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Abstract 

High Throughput DNA Singe Cell Analysis of CHO-K1 cell surface glycosylation 
using lectin probes 

Flávio Ferreira 
 

Biological glycosylation is the process which adds specific sugars to other sugars, proteins and 
lipids. Protein glycosylation is one of the most important post-translational modifications, 
which occurs in more than half of all proteins present in the human body. Abnormal 
glycosylation has been demonstrated to be linked to many different diseases due to 
alterations associated with protein folding and biological function. Therefore, glycosylation is 
absolutely essential for the correct structure, function and stability of important proteins. 

Surface glycosylation patterns play a key role in the modulation of the immune responses 
which are mediated by carbohydrate-binding proteins called Lectins. Such biomolecules are 
typically highly selective for specific glycan structures, making them extremely useful for 
glycan variation investigation.  

A rapid and accurate bioanalytical method to detect early unhealthy cell signs during a 
bioprocess is a current issue facing the industry. It is widely known that as cells become 
stressed or diseased the earliest changes that occur are in cell surface glycosylation.   

CHO cells are the host cell of choice of the rapidly emerging biopharmaceutical industry for 
the production of glycoprotein therapeutics. Hence, this research work investigated the 
interaction between lectin probes with the membrane glycoconjugates of CHO cells subjected 
to different levels of spent medium, temperature and CO2.  

High throughput DNA single cell analysis using flow cytometry allowed the determination of 
cell surface glycosylation variation in response to the stressors. Cells subjected to different 
levels of spent medium had their cell surface glycosylation profile most affected in relation to 
cells subjected to temperature and CO2 alteration. Fucose and N-Acetylglucosamine were 
identified as key glycans changing on the cell surface. 
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1 Introduction 

1.1 Glycobiology 

 

Glycobiology is the study of the multiple functions of sugars, that is, carbohydrates attached 

to lipids and proteins. Carbohydrates are very complex and not encoded in the genome. This 

fact might have discouraged investigators from looking at the biological functions of sugar 

groups beyond the context of metabolism in cells. As a result, the study of nucleic acids, 

proteins and lipids has been the subject of great attention in the scientific field for over a 

century and only recently have carbohydrates received increased attention as the expansion 

of the field of glycobiology takes place (Ghazarian, Idoni and Oppenheimer, 2011). 

Although the tendency is to assume that the biological information flows through only three 

classes of biomolecules, i.e., from DNA to RNA to protein, the enormous biological 

complexities found in the human body and many other organisms rely on two other major 

classes of biomolecules: lipids and carbohydrates. These molecules play a role in mediating 

the generation of energy and signalling responses to a stimulus. Also, they can act as 

recognition markers and structural components (Varki and Sharon, 2009). In the case of 

carbohydrates, the addition of sugar groups to proteins, a process which is known as 

glycosylation, encompasses one of the most crucial posttranslational modifications (PTMs) of 

proteins. Additionally, biological glycosylation is not a process which adds specific sugars to 

proteins, but also to lipids and to other sugar groups (glycans) (Marth and Grewal, 2008). 

Therefore, glycosylation helps to explain the reason why the relatively small number of genes 

in the genome is able to create the highly biological complexities found in organisms in 

relation to their development, growth, and functioning (Varki and Sharon, 2009).  

Protein glycosylation occurs in more than half of all proteins present in the human body. 

Abnormal glycosylation has been demonstrated to be linked to many different diseases due 

to alterations associated with protein folding and biological function (Christiansen et al., 
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2014). Therefore, glycosylation is absolutely essential for the correct structure, function and 

stability of important proteins (Lepenies and Seeberger, 2014). 

Furthermore, glycosylation patterns on the surface of the cell plays a key role in the 

modulation of the immune responses (Veiseh et al., 2014). These responses are mediated by 

carbohydrate-binding proteins called Lectins (Gorelik, Galili and Raz, 2001). Such biomolecules 

are typically highly selective for specific glycan structures making them (i) extremely useful for 

glycan variation investigation and (ii) perhaps the most largely studied biomolecules in the 

field of glycobiology (Ohtsubo and Marth, 2006). 

 

1.1.1 Carbohydrate structure and function 

 

Among the four major classes of organic molecules found in living organisms; proteins, lipids, 

nucleic acids and carbohydrates, the last are the most prevalent organic molecules present in 

nature (Wade, 1999). The general empirical formula of most simple sugars is CnH2nOn, where 

n is n ≥ 3. The proportion found between these three atoms suggests that carbon atoms are 

somehow combined with water molecules. For this reason, the term carbohydrate has been 

used to refer to organic molecules which fall within this empirical chemical formula (Wade, 

1999). For instance, glucose is a very common monosaccharide which is broken down into 

carbon dioxide and water molecules through oxidation. The energy released from this 

reaction is used in cellular processes to carry out protein synthesis, movement and transport 

to name a few. In plant and animal systems, glucose molecules are combined to generate 

large molecules for energy storage such as starch and glycogen. On the other hand, glucose 

can actually be combined in different ways to create an assortment of other macromolecules. 

Cellulose is a glucose based macromolecule which is found in the cell wall of plants. Glucose 

molecules are linked through β-1,4 glycosidic bonds to form cellulose whereas in starch, 

glucose monomers are combined through α-1,4 glycosidic bonds, and in glycogen the 

combination is through α-1,4 and α-1,6 glycosidic bonds (Wade, 1999).  
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Carbohydrates in living organisms are extremely heterogeneous due to a variety of features 

found in this class of organic molecules (see Figure 1.1). Different types and numbers of glycan 

residues have the ability to link together to create glycosidic bonds with each other. The 

carbohydrate structural characteristics, the anomeric linkage type, the location and the 

absence or presence of branching are the main features providing sugar molecules with a high 

level of complexity in heterogeneity (Mody, Joshi and Chaney, 1995; Gorelik, Galili and Raz, 

2001). In order to grasp the level of complexity of sugar molecules, one may look at the 

comparison between a single disaccharide molecule and a single dipeptide one. These two 

molecules are composed of two identical molecules such as a single hexose monosaccharide 

for the former and a single amino acid such as glycine for the latter. Two hexose 

monosaccharides can form 11 different disaccharides whereas two glycine molecules can only 

form a single dipeptide. A considerable escalation in the level of complexity of carbohydrates 

can be observed when looking at the comparison between the number of potential unique 

combinations that four different amino acid molecules and four different hexose 

monosaccharide molecules can produce. While these 4 amino acids may produce 24 different 

tetrapeptides, the monosaccharides may possibly form 35,560 varieties of tetrasaccharide 

molecules (Sharon and Lis, 1989, 1993).  
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Figure 1.1: Schematic diagram illustrating the heterogeneity of sugar structures found on cell 

surface glycoconjugates (glycoproteins and glycolipids).  O-linked and N-linked glycans of 

glycoconjugates are normally terminated with Sialic acid (Sia) residues. Glc = glucose; Gal = 

galactose; Man = mannose; Fuc = fucose; GalNac = N-acetylgalactosamine; GlcNAc = N-

acetylglucosamine. Figure was extracted from Ghazarian et al. 2011. 

 

Although sugar molecules present a large diversity in biological information, such molecules 

are not encoded by the genome (Feizi & Mulloy 2003). However, the genome encodes 

enzymes such as glycosyltransferases and glycosidases which act upon glycans. On different 

activity levels, these enzymes work together in the endoplasmic reticulum (ER) and the Golgi 

apparatus, defining the patterns of glycosylation of glycoconjugates (glycoproteins and 

glycolipids) (Ghazarian, Idoni and Oppenheimer, 2011). 

The complexity and structural variability of glycosylation patterns on cell surface sugars, that 

is, glycan structures attached to proteins and lipids on the cell wall, provides these glycans 

with the ability to perform signalling, recognition and adhesion functions (Ofek, Hasty and 
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Sharon, 2003; Varki and Sharon, 2009). Therefore, the sugars on the cell surface are involved 

in several physiological functions of great importance such as oogenesis, spermatogenesis and 

normal embryonic development, differentiation, growth, contact inhibition, cell-cell binding 

and recognition, cell signalling, host-pathogen interactions in infectious process, immune 

response of a host cell, the development of diseases, metastasis, intracellular trafficking and 

localization, the rate of degradation and membrane rigidity (Subtelny and Wessells, 1980; 

Sharon and Lis, 1993; Kennedy et al., 1995; Ghazarian, Idoni and Oppenheimer, 2011). 

 

1.1.2 N-linked and O-linked oligosaccharides 

 

Large carbohydrate molecules, that is, oligosaccharides, can be linked to proteins through 

glycosidic bonds by two types of linkages: N-linked and O-linked. The first one consists of the 

binding of N-acetylglucosamine to the amide side chain of asparagine. Asn-X-Ser(Thr)- is the 

sequence of asparagine residues found in N-linked oligosaccharides. The X position can be of 

any amino acid except to proline (Gorelik, Galili and Raz, 2001). The second type of linkage , 

the O-linked, consists of the binding of C-1 of N-acetylgalactosamine to the hydroxyl of serine 

or threorine amino acids (Gorelik, Galili and Raz, 2001). 

The glycosylation of N-linked oligosaccharides in eukaryotes starts with the covalent binding 

of a 14 long common oligosaccharide precursor composed of 2 N-acetylglucosamine, 9 

mannose and 3 glucose molecules to the asparagine residue of the newly synthesized target 

protein chain as this protein is transported into the endoplasmic reticulum (ER). As a result of 

the addition of this common oligosaccharide precursor to the polypeptide, fully processed N-

linked carbohydrates can be classified into three major classes: high-mannose, complex and 

hybrid oligosaccharides. In order for some eukaryotic proteins to be properly folded, N-linked 

glycosylation must be carried out. As these proteins are correctly folded, three glucose 

residues are removed from the 14 long oligosaccharide and the proteins are transported from 

the ER to the Golgi apparatus. Depending on how the oligosaccharide is processed in the Golgi 

apparatus, carbohydrates are then classified into the three aforementioned classes. The 

oligosaccharide which does not suffer any removal or addition of monosaccharides is classified 
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as high-mannose oligosaccharides. Oligosaccharide which may have mannose residues 

removed or may have other monosaccharides added, falls in the complex or hybrid class 

(Ghazarian, Idoni and Oppenheimer, 2011). High mannose and complex oligosaccharides 

share a common core structure but differ in the terminal elaborations which extend from this 

common core (Taylor and Drickamer, 2006).  

The O-linked glycosylation is an alteration of glycoproteins which is highly likely to take place 

in the Golgi apparatus (Röttger et al., 1998; Patsos et al., 2009).  In O-linked carbohydrates the 

C-1 of N-acetygalactosamine is covalently linked to the hydroxyl of threonine or serine of the 

protein chain (Röttger et al., 1998; Patsos et al., 2009). After the addition of the N-

acetylgalactosamine residue to the protein chain, the oligosaccharide may be extended by the 

addition of monosaccharides (e.g. galactose, fucose, N-acetylglucosamine and sialic acid) 

(Schachter and Brockhausen, 1992; Mitra et al., 2006). Many unique O-linked carbohydrates 

have been investigated such as O-fucose, O-mannose and O-N-acetylglucosamine. Studies 

have demonstrated that the modification process of proteins with O-linked β-N-

acetylglucosamine (O-GlcNAc) has an effect on the protein biological function via a number of 

mechanisms; for example, protein function alteration due to phosphorylation, protein-protein 

interaction regulation, protein degradation regulation, protein localization and transcription 

regulation (Hanover, 2001; Zachara and Hart, 2006; Hart, Housley and Slawson, 2007).  

 

1.1.3 Modifications of cell surface carbohydrates  

 

Numerous studies have demonstrated alterations in cell surface glycosylation as cells go 

through different stages in the biological development such as differentiation and embryonic 

development (Balcan et al., 2008; Park et al., 2015; Delannoy et al., 2017). Additionally, 

modifications in the cell surface glycosylation profile in inflammatory and cancerous processes 

have also been extensively reported by several scientific studies, indicating carbohydrates as 

potential biomarkers for the identification of the onset of diseases (Veiseh et al. 2014; 

Krasnewich 2014; Gorelik et al. 2001; Patsos et al. 2009; An et al. 2009). 
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The bio-production of sugars in a cell relies on several highly competitive processes which 

involves glycosyltransferases and enzymes responsible for catalysing the formation of the 

glycosidic linkage. This fact makes the glycosylation process greatly sensitive to the 

biochemical environment and alterations in glycosylation patterns can potentially implicate in 

many diseases such as cancer, gastrointestinal related diseases and cognitive impairments (An 

et al. 2009; Krasnewich 2014). The functionality of glycoproteins and glycolipids is affected by 

the glycosylation process, as this process modifies the physical properties of glycoconjugates. 

The protein folding process is highly influenced by the specific sugars attached to particular 

sites of the protein and some of these sugars on glycoconjugates can also play an important 

role on the process of specific sugar recognition by glycan-binding proteins.   

A study in biological development showed the great importance of glycosylation in 

spermatogenesis. Man2a2 is a gene which encodes α-mannosidase-IIx (MX), an enzyme 

associated with the synthesis of N-glycan intermediates. This gene was disrupted and male 

MX-null mice developed small testes and were infertile (Akama et al., 2002). It was observed 

that germ cells failed to adhere to Sertoli cells in the seminiferous tubules and, as a result, the 

developing germ cells were prematurely released from the seminiferous epithelium to the 

epididymis. MX enzyme in germ cells is associated with the biosynthesis of a GlcNAc-

terminated triantennary and fucosylated N-glycan structure. Such oligosaccharide on the 

surface of the cell may play a critical role in the adhesion process between germ cells and 

Sertoli cells (Akama et al., 2002).  

Glycosylation changes on cell surface of intestinal epithelial cells (IEC) were correlated with  

glycosyltransferase activities during cell differentiation process (Park et al., 2015). As the cells 

differentiated, a decrease in high mannose type glycans was observed and also a simultaneous 

increase in fucosylated and sialyated complex/hybrid carbohydrates. An increase in activity 

was observed for GlcNAc transferase II and V, which are enzymes involved in N-glycosylation 

(Brockhausen, Romero and Herscovics, 1991). Also, β-3-galactosyltransferase, α-2-

fucosyltransferase, sialyltransferase, and β-6-GlcNAc transferase, which are enzymes critical 

to O-glycan biosyntheses, were all increased in activity (Amano, Kobayashi and Oshima, 2001). 
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At day 21 of the study, when cells seemed to be fully differentiated, the changes in 

glycosylation on the cell surface terminated (Park et al., 2015).   

The investigation of alterations of cell surface glycosylation in tumors from cancer patients 

and experimental animal demonstrated that the majority of the modifications observed in 

membrane glycoproteins involved the presence of larger, more branched N-linked 

carbohydrates, more specifically, β1-6GlcNAc-branched N-linked glycans (Dennis, 1991, 1992; 

Fernandes et al., 1991). The increase of these oligosaccharides in the cells was detected by 

observing the increase in L-PHA (leucoagglutinin Phaseolus vulgaris agglutinin) lectin 

interaction (Dennis, 1991, 1992; Fernandes et al., 1991). An increased activity of N-

acetylglucosomyltransferase V (GlcNAc –TV) results in the increase of GlcNAcβ1-6Manα1-

6Manβ branching at the trimannosyl core of complex-type carbohydrates which, in turn, 

increases the β1-6 branching of N-linked glycans. The increase of β1-6 branching of N-linked 

oligosaccharides was observed in the early stage of tumour development which was induced 

by oncogenes v-src, H-ras, v-fps or oncogenic virus (Yamashita et al., 1985; Pierce and Arango, 

1986; Dennis et al., 1989). 

 

1.1.4 Lectins 

 

Lectins consist of a very heterogeneous group of proteins with specific capabilities to 

selectively recognize and reversibly bind to specific glycans on glycoconjugates without 

modifying the carbohydrate structures. Lectins not only bind to oligosaccharides on cells but 

to free sugars as well, including monosaccharides (Lannoo and Damme, 2010). Lectins are 

multivalent and also referred to as agglutinins due to the fact that the majority of them have 

cell agglutination capability. Lectins were first discovered in plants and for a long time they 

were believed to be present in plant organisms only. However, lectins were subsequently also 

found in different organisms such as bacteria, viruses, fungus and in humans. Although the 

presence of lectins is ubiquitous in living systems, plants contain lectins in the largest quantity; 

thus, plant lectins have been extensively scientifically investigated, particularly those sourced 

from legumes. Lectins in plants are mostly confined to seeds of legumes, roots, tubers, bulbs, 
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bark, leaves, tissues of flowers, and other tissues and organs (Harold and Gabius, 2001; De 

Mejía and Prisecaru, 2005). Foods such as wheat, corn, tomatoes, peanuts, kidney beans, 

bananas, peas, lentils, soybeans, mushrooms, rice and potatoes also contain lectins (De Mejía 

and Prisecaru, 2005). The biological role of lectins involves cell recognition, interaction and 

adhesion. In plants, lectins play a role in defense and symbiosis processes (Chrispeels and 

Raikhelb, 1991; Peumans and Van Damme, 1995; De Hoff, Brill and Hirsch, 2009; Michiels, Van 

Damme and Smagghe, 2010).  

The classification of lectins was initially based on carbohydrate specificity and subsequently 

lectins were grouped according to subunit structures such as merolectins and hololectins. 

Another classification adopted was by families; for example, legume lectins and monocot 

mannose-binding lectins (Lam and Ng, 2011). Finally, plant lectins were classified into 12 

different families according to three features: carbohydrate-binding domains, three-

dimensional structures and the sequence of amino-acids (Van Damme, Lannoo and Peumans, 

2008). Lectins are involved in many phenomena of biological recognition and these proteins 

have a multitude of different biological activities such as immunomodulatory, anti-insect, anti-

viral, anti-tumor and anti-microbial (Jagtap and Bapat, 2010; Lam and Ng, 2011).  For this 

reason, lectins have been largely applied in several areas; for example, biochemistry, cell 

biology and biomedicine. In the latter one, lectins have been used for the development of 

biomedical diagnostics tools and therapeutics (De Mejía and Prisecaru, 2005; Mislovičová et 

al., 2009; Liu, Bian and Bao, 2010). Additionally, lectins have been used to develop drug 

delivery systems for specific anti-tumor therapy (Ghazarian, Idoni and Oppenheimer, 2011). 

The most significant recent advancement in the study of glycobiology is the introduction of 

lectins in microarrays or biosensors. This has allowed the examination of protein glycosylation 

and cell glycoprofiling in a high throughput manner (Rosenfeld et al., 2007; Gemeiner et al., 

2009; Gupta, Surolia and Sampathkumar, 2010; Rahaie and Kazemi, 2010).  
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1.1.5 Recombinant lectins 

 

A large variety of lectins from several organisms has been fully characterized. However, there 

are numerous disadvantages to obtain lectins from natural sources. For instance, the process 

is time-consuming and requires a considerable amount of biomass. With exception of lectins 

present in seeds and vegetative storage tissues, lectin yields are significantly low, purified 

lectins can contain undesired biomolecules, and a considerable ‘‘batch to batch’’ variation of 

the lectin source which can result in heterogeneity in the binding properties of lectins 

(Gemeiner et al., 2009). Nevertheless, the expression and production of recombinant lectins 

in heterologous systems can overcome many of the issues encountered in the extraction of 

lectins from natural sources.  

The production of recombinant lectins provides lectins with higher level of purity as well as a 

defined sequence of the amino acids involved. Therefore, the final features of the biomolecule 

are inevitably under more control. Furthermore, higher lectin yields can be achieved within a 

much shorter time (Gemeiner et al., 2009).   

Multiple plant lectins and lectins from different organisms have been expressed in bacteria 

(Escherichia coli), yeasts (Pichia pastoris and Saccharomyces cerevisiae), cells of insects 

(Spodoptera frugiperda ovarian cells) and mammalian cells such as monkey kidney cells 

(Oliveira, Texeira and Domingues, 2013). As Escherichia coli is the expression system of choice 

for this present research work, it is the intention to present in the following section a full 

analysis of the factors concerning the production of recombinant lectins in this bacterium.  

 

1.1.6 Production of recombinant lectins in Escherichia coli 

 

Escherichia coli expression system has several advantages such as rapid growth and 

expression rate, simple genome manipulations and cultivation, low cost and time, high yields 

can be obtained, the system can be scaled up and it is suitable for the production of lectins 
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which do not require post-translational modifications (Yin et al., 2007; Demain and Vaishnav, 

2009).  

In addition, E. coli is the first expression system to hold the cDNA during the cloning process 

in the majority of the cases (Streicher and Sharon, 2003). The preferred vehicle used for lectin 

expression in E. coli is the pET expression vector family which is available in more than 40 

configurations (Sørensen and Mortensen, 2005; Yin et al., 2007).  High expression levels of 

recombinant lectins can be achieved as the strong lac promoter (T7 promoter) which is 

present in pET vectors is induced with isopropyl-β-d-thiogalactopyranoside (IPTG) (Oliveira, 

Texeira and Domingues, 2013). 

Recombinant lectins are frequently expressed as fusion proteins in order to ease the 

purification process. The expressed lectin has its cDNA ligated to a fusion partner which 

maintains the correct reading frame. Fusion partners are composed of a peptide of six 

histidines, i.e. His-tag, and glutathione S-transferase (GST). Normally, the commercial 

expression vectors contain the fusion partners.  Some fusion partners may have an effect on 

the properties of the recombinant lectin. In this case, the fusion partners can be removed 

using a suitable protease such as thrombin. The addition of an adequate cleavage site can be 

done between the lectin and the fusion partner cDNAs during the cloning process if the 

available expression vector does not contain this cleavage site. If the fusion partners have no 

effect on the recombinant lectin properties, the fused lectin may be used without removing 

the fusion partners (Olausson et al., 2011). 

Several recombinant lectins from a variety of organisms (plants, mushrooms, animals, algae) 

have been produced by E. coli expression system (Oliveira, Texeira and Domingues, 2013). 

Impressive yields per litre of bacterial culture have been reported. For instance, the Griffithsin 

lectin (GRFT), a lectin from the red alga Griffithia sp., was expressed in E. coli and the total 

amount of the lectin in a 1 litre of bacterial culture was 819 mg. Of this total, 66%, that is, 542 

mg was expressed in the soluble fraction. The expressed recombinant GRFT demonstrated 

similar biological activity in comparison to natural GRFT and presented exactly the same 

homodimeric structure (Giomarelli et al., 2006). 
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Although E. coli expression systems have many advantages, it is important to point out some 

relevant limitations of these systems as well. E. coli is unable to produce glycosylated lectins, 

most of the lectins are expressed in inclusion bodies and these lectins are inactive so refolding 

is necessary. In addition, lectins with disulfide bonds are difficult to be expressed in a correct 

manner (Oliveira, Texeira and Domingues, 2013).  

Bacteria are not capable of performing posttranslational modifications and this fact poses a 

major limitation when it comes to expressing recombinant lectins from eukaryotic origin. 

Several eukaryotic lectins undergo specific co- and posttranslational alterations in the native 

organisms, for example, (partial) N- and O-linked glycosylation or the formation of disulfide 

bonds. As discussed earlier, the glycosylation process is usually critical for the correct 

biological activity of a particular protein. Therefore, eukaryotic lectins expressed in E. coli 

systems should be assessed in terms of their stability and biological activity (Oliveira, Texeira 

and Domingues, 2013). For instance, the recombinant plant lectin, ricin B from Ricinus 

communis, was expressed in E. coli and the glycosylation was assessed as less stable than 

glycosylation on the native lectin (Frankel et al., 1994; Ferrini et al., 1995). Also, a lectin from 

the starfish Asterina pectinifera was recombinantly expressed in E. coli and did not seemed to 

form the necessary disulfide bonds which are required for hemagglutination activity, as well 

as high capacity to bind sugars (Kakiuchi et al., 2002). 

In order to reduce the cytotoxicity effect of overexpressed heterologous proteins, E. coli forms 

inclusion bodies, posing another drawback for the production of recombinant lectins. Most 

lectins are expressed in insoluble inclusion bodies so a technology has been developed to 

improve solubility.  For example, the lectin Allium sativum leaf agglutinin (ASAL) is toxic to E. 

coli cells. However, the bacteria have been used to express this lectin as a fusion protein 

containing a particular peptide which enhances solubility and diminishes lectin cytotoxicity to 

the bacteria (Upadhyay et al., 2010). 

Functional lectins from the insoluble fraction containing the inclusion bodies can be 

successfully recovered (Longstaff et al., 1998; Stancombe et al., 2003; Luo, Zhangsun and 

Tang, 2005). The insoluble proteins are normally inactive and require refolding. However, a 
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small fraction refolds correctly and reestablishes the sugar-binding biological function 

(Streicher and Sharon, 2003).  

Although E. coli expression systems have limitations regarding recombinant lectin production, 

these limitations have been overcome to a considerable degree, making E. coli an excellent 

host for recombinant lectins which do not require glycosylation.  

 

1.1.7 Applications of Recombinant Lectins 

 

Recombinant lectins have many advantages in relation to production and purification 

processes. Additionally, recombinant lectins presenting novel and improved properties such 

as mutated lectins (Yabe et al., 2007) or peptide/protein fused lectin such as immunotoxins 

(Kreitman, 2006) can be produced to meet specific goals. In cancer research field, 

recombinant lectins have been developed for tumor biomarker and anti-tumor applications 

(Yang et al., 2005; Oliveira et al., 2009). Also, lectins produced by recombinant DNA 

technology have been investigated for infectious disease control to address anti-microbial 

(Kim et al., 2007; Ling, Yang and Bi, 2010), anti-viral (Giomarelli et al., 2006; Fouquaert et al., 

2009), and anti-insect (Luo, Zhangsun and Tang, 2005; Upadhyay et al., 2010). Moreover, a set 

of novel technologies have been developed using recombinant lectins for cell profiling (Yim, 

Ono and Irimura, 2001; Maenuma et al., 2008), lectin microarrays (Hsu, Gildersleeve and 

Mahal, 2008; Propheter and Mahal, 2011) and purification tag for recombinant protein 

production (Tielker et al., 2006). 

The direct identification of sugars on cell surfaces using lectins is a very promising technology 

for the investigation of cell surface glycosylation (see Figure 1.2). For instance, many mutants 

of the MAH lectin, a lectin from the legume Maackia amurensis, have been expressed in E. 

coli. These mutants have been successfully used to identify erythrocytes from different animal 

species (Yim, Ono and Irimura, 2001). Also, these lectins have successfully glycoprofiled cell 

lineage and differentiation stages of carcinoma, myeloid, fibroblastic and cells from 

melanoma (Maenuma et al., 2008). 
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The use of recombinant lectins in a microarray format is a significant advancement in the 

analysis of cell surface glycosylation. Recombinant lectins expressed in bacteria have been 

demonstrated to be very useful for lectin microarrays (Hsu, Gildersleeve and Mahal, 2008). 

The fact that these lectins are not glycosylated by the bacterial expression system makes these 

recombinant proteins quite suitable for microarrays. Glycosylated lectins in microarrays may 

lead to false positive responses; for example, the binding of mannose-binding lectins present 

in mammalian cell lysates to high mannose carbohydrates attached to the immobilized lectins 

(Gupta, Surolia and Sampathkumar, 2010).  For this reason, lectins sourced from plants 

present a considerable drawback for lectin microarray applications since these plant-derived 

lectins are mostly glycosylated.  

Drug delivery is also a potential application of recombinant lectins Plattner et al. (2008) have 

investigated the use of lectins for site specific anti-tumor therapy. A recombinant plant lectin 

was used as carrier system for oral drug delivery. It was observed that the recombinant lectin 

remained integral and undamaged after digestion even for half an hour in simulated gastric 

and simulated intestinal fluid (Tremblay et al., 2011).  

Lastly, another important application of recombinant lectins is their use for facilitating the 

purification process of recombinant proteins. The lectins may be used as affinity tags in fusion 

constructs for a one-step protein purification process (Tielker et al., 2006). 
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Figure 1.2: Schematic diagram illustrating the highly specific lectin-glycan interactions. A) 

Recombinant lectins specifically binding to glycan structures on cell membrane proteins and 

lipids, glycoprofiling cell surface. B) Free glycan structures inhibiting lectin interactions with 

carbohydrates attached on the cell membrane. The image was created with the aid of 

Inkscape 0.91.  
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1.2 The CHO cell 

 

In 1919, Chinese hamsters were introduced first as laboratory specimens to replace mice for 

typing pneumococci. Later efforts to domesticate Chinese hamsters in the mid-20th century 

resulted in the development of spontaneous hereditary diseases owing to inbreeding. This 

fact encouraged researchers to investigate the genetics of hamsters (Yerganian, 1972, 1985) 

and it was discovered that the chromosome number of Chinese hamsters (2n = 22) was low, 

making these hamsters very useful for the study of radiation cytogenetics and tissue culture 

(Jayapal et al., 2007).  

In the late 1950s, in a study concerning the investigation of somatic cell genetics (Puck, 

Cieciura and Robinson, 1958) an ovary from a female Chinese hamster was isolated and 

cultured in cell culture plates. Researchers soon observed these cells were very resilient and 

they had relatively rapid generation times which made them very suitable for in vitro 

cultivation (Jayapal et al., 2007).  

 

1.2.1 CHO cells in the Biopharma Industry Context 

 

The CHO cell line is the workhorse of the production of mammalian proteins, particularly at 

industrial scale. The human tissue plasminogen activator, the tPA, was the first recombinant 

protein to be commercially produced from mammalian cells (Deschenes, Finkle and Winocour, 

1997). Since then, the annual global revenue of products sourced from CHO cell lines has 

increased to more than US$100 billion and the revenue continues to grow (Jadhav et al., 2013, 

Jayapal et al. 2007). The main reason which has allowed CHO cells to be so successful is the 

incomparable adaptability which permits the growth of these cells at high densities when they 

are cultured in suspension which can be scalable to 10,000-L bioreactors and the use of serum 

free cultivation conditions (Jayapal et al., 2007; Bandaranayake and Almo, 2014). 

Chemically defined serum free media have been extensively improved in quality and 

availability. Such media are usually more cost effective since they do not contain or require 
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the supplementation with fetal calf serum . This fact makes these media safer, as the risk of 

viral and prion contamination from bovine serum is greatly reduced. Additionally, 

downstream processes can be simplified to a great degree, as chemically defined serum free 

media contain fewer protein contaminants (Bandaranayake and Almo, 2014). Furthermore, a 

scientific study which took place in 1989 investigated 44 human pathogens in CHO cells and it 

was concluded that the majority of these pathogens (such as human immunodeficiency virus 

(HIV), influenza, polio, herpes and measles) do not replicate in these cells. Therefore, CHO 

cells are ideal from a regulatory perspective (Jayapal et al., 2007).  

On the other hand, CHO cell line adaptability has some disadvantages. A production target 

must necessarily select a clone which has the required phenotypic features such as product 

quality and uniformity, doubling time and long-term viability under the conditions of a 

bioprocess. Phenotypic drifts, that is, alterations in the selected features of a clone, may occur 

even though the suitable CHO production clone has been identified (Jadhav et al., 2013). 

However, the genomic variability of CHO cells has allowed the isolation of clones deficient in 

DHFR enzyme. This has resulted in a very effective way of selecting stable clones as well as the 

amplification of genes, thus increasing specific levels of productivity to a great degree (Jayapal 

et al., 2007).  

The highly adaptability feature of CHO cells associated with the knowledge and expertise 

gained over the decades and the extensive scientific research efforts to improve CHO 

production platforms, will surely keep CHO cells as the industry’s premier workhorse for the 

production of therapeutic proteins at least in the near future.  

 

1.2.2 Current monitoring tools for bioprocessing cell health 

 

Most therapeutic proteins require critical and complex posttranslational modifications such 

as glycosylation, phosphorylation, and the formation of disulfide bonds (Zhao et al., 2015). 

The regulatory agency looks at the profile of these modifications for the approval of a certain 

therapeutic protein production process and the agency requires that those PTMs are within a 
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range to ensure the quality of the expressed protein. As many quality attributes of a protein 

can be dictated by the process involving the cell cultivation, the monitoring and controlling of 

upstream bioprocesses are of paramount importance (Zhao et al., 2015).  

There has been substantial progress in the monitoring of bioprocesses and most of the 

methods measure physical and chemical factors such as cell concentration and nutrient levels 

in order to track unexpected changes and control the process if it is needed (Zhao et al., 2015). 

However, methods which investigate cell surface glycosylation and the correlation with 

therapeutic protein glycosylation have not been developed, despite the fact that changes in 

glycosylation patterns have been shown to be linked to the onset of abnormal or unhealthy 

state of the cell (Veiseh et al. 2014; Krasnewich 2014; Gorelik et al. 2001; Patsos et al. 2009; 

An et al. 2009). 

Currently, spectroscopic based methods have been used as tools to monitor bioprocesses. 

Methods such as Near infrared (NIR) spectroscopy and Mid infrared (MIR) spectroscopy are 

examples of in situ analytical techniques which have been used to monitor the culture 

composition of CHO cells and NIR has been implemented in industrial settings such as Eli Lilly, 

Novo Nordisk and AstraZeneca (Forcinio, 2003). 2D fluorometry, Electronic nose and Dielectric 

capacitance are also in situ spectroscopic analytical techniques to monitor mammalian cell 

processes, including CHO cells (Teixeira et al., 2009). These methods require interpretation of 

the spectral data. This means that specific models (such as chemometric models) are needed 

to extract meaningful information, as the multidimensional nature of the data cannot be 

associated straightforwardly to a given target bioprocess variable (Teixeira et al., 2009).  

Although some of these methods provide information on cell viability and the protein of 

interest, the glycosylation state of cell surface as a parameter to monitor glycan patterns to 

identify early signs of cell stress is not obtained. Therefore, these methods fail to investigate 

the correlation of cell surface glycosylation and the glycosylation profile of the therapeutic 

protein, which is a critical quality attribute (Zhao et al., 2015). 

Flow cytometry is a powerful tool which has been used in laboratories to investigate cells for 

several years. Thus, this technique can potentially be used to analyse cell physiology for the 

understanding and prediction of the process kinetics for tighter control and improvement of 
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the bioprocessing of therapeutic proteins in industrial settings (Kuystermans, Mohd and Al-

rubeai, 2012). The multidimensional information obtained from flow cytometry on cell 

population can include cell size, viability. By using specific staining, information on cell surface 

glycosylation, through the use of fluorescent lectins; (see Section 1.1.7), intracellular proteins, 

DNA cell cycle and apoptosis can be obtained as well (Zhao et al., 2015; Kuystermans, Avesh 

and Al-rubeai, 2016).  

Although flow cytometry analysis is commonly used as an off-line tool, the potential use of 

this technique as an on-line monitoring system has been demonstrated (Zhao, Natarajan and 

Srienc, 1999; Sitton and Srienc, 2008; Broger et al., 2011; Kuystermans, Avesh and Al-rubeai, 

2016). As the automation of flow cytometry for monitoring of biopharmaceutical 

manufacturing processes has become more promising, the on-line analysis of glycosylation 

patterns on cell surface presents itself as a relevant alternative to be used as one of the main 

parameters to identify glycosylation changes which may indicate early signs of cell stress 

leading to compromises in the quality of the protein of interest or even cell death. Therefore, 

such early signs may then be mathematically associated with culturing conditions to develop 

a predictive system to control the bioprocess more tightly.  

It is the purpose of this present research work to investigate the relationship between the 

culturing parameters and cell surface glycosylation alterations to address fundamental 

questions which can potentially establish the foundations for the development of a 

bioanalytical tool based on cell surface glycosylation analysis. This tool might not only be able 

to identify early signs of cell stress but also provide data to build a controlling system to act 

upon, accordingly ensuring the bioprocess trajectory is within expectation.  

 

1.2.3 Glycosylation in CHO Cells 

 

CHO cells are able to synthesize a number of complex and oligomannosyl N-glycans with few 

hybrid structures (Lee et al., 2001), mucin O-glycans containing up to four monosaccharides 

(Sasaki et al., 1987), and O-fucose (Moloney et al., 2000), O-glucose (Moloney et al., 2000), O-
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mannose (Patnaik and Stanley, 2005) glycans, and polysialic acid which has been found as a 

minor portion of glycoproteins (Muhlenhoff et al., 1996; Hong et al., 2004).   

GM3 is the major glycolipid synthesized in CHO cells (Stanley, Sudo and Carver, 1980; Warnock 

et al., 1993). Heparan sulfate and chondroitin-sulfate proteoglycans are also found in CHO 

cells (Esko, Stewart and Taylor, 1985). CHO cells lack the expression of glycosyltransferases 

which transfer α1,2-, α1,3-, or α1,4-linked fucose (Howard et al., 1987), β1,6-linked N-

acetylglucosamine (GlcNAc) to generate core 2 O-glycans (Sasaki et al., 1987; Bierhuizen and 

Fukuda, 1992), sialic acid α2,6-linked to Gal (Sasaki et al., 1987), or the bisecting GlcNAc 

(Campbell and Stanley, 1984). Sulfotransferase activities associated with the formation of 

sulfated glycolipids or sulfate N- or O-glycans are not present in CHO cells either (Brockhausen, 

Vavasseur and Yang, 2001).  

 

1.2.4 Glycosylation alterations during cell stress 

 

The majority of proteins synthesized in eukaryotic cells are altered during or just after 

translation. As mentioned in Section 1.1, these alterations are named post-translational 

modifications (PTMs) and they are of covalent nature which have the purpose of providing an 

extra level of regulation for proteins and to provide proteins with a selective ability to be 

involved in different processes (Walsh, Garneau-tsodikova and Gatto, 2005; Freeze and 

Schachter, 2009; Boscher, Dennis and Nabi, 2011). Glycosylation is one of the most critical 

PMT and proteins are glycosylated in the endoplasmic reticulum (ER) and Golgi apparatus. The 

ER also functions as a protein control quality unit by sorting proteins which have not been 

properly folded (Zhang and Kaufman, 2006).  

The secretory pathway initiates in the ER and terminates at the trans-Golgi. This pathway at 

normal conditions provides properly folded and glycosylated proteins to the surface of the 

cell. Such activity is of paramount importance for the development and homeostasis of 

eukaryotic cells and cell-to-cell communication in multi-cellular organisms (Dennis, Lau and 

Nabi, 2009a; Boscher, Dennis and Nabi, 2011). ER quality control function ensures that 
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misfolded or unfolded proteins are retained and recycled so that only properly folded proteins 

are sent to Golgi apparatus (Zhang and Kaufman, 2006). Disruptive alterations in calcium 

homeostasis or redox status, glucose deprivation, overexpression levels of proteins, altered 

glycosylation and the expression of misfolded proteins are some examples of stimuli which 

can impose stress to the ER. Therefore, situations which involve ER stress can profoundly 

impact protein glycosylation (Ruddock and Molinari, 2006) by modifying regulation of 

pathways related to the unfolded protein response (UPR), endoplasmic reticulum associated 

protein degradation (ERAD) and secretion of proteins for instance (Zhang and Kaufman, 2006; 

Chakrabarti, Chen and Varner, 2011). 

In the context of industrial bioprocessing involving CHO cells, sodium butyrate (NaBu) has 

been extensively used to increase the expression levels of recombinant proteins. However, 

NaBu has effects on the quality of glycoprotein such as elevated heterogeneity, decrease in 

vivo biological activity and alterations of the glycosylation of the expressed protein (Sung et 

al., 2004). Furthermore, sodium butyrate can also inhibit cellular growth and induce apoptosis 

(Kim and Lee, 2002). Changes in culture conditions such as temperature and cultivation mode 

can affect glycosylation patterns of glycoproteins. For instance, N-linked glycans on secreted 

human placental alkaline phosphatase, a glycoprotein which was produced on CHO cells, 

showed alterations when the temperature was reduced. Also, glycosylation was altered when 

CHO cells were cultivated in microcarrier culture (Nam et al., 2008). 

Many scientific studies have reported glycosylation alterations on the expressed proteins 

(Werner, Kopp and Schlueter, 2007; Zheng, Bantog and Bayer, 2011; Shi and Goudar, 2014; 

Zheng et al., 2014; Wada, Matsui and Kawasaki, 2019). However, there is a relatively low 

number of reported studies on cell surface glycosylation changes. Grainger & James (2013) 

set up a series of experiments to investigate the correlation between cell surface glycosylation 

and expressed protein glycosylation. It was observed that monoclonal antibody 

galactosylation and CHO cell surface galactosylation were significantly correlated in a 

substrate-controlled variation experiment.  Additionally, the researchers demonstrated that 

it is possible to predict and control N-glycan glycosylation process of a secreted recombinant 

glycoprotein based on measurements obtained from cell surface glycans using lectins. The 
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findings of this investigation indicate that cell surface glycans may be used to monitor the 

health of the bioprocessing cell as well as the glycosylation of the expressed glycoprotein.  

