
Noname manuscript No.
(will be inserted by the editor)

Restricted Boltzmann Machine as an Aggregation Technique
for Binary Descriptors

Szymon Sobczak · Rafal Kapela · Kevin McGuinness · Aleksandra

Swietlicka · Dariusz Pazderski · Noel E. O’Connor

Received: date / Accepted: date

Abstract The article presents a novel approach to the

challenge of real-time image classification with deep neu-

ral networks. The proposed architecture of the neural

network exploits computationally efficient local binary

descriptors and uses a Restricted Boltzmann Machine

(RBM) as a feature space projection step so that the

resulting depth of the deep neural network can be re-

duced. A Contrastive Divergence procedure is used both

for RBM training and for feature projection. The result-

ing neural networks exhibit performance close to the

current state of the art but are characterized by a small

model memory footprint (i.e., number of parameters)

and extremely efficient computational complexity (i.e,

response time). The low number of parameters makes

these architectures applicable in embedded systems with

limited memory or reduced computational capabilities.

Keywords Restricted Boltzmann Machine · image

local binary descriptors · aggregation techniques of

feature vectors

1 Introduction

Binary image descriptors, such as BRIEF [5], BRISK [21],

FREAK [3], and ORB [27], are a popular alternative

to the more common dense real-valued local descriptors

Szymon Sobczak, Rafal Kapela, Aleksandra Swietlicka,
Dariusz Pazderski
Poznan University of Technology
Tel.: +48-61-665-21084
E-mail: name.surname@put.poznan.pl

Kevin McGuinness, Noel E. O’Connor
Insight Centre for Data Analytics
Dublin City University
Tel.: +353-1-700-5078 E-mail: name.surname@insight-
centre.org

like SIFT [22], SURF [4], HOG [8], and even features

extracted from convolutional layers of pretrained deep

neural networks [28] (CNN features). These descrip-

tors, which represent local image patches using compact

binary strings, offer several advantages over their real-

valued counterparts. First, they are substantially more

compact meaning more such descriptors can be held

uncompressed in memory, allowing for large datasets to

be processed efficiently. Second, binary descriptors usu-

ally require far less disk space. Third, they are typically

orders of magnitude faster to extract from images than

other approaches, which is particularly advantageous

on hardware constrained devices like mobile phones and

tablets. Finally, pairs of such descriptors are usually com-

pared using Hamming distances, which are simpler and

faster to calculate than Euclidean or similar distances
defined on real-valued vectors.

Local image descriptors, be them binary or real-

valued, can be extracted at automatically identified key

points (such as Harris or Hessian-affine [23] interest

points) or extracted densely on a regular grid. In either

case, to describe an entire image or image region, it is

necessary to somehow combine these local descriptors.

In the case of local features extracted at key points,

or features from arbitrarily shaped image regions, the

number of such descriptors is variable and not known in

advance. Ideally, we would like to aggregate, or encode,

variable numbers of descriptors into a single fixed-length

descriptor that describes the complete image or region.

Fixed-length descriptors provide several advantages in

subsequent applications. For example, the most pop-

ular models used in classification, like support vector

machines, logistic regression, and many deep networks,

assume fixed-length inputs. Fixed-length representations

allow computing similarities using cosine distances, his-



2 Szymon Sobczak et al.

togram intersections, and other popular kernels used in

classification and retrieval applications.

There have been a whole range of feature aggre-

gation/encoding mechanisms proposed for real-valued

dense descriptors like SIFT. The most popular of these

is the bag of words (BoW) encoding [29] (also known

as bag of features and histogram of words). Bag of

words models first require that a sample of data be

used to fit a codebook using the k-means clustering

algorithm. Typically, for retrieval applications, k is very

large (≈10K-1M elements) requiring approximate near-

est neighbour methods be used to fit the codebook [26].

