppressive on the Th1 
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cytokine, IFN-g than on the Th17 cytokine, IL-17A. Additionally, H1N1 HA seems to have 

a more immunosuppressive effect than H3N2 HA. 

Although, HA can exert certain inhibitory effects, it seems unlikely that this viral protein 

is the main cause behind the strong inhibitory effects of live IAV on pneumococcus 

responses (as described in Chapter 2) as HA does not inhibit HKSP-induction of 

cytokines such as IL-23 and IL-6, which are key in Th17 differentiation. A different viral 

protein, NA, may also be playing a role and it would be of interest to perform similar 

experiments with NA treatment and compare them to results obtained using HA as 

above. Another viral component that may be key is NS1, which is known to inhibit 

immune responses such as the production of type I IFN [38,54]. As very low levels of 

type I IFN was detected in cells (described in Chapter 3), it may be that NS1 is exerting 

inhibitory effects. Therefore, it may be of interest to try and determine immune responses 

to NS1. 

 

As in Chapter 3, the effect of IAV on TLR induction of cytokines was examined, we 

sought to establish if the observed inhibition may in part, be due to the IAV glycoprotein 

HA, which was already shown to inhibit HKSP-induction of IL-27 and IL-12p70, as 

detailed above. Supernatants of CD14+ APCs treated with various TLR agonists and HA 

at different concentrations were analysed. It has been demonstrated that both subtypes 

of HA at the 3 µg/ml concentration inhibited TLR2-induction of TGF-b. It is curious that 

TLR2-induction of TGF-b was inhibited by HA, and yet no inhibition of HKSP-induction 

of TGF-b by HA occurred. However, this phenomenon was also noted in Chapter 2 and 

3, using live IAV (where IAV did not inhibit HKSP-induction of TGF-b but did inhibit TLR2-

induction of TGF-b). As mentioned before, it is possibly due to the mono-agonist nature 

of the TLR2 agonist, which may be more susceptible to inhibition than whole HKSP, 

which likely stimulates multiple TLRs simultaneously. HA treatment may be somewhat 

responsible for the inhibition of TLR2-induced TGF-b by IAV. However, HA treatment is 

not the reason behind the IAV mediated inhibition of TLR2-induced IL-23 as no inhibition 

of TLR2 induction of IL-23 by HA occurred. This is similar to the results obtained for 

HKSP stimulations, where live IAV inhibited HKSP-induction of IL-23, but HA did not. HA 

did not affect TLR2-induction of any other cytokines studied, which corroborates the live 

IAV studies.  

HA treatment had no effect on TLR4-induction of cytokines, which is interesting as live 

IAV inhibited TLR4-induction of TGF-b. It was previously noted that of the TLRs studied, 

TLR4 seemed less vulnerable to inhibition as only TGF-b was inhibited by IAV (as 

described in Chapter 3). The downward pressure by IAV on the TLR4 pathway cannot 
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be attributed to HA in this case, but may be due to a different viral component. 

H1N1 HA treatment at both concentrations inhibited TLR9-induction of IL-23. However, 

no inhibition of TLR9-induced IL-23 occurred in response to H3N2 HA treatment. As 

noted in Chapter 3, IAV had a profound inhibitory effect on TLR9-induction of IL-23, 

therefore, it is unsurprising that HA should also inhibit TLR9 responses. Yet, as only the 

H1N1 HA inhibited responses, coupled with the fact that no inhibition of HKSP-induced 

IL-23 by HA occurred, this is rather unusual. But, again as mentioned before, mono-

agonists are more susceptible to inhibition than whole HKSP, which signals through 

multiple receptors. There was no effect on TLR9-induction of other cytokines by HA 

treatment. TLR9-induction of TGF-b was not inhibited by HA, yet was inhibited by live 

IAV, therefore, a different viral component of IAV may be exerting the inhibitory effects 

of IAV. No increase in anti-inflammatory IL-10 was observed across any treatments.  

HA treatment had no effect on TLR5 induction of innate cytokines. This is in keeping with 

previous results performed using live IAV (Chapter 3). This is encouraging due to a TLR5 

agonist being used as an adjuvant for influenza vaccines [420–422]. As demonstrated in 

Chapter 3, the TLR5 agonist has been shown to restore inhibition of HKSP by IAV, 

therefore the effect of TLR5 agonism on HKSP inhibition by HA was explored. As HKSP-

induced IL-27 and IL-12p70 were inhibited by HA, these were of particular interest. 

Stimulation with a TLR5 agonist restored HKSP-induced IL-27 and IL-12p70. In addition, 

TLR5 agonism increased levels of IL-23 and IL-1b to above those observed in HKSP 

(alone) treated cells. As with studies performed using IAV, TLR5 agonism appears to be 

very effective in circumventing inhibition of HKSP induction by HA. This shows promise, 

but the effects of TLR5 agonism on other viral components should perhaps be 

considered to determine how this circumvention may be occurring. The work presented 

in this Chapter is entirely novel and no other research has been published examining the 

effect of IAV HA treatment on S.p. associated TLRs in human cells. Additionally, the 

interaction between TLR5 agonism and HA treatment had not been previously 

demonstrated.
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5.0 GENERAL DISCUSSION 

Respiratory infections are the leading cause of disease worldwide [424]. Acute 

respiratory disease is most commonly caused by viral pathogens [21]. Influenza is one 

of the most prevalent respiratory viral pathogens [17]. Influenza A Virus is highly 

contagious and poses substantial public health problems due to its strong association 

with morbidity and mortality [18]. It is estimated that seasonal influenza virus is the cause 

of approximately half a million deaths annually [30,31]. Most of these deaths are due to 

secondary bacterial pneumonia [18,85]. It is widely believed that these co-infections are 

a major contributor to increased morbidity and mortality associated with both seasonal 

and pandemic outbreaks of influenza [18]. Such secondary bacterial infections are 

typically caused by capsular, extracellular bacteria such as S.p. and Staphylococcus 

aureus [1–3]. Th1 cells were originally thought to be the crucial cell group in clearing 

such bacterial infections [266]. However, more recently Th17 cells have been identified 

as pivotal in the effective clearance of S.p. from the lung [88]. In addition, further studies 

demonstrated that IAV infection inhibits the Th17 response in mice [2,349]. As mentioned 

previously, most of the research carried out in this area is performed in animal models, 

particularly mice [102,316–319]. However, such research can often be contradictory 