 

1.3 Flow cytometry: basic principles  

 

Flow cytometry is a powerful technique both in research and clinical settings for the definition 

of cellular characteristics or particles. Light scattering and fluorescence emission are the 

physical phenomena exploited by the technique as cells or particles in suspension are 

interrogated by an optical system. An electronics system transforms the optical data into a 

digital dataset which can be visualized and interpreted.  Since its first development about 60 

years ago, flow cytometry measurement capability has been expanded from measuring the 

relative cell size parameter only (Coulter Counter) to 18 parameters measured simultaneously 

(for example, Becton Dickinson’s FACSAria III) (Wilkerson, 2012; Adan et al., 2017). The most 

common applications of flow cytometry are the detection of membrane, cytoplasmic and 

nuclear antigens, whole cells and cellular components, and the analysis of the DNA cell cycle 

and cell proliferation (Adan et al., 2017). 

 

1.3.1 Fluidics system 

 

The fluidics system has the purpose of transporting particles suspended in a fluid stream to 

the laser beam for interrogation. The interrogation process is optimised when the stream 

transporting the particles is placed in the center of the laser beam and when only one particle 

is moved through the laser at a given moment (Graves and Pearlson, 2013).  

The accomplishment of the optimal interrogation process is achieved by the injection of the 

sample into a stream of sheath fluid in the flow chamber. The flow chamber design focuses 

the sample core in the center of the sheath fluid where the laser beam interacts with the 

particles. Laminar flow is the principle governing the separation of the sample core from the 
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sheath fluid whose flow rate accelerates the particles and restricts them to the center of the 

sample core. Such process is known as hydrodynamic focusing and it is illustrated in Figure 

1.3. 

The sample pressure is always greater than the sheath fluid pressure. The sample flow rate is 

then regulated by controlling the sample pressure in relation to the sheath fluid pressure. By 

increasing the sample pressure the flow rate increases widening the sample core. This causes 

more cells to enter the stream in a given moment. However, by increasing the number of cells 

entering the stream, it could increase the number of cells passing the laser beam off-center; 

thereby, the cell is sub optimally interrogated. Nevertheless, this may be appropriate for some 

applications. For instance, qualitative measurements for immunophenotyping can be taken at 

a higher flow rate. However, because the cells are less in line in the wider core stream, the 

data obtained is less resolved, but it is quicker to acquire. On the other hand, a lower flow rate 

reduces the width of the sample core, restricting the cells to a smaller area. Therefore, the 

vast majority of cells is interrogated in the center of the laser beam. This ensures the light 

shining on the cells and emitted from them is more uniform. DNA analysis requires high 

resolution; thereby, a lower flow rate is generally used in this application (Shapiro and Telford, 

2009; Wilkerson, 2012; Adan et al., 2017). 
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Figure 1.3: Hydrodynamic focusing of the sample core. 

 

1.3.2 Generation of scatter light and fluorescence 

 

By hydrodynamic focusing, cells or particles are transported to the interrogation point at 

which a laser light shines. In order to understand what happens to laser light and how signals 

are processed as the light strikes a cell/particle, the concept of light scattering and 

fluorescence is discussed first.  

Light scattering is characterised by the deflection of incident laser light when it encounters a 

particle. This phenomenon depends on the physical properties of a particle such as its size and 

internal complexity. The cell membrane, nucleus, organelles (or any granular material in the 

cell), the cell shape and the topography of its surface are factors which can affect light 

scattering (Wilkerson, 2012). 

Therefore, forward-scattered light (FSC) provides information on the relative cell-surface area 

or size. FSC measures most of the diffracted light being detected by a photodiode just off the 

axis of the incident laser beam in the forward direction. (Figure 1.4). FSC is a suitable method 
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of detecting particles based on a given size without collecting any information of their 

fluorescence. Whereas, side-scattered light (SSC) provides information on the granularity or 

internal and external complexity of the cell. SSC measurements are mostly taken from 

refracted and reflected light that occurs at any cell interface where a change in refractive index 

takes place (Figure 1.4). The collection of SSC is at approximately 90 degrees to the laser beam 

by a set of lens and then the light is redirected by a beam splitter to the appropriate detector 

(Wilkerson, 2012; Adan et al., 2017). 

 

 

Figure 1.4: Illustration of light scattering properties of a cell. 

 

Fluorescence is characterised by the emission of light from a fluorescent compound due to 

the absorbance of light energy. A compound absorbs light over a range of wavelengths which 

depends on the chemical composition of the compound. The absorption of light excites an 

electron in the compound, leading this charged particle to a higher energy level. However, the 

excited electron quickly returns to its original energy state, thereby releasing the excess 

energy in the form of a photon of light (Wilkerson, 2012). 



26 
 

Absorption spectrum is the range of wavelength which can excite a particular compound, 

whereas emission spectrum is the range of emitted wavelengths of this compound. Since 

more energy is consumed during the light absorption than its emission, the wavelengths of 

emitted light are longer than the absorbed ones. 

As a result, more than one fluorescent reagent can be used simultaneously and excited at the 

same wavelength as long as the peak emission wavelengths are not very close to each other. 

For instance, fluorescein isothiocyanate (FITC) and phycoerythrin (PE) can be excited at 488 

nm and both emission peaks can be easily identified (Figure 1.5). The intensity of fluorescent 

signal detected is proportional to the number of fluorescent molecules on the cell/particle. 

 

 

Figure 1.5: Emission spectrum of FITC and PE excited at 488 nm. 

 

A monoclonal antibody conjugated with a fluorescent reagent is very useful in the 

identification of a particular cell type. Thus, specific antigenic markers of the cell are used to 

achieve the cell type identification (Figure 1.6). As a consequence, heterogenous cell 

population can be distinguished into separate subpopulations by employing different 

fluorochromes. The combination of the data extracted from FSC and SSC channels with the 
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staining pattern data of each subpopulation can be used to provide information on which cells 

are present in a sample and to quantify their relative percentages. In addition, modern flow 

cytometers can sort the cells if required. 

 

 

 

Figure 1.6: Interaction of specific fluorochrome-labeled antibodies with cell surface antigens 

markers. 

 

1.3.3 Optics system 

 

The optics system is characterised by the excitation and collection optics. Laser and lenses 

that are employed to shape and focus the laser beam compose the excitation optics, whereas 

the collection optics is composed of a set of lenses which collect light emitted from the particle 

due to the interaction with the laser beam. Also, a system of optical mirrors and filters 

composes the collection optics to direct specified wavelengths of the collected light to 

designated optical detector channels. These functions are achieved by the design of the 

optical bench which provides a fixed position of the light source and the excitation and 

collection optics. Therefore, the laser intercepts the sample stream in a consistent manner 

(Adan et al., 2017). 

Fluorochrome-labelled 
antibodies 
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The emitted SSC light and fluorescence signals resulting from the interrogation of a cell or 

particle at the laser beam are diverted to the photomultiplier tubes (PMTs) and the FSC signals 

are collected by a photodiode. All of the signals are directed to their designated detectors by 

a collection of mirrors and optical filters. Fluorescence signals, which are generally weak, are 

detected by PMTs. An optical filter placed in front of the PMT enables a detector channel to 

specifically detect the fluorescence emitted by a particular fluorescent reagent, since the filter 

allows only a narrow range of wavelengths to reach the channel (Figure 1.7) (Adan et al., 

2017). 

 

 

Figure 1.7: Schematic diagram of an optical bench of a typical flow cytometer. Figure was 

extracted from Adan et al. 2017. 
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1.3.4 Electronics system: signal detection and processing 

 

As particles reach the interrogation point, thus passing through the laser beam, signals of light 

are generated and then converted into electronic signals (voltages) by photodetectors. The 

voltages are then assigned a channel number on a data plot. Generally, photodetectors are of 

two types: photodiodes and photomultiplier tubes (PMTs). Stronger light signals such as FSC 

signal are detected by the photodiode since it is less sensitive than the PMTs. On the other 

hand, weaker light signals such SSC and fluorescence are detected by the PMTs (Wilkerson, 

2012). 

An electronic signal in the form of a voltage pulse is created whenever a particle passes 

through the laser beam and light scattering and fluorescence occur. Once the PMT or the 

photodiode is hit by light signals or photons, the photodetectors convert them into a 

proportional number of electrons which are multiplied. This, increases the electrical current 

which travels to the amplifier, where it is converted into a voltage pulse. The maximum 

amount of light scattering and fluorescence is achieved when the particle is at laser beam 

center; therefore, generating the highest point of the pulse. However, the pulse drops to its 

baseline level as the particle leaves the laser beam (Figure 1.8). The digitalisation of the 

voltage pulse is achieved by an Analog-to-Digital Converter (ADC). The height of a voltage 

pulse is the maximum amount of current generated at the PMT, the width the pulse gives the 

interval it occurs, and the area is the integral of the pulse. Thus, signal intensity can be 

measured by either the height or the area of the pulse (Adan et al., 2017). 
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Figure 1.8: Generation of a voltage pulse as a particle passes through the laser beam. 

 

The PMT voltage, the amplifier gain and the number of photons which are detected determine 

the voltage pulse size. Therefore, signals can be amplified by applying a voltage to the PMTs 

causing an increase in the electrical current, or by elevating the amplification gain. The 

logarithmic amplification is generally used for discrimination of negative from dim positive 

signals, while the linear amplification is generally used for the amplification of scatter and 

fluorescence parameters (Adan et al., 2017). 

 

1.4 Flow cytometric DNA cell cycle analysis 

 

The cycle of the eukaryotic cell can be divided into four distinct stages or phases: G1, S, G2 

and M (Figure 1.9). In G1, growth cell takes place before the S phase starts by initiating DNA 
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synthesis. In G2, cells grow again prior to cell division which takes place in M or mitotic phase. 

The daughter cells produced by this division may only successfully survive provided (i) that 

each phase of the cell cycle takes place in the correct sequence (ii) is completed prior to the 

initiation of the next phase and (iii) that each phase is faithfully processed (Tate and Ko 

Ferrigno, 2006). 

 

 

Figure 1.9: Cells in G1 phase might decide to exit the cell cycle and initiate a quiescent Go 

phase. Cells remaining in G1 phase undergo the duplication of DNA (S phase) before entering 

mitosis.  

 

Flow cytometry allows the quantitative measurement of the nuclear DNA content through the 

use of fluorescent reagent which binds stoichiometrically to the DNA. In other words, the 

stained cellular material incorporates an amount of fluorescent dye proportional to the 

amount of DNA. Thus, the height of the electronic pulse generated is proportional to the total 

fluorescence emission from the cell, allowing the identification of subgroups of cells based on 

their DNA content (cell cycle phases) (Nunez, 2001). 
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In a proliferating cell population, three distinct DNA cell subpopulations can be identified 

through flow cytometry: Go/G1, S, G2/M. The data is presented as cellular DNA content 

frequency histograms (Figure 1.10) (Nunez, 2001). 

 

 

Figure 1.10: Illustration of a DNA histogram obtained from staining cells with propidium iodide 

(PI), a common fluorescent reagent for DNA staining. 

 

Cells in Go/G1 all have a uniform DNA content, as do cells in G2/M. Since the latter cells have 

twice as much DNA than Go/G1 cells, the G2/M peak is located at twice as much the 

fluorescent value of Go/G1 peak and the S cells are in between the two peaks. Therefore, by 

identifying the first peak (Go/G1), the remaining DNA subpopulations can be recognized. The 

coefficient of variation (CV) of the mean value of the fluorescence related to DNA content of 

Go/G1 subpopulation is a reflection of the accuracy of DNA content measurement. Thus, a CV 

lower than or equal to 6% ensures a great level of accuracy of the measurement of DNA 

content (Pozarowski and Darzynkiewicz, 2004).  
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1.5 Current technologies on cell surface glycoprofiling and challenges 

 

Several lectin-based approaches have been developed for cell surface investigation although 

monoclonal antibodies have also proved to be invaluable tools for the analysis of complex 

glyconjugates. In general, monoclonal antibodies bind terminal components, thus limiting the 

utility of these proteins in the analysis of such terminal components. Conversely, lectins may 

bind to both core and terminal glycan structures. Currently, Mass Spectrometry, 

immunohistochemistry and flow cytrometry are techniques widely used for the 

characterization of cell surface glycosylation using lectins (Chen et al., 2007). 

Mass Spectrometry (MS) is a powerful technique which is applicable to the analysis of complex 

glycans was first accomplished with the development of a tandem MS technique (Hirabayashi, 

2008). A characteristic degradation pattern can be associated with individual glycans allowing 

their effective differentiation. MS provides high accuracy (resolution) for both confirmation 

and estimation of glycan structures. However, this technique requires previous treatments 

which involves the liberation of glycans from proteins and lipids prior to the modification with 

an appropriate labelling reagent, such as 2-aminopyridine (Hirabayashi, 2008). Generally, 

these pre-treatments are time-consuming and the resulting N-glycan pool can contain intra- 

and extracellular proteins (Hamouda et al., 2014).  

Immunohistochemistry technique became very popular during the 1980s to investigate the 

distribution of several markers in normal and diseased tissues. This technique uses antibodies 

as reagents for the detection of the cell or tissue localization of a specific antigen, which is 

identified by a label. By using microscopy, this label can be identified. Lectin histochemistry 

was then developed using the basic concept underlying immunohistochemistry; thus, labelled 

lectins were used to detect their binding to carbohydrate structures (Brooks, 2017). A major 

application of lectin histochemistry has been the investigation of alterations in cellular 

glycosylation as normal cells become malignant, and alterations associated with cancer 

progression (Brooks, 2017). Although lectin histochemistry is very powerful, the paraffin-

embedding methods which are normally used for tissue fixation can make carbohydrates in 

glycoproteins inaccessible owing to protein denaturation. In addition, glycolipids can be lost 
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during the fixation process. Thus, methods which allow the use of unfixed biological material 

can be more advantageous. Furthermore, although great advancements have been made 

towards developing high throughput lectin histochemistry analyses (Pilobello, Slawek and 

Mahal, 2007; Tateno et al., 2007), the overall process can still be lengthy and expensive due 

to multiple steps and costly reagents (Chen et al., 2007). 

As mentioned earlier, flow cytometry is a very powerful technique which allows the rapid 

extraction of light scattering and fluorescent based information from cell by cell (see section 

1.3). The technique allows the use of fixed or unfixed cells which can be incubated with 

labelled lectins for the detection of lectin binding to glycans on the cell surface. Therefore, 

this technique allows the analysis of living cells in a rapid manner unlike mass spectrometry 

and lectin histochemistry. In addition, cells can also be stained with other fluorescent reagents 

which provide information on different aspects of the cell population under investigation such 

as live/dead dyes. Thus, this information can be combined with the lectin binding pattern 

(Batisse et al., 2004; Stanley and Sundaram, 2014).  

As the use of multiple dyes greatly increases the level of complexity of flow cytometry data, 

several automation tools to analyse the data have been developed, providing consistency to 

the data analysis task (Rahim et al., 2018; Conrad et al., 2019; Montante and Brinkman, 2019). 

Although there are many scientific reports on the glycosylation of the cell surface using flow 

cytometry, those reports have not explored the possibility of automating flow cytometry data 

analysis using computer languages (Batisse et al., 2004; Stanley and Sundaram, 2014). 

Furthermore, possibly due to the increased complexity of the data analysis, scientific 

investigations which employ automation of flow cytometric data analysis of DNA cell cycle 

combined with cell surface glycosylation have not been reported yet. Studies have shown cell 

surface glycosylation changes associated with the cell cycle (Slawson et al., 2005; Chen et al., 

2010; Ozlu et al., 2015), thus the discrimination of the DNA populations in a flow cytometry 

analysis provides a higher quality of data while increasing the knowledge of the relationship 

between DNA cell cycle and glycosylation changes in the cell surface. In summary, the 

development of a rapid automated cell surface glycosylation combined with DNA analysis 

using flow cytometry would greatly contribute to the field of glycobiology. 
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1.6 Research aims 

 

This research work mainly aims to develop a rapid and automated bioanalytical methodology 

to monitor the bioprocessing cell health by using fluorescent recombinant lectins for probing 

the cell surface and using DNA fluorescent reagents to identify cell surface glycosylation 

changes across the cell cycle.  

As discussed earlier, there have not been scientific reports combining DNA cell cycle with 

lectin-based cell surface analysis using flow cytometry and data analysis automation to 

consistently monitor changes in cell surface glycosylation. In addition, the biopharmaceutical 

industry lacks  a technology which can provide information on cell health during the 

bioprocess within a shorter period of time. Therefore, this high throughput methodology is 

going to allow the monitoring of the bioreactor process step in a more consistent and efficient 

way, dramatically reducing operational costs associated with batch loss due to diseased cells.  

Chapter 3 describes the methodology developed to prepare the cells for analysis through flow 

cytometry and how to filter the data in order to look at only viable single cells. Chapter 4, 

particularly section 4.9, presents multiple data visualization formats combined with the 

statistical analysis facilitating the understanding of the complex flow cytometric data 

obtained. 

 

 

 

 

 

 



36 
 

2 Materials  

 

2.1 Strains of Escherichia coli 

 

Table 2.1: E. coli strains and details 

Strain Use in project Features Source 

JM109 

Used for making 

competent cells and 

for initial small scale 

protein expression. 

Enhanced for high quality 

miniprep DNA. The recA1 

mutation improves insert stability. 

Appropriate for routine cloning. 

Stratagenea 

 

KRX 

 

Used for higher 

level of protein 

expression. 

 

Engineered for optimised 

controlled protein expression. The 

recA- mutation minimizes 

undesirable recombination 

events. The ompP and ompT 

mutations reduce the proteolysis 

of overexpressed proteins. 

 

 

 

 

Promegab 

a - JM109; b - KRX 2013 
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2.2 CHO-K1 

 

Table 2.2: CHO-K1 details 

Cell line description: 

 

A subclone of the parental CHO cell line, which was derived 

from the ovary of an adult Chinese hamster.  

 

 

Species: Cricetulus griseus, hamster, Chinese 

Tissue of origin: Ovary 

Celltype: Epithelial 

Growth  mode: Suspension 

Biosafety level: 1 

Source: Dr. Niall Barron, NICB 

  

 

 

2.3 Microbiological Media 

 

The chemical solutions used for the preparation of the microbiological media were all ACS 

grade and were supplied by Sigma-Aldrich unless otherwise stated. An autoclave was set up 

at 121 °C for a 20 minute cycle to sterilize the media. Distilled water (dH2O) was from a Mili0Q® 

Academic system with a MILLIPAK™ 0.22 µm filter. 

Luria Bertani Broth (LB)  

Tryptone 10 g/L 

NaCl 10 g/L 

Yeast Extract 10 g/L 

pH 7.0 
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The pH was adjusted to 7.0 prior to sterilisation using a NaOH solution and brought to the 

correct volume using dH2O. In order to produce solid agar plates, 15 g/L of agar was added 

prior to sterilization.  

Terrific Broth (TB)  

Tryptone 12 g/L 

Yeast Extract 24 g/L 

Glycerol 4-8 mL/L 

 

Distilled H2O was added to bring the volume to 900 mL before autoclaving. After allowing it to 

cool, 100 mL of 1M potassium phosphate buffer (see section 2.5), was added aseptically and 

the pH was adjusted to pH 7.4.  

 

2.4 Cell Culture Medium 

 

Table 2.3: CHO K1 Cell Culture Supplementation 

Ingredients Quantity (mL) Functions 

BalanCD CHO Growth A Medium 

(Irvine Scientific 91128-1L) 
960 Base medium 

Penicillin – Streptomycin (Sigma 

P4333) 
10 Antibiotics 

12.6% PVA (Sigma P8136) in PBS (w/v) 

(Sigma D8537) 
20 

Anti-foaming and anti-

aggregating agent 

L – Glutamine 2mM (Sigma G7513) 10 Energy source 

 

Cell culture media were supplemented aseptically (with the aid of a biological cabinet) with 

all the ingredients except for L – Glutamine (and this partially supplemented media was stored 
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at 4 °C. As L-Glutamine is quite unstable when it is in media, the required amount was added 

to the partially supplemented media on the day cells were subcultured.   

 

2.5 Buffers and Solutions 

 

Potassium Phosphate Buffer (1.8 M) 

KH2PO4 23.1 g 

K2HPO4 125.4 g 

pH 7.4 

 

The required volume of dH2O was added to bring the volume to 1 L before autoclaving.  

 

PBS (10X) 

Na2HPO4 10.9 g/L 

NaH2PO4 3.2 g/L 

NaCl 90 g/L 

 

In order to make TBS, Triton X-100 was added to PBS 1X to a concentration of 0.1 % (v/v). 

  

TBS Buffer 

Tris 20 mM 

NaCl 150 mM 

pH 7.6 

 

An HCl solution was used to adjust the pH. CaCl2 was added to a final concentration level of 1 

mM. In order to make TBST, Tween 20 was added to a final concentration level of 0.1 % (v/v). 
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Then, BSA was added to TBST to a final concentration level of 5% (w/v) to make western blot 

blocking buffer. 

 

SDS-PAGE Buffer (5X) 

 

Tris 15 g/L 

Glycine 72 g/L 

SDS 5 g/L 

pH 8.3 

The buffer was diluted using dH2O to a 1X running buffer solution. 

 

SDS Sample Buffer (6X) 

 

4X Tris-Cl, pH 6.8/SDS 7 mL 

Glycerol 3 mL  

SDS 1 g  

DTT 0.93 g  

Bromophenol Blue 1.2 mg  

 

Distilled water was added to bring to 10 mL, if necessary. Aliquots of 0.5 mL were prepared 

and stored up to 6 months at -80 °C. 

 

4X Tris-Cl/SDS Buffer 

Tris base 6.05 g 

dH20 40 mL 

pH 6.8 

 

The pH was adjusted to 6.8 with a 1 N HCl solution. Then 0.4 g of SDS was added followed by 

dH2O to 100 mL total volume. 
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Coomassie blue stain solution 

dH2O 50 % (v/v) 

Methanol 40 % (v/v)  

Acetic Acid 10 % (v/v) 

Coomassie blue 0.25 % (w/v)  

 

Coomassie blue destain solution 

dH2O 45 % (v/v) 

Methanol 45 % (v/v)  

Acetic Acid 10 % (v/v) 

 

Lysis Buffer 

NaH2PO4 50 mM 

NaCl 0.5 M  

Imidazole 10-250 mM 

pH 8.0  

 

SDS solution 

SDS 10 % (w/v) 

 

Distilled water was added to 1 L total volume and the solution stored at 4 °C. 

 

Western Blot Semi Dry Transfer Buffer (SDTB) 

Tris base 5.8 g 

Glycine 2.9 g 

Methanol 200 mL 

SDS 0.37 g 
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Citrate Buffer  

Sodium Citrate (0.1 M) 3.63 mL 

Citric Acid (0.1 M) 1.37 mL 

dH2O 5 mL 

pH  5.5 

 

TMB Solution (10 mL) 

Citric Acid 1.37 mL of 0.1 M Stock 

Sodium Citrate 3.63 mL of 0.1 M Stock 

dH2O 5 mL 

 

One TMB tablet (T3406) (1mg) was dissolved in 200 µL of dH2O and added to 9.8 mL TMB 

solution. Two microliters of H2O2 was added immediately before use. 

PBS/CaMg 

A volume of 900 mL of distilled water was added to a beaker with a stir bar, then the following 

compounds were added: 8 g of NaCl, 0.2 g KCl, 1.44 g of Na2HPO4, 0.25 g of KH2PO4, and 0.2 g 

of hexahydrate MgCl2. Once these compounds were fully dissolved with stirring, the volume 

was adjusted to 1 litre with distilled water. HCl (2N) was then added drop by drop to adjust 

the pH to 7.2. The solution was then filtered through a 0.22 µm filter and stored indefinitely 

at 4°C (Stanley and Sundaram, 2014). 

7-Aminoactinomycin D 

A volume of 50 µL of dimethyl sulfoxide (DMSO) was added to 1mg of 7-Aminoactinomycin D 

(7-AAD; ThermoFischer Scientific A1310) to promote the dissolution. Then 950 µL PBS/CaMg 

was added to obtain 1 mg/mL solution. This solution was then kept protected from light and 

stored for up to 6 months at 4°C (Stanley and Sundaram, 2014). 
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3 Methods 
 

3.1 Antibiotics and IPTG 

 

Stock solutions of ampicillin were prepared in dH2O at a concentration level of 100 mg/mL and 

stored at -20 °C. LB agar plates and broth cultures were prepared at 100 µg/mL of ampicillin 

(working concentration). Likewise, stock solutions of IPTG at 100 mg/mL were made and used 

at a working concentration level of 100 µg/mL. 

3.2 Storing and culturing of bacteria 

 

Bacterial stocks were stored at -80 °C in 26.7% glycerol (w/v). An LB agar plate was used to 

culture E. coli which was inoculated on the plate with a loopful of culture from a thawed 

glycerol stock. The plate was subsequently incubated at 37 °C for 18-24 hours. A single colony 

on the plate was used to inoculate 5 mL of medium which was then incubated at 37 °C in a 

shaker incubator for 18-24 hours for the ultimate production of a broth culture.  Two mL of 

this 5 mL media culture was used to inoculate 200 mL of TB which was incubated at 37 °C in a 

shaker incubator for 2-4 hours for protein expression. Glycerol stocks were prepared from 1 

mL of LB culture with the addition of 500 µL of an 80 % glycerol solution (w/v) following 

storage at -80 °C. Table 2.1 shows the bacterial strains used and their phenotypes. 

 

3.3 E. coli expression cultures 

 

From a working glycerol stock, bacteria were inoculated on a LB agar plate containing the 

appropriate antibiotics (see section 3.1). A single colony of the bacteria with the expression 

plasmid of interest was selected to inoculate a sterilin tube containing 5 mL of LB and 

antibiotic. This culture was subsequently incubated overnight at 37 °C with a stir bar 

continuously stirring at 200 rpm. A sample of 2 mL of this overnight culture was used to 
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inoculate a previously autoclaved 1 L baffled Erlenmeyer flask which contained 200 mL of TB 

media and appropriate antibiotic. The TB media culture was allowed to grow at 37 °C in a 

shaker incubator at 200 rpm until an A600 of 0.4-0.6 was reached as this range is indicative of 

the mid-late exponential phase. In order to induce the expression of proteins, IPTG was added 

to give a final concentration level of 100 µg/mL. Finally, the culture was incubated at 30 °C for 

18-20 hours followed by centrifugation at 5,000 rpm for 10 minutes using a Sorvall™ GSA rotor 

for collection of the cells. The pellet was then stored at -20 °C, and the supernatant was 

autoclaved and discarded accordingly.  

 

3.4 Preparation of cleared lysate for protein purification 

3.4.1 Cell lysis by cell disruption 

 

In order to resuspend the cell pellet that resulted from the centrifugation of a 200 mL TB 

culture, 100 mL of lysis buffer containing 20 mM imidazole and 0.1% antifoam (w/v) was 

added (Sigma Antifoam SE-15). With the aid of a magnetic bar and stirrer, the cell pellet was 

mixed in this lysis buffer for 10-15 minutes to fully dissolve and homogenise the cells in the 

buffer. Cells lysis was achieved using a Constant Systems Ltd cell disruptor (TS Series Bench 

Top) and the pressure to breakdown the cells was selected according to the organism under 

disruption. For E. coli, the pressure selected was 15 kpsi (kilopound per square inch). With the 

purpose of equilibrating the disruptor, 100 mL of lysis buffer containing 20 mM imidazole was 

passed through the system. As proteins require lower temperatures for the preservation of 

their biological functions, the disruptor was kept cooled by preparing a water bath filled with 

ice water and circulating this through the cooling jacket which surrounds the disruption head. 

The resuspended cell sample was then loaded into the reservoir where the cellular disruption 

took place. The sample was then loaded into the machine’s reservoir for a second round for 

assurance of complete cell disruption. An additional 20 mL of lysis buffer was passed through 

the machine at the selected pressure to capture any residual sample. The system was 

thoroughly cleaned after each use by running 250 mL of distilled water first, then 250 mL of 

ethanol/IMS and lastly, 250 mL of distilled water was run through the machine. To collect any 
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insoluble debris, the disrupted sample was then spun at 10,000 rpm for 40 minutes at 4 °C. 

The cell lysate supernatant was stored at 4 °C for subsequent processing (protein purification). 

 

3.4.2 Preparation of lysate for IMAC column loading 

 

The preparation of the cell lysate involved the filtration through a Whatman® filter paper 

(Grade 1 – 11 µm) using a Nalgene® reusable vacuum  filter unit (DS0320-5045) into a clean 

Duran bottle.  

 

3.4.3 Standard IMAC procedure 

 

IMAC-Sepharose resin (GE Healthcare) and Profinity™ IMAC resin (Bio-rad) were the resins 

used to purify the his-tagged recombinant protein. Two to five mL of resin was loaded into a 

20 mL column. The required storage buffer, 20 % (v/v) industrial methylated spirits (IMS), was 

passed through the column to wash the resin by using 5-10 column volumes (CV) of dH2O to 

the point at which the resin was fully settled. Following that, the column was equilibrated with 

10 CV of lysis buffer containing 20 mM of imidazole. Subsequently, the filtered cell lysate was 

loaded into the column and a slow flow rate was set to increase the chances of the occurrence 

of optimal capture of the protein of interest by the resin. In order to wash the resin, 10 CV of 

lysis buffer containing 20 mM of imidazole was passed through the column and further wash 

steps were performed with 5-10 CV of lysis buffer containing 50-80 mM of imidazole. The 

recombinant His-tagged protein was then eluted using 12-15 mL of a lysis buffer containing a 

high concentration of imidazole (250 mM). The initial flow through (unbound), washes and 

elution fraction were all collected and labelled. The column was then washed with 10 CV of 

distilled water followed by 5 CV of 20 % (v/v) ethanol in which the resin was then stored. 

Fractions taken at each step of the process were analysed by SDS-PAGE. 
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3.4.4 Stripping and Recharging the IMAC Resin 

 

Prior to loading a filtered cell lysate, the resin was stripped and recharged. Firstly, the column 

was washed with 2 CV of dH2O followed by 2 CV of 50 % IMS (v/v). By loading the column with 

2 CV of 100 mM EDTA at pH 8.0, the metal ions were then stripped. In order to remove any 

remaining impurities, the column was washed with 2 CV of 200 mM NaCl, 2 CV of dH2O and 

10 CV of 30 % isopropanol (v/v). The resin was then washed with 10 CV of dH2O and recharged 

with 1 CV of 100 mM NiSO4. Once again, the column was washed with 10 CV of dH2O and 

stored in 20 % IMS (v/v). 

 

3.5 Protein quantification using the BCA assay 

 

Total protein was quantified with the aid of the Pierce™ BCA Protein Assay Kit (Thermo 

Scientific 23227). The kit was used according to the manufacturer’s instructions to quantify 

total protein concentration level with a working range of 20-2,000 µg/mL. The BCA working 

reagent (WR) was prepared by combining reagent A with reagent B (50:1) which were  both 

supplied in the kit. A 96-well microplate was used to perform the assay in which 200 µL of WR 

was added to 25 µL of protein sample or BSA standard and repeated in triplicate. The plate 

was then placed in a shaker for 30 seconds in order to mix the contents and subsequently 

incubated at 37 °C for 30 minutes. The plate was allowed to cool down to room temperature 

and the absorbance was read at 570 nm (within the suitable range of 540-590 nm). The data 

collected allowed the creation of a standard curve and its second order polynomial trendline 

equation was used to mathematically determine the protein concentration level of the 

samples. 
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3.6 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Protein samples were analysed using the sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) method which is outlined by Laemmli (1970).  

 

3.6.1 Preparation of SDS gels 

 

The gels were made according to Table 3.1. 

Table 3.1: SDS-PAGE gel recipes 

Components 15 % Separating gel 4 % Stacking gel 

Acrylamide/Bis-acrylamide, 30% solution 3.750 mL 325 µL 

dH2O (w/v) 1.758 mL 1.54 mL 

1.5 M Tris-HCl pH 8.8 1.875 mL - 

0.5 M Tris-HCl pH 6.8 - 625 µL 

10 % (w/v) Ammonium persulphate (APS) 37.5 µL 12.5 µL 

10 % (w/v) SDS 75 µL 25 µL 

TEMED (N,N,N',N'-tetramethylethane-1,2-

diamine) 

3.75 µL 2.5 µL 

 

As APS and TEMED are polymerizing agents, they were added last to the mixes (both to the 

separating and stacking gels). Gels were cast using ATTO mini slab glass plates of dimensions 

90 x 80 x 1 mm. The glass plates and gasket were assembled and held with clips and the seal 

was checked by pouring 70 % IMS (v/v) prior to loading the gel. Shortly after the addition of 

APS and TEMED to the mix, the separating gel was poured to about 1.5 cm below the top of 

the plate. The separating gel was overlaid with 70 % IMS (v/v) and allowed to polymerise at 

room temperature for 45-50 min. The importance of overlaying the separating gel relies on 

the fact that the 70 % IMS solution ensures that the top of the gel is completely flat. This keeps 
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protein sample parallel to the bottom of the wells and prevents the separating gel from 

dehydration after it polymerises. The 70 % IMS layer is removed after the fully polymerisation 

of the gel and the stacking gel is added. A comb was then inserted diagonally, to ensure air 

bubbles did not remain at the bottom of the well, into to the top of the stacking gel to form 

the wells in which samples can be loaded into. The gel was allowed to polymerise at room 

temperature for 30 minutes. In the case where the gel was not immediately used, it was 

wrapped in damp tissue and stored at 4 °C.  

 

3.6.2 Protein sample preparation and application 

 

Twenty microliters of sample and 4 µL of SDS Sample Buffer, 6X (see section 2.5) were added 

to a 1.5 mL microcentrifuge tube. This mixture was then boiled at 100 °C on a heating bloc 

(Labnet Accublock™ Digital Dry Bath) for 5 minutes.  The comb and gasket were removed and 

the gel (sandwiched in the two glass plates) was placed in the electrophoresis chamber. A 

certain volume of 1X SDS-PAGE running buffer was added to the chamber allowing the 

removal of unpolymerised acrylamide from the wells. Twenty µL of the prepared sample was 

applied to each SDS-PAGE well. The first lane of the gel was used to load 15 µL of the molecular 

weight marker from Thermo Scientific (PageRuler™ Plus Prestained Protein Ladder of code 

26619, Figure 3.1). Gel was run at 25 mA for 30 minutes and then at 45 mA for about 50 

minutes. The ATTO AE-6500 mini-slab size electrophoresis system was used connected to a 

Labnet Power Station™ 300 power supply. 

The Thermo Scientific PageRuler™ Plus Prestained Protein Ladder (Figure 3.1) consists of a 

mixture of nine recombinant proteins ranging from 10 KDa to 250 KDa. There are two orange 

bands at 70 KDa and 25 KDa and a green reference band at 10 KDa to highlight the protein 

ladder. The remaining six bands are stained blue. 
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Figure 3.1: SDS-PAGE band profile of the PageRuler Plus Prestained Protein Ladder (26619). 

Images are from a 4-20%  (w/v) Tris-glycine gel (SDS-PAGE) and subsequent transfer to 

membrane. Images are from www.thermofisher.com. 

 

3.6.3 Staining SDS-PAGE gels 

 

After carefully removing the polyacrylamide gels from between the glass plates using a spatula 

and rinsing them with dH2O, the gels were left to stain for a minimum of 2 hours with 

Coomassie blue stain solution (see section 2.5) in a plastic weigh boat. The boat was placed 

on an orbital shaker set at a slow rotation at room temperature. The stain solution was 

removed, and the gels were rinsed with dH2O again before the addition of Coomassie blue 

destain solution. The gels were left on the destain solution for 2 hours and additional 

Coomassie blue destain solution was added as required until the proteins bands were visible, 

and the gels were free from the blue background; in other words, gels were transparent. Once 

the gels were fully destained, they were rinsed with dH2O and placed in a clean weigh boat 

and a digital camera was used to obtain gel images which were captured on a F1.9 16 MP 

Smart OIS camera of a Samsung Galaxy S6 phone. 
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3.7 Buffer exchange of recombinant protein fractions 

 

As a result of the IMAC protein purification process steps, the expressed protein is eluted into 

lysis buffer containing 250 mM imidazole. In order to accurately quantify the amount of 

protein, keep it biologically active and store in an optimal buffer, it is necessary to exchange 

the buffer. The elution fractions to be purified were pooled and passed through a spin column 

with a molecular weight cut-off (MWCO) of 10 KDa. The MWCO selected should be at least 50 

% smaller than the protein of interest. For volumes greater than 5 mL, the Vivaspin® Turbo 15 

from Sartorius (VS15T02 – max speed 4,000 x g) was used. However, for volumes less than 5 

mL, the Vivaspin® 500 (VS0102 – max speed 15,000 x g) was used. The suitable spin column 

was loaded with the pooled elution fractions and centrifuged at maximum speed for 10 

minutes at room temperature. The flow through was collected and the retentate was topped 

up with the preferred buffer and the centrifuge step was repeated a further 3-5 times. 

Following that, the protein was suitable for quantification analysis or storage at -20 °C (short 

term) or -80 °C (long term). 

 

3.8 Biotinylation of recombinant proteins 

 

The biotinylation of recombinant proteins is a required process to enable the conduction of 

activity assays and to probe live cells using a flow cytometer.  The Thermo Scientific EZ-Link™ 

Sulfo-NHS-SS-Biotin No-Weigh ™ Format (21328) was used to biotinylate recombinant 

proteins. The biotinylation process relies on the reaction of N-Hydroxysuccinimide (NHS) 

activated biotins with primary amino groups, -NH2, in pH 7-9 buffers for the formation of 

stable amide bonds. Usually, proteins have several primary amines in the side chains of lysine 

(K) residues and at the N-terminus of the polypeptide which are available for labelling with 

NHS-activated biotin. Biotin (B7 vitamin) binds with high affinity to avidin and streptavidin and 

has useful multiple features such as solubility in water, small size molecule (244 Da) and non-

interference in the biological protein activity when biotin is conjugated to the protein. 
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The kit was used according to the manufacturer’s instructions. Therefore, the kit was removed 

from the freezer and a 10 mM biotin solution was prepared by adding 164 µL of ultrapure 

water to 1 mg of biotin in a microtube.  In order to calculate the amount in milimoles of Sulfo-

NHS-SS-Biotin to add to the reaction for a 20-fold molar excess solution, Equation 3.1 (below) 

was used. Then, Equation 3.2 was used to calculate the amount in microliters of the 10 mM 

Sulfo-NHS-SS-Biotin to add to the reaction. 

𝑚𝐿	𝑝𝑟𝑜𝑡𝑒𝑖𝑛	𝑥 ,-	./01234
,5	./01234

𝑥	 ,,06	./01234
,-	./01234

	𝑥 78	,,06	930134
,,06	./01234

= 𝑚𝑚𝑜𝑙	𝐵𝑖𝑜𝑡𝑖𝑛              (Equation 3.1) 

𝑚𝑚𝑜𝑙	𝐵𝑖𝑜𝑡𝑖𝑛	𝑥 =8>	,-
,,06	930134

𝑥 ?888	@5
=.8	,-

= µ𝐿	𝐵𝑖𝑜𝑡𝑖𝑛                                                       (Equation 3.2) 

Legend: 

•  20 = Recommended molar fold excess of biotin for 2 mg/mL IgG sample 

• 607 = Molecular weight of Sulfo-NHS-SS-Biotin 

• 1000 = Microliters of water in which 6.0 mg of Sulfo-NHS-SS-Biotin is dissolved to yield 

a 10 mM solution 

An amine free buffer such as PBS was used for the biotinylation of proteins. The calculated 

volume of biotin was added to the protein and incubated for 2 hours or at room temperature 

for 30 minutes. The sample was then buffer exchanged (see section 3.7), for biotin removal 

and increase of the protein concentration, using a 10,000 Da MWCO spin column as described 

in section 3.7. 