Once an appropriate codebook is found, an image can

be represented as a histogram of the codewords that

appear in the image. This histogram is typically very
sparse and has the same dimension as the codebook

(k). Many methods for retrieval and classification are

based on this approach. Moreover, many extensions have

been proposed, which make use of first and second-order

differences with the codewords (centroids) fit using k-

means and similar mixture-density models. Examples

include VLAD encoding [16] (first-order) and Fisher vec-

tor encoding [25] (second-order). Bag of words models

have been successfully applied not only to engineered

features like SIFT and HOG, but also to learned features

from convolutional neural networks [24].

Although bag of words based models work well for
aggregating real-valued feature vectors into fixed-sized

descriptors, they are less appropriate for encoding binary

descriptors. The reason is that these approaches rely

on the k-means and similar mixture density models for

generating a codebook. Such models are inappropriate

for binary vectors because they use Euclidean distances
to compare vectors, and compute centroids by averaging

vectors; Hamming distances are more appropriate for

binary vectors, and averaging multiple binary vectors

produces a non-binary vector for which the Hamming

distance cannot be used. Therefore, in order to use

binary features in standard classification and retrieval

pipelines, new aggregation methods are necessary.

This article proposes and investigates two methods

for aggregating binary descriptors. All of them are based

on restricted Boltzmann machines [9] (RBMs) to model

the distribution of binary descriptors in an image, and

then represent the image using the parameters of the

model. We propose to use RBMs with stochastic binary

units, which are especially well-suited to modeling the

distributions of binary vectors, and whose parameters

can be estimated relatively efficiently using contrastive

divergence [14]. Unlike popular methods for encoding

real-valued local descriptors like bag of words and Fisher

vectors, none of the proposed methods require fitting

a density model (codebook or mixture model, for ex-

ample) on a large sample of descriptors, which makes

the proposed methods appropriate for cross-dataset use

where the underlying feature distributions may differ

significantly.

We evaluate and compare our two new methods in

the context of a multiclass classification task on a popu-

lar classification dataset and consider several different

binary descriptors. The results demonstrate that the

proposed approaches outperform standard bag of words

encoding, the most widely used aggregation technique

for real valued descriptors. We find that the RBM-based

encoding technique is very effective in terms of accuracy,

yet significantly less computationally costly than the

other deep neural architectures. We also investigate the

best hyperparameter settings for the RBM encoding

technique, and make some recommendations based on

our findings.

2 Motivation

Technological development in last years was especially

important in context of neural networks and image

recognition. Nowadays the computing power of personal

computers is sufficient to run very complex neural net-

works consisting of hundreds of layers, like for example
ResNets[13] or GoogleNets[30]. Adding parameters to

the network may lead to improvement of the efficiency

but also increases the time of response. The problem

has been raised in [15], where authors created a small

and efficient neural network that doesn’t need a lot of

resources to run. Our approach to this issue is by us-

ing RBM as an aggregator for binary descriptors. We

think that thanks to this we can obtain relatively high-

level image features faster by using less computational

resources than other approaches.

3 Restricted Boltzmann machines

The Restricted Boltzmann Machine (RBM) is a gen-
erative model representing a probability distribution.

It can be understood as a stochastic neural network

that can learn a probability distribution based on the

input data. Training an RBM is performed as fitting the

distribution represented by RBM to the training data

in the best possible way [10]

RBMs are a variation of general Boltzmann machines

with the restriction that their neurons form a biograph.

The structure of RBMs is built of two types of neurons –

visible units v, which correspond to the inputs, and hid-

den units h, which are trained. Visible and hidden units

form two layers of the RBM (Figure 1). In comparison

with general Boltzmann machines (which are recurrent)



Restricted Boltzmann Machine as an Aggregation Technique for Binary Descriptors 3

in RBMs there are only connections between visible and

hidden units and no connections in-between the layers.