[102,316]. To overcome some of the drawbacks encountered with conventional mouse 

models, humanised mouse models have been developed. Humanised mouse models 

are developed by engrafting human cells (often PBMCs) and tissues into 

immunodeficient mice, resulting in the recreation of a functional human immune system 

in mice. This also means that human influenza viruses can be used as opposed to 

mouse-adapted viruses. However, as with all models, there are limitations such as the 

high variability between mice during the development of the humanised mouse model, 

and differences in the mechanisms of viral pathogenesis between humans and mice 

[425–429]. Although, mouse models are routinely used, many studies have proposed 

that ferrets are the most suitable animal to model influenza and bacterial co-infections 

as they are susceptible to infection with human influenza viruses, whereas most mouse 

models require prior host adaptation of the human viruses [324,325]. There are other 

limitations to using ferrets, which limit the group sizes, resulting in problems regarding 

statistical analyses [327]. Common in vitro models have involved culturing DCs in the 

presence of IL-4 and GM-CSF, or IFN-a to generate IL-4 DCs and IFN-DCs, respectively 

[328–332,336,337]. However, IL-4 DCs are unlikely to portray the cytokine environment 

at the site of a viral infection [332,333], and additionally, IFN-DCs have additional 

properties which mark them as distinct from DCs in vivo [336,338,339]. Due to this, our 

lab group sought to develop a human ex vivo immune model to examine viral infections 
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such as IAV. The resulting model is based on the isolation of primary human immune 

cells and subsequent purification of CD14+ APCs. The purified CD14+ APCs can be 

directly infected/stimulated, without the requirement of pre-priming of the immune 

responses [333,340,341]. The benefit of not pre-priming the cells is that immune 

responses are not skewed and mimic in vivo responses more closely [333]. A time-point 

of 24 hours was chosen to analyse as clinical symptoms and immune responses have 

been shown to manifest by then, which indicates very early immunosuppression by IAV 

infection [18,150,260,325,351,430]. Additionally, as asymptomatic carriage of 

pneumococcus is very common, especially in children, an early time point was of great 

interest [431,432]. Previously, the human ex vivo model was used to examine the effect 

of IAV infection on responses to S.p. using a lab-adapted virus and a clinical isolate of 

IAV along with in-house generated heat killed S.p. It demonstrated that IAV inhibited 

important pneumococcus driven innate cytokines secreted by human APCs and adaptive 

cytokines secreted by T cells [350]. Immune responses often differ when presented with 

distinct IAV strains and bacterial subtypes [302,309,351]. It was an aim of this project to 

confirm infectivity of H1N1 and H3N2 and to quantify the amount of NP produced from 

donor to donor. Additionally, another aim was to establish immune responses to heat 

killed S.p. using new batches of live H1N1 and a new clinical isolate of H3N2 to further 

characterise the human ex vivo model. 

 

Here, we confirm that live H1N1 and H3N2 viruses have the ability to infect isolated 

CD14+ APCs. To confirm this, an assay was designed which detected the presence and 

relative quantity of IAV NP using qPCR. Both H1N1 and H3N2 NP expression was 

amplified using qPCR. This served as a reliable indicator of infectivity as during IAV 

infection, NP is expressed intracellularly [340,352]. NP was detected in all IAV-infected 

cells. There was very little variability of H1N1 and H3N2 NP between donors, indicating 

that the H1N1 and H3N2 virus infectivity is very reproducible. H3N2 NP was less 

abundant than H1N1 NP; this may be because H1N1 is a lab-adapted virus, whereas 

H3N2 is a clinical isolate of IAV. These viruses were used throughout this study. This is 

a novel method for determining the relative quantification of IAV NP and it has been very 

effective in confirming how reproducible the IAV infections were.  

We also provide further evidence in Chapter 2, that live IAV infection inhibits innate Th17 

and Th1 polarising cytokines induced in response to S.p. infection. This was determined 

by analysing levels of secreted cytokines in supernatants from APCs using ELISA. To 

ensure effective characterisation of the new batches and clinical isolates of IAV and S.p., 

a very high donor number was used for this study (n=20). This was to overcome any 

potential variabilities between donors as blood samples were from healthy human 
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donors. The cytokines analysed are involved in the Th17 and Th1 immune response to 

S.p., along with anti-inflammatory cytokines which can inhibit Th17 and Th1 immune 

responses. Specifically, our findings have demonstrated that both H1N1 and H3N2 

inhibited HKSP-induction of innate polarsing cytokines, IL-23, IL-6, and IL-27. IL-23 and 

IL-6 are essential in the Th17 response, whereas IL-27 has been implicated in both the 

Th17 and Th1 responses [182,228,246,354]. The inhibition of IL-27 is very interesting 

due to the apparent contradiction of its role in both the Th1 and Th17 response as it can 

both induce and inhibit these responses depending on which transcription factors are 

activated [182,228,354,376]. As HKSP-induction of IL-27 was itself inhibited by IAV, 

downward pressure on the Th17 responses cannot be attributed to it. H1N1 inhibited 

HKSP-induced IL-12p70, which is a Th1 cytokine, but H3N2 did not. IL-12p70 is involved 

in the production of IFN-g, although there are conflicting reports on its effect on the 

clearance of S.p. [3,185,293,294]. It is surprising that H3N2 did not inhibit HKSP-

induction of IL-12p70 as previously H3N2 was shown to inhibit these responses [350]. 