 

3.9 Enzyme-linked lectin assay 

 

McCoy et al. (1983) was the first to describe the enzyme-linked lectin assay (ELLA) for 

detecting glycoproteins bearing specific carbohydrate residues. In the present research work, 

the method  described and optimised outlined by Thompson et al. (2011) was used for the 

characterization of lectins and the determination of the lectin binding specificities (Figure 3.2).  
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A 50 µL volume of glycoprotein at 5 µg/mL was immobilized in each well of a Nunc-Immuno™ 

MicroWell™ 96 well solid plate (439454) and incubated at 4 °C for 16-18 hours. Each sample 

was set up in triplicate. By inverting the plates, the unbound glycoprotein was removed and 

following that the wells were blocked with 150 µL of 0.5 % (w/v) polyvinyl alcohol (PVA) in TBS 

for one hour at 25 °C. After inverting the plate to remove the blocking solution, the plate was 

washed with TBS supplemented with 0.1 % (v/v) Tween 20 four times. A 50 µL aliquot of lectin 

in TBS supplemented with 1 mM CaCl2 was then added at a concentration of 5 µg/mL and 

incubated at 25 °C for 1 hour. This solution was then removed by inverting the plate and 

washed with TBST as previously. This next step was the addition of 50 µL of 1:10,000 murine 

anti-histidine (anti-polyHistidine mAb conjugated to HRP, Sigma A7058) and/or anti-biotin 

antibody (anti-Biotin mAb conjugated to HRP, Sigma A0185), as appropriate. The antibody was 

diluted fresh in TBST and was incubated for 1 hour at 25 °C. A 100 µL volume of TMB substrate 

(see section 2.5) was added after the removal of the unbound antibody by inverting the plate 

and washing it four times with TBST. A volume of 50 µL of 10 % (v/v) H2SO4 was used to cease 

the reaction after a specified time. The microplate was then ready for absorbance reading at 

450 nm using a BioTek ELx808 plate reader. 

All commercial lectins which have been used in this present research work were supplied by 

Vector Laboratories Ltd UK (Table 3.2). In order to demonstrate lectin specificity a negative 

control was used. Each lectin was diluted to 5 µg/mL in TBS supplemented with 10 mM CaCl2 

and a defined sugar was added. The used concentration level of the inhibiting/eluting sugar is 

recommended by Vector Laboratories Ltd in the product data sheet. This lectin-sugar solution 

was then added to the plate as described above.  

Additionally, in-house produced lectins were also used: LEC A, LEC B and AAL-2. These lectins 

were developed by Jonathan Cawley and Donal Monaghan during their PhD work in the 

research group. LEC A specifically binds to Galactose, LEC B to Fucose and Mannose, and AAL-

2 to N-Acetylglucosamine.  
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Table 3.2: Biotinylated lectins from Vector Laboratories Ltd UK. (Man = Mannose; GlcNAc = N-

Acetylglucosamine; Gal = Galactose; Lac = Lactose; SA = Sialic Acid; Fuc = Fucose; Glu = Glucose 

and GalNAc = N-Acetylgalactosamine) 

Lectin Name 

(Abbreviation) 

Lectin 

Source 

Common 

Name 

Binding 

Specificity 

Concanavalin A (CONA) Canavalia ensiformis Jack Bean Man, Glu 

Ricinus communis agglutinin 

(RCA) 

Ricinus communis Castor oil plant GlcNAc, 

Gal 

Aleuria aurantia Lectin (AAL) Aleuria aurantia Orange Peel 

Fungus 

Fuc 

Maackia amurensis Lectin II 

(MAL II) 

Amur maackia Amur tree SA 

Wheat germ agglutinin 

(WGA) 

Wheat Triticum spp. GlcNAc 

Peanut agglutinin (PNA) Arachis hypogaea peanuts Peanut Gal 
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Figure 3.2: Schematic diagram of an ELLA. An immuno microplate is blocked with 0.5 % (w/v) 

PVA in TBS after a glycoprotein target is immobilized on the surface of the plate. Lectins are 

added to interact with the glycoproteins and then antibodies are added for bound lectin 

detection. A) Glycoproteins probed with biotinylated commercial lectins. B) Glycoproteins 

probed with His6-tag recombinant lectins.  The image was generated with the aid of Inkscape 

0.91. 
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3.10 Mycoplasma Testing 

 

Mycoplasma contamination is of a permanent concern in animal cell culture, so in order to 

check cells and expand the CHO-K1 cell stock (see section 3.11.5), mycoplasma testing was 

done using the MycoAlert™ Plus detection kit from Lonza. The assay was performed on a 

Glomax™ luminometer and conducted according to the protocol suggested by the 

manufacturer. 

 

3.11 Cell culture techniques  

3.11.1 General consumables 

 

The sterile plastic consumables used for cell culture in this present work, such as 96 well 

plates, 50 mL tubes, pipette tips (10 µL – 25 mL) and microcentrifuge tubes (not supplied 

sterile, so tubes were sterilized by autoclaving at 121 °C for 20 minutes), were mostly supplied 

by Sarstedt. Sterile 20 mL tubes were supplied by Thermo Scientific. Sterile 50 mL 

CELLSTAR®CELLreactor™ TUBES were used to culture cells in suspension and the tubes were 

supplied by Greiner Bio-One. 

 

3.11.2 Cell culture cabinet and incubators 

 

All cell culture work was conducted in a Holten Laminar HB2448 cabinet and a HERAsafe KS18 

class II biological safety cabinet (BSC). Aseptic techniques were used at all times to ensure cells 

were protected from contamination. The BSC was thoroughly sprayed and wiped down with 

70 % (v/v) IMS before and after use. All the items which needed to be manipulated in the 

cabinet were sprayed with 70 % IMS. In order to diminish the risk of cross-contamination, only 

one cell line was manipulated at a time and the BSC was left vacant for a minimum of 15 

minutes between different cell lines. An ORBi-SHAKER™ CO2 19mm orbital shaker from 
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Benchmark was placed inside of a Heraeus® Function Line CO2 incubator, and an Advanced 

Mini Shaker 15 mm orbital shaker from VWR was placed inside of a Memmert CO2 incubator 

INB200 for cell culture in suspension. Both, incubators and BSC, were regularly cleaned with 

a broad spectrum disinfectant Virkon® (1 % w/v) followed by distilled water and IMS. 

 

3.11.3 Subculture of CHO-K1 

 

CHO-K1 cells were maintained at 37 °C in an atmosphere with 5 % CO2 and about 95 % 

humidity. Cell were grown in 5 mL of medium in 50 mL bioreactor tubes and placed on an 

orbital shaker (Heraeus Function Line CO2 Incubator BB 16) which was set at 200 rpm.  

Subculture of CHO-K1 cells was conducted every 3 to 4 days and cells were only used for 

experiments up to a maximum of 10 passages after recovery (see section 3.11.6).   

The bioreactor tube was spun at 1000 rpm for 5 min to collect the cells. After carefully 

removing the supernatant, cells were resuspended in 5 mL of fresh pre-warmed growth 

medium (see section 2.4). Cell counting was then counted on a haemocytometer following 

staining with Trypan Blue solution; an appropriate volume of the cell suspension was then 

used to seed fresh tubes at a desired starting cell density.  

 

3.11.4 Trypan blue cell counts 

 

Cells were counted using an Improved Neubauer haemocytometer (Hawksley BS.748). In 

order to determine cell viability, Trypan Blue solution (0.4 % Trypan Blue, Sigma T8154) was 

used. A volume of 20 µL of trypan blue solution was added to a sample of 180 µL of cell 

suspension, mixed and allowed to rest for 5 minutes.  A clean glass coverslip (24 mm L x 26 

mm W x 0.4 mm H) was moistened with exhaled breath and then the coverslip was slid over 

the chamber back and forth using slight pressure until Newton’s refraction rings appeared. 

These rings are seen as rainbow-like ones under the coverslip. A volume of 10 µL of the mix 



57 
 

(cell suspension + trypan blue solution) was used to fill one side of the chamber. An Olympus 

CK40 inverted microscope was used to look at the cells. As trypan blue only enters in non-

viable cells, cells stained blue were counted as non-viable whereas the bright cells were 

counted as viable. The concentration of viable and non-viable cells and the percentage of 

viable cells were calculated as follows: 

 

	𝑉𝑖𝑎𝑏𝑙𝑒	𝐶𝑒𝑙𝑙	𝐶𝑜𝑢𝑛𝑡	 = H0	0I	53J2	K266L	K0M412N
H0	0I	6O/-2	K0/42/
PQMO/2L	K0M412N

𝑥	10	(𝐷𝐹)	𝑥	10,000                           (Equation 3.3) 

𝑁𝑜𝑛 − 𝑣𝑖𝑎𝑏𝑙𝑒	𝐶𝑒𝑙𝑙	𝐶𝑜𝑢𝑛𝑡	 = H0	0I	\2ON	K266L	K0M412N
H0	0I	6O/-2	K0/42/
PQMO/2L	K0M412N

𝑥	10	(𝐷𝐹)	𝑥	10,000              (Equation 3.4) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = H0	0I	a3Ob62	c266L
d01O6	H0	0I	c266L

	𝑥	100%                                                    (Equation 3.5) 

The concentration of cells (viable and non-viable) is in cells/mL and the dilution factor (DF) is 

10. 

 

3.11.5 Cryopreservation of Cells 

 

For cryopreservation of the cells for indefinite time, cells were stored below -180 °C in a liquid 

nitrogen tank and an appropriate freezing medium from Gibco® was used (Recovery™ Cell 

Culture Freezing Medium, Bio-Sciences Ltd 12648010).  In order to obtain optimum results, 

cells were sampled in mid-log phase of growth (3 to 4 days in culture) with > 90 % viability at 

the time of freezing. The freezing medium was allowed to thaw at 2-8 °C and mixed before 

use. Cells were counted according to the method described in the previous section 3.11.4 and 

the required volume of the freezing medium was calculated to achieve a final cell density of 1 

x 106 to 1 x 107 cells/mL.  The suspension cells were transferred to a sterile 20 mL centrifuge 

tube and centrifuged at 1000 rpm for 5 minutes. The supernatant was aseptically removed 

and cells were resuspended in the required volume of freezing medium. Cells were 

subsequently dispensed into 1.5 mL cryovials (Sarstedt 72.694.406). The cell suspension was 



58 
 

frequently mixed to ensure homogeneous aliquots were being taken. Cryopreservation was 

achieved using a manual controlled rate freezing apparatus (Mr. Frosty™ freezing container, 

Thermo Scientific 5100-0001) which allowed the cells to freeze approximately 1 °C decrease 

per minute in a -80 °C freezer overnight. The following day, the cryovials were transferred to 

the liquid nitrogen tank for indefinite storage. 

 

3.11.6 Recovery of cells 

 

In order to recover cells from cryo-storage, they were removed from the liquid nitrogen tank 

and rapidly thawed (< 1 minute) at 37 °C until only a small amount of ice remained. Cells were 

then transferred to a sterile 20 mL centrifuge tube and a volume of 5 mL of pre-warmed 

medium was added. The tube was place on a centrifuge and spun at 1000 rpm for 5 minutes. 

The supernatant was aseptically removed, and cells were resuspended in 5 mL of pre-warmed 

medium and transferred to a bioreactor tube for culturing in the incubator. 

 

3.12 Flow cytometry methods and statistical analysis  

3.12.1 Sample preparation  

 

Prior to the analysis of cell surface glycosylation, a number of optimization studies was 

conducted. These studies set out to determine the optimal conditions of certain variables thus 

allowing an increase in the quality level of the information extracted from the main study.  

Additionally, several decisions were made towards the minimization of sources of variabilities 

which also contributed to the increase of the level of quality of the experimental data. The 

choice of using industrially manufactured PBS and the BALANCD CHO media to manipulate 

the cells during sample preparation allowed consistency of the solutions used on the cells. 

Furthermore, the biotinylated lectins used were from the same batches throughout the entire 

project as it is known that biotinylated lectins can present batch-to-batch variability with 
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regard to the number of biotin groups attached to the lectin molecule. The number of biotin 

groups can, in turn, influence the level of fluorescence intensity as the streptavidin V450 

molecules will attach to biotin groups proportionally. Therefore, an experiment might present 

a glycoprofile variation in relation to a baseline experiment due to the use of a biotinylated 

lectin from a different batch. 

 

 Cell culture process optimisation  

 

Two sets of six cell culture tubes were prepared to collect pH measurements and flow 

cytometry data to construct cell culture growth curves. Each set was composed of two subsets 

which were distinguished by L-Glutamine concentration levels of 2 mM and 4 mM. Each subset 

was composed of three tubes seeded at a different starting cell density: 0.5, 1 and 2 million 

cells/mL.  

While a set was used for daily sampling of flow cytometric analysis and pH measurements, the 

other was only used to collect samples for pH measurements. The sets were labelled as FC/pH 

and pH respectively (Figure 3.3).  

 

 

Figure 3.3: Diagram illustrating the arrangement of cell culture tubes for cell culture 

optimisation studies.  
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Samples were collected every 24 hours for 10 days. A volume of 200 µL of cell suspension from 

each tube of the pH set was sampled whereas 350 µL from the FC/pH tubes. Then, 50 µL of 

CountBright™ absolute counting beads (ThermoFisher, C36950) was added to each FC/pH 

sample. Also, a 1 µL of 7-AAD was added to the samples followed by an incubation period of 

15 minutes at room temperature in the dark.  

The FC/pH samples were then transferred to FACS tubes and data was collected using a flow 

cytometer BD FACSAria I. Upon completion of flow cytometry data collection, pH 

measurements of the pH and FC/pH samples were taken using a pH electrode Orion Semi-

micro (ThermoFisher, 10237293) attached to a Eutech pH510 bench pH meter. Three pH 

measurements were taken from each sample. 

 

 7-AAD concentration optimisation 

 

At the fourth day of culture, CHO-K1 cells were counted using the method described in section 

3.11.4. A volume of cell suspension containing 2x106 cells was calculated and sampled into 

microcentrifuge tubes. One milliliter of room temperature sterile PBS (Sigma, D8537) was 

added to the microcentrifuge tubes. These tubes were then centrifuged at 400 g for 5 minutes 

and the supernatants obtained were then discarded. Each tube was labelled with the 7-AAD 

volume to be added to it and a randomly assigned ordinal number. For example, 1 µL of 7-

AAD – 2. Five different concentration levels of 7-AAD were tested by adding the following 

volumes: 1, 2, 3, 4, and 5 µL. Cells were resuspended in 500 µL of supplemented pre-warmed 

medium (at 37 °C for an hour) and the respective amount of 7-AAD was added. Cells were 

incubated for 15 minutes in the dark at room temperature. A tube of unstained cells was also 

prepared in parallel to act as a flow cytometry control. The tube contents were then 

transferred into labelled FACS tubes which were then kept in a styrofoam box full of small ice 

cubes to reduce cell metabolism. Shortly after, 10,000 events of the singlets population (see 

section 3.12.5) were collected from each sample starting with the flow cytometry control 

sample. 
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 7-AAD incubation time optimisation 

 

At the fourth day of culture, CHO-K1 cells were counted using the method described in section 

3.11.4. A volume of cell suspension containing 2x106 cells was calculated and sampled into 

microcentrifuge tubes. One milliliter of room temperature sterile PBS (Sigma, D8537) was 

added to the microcentrifuge tubes. These tubes were then centrifuged at 400 g for 5 minutes 

and the supernatants obtained were then discarded. Three different 7-AAD incubation time 

periods were tested: 5, 10 and 15 minutes.  Cells were resuspended in 500 µL of supplemented 

pre-warmed medium (at 37 °C for an hour) and 1 µL of 7-AAD was added to the 5 min samples 

first. These samples were incubated for 5 minutes in the dark at room temperature. A tube of 

unstained cells was also prepared in parallel to act as a flow cytometry control. The tube 

content was then transferred into a labelled FACS tube which was then kept in a styrofoam 

box full of small ice cubes to reduce the cell metabolism. Shortly after, 10,000 events of the 

singlets population (see section 3.12.5) were collected from each sample starting with the 

flow cytometry control sample. 

Upon the conclusion of the reading of the 5 min sample, 1 µL of 7-AAD was added to the 10 

min samples and the incubation time was conducted in the dark at room temperature. The 

same procedure was then followed as previously. Finally, the 15 min sample set was then 

prepared by adding 1 µL of 7-AAD and 15 minutes of incubation time was conducted in the 

dark at room temperature. Again, the same procedure was followed as previously concluding 

the experiment. 

 

 DRAQ5 concentration optimisation 

 

At the fourth day of culture, CHO-K1 cells were counted using the method described in section 

3.11.4. A volume of cell suspension containing 2x106 cells was calculated and sampled into 

microcentrifuge tubes. One milliter of room temperature sterile PBS (Sigma, D8537) was 

added to the microcentrifuge tubes. These tubes were then centrifuged at 400 g for 5 minutes 
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and the supernatants obtained were then discarded. Each tube was labelled with the DRAQ5 

volume to be added to it and a randomly assigned ordinal number. For example, 1 µL of DRAQ5 

– 3. Five different concentration levels of DRAQ5 were tested by adding the following volumes: 

1, 2, 3, 4, and 5 µL. Cell were resuspended in 500 µL of supplemented pre-warmed medium 

(at 37 °C for an hour) and the respective amount of DRAQ5 was added. Cells were then 

incubated for 20 minutes at 37 °C. A tube of unstained cells was also prepared in parallel to 

act as a flow cytometry control. The tube contents were then transferred into labelled FACS 

tubes which were then kept in a styrofoam box full of small ice cubes to reduce the 

metabolism of the cells. Shortly after, 10,000 events of the singlets population (see section 

3.12.5) were collected from each sample starting with the flow cytometry control sample. 

 

 DRAQ5 incubation time optimisation 

 

At the fourth day of culture, CHO-K1 cells were counted using the method described in section 

3.11.4. A volume of cell suspension containing 2x106 cells was calculated and sampled into 

microcentrifuge tubes. One milliter of room temperature sterile PBS (Sigma, D8537) was 

added to the microcentrifuge tubes. These tubes were then centrifuged at 400 g for 5 minutes. 

The supernatants obtained were then discarded. Five different DRAQ5 incubation time 

periods were tested: 5, 10, 15, 20 and 25 minutes. Cell were resuspended in 500 µL of 

supplemented pre-warmed medium (at 37 °C for an hour) and 1 µL of DRAQ5 was added to 

the 5 min samples first. These samples were incubated for 5 minutes at 37 °C in the incubator. 

Meanwhile, the 10 min sample was prepared and allowed to incubate for the expected time 

and a tube with unstained cells was also prepared in parallel to act as a flow cytometry control. 

After the 5 min sample completed the incubation step, the tube content was then transferred 

into a properly labelled FACS tube which was then kept in a Styrofoam box full of small ice 

cubes to reduce cell metabolism. Shortly after, 10,000 events of the singlets population (see 

section 3.12.5) were collected from each sample starting with the flow cytometry control 

sample. 
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After the completion of the data collection of the 5 min sample, the 15 min sample was 

prepared and allowed to incubate as expected. As soon as the 10 min sample completed the 

incubation time, this sample was transferred to a FACS tube and read. Then the 20 min sample 

was prepared and incubated for the expected time. Meanwhile, the 15 min sample was ready 

to be transferred to a FACS tube for data collection. Finally, the 25 min sample was prepared 

and incubated. At this point, the 20 min sample was transferred to a FACS tube and read. 

Upon completion of the expected incubation time, the 25 min sample was prepared for data 

collection and the last experimental reading was performed. 

 

 Lectin Cytotoxicity Analysis  

 

At the fourth day of culture, CHO-K1 cells were counted using the method described in section 

3.11.4. A volume of cell suspension containing 2x106 cells was calculated and sampled into 

microcentrifuge tubes. One milliter of room temperature sterile PBS (Sigma, D8537) was 

added to the microcentrifuge tubes which was followed a centrifugation step at 400 g for 5 

minutes.  

Meanwhile, serial dilutions of individual lectins were prepared starting at 12.50 µg/mL of 

lectin and 6.25 µg/mL of V450 concentration levels in a volume of 1.4 mL of supplemented 

pre-warmed medium (at 37 °C for an hour). The serial dilutions resulted in 8 lectin 

concentration levels: 12.50, 6.25, 3.13, 1.56, 0.78, 0.39, 0.20, and 0.10 µg/mL. Samples at 0.00 

µg/mL of lectin/V450 were also prepared. Each tube was labelled with its replicate number, 

lectin concentration level, and a randomly assigned ordinal number, for example, Replicate I 

- WGA at 12.5 µg/mL - 12. The ordinal number assigned to each tube was previously generated 

using the sample( ) function on R which can randomly order a sequence of numbers. The 

ordinal number dictated the order of the treatment assigned for each tube as well as every 

other action in the sample preparation process (except for the centrifugation of the tubes 

which was conducted at the same time), including the order at the data collection stage. Such 

way of arranging the order of treatment application and data collection was employed to 

remove the time as a confounding parameter. 
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Following centrifugation, supernatants were removed as above and cells were resuspended 

in 200 µL of the appropriate lectin/V450 solution and incubated in the dark for 40 minutes at 

room temperature. The tubes were centrifuged again at 400 g for 5 minutes and the 

supernatants containing the unbound lectin molecules were removed to reduce the level of 

background signal. Cells were resuspended in 500 µL of supplemented pre-warmed medium 

(at 37 °C for an hour) and 1 µL of 7-AAD was added. Cells were incubated for 15 minutes in 

the dark at room temperature. 

Another set of microcentrifuge tubes was prepared in parallel to act as flow cytometric control 

samples. These samples were composed of two single-stained tubes; 7-AAD and the tested 

lectin.  This lectin single-stained tube was prepared at the highest lectin concentration level 

which was being tested, i.e, 12 µg/mL. This set of tubes was treated in the same way regarding 

the staining step which was not needed for a particular tube. For instance, although a LEC A 

single-stained tube does not need to be incubated with 7-AAD, this tube was kept in the dark 

at room temperature during the 7-AAD incubation time of the double-stained tubes (lectin 

and 7-AAD stained tubes). 

The tube contents were then transferred into labelled FACS tubes which were kept on ice. 

Shortly after, data was collected from the samples starting with the flow cytometric control 

samples. Around 500,000 events were collected for each tube from the viable cell population 

(see section 3.12.5). 

 

 Free sugar inhibition analysis  

 

At the fourth day of culture, CHO-K1 cells were counted using the method described in see 

section 3.11.4. A volume of cell suspension containing 2x106 cells was calculated and sampled 

into microcentrifuge tubes. One mL of room temperature sterile PBS (Sigma, D8537) was 

added to the microcentrifuge tubes. These tubes were then centrifuged at 400 g for 5 minutes. 

After the completion of the centrifugation, the supernatant of the tubes was extracted and 

discarded.  
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Lectin/V450 solutions (WGA, PNA, MAL II, AAL, AAL-2, LEC A, and LEC B) were prepared at 3.0 

µg/mL of lectin and 1.5 µg/mL of V450 in 0.9 mL of fully supplemented pre-warmed media (at 

37 °C for an hour) containing a particular free-sugar molecule (Table 3.3). Lectin/V450 

solutions in 0.9 mL of fully supplemented pre-warmed media without any sugar and a solution 

containing only V450 at 1.5 µg/mL in 0.9 mL of fully supplemented pre-warmed media were 

also prepared.  

 

Table 3.3: Lectins and the respective sugar molecules used to prepare solutions for sugar 

inhibition studies. 

Solution Lectin Sugar Sugar concentration 
Sugar supplier and 

product code 

1 WGA N-Acetylglucosamine 0.4M Sigma – A8625 

2 WGA N-Acetylgalactosamine 0.4M Sigma – A2795 

3 AAL-2 N-Acetylglucosamine 100mM Sigma – A8625 

4 AAL-2 N-Acetylgalactosamine 100mM Sigma – A2795 

5 AAL L-Fucose 0.2M Sigma – F2252 

6 AAL Mannose 0.2M Sigma - 63582 

7 MAL II Sialic Acid 0.2M VectorLabs – S9008 

8 MAL II N-Acetylglucosamine 0.2M Sigma – A8625 

9 LEC A Galactose 0.1M Sigma - 15522 

10 LEC A Mannose 0.1M Sigma - 63582 

11 LEC B L-Fucose 0.2M Sigma – F2252 

12 LEC B Mannose 0.2M Sigma - 63582 

13 LEC B Galactose 0.2M Sigma - 15522 

14 LEC B N-Acetylglucosamine 0.2M Sigma – A8625 

15 PNA Galactose 0.1M Sigma - 15522 

16 PNA Mannose 0.1M Sigma - 63582 
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Each tube was labelled with its replicate number, solution of treatment and a randomly 

assigned ordinal number, for example, Replicate III – LEC A + Galactose - 9. The ordinal number 

assigned to each tube was generated as described in section 3.12.1.6. 

After the labelling process, cells were then re-suspended in 200 µL of the appropriate solution 

and incubated for 40 minutes in the dark at room temperature. Cells were collected by 

centrifugation again at 400 g for 5 minutes and the supernatant containing the unbound 

molecules was removed to reduce the level of background signal. Cell were resuspended in 

500 µL of supplemented pre-warmed medium (at 37 °C for an hour). Alongside, tubes of 

unstained cells were also prepared to act as flow cytometric controls. The tube contents were 

then transferred into properly labelled FACS tubes which were then kept on ice. Shortly after, 

10,000 events of the singlets population (see section 3.12.5) were collected from each sample 

starting with the flow cytometry control sample. 

 

 Cell surface glycoprofile analysis  

 

At the fourth day of culture, CHO-K1 cells were counted using the method described in see 

section 3.11.4. A volume of cell suspension containing 2x106 cells was calculated and sampled 

into microcentrifuge tubes. One milliter of room temperature sterile PBS (Sigma, D8537) was 

added to the microcentrifuge tubes which were then centrifuged at 400 g for 5 minutes.  

Meanwhile, lectin/V450 solutions (WGA, PNA, MAL II, AAL, AAL-2, LEC A, and LEC B) were 

prepared at 3.0 µg/mL of lectin and 1.5 µg/mL of V450 in 0.9 mL of supplemented pre-warmed 

medium (at 37 °C for an hour). The supernatants obtained were then discarded. Each tube 

was labelled with its replicate number, lectin/V450 solution and a randomly assigned ordinal 

number; for example, Replicate II – LEC A - 12. The ordinal number assigned to each tube was 

generated as described in section 3.12.1.6. 

After the centrifugation, removal of the supernatant and tube labelling process as described 

above, cells in the tubes were then re-suspended in 200 µL of the appropriate lectin/V450 

solution and incubated for 40 minutes in the dark at room temperature. Meanwhile, a sample 
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of 200 µL of each replicate was collected for pH measurement using a pH electrode Orion 

Semi-micro (ThermoFisher, 10237293) attached to a Eutech pH510 bench pH meter. Three pH 

measurements were taken from each replicate. Also, the remaining cell suspension in the 

replicate cell culture tubes was centrifuged at 1000 rpm for 5 minutes to collect the 

supernatant and cells separately for posterior analysis. The supernatant and cells were stored 

in a -20 °C freezer.  

Following the lectin incubation time, the microcentrifuge tubes were centrifuged again at 400 

g for 5 minutes and the supernatant containing the unbound lectin molecules was removed 

to reduce the level of background signal. Cells were resuspended in 500 µL of supplemented 

pre-warmed medium (at 37 °C for an hour) and 1 µL of 7-AAD was added. Cells were incubated 

for 15 minutes in the dark at room temperature. Subsequently, 1 µL of DRAQ5 was added to 

the tubes then cells were incubated at 37 °C for 25 minutes. 

A set of microcentrifuge tubes was prepared in parallel to act as flow cytometric control 

samples. These samples were composed of one unstained sample and nine single-stained 

ones (DRAQ5, 7AAD, LEC A, LEC B, AAL, MAL II, AAL-2, PNA, and WGA). The set of tubes were 

treated in the same way regarding the staining steps which were not needed for a particular 

tube. For instance, the single-stained LEC A tube was not incubated with 7AAD and DRAQ5. 

However, this tube was kept in the dark at room temperature during the 7-AAD incubation 

step and in the incubator at 37 °C during the DRAQ5 incubation step.  

The tube contents were then transferred into properly labelled FACS tubes which were then 

kept on ice. Shortly after, data were collected from the samples starting with the flow 

cytometric control samples. Around 500,000 events were collected for each tube from the 

alive cell population (see section 3.12.5). 
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3.12.2 Experimental setup 

 CHO-K1 cell culture parameters 

 

CHO-K1 cells were cultured under the relevant conditions to meet each experiment 

objectives. The cell culture optimisation experiment was the first one to be conducted as it 

provided information on the cell growth curves of cultures with different L-glutamine 

concentration levels and different starting cell densities. In addition, this experiment provided 

valuable information on the variation of the pH in the media during the cell culture process 

and the length of time necessary for cells to achieve the stationary phase. Most importantly, 

the growth patterns obtained from this study enabled the researcher to identify deviations in 

the cell behavior throughout the entire research work ensuring cell culture consistency. 

The subsequent experiments were then conducted based on the conclusions drawn from the 

cell culture optimisation studies which established the set point of L-glutamine concentration 

level and the starting cell density.  

Experiments which intended to evaluate outcomes due to the variation of the temperature, 

CO2 and nutrient levels, had those parameters varied (one parameter at a time) across a 

certain range at the third day of the cell culture process while the remaining parameters were 

still at the set points (Table 3.4). For instance, the nutrient level was changed in the nutrient 

depletion experiment while the remaining process parameters such as temperature and CO2 

levels were kept at their set points. 
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Table 3.4: Cell culture conditions adopted in each experiment. 

Experiment CO2(%) 
Temperature 

(°C) 

L-glutamine 

concentration 

(mM) 

19 mm 

orbital 

shaker 

(rpm) 

15 mm 

orbital 

shaker 

(rpm) 

Starting 

cell 

density 

(cells/ml) 

Spent 

medium 

levels 

(days) 

Cell culture 

Optimisation 
5 37 2 and 4 200 - 

0.5, 1, and 

2x 106 
- 

7AAD 

Optimisation 
5 37 2 200 - 2x106 - 

DRAQ5 

Optimisation 
5 37 2 200 - 2x106 - 

Lectin 

Cytotoxicity 
5 37 2 200 - 2x106 - 

Sugar 

Inhibition 
5 37 2 200 - 2x106 - 

Spent 

medium 

Variation 

5 37 2 200 - 2x106 

Ranged 

from 

  -3 to +3 

CO2 

Variation 

Ranged 

from 1 

to 10 

37 2 200 225 2x106 - 

Temperature 

Variation 
5 

Ranged from 

32 to 41 
2 200 225 2x106 - 

 

 

 Spent medium variation experimental setup 

 

Cell cultures were subjected to an intervention on the third day of the culture process by 

replacing the medium of the cells with a spent medium. Cells were then subjected to the spent 

medium for 24 hours before they were sampled for flow cytometric analysis.  

In order to produce different spent medium levels, parallel cell cultures were set up 

strategically to achieve the desired spent medium level on the third day of culture of the cell 
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cultures to be interrogated. The levels of spent media were measured in terms of days. For 

instance, the screening cell cultures subjected to a -2-day spent medium intervention had the 

original media replaced by media which had been used by parallel cell cultures for 5 days. In 

other words, the media had been used by the parallel cell cultures for 2 extra days from the 

third day of culture (intervention day). Therefore, a medium used for 5 days was further 

depleted in nutrient levels by 2 days in relation to the baseline. Whereas a +2-day spent 

medium had an excess of nutrient levels in 2 days in relation to the baseline, thus the +2-day 

medium was used by parallel cells for only a day.  

Media replacement was performed by centrifuging both screening and parallel cell cultures at 

10,000 rpm for 3 minutes. Then, the supernatant from the screening culture was removed and 

replaced by the addition of the supernatant from the parallel culture and the screening cells 

were completely re-suspended by gently pipetting the media down and up twice.  The 

screening cell cultures subjected to a +3-day spent medium intervention had the supernatant 

replaced by fresh pre-warmed and supplemented media (at 37°C for an hour) instead. 

As the centrifugation step was necessary for media replacement, the baseline screening cell 

culture was also centrifuged at 10,000 rpm for 3 minutes on the third day of culture. The 

supernatant was then removed and added back to the culture immediately afterwards. 

Complete resuspension of the screening cells was achieved by gently pipetting the media 

down and up twice. The basis of this procedure conducted on the baseline samples relies on 

the removal of the centrifugation step as a confounding variable on the measurement of the 

experiment outcomes.  

 

 CO2 and temperature variation experimental setup 

 

The experiments which involved the variation of CO2 and temperature levels were conducted 

using two sets of incubator and shaker, Set A and Set B. Set B (Memmert Incubator Oven 

INB200 and Advanced Mini Shaker 15 mm orbit-VWR Orbital Shaker) was used to grow cell 

cultures at the baseline growing conditions, i.e, 5% of CO2 and at 37°C.  Set A (Heraeus 
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Function Line CO2 Incubator BB 16 and Benchmark Orbital Shaker Orbi-Shaker™ CO2 of 19 mm 

orbit) was used to cultivate the cell cultures under a CO2 or temperature level variation.  

Therefore, cultures on the third day of the culture process were removed from Set B and 

placed on Set A which had the CO2 or temperature changed to a desired level 30 minutes 

beforehand. In order to remove the step just described as a confounding variable in the 

experiment outcomes, baseline cell cultures were also changed from Set B to Set A on the 

third day of the culture process. However, this time, no change was made in the CO2 or 

temperature level. 

Additionally, due to a difference in the orbital diameter of the shakers, a new agitation speed 

was established for Shaker B based on the agitation speed set up for Shaker A. The Set A had 

been used since the start of this research project and all the previous cell culture work was 

performed using the shaker of this set at 200 rpm. However, it was then necessary introduce 

Set B into the experimental work for the continuous growing of cell cultures under the 

baseline conditions. Therefore, the agitation speed of the shaker in Set B was calculated based 

on the agitation speed of the shaker in Set A.  

The effort of establishing Set B’s agitation speed aimed to minimize the variation in the levels 

of dissolved oxygen in the media as cultures were transferred from a shaker to another of 

different orbital diameter. Also, this effort prevents dramatic modifications in the growth 

curve of the cultures since these alterations can insert variabilities in the outcomes of the 

experiments (Bates, Phillips and O’Bryan, 2011). 

The agitation speed of Shaker B was calculated based on Newton’s second law of motion 

which states force = mass x acceleration. By moving a tube from a shaker to a new one with a 

different orbit diameter, the aim is to determine a new agitation speed which creates the 

same force driving liquid movement in the tube as on the original shaker. The mass is the 

same, as the cell culture tubes were transferred from one shaker to the other without any 

alteration in liquid volume content. The acceleration for each culturing tube is equal to the 

velocity/radius. As the radius is equal to orbital diameter/2 and velocity equals the agitation 

speed (in RPM) multiplied by the circumference of the orbit, the new agitation speed for 

shaker B was then calculated (Bates, Phillips and O’Bryan, 2011). 
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By performing the mathematical calculations, the following formula was obtained to stablish 

the new agitation speed (Equation 3.6): 

𝑟9 = f𝑟g7 	×	
Ni
Nj

                                                                                                                   (Equation 3.6) 

Where: 

dA = the orbital diameter for the original shaker 

dB = the diameter of the new shaker 

rA = the agitation speed in RPM for the original shaker 

rB = the agitation speed in RPM for the new shaker. 

 

Since the dA is equal to 19 mm, dB equals to 15 mm and rA equals to 200 rpm; rB was 

determined to be equal to 225 rpm. 

 

 Technical and biological replicates 

 

All flow cytometric experiments performed in this study collected data using 3 replicates. 

However, measurements were taken from technical replicates in the sugar inhibition studies 

and the optimization studies of the 7-AAD and DRAQ. The measurements of the remaining 

experiments were taken from biological replicates also known as repeats (Table 3.5).  
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Table 3.5: Type of replicates used in each of flow cytometric experiment 

Experiment Type of replicates 

Sugar Inhibition Technical replicates 

7AAD Optimisation Technical replicates 

DRAQ5 Optimisation Technical replicates 

Cell culture Optimisation Biological replicates 

Lectin Cytotoxicity Biological replicates 

Spent medium Variation Biological replicates 

CO2 Variation Biological replicates 

Temperature Variation Biological replicates 

 

While technical replicates consist of taking multiple measurements from the same source, 

biological replicates allow the measurement to be taken from different sources, yet those 

sources are of the same nature. For instance, the cell culture experiment which involved the 

variation of the temperature from 37°C to 38 °C on the third of culture was set up 3 times. In 

other words, 3 cell culture bioreactor tubes were set up at the same time and under the same 

conditions, then an intervention in the temperature level of these 3 tubes was made on the 

third day of culture. Therefore, each tube is a replicate which is determined by the same 

treatment applied; temperature level variation from 37°C to 38°C on the third day of culture.  

 

3.12.3 Calibration and standardization of the BD FACSAria™ I flow cytometer 

 

A method to check the performance of the BD FACSAria™ I machine was employed to 

minimise the impact of the equipment’s natural drifts from day-to-day use on the outcomes 

of experiments. In addition, an application settings procedure was conducted to ensure the 

statistical comparability of measurements obtained on different days. For instance, the 
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experiments in which the cultivating parameters were modified could only be performed over 

a span of months. A cell culture subjected to a parameter change was in cultivation for the 

cycle of four days before the flow cytometric analysis which required a full working day 

(sample preparation and data collection). On the other hand, experiments which could be 

conducted in one day did not require the creation of application settings as the daily 

calibration was enough. 7AAD & DRAQ5 optimisation and lectin cytotoxicity studies are 

examples of experiments that could be performed within a single working day.  

The BD digital cytometers are equipped with a fully automated software and reagent system 

which provides the characterization, setup and tracking (CS&T) of the equipment. Definition 

and characterization of the baseline performance, optimisation and standardization of the 

cytometer setup and verification of the cytometer performance are the functions of the CS&T 

system. 

The employment of the CS&T system allows the extraction of consistent and reproducible data 

every day, the simplification of the design of multicolour experiments, the generation of 

higher quality data from multicolour experiments, the offset of day-to-day instrument 

variability, the ability to standardize across experimental runs and instruments, and the early 

detection of the degradation of cytometer performance. 

 

 Performance verification 

 

In order to fully characterize the flow cytometer BD FACSAria™ I, CS&T beads (BD™ CS&T 

beads, product code: 642412, and LOT: 68955) were purchased to be used throughout the 

entire time period in which the equipment was used for this research work. By following the 

protocol recommended by the manufacturer, a baseline performance was firstly obtained for 

the beads purchased and subsequently a performance verification procedure was conducted 

using the same beads. The latter procedure was then conducted on all experimental days to 

ensure the cytometer was performing consistently.  
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 Creation of application settings 

 

Application settings for the experiments which involved the variation of culturing parameters 

were created to ensure the standardization of flow cytometry results across experimental 

runs performed on different days. Based on the baseline report generated by the cytometer’s 

software when the purchased beads were first used on the equipment, application settings 

were created for the detection channels of interest according to a BD Technical Bulletin 

(Meinelt et al., 2012). Once the application settings were created and saved on the cytometer 

system; these application settings could then be applied shortly after the cytometer 

performance verification was conducted, setting up the equipment for a standardized 

experimental run on a particular day.  

 

3.12.4 FC panel design and compensation analysis 

 Flow cytometry panel design 

 

As most of the experimental work involved the use of multiple dyes, a careful panel design 

was developed to provide high quality data within the specifications of the BD FACSAria™ I 

cytometer. Although V450, 7-AAD and DRAQ5 have overlapping areas in the emission 

spectrum, 450/40, 610/20 and 780/60 filters, respectively, were selected to allow the 

minimisation of the spillage of emission signals of the dyes into the areas of neighbouring 

filters (Figure 3.4).  
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Figure 3.4: Plot illustrating the emission signals from the V450, 7-AAD and DRAQ5 dyes excited 

at 407 (violet laser), 488 (blue laser) and 633 nm (red laser) respectively. The plot also shows 

emission overlapping areas and the regions (filters) from which the data was collected. The 

filters were strategically selected to avoid overlapping emission signals. 

 

 Compensation analysis  

 

Compensation is a mathematical process which allows the correction of emission signal 

spillage. Therefore, such a process must be employed prior to the analysis of a multicolour 

flow cytometry data (Biosciences, 2009). Although the filters selected were in emission 

regions which do not contain overlapping signals, a statistical analysis was conducted to 

ensure the non-necessity for data compensation. 