The units of a standard RBM are binary-valued and are

numbers generated from a Bernoulli distribution.

hidden layer

visible layer

Fig. 1 The architecture of the RBM

It is possible to define the energy function of a re-

stricted Boltzmann machine (which is analogous to the

Hopfield recurrent neural network) as:

E (v,h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

hjwijvi (1)

or in the vector form:

E (v,h) = −aTv − bTh− hTWv (2)

where W (wij) is a weight matrix describing the con-

nections between visible vi and hidden hj units. Addi-

tionally ai and bj are the biases for visible and hidden

units, respectively. For each pair of visible and hidden

units there is also a probability defined as:

P (v,h) =
1

Z
e−E(v,h) (3)

where:

Z =
∑
v,h

e−E(v,h) (4)

is the so called “partition function” and it is given by

summing over all possible pairs of visible and hidden

units.

The learning procedure of the RBM can be composed

in three steps:

(1) update of the hidden units,

(2) update of the visible units,

(3) update of weights and biases.

The first step is performed with use of conditional

probability P defined by [14]:

P (hj = 1|v) = σ

(
bj +

m∑
i=1

wijvi

)
, (5)

where σ (·) is the following sigmoid function:

σ (x) =
1

1 + e−x
. (6)

When this probability reaches some random number

taken from a uniform distribution, then the correspond-

ing hidden unit is activated.

Update of the visible units proceeds similarly, where

the conditional probability is of the following form [10]:

P (vi = 1|h) = σ

ai +

n∑
j=1

wijhj

 . (7)

The update of weights and biases is performed us-

ing the maximum-log-likelihood method, which can be

described by the following formula [10]:

w
(t+1)
ij = w

(t)
ij + η

∂L (v,h)

∂wij

∣∣∣∣∣
w

(t)
ij

− λw(t)
ij , (8)

where η is a learning rate, λ is a weight decay, and

L (v,h) = logP (v) = log

(
1

Z

∑
h

e−E(v,h)

)
. (9)

In order to compute the gradient we take advantage

of the Contrastive Divergence (CD-k, where k refers to

number of repetitions) method [10] and consider the

following approximation

∂L (v,h)

∂wij

∼= 〈vihj〉data − 〈vihj〉model , (10)

where brackets 〈·〉P express the expected value over the
probability distribution given in the subscript and [10]:

P (h|v) =

n∏
j=1

P (hj |v) . (11)

Correspondingly, biases ai and bj are updated with

following rules [10]:

a
(t+1)
i = a

(t)
i + η

(
v
(0)
i − v

(k)
i

)
, (12)

b
(t+1)
j = b

(t)
j + η

(
P
(
hj = 1|v(0)

)
− P

(
hj = 1|v(k)

))
.

(13)

4 Method

In the previous section we recalled a well known formulas

that describe the way the RBM machines work and are

trained. In this section we will present the two ideas of

use of the RBMs as a technique of aggregation of binary

descriptors. The first one is a simpler technique that

can be used in real-time systems since it requires rela-

tively small amount of operations to calculate. Second

is based on the first one and employs it in more complex

environment for more accurate image description.



4 Szymon Sobczak et al.

4.1 Contrastive Divergence as an expansion of a feature

space

Consider equation (10) which describes the update of

the RBM weights during the training in order to fit the

model into the data. After the successful training, the

same equation can be used to provide the information

about the distance between the new feature vector and

the trained model. Thus, we can treat it intuitively as

a sort of Fisher vector encoding technique where the

derivative of the Gaussian kernels in a feature space

serves as the descriptor transformation. The difference

is that techniques like Fisher kernels and VLAD are not

designed for binary descriptors. In addition, they tend

to compress the features based on the assumption that

the information provided by them is sufficiently rich to

make it possible. However, for low dimensional binary

descriptors, such an assumption is not justified due to

the fact that they do not carry enough information to be

compressed. For this reason, only the high dimensional

binary features are applicable for techniques such as

Locality Similarity Hashing (LSH) [20].
Our approach proposed in this article can be viewed

as a non orthogonal transformation of binary data that

leads to the dimensionality expansion. The resulting

V ×H matrix can be serialized to form the Contrastive

Divergence Feature (CDV). The idea is presented in

figure 2.