Commercially bought HKSP used for this study did not induce IL-12p70 very strongly, 

which may be why there was no inhibition of HKSP-induced IL-12p70 by H3N2. IAV did 

not inhibit pneumococcus-driven IL-1b, which is also essential in the Th17 response to 

S.p. [246]. Numerous other studies have also reported that IL-1b is induced by IAV in 

humans and mice [433–435], although induction occurred at later time points in these 

studies. Therefore, the lack of inhibition of IL-1b by IAV is unsurprising. There are 

numerous pathways whereby IL-1b is induced, which may be why IL-1b is not inhibited 

by IAV as with other Th17 cytokines [224]. We have also demonstrated that the inhibition 

of HKSP-induced IL-23, IL-6, IL-27, and IL-12p70 by IAV was not due to elevated levels 

of anti-inflammatory TGF-b and IL-10, or due to an increase in apoptosis. We also 

demonstrated that IAV infection inhibited Th17 and Th1 adaptive cytokines, IL-17A and 

IFN-g. The adaptive response was studied by performing a MLR assay whereby 

infected/treated APCs from one donor are co-cultured with T cells from a different donor, 

resulting in an allogeneic response due to mis-matched MHC antigens. The inhibition of 

these cytokines was unsurprising as other studies have also demonstrated that IAV 

inhibits bacterial induction of IL-17A in mice [349,376]. Interestingly, HKSP-induction of 

IFN-g was inhibited by both H1N1 and H3N2, and yet HKSP-induction of IL-12p70, which 

positively regulates IFN-g was only inhibited by H1N1. Induction of IFN-g can occur via 

two distinct pathways, which may explain this phenomenon [280–283]. As with innate 

responses, IAV-inhibition of HKSP-induced adaptive cytokines was not due anti-

inflammatory TGF-b and IL-10. These studies are consistent with previous results 

showing that IAV inhibits innate responses that drive Th17 and Th1 polarisation, which 
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results in inhibition of adaptive Th17 and Th1 responses by human monocytes, and by 

APC-T cell co-cultures. This points to IAV having a more direct inhibitory effect on both 

innate and adaptive responses and raises the question of how the virus is inhibiting these 

responses. 

 

As the inhibition of pneumococcus responses by IAV was shown to not be as a result of 

anti-inflammatory cytokines or an increase in apoptosis, other possible pathways where 

IAV could be both indirectly and directly targeting were explored. As a result, another 

aim of this project was to determine the levels of type I IFN present across treatments 

as various studies have implicated induction of type I IFN as being responsible for 

inhibition of pneumococcus responses by IAV [2,3,436]. In Chapter 3, we have presented 

novel findings demonstrating that IAV mediated inhibition of Th17 responses were not 

due to type I IFNs in human APCs. Expression of IFN-a mRNA was only amplified in 1 

out of 4 donors, except for those treated with the positive control, Poly(I:C). Levels of 

IFN-a mRNA were higher in cells treated with HKSP alone than in cells co-treated with 

both HKSP and IAV. Very low levels of IFN-b mRNA was detected in all samples, except 

for cells treated with Poly(I:C), which induced very high levels of IFN-b. There was no 

significant increase in levels of IFN-b mRNA in HKSP and IAV co-treated cells compared 

HKSP-alone treated cells. The inhibition cannot be attributed to type I IFN mRNA 

expression as minor amplification of IFN-a occurred in only one donor and any 

amplification which did occur was extremely low, and IFN-b was not amplified beyond 

basal levels. The inhibition cannot be due to IFN-a protein production as although IFN-

a was detected in cells co-treated with HKSP and H1N1, no IFN-a was detected in cells 

co-treated with HKSP and H3N2, where inhibition was also observed. Additionally, IFN-

b protein production cannot be the reason for the inhibition as the levels of IFN-b protein 

in co-infected cells was at most at basal levels such as those measured in untreated 

cells, where no inhibition of immune responses occurs. This work corroborates other 

research suggesting that IFN-a is not produced until 3 days post-influenza infection [2], 

which is later than the time point we have chosen to study. A reason for late production 

of type I IFNs can be attributed to the influenza protein, NS1, which blocks IRF3, IRF7, 

and NF-kB, resulting in the inhibition of type I IFNs [437]. Additionally basal levels of IFN-

b protein has been shown to be insufficient to inhibit Th17 responses in humans [412]. 

This is a novel finding which shows that production of type I IFNs are not involved in the 

inhibition of pneumococcus responses in human monocytes. This is the first study to 

demonstrate that inhibition of Th17 responses by IAV occurs without Type I IFN 

production. 
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As IAV inhibition of HKSP responses could not be indirectly attributed to the presence of 

type I IFN, it suggested that IAV may be having more of a direct effect on immune 

responses to HKSP. Therefore, the immune response to S.p. was researched to find 

possible areas where IAV may target. TLR recognition is a fundamental part of the 

immune responses to S.p. The specific TLRs involved in S.p. recognition are TLR2, 

TLR4, and TLR9 [96]. In mice, research has shown that in the absence of TLR2 

signalling, S.p. infection occurred more efficiently during influenza co-infections [316]. 

TLR2 has been shown to recognise pneumococcal cell wall components including LTA 

[123]. TLR4 is triggered in responses to S.p. by recognising PLY in humans and mice 

[126–128], but is also triggered by LPS from Gram-negative bacteria [438]. TLR9 

recognises pneumococcal DNA comprising unmethylated CpG motifs [126–128,130]. In 

Chapter 3, a large focus of the research involved determining if IAV was directly inhibiting 

S.p. associated TLR induction. The findings detailed in Chapter 3, demonstrate that each 

of the S.p. associated TLRs are targeted directly by IAV infection. IAV appears to be 

exerting a stronger inhibitory effect on the TLR2 and TLR9 pathways than the TLR4 

pathway. The differential effects of IAV between the TLRs may be explained by slight 

variations in the signalling pathways of these receptors. For instance, the TLR2 and 

TLR9 pathways are both MyD88-dependent, meaning they require recruitment of the 

adaptor molecule, MyD88 in order to trigger downstream signalling cascades [133–

135,439]. However, the TLR4 pathway is MyD88-independent, meaning it can recruit 

MyD88, or it can recruit a different adaptor molecule TRIF, both of which trigger 

downstream signalling [134,135]. As TLR4 can signal through two distinct pathways, this 

may explain why TLR4 agonism appears to be less susceptible to inhibition by IAV that 