The compensation analysis involved the preparation of three single-stained samples 

(V450/Lectin, 7-AAD, and DRAQ5) and an unstained one (Section 3.12.1). These samples were 

then interrogated, and data was collected from the LECTIN (V450), 7-AAD and DRAQ5 detector 

channels for the four samples. Compensation samples were prepared for every experimental 

run involving the use of more than one fluorescent reagent.  
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3.12.5 Gating strategies 

 

The acquisition of data from the experiments involving the variation of the three cultivation 

parameters (spent medium variation, temperature and CO2 levels) required the use of several 

detection channels and the application of a set of filters (gates) to classify the cell population 

into relevant cell subpopulations. The diagram (Figure 3.5) illustrates the sequence in which 

the different detection channels were used to apply the gates generating the cell 

subpopulations.  

 

Figure 3.5: Schematic diagram illustrating the sequence of gates (filters) applied on the flow 

cytometry data in order to extract information only from single cells (1-3). This diagram also 

shows the gates for alive (G0/G1, S and G2/M subpopulations), apoptotic and dead cells (4-

6). 1) Unstained cells are seen through the FSC-A vs SSC-A scatter plot to exclude debris. 2) 

The non-debris population is observed through the FSC-A vs FSC-H scatter plot to distinguish 

singlets from doublets. Cells with slightly less height are excluded as they are likely to be 
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doublets/aggregates. 3) The cells which were previously selected (a mixture of singlets and 

aggregates) are then examined using the FCS-A vs FSC-W plot to select the bottom half cells 

since singlets have a smaller width measurement. 4) The single cells selected from the 

unstained sample can then be plotted using the 7-AAD-A detection channel against the 7-AAD-

H one. The area in which the cells appear is gated to select the 7AAD unstained cells (alive 

cells). 5) 7-AAD stained cells are then also observed through 7AAD-A and 7AAD-H channels to 

set up the dead cell and apoptotic gates. 6) Finally, by graphing a histogram of DRAQ5-A vs 

cell count for the alive cells, three gates are applied classifying the cells into G0/G1, S and 

G2/M populations. The width of these gates was selected to ensure a CV of the DRAQ5-A 

values less than or equal to 6% in all DNA populations (see section 1.4). 

The sequence of gates which allow the selection of single cells (1 -3 in Figure 3.5) was applied 

in every experiment involving flow cytometric data. Once single cells were identified, these 

cells were then visualised through the detection channels of interest. Table 3.6 lists the 

relevant channels for each experiment conducted on the flow cytometer. These channels 

were used to collect data after the application of the gates for debris and aggregates 

exclusion. 

 

Table 3.6: Detection channels used to extract data for statistical analysis for each of the 

experiments performed on the flow cytometer. 

Experiment Detection Channel 

7AAD optimisation 7AAD-A, 7AA-H and 7AAD-W 

DRAQ5 optimisation DRAQ5-A, DRAQ5-H and DRAQ5-W 

Sugar inhibition LECTIN-A, LECTIN-H and LECTIN-W 

Cell Culture Media Optimisation SSC-A, SSC-H, SSC-W, FSC-A, FSC-H and FSC-W 

Lectin Cytotoxicity 7AAD-A, 7AA-H, 7AAD-W, LECTIN-A, LECTIN-H and LECTIN-W 

Variation of Cell Culture Parameters  
7AAD-A, 7AA-H, 7AAD-W, LECTIN-A, LECTIN-H, LECTIN-W, 

DRAQ5-A, DRAQ5-H and DRAQ5-W 
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3.12.6 Experimental design 

 

The purpose of a careful experimental design is to reduce sources of variability allowing the 

investigation of the effect caused by the desired inputs. The identification and management 

of the experimental factors involved in the cell culture process is an important step towards 

minimisation of unwanted variabilities. However, the standardization and calibration of the 

machinery used (see section 3.12.3) and sample preparation (see section 3.12.1) are also of 

paramount importance in the achievement of a high quality and reproducible biological data.  

A cell culture process involves factors of 4 different natures: inputs, controllable factors, 

uncontrollable factors and outputs (Figure 3.6). Blocking and randomisation were adopted in 

the experimental work involving flow cytometric analysis. With the purpose of dealing with 

uncontrolled but observed inputs, blocking was employed, whereas randomisation was used 

to deal with uncontrolled and unobserved inputs. Controllable factors and relevant outputs 

were identified in order to investigate the input effects. 

 

 

Figure 3.6: Four different types of factors involved in a general cell culture process: Input, 

Controllable factors, Uncontrollable factors and Outputs. 
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By blocking the number of passages of the cells in culture up to 10 passages after cell recovery 

(see section 3.11.6), any variation on the cell surface glycoprofile or cell metabolism which 

might be caused by the increase of the cell passage number was minimised. The use of 

DNA/cell viability dyes, 7-AAD (viability/DNA dye) and DRAQ5 (DNA dye), also blocked the cell 

population into groups so that the relevant outputs could be analysed per each group. These 

dyes allowed the decrease of data variability caused by the viability factor and DNA cell cycle 

factor within groups. Statistically, this blocking strategy allowed the comparison of the same 

groups from the different treatments with the baseline cells. For instance, the G0/G1 of the 

live baseline cells were then statistically compared to the G0/G1 of the live 32 °C cells of the 

temperature variation experiment (Figure 3.7). 

 

 

Figure 3.7: Diagram illustrating the statistical comparison between groups from treated and 

baseline cells. Such arrangement was allowed due to blocking cells into Live and Dead groups 

first, then live DNA cell cycle subpopulations (G0/G1, S, and G2/M), and fully dead and 

apoptotic cells. 

 

Randomisation run was applied during the preparation of the samples for flow cytometry 

screening in order to deal with uncontrolled and unobserved variables. At the sample 

preparation step (see section 3.12.1) the microcentrifuge tubes were assigned a number. A 

numerical vector containing the ascending sequence covering the number of tubes was 
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created in R, then the sample( ) command was run for this vector to obtain a random 

sequence. The lectins and DNA dyes were then added to the tubes following the random 

sequence generated. This strategy ensures that any variability due to the difference in the 

time of the application of lectins and dyes is spread across all the samples. The same sequence 

was also used at the data collection step.  

While randomisation and blocking were used to deal with uncontrollable factors, controllable 

factors were identified to further minimise variabilities in the cell culture process. 

Temperature, CO2, nutrient levels throughout the cell culture process, base medium and 

supplementation process, agitation speed, starting cell density, and cell sampling (the point 

in time in which cells are used for flow cytometric screening) are examples of factors which 

could be controlled and kept unchanged for baseline measurements. However, temperature, 

CO2 and spent medium levels acted as inputs to obtain the measurements of the relevant 

outputs.  

Temperature, CO2, and nutrient levels throughout the cell culture process are factors which 

acted as input variables in a univariate study. In other words, each of these factors was varied 

at a time on the third day of the cell culture process. One day after the alteration, cells were 

then screened to measure the outputs.  
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Figure 3.8: Schematic diagram summarizing the flow cytometry detector channels used as 

outputs and the information provided by each channel. 

 

Several outputs were measured to investigate the effects of the inputs on the cell surface 

glycoprofile. With the aid of the flow cytometer, 15 outputs were measured which in turn 

provided information on different facets of the scientific work. For example, 7-AAD-A and 7-

AAD-H provided information required to distinguish dead cells from the live ones, while 

DRAQ5-A was used to discriminate the cell population into the three main DNA cell cycle 

population: G0/G1, S, and G2/M. However, the most relevant information to address the main 

research question of this present work was obtained from LECTIN-A, LECTIN-H and LECTIN-W 

as lectin interactions on cell surface were measured through these detection channels (Figure 

3.8). Measurements of the pH were also obtained as an output; however, this factor was 

measured with the aid of a pH electrode suitable for small quantities of cell suspensions (see 

section 3.12.1.8). 
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3.12.7 Statistical analysis 

 

The roadmap for the statistical analysis was established based on the main research question 

of this scientific work: Does the glycoprofile on CHO cell surface change as the cell is cultivated 

under stressful conditions? From this question, the baseline of cell culture conditions was 

selected (37 °C, 5% of CO2 and non-intervention of the nutrient level in the cell culture 

process) and different levels of temperature, CO2 and spent medium were selected as stressful 

conditions. Only one factor was changed at a time, allowing the investigation of the influence 

of the factor on cell surface glycoprofile alone. For each variation of a factor, the response of 

the treatment on cell surface glycoprofile was statistically compared with the baseline cell 

surface glycoprofile.  

When it comes to the assessment of the relationship between the baseline and a treatment, 

two experimental designs can be used: Longitudinal and Cross-sectional study design. 

Longitudinal requires that each data point (each screened cell) of the baseline sample is 

matched and related to a unique data point of treatment sample. These samples are then 

called paired-samples. However, in a cross-sectional study design, the data points in one 

sample (the baseline sample) are unrelated to the data points in the second sample (a 

treatment sample). These samples are then called independent samples (Rosner, 2000).  

The cross-sectional study design was then selected as the most suitable one based on several 

aspects of the experimental work. On the other hand, the longitudinal study design was shown 

to be highly unsuitable based on the same aspects. In order to prepare cells for flow 

cytometric screening, multiple centrifuge and staining incubation steps are necessary (see 

section 3.12.1). Cells are exposed to a non-sterile environment during sample preparation and 

data collection. Therefore, due to these factors alone, the same cells are not suitable for re-

culturing for later rescreening. Furthermore, it is not feasible to identify each individual cell to 

match the data from multiple treatments applied to it and the sample preparation steps are 

themselves stressful factors. For instance, lectins attached to the cells and DNA dyes which 

are incorporated by the cells during the sample preparation could have accumulative effects 
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on the glycoprofile of the cells, even if these cells had the required conditions to be re-

cultured.  

For the statistical treatment of the data collected through flow cytometry, the normal 

distribution model was used based on the central-limit theorem. This theorem states that for 

a large sample size (n > 100), the distribution of the observations can be assumed to be 

normal, even if the underlying distribution of individual observations in the population under 

investigation is not normal (Rosner, 2000). The arithmetic mean was used as the point of 

estimation of the centrality of the data distribution and the standard deviation as the 

estimator of the spread.  

Therefore, the two-sample t test for independent samples with a significance level of 0.05 (α) 

was used for hypothesis testing (inferential analysis) and the computation of the p-values 

(Table 3.7). Since there was no reason to assume the equality of the underlying variances of 

the baseline and a treatment dataset, the f test was adopted first. Then the suitable t test was 

employed and power analysis was performed. While the t test calculated the levels of the 

statistical significance of the difference between the two samples (baseline and treatment), 

power analysis evaluated the likelihood of finding a significant difference when there was one 

(Figure 3.9).  
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Figure 3.9: Statistical roadmap adopted for the analysis of flow cytometry data from the 

experiments involving the variation of the temperature, CO2 and spent medium levels.  

 

Table 3.7: p-values interval and the respective levels of statistical significance (Rosner, 2000). 

p-value Level of statistical significance 

0.01 ≤ p < 0.05 significant 

0.001 ≤ p < 0.01 highly significant 

p < 0.001 very highly significant 

p > 0.5 not statistically significant 

0.05 ≤ p < 0.10 there is a trend towards statistical significance 
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 The F Test 

 

The significance test for the equality of two variances involves testing the hypothesis H0: 𝜎?7 = 

𝜎77 versus H1: 𝜎?7 ≠ 𝜎77. H0, the null hypothesis, states that the two variances are equal whereas, 

H1, the alternative hypothesis, states the variances are unequal. 𝜎?7 and 𝜎77 are the true 

underlying variances of the two samples (baseline and treatment in the context of this present 

work). It was stated that the test statistic was based on the variance ratio of the samples 

𝑠?7 𝑠77⁄ , where 𝑠? and 𝑠7 are the standard deviations of the samples, followed an F distribution 

under H0 with 𝑛? – 1 and 𝑛7 – 1 df (degrees of freedom), where 𝑛? and 𝑛7 are the sample sizes 

of the two samples. The F test was performed as a two-sided test, as it was intended to reject 

H0 for both small and large values of 𝑠?7 𝑠77⁄  (Rosner, 2000). The value 0.05 was the significance 

level (α) adopted for the F test which can be made more specific, as the Figure 3.10 illustrates. 
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Figure 3.10: Statistical flowchart demonstrating the two-sided significance test for the 

equality of two variances. Where Pr( ) means probability and p is the p-value (Rosner, 2000). 

 

 The independent two-sample t Test 

 

The independent two-sample t test for the comparison of means involves testing the 

hypothesis H0: µ? = µ7 versus H1: µ? ≠ µ7. H0, the null hypothesis, states that the two means 

are equal whereas, H1, the alternative hypothesis, states the means are unequal. The test was 
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conducted with 0.05 of significance level, t statistics and degrees of freedom were calculated 

according to the F test outcome (Figure 3.11). For samples with unequal variances, the 

Satterthwaite’s method was used. 

Figure 3.11: Flowchart of the two-sample t test to compare the means of the baseline and a 

treatment sample. Where 𝑥̅? is the baseline mean, 𝑥̅7 is the treatment mean, 𝑛? is the baseline 

sample size, 𝑛7 is the treatment sample size, 𝑠? is the baseline standard deviation, 𝑠7 is the 

treatment standard deviation, df is the degrees of freedom, df’ is the degrees of freedom 

ounded to the nearest integer, p is the p-value, and Pr( ) is the probability (Rosner, 2000). 
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 Power analysis 

 

The power of a test provides information on the likelihood of detecting a significant difference 

provided that the alternative hypothesis is true; that is, provided that the mean of the baseline 

sample is different from the mean of a treatment sample. If the power is too low, there is little 

chance of finding a significant difference between the means of the samples and non-

significant results are likely even if real differences exist. The power analysis was performed 

with 0.05 of significance level (α) (Equation 7) (Rosner, 2000). 

𝑃𝑜𝑤𝑒𝑟 = 	Φ

⎝

⎛−𝑧?tu/7 +
√𝑛?	|𝑥̅? − 𝑥̅7|

f𝑠?7 + 𝑠77/(
𝑛7
𝑛?
)⎠

⎞																																																																	(Equation	𝟕) 

Where: 

 𝑛? is the sample size of the baseline sample; 

𝑛7 is the sample size of the treatment sample; 

𝑠? is the standard deviation of the baseline sample 

𝑠7 is the standard deviation of the treatment sample 

𝑥̅? is the arithmetic mean of the baseline sample 

𝑥̅7 is the arithmetic mean of the treatment sample 

𝛼 is the test significance level set at 0.05 

𝑧?tu/7 is the statistic for inverse normal function at 1 – α/2 
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 The statistical analysis of the lectin cell surface interaction across the DNA cell 

cycle  

 

In order to evaluate the relationship between the DNA cell cycle with the cell surface lectin 

interaction excluding the cell physical dimension as an influential factor, the ratio of a lectin 

interaction parameter to the relative cell size parameter was calculated. In other words, the 

lectin interaction could then be evaluated across the subpopulations as a density variable.  

Since the ratio was obtained for each cell, the corresponding arithmetic mean and standard 

deviation were computed.  

The descriptive statistical analysis of the ratios was performed across the DNA subpopulations 

(Go/G1, S, and G2/M) for all samples involving the variation of a cell culture parameter (see 

sections 3.12.2.2 and 3.12.2.3). Therefore, the statistical analysis allowed the investigation of 

the variation of the lectin interaction density on the surface of the cells as they go through the 

three distinct DNA cell cycle stages.  

As the FSC-A provides information on the relative cell size and signal intensity, this channel 

was used as the parameter in the analysis of the ratios (see section 1.3). Likewise, LECTIN-A 

was selected allowing the determination of the ratio for each cell (LECTIN-A/FSC-A), the lectin 

interaction density, and the arithmetic mean of the ratios of a DNA subpopulation and the 

corresponding standard deviation.  

 

3.12.8 Data Processing: R programming 

 

The datasets obtained from the flow cytometric experiments were processed with the aid of 

R programming language. Bioconductor packages such as flowWorkspace and flowCore were 

used to read in and pre-treat the datasets on the R environment (RStudio Version 1.1.463). 

Algorithms to select the cells of interest, to manipulate the data and to perform the required 

calculations for the statistical analysis were then created (see the Appendix). For data 

visualization, ggplot2 was the package adopted.  
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4 Results and Discussion 

4.1 Lectin production and purification 

 

AAL-2, LEC A and LEC B are recombinant lectins expressed with a histidine-tag (His-tag) to 

facilitate the purification process using an IMAC resin. These three proteins were developed 

by the research team and were included in the panel of lectins studied since they have shown 

relevant cell binding on CHO-DP12 cells in previous studies, and to compare the binding 

performance of these lectins with the commercial ones. The panel was also composed of four 

commercial lectins from Vector Laboratories: AAL (B-1395), WGA (B-1025), PNA (B-1075), and 

MAL II (B-1265).  

AAL-2, LEC A and LEC B were produced in house as described in section 3.3. The purification 

was then conducted according to section 3.4.3 and SDS-PAGE was performed (see section 3.6) 

for the identification of purification fractions which contained the His-tagged protein isolated. 

Figure 4.1, 4.2 and 4.3 show, respectively, the gels with the purification fractions of AAL-2, LEC 

A, and LEC B.  
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Figure 4.1: Purification of AAL-2. The figure shows a 15% SDS-PAGE gel on which samples 

taken at various stages of the process were fractionated. Lane 1: the PageRuler Plus 

Prestained Protein Ladder. Lane 2: unbound protein fraction. Lane 3: 20 mM Imidazole (first 

wash). Lane 4: 50 mM Imidazole (second wash). Lane 5: 80 mM Imidazole (third wash).  Lanes 

6-12: purification fractions (elution of the his-tagged protein using a 250 mM Imidazole 

buffer).  

 

As shown in Figure 4.1, the his-tagged AAL-2 protein was effectively isolated after the 

application of Imidazole buffer solutions at three different concentration levels during the 

IMAC purification run. However, the first purification fraction (lane 5) was discarded, while 

the remaining ones (lanes 6-12) were selected as they contained a single band, the isolated 

His-tagged protein. The gel also indicates the approximate AAL-2 molecular weight which was 

between 35 and 55kDa bands of the protein standard ladder. Thus, the average 45kDa was 

estimated as the approximate AAL-2 molecular weight. 
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Figure 4.2: Purification of LEC A. The figure shows a 15% SDS-PAGE gel on which samples taken 

at various stages of the process were fractionated. Lane 1: the PageRuler Plus Prestained 

Protein Ladder. Lane 2: unbound protein fraction. Lane 3: 20 mM Imidazole (first wash). Lane 

4: 60 mM Imidazole (second wash). Lanes 5-12: purification fractions (elution of the his-tagged 

protein using a 250 mM Imidazole buffer).   

 

Figure 4.2 shows the effective purification of the His-tagged LEC A protein after the application 

of Imidazole buffer solutions at two different concentration levels during the IMAC 

purification run. Lanes 6 to 9 have revealed a thick His-tagged protein band indicating a high 

concentration level of the protein in these first purification fractions. Although a single band 

was observed in the first purification fraction (lane 5), the fraction was discarded, while the 

remaining ones (lanes 6-12) were selected as they contained the His-tagged LEC A protein in 

sufficient amount. The determination of the approximate LEC A molecular weight was directly 

obtained from the gel since the LEC A band was at the same level as the 15kDa band of the 

protein standard ladder.  
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Figure 4.3: Purification of LEC B. The figure shows a 15% SDS-PAGE gel on which samples taken 

at various stages of the process were fractionated. Lane 1: the PageRuler Plus Prestained 

Protein Ladder. Lane 2: unbound protein fraction. Lane 3: 20 mM Imidazole (first wash). Lane 

4: 60 mM Imidazole (second wash). Lanes 5-12: purification fractions (elution of the His-

tagged protein using a 250 mM Imidazole buffer).   

 

His-tagged LEC B protein was successfully isolated by the IMAC purification (see Figure 4.3). In 

addition, the determination of the approximate molecular weight of LEC B was obtained since 

the protein band was slightly below the 15kDa band of the protein standard ladder. Therefore, 

14KDa might be a reasonable approximation of LEC B molecular weight. 

In summary, AAL-2, LEC A and LEC B proteins were successfully purified using the IMAC 

purification technique. Also, the SDS-PAGE allowed the identification of the purest purification 

fractions and the determination of the approximate molecular weights of those lectins. AAL-
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2 was determined to be the largest molecule (45kDa) in contrast to LEC B, the smallest one 

(14kDa). Whereas the molecular weight of LEC A was slightest larger (15kDa) than LEC B. 

 

4.2 BCA assay: determination of lectin concentration levels 

 

The BCA assay was employed with the purpose of determining a protein’s concentration level 

in a sample. The purification fractions selected after assessment by SDS-PAGE, as discussed in 

the previous section, were pooled for each lectin generating three samples. The BCA assay 

was conducted as described in section 3.5 to firstly determine the protein concentration levels 

of those samples prior to biotinylation of the lectins. Then, BCA assay was performed again to 

determine the concentration of biotinylated lectins prior their use in ELLA analysis.  

Lectin biotinylation was necessary since the fluorochrome of choice, the V450, is conjugated 

with streptavidin molecules enabling the fluorochrome to establish a strong bond with biotin 

molecules. The streptavidin has high affinity for biotin molecule allowing high quality flow 

cytometric analysis. ELLA analysis was then used to determine the biological activity and 

glycan specificities of the biotinylated proteins.  

The BCA assay consists of first generating a standard curve which provides the mathematical 

model correlating absorbance values at 570 nm with the protein concentration levels of 

standard samples. The absorbance values of the standard samples were obtained whenever 

the determination of the protein concentration level of an unknown sample was required. 

Therefore, the standard and unknown samples were subjected to the same measurement 

conditions. Figure 4.4 illustrates the mathematical model obtained through the absorbance 

readings of standard samples allowing the determination of the protein concentration level 

of unknown samples of which the absorbance readings at 570 nm were known.  

The second degree polynomial model demonstrated to be highly suitable for modeling BCA 

standard samples since the R-squared was almost 1 or 100%. Table 4.1 summarizes the 

concentration levels of the lectins before and after a biotinylation process. It can be observed 

that the concentration levels increased as a result of the biotinylation process. 
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Polynomial fit of a BCA standard curve 

Figure 4.4: Second degree polynomial fit of a BCA standard curve. This model allows the 

determination of the protein concentration level of unknown samples of which the 

absorbance readings at 570 nm are known. 

 

Table 4.1: Table summarising the concentration levels of non-biotinylated and biotinylated 

lectins determined from the BCA assay. 

Lectin Non-biotinylated (mg/mL) Biotinylated (mg/mL) 

AAL-2 0.28 1.1 

LEC A 1.78 6.6 

LEC B 3.11 5.9 

 

 

4.3 ELLA: analysis of lectin biological activity and binding specificity  

 

Following production and purification steps, it was necessary to assess the biological activity 

of the expressed proteins. Despite the fact these steps were closely monitored, they involve 
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multiple variables which can denature the proteins if these variables are not at the 

appropriate levels such as the level of temperature during production/fermentation, cell lysis 

and purification. Also, buffers which may have their pH altered for unforeseen reasons can 

cause damage to the proteins.  

Furthermore, even the biotinylation process can also affect the lectin activity. Parameters 

such as the concentration of the Sulfo-NHS-SS-Biotin reagent could damage the proteins. 

Thus, ELLA analysis was performed to assess the biological activity of biotinylated lectins and 

provide information on their sugar binding specificities. 

Figure 4.5 shows the determination of AAL-2 binding activity by ELLA. While AAL-2 has showed 

no considerable interactions with Fucose and Galactose since the absorbance (at 450 nm) 

values detected were very close to zero, it can be seen that the lectin demonstrated a strong 

interaction with N-Acetylglucosamine with an absorbance value around 0.18. Similarly, the 

commercial recombinant WGA lectin demonstrated a sugar specificity for N-

Acetylglucosamine with an absorbance value around 0.25 confirming the information 

provided by the lectin supplier (see section 3.9). 
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ELLA analysis of AAL-2  

 

Figure 4.5: Determination of AAL-2 binding activity by ELLA. Bar chart which demonstrates the 

sugar specificity of AAL-2 and commercial lectin controls evidencing that these biotinylated 

lectins were biologically active. Aleuria aurantia lectin (AAL), Aleuria aurantia lectin 2 (AAL-2), 

Wheat germ agglutinin (WGA), and Ricinus communis agglutinin (RCA). 

 

Also, the commercial lectins RCA and AAL which were used as negative controls for N-

Acetylglucosamine specificity, confirmed its known sugar specificity; RCA for Galactose and 

AAL for Fucose, respectively. While AAL demonstrated a very strong interaction with its 

specific binding sugar as the absorbance value detected was around 0.36, RCA demonstrated 

a relatively weak interaction with Galactose. 

The ELLA analysis of LEC B and LEC A can be observed through Figure 4.6 which shows 

absorbance values obtained from the interaction of these proteins with Fucose, Galactose and 

Mannose. Although LEC B and LEC A demonstrated considerable binding interactions with all 

sugars, LEC B showed a stronger interaction (higher absorbance values) than LEC A. However, 
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each of these lectins demonstrated a strong level of affinity for one of the sugars, LEC B for 

Mannose and LEC A for Galactose, respectively. 

 

ELLA analysis of LEC B and LEC A 

Figure 4.6: Lectin binding specificities. Bar chart demonstrating the sugar binding interactions 

of LEC B, LEC A and commercial lectin controls proving that these biotinylated lectins were 

biologically active. Aleuria aurantia lectin (AAL),  Concanavalin A (CON A), and Ricinus 

communis agglutinin (RCA). 

 

LEC A showed a similar sugar binding profile to RCA, whereas LEC B demonstrated a binding 

similarity to CON A. However, both RCA and CON A revealed a higher level of sugar binding 

specificity comparing to LEC A and LEC B.  

In the case of CON A and LEC B, the absorbance value measured from the interaction between 

CON A and Mannose was around 0.42, while Fucose and Galactose absorbance values were 

below 0.05 for CON A. On the other hand, the interaction between LEC B and Mannose 

resulted in an absorbance value of 0.45, while for Fucose and Galactose the absorbance values 
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were around 0.27 and 0.15 respectively. Whereas in the case of LEC A and RCA, the latter 

demonstrated a high absorbance value for Galactose in relation to Fucose and Mannose, while 

LEC A did not. However, LEC B has showed a stronger interaction with Mannose than CON A. 

Similarly, LEC A showed a stronger interaction with Galactose than did RCA.  

Since the lectins demonstrated specific interactions with sugar molecules, it can be concluded 

that recombinant lectins (AAL-2, LEC A and LEC B) as well as the commercial ones (WGA, RCA, 

AAL, and CON A) were biologically active proteins (Table 4.2).  

 

Table 4.2: Table summarising the strongest sugar-binding molecule and the status of each 

lectin. 

Lectin Highest affinity sugar molecule Status 

AAL-2 N-Acetylglucosamine Biologically active 

WGA N-Acetylglucosamine Biologically active 

LEC B Mannose Biologically active 

CON A Mannose Biologically active 

LEC A Galactose Biologically active 

RCA Galactose Biologically active 

AAL Fucose Biologically active 

 

 

4.4 Experimental process optimisation: determination of process intervention and 

sample collection points 

 

The experimental process optimisation study is part of a series of optimisation studies carried 

out prior the collection of data on CHO-K1 cell surface glycoprofile with the purpose of 

determining the optimal conditions allowing the minimization of data variability, therefore, 

increasing the data quality. Optimisation studies of the cell culture process and media were 
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conducted in order to determine the conditions for shortening the time required to carry out 

the experiments involving the variation of temperature, CO2 and spent medium levels while 

allowing the reduction in data variability. As a consequence, the outcomes of these studies 

allowed the determination of the points of process intervention and sample collection for the 

aforementioned experiments. These points were selected within the stationary phase and 

while cell viability was above 90%. Thus, seeding density and the concentration of L-glutamine 

were varied to study the effect on the time needed for cell growth to achieve the stationary 

phase.  

The cell growth curve is characterised by three main phases which initiates with the 

exponential phase when a cell population experiences growth at a rapid rate. Then, cell 

growth stabilizes allowing the cells to enter into the stationary phase. Finally, the death phase 

starts due to the exhaustion of nutrients and accumulation of toxins in the medium (Masters, 

2000). Cell viability is a key cell culture parameter which measures the proportion of live cells 

in relation to dead ones. Thus, Figure 4.7 shows the relationship between the starting cell 

density, concentration level of L-glutamine and cell viability. 

Figure 4.7 shows polynomial fit models for viability as a function of the cultivation time. Data 

variability is shown in the form of 95% confidence intervals. A 95% confidence interval is a 

range of values in which the likelihood of the true mean to fall in this range is 95%. Therefore, 

the width of the confidence interval illustrates the level of data variability. In other words, the 

wider the confidence interval, the higher the level of data variability. 
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Cell viability as a function of starting cell density and L-glutamine 
concentration  

 

 
Figure 4.7: Line charts of polynomial fits with 95% confidence intervals of cell viability as a 

function of cell culture process time. The plot on the left is showing curves of cultures 

supplemented with 2 mM of L-glutamine and at 0.5, 1 and 2 million cells/mL of starting cell 

density. On the right, curves are shown for cultures supplemented with 4 mM of L-Glutamine 

and at 0.5, 1 and 2 million cells/mL of starting cell density. Data obtained through a BD 

FacsAria I flow cytometer using 7-AAD to stain dead cells (see section 3.12.1.1). 

 

It can be observed through Figure 4.7 that the variability in the data obtained from 4 mM L-

glutamine cultures was higher than when 2 mM L-glutamine was used. Furthermore, during 

the first half of the cell culture process, 4 mM L-glutamine curves decreased in viability at a 

higher rate. As the starting cell density increased, the rate at which cell viability dropped 

increased. Cultures with 4 mM L-glutamine seeded at 2 million cells/mL, in particular, showed 

a steep decrease in the viability up to 100 hours of the process. Cultures supplemented with 

2 mM L-glutamine also revealed the same pattern. However, none of its cultures 

demonstrated a dramatic decrease in cell viability throughout the entire process. 
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Since the curve at 1 million cells/mL seeding density which was supplemented with 4 mM of 

L-glutamine and the curve at 2 million cells/mL with 2 mM of L-glutamine have demonstrated 

similar profiles, the conditions of these two curves could then potentially optimize the process 

of cell culture and media. To further evaluate the experimental data, pH measurements 

throughout the cell culture process time were taken. 

As described in section 3.12.1.1, two sets of cell culture tubes were monitored in parallel. The 

first set was used for daily sampling for flow cytometric analysis and pH measurements, while 

the other was only used to collect samples for pH measurements. The sets were labelled as 

FC/pH and pH respectively (Figure 3.3).  

Values of pH were obtained with the aid of a pH electrode suitable for cell suspensions. 

However, this electrode could have an effect on the cells influencing the viability outcomes. 

Therefore, the pH measurements of FC/pH samples were taken only after flow cytometric 

readings. Prior to flow cytometric analysis, 1 µL of 7-AAD and 50 µL of CountBright™ were 

added to those samples. Since the effect of these compounds on the pH of the samples was 

unknown, setting up a parallel set of cell culture tubes for pH monitoring only was necessary. 

Figure 4.8 shows the polynomial fits of the pH readings of the cultures seeded at 1 million 

cells/mL with 4 mM L-glutamine and at 2 million cells/mL with 2 mM L-glutamine. 

It can observed through Figure 4.8 that the pH measurements of FC/pH samples ranged from 

around 7.5 to 8 pH and 7.3 to 8 pH for 2 mM of L-glutamine and 4 mM of L-glutamine cultures 

respectively. Whereas the ranges of pH samples were 7.1 to 8 pH and 6.9 to 8 pH for the 2 

mM of L-glutamine and 4 mM of L-glutamine cultures, respectively. Therefore, the addition of 

1 µL of 7-AAD and 50 µL of CountBright™ could have an influence on the pH of the samples by 

decreasing pH measurements. As a result, the pH readings of pH samples were used to further 

evaluate the experimental data. 
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pH monitoring of the FC/pH and pH samples across cell culture process time 

 
Figure 4.8: Line charts of polynomial fits with 95% confidence intervals of pH as a function of 

cell culture process time. The top plots show curves for FC/pH samples: the upper left plot 

shows the culture supplemented with 2 mM of L-glutamine at 2 million cells/mL starting cell 

density, while the upper right plot shows the culture supplemented with 4 mM of L-glutamine 

at the seeding density of 1 million cells/mL. The bottom plots show curves for pH samples: the 

lower left plot shows the culture supplemented with 2 mM of L-glutamine at 2 million cells/mL 

starting cell density, whereas the lower right one shows the culture supplemented with 4 mM 

of L-glutamine at the seeding density of 1 million cells/mL. The values of pH were obtained 

using an Orion Semi-micro pH electrode (see section 3.12.1.1). 

 

The bottom plots of Figure 4.8 (pH samples) revealed that the variability, shown by 95% 

confidence interval, of both curves was quite similar. Nevertheless, data from the culture with 

2 mM of L-glutamine and at 2 million cells/mL seeding density showed a substantial reduction 

in its 95% confidence interval width at the first and last 50 hours of the process. This pattern 

is also observed in the data of 4 mM of L-glutamine and 1 million cells/mL culture; however, 

its variability did not reduce at the same extent. Furthermore, the latter culture ranged from 

6.9 to 8 in pH, while the former ranged from 7.1 to 8. Consequently, the culture with 2 mM of 
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L-glutamine and at 2 million cells/mL of seeding density showed the minimisation of pH 

variability throughout the cell culture process. 

Although the shortening of the cell culture process time was the primary goal of this particular 

experiment, the minimisation of the variability of the cell culture process parameters was one 

of the main experimental design objectives in this research work. Therefore, the culture with 

the media supplemented with 2 mM of L-Glutamine and seeded at 2 million cells/mL was 

demonstrated to be the most suitable one. 

 

Cell growth curve of the cell culture media supplemented with 2 mM of L-
glutamine and seeded at 2 million cells/mL 

 

Figure 4.9: Line chart of a polynomial fit with 95% confidence interval of the cell density of 

viable cells of the culture supplemented with 2 mM of L-glutamine and seeded at 2 million 

cells/mL.  The figure shows the three stages of the cell growth: the exponential or log phase, 

the stationary and the death one. Data obtained through a BD FACSAria™ I flow cytometer 

using CountBright™ absolute counting beads to determine cell density and 7-AAD to stain 

dead cells (see section 3.12.1.1). 
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The cell growth curve (viable cell density) of the optimal culture can be observed in Figure 4.9. 

As previously described in this section, the three main phases of the cell growth can be clearly 

distinguished in the figure. The first phase, the exponential or log one, takes place throughout 

the first 50 hours of the culture. Then the cell population enters into the stationary phase 

which lasts for over 100 hours. And finally, the death phase is initiated causing a rapid 

decrease in the density of the viable cell population. 

 

Cell viability of the optimised cell culture process 

 
Figure 4.10: Line chart of a polynomial fit with 95% confidence interval of the viability of the 

culture supplemented with 2 mM of L-glutamine and seeded at 2 million cells/mL. The figure 

highlights the three stages of the cell growth: the exponential or log phase, the stationary and 

the death one. Additionally, the points of process intervention and sample collection can be 

observed as well as the 90% viability threshold (black dashed line). Data obtained through a 

BD FACSAria™ I flow cytometer with cells stained with 7-AAD to determine viability (see 

section 3.12.1.1). 
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After the identification of the stationary phase, the viability curve of the optimal culture was 

then closely observed in order to determine the points of process intervention and sample 

collection. Figure 4.10 shows the culture polynomial fit of cell viability as a function of process 

time. 

The intervention point was selected at 72 hours from the seeding time and samples were 

collected for flow cytometric analysis 24 hours after, that is, at 96 hours from the seeding 

time. Although the confidence interval is partly below the black dashed line (90% viability) at 

the sample collection point, most of the interval is above the line. Therefore, the majority of 

the samples collected at the 96 hour point is highly likely to have cell viability above 90%. 

 

4.5 DNA dyes optimisation 

 

Two DNA dyes were used in the majority of the flow cytometric analyses to both discriminate 

live cells from dead ones and to split live cells into the three main DNA cell cycle 

subpopulations: Go/G1, S, and G2/M. While the 7-AAD fluorescent reagent was used to 

discriminate live cells from the dead ones, the DRAQ5 fluorochrome was employed to identify 

the DNA cell cycle of live cells.  

With the purpose of determining the incubation time and concentration levels of the dyes, 

which allowed the detection of a relative strong fluorescence signal from these molecules 

while reducing the signal variability inserted into the overall data, different concentration 

levels of the dyes and different incubation periods of time were investigated. The ranges of 

variation of the incubation time and concentration levels were established based on the 

protocol for flow cytometric analysis suggested by the suppliers of these DNA dyes. 

 

 

 



108 
 

4.5.1 7-AAD 

 

As suggested by the 7-AAD supplier (ThermoFisher Scientific, A1310), cells were first 

incubated for 15 minutes to evaluate the effect of different concentration levels on the 

strength of 7-AAD fluorescence signal and the variability of the data.  Figure 4.11 shows a box 

plot superimposed with a violin plot. While the box plot summarises the shape of the 

distribution showing the lower (25th percentile), median (50th percentile) and upper quartiles 

(75th percentile), the violin plot is a compact representation of the “density” of the 

distribution, highlighting the areas where more points are found. The figure demonstrates the 

data distribution and the median for five different concentration levels of 7-AAD. The 

concentration levels are being measured in microliter volumes of 7-AAD per 0.5 mL of cell 

suspension containing 2 million cells in fully supplemented pre-warmed medium, as described 

in sections 3.12.1.2 and 3.12.1.3. 

Figure 4.11 reveals that the distributions of the data obtained for all 7-AAD concentrations are 

positively skewed since the upper quartiles are farther from the medians than the lower 

quartiles. Additionally, the median (a measure of central tendency) and the range between 

the quartiles (the spread or the variability of the data) increases as the concentration of 7-

AAD increases up to 4 µL. However, the data obtained from the cells incubated with 5 µL 

shows a decrease both in the median and the range between the quartiles, showing that 

further increases in the 7-AAD concentration might reduce the fluorescence signal strength 

rather than increase it. 

Although the median rises as the 7-AAD volume increases up to 4 µL, the change is not 

substantial; thus, the strength of the fluorescence signal detected from 7-AAD-A detector 

channel is not significantly affected by the increasing concentration of 7-AAD. In contrast, data 

variability, which can be observed through the shape of the violin plot and the distance 

between the lower and upper quartiles as well as the distance between the whiskers of the 

box plot (smallest nonoutlying and largest nonoutlying values), rises as the concentration of 

7-AAD increases, except for the concentration level resulted by adding 5 µL volume of the dye 

in which data variability and median are slightly lower than when 4µL volume is added. 
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Consequently, 1 µL volume 7-AAD demonstrated to be the most suitable quantity to be added 

to a 0.5 mL of CHO-K1 cell suspension containing 2 million cells. This means 2µg/mL as final 

concentration of 7-AAD. 

 

Optimisation of the 7-AAD concentration level  

 
Figure 4.11: Box plot overlaid with a violin plot showing the data distribution and the median 

of the fluorescence signals of cells incubated for 15 minutes at different concentration levels 

of 7-AAD. The concentration is measured in terms of 7-AAD volume (µL) per 0.5 mL of cell 

suspension containing 2 million cells. Data obtained through a BD FACSAria™ I flow cytometer 

(see section 3.12.1.2). 

 

Following the determination of the most suitable concentration level of 7-AAD, data was 

obtained from three different periods of incubation time using this concentration level. 

Subsequently, data was also visualised through a box plot overlaid with a violin plot. 

The visualisation of the data (Figure 4.12) demonstrates that the distributions are all positively 

skewed given the upper quartile is farther from the media than the lower quartile. This can be 
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observed in the box plot as well as in the shape of the violin plot, showing that the majority of 

the data points are closer to the lower quartile.  

The plots also show that the fluorescence signal strength measured on the 7-AAD-A channel 

does not alter significantly as the cells are incubated with 7-AAD for longer periods of time, 

but signal strength slightly declines. This is clearly observed by evaluating the values of data 

distribution median: 68029.9, 65049.9 and 65562 regarding to 5, 10 and 15 minutes 

respectively.  

 

Optimisation of the 7-AAD incubation time  

 
Figure 4.12: Box plot overlaid with a violin plot showing the data distribution and the median 

of the fluorescence signals of cells incubated with 1 µL of 7-AAD at different incubation times. 

The 7-AAD volume was added to 0.5 mL of cell suspension containing 2 million cells. Data 

obtained through a BD FACSAria™ I flow cytometer (see section 3.12.1.3). 