Fig. 2 Contrastive Divergence as a feature transformation
technique

As an input we use the following, well known, local

image binary features:

– Fast REtinA Keypoint (FREAK);

– Binary Robust Invariant Scalable Keypoints (BRISK);

– Local Binary Patterns with eight neighbors (LBP8);

– Local Binary Patterns with sixteen neighbors (LBP16).

In order to aggregate the input features a simple

mean of the CDVs can be computed. Here, we can

aggregate features from the region of consistent texture

and color distribution to improve the efficiency of the

description. For this reason we employ Selective Search

(SS) [31] algorithm which gives image region candidates

that are featured with mentioned characteristics. The

result of image description is the set of mean CDVSS

kernels. The overall procedure can be written as follows:

CDV SS =


CDV SS1

CDV SS2

· · ·
CDV SSN

 , (14)

where

CDV SSi =
1

M

N∑
i=1

(CDVi) (15)

is a mean of the CDVs inside the SS region.

4.2 RBM CD as a feature extraction layer in Deep

Neural Networks

Deep Neural Networks usually consist of many convolu-

tional layers, where each detects features from a previous

layer. The general rule is that the deeper the layer the

more complex features processed [19]. Thus adding an

RBM to a convolutional neural network makes it pos-

sible to preprocess the input image to get relatively

complex features in earlier layers. As a result less con-

volutional layers are needed overall. Figure 3 presents a
simplified data workflow in the network.

Input layer is a single channel image which is directly

processed by the binary descriptor layer, so every single

pixel is transformed to a binary string. The next layer

is an RBM which works as described in the previous

section, so the output size of this layer is W ×H×(v ·h),

where W and H denote width and height that are the

same the dimensions of input image, v denotes number

of visible units in the RBM and must be the same as

number of bits in a single binary descriptor, h denotes

number of hidden units in RBM and this is a customiz-

able parameter.

For tests we used a network composed of three convo-

lutional layers followed by max-pooling and two fully-

connected layers with dropout between them.

As a binary descriptor we propose to apply the following

descriptors:

– LBP8,

– LBP16,

– LBP8 rgb - 24bits descriptor composed of three 8-

bits descriptor, each for one color channel,

– Reduced BRISK - BRISK reduced to 16 bits.



Restricted Boltzmann Machine as an Aggregation Technique for Binary Descriptors 5

Fig. 3 Deep Neural Network with RBM as a feature extractor.

Input images were resized to 256×256 pixels. The RBM

in the network has two hidden units, so the input dimen-

sions of data for first convolutional layer is 256x256x(2·N),

where N denotes the number of bits of the descriptor.

5 Experimental results

In order to check the correctness of the proposed image

classification approach and compare it with the state of

the art solutions, multiple test scenarios were conducted.

For this purpose we used a rather simple image dataset

– Caltech-101 – as given the popularity of the database

the results for comparison from other sources [2] can be

easily obtained. The major features of the dataset are

as follows:

– 101 categories;

– about 40 to 800 images per category;

– 20 images per category used for training.

On the other hand, in real-time processing scenarios

an investigation of processing speed of the proposed

algorithm should be conducted. For this reason we com-

pared our solution to the most common deep learning
algorithms. Again, nowadays it is relatively easy to find

the results for the best performing solutions in the lit-

erature [11], [1]. The only problem is that they are
sometimes given for a different hardware setup than

used in our experiments. To accommodate this we took

the closest, in terms of architecture and computational
resources, architecture. Then, based on the benchmark

results given by the vendor of the hardware we com-

puted some penalty factor just like it is usually done

[1].

For tests, the measurements have been performed

on the following machine:

– CPU: Intel i5-6400, 2.70GHz

– RAM: 16GB, DDR4, 2133 MHz

– GPU: Nvidia GTX1070

Our software implementation is a two-fold system

that can be run on CPU only machines or the ones

equipped with CUDA technology. It implements CDK

method described by equation (10) for training. Due

to high computational requirements that come together

with high demand for a RAM memory the latter im-

plementation is recommended for training. The testing

environment was Ubuntu Linux with CUDA, cuDNN

and GPU drivers installed along with the libraries nec-

essary to run our application.