TLR2 and TLR9 agonism. The more robust nature of the TLR4 pathway may be why one 

study suggested that a TLR4 agonist encouraged innate immunity against S.p. during 

co-infection with IAV [440]. Induction of IL-23 in response to TLR2 and TLR9 agonism 

was inhibited by both strains of IAV, which is interesting as in Chapter 2 HKSP-induction 

of IL-23 was also inhibited by IAV. Induction of TGF-b by each of the TLRs was inhibited 

by both H1N1 and H3N2. It should be noted that although TLR-induction of TGF-b was 

inhibited by IAV, HKSP-induction of TGF-b (Chapter 2) was not. As mentioned 

previously, this may be due to the agonists being mono-agonists. As whole HKSP is 

detected by multiple TLRs, it is likely that immune responses are less vulnerable to 

inhibition compared to when a single TLR is being stimulated. TLR-induced IL-1b, IL-6, 

IL-27, and IL-12p70 were not affected by IAV infection, suggesting that IAV is having a 

specific inhibitory effect on TLR-induced IL-23 and TGF-b. As IL-23 is a very important 
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cytokine involved in Th17 commitment, this of significant interest, and merited further 

investigation.  

 

IL-23 expression is induced by RORC, which is a transcription factor specific to the Th17 

response [187,190–193,196–201]. With a view to providing additional mechanistic 

insight into how IAV inhibits S.p. and TLR agonist induction of IL-23, we sought to 

determine if IAV was directly targeting TLR-induction of RORC. Results presented in 

Chapter 3, indicate that TLR2 agonist induction of RORC was not inhibited by IAV, 

although TLR9 agonist induction of RORC was inhibited by both H1N1 and H3N2. TLR2 

agonist induction of RORC was inconsistent in our model, with only one donor out of 

three inducing RORC above basal levels. A study performed using human B cells found 

that TLR2 agonism did not induce RORC, and found that TLR9 agonism did induce 

RORC, which corroborates the data presented here [441]. Although, this study did not 

hypothesise why this may have occurred, as mentioned previously, it may be due that 

RORC is induced by TLR2 agonism at a different time point as RORC has been shown 

to be induced at different time points [206]. The inhibition of RORC by IAV may be playing 

a pivotal role in the downstream inhibition of cytokines involved in the Th17 response. 

This effect of IAV on TLR-induction of RORC has not been previously demonstrated in 

human APCs and may be of use when developing therapeutic targets. For instance, if 

RORC expression was restored, this may prevent the downstream inhibition of 

cytokines. A study researching the role of RORC on psoriasis, demonstrated that 

Imiquimod, a topical prescription medicine, upregulated RORC at both the mRNA and 

protein level [442], therefore similar treatments (although not topical) may be beneficial 

to trial for treatment of respiratory bacterial infections. 

 

As S.p.-associated TLR pathways were each inhibited by IAV, we sought to investigate 

other TLRs. Multiple studies on TLR5 signalling demonstrated that it may induce 

protective responses during bacterial infections [382–384]. Additionally, TLR5 agonism 

has elicited protection against Clostridium difficile, vancomycin-resistant Enterococcus, 

and S.p. in mice [385–387]. This is interesting as TLR5 is induced by flagellin which is 

not a component of S.p. Due to this, we sought to establish whether IAV also inhibited 

TLR5 agonism in APCs. In this study, we have established that IAV infection does not 

inhibit TLR5-induction of Th17 and Th1 polarising cytokines. Other research using 

mouse models have demonstrated that TLR5 agonsim can exert therapeutic benefits 

when combined with antibiotic administration during treatment of IAV and S.p. co-

infections [388]. Therefore, an aim of this study was to determine whether a TLR5 agonist 

can be used to restore IAV inhibited immune responses to S.p. in human APCs. 
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In Chapter 3, we have established that TLR5 agonism restored levels of HKSP-induced 

IL-23 and IL-27 which were previously inhibited by IAV. Additionally, in cells co-treated 

with HKSP, IAV, and a TLR5 agonist, levels of IL-12p70 were induced beyond those in 

cells treated with HKSP alone. These results present a novel mechanism for restoring 

Th17 and Th1 polarising cytokines in human APCs, which may also prevent inhibition of 

Th17 and Th1 adaptive cytokines. As discussed before, there has been research 

performed in this area previously, although in mouse models. As immune responses in 

mice and humans are not always conserved, it is of great import that research is also 

carried out in human models. These results corroborate those generated in mouse 

models, which may help to demonstrate the possibility of utilising TLR5 agonists to boost 

immune responses. Such treatments may prove to be indispensable especially when 

considering the great task of overcoming AMR. Boosting immune responses via TLR 

agonists may prove to be a very effective tactic for not only improving the efficacy of 

antibiotics (which will be less and less effective by themselves as time passes), but may 

even be sufficient alone. In order to provide balance, the use of such treatment strategies 

must also be cautioned due to the known pathogenic effects that elevated Th17 

responses can exert [198,295–297]. Although, other studies in mice observed that lung 

tissue fully recovered 1 week after administration despite very high inflammatory 

responses before, which points to the effects of flagellin being somewhat “self-limiting” 

[387]. This may prove to be key in developing future anti-microbial treatments, but as 

with other research, this needs to be verified in human models. It should also be noted 

that studies which analysed the effect of TLR5 signalling using knock-down mice (TLR5-

/-), were performed using Gram-negative bacteria, and these studies found that TLR5 

signalling conferred protection against bacterial infections [382,383]. However, all 

studies which utilised a TLR5 agonist as a treatment against bacterial infection were 

performed using Gram-positive bacteria [385–387]. With the exception of studies using 

S.p., all other bacteria were flagellated [382–387]. Although S.p. do not contain flagella 

and have not traditionally been associated with TLR5, it has been hypothesised that a 

reason why TLR5 is beneficial to S.p. clearance is because TLR5 signalling also induces 

a MyD88-dependent signalling cascade, which as mentioned before is a key pathway 

triggered by S.p. infection [387]. This creates the question of how IAV inhibits TLR2- and 

TLR9- recruitment of MyD88, but does not appear to affect TLR5 recruitment of MyD88. 