 

However, by incubating the cells for longer periods of time, the variability reduces as can be 

observed by the increasing definition of the data distribution peak illustrated by the shape of 

the violin plot, and the distances between the whiskers and between the upper and lower 
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quartiles highlighted by the box plot. Despite the fact the distance between the quartiles data 

obtained at 10 and 15 minutes seems to be equal, the distance between the whiskers of the 

15 minute dataset and the shape of its violin plot clearly show the reduction in the spread of 

the data. As a result, the 15 minute incubation time is the most suitable since the fluorescence 

signal was sufficient for detection while providing the greatest reduction in the variability of 

the data. 

Therefore, the 1 µL of 7-AAD volume and 15 minutes of incubation were the most suitable 

conditions to obtain high quality of data for 2 million CHO-K1 cells suspended in 0.5 mL of  

fully supplemented pre-warmed medium. In conclusion, 7-AAD optimisation experiments 

allowed the successful determination of the 7-AAD volume and its incubation time which 

provided sufficient detection of the fluorescence signal emitted by the dye while reducing the 

variability of the data. 

 

4.5.2 DRAQ5 

 

With the purpose of  staining cells with DRAQ5 for DNA cell cycle analysis by flow cytometry, 

BioStatus, the supplier of the DRAQ5 (stock solution at 5mM, DR50200), recommends up to 

10 µL of the dye for 200,000 cells resuspended in 0.5 mL of a buffer solution such as PBS. A 

range from 5 to 30 minutes of incubation time at room temperature was recommended, but 

the supplier suggests that the incubation time can be accelerated at 37°C. Since no 

recommendation is given for staining 2 million cells in 0.5 mL of cell culture media, DRAQ5 

optimisation experiments initially investigated the effect of 1, 2, 3, 4 and 5 µL of DRAQ5 

volumes per 0.5 mL of medium containing 2 million cells for 20 minutes incubation time at 

37°C. Subsequently, the periods of incubation time of 5, 10, 15, 20 and 25 minutes at 37°C 

were tested for the optimal concentration of DRAQ5 using the same number of cells and 

medium volume (see sections 3.12.1.4 and 3.12.1.5). 

Figure 4.13 shows two different plots with the data obtained from different volumes of 

DRAQ5. The top plot shows data distributions in the form of a boxplot, while the bottom one 
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shows the distribution density, highlighting the regions where most of the points are found. 

The data distributions are positively skewed for all DRAQ5 concentration levels. Data 

variability as well as the median distribution increases with DRAQ5 concentration. In other 

words, the increase in DRAQ5 concentration causes a rise in the strength of the fluorescence 

signal and in the spread of data. 

Despite the fact that the DRAQ5 fluorescence signal is considerably strengthened with higher 

concentration levels of the dye, the gain in data variability compromises the quality of the 

data. The fluorescence signal for 1 µL demonstrated to be sufficient for detection with the 

advantage of providing the smallest level of data variability. Furthermore, the well-defined 

peak of the 1 µL dataset enhances the ability to detect the Go/G1 DNA cell cycle population 

which is located by the highest peak observed in a density plot of a DNA dye (see section 1.5). 

The experiment to analyze the effects of different periods of DRAQ5 incubation time was then 

conducted by adding 1 µL of the dye (10µM a final concentration of DRAQ5). The datasets can 

be visualised in Figure 4.14. This figure is also composed of complementary plots, the box plot 

(top) and the violin plot (bottom), demonstrating that the distribution of all datasets are 

positively skewed; therefore, most of the data points are found below the median value. Also, 

as can be clearly seen in the top plot, the increasing incubation time diminished the strength 

of the fluorescence signal emitted from DRAQ5. Although the distribution median of the data 

obtained for 25 minutes (63873.9) is nearly half of the 5 minute distribution median 

(119842.6), the variability of the former is considerably lower than the latter. However, the 

signal detected from 25 minute variation proved to be strong enough for detection. As can be 

observed in the bottom plot, this incubation time demonstrated to be the most suitable one, 

given its sufficient signal strength and the greatest reduction in data variability. Furthermore, 

the reduction in data variability improves the ability to identify the highest peak of a DRAQ5 

density plot, facilitating the location of the fluorescence signal from the Go/G1 cell population.  
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Optimisation of the DRAQ5 concentration level  

Figure 4.13: Box plot (top) and density plot (bottom) showing the distribution of the data 

obtained for cells stained with different volumes of DRAQ5 in 0.5 mL of medium containing 2 

million cells. Data obtained through a BD FACSAria™ I flow cytometer (see section 3.12.1.4). 
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Optimisation of the DRAQ5 incubation time  

  

Figure 4.14: Box plot (top) and density plot (bottom) showing the data distributions of the 

datasets obtained for cells incubated for increasing periods of incubation time. All the cells 

were stained with 1 µL of DRAQ5 in 0.5 mL of media containing 2 million cells. Data obtained 

through a BD FACSAria™ I flow cytometer (see section 3.12.1.5). 

 

To summarise, the 1 µL of DRAQ5 volume and 25 minutes of incubation at 37°C were the most 

suitable conditions to obtain high quality data for 2 million CHO-K1 cells suspended in 0.5 mL 

of  fully supplemented pre-warmed medium. 

All datasets obtained from both dyes were seen to be positively skewed, showing that most 

of the data points are found below the median value of the distributions. Since the median is 

located quite close to the highest peak, which can be clearly observed through the 
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density/violin plots (particularly Figures 4.11, 4.12, and 4.14), it can be concluded that the 

Go/G1 population is the largest one. This was expected since cells were sampled according to 

conditions that were established by the experiments covering the cell culture process 

optimisation studies (see section 4.4). One of the conclusions of these experiments 

determined the sample collection point at 96 hours from the seeding point. The collection 

point is within the stationary phase; therefore, cells are not actively replicating as they do 

during the exponential phase. Positively skewed distributions are also observed in the data 

used for compensation analysis, the following section. However, this is not observed in data 

distributions obtained from the flow cytometric analysis of lectin sugar binding specificities as 

cells were collected during the exponential phase. As a consequence, data distributions are 

quite symmetric (see section 4.7).  

To conclude, the experimental work intended to optimise the application of 7-AAD and DRAQ5 

led to the determination of suitable concentration levels of these DNA dyes with the lowest 

level of data variability while providing sufficient fluorescence signal strength for detection. 

 

4.6 Compensation analysis 

 

An adequate experimental setup for a multicolour flow cytometric analysis ensures accurate 

and meaningful results. The presence of two or more fluorescent reagents on a single cell can 

lead to spillover. This phenomenon is characterized by the significant optical background a 

fluorescent reagent can cause to other reagents also present on a cell. Spillover occurs 

whenever the fluorescence emission of one dye is detected in a detector channel designed to 

measure signal from another dye. Since the extent of spillover is a linear function, the signal 

levels of the measured average can be corrected. This correction process is called 

compensation. Thus, compensation analysis is essential in order to properly visualise and 

analyse a complex dataset obtained from a multicolour flow cytometric experiment 

(Biosciences, 2009). 
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In this section, the level of brightness of samples individually stained with a lectin conjugated 

to V450 fluorochrome is evaluated. Such evaluation enables the identification of the 

lectin/V450 combination which produces the brightest signal. This combination is the most 

suitable V450 positive control for compensation analysis as it increases the accuracy level of 

a spillover matrix calculation (Biosciences, 2009). In turn, this matrix can then be used to 

compensate the data, removing the spillover, thereby determining the correct signal for each 

detector channel. 

In an ascending order, Figure 4.15 shows a box plot of the data distributions measured 

through  LECTIN-A channel. As an example, the unstained and stained samples were 

composed of cells collected from cultures in which the temperature was changed to 32°C in 

the last 24 hours. Since seven lectins compose the panel, seven datasets were collected from 

the stained samples, which were individually stained by a lectin/V450 combination. It can be 

observed that WGA/V450 combination is the brightest one, while LEC A/V450 is the dimmest. 

The median fluorescence signal obtained from cells stained with WGA/V450 was over three 

times as much as the signal measured from the unstained and LEC A/V450 samples.  

The same analysis was performed for all the cell culture process variations, including the 

baseline conditions, and cells stained with V450 conjugated to WGA showed the brightest 

signal (this can be visualised later in the section 4.9 measured by LECTIN detector channels.  

Therefore, the WGA single-stained control was used for compensation analysis. 
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Fluorescence analysis of the V450 fluorochrome across the lectin panel 

Figure 4.15: Box plot showing LECTIN-A data distributions of the unstained and seven 

lectin/V450 stained samples. These samples were collected from cultures subjected to a 

decrease in temperature from 37 to 32°C in the last 24 hours of culture. Data obtained 

through a BD FACSAria™ I flow cytometer (see section 3.12.4.2). 

 

After the determination of the brightest positive control for V450, the full evaluation of the 

spillover was then performed by calculating the spillover matrix. This calculation requires 

single-stained controls for all the fluorescent reagents of a polychromatic flow cytometric 

analysis. 7-AAD and DRAQ5 single-stained controls, thus, were used in conjunction with the 

V450 control. With the aid of the flowCore R package, the matrix for 32°C experiment was 

then calculated (Figure 4.16). 

The matrix in Figure 4.16 shows that 7-AAD spills into the DRAQ5-A channel (as much as 22% 

of 7-AAD fluorescence in its own channel). V450 spills 69% into 7-AAD-A and 7% into DRAQ5-

A. In contrast, DRAQ5 fluorescence is only detected on its own channel.  
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Figure 4.16: Spillover matrix calculated from 32°C experiment compensation controls. The 

matrix shows the amount of spillover of the fluorescent reagents into another detector 

channels.  

 

The mathematical inversion of the spillover matrix generates the compensation matrix, which 

in turn was used to calculate the true signal of a channel (Biosciences, 2009). Figure 4.17 

shows the inverted matrix and Equations 4.1 to 4.3 show the calculation of compensated 

values for each channel. 

 

 

Figure 4.17: Compensation matrix calculated by mathematically inverting the spillover matrix 

from 32°C experiment.  

 

The compensated value of a channel is equal to the signal measured through this channel 

(values in percentage calculated in the spillover matrix) multiplied by the summation of the 

appropriate coefficients of the compensation matrix: 

𝟕 − 𝐀𝐀𝐃 − 𝐀𝐓𝐑𝐔𝐄 = 100	 × (1 + 0 − 0.69) = 31																																																				Equation	(𝟖)   
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𝐃𝐑𝐀𝐐𝟓 − 𝐀𝐓𝐑𝐔𝐄 = 100 × (−0.22 + 1 + 0.081) = 86																																											Equation	(𝟗) 

𝐕𝟒𝟓𝟎𝐓𝐑𝐔𝐄 = 100	 × (0 + 0 + 1) = 100																																																																				Equation	(𝟏𝟎) 

 

Since fluorescence values were expected to change due to cells experiencing different growing 

conditions, compensation controls were prepared and analysed for each experimental run. 

Thus, the compensation analysis described in this section was conducted for all the 

experiments involving the use of more than two fluorescent reagents.  

Therefore, compensation analysis was successfully performed allowing the accurate analysis 

of datasets obtained from multicolour flow cytometric experiments. 

 

4.7 Flow cytometric analysis of lectin sugar binding specificity   

 

Previously, in the section 4.3 sugar binding specificities of AAL-2, LEC A and LEC B were 

determined. However, since these lectins were intended for use as probes to glycoprofile the 

surface of cells using flow cytometry, a flow cytometric experiment was set up to analyse the 

sugar binding specificities of the lectin panel: AAL-2, LEC A, LEC B, AAL, MAL II, PNA, and WGA. 

The results of this experiment allowed the determination of lectin specificity within the 

conditions in which the lectins were used for probing CHO-K1 cell surface. 

Firstly, this section evaluates the potential binding of V450 streptavidin to the cell in the 

absence of a biotinylated lectin. Then, the analysis of sugar binding specificity of each lectin is 

explored. 

The binding of V450 streptavidin fluorochrome is analysed in Figure 4.18 which shows a box 

plot with data distributions of signal measured through LECTIN-A detector channel. Apart 

from the cells used for the unstained sample, 7-AAD was added to the other two samples to 

distinguish dead cells. As a result, the unstained sample has demonstrated to possess higher 

variability which is shown by the distance between the lower and upper quartiles for instance. 
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Such variability could be mostly due to the inclusion of data from dead cells, which were 

unable to be removed as 7-AAD was not added to this sample. 

As has been shown in the previous section, 7-AAD single-stained sample does not affect the 

signal measured by LECTIN-A channel. In fact, the signal detected from this fluorochrome is 

lower than the unstained sample as the median values revealed, 51.4 for the former and 57 

for the latter. 

Similarly, the sample stained with both 7-AAD and V450 has demonstrated a slightly lower 

median value (55.6) than the unstained sample. Consequently, it can be concluded that V450 

streptavidin reagent does not interact with the cells in the absence of biotinylated 

biomolecules such as the lectins used as probes for the analysis of cell surface glycoprofile. 

 

Analysis of V450 cell binding in the absence of a biotinylated lectin 

 

Figure 4.18: Box plot showing LECTIN-A data distributions of unstained, 7-AAD and V450 + 7-

AAD stained samples. Data obtained through a BD FACSAria™ I flow cytometer (see section 

3.12.1.7). 
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The sugar binding specificity of each lectin was then analysed. Thus, some samples were 

prepared with lectins which were previously incubated with free sugar molecules with the 

purpose of investigating the inhibition of lectin cell binding owing to the interaction with a 

free sugar. The methodology used is described in more detail in section 3.12.1.7. Since 7-AAD 

was used to look at only live cells from all samples used for lectin specificity investigation, the 

7-AAD single-stained sample was then used as the negative control for V450/lectin. Therefore, 

the unstained sample in the seven following plots are in fact unstained for V450/lectin but 

stained for 7-AAD. 

Figure 4.19 shows a box plot demonstrating the LECTIN-A data distributions of unstained and 

AAL samples. The signal measured from samples in which AAL lectin was previously incubated 

with L-Fucose and Mannose, both demonstrated to substantially reduce the level of lectin 

binding to the cell. However, L-Fucose inhibited AAL cell binding to a slightly higher extent 

than Mannose. Although the ELLA analysis results involving AAL sugar binding specificity 

(Figures 4.5 and 4.6) showed that the lectin affinity for binding Fucose was considerably 

stronger than for Mannose, AAL also demonstrated higher affinity for Fucose in the flow 

cytometric analysis. 
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Analysis of the sugar binding specificity of AAL 

 

Figure 4.19: Box plot showing the fluorescence signal data distributions (measured through 

LECTIN-A channel) of an unstained sample and AAL stained samples. AAL + L-Fuc and AAL + 

Man are samples in which AAL was previously incubated with L-Fucose and Mannose free 

sugar molecules. Data obtained through a BD FACSAria™ I flow cytometer (see section 

3.12.1.7). 

 

Figure 4.20 shows a box plot demonstrating the LECTIN-A data distributions of unstained and 

LEC A samples. The signal measured from the sample in which LEC A lectin was previously 

incubated with Galactose demonstrated to reduce the level of lectin binding to the cell. The 

median value of this distribution is equal to the unstained sample, 51.4. However, the 

variability of LEC A + Gal sample is slightly higher than the unstained sample variability as can 

be seen by the distance between the upper and lower quartiles for instance. LEC A + Man 

sample, in contrast,  demonstrated no inhibition effect on LEC A cell binding, in fact, Mannose 

seemed to improve the binding of LEC A to the cell since the median value of this sample 

distribution was 59.8 in comparison to 52.8 of LEC A sample. 
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Analysis of the sugar binding specificity of LEC A 

 

Figure 4.20: Box plot showing the fluorescence signal data distributions (measured through 

LECTIN-A channel) of an unstained sample and LEC A stained samples. LEC A+ Gal and LEC A + 

Man are samples in which LEC A was previously incubated with Galactose and Mannose free 

sugar molecules, respectively. Data obtained through a BD FACSAria™ I flow cytometer (see 

section 3.12.1.7). 

 

A box plot demonstrating the LECTIN-A data distributions of unstained and LEC B samples is 

shown in Figure 4.21. LEC B + Galactose and LEC B + L-Fucose samples both demonstrated a 

reduction in the fluorescence median values in relation to LEC B sample, 55.6, 52.8 and 58.4, 

respectively. However, L-Fucose inhibited LEC B from binding to the cells to a greater extent, 

reducing the fluorescence signal close to the unstained median value which was 51.4. This 

result is in agreement with the ELLA analysis which showed a stronger LEC B affinity for Fucose 

in relation to Galactose (Figures 4.5 and 4.6). Although the ELLA analysis for LEC B also showed 

that Mannose was the strongest interaction with the lectin in comparison to Galactose and 

Fucose, LEC B + Mannose sample demonstrated no inhibition effect on the lectin. LEC B + 

Mannose data distribution is quite similar to LEC B distribution as the median value is the same 

and data variability shows great similarity as well. Also, LEC B + GlcNAc sample demonstrated 

                   Unstained                      LEC A                   LEC A + Gal            LEC A + Man 
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no effect on LEC B inhibition. In fact, it showed a slightly improved effect in the lectin cell 

binding, since the median value calculated for the sample was 62.5. 

 

Analysis of the sugar binding specificity of LEC B 

 

Figure 4.21: Box plot showing the fluorescence signal data distributions (measured through 

LECTIN-A channel) of an unstained sample and LEC B stained samples. LEC B + Gal, LEC B + 

GlcNAc, LEC B + L-Fuc, and LEC B + Man are samples in which LEC B was previously incubated 

with Galactose, N-Acetylglucosamine, L-Fucose and Mannose free sugar molecules, 

respectively. Data obtained through a BD FACSAria™ I flow cytometer (see section 3.12.1.7). 

 

Figure 4.22 shows a box plot demonstrating the LECTIN-A data distributions of unstained and 

PNA samples. The signal measured from the sample in which PNA lectin was previously 

incubated with Galactose demonstrated a reduction in the level of lectin binding to the cell. 

PNA + Gal data distribution showed a median value equal to the unstained sample, 51.4. 

Conversely, PNA + Man sample demonstrated no inhibition effect on the PNA cell binding. In 

fact, the incubation of PNA with free Mannose molecules enhanced the lectin cell binding, as 

the median value measure for PNA + Man sample was 57 while the PNA sample value was 

52.8. 

  Unstained               LEC B            LEC B + Gal        LEC B + GlcNAc      LEC B + L-Fuc     LEC B + Man 
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Analysis of the sugar binding specificity of PNA 

 

Figure 4.22: Box plot showing the fluorescence signal data distributions (measured through 

LECTIN-A channel) of an unstained sample and PNA stained samples. PNA + Gal, PNA + Man 

are samples in which LEC B was previously incubated with Galactose and Mannose free sugar 

molecules, respectively. Data obtained through a BD FACSAria™ I flow cytometer (see section 

3.12.1.7). 

 

Figure 4.23 shows a box plot demonstrating the LECTIN-A data distributions of unstained and 

AAL-2 samples. The signal measured from samples in which AAL-2 lectin was previously 

incubated with N-Acetylgalactosamine (GalNAc) and N-Acetylglucosamine (GlcNAc), both 

demonstrated to substantially reduce the level of lectin binding to the cell. However, GlcNAc 

inhibited AAL-2 cell binding to a higher degree than GalNAc, reducing the data distribution 

media value to 52.8 which is quite close to the unstained median value of 51.4. ELLA analysis 

involving AAL-2 sugar binding specificity (Figure 4.5) also detected the affinity of the lectin for 

GlcNAc. 
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Analysis of the sugar binding specificity of AAL-2 

 

Figure 4.23: Box plot showing the fluorescence signal data distributions (measured through 

LECTIN-A channel) of an unstained sample and AAL-2 stained samples. AAL-2 + GalNAc, AAL-2 

+ GlcNAc are samples in which AAL-2 was previously incubated with N-Acetylgalactosamine 

and N-Acetylglucosamine, respectively. Data obtained through a BD FACSAria™ I flow 

cytometer (see section 3.12.1.7). 

 

A box plot demonstrating the LECTIN-A data distributions of unstained and MAL II samples can 

be seen in Figure 4.24. The fluorescence signal measured from MAL II + GlcNAc sample 

demonstrated no inhibition effect on MAL II cell binding. This is clearly seen in the sample 

median value of 72.3 which is equal to MAL II sample value. However, MAL II + GlcNAc showed 

a higher level of data variability in comparison to MAL II sample as can be observed, for 

instance, in the distance between the extremes of its vertical bar, which shows the range from 

the smallest to the largest nonoutlying values. The higher level of data variability of MAL II + 

GlcNAc in relation to MAL II sample can also be observed in the distance between the upper 

and lower quartiles (box’s height). MAL II + sialic acid showed strong inhibition effect on MAL 

II cell binding since the median value was 51.4 which was equal to the unstained median value. 

However, MAL II + sialic acid data variability was slightly higher than the unstained one.  
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Analysis of the sugar binding specificity of MAL II 

 

Figure 4.24: Box plot showing the fluorescence signal data distributions (measured through 

LECTIN-A channel) of an unstained sample and MAL II stained samples. MAL II + GlcNAc, MAL 

II + sialic acid are samples in which MAL II was previously incubated with N-Acetylglucosamine 

and Sialic acid, respectively. Data obtained through a BD FACSAria™ I flow cytometer (see 

section 3.12.1.7). 

 

Figure 4.25 shows a box plot demonstrating the LECTIN-A data distributions of unstained and 

WGA samples. The signal measured from samples in which WGA lectin was previously 

incubated with N-Acetylgalactosamine (GalNAc) and N-Acetylglucosamine (GlcNAc), both 

demonstrated to reduce the level of lectin binding to the cell to a great extent. However, 

GlcNAc inhibited WGA cell binding to a higher degree than GalNAc reducing the data 

distribution media value to 50 which is even lower than the unstained median value of 51.4. 

ELLA analysis involving WGA sugar binding specificity (Figure 4.5) also detected the affinity of 

the lectin for GlcNAc. 

To summarise the outcomes of the last 7 plots, Table 4.3 shows the sugar binding specificities 

of each lectin. The table allows the observation of binding similarities between in-house 

  Unstained                              MAL II                         MAL II + GlcNAc             MAL II + sialic acid      
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production lectins and commercial ones. LEC A and PNA both demonstrated affinity for 

Galactose, AAL-2 and WGA demonstrated affinity for N-Acetylglucosamine and N-

Acetylgalactosamine, both showing stronger binding specificity for N-Acetylglucosamine. 

Whereas AAL and LEC B, demonstrated a strong affinity for L-Fucose. Additionally, the binding 

specificity results of commercial lectins are in agreement with the information provided by 

the supplier (VectorLabs). 

 

Analysis of the sugar binding specificity of WGA 

 

Figure 4.25: Box plot showing the fluorescence signal data distributions (measured through 

LECTIN-A channel) of an unstained sample and WGA stained samples. WGA + GalNAc, WGA + 

GlcNAc are samples in which WGA was previously incubated with N-Acetylgalactosamine and 

N-Acetylglucosamine, respectively. Data obtained through a BD FACSAria™ I flow cytometer 

(see section 3.12.1.7). 
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Table 4.3: Table summarising the flow cytometric results of sugar binding specificity of lectins. 

                     Lectin 
Strongest sugar- 

binding molecule 

2nd strongest sugar-

binding molecule 

AAL L-Fucose Mannose 

LEC A Galactose - 

LEC B L-Fucose Galactose 

PNA Galactose - 

AAL-2 N-Acetylglucosamine N-Acetylgalactosamine 

MAL II Sialic acid - 

WGA N-Acetylglucosamine N-Acetylgalactosamine 

 

Although AAL and LEC B have shown results which disagree with the ELLA analysis to a certain 

degree (see section 4.3), this fact does not affect the purpose of the experimental work 

covered by this present section, which is to characterize lectin sugar binding within the flow 

cytometric experimental conditions. The differences in the outcomes between the ELLA and 

flow cytometry analyses could have been caused by a number of differing conditions which 

might have acted individually or in combination with each other. The concentration levels of 

the glycoproteins and free sugars and the solutions used (TBS is used in ELLA, while the cell 

culture media is the solution of choice in the flow cytometric assay) are examples of these 

differing conditions. Furthermore, immobilized glycoproteins bearing specific carbohydrate 

residues were used in the ELLA analysis, whereas free sugar molecules were used in the flow 

cytometric study. Above all, due to the strong quantitative nature of flow cytometry, this 

technique is more capable of demonstrating biological phenomena involving the 

measurement of binding activities through the use of fluorescent reagents. 

To conclude, the flow cytometric analysis of sugar binding specificities of lectins has 

successfully demonstrated that free sugar molecules when incubated with lectins prior to 

probing the cells, can prevent the lectins from interacting with sugar molecules on cell surface. 

Most importantly, the analysis has allowed the determination of sugar binding specificities of 

each lectin while providing information on their biological activity status within the flow 
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cytometric experimental conditions. Since all lectins have shown cell binding inhibition due to 

interaction with a particular free sugar molecule, which demonstrates their biological activity, 

the panel of lectins has proved suitability for cell surface glycoprofiling by flow cytometric 

analysis. 

 

4.8 Lectin cytotoxicity: a flow cytometry-based analysis 

 

The phenomenon of lectin cytotoxicity can occur precisely after lectins have bound to all 

binding sites available on the cell surface, leaving the unbound lectins outside the cell in a 

highly concentrated level in relation to the internal environment of the cell (Stanley and 

Sundaram, 2014). 

In order to determine the non-toxic concentration level of lectins to probe CHO-K1 cells, flow 

cytometric cytotoxicity studies were performed. Lectin concentration levels were varied from 

0 to 12.5 µg/mL and cell viability was determined for each variation (see section 3.12.1.6). 

Since the previous section has indicated sugar binding specificity similarities between in-house 

production lectins and commercial ones, this section presents the lectin cytotoxicities in pairs: 

AAL & LEC B, PNA & LEC A, WGA & AAL-2. However, MAL II is evaluated individually. In 

addition, the scale of the viability axis of the following four plots is fixed; that is, it ranges from 

96% to 100%, and the dimensions of the figures are identical. This allows the direct 

comparison of data variability among the lectin panel. Such variability is demonstrated by the 

95% confidence interval of the polynomial fit of each lectin dataset. 

Figure 4.26 shows a line plot with the polynomial fits of experimental data from AAL and LEC 

B cytotoxicity studies. In addition, the plot allows the observation of 95% confidence interval.  

A polynomial fit of the data obtained when using AAL as probe revealed a narrower 95% 

confidence interval than when LEC B was used. Consequently, AAL data variability was shown 

to be lower than LEC B. Cells incubated with increasing concentrations of the in-house 

production lectin, LEC B, showed viability around the 97% up to 6.25 µg/mL, but demonstrated 

a tendency to sharply decrease in cell viability as the concentration was raised beyond 6.25 
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µg/mL. In contrast, the commercial lectin, AAL, was shown to be slightly less toxic to the cells 

since the cell viability is constantly around 99% across the entire range of lectin concentration. 

However, up to 12.5 µg/mL, both lectins demonstrated to be non-toxic to the cells as viability 

is well above 90%. 

 

Analysis of AAL and LEC B cytotoxicity 

Figure 4.26: Line plot showing AAL and LEC B cytotoxicity polynomial fits along with 95% 

confidence intervals. Data obtained through a BD FACSAria™ I flow cytometer and using 7-

AAD to stain dead cells, thus determining cell viability (see section 3.12.1.6). 

 

PNA and LEC A cytotoxicity data is shown in Figure 4.27. Although the in-house production 

lectin, LEC A, gave a narrower 95% confidence interval than PNA, LEC A demonstrated to be 

slightly more toxic to the cells than PNA. While PNA viability values mostly fell between 98% 

and 99%, LEC A values fell between 97.5% and 98%. Nevertheless, both lectins revealed to be 

non-toxic to the cells up to 12.5 µg/mL. 
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Analysis of PNA and LEC A cytotoxicity 

Figure 4.27: Line plot showing PNA and LEC A cytotoxicity polynomial fits along with 95% 

confidence intervals. Data obtained through a BD FACSAria™ I flow cytometer and using 7-

AAD to stain dead cells, thus determining cell viability (see section 3.12.1.6). 

 

Figure 4.28 demonstrates WGA and AAL-2 cytotoxicity data. It can be observed that both 

lectins revealed the same level of data variability as 95% confidence interval widths are quite 

similar across the entire concentration range. In addition, the lectins showed a tendency of a 

sharp drop in cell viability as lectin concentration was increased beyond 6.25 µg/mL. However, 

likewise LEC B and LEC A, AAL-2 demonstrated to be slightly more toxic to the cells than its 

equivalent commercial lectin, WGA. While WGA viability values were mostly between 99% 

and 100%, AAL-2 values fell mostly between 98% and 99%. As a result, both lectins are very 

safe to be used on the cells up to the concentration level of 12.5 µg/mL. 
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Analysis of WGA and AAL-2 cytotoxicity 

Figure 4.28: Line plot showing WGA and AAL-2 cytotoxicity polynomial fits along with 95% 

confidence intervals. Data obtained through a BD FACSAria™ I flow cytometer and using 7-

AAD to stain dead cells, thus determining cell viability (see section 3.12.1.6). 

 

And finally, Figure 4.29 demonstrates MAL II cytotoxicity data. The viability values of cells 

incubated with increasing concentration levels of MAL II fell mostly between 98% and 99%. 

However, the data revealed a tendency to drop as cells were exposed to concentration levels 

higher than 1.56 µg/mL. Furthermore, MAL II as well as LEC B data variability was shown to be 

the highest among the lectin panel, while AAL revealed the lowest variability as can be 

observed from the comparison of the 95% confidence intervals. In conclusion, MAL II 

cytotoxicity study showed that the lectin is non-toxic to the cells up to 12.5 µg/mL. 
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Analysis of MAL II cytotoxicity 

Figure 4.29: Line plot showing MAL II cytotoxicity polynomial fit along with 95% confidence 

interval. Data obtained through a BD FACSAria™ I flow cytometer and using 7-AAD to stain 

dead cells, thus determining cell viability (see section 3.12.1.6). 

 

In the form of a line plot, Figure 4.30 summarises the polynomial fits of all lectins investigated 

in the cytotoxicity studies. However, 95% confidence interval is not shown in the figure for 

better visualization of the trends revealed by each lectin. 

AAL has demonstrated to be the most stable curve in contrast to MAL II, the least one. The 

plot allows the observation of the two safest lectins to be used to probe CHO-K1 cells as well 

as the two least ones. WGA and AAL are the safest with cell viability values around 99% while 

LEC B and LEC A are the least safe ones with viability values around 97% and 97.5%, 

respectively. Although such conclusion can be made, it is important to stress the fact that all 

lectins of the panel have not shown a severe or even a mild toxicity effect since the viability 

values range from 96.5% to 99.5% up to 12.5 µg/mL.  
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Cytotoxicity analysis of the lectin panel 

Figure 4.30: Line plot showing polynomial fits of all lectins involved in the flow cytometric 

cytotoxicity studies. The red dashed line shows the concentration level of lectin selected for 

the investigation of the variation of cell surface glycoprofile. Data obtained through a BD 

FACSAria™ I flow cytometer and using 7-AAD to stain dead cells, thus determining cell viability 

(see section 3.12.1.6). 

 

Furthermore, the plot allows the observation of the concentration level at which most lectins 

cause a drop in the cell viability. Therefore, the determination of the lectin concentration level 

to use for the investigation of the variation of cell surface glycoprofile could be done. As can 

be seen in the plot, although 6.25 µg/mL is the concentration level at which most lectins cause 

a decrease in viability, the concentration level of choice was 3.0 µg/mL as illustrated by the 

red dashed line. Such lectin concentration level is within a range in which viability levels are 

stable for all lectins except for MAL II. Additionally, a higher lectin concentration level requires 

a great increase in the V450 volume for the preparation of lectins for cell probing (see section 

3.12.1.6), since the lectin volume is directly proportional to the V450 volume. Consequently, 
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the costs associated with commercial lectins and V450 purchasing would have escalated which 

could have compromised the research project budget. 

In sum, the outcomes of lectin cytotoxicity studies have successfully allowed the 

determination of a financially suitable and quite safe lectin concentration level for the 

investigation of the glycoprofile variation of CHO-K1 cell surface. 

 

4.9 Variation of cell culture parameters: Statistical analysis of the effects on CHO-

K1 cells  

 

Although the achievement of the results presented in previous sections allowed the 

development of an optimised flow cytometric methodology, the application of this 

methodology to investigate the effects of the alteration of cell culture parameters (level of 

spent medium, temperature and CO2) on the cell surface glycoprofile, generated about 300 

million flow cytometric observations in which 15 parameters (FSC-A, SSC-A, 7-AAD-A, and 

LECTIN-A for instance) were measured for each observation. Based on these parameters a 

number of variables was determined enabling the classification of single cells in terms of their 

DNA cycle stage and viability for instance. The process of removing datapoints extracted from 

cell debris and aggregates reduced the dataset to 80 million single cell observations (see 

section 3.12.5).   

Therefore, this section presents the statistical analysis and discussion of the data obtained 

from the experiments involving the variation of cell culture parameters (see section 3.12.2). 

For each cell culture parameter variation, the effects on pH and viability are presented and 

discussed first. Then descriptive statistical analysis and discussion of the effects on the relative 

cell size and the cell internal and external complexity level is developed. An in-depth statistical 

analysis of cell surface glycoprofile variation is shown and the results of the descriptive and 

inferential analysis are discussed. Furthermore, the results of power analysis are then 

discussed in detail in order to evaluate whether the findings are scientifically meaningful. 
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Lastly, a general comparative power analysis is developed to identify the cell culture 

parameter and the lectins/glycans associated with the most scientifically meaningful results. 

The results are summarised in the form of line plots, box plots, bar plots and tables. However, 

the variability of the data is not shown in line plots to facilitate the visualisation of the trends 

revealed by the curves, except for line plots illustrating the pH variation as they contain only 

one curve each. 

 

4.9.1 Analysis of the effects of spent medium level variation  

 

The experimental data involving the variation of spent medium levels comprises 7 datasets 

each representing a spent medium level: 6 datasets consist of the variation of the spent 

medium levels in the last 24 hours of culture, and 1 dataset extracted from cells grown under 

the baseline condition throughout the entire 96 hours of culture (sample collection point).  

Several components change their concentrations as the levels of a spent medium is varied 

such as an increase in alkaline compounds accompanied with a decrease in nutrient levels in 

spent media used for longer periods of time. Although the overall variation of the cell culture 

medium composition can affect the glycosylation process, the discussion of the results of this 

section is focused on the variation of the levels of nutrients, since this variation can greatly 

affect the availability of the building blocks needed to assemble different and multiple 

carbohydrate structures in the cells. 

In order to facilitate the understanding of the data, the variables of interest were plotted 

against the variation of spent medium levels in relation to the setpoint or the baseline 

condition. In other words, the 0 point of the x axis (Level of spent medium) depicts the data 

obtained from cells cultivated under baseline conditions, whereas the remaining points depict 

the datasets obtained from the different levels of spent medium which were measured as a 

day unit. Negative values in the x axis consist of media with lower (depleted) levels of nutrients 

in relation to the 0 point (baseline condition), while the positive values consist of media with 
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higher (excess) levels of nutrients. The experimental setup is fully described in section 

3.12.2.2. 

 

Cell culture parameters 

 

Viability and pH parameters were measured to characterize the cell culture process involving 

the variation of nutrient levels in the medium. While viability was obtained through flow 

cytometry with the aid of 7-AAD fluorochrome (see sections 1.5, 3.12.1.2, and 3.12.1.3), pH 

was measured using a pH electrode (see section 3.12.1.8). 

It can be observed through Figure 4.31 that cell viability for all lectin samples significantly 

increased between -3 and -1 day as spent medium levels increased as well. Cell viability 

continued to rise between -1 and +1 day; however, the rate of this increase was lower than 

the initial one and the cell viability maximum reaching point was at 99%. Further increases in 

the spent medium levels allowed cell viability to stabilise at 99%. 

The low cell viability values (the lowest value was 88% for WGA samples) between -3 and -1 

day showed that cells were subjected to spent medium levels which significantly affected their 

growth. However, between +1 and +3 days, cells were treated with extra levels of nutrients in 

relation to the baseline point, thereby allowing the cells to continue to grow. 
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Cell viability across the variation of spent medium levels 

Level of spent medium (days) 

Figure 4.31: Line plot showing polynomial fits of cell viability of all lectin samples from the 

experiment involving the variation of spent medium levels. Data obtained through a BD 

FACSAria™ I flow cytometer and using 7-AAD to stain dead cells, thus determining cell viability 

(see section 3.12.1.6). 

 

As illustrated in the figure, the tendency of a sharp decrease in cell viability for further 

depleted nutrient levels was experimentally confirmed since the vast majority of cells 

cultivated at -4, -5 days and so on, were dead. As a consequence, flow cytometric data from 

these cultures could not be obtained. In fact, even the -3 day cultures (triplicate) had most of 

the cells compromised. This is discussed in more detail when sample size and power analysis 

for the spent medium variation experiment is covered.  

Figure 4.32 shows the change in pH as the level of spent medium was varied. It can be 

observed that the pH decreased up to -1 day point, but it stabilized at 7.3 between -1 and 0 

day. Further decreases in spent medium levels resulted in pH values lower than 7 pH. The 

decrease rate between -3 and -1 days was higher than between 0 and 3 days, demonstrating 

a tendency to rapidly accumulate alkaline compounds in the medium for further increases in 

spent medium levels. 
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pH across the variation of spent medium levels 

 
Level of spent medium (days) 

Figure 4.32: Line plot showing a polynomial fit with 95% confidence interval of pH as a function 

of the variation of spent medium levels. The values of pH were obtained using an Orion Semi-

micro pH electrode (see section 3.12.1.8). 

 

By observing both figures from -1 day to -3 days, it can be concluded that the cell viability 

decreases sharply due to the rapid increase in pH within this range. The pH value of 7.3 is an 

optimal one allowing the cell viability to remain above 96%. Whereas, pH higher than 7.4 

causes a rapid reduction in cell viability due to the accumulation of alkaline metabolites 

released by the cells and glutamine degradation into ammonium (Borys, Linzer and 

Papoutsakis, 1994; Slivac et al., 2010).   
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Descriptive analysis of the variation of the relative cell size and cell internal and external 

complexity parameters 

 

Flow cytometry allows the extraction of information on the relative cell size (FSC channels) 

and the relative internal and external cell complexity (SSC channels) (see section 1.3.2). 

Therefore, a descriptive analysis of the FSC-A and SSC-A of the dead and apoptotic cell 

subpopulations as well as the DNA subpopulations is developed in this section. The plots are 

facetted by the 7 lectins and a common FSC-A and SSC-A scales are used to facilitate the direct 

comparison among the lectin panel. Additionally, lectin facets are organized in pairs of a 

commercial lectin and its counterpart in-house lectin (see section 4.7). 

Figure 4.33 demonstrates the variation of the relative cell size mean as cells were subjected 

to a different level of spent medium in the last 24 hours of the cell culture process. The figure 

shows 5 subpopulation curves per lectin. For all lectins, it can be clearly seen that the pattern 

of the change in FSC-A mean was the same between the baseline and +3 days. However, two 

patterns emerged between -3 days and the baseline, particularly in relation to the DNA 

subpopulations.  

The first pattern can be observed in AAL, PNA, LEC A and WGA curves in which the FSC-A 

means of the DNA cell cycle subpopulations increased (from -2 to 0 day) after a decrease 

between -3 and -2 days. Whereas, the second pattern observed in LEC B, AAL-2 and MAL II 

curves, a constant increase in the means was seen up to 0 day. Such pattern could be due to 

the fact that most of the cells from the -3 day-cultures were compromised owing to the low 

levels of nutrients in the medium, as has been previously pointed out (Figures 4.31 and 4.32). 

Overall, it can be observed a decrease in the relative cell size as the cells were subjected to 

increasing depleted nutrient levels. Also, the positions of the relative cell size curves in relation 

to FSC-A scale are slightly different across the lectins, demonstrating that the lectin interaction 

on the surface of the cell might not significantly influence the FSC-A signal or all lectins from 

the panel influence the signal at the same degree. 
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The variation of the relative cell size across spent medium levels  

 
Figure 4.33: Lectin-facetted line plot showing the relative cell size (FSC-A) variation as a 

function of the spent medium level for 5 different cell subpopulations: dead, apoptotic, and 

DNA cell cycle subpopulation (G2/M, S, and Go/G1). Data obtained through a BD FACSAria™ I 

flow cytometer (see section 3.12.1.8). 

 

In addition, the figure allows the observation of the increasing cell size as the cells go through 

the DNA cell cycle. This can be observed by the position of the curves within each lectin facet. 