5.1 CD feature space tests

First conducted experiment was an evaluation of the

simplified algorithm described in section 4.1. It is based

on the feature space expansion for binary descriptors

and then selective search based grouping of descriptors.

The CDVSS kernels are matched basing on the k nearest

neighbors procedure (KNN). The image class with the

highest number of votes is the one chosen as the result.

We have chosen four binary descriptors for our evalua-

tion: BRISK, FREAK, LBP8 and LBP16. For simplicity

we checked two RBM architectures which consist of 100

and 200 hidden neurons. Clearly, the number of visible

units depends on the size of the descriptor. We noticed,
that the considered cases are the most representative

since the results do not vary too much for other setups.

Next, we compared the number of images assigned for

training the RBM model and for the KNN nodes that

described given classes. Table 1 shows accuracy/mAP

results.

As can be seen from the results the best performing

binary descriptor is BRISK with close second result

given for the FREAK descriptor. This is not a surprise

because BRISK (mark in bold font) and FREAK hold

the best results among the key-point based local image

description techniques [7]. As mentioned, any architec-

ture change of the RBM model above the base value

that allows to learn the descriptors (about 90 for all
the descriptors) does not introduce significant change

in accuracy. Another result worth noting is that LBP

features, which are not as descriptive as key-point based

descriptors, are not that far in terms of accuracy and

mAP results which makes them a potentially interesting

choice for real-time processing applications since they

are relatively easier to calculate.

5.2 CD feature space + deep neural network tests

Since the results presented above seem to be promising,

the next conducted experiment was the evaluation of



6 Szymon Sobczak et al.

Table 1 The evaluation results of CD-based KNN matching procedure

100/30 100/50 200/30 200/50

BRISK 0.598;0.603 0.605;0.613 0.604;0.603 0.604;0.612

FREAK 0.613;0.575 0.618;0.580 0.614;0.571 0.618;0.574

LBP8 0.583;0.560 0.606;0.594 0.591;0.583 0.592;0.574

LBP16 0.581;0.550 0.581;0.551 0.582;0.554 0.584;0.558

the technique presented in section 4.2. It was a natural
choice to take into account the initial usage of RBMs

in deep belief networks and the capabilities of deep

architectures. Moreover, it is also natural to expect

more from the CD binary feature projections when

more complex inference than KNN is implemented as a

feature classification.

Accuracy results achieved by Deep Neural Network

with RBM as features extractor are presented in the

table 2.

As can be seen we have tested three LBP-based

features (8/16 neighbors and 8 neighbors) formed and

concatenated for each, separate RGB channel. In ad-

dition, in order to have a representative of the local

binary feature descriptors we have chosen the BRISK

descriptor for our experiments. Note that feeding the

entire descriptor (512 binary values) to the RBM with n

hidden units would result in 512×n number of channels

inside the deep architecture of the neural network. That

is why we have reduced the dimensionality of the BRISK

descriptor to 16.

In table 3 we present how our method improves

accuracy of the network. We compared accuracy of the

network used in previous tests with some architectures

that do not contain RBM inside, as can be seen our

approach achieved the best result.

We also performed tests on networks consisting of

different number of convolutional layers in order to check
how this parameter affects accuracy and time of forward

step. During those changes we kept the size of input

to feedforward neural network the same by adjusting

strides. The results are relative to network consisting of

3 convolutional layers and are presented in the table 4.

For all the binary descriptors used the training accu-

racy achieved for a validation data set was on a very good

level. However, only LBP8 and LBP16 binary features

have shown accuracy above the KNN-based matching

technique. This is mainly due to the fact that most of
the features in the presented descriptors are redundant,

thus, causing a worsening of the generalization of the

deep neural network.