The MyD88-dependent pathway is identical regardless of which TLR triggers it. As TLR5 

agonism triggers Th17 responses even in the presence of IAV infections, this may point 

to TLR5 utilising a distinct pathway of which there is no knowledge of. These findings 

may not only be significant for IAV-bacterial infections, but may also be of interest for 
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those studying the field of autoimmunity as the more that is known about the Th17 

pathway, the easier it may be to develop better treatment strategies. This may prove to 

be a very important finding and merits further research. 

 

To elucidate how IAV infection inhibits immune responses, the components of IAV were 

examined. The surface glycoproteins HA and NA are components of IAV, which act as 

viral antigens [33]. The HA protein is of particular interest as it serves as a target for 

influenza vaccine development, which is the primary approach utilised in the prevention 

and regulation of influenza infections [6,7]. Due to the importance of HA and as live IAV 

has been shown to inhibit both immune responses to HKSP and TLR agonism 

(summarised in Chapter 2 and Chapter 3), the effect of HA on both HKSP and TLR 

agonism was examined, with a view to determining if HA may be partially responsible for 

IAV mediated immune inhibition (summarised in Chapter 4). In this study, HKSP-induced 

IL-27 and IL-12p70 were inhibited by both H1N1 and H3N2 HA. It is interesting that HA 

is having an impact on these particular cytokines as IL-12p70 is a Th1 polarising cytokine 

and although IL-27 has a role in Th17 differentiation, it also contributes to Th1 immunity 

[354,423]. HA did not inhibit HKSP-induction of Th17 polarising cytokines (IL-23, IL-6, or 

IL-1b), therefore it is possible that HA has a particular effect on Th1 polarising cytokines. 

It may be that different viral components target distinct Th cells, therefore it may be of 

interest to examine other viral components to determine their effects on the same 

cytokines. After analysing innate responses, the effect of HA on adaptive responses was 

explored. HKSP-induced IL-17A and IFN-g were both inhibited by H1N1 HA and H3N2 

HA. It is curious that HKSP-induction of IL-17A was inhibited by HA and yet HKSP-

induction of IL-23 was unaffected by HA as IL-23 is known to be important in the 

expansion of Th17 cells, which produce IL-17A. A study in mice found that IL-17A can 

be induced by IL-6 and TGF-b, in the absence of IL-23 [246]. However, neither HKSP-

induced IL-6 or TGF-b were inhibited by HA. This points to HA having a specific inhibitory 

effect on IL-17A, without affecting the innate responses which inform adaptive 

responses. Although, the results obtained using HA are of interest, it seems unlikely that 

HA is the main cause of inhibition by IAV as HA does not inhibit HKSP-induction of any 

Th17 polarising cytokines. Different viral components such as NA or NS1 may be 

exerting more profound inhibitory effects. Or perhaps it is a combination of each viral 

component working in synergy that results in IAV mediated inhibition of immune 

responses. The effect of HA should not be minimised though, especially as it is a 

common component of influenza vaccines [6,7]. Pneumococcal vaccines are often given 

concurrently with influenza vaccines (albeit at a different site) [108]. Keeping this in mind 
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and considering that HA has inhibited HKSP responses, it would be recommended to 

continue to administer vaccines at different sites, but also to perhaps stagger 

administration of these vaccines. This may improve efficacy of the pneumococcal 

vaccine, and eliminate potential interference from HA in the influenza vaccine. 

 

An aim of this study was to continue the research examining S.p.-associated TLR 

agonists (summarised in Chapter 3). To enable this, the effect of HA (which inhibited 

HKSP responses) on TLR agonism was examined in our human ex vivo model. The 

further research performed in this chapter, demonstrated that H1N1 HA and H3N2 HA 

inhibited TLR2-induced TGF-b. As mentioned before, it is interesting that TLR-induced 

TGF-b was inhibited by both HA and live IAV, yet HKSP-induced TGF-b was not inhibited 

by either. This is most likely due to the mono-agonist nature of the TLR2 agonist which 

exclusively activates the TLR2 receptor compared with whole HKSP which activates 

multiple receptors, and is therefore less vulnerable to inhibition. TLR9-induction of IL-23 

was inhibited by H1N1 HA, but not H3N2 HA. As mentioned before, the inhibitory effect 

of IAV on TLR9-induction of IL-23 was also very strong. Even though HA inhibited TLR9-

induction of IL-23, it is unlikely that IAV-mediated inhibition is due to this entirely as only 

H1N1 HA inhibited TLR9-induced IL-23, yet live H3N2 also inhibited TLR9 agonism. 

TLR9-induction of TGF-b was not inhibited by HA, but was inhibited by live IAV. 

Additionally, HA did not inhibit HKSP-induced IL-23, therefore there are additional 

aspects and mechanisms to consider. 

 

Current clinical trials are ongoing to determine the safety and efficacy of using a TLR5 

agonist as an adjuvant to the influenza vaccine [420–422]. As HA is also a common 

component of influenza vaccines, any possible interactions between HA and flagellin 

should be explored. It was established that HA treatment did not inhibit TLR5-induction 

of Th17 and Th1 polarising cytokines. This is in keeping with studies in Chapter 3, where 

live IAV was shown to not have an inhibitory effect on TLR5 agonism. This apparent lack 

of any inhibitory effect by HA on TLR5 agonism is reassuring, especially as the TLR5-

adjuvant influenza vaccine currently being trialled may be able to overcome the issues 

encountered with elderly people, whereby they require a higher dose of HA to induce 

immunity [26,420]. 

As a TLR5-adjuvant influenza vaccine may used commonly in the future, the combined 

effect of HA, a TLR5 agonist, and HKSP was examined. These were examined together 

as the pneumococcal vaccine is commonly administered simultaneously with the 

influenza vaccines [108]. TLR5 agonism also restored HKSP-induced IL-27 and IL-

12p70 which had been inhibited by HA treatment, and additionally boosted levels of IL-
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23 and IL-1b to above those induced by HKSP alone treated cells. These results using 

HA treatment, mirror those obtained using IAV. This is the first study to analyse the effect 

of H1N1 and H3N2 HA on TLR agonism in human APCs. As flagellin (TLR5 agonist) is 

very effective at boosting Th17 polarising cytokines, individuals with autoimmune 

conditions may not eligible for administration with this potential new adjuvant influenza 

vaccine, due to the detrimental role of Th17 cytokines in autoimmune conditions.   