Go/G1 < S < G2/M < Apoptotic < Dead is the ascending cell size order which can be observed 

in all lectin facets at depleted (negative) nutrient levels. However, dead cell size decreased 

significantly at positive nutrient levels and the size order changed to Go/G1 < S < G2/M < Dead 

< Apoptotic. Therefore, it can be observed that as cells went through the DNA cycle their 

relative cell size increased. For instance, during the DNA cell cycle, cells are in the process of 

duplicating the DNA (Go/G1 and S) reaching two sets of genetic material (G2/M) when mitosis 

takes place. Thus, this process alone changes the size of a cell (see section 1.4). 

Figure 4.34 shows the alteration of the relative cell internal and external complexity as the 

level of spent medium was varied. The upper plot shows 5 subpopulation curves for each 

lectin, while the lower plot highlights the curves of the DNA subpopulations, facilitating the 

observation of the trends revealed by these curves. Overall, all lectin curves showed a very 

similar pattern except for LEC B, AAL-2 and MAL II that showed a different pattern at -3 day 

spent medium level, as was also observed in the data of FSC-A signals (Figure 4.33). 



143 
 

It can be observed from the upper plot that the order of SSC-A signal magnitude of the 

subpopulation curves for the lectin panel is Go/G1 < S < G2/M < Apoptotic < Dead as was also 

observed in the figure 4.33 from -3 to 0 day levels.  However, between 0 and +1 day, the dead 

and apoptotic curves showed a tendency to equalize their SSC-A signals. MAL II curves in 

particular, showed that the apoptotic curve surpassed the dead curve between 0 and +1. 

Therefore, it can be concluded that as cells go through the DNA cycle their relative internal 

and external complexity level increases. This conclusion is expected as the extra genetic 

material being synthesized by the cell during the DNA cell cycle increases the number of 

biomolecules within the cell, thereby elevating the complexity of the internal environment 

(Ozlu et al., 2015; Ly et al., 2017). 

All lectin subpopulation curves showed that the SSC-A signal fluctuated around the same 

values at the positive levels of spent medium. However, while dead and apoptotic curves 

showed a considerable decrease in SSC-A at negative spent medium levels (depleted nutrient 

levels), Go/G1, S and G2/M SSC-A signals increased at the first spent medium levels, but a 

tendency to decrease the signal was observed as cells were subjected to further negative 

levels of spent medium. In other words, cells became internally and externally more complex, 

demonstrating possibly an increase in cellular metabolism to cope with the first effects of 

nutrient depletion up to a depletion level which was low enough to lower down cellular 

metabolism and eventually lead cells to death. Although the extra levels of nutrients did not 

lead cells to death, excess of nutrient might also have caused metabolic changes in relation to 

the baseline nutrient level. 
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The variation of the relative cell internal and external complexity parameters 
spent medium levels  

 

 
Figure 4.34: Lectin-facetted line plots demonstrating the relative cell internal and external 

complexity (SSC-A) variation as a function of the spent medium level for 5 different cell 

subpopulations: dead, apoptotic, and DNA subpopulations (G2/M, S, and Go/G1). The lower 

plot highlights curves of the DNA subpopulations to better visualize their trends. Data 

obtained through a BD FACSAria™ I flow cytometer (see section 3.12.1.8). 

 

It has been shown that both nutrient deprivation and nutrient excess can cause cellular stress 

(Wellen and Thompson, 2010). The uptake of nutrients in mammalian cells is controlled 

primarily by growth factor signaling which is associated with the level of reactive oxygen 

species produced by mitochondria. Reactive oxygen species are produced at a low level, 

allowing the normal cellular functioning. However, these species can rise with alterations in 

oxidative mitochondrial metabolism due to both deprivation and excess of nutrients for 

instance. This rise can potentially cause damage to the components of a cell and its death 
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(Veal, Day and Morgan, 2007; Trachootham, Alexandre and Huang, 2009; Hamanaka and 

Chandel, 2010). In the case of cellular stress caused by the excess of nutrients, in diseases 

characterized by alterations in cellular metabolism such as cancer and diabetes, increased 

levels of reactive oxygen species are found (Wallace, 2005; Brandon, Baldi and Wallace, 2006; 

Halliwell, 2007; Nathan, 2008; Roberts and Sindhu, 2009; Trachootham, Alexandre and Huang, 

2009). 

 

Statistical analysis of the variation of cell surface glycoprofile 

 

The statistical analysis of the variation of cell surface glycoprofile across different levels of 

spent medium is composed of three stages: descriptive, inferential and power analysis. 

This section firstly investigates the patterns and tendencies revealed by the variation of the 

means of LECTIN-A detector channel signal as the levels of spent medium were altered. Line 

plots are shown with a common LECTIN-A scale to facilitate the comparison of lectin 

interaction intensities across the lectin panel. Secondly, the analysis of the levels of statistical 

significance of the difference between each treatment (+1 day, +2 days, -1 day, -2 days for 

instance) and the baseline dataset is developed. In addition, this analysis allows the 

observation of data variability since box plots are demonstrated. Lastly, in order to evaluate 

whether the findings are scientifically meaningful, the results of power analysis are discussed. 

Figure 4.35 demonstrates the variation of LECTIN-A signal as the levels of spent medium 

changed. Consequently, the variation of cell surface glycoprofile can be investigated. As was 

observed previously on the data from FSC-A and SSC-A detector channels, the order of the 

LECTIN-A signal intensity of the subpopulations of all lectins is: Go/G1 < S < G2/M < Apoptotic 

< Dead. It can be concluded that as cells go through the DNA cell cycle, the quantity of lectin 

binding sites increases possibly due to cell size enlargement as was observed from the Figure 

4.33. This conclusion can be further supported by the fact that G2/M and S subpopulation 

curves of each lectin revealed a repetition of the Go/G1 curve pattern. 
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The increasing lectin binding detected from apoptotic and dead cells was expected, since 

apoptotic cells gradually lose the integrity of the membrane, compromising the osmotic 

regulation of the cell. Eventually, cells are fully dead allowing the absorption of molecules in 

high concentration levels outside of the cell. 

The bottom plot of the figure allows the identification of the strongest and weakest LECTIN-A 

signal from the DNA subpopulations. WGA was demonstrated to be the strongest binding on 

the cell surface and LEC A the weakest. Therefore, based on the studies shown in section 4.7, 

it can be concluded that the quantity of N-Acetylglucosamine groups available for binding is 

at a higher number in relation to Fucose, Sialic acid and Galactose, particularly in relation to 

Galactose. This was demonstrated by the lowest signal detected which was from LEC A 

followed by PNA, both of which interact with Galactose. 

Although AAL-2 also binds to N-Acetylglucosamine, the lectin did not show the same efficiency 

at binding to the sugar molecule as WGA did. However, this could be due to the difference in 

the amount of biotin molecules each lectin has. Since those lectins have gone through 

different biotinylation processes, as one was a commercial molecule and the other was an in-

house molecule. Nonetheless, although the intensities can be different, the pattern of the 

curves of an in-house lectin and its commercial equivalent were generally very similar, 

demonstrating that the lectins were interacting with the same sites on cell surface. This 

observation further supports the results obtained in section 4.7. 

 

 

 

 

 

 

 



147 
 

The variation of cell surface glycoprofile across spent medium levels  

Figure 4.35: Lectin-facetted line plots demonstrating the lectin interaction (LECTIN-A) 

variation for 5 different cell subpopulations: dead, apoptotic, and DNA subpopulations (G2/M, 

S, and Go/G1). The lower plot highlights the curves of the DNA subpopulations to better 

visualize their trends. Data obtained through a BD FACSAria™ I flow cytometer (see section 

3.12.1.8). 

With the purpose of evaluating the statistical significance of the glycoprofile differences 

observed in relation to the baseline nutrient level, inferential analysis was conducted and the 

data was plotted in the form of a box plot colored with the level of the statistical significance 

as shown in Figure 4.36 (see section 3.12.7). 

The figure shows the data distributions of the treatments applied (levels of spent medium), 

including the baseline. However, the baseline boxplot is colored in grey to highlight it as the 

data distribution to which the different treatments were compared (see section 3.12.7). The 

investigation of the variation of cell surface glycoprofile of live cells is the main goal of this 



148 
 

research work; thus, the DNA subpopulations are the cells of most interest. Consequently, the 

figure shows data of G2/M, S, and Go/G1 subpopulations. 

 

Inferential analysis of the cell surface glycoprofile variation across different 
levels of spent medium 

 

 
Figure 4.36: Box plot facetted by lectin and DNA cell cycle subpopulations highlighting the 

levels of statistical significance of the glycoprofile difference between the treatments and the 

baseline. Data obtained through a BD FACSAria™ I flow cytometer using LECTIN-A detector 

channel (see sections 3.12.1.8 and 3.12.7). 

 

Figure 4.36 allows the observation of the highest number of very highly significant changes 

detected in the Go/G1 subpopulation.  Additionally, the figure shows a reduction in the 
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number and in the level of statistical significance of the S subpopulation in relation to Go/G1. 

Likewise, this can be seen in the comparison between G2/M and S subpopulations. For 

instance, at +1 day level, G2/M cells of AAL-2 demonstrated a trend toward significance, while 

the S and Go/G1 cells interacting with the same lectin demonstrated very highly significant 

changes in the cell surface glycoprofile in relation to the baseline glycoprofile. This was also 

observed at +1 day level of LEC A subpopulations and at -3 day level of AAL-2 subpopulations. 

The sample size difference can be the statistical reason why the highest number of very highly 

significant changes was computed in Go/G1; thus such information is evaluated later in this 

section. Therefore, the further analysis is focused on Go/G1 subpopulation. 

The Go/G1 subpopulation demonstrated that WGA detected the highest number of very 

highly significant changes at 5 treatments out of the 6 applied to the cells. AAL-2, the in-house 

WGA counterpart, demonstrated the second highest number, 4 treatments, just the same as 

AAL. LEC B showed the lowest number of very highly significant change detected for only one 

treatment, -3 day nutrient level. PNA and LEC A detected 2 and MAL II detected 3. Table 4.4 

summarises the number of very highly significant changes for each lectin in the Go/G1 

subpopulation. Most of the very highly significant changes was found in the treatments which 

cells were treated with extra levels of nutrients. However, cells subjected to depleted nutrient 

levels showed some dramatic differences in the glycoprofile, particularly at -3 day treatment 

(Figure 4.35).  
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Table 4.4: Table summarizing the number of very highly significant changes detected by each 

lectin and the nutrient treatments in which these changes were found in the Go/G1 

subpopulation. 

 

In order to assess whether the glycoprofile changes are scientifically meaningful, power 

analysis was performed. Figure 4.37 shows the results of the analysis covering the DNA 

subpopulations. It can be observed that the highest power values are in the data obtained 

from Go/G1 cells. This observation is in agreement with what was observed in Figure 4.36, 

which showed the highest number of very highly significant changes in Go/G1 cells.  

Figure 4.37 reveals that some of the glycoprofile changes in the Go/G1 subpopulation are 

quite scientifically meaningful both in the treatments in which cells were depleted of nutrients 

and with a nutrient excess in relation to the baseline nutrient level. This can be observed in 

the data of MAL II, LEC B and PNA for instance. In the case of LEC B, computed power values 

for -2 and +2 day treatments were higher than 75%; the former power value was nearly 100%. 

In other words, if an experiment with 75% power was to be repeated 100 times, the 

methodology would be able to find a statistically significant change when there is one, in 75 

times.  

 

Lectin 
Number of very highly significant 

changes 

Treatments in which significant changes 

were found 

WGA 5 -3, -1, +1, +2, and +3 days 

AAL-2 4 -3, -1, +1, and +3 days 

AAL 4 -3, -1, +1, and +3 days 

MAL II 3 -3, +1, and +3 days 

PNA 2 +1 and +3 days 

LEC A 2 +1 and +3 days 

LEC B 1 -3 days 
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Power analysis of the glycoprofile changes detected across spent medium 
levels  

 

Level of spent medium (Days) 

Figure 4.37: Bar plot facetted by lectin and DNA subpopulations demonstrating the results of 

power analysis of the cell surface glycoprofile differences which were detected between the 

multiple levels of spent medium (treatments) and the baseline. Powers analysis on the data 

obtained through a BD FACSAria™ I flow cytometer (see sections 3.12.1.8 and 3.12.7). 

 

The power is influenced by the sample size as was outlined in section 3.12.7.3. Thus, Figure 

4.38 demonstrates the number of cells used in each treatment to perform the statistical 

analysis. As previously pointed out, Go/G1 cells were in the highest number, thereby 

increasing the power computed from this subpopulation. The figure also shows a decline in 

the sample size of treatments in which cells were subjected to depleted nutrient levels. Such 

reduction in sample size is a reflection of the sharp decrease in viability shown in Figure 4.31.  

Although the reduction in sample size decreases the power, a considerable glycoprofile 

difference causes an increase in the power value (see section 3.12.7.3). This can be particularly 

observed in the power value of MAL II at -3 and -2 days treatments. Data variability is another 

important factor influencing the power: if the variability increases, then the power decreases. 
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Sample size of DNA subpopulations across spent medium levels  

Level of spent medium (Days) 

Figure 4.38: Bar plot facetted by lectin and DNA cell cycle subpopulation demonstrating the 

sample sizes used in the statistical analysis of cell cultures treated with different levels of spent 

medium. Data obtained through a BD FACSAria™ I flow cytometer (see section 3.12.1.8). 

 

Since the sample sizes were generally the same among the nutrient treatments (except for -3 

day treatment), the power results were mostly influenced by the difference between a 

treatment and the baseline data variabilities as well as by the difference in the means of the 

treatment and baseline. With the purpose of discussing the relationship of power, data 

variability difference and the difference in the means, a more detailed figure was generated 

containing a bar plot with treatment power values and a box plot overlaid with the curve 

constructed with the means of LECTIN-A signals of each treatment. The plots can be observed 

in Figure 4.39. 

Although the inferential analysis has shown more very highly significant changes in cells 

treated with extra levels of nutrients (+1, +2, and +3) as demonstrated by the lower plot, 

power analysis (upper plot) has revealed that both depleted and extra levels of nutrients, in 

fact, can equally cause significant impacts on cell surface glycoprofile. For instance, LEC B 
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power results for depleted and extra levels of nutrients are very scientifically meaningful with 

97% at -2 days and 93% at +2 days of nutrient levels in relation to baseline. Although with 

lower power values, MAL II is another example in which both depleted and extra nutrient 

levels impacted the glycoprofile, with 63 and 68% power at -3 and -2 days respectively, and 

58 and 75% at +2 and +3 days respectively.  

 

Statistical analysis of Go/G1 cell surface glycoprofile across spent medium 
levels  

 

 
Figure 4.39: Complementary plots summarizing descriptive, inferential and power analysis of 

spent medium treatments applied to Go/G1 cells. Upper plot: bar plot facetted by lectin 

showing power values of each spent medium level and highlighting the positive and negative 

levels using different shades of red. Lower plot: Box plot color coded with the results of the 

inferential analysis and superimposed with a curve constructed by connecting the means of 

LECTIN-A signal of each spent medium level. Data obtained through a BD FACSAria™ I flow 

cytometer (see sections 3.12.1.8 and 3.12.7). 
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LEC A and AAL-2 clearly showed that the nutrient excess can also cause dramatic changes on 

cell surface glycoprofile. For instance, the glycoprofile changes detected by these lectins 

bound to the surface of cells treated with extra nutrient levels are more scientifically 

meaningful than the changes detected on cells subjected to depleted levels of nutrients. This 

was particularly demonstrated by LEC A in which the highest power value from a depleted 

nutrient level was 19% (-2 days), while 97% is the highest value from an extra nutrient level 

(+3 days). The lower plot shows no considerable changes in LEC A data variabilities and a fairly 

straight curve in the depleted levels, demonstrating that the low levels in power are due to 

the unchanged number of Galactose sites available for binding even though cells were 

subjected to increasing depleted nutrient levels. On the other hand, extra levels of nutrients 

increased the power values and the lower plot shows this increase is due to mostly a rise in 

the means even though the data variabilities have also increased. Therefore, it can be 

concluded that by increasing the nutrient levels, the number of available Galactose sites on 

the cell surface also increases, while depleted levels do not significantly influence the number 

of Galactose sites. 

It can be generally concluded that by increasing the levels of nutrients up to 3 days, the 

number of available Fucose sites on cell surface increases and this increase is very scientifically 

meaningful with a power value that can go up to 94% detected with the aid of LEC B and up 

to 57% detected with AAL. The number of available sites of Galactose, N-Acetylglucosamine 

and Sialic also increases as a result of extra levels in the medium. With the aid of PNA, changes 

in the number of Galactose sites were detected with up to 49% and up to 97% with the aid of 

LEC A. N-Acetylglucosamine increase was detected by WGA with up to 43% power, while AAL-

2 with up to 97%. Lastly, MAL II detected the increase in the number of available Sialic sites 

with up to 75% power. As a result of those high power values, it can be concluded that the 

increase in the number of available sites of Fucose, Galactose, N-Acetylglucosamine, and Sialic 

acid on the cell surface due to the rise in the levels of nutrients in the medium is scientifically 

meaningful. 

On the other hand, as cells are subjected to depleted nutrient levels, available Fucose sites 

increase. However, LEC B was more powerful than AAL at detecting this increase with up to 
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97% power, while AAL detected it with up to 48%. Sialic acid sites also increase with up to 68% 

power detected with the aid of MAL II. Galactose and N-Acetylglucosamine sites have shown 

a tendency to increase; however, the power values were not as scientifically meaningful as 

the values obtained from the changes detected in the number of Fucose and Sialic acid. The 

highest power for Galactose was 59% by PNA and 19% by LEC A, and for N-Acetylglucosamine 

power was 52% by AAL-2 and 50% by WGA. Therefore, it can be concluded that the increase 

in the number of Fucose and Sialic acid as a result of depleted nutrient levels up to -3 days is 

scientifically meaningful. However, the changes in the number of Galactose and N-

Acetylglucosamine are scientifically meaningful to a lower extent.  

A number of scientific studies has demonstrated the association of glycosylation with nutrient 

levels. For instance, protein N-linked glycosylation and O-linked N-Acetylglucosamine (O-

GlcNAc) alteration can be regulated by nutrient levels through the flux of glucose into the 

hexosamine biosynthetic pathway which is highly in tune with cellular metabolism. The 

hexosamine pathway end product is UDP-GlcNAc, which is essential for both 

nucleocytoplasmic O-GlcNAc protein modification and N-linked glycosylation in the 

Endoplasmic reticulum and Golgi (Love and Hanover, 2005; Dennis, Nabi and Demetriou, 

2009b). Galactosylation and sialylation levels of camelid-humanized monoclonal antibody 

expressed in CHO cells increases due to lower levels of glutamine in comparison to the protein 

expressed in higher levels of glutamine (Aghamohseni et al., 2014). 

Since cell viability was compromised and medium pH rose in response to the depleted levels 

of nutrients, it can be concluded that the increase in the number of available Fucose, N-

Acetylglucosamine and Sialic acid sites and the decrease in Galactose sites on CHO-K1 cell 

surface can be an indicative of changes in the metabolism of the cell which are associated with 

the lack of nutrients in the medium. Therefore, an increase in the cell internal and external 

complexity level and a decrease in the relative cell size are also alterations associated with the 

suboptimal levels of nutrients. 
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4.9.2 Analysis of the effects of temperature variation 

 

The experimental data involving the variation of temperature levels comprises 9 datasets each 

representing a temperature level: 8 datasets consist of the variation of the temperature levels 

in the last 24 hours of cell culture, and 1 dataset extracted from cells grown under the 

temperature baseline condition throughout the entire 96 hours of culture (sample collection 

point). 

In order to facilitate the understanding of the data, the variables of interest were plotted 

against the variation of temperature in relation to the setpoint or the baseline condition. In 

other words, the 0 point of the x axis (Temperature) depicts the data obtained from cells 

cultivated at temperature baseline condition, whereas the remaining points depict the 

datasets obtained from the different levels of temperature measured in one unit of degree 

Celsius. The experimental setup is fully described in section 3.12.2.3.  

 

Cell culture parameters 

 

It can be observed through Figure 4.40 that cell viability for all lectin samples remained stable 

within 90 to 94% up to baseline point. Thus, the reduction in temperature up to below 5 units 

(32°C) from the set point did not influence the cell viability. However, a significant decrease 

in cell viability is observed when cells were treated with increasing temperature levels 

reducing cell viability to values below 70%, revealing the harmful effect of high temperature 

levels on the cell culture process. The impact of this dramatic reduction in cell viability is later 

discussed when power analysis and sample size are looked at in more detail. 
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Cell viability across the variation of temperature 

Figure 4.40: Line plot showing polynomial fits of cell viability of all lectin samples from the 

experiment involving the variation of temperature. Data obtained through a BD FACSAria™ I 

flow cytometer and using 7-AAD to stain dead cells, thus determining cell viability (see section 

3.12.1.6). 

 

Figure 4.41 shows the change in pH as temperature was varied. It can be observed that pH 

values were within 7.25 to 7.50 up to baseline point. Between 0 and +1°C, the pH dropped 

below 7.25 and subsequently increased sharply as temperature increased, reaching 7.75 pH 

at +3°C. Thus, likewise the cell viability, the pH of the cell cultures subjected to up 5°C units 

below the baseline condition was not affected. However, temperatures up to 3°C units above 

37°C caused a decrease followed by a sharp increase in pH. 

Decreased temperatures in animal cells have been demonstrated to reduce cellular 

metabolism, glucose and glutamine consumption, free radical oxygen species, to inhibit the 

release of metabolic waste, to arrest the cell cycle mainly at G1 phase, to increase cell viability 

and delay apoptosis (van Breukelen and L. Martin, 2002). Many of the cellular responses to 

decreased temperatures are also observed in responses to increased temperatures (Al-Fageeh 

and Smales, 2006). However, elevated temperatures in medium supplemented with L-

glutamine accelerate its degradation rate, increasing the concentration of ammonia and 
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therefore raising the pH (Borys, Linzer and Papoutsakis, 1994; Slivac et al., 2010). Therefore, 

the sharp increase in pH between +1 and +3 might be mostly due to the accumulation of 

alkaline compounds derived from the L-glutamine accelerated degradation. 

 

pH across the variation of temperature 

Figure 4.41: Line plot showing a polynomial fit with 95% confidence interval of pH as a function 

of the variation of temperature. The values of pH were obtained using an Orion Semi-micro 

pH electrode (see section 3.12.1.8). 

 

To conclude, the observation of both figures allows the identification of +1 to +3°C as the 

temperature variation interval in which cell viability rapidly diminishes alongside a dramatic 

increase in pH. Therefore, the rise in pH, as was also observed in the previous section (Figure 

4.32) may be strongly associated with the decrease in cell viability. 
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Descriptive analysis of the variation of the relative cell size and cell internal and external 

complexity parameters 

 

Figure 4.42 demonstrates the variation of the relative cell size mean as cells were subjected 

to a different level of temperature in the last 24 hours of the cell culture process. For all lectins, 

it can be clearly seen that the pattern of the change in FSC-A mean was the same, particularly 

in relation to Go/G1, S, G2/M and apoptotic curves. However, the DNA curves of PNA, LEC A, 

and AAL-2 showed a rapid increase in the relative cell size mean between +2 and +3°C. 

Additionally, it can be observed that increased temperature levels did not substantially change 

the relative cell size of live cells, except for PNA, LEC A and AAL-2 subpopulations for which an 

increase in the FSC-A signal was detected between +2 and +3°C. On the other hand, reduced 

temperature levels caused a considerable increase in the relative cell size between 0 and -1°C 

interval followed by a decrease reaching the FSC-A signal levels detected at baseline point.   

 

The variation of the relative cell size across temperature levels   

Figure 4.42: Lectin-facetted line plot showing the relative cell size (FSC-A) variation as a 

function of temperature for 5 different cell subpopulations: dead, apoptotic, and DNA 

subpopulations (G2/M, S, and Go/G1). Data obtained through a BD FACSAria™ I flow 

cytometer (see section 3.12.1.8). 
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Likewise it was previously observed from FSC-A data of the nutrient variation experiment 

(Figure 4.33), the positions of the relative cell size curves in Figure 4.42 in relation to FSC-A 

scale were slightly different across the lectins, demonstrating that the lectin interaction on 

the surface of the cell might not significantly influence the FSC-A signal or all lectins from the 

panel influence the signal to the same degree. Another similarity observed between the 

nutrient variation FSC-A and temperature variation FSC-A datasets is the cell size order across 

the subpopulations: Go/G1 < S < G2/M < Apoptotic < Dead. 

Figure 4.43 shows the alteration of the relative cell internal and external complexity as 

temperature was varied. The upper plot shows 5 subpopulation curves for each lectin, while 

the lower plot highlights the curves of the DNA subpopulations facilitating the observation of 

the trends revealed by these curves. Overall, all lectin curves showed a very similar pattern, 

particularly the DNA curves which are the subpopulations of most interest since they were 

composed of live cells. A considerable change in SSC-A signal was not observed in 

temperatures below the baseline temperature level. However, considerable fluctuations were 

seen in temperatures above the baseline level and the most dramatic fluctuation was between 

+2 and +3°C in which a sharp increase in SSC-A mean signal was detected across the lectin 

panel. In other words, the relative cell internal and external complexity level increased 

substantially within this interval.  
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The variation of the relative cell internal and external complexity parameters 
across temperature levels 

Figure 4.43: Lectin-facetted line plots demonstrating the relative cell internal and external 

complexity (SSC-A) variation as a function of temperature for 5 different cell subpopulations: 

dead, apoptotic, and DNA subpopulation (G2/M, S, and Go/G1). The lower plot highlights the 

DNA subpopulation curves to better visualize their trends. Data obtained through a BD 

FACSAria™ I flow cytometer (see section 3.12.1.8). 

 

Likewise Figure 4.34, 4.43 allows the observation of the same order of SSC-A signal magnitude 

of the subpopulation curves:  Go/G1 < S < G2/M < Apoptotic < Dead. This further supports the 

previous conclusion on the increasing cellular metabolism level as cells go through the DNA 

cell cycle. 
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Statistical analysis of cell surface glycoprofile variation 

 

The workflow of this section is the same adopted previously for the statistical analysis of the 

variation of cell surface glycoprofile across different levels of nutrients. Therefore, the 

investigative analysis of the cell surface glycoprofile variation due to temperature alteration 

initiates with a descriptive analysis of data obtained from LECTIN-A detector channel, then the 

inferential and power analysis of the data is developed. 

Figure 4.44 demonstrates the variation of LECTIN-A signal as temperature changed. Therefore, 

the variation of cell surface glycoprofile can be investigated. As was observed previously on 

data from FSC-A and SSC-A detector channels, the order of the LECTIN-A signal intensity of the 

subpopulations of all lectins is: Go/G1 < S < G2/M < Apoptotic < Dead.  Since it was previously 

concluded in the section covering the effects of the variation of nutrients on the cell surface 

glycoprofile (see section 4.9.1), the quantity of lectin binding sites increases as cells go through 

the DNA cell cycle. This is due to possibly cell size enlargement which was observed from 

Figure 4.42. This conclusion can be further supported by the fact that the G2/M and S 

subpopulation curves of each lectin reveal a repetition of Go/G1 curve pattern. Such pattern 

repetition was also observed in LECTIN-A data of the cells subjected to different levels of 

nutrients (Figure 4.35). 

The bottom plot of the figure allows the identification of the strongest and weakest LECTIN-A 

signal from the DNA subpopulations. Signal from WGA was the strongest, while LEC A and PNA 

seemed to be the weakest. Therefore, it can be concluded that the quantity of N-

Acetylglucosamine groups available for binding was at a higher number in relation to Fucose, 

Sialic acid and Galactose, particularly in relation to Galactose as both PNA and LEC A 

specifically bind to this sugar (see section 4.7). 

The pattern of the DNA curves of an in-house lectin and its commercial counterpart was very 

similar, demonstrating the lectins were interacting with the same sites on the cell surface. 

However, AAL-2 and WGA showed a very different pattern in response to temperature 

variation ,unlike that observed from nutrient level variation studies (see section 4.9.1). 
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The variation of cell surface glycoprofile across temperature levels  

Figure 4.44: Lectin-facetted line plots demonstrating the lectin interaction (LECTIN-A) 

variation as a function of temperature for 5 different cell subpopulations: dead, apoptotic, 

and DNA subpopulations (G2/M, S, and Go/G1). The lower plot highlights the DNA 

subpopulation curves to better visualize their trends. Data obtained through a BD FACSAria™ 

I flow cytometer (see section 3.12.1.8). 

 

Figure 4.45 shows the data distributions of the temperature treatments, including the 

baseline. However, the baseline boxplot is colored in grey to highlight it as the data 

distribution to which the different treatments were compared (see section 3.12.7). The 

investigation of the variation of cell surface glycoprofile of live cells is the main goal of this 

research work; thus, the DNA subpopulations are the cells of most interest. Therefore, the 

figure shows data of G2/M, S, and Go/G1 only. 
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Inferential analysis of the variation of cell surface glycoprofile across 
temperature levels 

 

Figure 4.45: Box plot facetted by lectin and DNA subpopulations highlighting the levels of 

statistical significance of the glycoprofile difference between the temperature treatments and 

the baseline. Data obtained through a BD FACSAria™ I flow cytometer using LECTIN-A detector 

channel (see sections 3.12.1.8 and 3.12.7). 

 

Figure 4.45 allows the observation of the highest number of very highly significant glycoprofile 

changes in the Go/G1 subpopulation. As discussed in Section 4.9.1, the sample size of the 

Go/G1 subpopulation was substantially higher than S and G2/M, thereby increasing the 

statistical ability to detect significant changes in Go/G1 subpopulations. Table 4.5 summarizes 

the number of very highly significant changes which were detected by each lectin and the 

temperature treatments in which these changes were found in the Go/G1 subpopulation. 
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Table 4.5: Table summarizing the number of very highly significant changes detected by 

each lectin and the temperature levels in which these changes were found in the Go/G1 

subpopulation. 

 

WGA detected very highly significant changes in all temperature treatments, while MAL II 

detected only one change at +3°C. However, most of the lectins was able to detect more than 

4 significant changes.  

With the purpose of assessing the ability of the methodology to detect scientifically 

meaningful differences, power analysis was performed. Figure 4.46 shows the results of the 

analysis covering the DNA subpopulations. It can be observed that the highest power values 

are in the data obtained from Go/G1 cells. This observation is in agreement with what was 

observed in Figure 4.45 which showed the highest number of very highly significant changes 

in Go/G1 cells.  

Figure 4.47 demonstrates the number of cells used in each treatment to perform the statistical 

analysis. As previously pointed out, Go/G1 cells were in the highest number, thereby 

increasing the power computed from this subpopulation. As a consequence, the following 

discussion is focused on Go/G1 cells. 

 

Lectin 
Number of very highly significant 

changes 

Treatments in which significant changes 

were found 

WGA 8 -5, -4, -3, -2, -1, +1, +2 and +3°C 

AAL-2 6 -5, -4, -3, -2, -1, and +3°C 

AAL 5 -5, -4, -3, -2, and +3°C 

LEC A 5 -5, -4, -3, -2, and +3°C 

PNA 5 -5, -4, -3, -2, and +3°C 

LEC B 4 -5, -3, -2, and +3°C 

MAL II 1 +3°C 
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Power analysis of the glycoprofile changes detected across temperature 
levels  

 

 
Figure 4.46: Bar plot facetted by lectin and DNA subpopulation demonstrating the results of 

power analysis of cell surface glycoprofile differences which were detected between the 

multiple levels of temperature (treatments) and the baseline. Powers analysis on the data 

obtained through a BD FACSAria™ I flow cytometer (see sections 3.12.1.8 and 3.12.7). 

 

Figure 4.47 also shows a considerable decline in the sample size of treatments in which cells 

were subjected to increasing temperature levels. This reduction in sample size is a reflection 

of the sharp drop in cell viability shown in Figure 4.40.  

Although sample sizes varied across the different levels of temperature, each Go/G1 sample 

contained more than 30,000 cells, except for +3°C treatment for all lectins and +2°C treatment 

for MAL II. Therefore, by observing Figures 4.46 and 4.47, it can be concluded that sample 

sizes were large enough to identify scientifically meaningful glycoprofile differences. For 

instance, the power of +1°C treatment for MAL II was 63%.  

Consequently, the power results were mostly influenced by the difference between a 

treatment and the baseline data variabilities as well as by the difference in the means of the 
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treatment and baseline. With the purpose of discussing the relationship of power, data 

variability difference and the difference in the means, a more detailed bar plot containing 

treatment power values and a box plot overlaid with the curve constructed with the means of 

LECTIN-A signals of each temperature treatment is found in Figure 4.48. 

 

Sample size of DNA subpopulations across different temperature levels  

Figure 4.47: Bar plot facetted by lectin and DNA subpopulation demonstrating the sample 

sizes used in the statistical analysis of cell cultures treated with different levels of 

temperature. Data obtained through a BD FACSAria™ I flow cytometer (see sections 3.12.1.8 

and 3.12.7). 

 

According to Figure 4.48, more scientifically meaningful glycoprofile changes were detected 

at temperature levels above the baseline level. However, more scientifically meaningful 

changes were detected at treatment levels below the baseline level by AAL-2 and WGA. In 

other words, the number of available Fucose, Galactose and Sialic acid sites was altered due 

to increased temperature levels, whereas the number of N-Acetylglucosamine was altered 

mostly due to reduced temperature levels.  
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Although the inferential analysis has classified most of the glycoprofile differences of 

treatments with low power values as very highly significant, descriptive analysis has 

demonstrated fairly straight curves indicating the absence of a considerable change in the 

central tendency of the data distributions of these treatments. In addition, the distributions 

revealed higher data variability in relation to the baseline distribution. For instance, 

scientifically meaningful change in the number of available Fucose sites on cell surface due to 

decreased temperature levels is 8% or 9% to the most according to LEC B and AAL, 

respectively. Therefore, even though very highly significant changes were found in the 

experiments, the chances of these changes to be found are only 9% at the highest as shown 

by AAL. 

It can be concluded that as the temperature level dropped, the number of available N-

Acetylglucosamine increases considerably with 82% of power at -5°C level according to WGA. 

However, AAL-2 detected the most scientifically meaningful change in N-Acetylglucosamine 

at -3°C level with 51%. Therefore, it can be concluded that WGA was more powerful at 

detecting those changes. On the other hand, both lectins have shown that the changes in N-

Acetylglucosamine due to increased temperature levels were not as scientifically meaningful 

as the changes detected at the decreased temperature levels. 

Changes in the number of available Fucose sites were more scientifically meaningful due to 

increased temperature levels. However, the power values were 27% and 33% at the highest 

according to AAL and LEC B, respectively. Descriptive analysis of AAL and LEC B revealed that 

the Fucose number dropped at the initial increments in temperature, but showed a tendency 

in increasing the number of Fucose sites at temperature levels higher than +3°C.  
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Statistical analysis of Go/G1 cell surface glycoprofile across temperature 
levels 

Figure 4.48: Complementary plots summarizing descriptive, inferential and power analysis of 

temperature treatments applied to Go/G1 cells. Upper plot: bar plot facetted by lectin 

showing power values of each temperature level and highlighting the positive and negative 

levels using different shades of red. Lower plot: Box plot color coded with the results of the 

inferential analysis and superimposed with a curve constructed by connecting the means of 

LECTIN-A signal of each temperature level. Data obtained through a BD FACSAria™ I flow 

cytometer (see sections 3.12.1.8 and 3.12.7). 

 

In the case of the changes in the number of available Sialic acid sites, power values were higher 

due to increased temperature levels with up to 64%. However, power values of decreased 

temperature levels were mostly very low showing that the likelihood of finding a scientifically 

meaningful change due to these treatments was 20% at the highest at -1°C. In fact, descriptive 

analysis revealed a fairly straight curve in those treatments indicating that the central 

tendency of the data distributions did not change considerably. In other words, the number 

of available Sialic acid sites did not change in response to reduced levels of temperature, while 

initial increased temperature levels caused the reduction in the number of Sialic sites and a 

tendency to increase this number to the same level as the baseline was shown at +3°C 
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temperature treatment. It is known that glycosylation changes in increased temperature (heat 

shock) can be associated with the reduction in sialylation due to increasing sialidase activity 

in the supernatant resulted from the release of proteases of the increasing number of dead 

cells (Clark, Chaplin and Harcum, 2004).  

Many studies have reported alterations in the host cell proteome owing to sub-physiological 

temperature in the cell culture process (Baik et al., 2006; Underhill and Smales, 2007; Dietmair 

et al., 2012). Consequently, there is a growing number of scientific studies demonstrating the 

relationship between mild temperature decrease and the glycosylation profile of therapeutic 

proteins (Clark, Chaplin and Harcum, 2004; Bollati-Fogolín et al., 2005; Woo et al., 2008; Sou 

et al., 2015).  

Since the cellular glycosylation machinery is the same for all synthesized proteins, the findings 

of those studies on glycosylation alterations are likely to be correlated with the glycosylation 

changes observed on the cell surface. A study investigated glycosylation changes in a 

monoclonal antibody (mAb) expressed in CHO-T cells cultured at 36.5°C and with a 

temperature shift to 32°C during late exponential/early stationary phase and a decrease in 

the proportion of the more processed glycan structures on the constant region of the mAb 

was demonstrated. The levels of mRNA expression of these glycosyltransferase enzymes were 

measured: one N-acetylglucosaminyltransferase (GnTII), two galactosyltransferases (b-GalTI 

and b-GalTIII), and a fucosyltransferase (FucT). It was shown that the mRNA expression levels 

of these enzymes were considerably lower at 32°C (Sou et al., 2015). However, this present 

research work has found no scientifically meaningful changes in Fucose and Galactose, but a 

meaningful increase in N-Acetylglucosamine in 32°C of CHO-K1 cell cultures. Nonetheless, the 

cellular responses to cold shock vary between cell lines, expression systems and product of 

interest (Al-Fageeh and Smales, 2006). For example, another study with an rCHO cell line has 

found that profiles of antennary structures and N-linked glycan of Erythropoietin expressed 

at 32°C and 38°C were comparable (Woo et al., 2008). 

In summary, as increased levels of temperature compromised cell viability and raised the 

medium pH, it can be concluded that an increase in the number of available Fucose, Galactose, 

N-Acetylglucosamine and Sialic acid sites on CHO-K1 cell surface are glycoprofile alterations 
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associated with temperature levels above 37°C. Thus, such increase can be an indicative of 

modifications in the cellular metabolism associated with harmful levels of temperature. An 

increase in the cell internal and external complexity level and in the relative cell size are also 

changes associated with temperature levels above 37°C.  

 

4.9.3 Analysis of the effects of CO2 variation 

 

The experimental data involving the variation of CO2 comprises 10 datasets each representing 

a CO2 level: 9 datasets consist of the variation of CO2 level in the last 24 hours of culture, and 

1 dataset extracted from cells grown at CO2 baseline condition throughout the entire 96 hours 

of culture (sample collection point).  

In order to facilitate the understanding of the data, the variables of interest were plotted 

against the variation of CO2 in relation to the setpoint or the baseline condition (5% of CO2). 

In other words, the 0 point of the x axis (Level of carbon dioxide) depicts the data obtained 

from cells cultivated at baseline conditions, whereas the remaining points depict the datasets 

obtained from the different levels of CO2 measured in one unit of a percentage. The 

experimental setup is fully described in section 3.12.2.3.  

 

Cell culture parameters 

 

Figure 4.49 allows the observation of cell viability alteration in response to the variation of 

CO2 levels. Up to 0 (baseline CO2 level), cell viability of all lectin samples was within 85 and 

92%. However, a sharp increase in cell viability took place between 0 and +1% reaching the 

viability range of 93 and 97%. Between +1 and +3%, cell viability was stable, but a dramatic 

decrease occurred due to further increases in CO2 levels and the lowest percentage of viable 

cells at +5% was 80% for MAL II samples. 
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Cell viability across the variation of CO2 levels 

Figure 4.49: Line plot showing polynomial fits of cell viability of all lectin samples from the 

experiment involving the variation of CO2 levels. Data obtained through a BD FACSAria™ I flow 

cytometer and using 7-AAD to stain dead cells, thus determining cell viability (see section 

3.12.1.6). 

 

pH across the variation of CO2 levels 
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Figure 4.50: Line plot showing a polynomial fit with 95% confidence interval of pH as a function 

of the variation of CO2 levels. The values of pH were obtained using an Orion Semi-micro pH 

electrode (see section 3.12.1.8). 