The same convolutional neural network that works

without RBM achieves accuracy close to 64%, thus we

confirmed that the processing with LBP and RBM in-

creases the accuracy. Other networks like ResNet [13]
or Inception [30] achieves better results, but they are

also much bigger and need much more resources. The

MobileNet[15] network achieves around 70% depending

on their implementation[17].

5.3 Time performance

Clearly, the processing time depends on the hardware
setup. All the results in this section are presented for the

setup given above. Especially, since the core of this sys-

tem is implemented in CUDA for parallel computations

on the GPU side the graphics card unit parameters are

very important. In order to compare our results with

other approaches calculated on different GPUs, we in-

troduced some penalty factor based on the performance

parameters just like in [1].

The table 5 presents computing time of each step in

the processing pipeline. For clarity, we do not present

any preprocessing times related to image forming or

noise removal.

The time differences in the descriptor computing

procedure depends mostly on the size of the descriptor. A
reduced BRISK descriptor is used for comparison just to

check if the local binary descriptors carry any additional

information to the one presented in the LBP descriptors.

Since the recognition accuracy does not show that this

may be true, this descriptor was not implemented in

CUDA technology, thus, the time presented in the table

is for its CPU implementation.

Parallel implementation of RBM and LBP allows to

have same RBM processing time for different dimensions

of the input, for example in LBP8 and LBP rgb. Note,

that LBP rgb is treated in the CUDA implementation

as three separate channels of LBP8, thus, the calculation

time does not differ from the LBP8. LBP16 however

changes the dimmensionality of the RBM input and this

results in extended time needed for calculating th RBM

response (RBM has twice as much parameters in this

case).

The CNN column of the Table 5 presents calculation

times for the convolutional and fully connected parts

of the deep architecture presented here. They are all



Restricted Boltzmann Machine as an Aggregation Technique for Binary Descriptors 7

Table 2 The evaluation of the accuracy of CD-RBM as an entry for DNN

descriptor validation accuracy validation top5 training accuracy

LBP8 0.68 0.82 0.99

LBP16 0.65 0.87 0.98

LBP8 rgb 0.42 0.70 0.81

reduced BRISK 0.51 0.72 0.98

Table 3 The evaluation of RBM accuracy comparing to other approaches

method LBP + RBM + CNN LBP + CNN CNN (raw grayscale images) CNN (raw rgb images)

accuracy 0.68 0.63 0.54 0.62

Table 4 The evaluation of system accuracy and processing time comparing to the architecture with 3 convolutional layers.

number of convolutional layers accuracy time

2 -16% -16%

4 -3% +2%

5 -3% +4%

Fig. 4 Time of processing single image for common used
neural network architectures (only forward step).

similar across the proposed architectures since the num-

ber of parameters in these layers is also similar. The

only exception is LBP rgb which has three channels of

RBM responses so that more operations are needed to

calculate the response from the last parts of the network.

This is reflected in the increased value in this row. The

last column presents the cumulative time for particular

architecture.

The entire network is trained in two steps, first in

which we train the RBM, and second where we train

the following layers. For each of them we are training

to the point where the accuracy and error values reach

plateau point (i.e., the gradient of the error function

does not change significantly). This usually takes from

2 to 3 hours.

As was shown in Table 5 the overall times of the

network response are relatively low. Figure 4 shows

Fig. 5 Number of parameters for common used neural net-
work architectures [6].

the comparison of our solution to the most common

state-of-the-art algorithms. Again. for clarity we present

only the forward times since they represent the im-

age recognition procedure. The closest competitors in

terms of computational time seems to be the AlexNet

(24,7ms) [18], GoogleNet/Inception (37,7ms) [30] and

ResNet (32,5ms) [13] models. Obviously behind these

times stand the three factors:

– number of parameters;

– the architecture – i.e., number of data dependencies

in order to calculate the final output;

– implementation and hardware setup.

Figure 5 presents number of parameters in the con-

sidered architectures. As it can be seen the number

of parameters in the AlexNet exceeds significantly the

number of parameters in the other two and our solutions.