 

Overall, this project has demonstrated the use of our human ex vivo model and has 

highlighted the need to also include human models in the field of research. It is well 

known that IAV predisposes individuals to S.p. infections, however the many 

contradictions surrounding the possible reasons behind this can be difficult to navigate. 

The dogma for a number of years has been that the inhibition of S.p. responses is due 

to type I IFNs, however these responses are known to be inhibited by viral NS1 [270–

272]. We have shown that type I IFNs are not produced, yet inhibition of S.p.-induced 

immune responses by IAV occurs regardless. This pointed to IAV directly having an 

effect on immune responses, which directed our focus towards possible mechanisms of 

interest. We identified that IAV targets specific S.p.-associated TLRs and does not target 

TLR5, which has not been linked with detection of S.p. TLR5 agonist treatment reversed 

inhibition of S.p. responses by IAV and shows great promise for improving outcomes of 

bacterial infections. The use of TLR agonists as possible therapeutic treatments is an 

exciting and innovative area of research of which there is still much to explore. The areas 

of research where TLR agonism is applicable are manifold including vaccine adjuvants, 

cancer therapies, and allergy treatments [443–447]. 

 

Many of the studies found in the literature have been performed in mouse models, 

therefore this is an area of great novelty for any studies where a human model is utilised. 

As mentioned previously there should always be caution exerted when using treatments 

which alter immune responses as the knock-on effects can be detrimental. Th17 cells, 

although very effective in the clearance of bacterial infections, can elicit highly 

pathogenic effects when produced in abundance. For instance, IL-17 (which is produced 

by Th17 cells) has been shown to be responsible, for autoimmune diseases such as 

psoriasis, Crohn’s disease, rheumatoid arthritis, MS, and asthma [198,295–297]. 

Encouragingly, the effects of TLR5 agonism, specifically flagellin, have been shown to 

be transient and “self-limiting” as lung tissue in mice fully recovered from high 

inflammatory responses 1 week after administration [387]. However, another potential 

problem to consider is the relapsing nature of such autoimmune issues. Therefore, 

longer-term studies should be performed to help determine how likely such a treatment 
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may be to cause pro-inflammatory autoimmune conditions. If such issues are rectified 

(or indeed shown not to be problematic), TLR treatments may become invaluable in 

aiding the treatment of bacterial infections, which is of ever-growing necessity due to the 

increase in anti-microbial resistance. 

 

5.1 NOVEL FINDINGS OF THIS STUDY  

1. Demonstrated continued and consistent inhibition of S.p.-induced human (innate 

and adaptive) Th17 and Th1 responses by new batches of H1N1 and new clinical 

isolates of H3N2 

2. Determined that early inhibition of Th17 responses by IAV is not due to the 

presence of type I IFNs in human APCs 

3. Established that IAV infection directly inhibits S.p. associated TLRs in human 

APCs 

4. Ascertained that TLR9-induction (but not TLR2-induction) of RORC is inhibited 

by IAV in human APCs, which may be key in downstream inhibition of cytokines 

5. Verification that IAV does not target TLR5 agonism in human APCs 

6. Demonstrated a restoration of S.p.-induced Th17 and Th1 responses during IAV 

infection by using a TLR5 mono-agonist as a treatment in human APCs 

7. Established a link between TLR5 signalling and Th17 responses, which may 

provide novel mechanistic insights into use of TLR5 agonism in bacterial 

infections, particularly those caused by Gram-positive bacteria 

8. Identified that HA is not solely responsible for IAV-mediated inhibition of TLR 

responses, thus providing rationale to explore other IAV viral components 

 

5.2 FUTURE WORK  

There are many interesting avenues with which to continue this important research. A 

laboratory-strain of H1N1 was used for this study as this strain is very widely used and 

it facilitated comparing our findings to other studies on mice and human models. 

However, it may be of interest to also supplement future work using a clinical isolate of 

H1N1 along with additional strains of H3N2 and other subtypes. This is with a view to 

eventually using our human ex vivo model to help identify which strains of IAV are most 

likely to predispose individuals to secondary bacterial infection. The ideal scenario would 

involve aligning the Viral Immunology Group at DCU with an influenza centre, where we 

would be given IAV strains currently in circulation. Using these strains, we could use the 

model to determine the effect of these strains on Th17 responses. The results obtained 
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in our laboratory could be compared to the percentage of secondary infections in the 

population to determine how suitable this method is in predicting the likelihood of 

individual strains causing secondary bacterial infections. Ultimately, this method may be 

used to help advise, not only vaccination strategies, but also the clinical management of 

infections. For instance, if a circulating influenza strains is known to be particularly 

immunosuppressive, prophylactic treatments may be recommended for very vulnerable 

individuals. 

In the more immediate future, it would be interesting to study the effects of the influenza 

surface glycoprotein, NA. It has been suggested that influenza vaccine development has 

underexploited NA immunity, however there are now numerous studies which have 

demonstrated the potential benefits of including NA in vaccine formulations [448–452]. 

The supposed underuse of NA as an antigen in vaccines was due to many issues 

including NA being unstable which resulted in conflicting reports of NA immunogenicity 

[453]. However, as NA is now being considered as a component for broad-spectrum 

influenza vaccines, the effects of NA on responses to S.p. and TLR agonism may be an 

important addition to the field [448,450,454].  

Additionally, the influenza viral protein, NS1 may also be of interest. NS1 is known to 

inhibit immune host antiviral responses, such as the production of type I IFNs [270–272]. 

The antagonism of host immune responses by NS1 differs between IAV strains, but NS1 

has been shown to inhibit IRF3 and NF-kB transcription [171,172,455]. Due to this, NS1 

has been identified as a possible target for therapies to treat IAV infections. A chemical 

inhibitor of NS1 (JJ3297) has been effective in preventing influenza viral replication [456]. 