Figure 4.50 shows the change in pH as the level of CO2 was varied. It can be observed that CO2 

levels below the baseline level reduced the pH of the cell cultures lower than 7 at -4%. On the 

other hand, levels above the baseline caused an increase in the pH from 7.3 to higher than 7.5 

at +5%. Therefore, the increase was not considerable and the first increment in CO2 level (from 

0 to +1%) did not cause an increase in the pH. Additionally, as previously observed in Figures 

4.32 and 4.41, the rise in pH is associated with the decrease in cell viability. 

 

Descriptive analysis of the variation of the relative cell size and cell internal and external 

complexity parameters 

 

Figure 4.51 demonstrates the variation of the relative cell size means as cells were subjected 

to a different level of CO2 in the last 24 hours of the cell culture process. For all lectins, it can 

be clearly seen that the pattern of the change in FSC-A means was the same for all 

subpopulation curves. The relative cell size of the subpopulations increased in response to 

both first increase and decrease in the baseline CO2 level (5%). However, a sharp decrease in 

FSC-A signal was detected between -3 and -4%. Generally, for CO2 levels above the baseline, 

there was an increase in the relative cell size which stopped between +1 and +3% followed by 

a decrease. 
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The variation of the relative cell size across CO2 levels  

Figure 4.51: Lectin-facetted line plot showing the relative cell size (FSC-A) variation as a 

function of CO2 for 5 different cell subpopulations: dead, apoptotic, and DNA subpopulations 

(G2/M, S, and Go/G1). Data obtained through a BD FACSAria™ I flow cytometer (see section 

3.12.1.8). 

 

Likewise as previously observed from FSC-A datasets of nutrient and temperature variation 

experiments (Figures 4.33 and 4.42), the positions of the relative cell size curves in Figure 4.51 

in relation to FSC-A scale were slightly different across the lectins, demonstrating that the 

lectin interaction on the surface of the cell might not significantly influence the FSC-A signal 

or all lectins from the panel influence the signal to the same degree. Another similarity 

observed between the aforementioned FSC-A datasets and CO2 FSC-A dataset, is the cell size 

order across the subpopulations: Go/G1 < S < G2/M < Apoptotic < Dead. 
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The variation of the relative cell internal and external complexity across 
different CO2 levels  

Figure 4.52: Lectin-facetted line plots demonstrating the relative cell internal and external 

complexity (SSC-A) variation as a function of CO2 level for 5 different cell subpopulations: 

dead, apoptotic, and DNA subpopulations (G2/M, S, and Go/G1). The lower plot highlights the 

DNA subpopulation curves to better visualize their trends. Data obtained through a BD 

FACSAria™ I flow cytometer (see section 3.12.1.8). 

 

Figure 4.52 shows the alteration of the relative cell internal and external complexity 

parameters as the CO2 level was varied. The upper plot shows 5 subpopulation curves for each 

lectin, while the lower plot highlights the curves of the DNA subpopulations, facilitating the 

observation of the trends revealed by these curves. Overall, all lectin curves showed a very 

similar pattern, particularly the DNA curves which are the subpopulations of most interest 

since they were composed of live cells. However, AAL-2 DNA curves demonstrated a different 

pattern. A considerable change in SSC-A signal was not observed in either below or above the 

baseline CO2 level (0 point in the x axis). 
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Likewise Figures 4.34 and 4.43, the order Go/G1 < S < G2/M < Apoptotic < Dead was observed 

in relation to SSC-A scale in Figure 4.52, validating once more the previous conclusion on the 

increasing cellular metabolism level as cells go through the DNA cell cycle. 

 

Statistical analysis of cell surface glycoprofile variation 

 

The workflow of this section is the same adopted previously for the statistical analysis of the 

variation of cell surface glycoprofile in response to different levels of nutrients and 

temperature. Therefore, the investigative analysis of the cell surface glycoprofile variation due 

to CO2 alteration initiates with a descriptive analysis of data obtained from LECTIN-A detector 

channel, then the inferential and power analysis of the data is developed. 

Figure 4.53 demonstrates the variation of LECTIN-A signal as the level of CO2 changed, allowing 

the investigation of cell surface glycoprofile variation. As previously observed on the data from 

FSC-A and SSC-A detector channels, the order of the LECTIN-A signal intensity of the 

subpopulations of all lectins is: Go/G1 < S < G2/M < Apoptotic < Dead. The figure allows the 

observation of the increasing LECTIN-A signal (lectin binding) as cells go through the DNA cell 

cycle; such conclusion was also drawn from the datasets of LECTIN-A of nutrient and 

temperature variation (Figures 4.35 and 4.44). This is due to possibly cell size enlargement as 

observed in the Figure 4.51. This conclusion can be further supported by the fact that the 

G2/M and S subpopulation curves of each lectin revealed a repetition of Go/G1 curve pattern. 

Such pattern repetition was also observed in LECTIN-A datasets of cells subjected to different 

levels of nutrients and temperature (Figures 4.35 and 4.44). 

As can be observed from the bottom plot of Figure 4.53, WGA was the strongest LECTIN-A 

signal, while PNA, LEC A and AAL-2 were the weakest signal. Thus, it can be concluded that 

the quantity of N-Acetylglucosamine groups available for binding was at a higher number in 

relation to Fucose, Sialic acid and Galactose, particularly in relation to Galactose as both PNA 

and LEC A specifically bind to this glycan (see section 4.7). 
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The variation of cell surface glycoprofile across CO2 levels  

Figure 4.53: Lectin-facetted line plots demonstrating the lectin interaction (LECTIN-A) 

variation as a function of CO2 for 5 different cell subpopulations: dead, apoptotic, and DNA 

subpopulations (G2/M, S, and Go/G1). The lower plot highlights the DNA subpopulation 

curves to better visualize their trends. Data obtained through a BD FACSAria™ I flow cytometer 

(see section 3.12.1.8). 

 

The patterns of the DNA curves of an in-house lectin and its commercial counterpart were 

very similar, demonstrating the lectins were interacting with the same sites on cell surface. 

However, AAL-2 and WGA have shown different patterns in response to CO2 variation in 

contrast to the data obtained from nutrient level variation studies (see section 4.9.1). 

Nevertheless, the pattern difference between AAL-2 and WGA was also observed in LECTIN-A 

data of temperature variation studies (Figure 4.44). 

Figure 4.54 shows the data distributions of the CO2 treatments, including the baseline. 

However, the baseline boxplot is colored in grey to highlight it as the data distribution to which 
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the different treatments were compared (see section 3.12.7). The investigation of the 

variation of cell surface glycoprofile of live cells is the main goal of this research work; 

therefore, the DNA subpopulations contained the cells of most interest. Thus, the figure shows 

only the data of G2/M, S, and Go/G1. 

Figure 4.54 allows the observation of the highest number of highly and very highly significant 

changes detected in the Go/G1 subpopulation, similar to Figures 4.36 and 4.45. As previously 

discussed, the sample size of Go/G1 subpopulation was substantially higher than S and G2/M, 

thereby increasing the statistical ability to detect significant changes in Go/G1 subpopulations. 

As a result, the following analysis is focused on Go/G1; thus, Table 4.6 summarizes the number 

of highly and very highly significant changes which were detected by each lectin and the CO2 

treatments in which these changes were found in Go/G1 subpopulation. 
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Inferential analysis of the cell surface glycoprofile variation across CO2 levels  

 
Figure 4.54: Box plot facetted by lectin and DNA subpopulations highlighting the levels of 

statistical significance of the glycoprofile difference between the CO2 treatments and the 

baseline. Data obtained through a BD FACSAria™ I flow cytometer using LECTIN-A detector 

channel (see sections 3.12.1.8 and 3.12.7). 
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Table 4.6: Table summarizing the number of highly and very highly significant changes 

detected by each lectin and the CO2 levels in which these changes were found in the Go/G1 

subpopulation. 

 

WGA detected very highly significant changes in 8 out of 9 CO2 treatments, while MAL II 

detected only one at +1%. However, most of lectins was able to detect three or more 

significant changes.  

The power of the changes detected was computed to evaluate the likelihood of finding a 

significant difference when there was one. Figure 4.55 shows the results of the analysis 

covering the DNA subpopulations. It can be observed that the highest power values are in the 

data obtained from Go/G1 cells. This observation is in agreement with what was observed in 

Figure 4.54 that showed the highest number of highly and very highly significant changes in 

Go/G1 cells. 

 

 

 

 

 

Lectin 
Number of highly and very highly 

significant changes 

Treatments in which significant changes 

were found 

WGA 8  -4, -3, -2, +1, +2, +3, +4, and +5% 

AAL-2 6  -2, -1, +1, +2, +3, and +4% 

AAL 5 -1, +1, +2, +3, and +4% 

LEC B 3 -4, -1, and +1% 

PNA 3 -1, +1, and +4% 

LEC A 3 -1, +1, and +4% 

MAL II 1 +1% 
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Power analysis of the glycoprofile changes detected across CO2 levels 

Figure 4.55: Bar plot facetted by lectin and DNA subpopulation demonstrating the results of 

power analysis of the cell surface glycoprofile differences which were detected between the 

multiple levels of CO2 (treatments) and the baseline. Powers analysis on the data obtained 

through a BD FACSAria™ I flow cytometer (see sections 3.12.1.8 and 3.12.7). 

 

Sample size of DNA subpopulations across CO2 levels 

Figure 4.56: Bar plot facetted by lectin and DNA subpopulation demonstrating the sample 

sizes used in the statistical analysis of cell cultures treated with different levels of CO2. Data 

obtained through a BD FACSAria™ I flow cytometer (see sections 3.12.1.8 and 3.12.7). 
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Figure 4.56 above demonstrates the number of cells used in each treatment to perform the 

statistical analysis. As previously pointed out, Go/G1 cells were in the highest number thereby 

increasing the power computed from this subpopulation. As a result, the following discussion 

is focused on Go/G1 cells. The figure also shows a decline in the sample size of treatments in 

which cells were subjected to increasing CO2 levels. This reduction in sample size is a reflection 

of the sharp drop in cell viability shown in Figure 4.49.  

Although sample sizes varied across the levels of CO2, each Go/G1 sample contained more 

than or equal to 20,000 cells. Therefore, by observing Figures 4.55 and 4.56, it can be 

concluded that sample sizes were large enough to identify scientifically meaningful 

glycoprofile differences. For instance, although sample sizes were just above 20,000 cells, 

power of +5% treatment for AAL-2 was 58% and 61% for MAL II. 

Consequently, the power results were mostly influenced by the difference between a 

treatment and the baseline data variabilities as well as by the difference in the means of the 

treatment and baseline. With the purpose of discussing the relationship of power, data 

variability difference and the difference in the means, a more detailed bar plot containing 

treatment power values and a box plot overlaid with the curve constructed with the means of 

LECTIN-A signals of each CO2 treatment is found in Figure 4.57. 

Generally, according to Figure 4.57, more scientifically meaningful glycoprofile changes were 

detected at CO2 levels above the baseline level. By observing the data in the figure, it can be 

concluded that the number of Fucose available sites on the cell surface did not change 

significantly due to the reduction or increase in CO2 baseline level. However, +1% treatment 

caused a scientifically meaningful change in the number of Fucose sites with 73% power 

computed from AAL data and 51% from LEC B. In fact, this CO2 level treatment resulted in a 

scientifically meaningful increase in LECTIN-A signal from all lectins. PNA power values was 

74%, LEC A was 95%, AAL-2, WGA and MAL II, was 60%, 88% and 46%, respectively. Therefore, 

the increase of +1% of CO2 in the baseline level was demonstrated to cause a considerable 

increase in the number of Fucose, Galactose, N-Acetylglucosamine and Sialic acid sites on cell 

surface. However, a further increase in CO2 level caused a decrease in the number of the 

aforementioned sugar molecules to a point which the glycoprofile difference in relation to the 
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baseline is very unlikely to be detected. At +2% CO2 level, WGA power dropped from 88% to 

28%, MAL II from 46% to 15%, AAL-2 from 60% to 5%, AAL from 73% to 3%, LEC B from 51% 

to 3%, and the most dramatic reduction in power was computed from LEC A data which 

showed a reduction from 95% to 7% at +2% CO2 level. The high power levels computed at +1% 

CO2 treatment, could, perhaps, be partly due to the fact that the sample sizes were larger for 

this treatment (Figure 4.56). However, the bottom plot in Figure 4.57 clearly shows a 

considerable increase in LECTIN-A signal for all lectins.  

The power profiles of PNA and LEC A were very similar, showing that the number of Galactose 

sites on cell surface were very likely to rise due to one level of increase in the CO2 baseline 

level (at +1% CO2 treatment), but the remaining CO2 levels showed low scientifically 

meaningful impact on Galactose sites.  

Scientifically meaningful changes in the number of N-Acetylglucosamine sites were more likely 

to be found from WGA signal. It can be concluded that the number of N-Acetylglucosamine is 

likely to rise due to decreasing CO2 levels. However, following a sharp increase in N-

Acetylglucosamine caused by +1% CO2 level (88% power), further increases in CO2 reduced 

the number of N-Acetylglucosamine sites to the baseline level number and the likelihood of 

finding scientifically meaningful glycoprofile changes dropped significantly from 28% to 6% 

(+2 and +5 CO2).  

In the case of the changes in the number of available Sialic acid sites, power values were higher 

due to increased CO2 levels with up to 61%. On the other hand, power values of decreased 

CO2 levels were lower showing that the likelihood of finding a scientifically meaningful change 

due to these treatments was 48% at the highest at -3% level.  Descriptive analysis revealed 

that the number of Sialic acid sites decreased in response to CO2 level alteration except for 

+1% CO2 level. However, the decrease in the number of Sialic acid sites on cell surface was 

more scientifically meaningful when CO2 level was increased. 

 



184 
 

Statistical analysis of Go/G1 cell surface glycoprofile across CO2 levels 

Figure 4.57: Complementary plots summarizing descriptive, inferential and power analysis of 

CO2 treatments applied to Go/G1 cells. Upper plot: bar plot facetted by lectin showing power 

values of each CO2 level and highlighting the positive and negative levels using different shades 

of red. Lower plot: Box plot color coded with the results of the inferential analysis and 

superposed with a curve constructed by connecting the means of LECTIN-A signal of each CO2 

level. Data obtained through a BD FACSAria™ I flow cytometer (see sections 3.12.1.8 and 

3.12.7). 

 

Power results demonstrated that the cell surface glycoprofile responses to increased levels of 

CO2 are more scientifically meaningful than the responses to decreased levels. High pCO2 

levels are potentialy associated with glycosylation changes due to the increase in pH resulted 

from the acidification of the medium. The cellular internal pH can therefore be affected, and 

particularly the pH of the Endoplasmic reticulum and the Golgi apparatus organelles (Thorens 

and Vassalli, 1986; Boron, 1987; McQueen and Bailey, 1990). A reduction of polysialic acid 

content on the cell surface of CHO MT2-1-8 cells due to high levels of pCO2 has been 

demonstrated through a flow cytometric analysis. The 5a5 MAb (mouse IgM) primary 

antibody was used to measure cell surface polysialic acid content which was shown to reduce 

with increasing pCO2 in a dose-dependent manner (Zanghi et al., 1999). Another study with 

the CHO MT2-1-8 cell line demonstrated glycosylation changes in the expressed protein tissue 
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plasminogen activator (tPA) in response to increased pCO2 at constant or elevated osmolality. 

A decrease in the proportion of sialic acids consisting of N-glycolylneuraminic acid was shown 

in the tPA proteins expressed at 250 mmHg pCO2 in comparison with the proteins produced 

at 36 mmHg pCO2. Additionally, the study demonstrated a decrease in Fucose, N-

Acetylglucosamine, Galactose, and Mannose due to high levels of pCO2 (Kimura and Miller, 

1997). 

To conclude, as cell viability was compromised and pH of the cell culture rose with increased 

levels of CO2, it can be concluded that a decrease in the number of available N-

Acetylglucosamine and Sialic acid sites on CHO-K1 cell surface can be indicative of 

modifications in the cell metabolism associated with CO2 levels above 5%. In addition, a 

decrease in the cell internal and external complexity level and a decrease in the relative cell 

size are also changes associated with CO2 levels higher than 5%. 

 

4.9.4 Cell surface glycosylation variation: summary and the early detection of the 

changes in Go/G1 cell population 

 

The three previous sections described in detail the changes on cell surface glycosylation as the 

cell culture parameters were varied. This section aims to summarize  the results to highlight 

relationships between the overall changes in cell surface glycosylation which were observed 

by altering each parameter. 

At depleted levels of nutrients (negative spent medium levels), GlcNAcylated glycoforms 

increased while the galactosylated as well as sialylated glycoforms decreased. Such pattern of 

binding was also observed in positive levels of temperature (temperature levels above 37° C) 

and both depleted nutrient and increased temperature levels led to the decrease in cell 

viability (see Figure 4.39 in section 4.9.1, and Figure 4.48 in section 4.9.2). However, the 

pattern was not observed with excess nutrient and decreased temperature levels in which cell 

viability was not affected. In fact, viability increased in the case of excess of nutrients (positive 

spent medium levels). Therefore, the mechanism, which regulates the changes in cell surface 
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glycosylation when cells are subjected to stressful conditions (which severely affects viability) 

may be different to the mechanism that alters the cell surface glycosylation without affecting 

the viability. However, although increased levels of CO2 also caused a decrease in cell viability, 

the lectin binding pattern previously described was not as scientifically meaningful (lower 

power values) as in the depleted nutrient and increased temperature levels (Figure 4.57 in 

section 4.9.3).  

The earliest and most scientifically meaningful cell surface glycosylation change in cells 

subjected to depleted nutrient levels was a drop in fucosylated glycoforms (83% at -1 day by 

LEC B), whereas an increase in GlcNAcylated glycoforms was observed in cells subjected to 

excess nutrient levels (50% at +1 day by AAL-2) (see Figure 4.39 in section 4.9.1). In the case 

of cells subjected to increased temperature levels, variation in sialylated glycoforms was the 

earliest meaningful change with a decrease at 38° C (64%). Whereas within decreased 

temperature levels, a meaningful increase in GlcNAcylated glycoforms was observed at 35° C 

(55%) (Figure 4.48 in section 4.9.2). Finally, at decreased CO2 levels, the earliest change was a 

drop in sialylated glycoforms at 2% of CO2 (48%), while a rise in galactosylated glycoforms at 

6% of CO2 (95%) was the earliest meaningful change in increased CO2 levels (Figure 4.57 in 

section 4.9.3). 

 

4.9.5  Comparative power analysis of the responses of Go/G1 cell surface glycoprofile to 

process parameter alterations 

 

While the first sections of this chapter covered in detail the variation of cell surface 

glycoprofile in response to changes in the cell culture parameters, this section aims to 

establish a general comparative analysis of the effects of these parameters on CHO-K1 cell 

surface glycoprofile. Since power analysis provides the likelihood of finding scientifically 

meaningful changes, the results of this analysis can be used to have a comparative insight 

indicating the cell culture parameter which causes the most meaningful cell surface 

glycoprofile alterations. In addition, the analysis allows the identification of key lectins and 

glycans associated with these meaningful alterations. 
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Therefore, power values of the Go/G1 subpopulation were averaged by each cell culture 

parameter to obtain a comparative power analysis among these parameters. For instance, 

power values computed from each lectin dataset of a temperature level (treatment) were 

summed up and divided by the number of power values, which is 56 in this case. Similarly, 

power values of each lectin dataset of a cell culture parameter were averaged across the 

number of levels of the parameter (8 levels for temperature variation) to obtain a power 

comparative analysis among the lectins and glycans involved.  

It can be observed from Figure 4.58 that the variation of the level of spent medium can cause 

more meaningful glycoprofile alterations on cell surface than the variation of temperature 

and CO2 levels. On the other hand, temperature variation is the cell culture parameter which 

had the least effect the cell surface glycoprofile.  

 

Comparative power analysis of the cell culture parameters 

 
          Carbon dioxide              Spent medium              Temperature 

Figure 4.58: Bar plot illustrating the power averages of the values obtained upon variation of 

cell culture parameters. The average values were obtained by averaging the power values 

computed for each lectin and each parameter level (treatment).  
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Figure 4.59 allows the identification of the key lectin and glycan which can be scientifically 

meaningfully associated with alterations in the level of nutrients in the medium. As the figure 

shows, LEC B was the lectin with the highest power average with 57.04%. Therefore, Fucose 

might be a key glycan associated with the alterations in the level of spent medium. However, 

to a less extent, Sialic acid can be another key glycan involved in the cellular metabolism 

response to the variation of spent medium levels as MAL II average power was 46.05%. 

 

Comparative power analysis of lectins and glycans in response to spent 
medium level variation  

 Figure 4.59: Bar plot illustrating the lectin power averages. The average values were obtained 

by averaging the power values computed from a lectin dataset across the 6 spent medium 

levels (treatments). 

 

Whereas, N-Acetylglucosamine was identified as a key glycan associated with the variation of 

CO2 and temperature levels with average power values of 33.65% and 40.12%, respectively. 

WGA, as can been observed in Figures 4.60 and 4.61, was the lectin which provided more 

scientifically meaningful results in comparison to AAL-2. In addition, Galactose and Sialic acid 

might be another potential key glycans which can be affected by the variation of CO2 levels 

since PNA average power was 24.84% and MAL II was 24.69%. Sialic acid might also be other 
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potential key glycan which responds to the variation of temperature. However, MAL II average 

power was 19.38% which is twice as much lower than WGA average power. Table 4.7 

summarizes key lectins and glycans involved in each cell culture parameter. 

 

Comparative power analysis of lectins and glycans in response to CO2 

variation  

Figure 4.60: Bar plot illustrating the lectin power averages. The average values were obtained 

by averaging the power values computed from a lectin dataset across the 9 CO2 levels 

(treatments). 
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Comparative power analysis of lectins and glycans in response to 

temperature variation 

Figure 4.61: Bar plot illustrating the lectin power averages. The average values were obtained 

by averaging the power values computed from a lectin dataset across the 8 temperature levels 

(treatments). 

 

Table 4.7: Table summarizing key lectins and glycans associated with each cell culture 

parameter. 

Cell culture 

parameter 

Key lectin Key glycan Potential key glycans 

Spent medium level LEC B Fucose Sialic acid 

CO2 WGA N-Acetylglucosamine Galactose and Sialic acid 

Temperature WGA N-Acetylglucosamine Sialic acid 

 

Therefore, it can be concluded that N-Acetylglucosamine and Sialic acid are glycans with a 

high level of relevance in the investigation of the influence of temperature, CO2 and nutrient 

levels in the cell surface glycosylation process. 
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4.9.6 Spent medium level variation: BCA and ELLA analysis of secreted proteins  

 

As was concluded in the previous section, spent medium variation was identified as the cell 

culture parameter which most influenced the cell surface glycoprofile changes. Therefore, 

BCA and ELLA analysis was performed to investigate the relationship of this parameter with 

the concentration levels of secreted proteins and their glycoprofile. The supernatant of the 

cell cultures was stored at -20°C until the finalization of nutrient variation experiments. 

Samples were then defrosted, and their concentration levels were determined using the BCA 

assay (see section 3.5). Samples of 50 µL volume were then prepared at 5 µg/mL by diluting 

the concentrated supernatant samples with fresh supplemented medium. The diluted protein 

samples were then used in the ELLA assay (see section 3.9). 

The results of the BCA assay can be observed in Figure 4.62 which demonstrates the 

relationship between the concentration levels of secreted proteins and spent medium levels. 

The figure shows that the concentration levels of the proteins in the medium decreased as 

the levels of spent medium were reduced or incremented in relation to the baseline level. 

However, a tendency of an increase in the concentration level can be seen between 2 and 3 

days as the 4 days spent medium level is exactly the baseline level (see section 3.12.2.2). 

Figure 4.63 demonstrates AAL and LEC B binding variation as the levels of spent medium were 

changed. It can be observed that the lectin binding pattern was the same for both lectins 

which specifically bind to Fucose. However, the intensity of the absorbance values is different 

as AAL values were higher than LEC B. The number of available Fucose sites on secreted 

proteins reduced as the spent medium level decreased up to -2 days, but a tendency of an 

increase followed by a rapid decrease in the number of Fucose took place from -2 to -3 days. 

Similarly, as the spent medium level increased the number of Fucose sites decreased, but it 

increased followed by a sharp drop between +2 and +3 days. It can be seen that the 95% 

confidence interval around -2 to -3 days and +2 to +3 days ranges are wider, showing a 

considerable increase in their level of data variability. 
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Correlation between secreted protein concentrations and spent medium 

levels 

 
Level of spent medium (Days) 

Figure 4.62: Polynomial fit with 95% confidence interval correlating the levels of secreted 

protein concentration and spent medium levels (see section 3.8). 

 

ELLA analysis of AAL and LEC B across spent medium levels 

 
                                   Level of spent medium (Days)                                          Level of spent medium (Days)                        

Figure 4.63: Polynomial fit with 95% confidence interval demonstrating the variation of AAL 

and LEC B binding as the level of spent medium changed (see section 3.9). 

 

Figure 4.64 demonstrates PNA and LEC A binding variation as the levels of nutrients were 

changed. It can be observed that the lectin binding pattern was very different although both 

lectins specifically bind to Galactose. PNA absorbance values were around 0, while LEC A 
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values changed as the nutrient levels were altered. By observing LEC A polynomial curve, the 

number of available Galactose sites on the secreted proteins reduced in response to both an 

increase and decrease in the levels of nutrients. However, increased levels of nutrient caused 

a more significant drop in the number of Galactose. A tendency of an increase followed by a 

decrease in Galactose sites was observed between -2 and -3 days, and +2 and +3 days. 

However, the 95% confidence interval around these ranges is wider demonstrating a 

significant increase in their level of data variability. 

 

ELLA analysis of PNA and LEC A across spent medium levels 

 
                             Level of spent medium (Days)                                          Level of spent medium (Days)  

Figure 4.64: Polynomial fit with 95% confidence interval demonstrating the variation of PNA 

and LEC A binding as the level of spent medium changed (see section 3.9). 

 

AAL-2 and WGA binding can be observed in Figure 4.65. Binding pattern of both lectins is the 

same, but WGA absorbance values were slightly higher than AAL-2. The polynomial curves 

showed that the number of available N-Acetylglucosamine sites on secreted proteins reduced 

as a result of the increase and decrease in the level of nutrients up to -2 and +2 days in relation 

to the baseline nutrient level. However, the curves showed a tendency of an increase followed 

by a rapid decrease in the lectin binding between -2 to -3 days and +2 and +3 days. It can be 

observed that the confidence interval around these two ranges are wider showing a 

considerable increase in their level of data variability. 
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ELLA analysis of AAL-2 and WGA across spent medium levels 

 
  Level of spent medium (Days)                                          Level of spent medium (Days)                        

Figure 4.65: Polynomial fit with 95% confidence interval demonstrating the variation of AAL-

2 and WGA binding as the level of spent medium changed (see section 3.9). 

 

ELLA analysis of MAL II across spent medium levels 

  
                                                    Level of spent medium (Days) 

Figure 4.66: Polynomial fit with 95% confidence interval demonstrating the variation of MAL 

II binding as the level of spent medium changed (see section 3.9). 

 

The variation in the number of available Sialic acid sites on secreted proteins as the level of 

nutrients was changed can be observed in Figure 4.66. The number of Sialic acid sites was 

constant up to -1 and +2 days in relation to the baseline nutrient level. However, a 

considerable increase can be seen as a result of further depleted levels of nutrients. A 

tendency of a rapid decrease in the number of glycan sites was shown between -2 and -3 days. 
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Similarly, a decrease tendency in the Sialic acid sites was demonstrated between +2 and +3 

days. However, the level of data variability increased around these two ranges since the 95% 

confidence interval is wider. 

The BCA and ELLA results on secreted proteins demonstrated that the variation of nutrient 

levels in the medium has an effect on the concentration levels of secreted proteins and their 

glycoprofile. Although the ELLA assay is not as quantitative as flow cytometry to allow for a 

meaningful indication of the direction of protein glycoprofile changes, the results presented 

in this section have shown that the glycoprofile of secreted proteins can also be altered due 

to the variation of nutrient levels in the medium. Moreover, it can be concluded that the cell 

surface glycoprofile alterations associated with the variation of nutrient levels can be a strong 

indication of glycoprofile changes in secreted proteins. Therefore, the flow cytometric 

methodology here presented can be very useful as a monitoring tool allowing the assessment 

of the health status of CHO-K1 cells, enhancing the ability of detecting early alterations in 

cellular metabolism by probing the cell surface with appropriate lectins.  

 

4.9.7 Statistical analysis of lectin interaction with cell surface throughout the DNA cell 

cycle  

 

As was observed (see sections 4.9.1, 4.9.2 and 4.9.3), the intensity of LECTIN-A signal 

increased across the DNA cell cycle. In other words, LECTIN-A signal from G2/M cells was the 

strongest, while the signal from Go/G1 cells was the weakest (Go/G1 < S < G2/M). Since FSC-

A data of the DNA subpopulations also increased as cells went from Go/G1 to G2/M cell cycle 

stages, it has been concluded that the increase in LECTIN-A signal could be due to the 

enlargement of the cells towards cell replication. Another observation which further 

supported this conclusion was the repetition of LECTIN-A Go/G1 curve pattern in S and G2/M 

curves.  

In order to exclude the cell size as the factor which could influence the level of lectin 

interaction on cell surface, each cell LECTIN-A value was divided by its FSC-A value (a relative 



196 
 

cell size parameter). Thus, the level of lectin interaction can be interpreted as the lectin 

density on cell surface which, in turn, can be directly compared across the DNA cell cycle 

subpopulations. Therefore, this section aims to analyse lectin density data for the 

identification of a pattern different than Go/G1 < S < G2/M (see section 3.12.7.4). 

Figure 4.67 demonstrates the lectin density values across the DNA cell cycle under the nutrient 

levels which cells were subjected to. The most common pattern is Go/G1 < S < G2/M showing 

that the number of glycans available to interact with lectins increased as the cells went 

through the DNA cell cycle. In other words, glycans may have been upregulated through the 

upregulation of proteins involved with the DNA cell cycle. For instance, a study with HeLa cells 

used a quantitative proteomic approach to compare cell surface-exposed proteins in mitosis 

and interphase. Out of the 628 surface and surface associated proteins identified in HeLa cells, 

27 were considerably enriched at the cell surface in mitosis and 37 in interphase. The proteins 

which were regulated by the cell cycle were involved in cell adhesion, receptor, and 

endosome/lysosome biology. However, it was found that adhesion biomolecules were one of 

the most prominent classes of proteins whose cell surface exposure altered during the 

progression of mitosis (Ozlu et al., 2015). 
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Lectin interaction with cell surface throughout the DNA cell cycle in response 
to spent medium level variation 

 

 
Figure 4.67: Bar plot demonstrating the alterations of lectin interaction with cell surface as 

cells go through the DNA cell cycle under different levels of spent medium. Data obtained 

through a BD FACSAria™ I flow cytometer using the ratio of LECTIN-A and FSC-A signals of each 

interrogated cell (see section 3.12.7.4). 

 

Figure 4.67 also reveals a second pattern in which glycans seemed to have been 

downregulated from Go/G1 to G2/M, that is, G2/M < S < Go/G1. This pattern was found at -3 

day of LEC B, AAL-2, MAL II; therefore, Fucose, N-Acetylglucosamine and Sialic acid glycans, 

respectively. A third pattern can be observed, in which Fucose, Galactose, N-

Acetylglucosamine and Sialic acids may have been downregulated from Go/G1 to S, then the 

glycans were upregulated from S to G2/M to the same levels at Go/G1. This pattern was 

identified at +2 day, AAL, PNA, LEC A, AAL-2, and MAL II. However, at +2 day of LEC B, this 

glycan regulation pattern was not clear.  

In the case of cells subjected to the variation of temperature levels, Figure 4.68 demonstrates 

the lectin density values across the DNA cell cycle under the temperature levels. As was also 
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observed in Figure 4.67, the most common pattern is Go/G1 < S < G2/M showing that the 

number of glycans available to interact with lectins increased as the cells went through the 

DNA cell cycle. However, the figure reveals a second pattern in which glycans seemed to have 

been downregulated from Go/G1 to G2/M, that is, G2/M < S < Go/G1. This pattern was found 

at +3 °C of AAL, LEC B, and MAL II; therefore, Fucose and Sialic acid glycans, respectively.  

 

Lectin interaction with cell surface throughout the DNA cell cycle in response  
to temperature variation 

Figure 4.68: Bar plot demonstrating the alterations of lectin interaction with cell surface as 

cells go through the DNA cell cycle under different levels of temperature. Data obtained 

through a BD FACSAria™ I flow cytometer using the ratio of LECTIN-A and FSC-A signals of each 

interrogated cell (see section 3.12.7.4). 

 

Figure 4.69 demonstrates the lectin density values across the DNA cell cycle under the CO2 

levels which cells were subjected to. As was also observed in Figures 4.67 and 4.68, the most 

common pattern is Go/G1 < S < G2/M showing that the number of glycans available to interact 

with lectins increased as the cells went through the DNA cell cycle. However, the figure reveals 

a second pattern at +1 % of AAL, PNA, and AAL-2, in which Fucose, Galactose and N-



199 
 

Acetylglucosamine, respectively, may have been upregulated from Go/G1 to S, then 

downregulated to a higher level in relation to Go/G1 from S to G2/M cell cycle phases. The 

most apparent pattern is then Go/G1 < G2/M < S, but this pattern is not clear from PNA data. 

 

Lectin interaction with cell surface throughout the DNA cell cycle in response 
to CO2 variation 

Figure 4.69: Bar plot demonstrating the alterations of lectin interaction with cell surface as 

cells go through the DNA cell cycle under different levels of CO2. Data obtained through a BD 

FACSAria™ I flow cytometer using the ratio of LECTIN-A and FSC-A signals of each interrogated 

cell (see section 3.12.7.4). 

 

The fact that the pattern Go/G1 < S < G2/M was the most common one found in the 

experiments can further support the conclusion that the number of cell surface glycans 

available to interact with lectins increased as the cells went through the DNA cell cycle, and 

such increase may not be associated with cell enlargement which occurs towards cell mitosis. 

In fact, the increase is likely to be associated with cellular metabolism modifications related 

to the DNA cell cycle. For instance, a number of scientific studies has reported the changes in 

the levels of O-GlcNAc throughout the cell cycle (Lefebvre et al., 2004; Slawson et al., 2005; 



200 
 

Drougat et al., 2012; Fong et al., 2012). Furthermore, the changes in Go/G1 < S < G2/M pattern 

of some glycans in response to certain levels of nutrient, temperature and CO2, have 

demonstrated that these cell culture parameters can also influence the normal cell surface 

glycoprofile alterations throughout the cell cycle. Most importantly, that influence was 

commonly identified in parameter levels which eventually led cell viability into a dramatic 

decrease (Figures 4.31, 4.40 and 4.49), particularly concerning to the variation of spent 

medium levels, as was also concluded in section 4.9.4. Therefore, the alterations in the normal 

cell surface glycoprofile changes across the DNA cell cycle could be an indicative of cellular 

metabolism modifications associated with harmful growing conditions.  
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5 Final considerations and future work 

 

The methodology here described has demonstrated that flow cytometry may be used to 

investigate the variation in cell surface glycosylation using lectins as probes since scientifically 

meaningful data was obtained (see sections 4.9.1-3). Furthermore, the methodology 

demonstrated that early meaningful changes in cell surface glycosylation can be detected and 

the use of DNA and viability dyes (DRAQ5 and 7-AAD) is important as cell surface glycosylation 

is associated with the DNA cycle and dramatic changes can be seen under very stressful 

growing conditions (see section 4.9.6). 

However, the methodology provided scientifically meaningful data from Go/G1 subpopulation 

only. Since the glycosylation on the surface of a cell is associated with its DNA cycle, it is 

relevant to further develop the methodology to investigate cell surface glycosylation of G2/M 

and S subpopulations. This may be achieved by increasing the number of interrogated cells. 

However, the length of time required to collect the data would also increase.  

Although the methodology has looked at five different glycans on the cell surface (see section 

4.3), the expansion of the lectin panel would allow a more comprehensive analysis of the cell 

surface glycosylation changes thus increasing the range of glycan types investigated. This 

would also mean a concurrent and significant increase in both the complexity and size of the 

data. Therefore, more advanced techniques to analyze the data might be of more relevance 

such as machine learning and perhaps deep learning techniques. In fact, these techniques 

could have been applied and demonstrated in this PhD thesis since the dataset is sufficiently 

large and complex. However, classical statistical techniques were the choice for the thesis 

while machine learning techniques will be applied to the dataset to be published in the form 

of an article paper in the near future. An interesting outcome of this future work is the 

development of a predictive model correlating cell surface glycosylation changes with the cell 

culture process parameters that were altered.  

The research work here presents an analytical system that has the potential to be utilized in 

the bioprocess monitoring of cells during the bioreactor step. Since cell surface glycosylation 
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of a bioprocessing cell is usually associated with the glycosylation of secreted proteins (see 

section 4.9.5), monitoring the cell surface may be a powerful alternative to ensure that the 

glycosylation of therapeutic proteins, a critical quality attribute, is within the desired 

parameters. The methodology offers a rapid and automated manner to evaluate the 

glycosylation on cell surface in relation to a healthy cell surface glycoprofile. Once the samples 

have been prepared for flow cytometric analysis and data have been collected, the 

methodology offers an automated analysis generating multiple formats to visualize the data. 

The entire process can be concluded within 5 to 6 hours. 

In addition, although these studies were conducted on CHO-K1 cells, the methodology may 

be applied to other cell lines. Therefore, this research work can be the foundation of a more 

sophisticated methodology to interrogate human cells in order to aid the diagnosis of 

diseases.  
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6 Conclusion 

 

In conclusion, CHO-K1 cell surface glycosylation alters in response to spent medium, 

temperature and CO2 variation. However, the changes observed are most scientifically 

meaningful when looking at cell surface glycosylation variation in reponse to spent medium 

levels. In addition, fucosylated glycoforms may be a key carbohydrate structure changing on 

cell surface in response to spent medium levels, while GlcNAcylated glycoforms are associated 

with temperature and CO2 alteration. 

The combination of the use of lectin probes and the flow cytometric methodology which was 

developed allows the early detection of changes in cell surface glycosylation. This 

methodology also provides information on cell surface glycosylation alteration as cells go 

through the DNA cycle. Consequently, the methodology may be used to monitor the 

bioprocessing cell in order to detect early changes on cell surface glycosylation associated 

with stressful growing conditions. This could allow for timely remedial action to be taken that 

could potentially save the entire production batch. Therefore, the implementation of such 

technology in an industrial setting would greatly increase the knowledge of the bioprocess 

and the ability to monitor and control it, ensuring the quality of the protein of interest. 
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8 Appendix  
 

8.1 Creation of functions  
 

This section comprises of the creation of functions specifically designed to treat the raw data 
extracted from the flow cytometer. These functions filter, organize and perform statistical 
analysis of the data. 