Since the processing time is shorter than the GoogleNet



8 Szymon Sobczak et al.

Table 5 The evaluation of times between following stages of the CD-RBM pipeline

descriptor name descriptor computing time RBM processing time CNN
∑

LBP8 3.7ms 13ms 3.2ms 19.9 ms

LBP8 rgb 5.4ms 13ms 4ms 22.4 ms

LBP16 6.6ms 21ms 3.4ms 31 ms

reduced BRISK 1500ms 13ms 3.4ms 1513.4 ms

and ResNet it means that the network is relatively shal-
low comparing to the other solutions (i.e., they have

more internal data dependencies). Its implementation is

also relatively efficient since the caffe model uses grouped

convolutions [1]. Relatively high number of parameters

in this network excludes this network to be used in the

higher batch modes. Our solution features both a low

number of parameters and low processing time which

facilitates its use in real-time applications that run on

embedded platforms.

6 Conclusion

This article illustrates the use of Restricted Boltzman

Machines and specifically the Contrastive Divergence

training procedure in the image classification task. Two

approaches have been taken:

– CD calculated in the image region for KNN-based

class matching;

– CD as a layer in the deep neural network.

Both approaches are characterized with relatively

good accuracy that is comparable to the best results

achieved so far [12]. The high top-5 accuracy shows

that the proposed models are very close to the correct

answer even if the maximum response indicates another

image class. In terms of model memory footprint (i.e.,

number of parameters) and computational complexity

(i.e, response time) it was shown that our approach with

CD-DNN is the fastest available now. Also, the relatively

low number of parameters makes these architectures

applicable in embedded systems with limited memory

or reduced computational capabilities.

For future work, we will investigate how to reduce

the dimensionality of RBM output to be able to use a

smaller neural network as the final classifier. Reducing

the dimensionality should remove some redundant data

which will possibly give higher accuracy and smaller

processing time,

Right now the size of the first layers in the network

highly depends on the size of the descriptor and number

of hidden units in the RBM, we want to investigate a

method that will allow to have these parameters flexible

but without big influence on the processing time.

Since the memory footprint of our model is relatively
low, one future direction will be to implement a batch

mode for parallel input processing.

References

1. Github, cnn-benchmarks.
https://github.com/jcjohnson/cnn-benchmarks. Ac-
cessed: 2018-11-22

2. Hao Wooi Lim’s blog, friday, august 21,
2009, table of results for caltech 101 dataset.
http://zybler.blogspot.com/2009/08/table-of-results-for-
famous-public.html. Accessed: 2018-11-22

3. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina
keypoint. In: Computer vision and pattern recognition
(CVPR), pp. 510–517 (2012)

4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded
up robust features. In: European conference on computer
vision (ECCV), pp. 404–417 (2006)

5. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF:
Binary robust independent elementary features. In: Euro-
pean conference on computer vision (ECCV), pp. 778–792
(2010)

6. Canziani A. Culurciello E, P.A.: An analysis of deep neural
network models for practical applications (2016). URL
https://arxiv.org/abs/1605.07678

7. Chatoux, H., Lecellier, F., Fernandez-Maloigne, C.: Com-
parative study of descriptors with dense key points. 2016
23rd International Conference on Pattern Recognition
(ICPR) pp. 1988–1993 (2016)

8. Dalal, N., Triggs, B.: Histograms of oriented gradients
for human detection. In: Computer Vision and Pattern
Recognition (CVPR), vol. 1, pp. 886–893 (2005)

9. Fischer, A., Igel, C.: An introduction to restricted boltz-
mann machines. Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications pp. 14–36
(2012)

10. Fischer, A., Igel, C.: An introduction to restricted boltz-
mann machines. In: L. Alvarez, M. Mejail, L. Gomez,
J. Jacobo (eds.) Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications, pp. 14–36.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

11. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyra-
mid pooling in deep convolutional networks for vi-
sual recognition. CoRR abs/1406.4729 (2014). URL
http://arxiv.org/abs/1406.4729

12. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyra-
mid pooling in deep convolutional networks for vi-
sual recognition. CoRR abs/1406.4729 (2014). URL
http://arxiv.org/abs/1406.4729

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning
for image recognition. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
770–778 (2016). DOI 10.1109/CVPR.2016.90



Restricted Boltzmann Machine as an Aggregation Technique for Binary Descriptors 9

14. Hinton, G.E.: Training products of experts by minimizing
contrastive divergence. Neural computation 14(8), 1771–
1800 (2002)

15. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., Adam, H.: Efficient con-
volutional neural networks for mobile vision applications
(2017). URL https://arxiv.org/pdf/1704.04861.pdf

16. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating
local descriptors into a compact image representation. In:
Computer Vision and Pattern Recognition (CVPR), pp.
3304–3311 (2010)

17. Kornblith, S., Shlens, J., Le, Q.V.: Do better
imagenet models transfer better? (2018). URL
https://arxiv.org/pdf/1805.08974.pdf

18. Krizhevsky, A., Sutskever, I., E. Hinton, G.: Imagenet
classification with deep convolutional neural networks.
Neural Information Processing Systems 25 (2012). DOI
10.1145/3065386

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Ima-
genet classification with deep convolutional neural
networks. In: F. Pereira, C.J.C. Burges, L. Bottou,
K.Q. Weinberger (eds.) Advances in Neural Information
Processing Systems 25, pp. 1097–1105. Curran Associates,
Inc. (2012). URL http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-
networks.pdf

20. Kulis, B., Grauman, K.: Kernelized locality-sensitive hash-
ing for scalable image search. In: 2009 IEEE 12th Inter-
national Conference on Computer Vision, pp. 2130–2137
(2009). DOI 10.1109/ICCV.2009.5459466

21. Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: Binary
robust invariant scalable keypoints. In: International
conference on computer vision (ICCV), pp. 2548–2555
(2011)

22. Lowe, D.G.: Object recognition from local scale-invariant
features. In: International conference on computer vision
(ICCV), vol. 2, pp. 1150–1157 (1999)

23. Mikolajczyk, K., Schmid, C.: An affine invariant interest
point detector. In: European conference on computer
vision (ECCV), pp. 128–142 (2002)

24. Mohedano, E., McGuinness, K., O’Connor, N.E., Sal-
vador, A., Marques, F., Giro-i Nieto, X.: Bags of local
convolutional features for scalable instance search. In: In-
ternational Conference on Multimedia Retrieval (ICMR),
pp. 327–331 (2016)

25. Perronnin, F., Dance, C.: Fisher kernels on visual vocabu-
laries for image categorization. In: Computer Vision and
Pattern Recognition (CVPR), pp. 1–8 (2007)

26. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.:
Object retrieval with large vocabularies and fast spatial
matching. In: Computer Vision and Pattern Recognition
(CVPR), pp. 1–8 (2007)

27. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb:
An efficient alternative to sift or surf. In: International
conference on computer vision (ICCV), pp. 2564–2571
(2011)

28. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson,
S.: CNN features off-the-shelf: an astounding baseline for
recognition. In: Computer Vision and Pattern Recognition
(CVPR) Workshops, pp. 806–813 (2014)

29. Sivic, J., Zisserman, A.: Video Google: A text retrieval
approach to object matching in videos. In: International
Conference on Computer Vision (ICCV), vol. 2, pp. 1470–
1477 (2003)

30. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich,

A.: Going deeper with convolutions. In: Computer Vi-
sion and Pattern Recognition (CVPR) (2015). URL
http://arxiv.org/abs/1409.4842

31. Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeul-
ders, A.W.M.: Selective search for object recognition.
International Journal of Computer Vision 104(2), 154–
171 (2013). DOI 10.1007/s11263-013-0620-5. URL
https://doi.org/10.1007/s11263-013-0620-5