As very low levels of type I IFN was detected in cells in our human ex vivo model, it may 

be attributed to NS1. Therefore, it may be of interest to try and determine what else NS1 

may be targeting. The effect of NS1 treatment on S.p. and TLR agonism would also be 

beneficial to give more insight into the mechanisms behind IAV-mediated inhibition of 

S.p. responses. Additionally, the effect of using multiple agonists simultaneously should 

be explored as a study has shown that ligands with specific affinity for TLR2/6 and TLR9 

have been shown to induce protection when combined against influenza and also in the 

early stages of S.p. infection in mice [130,403].  

To complement results examining expression of RORC, which is induced by STAT3, it 

may be insightful to study the levels of phosphorylation of both STAT1 and STAT3. 

These are transcription factors which heavily influence whether Th17 responses are 

induced or inhibited. For example, STAT1 has a profound inhibitory effect on Th17 

responses but induces Th1 responses, whereas STAT3 strongly induces Th17 

responses and inhibits Th1 responses [203,233–236]. By determining the levels of these 

transcription factors, it may give insight as to whether Th1 and Th17 responses are 
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affected differentially across treatments. It may also be beneficial to study additional 

time-points with a view to expanding the knowledge on the capability of TLR2 to induce 

RORC. 

To further the research already completed using the TLR agonists, the effect of IAV and 

components of IAV on the adaptive immune responses to TLR agonism would be an 

important addition and add to the knowledge base, especially regarding using TLR5 

agonism as a treatment strategy.  

This research is not only very promising for creating a better understanding of how IAV 

inhibits S.p. infections but also may be helpful to those researching treatments for pro-

inflammatory autoimmune conditions. It may be useful to study whether viral components 

could be utilised to reduce inflammation in patients with these conditions, to alleviate 

symptoms, both short-term and long-term.
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APPENDIX 1 – CHAPTER 3  

APPENDIX 1.1: THE OPTIMAL DOSE OF TLR2 AGONIST 

To determine the optimum dose of the TLR2 agonist, dose responses were performed. 

Lipoteichoic acid from Staphylococcus aureus (LTA-SA) (Invivogen) was used as a TLR2 

agonist at a range of doses from 15 µg to 30 µg. The TLR2 agonist, LTA-SA induces 

pneumococcus-driven cytokines most consistently at a concentration of 20 µg. The 20 

µg dose was the strongest IL-23 inducer (n=3). Induction of IL-6 did not occur above 

baseline levels, regardless of treatment (n=3). The 20 µg dose of LTA-SA induced a 

slightly stronger IL-27 response than the 30 µg dose (n=3). Additionally, the 20 µg dose 

of LTA-SA induced a stronger induction of IL-12p70 than others, however as most values 

were below limit of detection, therefore data could not be normalised to reflect multiple 

donors (data not shown). 

 
Appendix 1.1 TLR2 agonist (LTA-SA) induces pneumococcus-driven cytokines most consistently at a 
concentration of 20 µg. The levels of IL-23, IL-6, and IL-27 secreted by CD14+ APCs following 24 hr 
treatment with HKSP, LTA-SA at doses of 15 µg, 20 µg, and 30 µg or untreated as a control were determined 
by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 experimental repeats of 
each treatment in the same donor (n=3). 
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APPENDIX 1.2: THE OPTIMAL DOSE OF TLR4 AGONIST 

To determine the optimum dose of the TLR4 agonist, dose responses were performed. 

Ultra-pure Lipopolysaccharide from E. coli (LPS-EB) (Invivogen) was used a TLR4 

agonist at a range of doses from 50 ng to 250 ng. 

The TLR4 agonist, LPS-EB induces pneumococcus-driven cytokines most consistently 

at a concentration of 100 ng. The 100 ng dose induced the strongest responses of IL-

23, IL-27, and IL-12p70 (n=3). As with the TLR2 agonist, induction of IL-6 did not occur 

above baseline levels, regardless of TLR4 treatment (n=3).  

 
Appendix 1.2 TLR4 agonist (LPS-EB) induces pneumococcus-driven cytokines most consistently at a 
concentration of 100 ng. The levels of IL-23, IL-6, IL-27, and IL-12p70 secreted by CD14+ APCs following 
24 hr treatment with HKSP, LPS-EB at doses of 50 ng, 100 ng, 150 ng, and 250 ng or untreated as a control 
were determined by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 
experimental repeats of each treatment in the same donor (n=3). 
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APPENDIX 1.3: THE OPTIMAL DOSE OF TLR9 AGONIST 

To determine if the TLR9 agonist could induce pneumococcus-driven cytokines were 

stimulated with 2 µM of the chosen TLR9 agonist, Class A CpG oligonucleotide (ODN 

2216) (Invivogen). The TLR9 agonist, ODN 2216 induces pneumococcus-associated 

cytokines at a concentration of 2 µM. The 2 µM dose induced very robust levels of IL-23 

(n=3). As with previous TLR agonists, IL-6 was not induced past baseline levels by the 

TLR9 agonist (n=3). The TLR9 agonist induced both IL-27 and IL-12p70 above baseline 

levels (n=3). 

 
Appendix 1.3 TLR9 agonist (ODN 2216) induces pneumococcus-driven cytokines at a concentration of 2 
µM. The levels of IL-23, IL-6, IL-27, and IL-12p70 secreted by CD14+ APCs following 24 hr treatment with 
HKSP, ODN 2216 at a dose of 2 µM or untreated as a control were determined by ELISA. Each column 
represents normalised mean cytokine levels + SEM of 3 experimental repeats of each treatment in the same 
donor (n=3). 
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APPENDIX 1.4: THE OPTIMAL DOSE OF TLR5 AGONIST 

To determine the optimum dose of the TLR5 agonist, dose responses were performed. 

Flagellin from Salmonella typhimurium (FLA-ST) (Invivogen) was used a TLR5 agonist 

at 100 ng and 200 ng. The TLR5 agonist, FLA-ST induces pneumococcus-driven 

cytokines most consistently at a concentration of 100 ng. The 100 ng dose induced the 

strongest responses of IL-23, IL-27, and IL-1b (n=3). Induction of IL-6 did not occur 

above baseline levels, regardless of TLR5 treatment (n=3).  

 
Appendix 1.4 TLR5 agonist (FLA-ST) induces pneumococcus-driven cytokines most consistently at a 
concentration of 100 ng. The levels of IL-23, IL-6, IL-27, and IL-1b secreted by CD14+ APCs following 24 hr 
treatment with HKSP, LFLA-ST at doses of 100 ng and 200 ng or untreated as a control were determined 
by ELISA. Each column represents normalised mean cytokine levels + SEM of 3 experimental repeats of 
each treatment in the same donor (n=3). 
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APPENDIX 2 – CHAPTER 4  

APPENDIX 2.1: NEW BATCHES OF HAEMAGGLUTININ DISPLAY 

SIMILAR EFFECTS TO PREVIOUS BATCHES 

To facilitate further studies on the effect of HA treatment on TLR agonism, it was 

important that new batches of HA were characterised fully. The effect of new HA batches 

(received from NIBSC) on the response to pneumococcus was analysed to add to 

important work already completed. The level of inhibition of HKSP responses by HA was 

compared between different batches by cross-checking differences in fold-change 

cytokine expression between HKSP-treated cells and HKSP and HA co-treated cells. 

The results obtained show that the new batches of HA do not inhibit HKSP-induction of 

IL-23, no inhibition occurred with previous HA either. No inhibition of HKSP-induced IL-

6 occurred in response to treatment with new HA batches, however previously HKSP-

induction of IL-6 was inhibited by the 1 µg dose of H1N1 HA. All treatments with new HA 

inhibited HKSP-induction of IL-27, whereas previously, only the H1N1 HA inhibited 

HKSP-induction of IL-27. No inhibition of HKSP-induced IL-1b occurred despite HA 

treatment; this occurred with both old and new batches of HA. Using new batches of HA, 

the 1 µg dose of both H1N1 HA and H3N2 HA inhibited HKSP-induction of IL-12p70. 

Previously, the 3 µg dose of H1N1 HA also inhibited HKSP-induction, although a 

reduction was observed using new batches, this was no statistically significant. The 3 µg 

dose of H3N2 HA (new batch) inhibited HKSP-induced IL-10, whereas no inhibition 

occurred with previous batches of HA. No inhibition of HKSP-induced TGF-b occurred in 

response to new batches of HA, whereas previous batches of H1N1 HA did inhibit HKSP-

induced TGF-b. 
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Appendix Table 2.1 Comparison between inhibition of previous HA batch results 
against current results generated with new batches of HA 

Cytokine 
H1N1 HA H3N2 HA 

Previous* New** Previous* New** 
1 µg 3 µg 1 µg 3 µg 1 µg 3 µg 1 µg 3 µg 

IL-23 -3.4  -7.42  0.11  0.12  -2.22  -2.6 -0.04 0.06 
IL-6 0.33  0.27  0.02  0.01 -0.28  -0.05  0.01 0.05 
IL-27 0.29  0.55 0.17 0.14 0.04  0.2  0.18 0.27 
IL-1b -0.29  -0.32  0.05  0.07 -0.09  -0.2 -0.01 0.26  
IL-12p70 0.8 0.78 0.25 0.21  -0.01  0.4 0.25 0.13  
IL-10 -0.22  -0.08  -0.02 0.02 -0.37  -0.37 0.02 0.08 
TGF-b 0.34 0.28  0.07 0.11 0.03  0.02 0.11 0.17 

Yellow indicates inhibition of HKSP by HA, whereas blue indicates no inhibition. Numerical values represent 

the difference between HKSP relative concentrations and HKSP and HA relative concentrations. Negative 

numbers indicate that co-treated cells induced higher amounts of cytokine than HKSP alone treated cells. 

*n=4; **n=3
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APPENDIX 2.2: NEW BATCHES OF HAEMAGGLUTININ HAVE 

SIMILAR IMMUNOSUPPRESSIVE EFFECTS ON ADAPTIVE 

RESPONSES TO PREVIOUS BATCHES 

Upon receipt of new HA batches from the NIBSC, previous studies were continued to 

determine if any differences occurred, with a view to furthering future research using the 

HA samples. The level of inhibition of HKSP responses by HA was compared between 

different batches by cross-checking differences in fold-change cytokine expression 

between HKSP-treated cells and HKSP and HA co-treated cells. The results using new 

batches of HA obtained for IL-17A, IFN-g, and TGF-b were in keeping with what was 

previously obtained. HKSP-induced IL-17A was inhibited by new batches of both H1N1 

and H3N2 HA at the 3 µg dose. However, only the 3 µg dose of H3N2 HA had previously 

inhibited HKSP-induced IL-17A. All HA treatments (using both old and new batches of 

HA) inhibited HKSP-induction of IFN-g. No inhibition of HKSP-induced TGF-b despite HA 

treatment; this occurred using both old and new batches of HA. Elevation of IL-10 did 

not occur using both old and new HA, indeed new batches of HA actually inhibited HKSP-

induction of IL-10. 

 

Appendix Table 2.2 Comparison between inhibition of previous results against 
current results generated with new batches of HA 

Cytokine 
H1N1 H3N2 

Previous* New** Previous* New** 
1 µg 3 µg 1 µg 3 µg 1 µg 3 µg 1 µg 3 µg 

IL-17A 0.29 0.2  0.21  0.3  0.33 0.36 -0.05 0.34 
IFN-g 0.44 0.59 0.99 0.96 0.27 0.34 0.61 0.86 
TGF-b -0.14 -0.28  0.03  -0.05 -0.55 -0.12 -0.07 -0.03  
IL-10 -0.14 -0.27  0.17  0.46 -0.55 -0.11 0.26 0.38 

Yellow indicates inhibition of HKSP by HA, whereas blue indicates no inhibition. Numerical values represent 

the difference between HKSP relative concentrations and HKSP and HA relative concentrations. Negative 

numbers indicate that co-treated cells induced higher amounts of cytokine than HKSP alone treated cells. 

*n=3; **n=3. 