 

```{r} 1 

source("http://bioconductor.org/biocLite.R") 2 

biocLite("flowWorkspace") 3 

install.packages("stringi") 4 

library(flowCore) 5 

library(flowWorkspace) 6 

library(ggplot2)  7 

library(ggcyto) 8 

library(dplyr) 9 

library(stringr) 10 

library(openxlsx) 11 

``` 12 

Read in the files on R from a file 13 

Files from the replicates (triplicate experiment) are organized into 3 lists containing the 14 
application settings control and the full stained samples. 15 

```{r} 16 

flow_gating <- function(x, x_WGA) { 17 

setwd(x)   18 

fclist1 <- c("Application Settings_Unstained.fcs", "Application 19 
Settings_7AAD.fcs","Application Settings_D5.fcs", "Application Settings_AAL.fcs", 20 
"Application Settings_AAL-2.fcs", "Application Settings_MAL II.fcs", "Application 21 
Settings_PNA.fcs", "Application Settings_WGA.fcs", "Application Settings_LECA.fcs", 22 
"Application Settings_LECB.fcs", "Samples_AAL I.fcs", "Samples_AAL-2 I.fcs", "Samples_MAL 23 
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II I.fcs" , "Samples_PNA I.fcs" , "Samples_WGA I.fcs", "Samples_LECA I.fcs" , "Samples_LECB 24 
I.fcs")    25 

fclist2 <- c("Application Settings_Unstained.fcs", "Application 26 
Settings_7AAD.fcs","Application Settings_D5.fcs", "Application Settings_AAL.fcs", 27 
"Application Settings_AAL-2.fcs", "Application Settings_MAL II.fcs", "Application 28 
Settings_PNA.fcs", "Application Settings_WGA.fcs", "Application Settings_LECA.fcs", 29 
"Application Settings_LECB.fcs", "Samples_AAL II.fcs", "Samples_AAL-2 II.fcs", 30 
"Samples_MAL II II.fcs" , "Samples_PNA II.fcs" , "Samples_WGA II.fcs", "Samples_LECA II.fcs" 31 
, "Samples_LECB II.fcs") 32 

 fclist3 <- c("Application Settings_Unstained.fcs", "Application 33 
Settings_7AAD.fcs","Application Settings_D5.fcs", "Application Settings_AAL.fcs", 34 
"Application Settings_AAL-2.fcs", "Application Settings_MAL II.fcs", "Application 35 
Settings_PNA.fcs", "Application Settings_WGA.fcs", "Application Settings_LECA.fcs", 36 
"Application Settings_LECB.fcs", "Samples_AAL III.fcs", "Samples_AAL-2 III.fcs", 37 
"Samples_MAL II III.fcs" , "Samples_PNA III.fcs" , "Samples_WGA III.fcs", "Samples_LECA 38 
III.fcs" , "Samples_LECB III.fcs") 39 

#Creation of flowsets containing the unstransformed files of the lists. 40 

fs1 <- read.flowSet(fclist1, transformation = FALSE) 41 

fs2 <- read.flowSet(fclist2, transformation = FALSE) 42 

fs3 <- read.flowSet(fclist3, transformation = FALSE) 43 

#compensation matrix calculation 44 

frames <- lapply(dir(x_WGA, full.names=TRUE), read.FCS) 45 

names(frames) <- c("Unstained", "7AAD-A", "D5-A", "LECTIN-A") 46 

frames <- as(frames, "flowSet") 47 

comp <- spillover(frames, unstained = "Unstained" , patt = "-A", fsc = "FSC-A", ssc = "SSC-A", 48 
stain_match = "ordered") 49 

#compensation loop 50 

for (i in 11:17) { 51 

fs1[[i]] <- compensate(fs1[[i]], comp) 52 

fs2[[i]] <- compensate(fs2[[i]], comp) 53 

fs3[[i]] <- compensate(fs3[[i]], comp) 54 

} 55 

#Perform transformation of the parameters of PE-Texas Red. 56 

lgcl <- estimateLogicle(fs1[[1]], channels = c("PE-Texas Red-A" ,"PE-Texas Red-H")) 57 

after1 <- transform(fs1, lgcl) 58 
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lgcl <- estimateLogicle(fs2[[1]], channels = c("PE-Texas Red-A" ,"PE-Texas Red-H")) 59 

after2 <- transform(fs2, lgcl) 60 

lgcl <- estimateLogicle(fs3[[1]], channels = c("PE-Texas Red-A" ,"PE-Texas Red-H")) 61 

after3 <- transform(fs3, lgcl) 62 

#Creation of data hierarchy 63 

#The transformed data is used here 64 

gs1 <- GatingSet(after1) 65 

gs2 <- GatingSet(after2) 66 

gs3 <- GatingSet(after3) 67 

#Creation of the Non debris gates for gs1, gs2 and gs3 68 

#1. Nondebris (setting up the gate parameters) 69 

rg1 <- rectangleGate("FSC-A"=c(50000,Inf), filterId = "NonDebris") 70 

#Adding rg1 to gs1 and defining the rg1 parent  71 

add(gs1, rg1, parent = "root") 72 

#Updating gs1 73 

recompute(gs1) 74 

#Adding rg1 to gs2 and defining the rg1 parent  75 

add(gs2, rg1, parent = "root") 76 

#Updating gs2 77 

recompute(gs2) 78 

#Adding rg1 to gs3 and defining the rg1 parent  79 

add(gs3, rg1, parent = "root") 80 

#Updating gs3 81 

recompute(gs3) 82 

#Aggregates exclusion 83 

#Setting up the first gate to exclude aggregates 84 

#Visualizing FSC-A vs FSC-H plot(Pacific Blue sample - application settings files) to select 85 
coordinates of the gate 86 

#autoplot(after1[[4]], "FSC-A", "FSC-H") 87 
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#Setting the gate 88 

pg2 <- polygonGate( filterId = "singletsa", cbind("FSC-A" = 89 
c(0,50000,150000,300000,300000,0), "FSC-H" = c(0,17000,48000,62000,120000,105000))) 90 

add(gs1,pg2, parent = "NonDebris", name = "singletsa") 91 

recompute(gs1) 92 

add(gs2,pg2, parent = "NonDebris", name = "singletsa") 93 

recompute(gs2) 94 

add(gs3,pg2, parent = "NonDebris", name = "singletsa") 95 

recompute(gs3) 96 

#Setting up the second gate to exclude aggregates 97 

#This is a way to get the data to visualize the filtered events only 98 

gs1singletsA <- getData(gs1,"/NonDebris/singletsa") 99 

#autoplot(gs1singletsA[[4]],"FSC-A", "FSC-W") 100 

#Setting up the gate 101 

pg3 <- polygonGate( filterId = "singletsb", cbind("FSC-A" = c(50000,50000,275000,275000), 102 
"FSC-W" = c(75000,112500,212500,75000))) 103 

add(gs1,pg3, parent = "singletsa", name = "singletsb") 104 

recompute(gs1) 105 

add(gs2,pg3, parent = "singletsa", name = "singletsb") 106 

recompute(gs2) 107 

add(gs3,pg3, parent = "singletsa", name = "singletsb") 108 

recompute(gs3) 109 

#Seeting up the gates for Live, dead and apoptotic cells 110 

#Visualizing the filtered data 111 

gs1singletsonly <- getData(gs1, "/NonDebris/singletsa/singletsb") 112 

#Setting the live gate 113 

rg2 <- rectangleGate("PE-Texas Red-A"=c(0,2.5), "PE-Texas Red-H"=c(0,2.5), filterId = "Alive") 114 

add(gs1, rg2, parent = "singletsb") 115 

recompute(gs1) 116 

add(gs2, rg2, parent = "singletsb") 117 
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recompute(gs2) 118 

add(gs3, rg2, parent = "singletsb") 119 

recompute(gs3) 120 

#Setting the gate for dead cells 121 

rg3<- rectangleGate("PE-Texas Red-A"=c(3.25,5), "PE-Texas Red-H"=c(3,5), filterId = "Dead") 122 

add(gs1, rg3, parent = "singletsb") 123 

recompute(gs1) 124 

add(gs2, rg3, parent = "singletsb") 125 

recompute(gs2) 126 

add(gs3, rg3, parent = "singletsb") 127 

recompute(gs3) 128 

#Setting the gate for dead cells including apoptotic cells 129 

rg3_deadapo <- rectangleGate("PE-Texas Red-A"=c(2.5,5), "PE-Texas Red-H"=c(2.0,5), filterId 130 
= "DeadApo") 131 

add(gs1, rg3_deadapo, parent = "singletsb") 132 

recompute(gs1) 133 

add(gs2, rg3_deadapo, parent = "singletsb") 134 

recompute(gs2) 135 

add(gs3, rg3_deadapo, parent = "singletsb") 136 

recompute(gs3) 137 

#Setting up the gate of apoptotic cells 138 

rg4 <- rectangleGate("PE-Texas Red-A"=c(2.5,3.25), "PE-Texas Red-H"=c(2,3), filterId = 139 
"Apoptotic") 140 

add(gs1, rg4, parent = "singletsb") 141 

recompute(gs1) 142 

add(gs2, rg4, parent = "singletsb") 143 

recompute(gs2) 144 

add(gs3, rg4, parent = "singletsb") 145 

recompute(gs3) 146 

#Setting up the 1XDNA, IntDNA and 2XDNA cells 147 
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#The coordinates for the gates must be calculated based on D5 histogram (APC channel) 148 
The coordinates are calculated for each APC sample. 149 

#We must mathematically determine the APC-Cy7-A value for the highest peak on the 150 
histogram. This value tells where to gate for the 1XDNA cells. Twice as much of this value 151 
we can then gate the 2xDNA cells. The median value between 1X and 2XDNA cells is where 152 
the intDNA cells are found. 153 

#Gating DNA cell cycle of gs1 154 

#Gating DNA cell cycle cells from the Alive gate 155 

gs1alive <- getData(gs1, "/NonDebris/singletsa/singletsb/Alive") 156 

for (i in 1:17){ 157 

test <- data.frame(exprs(gs1alive[[i]])) 158 

n <- length((subset(density(test$APC.Cy7.A)$x, density(test$APC.Cy7.A)$x < 200000))) 159 

ymax <- which.max(density(test$APC.Cy7.A)$y[c(1:n)]) 160 

a1<-density(test$APC.Cy7.A)$x[ymax] 161 

a2<-a1*2 162 

a15<-a1*1.5 163 

x<-a1/10 164 

rg5 <- rectangleGate("APC-Cy7-A"=c((a1-x),(a1+x)), filterId = "1xcells") 165 

rg6 <- rectangleGate("APC-Cy7-A"=c((a15-x),(a15+x)), filterId = "int") 166 

rg7 <- rectangleGate("APC-Cy7-A"=c((a2-x),(a2+x)), filterId = "2xcells") 167 

add(gs1[[i]],rg5, parent ="Alive") 168 

add(gs1[[i]],rg6, parent ="Alive") 169 

add(gs1[[i]],rg7, parent ="Alive") 170 

recompute(gs1[[i]]) 171 

} 172 

#Gating DNA cell cycle of gs2 173 

#Gating DNA cell cycle cells from the Alive gate 174 

gs2alive <- getData(gs2, "/NonDebris/singletsa/singletsb/Alive") 175 

for (i in 1:17){ 176 

test<- data.frame(exprs(gs2alive[[i]])) 177 

n <- length((subset(density(test$APC.Cy7.A)$x, density(test$APC.Cy7.A)$x < 200000))) 178 
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ymax <- which.max(density(test$APC.Cy7.A)$y[c(1:n)]) 179 

a1<-density(test$APC.Cy7.A)$x[ymax] 180 

a2<-a1*2 181 

a15<-a1*1.5 182 

x<-a1/10 183 

rg5 <- rectangleGate("APC-Cy7-A"=c((a1-x),(a1+x)), filterId = "1xcells") 184 

rg6 <- rectangleGate("APC-Cy7-A"=c((a15-x),(a15+x)), filterId = "int") 185 

rg7 <- rectangleGate("APC-Cy7-A"=c((a2-x),(a2+x)), filterId = "2xcells") 186 

add(gs2[[i]],rg5, parent ="Alive") 187 

add(gs2[[i]],rg6, parent ="Alive") 188 

add(gs2[[i]],rg7, parent ="Alive") 189 

recompute(gs2[[i]]) 190 

} 191 

#Gating DNA cell cycle of gs3 192 

#Gating DNA cell cycle cells from the Alive gate 193 

gs3alive <- getData(gs3, "/NonDebris/singletsa/singletsb/Alive") 194 

for (i in 1:17){ 195 

test<- data.frame(exprs(gs3alive[[i]])) 196 

n <- length((subset(density(test$APC.Cy7.A)$x, density(test$APC.Cy7.A)$x < 200000))) 197 

ymax <- which.max(density(test$APC.Cy7.A)$y[c(1:n)]) 198 

a1<-density(test$APC.Cy7.A)$x[ymax] 199 

a2<-a1*2 200 

a15<-a1*1.5 201 

x<-a1/10 202 

rg5 <- rectangleGate("APC-Cy7-A"=c((a1-x),(a1+x)), filterId = "1xcells") 203 

rg6 <- rectangleGate("APC-Cy7-A"=c((a15-x),(a15+x)), filterId = "int") 204 

rg7 <- rectangleGate("APC-Cy7-A"=c((a2-x),(a2+x)), filterId = "2xcells") 205 

add(gs3[[i]],rg5, parent ="Alive") 206 

add(gs3[[i]],rg6, parent ="Alive") 207 
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add(gs3[[i]],rg7, parent ="Alive") 208 

recompute(gs3[[i]]) 209 

} 210 

#autoplot(gs1, c("1xcells", "2xcells", "int")) 211 

flow_gating_list <- list(gs1, gs2, gs3) 212 

flow_gating_list 213 

}  214 

#End of flow_gating() 215 

# Creating a function to equalize sample sizes 216 

equalize_samplesize <- function (x, y, z) { 217 

  n_rows_vec <- c(nrow(x), nrow(y), nrow(z)) 218 

smallest_sample_size <- min(n_rows_vec) 219 

x <- x[sample(nrow(x), smallest_sample_size), ]  220 

y <- y[sample(nrow(y), smallest_sample_size), ]  221 

z <- z[sample(nrow(z), smallest_sample_size), ] 222 

list(x, y, z) 223 

} 224 

 #End of equalize_samplesize() 225 

#Function to calculate the means of a column (all parameters) of each repeated 226 
experiment 227 

col_means <- function(list, names_vec) { 228 

    output <- vector(mode = "list") 229 

  for (j in 1:length(list)) { 230 

    output[[j]] <- j 231 

     for (i in 1:17) { 232 

              output[[j]][i] <- mean(list[[j]][,i], na.rm = TRUE 233 

  } 234 

       output[[j]] <- rbind(c(1:17), output[[j]]) 235 

       colnames(output[[j]]) <- names_vec 236 
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       rownames(output[[j]]) <- c("Column Number", "Mean") 237 

  } 238 

  output 239 

} 240 

#Function to calculate the standard deviation (all parameters) of each repeated 241 
experiment 242 

col_sd <- function(list, names_vec) { 243 

    output <- vector(mode = "list") 244 

  for (j in 1:length(list)) { 245 

    output[[j]] <- j 246 

     for (i in 1:17) { 247 

                output[[j]][i] <- sd(list[[j]][,i], na.rm = TRUE) 248 

 } 249 

       output[[j]] <- rbind(c(1:17), output[[j]]) 250 

       colnames(output[[j]]) <- names_vec 251 

       rownames(output[[j]]) <- c("Column Number", "Standard Deviation")   252 

  } 253 

  output 254 

} 255 

#Function to calculate the Coeffient of Variation (all parameters) of each repeated 256 
experiment 257 

col_cv <- function(list, names_vec) { 258 

    output <- vector(mode = "list") 259 

  for (j in 1:length(list)) { 260 

    output[[j]] <- j 261 

     for (i in 1:17) { 262 

         output[[j]][i] <- 100 * (sd(list[[j]][,i], na.rm = TRUE) / mean(list[[j]][,i], na.rm = TRUE)) 263 

       } 264 

       output[[j]] <- rbind(c(1:17), output[[j]]) 265 

       colnames(output[[j]]) <- names_vec 266 
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       rownames(output[[j]]) <- c("Column Number", "Coefficient of Variation")  267 

  } 268 

  output 269 

} 270 

#Calculation of the mean of the means, means of the standard deviations and the means 271 
of the coefficient of variation 272 

##Creating the function to calculate the mean of the means of biological replicates 273 

col_means2 <- function(list, names_vec) { 274 

    output <- numeric(17) 275 

       for (i in 1:17) { 276 

       output[[i]] <- mean(c(list[[1]][2,i], list[[2]][2,i], list[[3]][2,i]), na.rm = TRUE) 277 

     } 278 

       output <- rbind(c(1:17), output) 279 

       colnames(output) <- names_vec 280 

       rownames(output) <- c("Column Number", "Mean of the Samples Means") 281 

       output <- output[-c(1),]  282 

output  283 

} 284 

##Creating the function to calculate the mean of the standard deviations of biological 285 
replicates 286 

col_sd2 <- function(list, names_vec) { 287 

    output <- numeric(17) 288 

       for (i in 1:17) { 289 

       output[[i]] <- mean(c(list[[1]][2,i], list[[2]][2,i], list[[3]][2,i]), na.rm = TRUE) 290 

     } 291 

       output <- rbind(c(1:17), output) 292 

       colnames(output) <- names_vec 293 

       rownames(output) <- c("Column Number", "Mean of the Sd's") 294 

       output <- output[-c(1),] 295 

output  296 



234 
 

} 297 

##Creating the function to calculate the mean of the coefficient of variation of biological 298 
replicates 299 

col_cv2 <- function(list, names_vec) { 300 

    output <- numeric(17) 301 

       for (i in 1:17) { 302 

       output[[i]] <- mean(c(list[[1]][2,i], list[[2]][2,i], list[[3]][2,i]), na.rm = TRUE) 303 

     } 304 

       output <- rbind(c(1:17), output) 305 

       colnames(output) <- names_vec 306 

       rownames(output) <- c("Column Number", "Mean of CV's") 307 

       output <- output[-c(1),] 308 

output  309 

} 310 

#Function to create a data frame containing the data from an experiment (Triplicates 311 
combined) 312 

table_summary <- function(x, y, z, sample_type) { 313 

#Extracting flow data in variables     314 

gs1Alive1x  <- getData(gs1,"/NonDebris/singletsa/singletsb/Alive/1xcells") 315 

gs1AliveInt  <- getData(gs1,"/NonDebris/singletsa/singletsb/Alive/int") 316 

gs1Alive2x  <- getData(gs1,"/NonDebris/singletsa/singletsb/Alive/2xcells") 317 

gs1Dead  <- getData(gs1,"/NonDebris/singletsa/singletsb/Dead") 318 

gs1Apo <- getData(gs1, "/NonDebris/singletsa/singletsb/Apoptotic") 319 

gs1DeadApo <- getData(gs1, "/NonDebris/singletsa/singletsb/DeadApo") 320 

gs1Alive <- getData(gs1,"/NonDebris/singletsa/singletsb/Alive") 321 

gs2Alive1x  <- getData(gs2,"/NonDebris/singletsa/singletsb/Alive/1xcells") 322 

gs2AliveInt  <- getData(gs2,"/NonDebris/singletsa/singletsb/Alive/int") 323 

gs2Alive2x  <- getData(gs2,"/NonDebris/singletsa/singletsb/Alive/2xcells") 324 

gs2Dead  <- getData(gs2,"/NonDebris/singletsa/singletsb/Dead") 325 

gs2Apo<- getData(gs2, "/NonDebris/singletsa/singletsb/Apoptotic") 326 
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gs2DeadApo <- getData(gs2, "/NonDebris/singletsa/singletsb/DeadApo") 327 

gs2Alive <- getData(gs2,"/NonDebris/singletsa/singletsb/Alive") 328 

gs3Alive1x  <- getData(gs3,"/NonDebris/singletsa/singletsb/Alive/1xcells") 329 

gs3AliveInt  <- getData(gs3,"/NonDebris/singletsa/singletsb/Alive/int") 330 

gs3Alive2x  <- getData(gs3,"/NonDebris/singletsa/singletsb/Alive/2xcells") 331 

gs3Dead  <- getData(gs3,"/NonDebris/singletsa/singletsb/Dead") 332 

gs3Apo<- getData(gs3, "/NonDebris/singletsa/singletsb/Apoptotic") 333 

gs3DeadApo <- getData(gs3, "/NonDebris/singletsa/singletsb/DeadApo") 334 

gs3Alive <- getData(gs3,"/NonDebris/singletsa/singletsb/Alive") 335 

#Lists for the contruction of the data frame containing all the information processed across 336 
the 6 filters(subpopulations) of each file(lectins) 337 

lectin_loop_list <- vector(mode = "list") 338 

filter_loop_list <- vector(mode = "list") 339 

rbinding_filter_loop_list <- vector(mode = "list") 340 

#Vector to label the flow cytometry channels, lectins and subpopulations identified 341 

names_vector <- c("FSC-A", "FSC-H", "FSC-W", "SSC-A", "SSC-H", "SSC-W", "7AAD-A", "7AAD-342 
H", "7AAD-W", "DRAQ5-A", "DRAQ5-H", "DRAQ5-W", "LECTIN-A", "LECTIN-H", "LECTIN-W", 343 
"Area_ratio", "Height_ratio") 344 

lectin_names_vec <- as.data.frame(c("AAL", "AAL-2", "MAL II", "PNA", "WGA", "LEC A", "LEC 345 
B"), stringsAsFactors = FALSE) 346 

filter_names_vec <- c("G2/M", "S", "Go/G1", "Dead", "Apoptotic", "Dead + Apoptotic") 347 

#Loop to iterate through the lectin files (from 11th to 17th file) 348 

for (lec in 11:17) { 349 

#Extracting the data in a data frame format  350 

gs1_Alive_1x_df <- data.frame(exprs(gs1Alive1x[[lec]])) 351 

gs1_Alive_1x_df <- mutate(gs1_Alive_1x_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio 352 
= Pacific.Blue.H/FSC.H) 353 

gs1_Alive_1x_df <- gs1_Alive_1x_df[, -16] 354 

gs2_Alive_1x_df <- data.frame(exprs(gs2Alive1x[[lec]])) 355 

gs2_Alive_1x_df <- mutate(gs2_Alive_1x_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio 356 
= Pacific.Blue.H/FSC.H) 357 
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gs2_Alive_1x_df <- gs2_Alive_1x_df[, -16] 358 

gs3_Alive_1x_df <- data.frame(exprs(gs3Alive1x[[lec]])) 359 

gs3_Alive_1x_df <- mutate(gs3_Alive_1x_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio 360 
= Pacific.Blue.H/FSC.H) 361 

gs3_Alive_1x_df <- gs3_Alive_1x_df[, -16] 362 

gs1_Alive_int_df <- data.frame(exprs(gs1AliveInt[[lec]])) 363 

gs1_Alive_int_df <- mutate(gs1_Alive_int_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio 364 
= Pacific.Blue.H/FSC.H) 365 

gs1_Alive_int_df <- gs1_Alive_int_df[, -16] 366 

gs2_Alive_int_df <- data.frame(exprs(gs2AliveInt[[lec]])) 367 

gs2_Alive_int_df <- mutate(gs2_Alive_int_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio 368 
= Pacific.Blue.H/FSC.H) 369 

gs2_Alive_int_df <- gs2_Alive_int_df[, -16] 370 

gs3_Alive_int_df <- data.frame(exprs(gs3AliveInt[[lec]])) 371 

gs3_Alive_int_df <- mutate(gs3_Alive_int_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio 372 
= Pacific.Blue.H/FSC.H) 373 

gs3_Alive_int_df <- gs3_Alive_int_df[, -16] 374 

gs1_Alive_2x_df <- data.frame(exprs(gs1Alive2x[[lec]])) 375 

gs1_Alive_2x_df <- mutate(gs1_Alive_2x_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio 376 
= Pacific.Blue.H/FSC.H) 377 

gs1_Alive_2x_df <- gs1_Alive_2x_df[, -16] 378 

gs2_Alive_2x_df <- data.frame(exprs(gs2Alive2x[[lec]])) 379 

gs2_Alive_2x_df <- mutate(gs2_Alive_2x_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio 380 
= Pacific.Blue.H/FSC.H) 381 

gs2_Alive_2x_df <- gs2_Alive_2x_df[, -16] 382 

gs3_Alive_2x_df <- data.frame(exprs(gs3Alive2x[[lec]])) 383 

gs3_Alive_2x_df <- mutate(gs3_Alive_2x_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio 384 
= Pacific.Blue.H/FSC.H) 385 

gs3_Alive_2x_df <- gs3_Alive_2x_df[, -16] 386 

gs1_Dead_df <- data.frame(exprs(gs1Dead[[lec]])) 387 

gs1_Dead_df <- mutate(gs1_Dead_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio = 388 
Pacific.Blue.H/FSC.H) 389 
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gs1_Dead_df <- gs1_Dead_df[, -16] 390 

gs2_Dead_df <- data.frame(exprs(gs2Dead[[lec]])) 391 

gs2_Dead_df <- mutate(gs2_Dead_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio = 392 
Pacific.Blue.H/FSC.H) 393 

gs2_Dead_df <- gs2_Dead_df[, -16] 394 

gs3_Dead_df <- data.frame(exprs(gs3Dead[[lec]])) 395 

gs3_Dead_df <- mutate(gs3_Dead_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio = 396 
Pacific.Blue.H/FSC.H) 397 

gs3_Dead_df <- gs3_Dead_df[, -16] 398 

gs1_Apo_df <- data.frame(exprs(gs1Apo[[lec]])) 399 

gs1_Apo_df <- mutate(gs1_Apo_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio = 400 
Pacific.Blue.H/FSC.H) 401 

gs1_Apo_df <- gs1_Apo_df[, -16] 402 

gs2_Apo_df <- data.frame(exprs(gs2Apo[[lec]])) 403 

gs2_Apo_df <- mutate(gs2_Apo_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio = 404 
Pacific.Blue.H/FSC.H) 405 

gs2_Apo_df <- gs2_Apo_df[, -16] 406 

gs3_Apo_df <- data.frame(exprs(gs3Apo[[lec]])) 407 

gs3_Apo_df <- mutate(gs3_Apo_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio = 408 
Pacific.Blue.H/FSC.H) 409 

gs3_Apo_df <- gs3_Apo_df[, -16] 410 

gs1_DeadApo_df <- data.frame(exprs(gs1DeadApo[[lec]])) 411 

gs1_DeadApo_df <- mutate(gs1_DeadApo_df, Area_ratio = Pacific.Blue.A/FSC.A, 412 
Height_ratio = Pacific.Blue.H/FSC.H) 413 

gs1_DeadApo_df <- gs1_DeadApo_df[, -16] 414 

gs2_DeadApo_df <- data.frame(exprs(gs2DeadApo[[lec]])) 415 

gs2_DeadApo_df <- mutate(gs2_DeadApo_df, Area_ratio = Pacific.Blue.A/FSC.A, 416 
Height_ratio = Pacific.Blue.H/FSC.H) 417 

gs2_DeadApo_df <- gs2_DeadApo_df[, -16] 418 

gs3_DeadApo_df <- data.frame(exprs(gs3DeadApo[[lec]])) 419 

gs3_DeadApo_df <- mutate(gs3_DeadApo_df, Area_ratio = Pacific.Blue.A/FSC.A, 420 
Height_ratio = Pacific.Blue.H/FSC.H) 421 
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gs3_DeadApo_df <- gs3_DeadApo_df[, -16] 422 

gs1_Alive_df <- data.frame(exprs(gs1Alive[[lec]])) 423 

gs1_Alive_df <- mutate(gs1_Alive_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio = 424 
Pacific.Blue.H/FSC.H) 425 

gs1_Alive_df <- gs1_Alive_df[, -16] 426 

gs2_Alive_df <- data.frame(exprs(gs2Alive[[lec]])) 427 

gs2_Alive_df <- mutate(gs2_Alive_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio = 428 
Pacific.Blue.H/FSC.H) 429 

gs2_Alive_df <- gs2_Alive_df[, -16] 430 

gs3_Alive_df <- data.frame(exprs(gs3Alive[[lec]])) 431 

gs3_Alive_df <- mutate(gs3_Alive_df, Area_ratio = Pacific.Blue.A/FSC.A, Height_ratio = 432 
Pacific.Blue.H/FSC.H) 433 

gs3_Alive_df <- gs3_Alive_df[, -16] 434 

#Organizing everything on a list 435 

filter_list <- list(list(gs1_Alive_1x_df, gs2_Alive_1x_df, gs3_Alive_1x_df), 436 
list(gs1_Alive_int_df, gs2_Alive_int_df, gs3_Alive_int_df), list(gs1_Alive_2x_df, 437 
gs2_Alive_2x_df, gs3_Alive_2x_df), list(gs1_Dead_df, gs2_Dead_df, gs3_Dead_df), 438 
list(gs1_Apo_df, gs2_Apo_df, gs3_Apo_df), list(gs1_DeadApo_df, gs2_DeadApo_df, 439 
gs3_DeadApo_df)) 440 

#Equalizing the sizes of samples from the three repeated experiments 441 

Alive_1x_list <- equalize_samplesize(filter_list[[1]][[1]], filter_list[[1]][[2]], filter_list[[1]][[3]])   442 

Alive_Int_list <- equalize_samplesize(filter_list[[2]][[1]], filter_list[[2]][[2]], filter_list[[2]][[3]])   443 

Alive_2x_list <- equalize_samplesize(filter_list[[3]][[1]], filter_list[[3]][[2]], filter_list[[3]][[3]])          444 

Dead_list <- equalize_samplesize(filter_list[[4]][[1]], filter_list[[4]][[2]], filter_list[[4]][[3]])   445 

Apo_list <- equalize_samplesize(filter_list[[5]][[1]], filter_list[[5]][[2]], filter_list[[5]][[3]])   446 

DeadApo_list <- equalize_samplesize(filter_list[[6]][[1]], filter_list[[6]][[2]], 447 
filter_list[[6]][[3]])   448 

#Calculating the individual experiment means, sd's, and cv's 449 

Alive_2x_mean_list <- col_means(Alive_2x_list, names_vector) 450 

Alive_Int_mean_list <- col_means(Alive_Int_list, names_vector) 451 

Alive_1x_mean_list <- col_means(Alive_1x_list, names_vector) 452 

Dead_mean_list <- col_means(Dead_list, names_vector) 453 
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Apo_mean_list <- col_means(Apo_list, names_vector) 454 

DeadApo_mean_list <- col_means(DeadApo_list, names_vector) 455 

Alive_2x_sd_list <- col_sd(Alive_2x_list, names_vector) 456 

Alive_Int_sd_list <- col_sd(Alive_Int_list, names_vector) 457 

Alive_1x_sd_list <- col_sd(Alive_1x_list, names_vector) 458 

Dead_sd_list <- col_sd(Dead_list, names_vector) 459 

Apo_sd_list <- col_sd(Apo_list, names_vector) 460 

DeadApo_sd_list <- col_sd(DeadApo_list, names_vector) 461 

 462 

Alive_2x_cv_list <- col_cv(Alive_2x_list, names_vector) 463 

Alive_Int_cv_list <- col_cv(Alive_Int_list, names_vector) 464 

Alive_1x_cv_list <- col_cv(Alive_1x_list, names_vector) 465 

Dead_cv_list <- col_cv(Dead_list, names_vector) 466 

Apo_cv_list <- col_cv(Apo_list, names_vector) 467 

DeadApo_cv_list <- col_cv(DeadApo_list, names_vector) 468 

#Calculating the mean of the means of the three repeated experiments, mean of the three 469 
standard deviations and the mean of the three cv's 470 

Alive_2x_control_global_mean <- col_means2(Alive_2x_mean_list, names_vector) 471 

Alive_Int_control_global_mean <- col_means2(Alive_Int_mean_list, names_vector) 472 

Alive_1x_control_global_mean <- col_means2(Alive_1x_mean_list, names_vector) 473 

Dead_control_global_mean <- col_means2(Dead_mean_list, names_vector) 474 

Apo_control_global_mean <- col_means2(Apo_mean_list, names_vector) 475 

DeadApo_control_global_mean <- col_means2(DeadApo_mean_list, names_vector) 476 

Alive_2x_control_global_sd <- col_sd2(Alive_2x_sd_list, names_vector) 477 

Alive_Int_control_global_sd <- col_sd2(Alive_Int_sd_list, names_vector) 478 

Alive_1x_control_global_sd <- col_sd2(Alive_1x_sd_list, names_vector) 479 

Dead_control_global_sd <- col_sd2(Dead_sd_list, names_vector) 480 

Apo_control_global_sd <- col_sd2(Apo_sd_list, names_vector) 481 

DeadApo_control_global_sd <- col_sd2(DeadApo_sd_list, names_vector) 482 
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Alive_2x_control_global_cv <- col_cv2(Alive_2x_cv_list, names_vector) 483 

Alive_Int_control_global_cv <- col_cv2(Alive_Int_cv_list, names_vector) 484 

Alive_1x_control_global_cv <- col_cv2(Alive_1x_cv_list, names_vector) 485 

Dead_control_global_cv <- col_cv2(Dead_cv_list, names_vector) 486 

Apo_control_global_cv <- col_cv2(Apo_cv_list, names_vector) 487 

DeadApo_control_global_cv <- col_cv2(DeadApo_cv_list, names_vector) 488 

#Calculating the viability for the lectin file 489 

gs1_viability <- (nrow(gs1_Alive_df) / (nrow(gs1_Alive_df) + nrow(gs1_DeadApo_df))) * 100 490 

gs2_viability <- (nrow(gs2_Alive_df) / (nrow(gs2_Alive_df) + nrow(gs2_DeadApo_df))) * 100          491 

gs3_viability <- (nrow(gs3_Alive_df) / (nrow(gs3_Alive_df) + nrow(gs3_DeadApo_df))) * 100 492 

viability_mean <- mean(c(gs1_viability, gs2_viability, gs3_viability)) 493 

viability_sd <- sd(c(gs1_viability, gs2_viability, gs3_viability)) 494 

#Organizing the means, sd's and cv's on a list so it can be used in a loop  495 

global_parameters_list <- list(list(Alive_2x_control_global_mean, 496 
Alive_2x_control_global_sd, Alive_2x_control_global_cv), 497 
list(Alive_Int_control_global_mean, Alive_Int_control_global_sd, 498 
Alive_Int_control_global_cv), list(Alive_1x_control_global_mean, 499 
Alive_1x_control_global_sd, Alive_1x_control_global_cv), list(Dead_control_global_mean, 500 
Dead_control_global_sd,Dead_control_global_cv), list(Apo_control_global_mean, 501 
Apo_control_global_sd, Apo_control_global_cv), list(DeadApo_control_global_mean, 502 
DeadApo_control_global_sd,DeadApo_control_global_cv )) 503 

equalized_filters_list <- list(Alive_2x_list, Alive_Int_list, Alive_1x_list, Dead_list, Apo_list, 504 
DeadApo_list) 505 

channel_names <- as.data.frame(matrix(names_vector, nrow = 17, ncol = 1), 506 
stringsAsFactors = FALSE) 507 

colnames(channel_names) <- c("Channels") 508 

for (fn in 1:6) { 509 

  for(fn2 in 1:3) {  510 

    if (fn2 == 1) { 511 

      control_table <- stack(global_parameters_list[[fn]][[fn2]]) 512 

      colnames(control_table) <- c("Mean","Channels2") 513 

      control_table <- cbind(channel_names, control_table) 514 

      control_table <- control_table[, -c(ncol(control_table))] 515 
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    } else if (fn2 == 2) {   516 

      control_table1 <- stack(global_parameters_list[[fn]][[fn2]]) 517 

      colnames(control_table1) <- c("Mean SD","Channels2") 518 

      control_table <- cbind(control_table, control_table1) 519 

      control_table <- control_table[, -c(ncol(control_table))] 520 

    } else { 521 

      control_table2 <- stack(global_parameters_list[[fn]][[fn2]]) 522 

      colnames(control_table2) <- c("CV(%)","Channels2") 523 

      control_table <- cbind(control_table, control_table2) 524 

      control_table <- control_table[, -c(ncol(control_table))]   525 

    } 526 

  } 527 

filter_label <- as.data.frame(matrix(c(rep(c(filter_names_vec[fn]), times = 528 
nrow(control_table))), nrow = nrow(control_table), ncol = 1), stringsAsFactors = FALSE) 529 

  colnames(filter_label) <- c("Subpopulation") 530 

  sample_size_byfilter <- as.data.frame(matrix(rep(c(nrow(equalized_filters_list[[fn]][[1]])), 531 
times = nrow(control_table)), nrow = nrow(control_table), ncol = 1)) 532 

  colnames(sample_size_byfilter) <- c("Sample Size") 533 

  filter_loop_list[[fn]] <- cbind(control_table, filter_label, sample_size_byfilter) 534 

} 535 

viability_mean_matrix <- matrix(c(rep(viability_mean, times = 102)), nrow = 102, ncol = 1) 536 

colnames(viability_mean_matrix) <- c("Viability(%)") 537 

viability_sd_matrix <- matrix(c(rep(viability_sd, times = 102)), nrow = 102, ncol = 1)  538 

colnames(viability_sd_matrix) <- c("Viability SD(%)") 539 

 540 

#Add lectin name and viability info 541 

lectin_names_vec <- c("AAL", "AAL-2", "MAL II", "PNA", "WGA", "LEC A", "LEC B") 542 

lectin_name_matrix <- as.data.frame(matrix(c(rep(c(lectin_names_vec[lec - 10]), times = 543 
102)), nrow = 102, ncol = 1), stringsAsFactors = FALSE) 544 

colnames(lectin_name_matrix) <- c("Lectin") 545 
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lectin_loop_list[[lec - 10]] <- cbind(viability_mean_matrix,viability_sd_matrix, 546 
lectin_name_matrix) 547 

rbinding_filter_loop_list [[lec - 10]] <- rbind(filter_loop_list[[1]], 548 
filter_loop_list[[2]],filter_loop_list[[3]],filter_loop_list[[4]],filter_loop_list[[5]],filter_loop_list549 
[[6]]) 550 

filter_loop_list <- vector(mode = "list") 551 

} 552 

table <- 553 
rbind(cbind(rbinding_filter_loop_list[[1]],lectin_loop_list[[1]]),cbind(rbinding_filter_loop_list554 
[[2]],lectin_loop_list[[2]]),cbind(rbinding_filter_loop_list[[3]],lectin_loop_list[[3]]), 555 
cbind(rbinding_filter_loop_list[[4]],lectin_loop_list[[4]]),cbind(rbinding_filter_loop_list[[5]],l556 
ectin_loop_list[[5]]), cbind(rbinding_filter_loop_list[[6]],lectin_loop_list[[6]]), 557 

cbind(rbinding_filter_loop_list[[7]],lectin_loop_list[[7]])) 558 

#Add Sample Type name 559 

sample_name_matrix <- as.data.frame(matrix(c(rep(sample_type, times = 7 * 102)), nrow = 560 
7 * 102, ncol = 1), stringsAsFactors = FALSE)  561 

colnames(sample_name_matrix) <- c("Sample Type") 562 

baseline_df <-  as.data.frame(cbind(sample_name_matrix, table), stringsAsFactors = FALSE) 563 

baseline_df 564 

} 565 

 #End of table_summary() 566 

#Creating a function for the F-test 567 

#Function argument is a data set containing info by filter and by lectin(sample/file). They 568 
are both variables of the equalized sample sizes 569 

F_T_Power_test <- function (baseline_df, sample_df, treatment_vec) { 570 

#Lists for the construction of the data frame containing all the information processed 571 
across the 6 filters(subpopulations) of each file(lectin) 572 

f_test_list <- vector(mode = "list") 573 

t_test_list <- vector(mode = "list") 574 

power_test_list <- vector(mode = "list") 575 

#Constructing a loop to go through the lectins(file 11 to 17)  576 

for (lec in 1:7) { 577 

#Constructing a for a loop to go through the subpopulations (filter) 578 



243 
 

  if (lec == 1) { 579 

    r_min <- 1 580 

    r_max <- 102 581 

  } else if (lec == 2) { 582 

    r_min <- 102 + 1 583 

    r_max <- 102 * lec 584 

  } else if (lec == 3) { 585 

    r_min <- (102 * (lec-1)) +1 586 

    r_max <- 102 * lec 587 

  } else if (lec == 4) { 588 

    r_min <- (102 * (lec-1)) +1 589 

    r_max <- 102 * lec 590 

  } else if (lec == 5) { 591 

    r_min <- (102 * (lec-1)) +1 592 

    r_max <- 102 * lec 593 

     594 

  } else if (lec == 6) { 595 

    r_min <- (102 * (lec-1)) +1 596 

    r_max <- 102 * lec 597 

  } else { 598 

    r_min <- (102 * (lec-1)) +1 599 

    r_max <- 102 * lec 600 

  } 601 

  for (r in r_min:r_max) { 602 

control_size <- baseline_df[r, "Sample Size"] 603 

sample_size <-  sample_df[r, "Sample Size"] 604 

#Calcultating the degrees of freedom 605 

df1 <- control_size - 1  606 

df2 <- sample_size – 1 607 
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#Calculation of the f statistic    608 

f_statistic <- ((baseline_df[r,"Mean SD"])^2) / ((sample_df[r,"Mean SD"])^2) 609 

#Computation of the p-value. lower.tail is set to TRUE as the f test is two-sided (not need 610 
to select the largest variance for the numerator for the computation of the f statistic) 611 

fp_value <- pf(f_statistic, df1 = df1, df2 = df2, lower.tail = TRUE) 612 

#Evaluation of the level of significance and decision making on equality or inequality of 613 
variances 614 

if ((fp_value >= 0.01) & (fp_value < 0.05)) { 615 

f_list <- list(sample_df[r, "Mean"], sample_df[r, "Mean SD"], sample_size, fp_value, 616 
"significant", "unequal variances")  617 

} else if ((fp_value >= 0.001) & (fp_value <0.01)) { 618 

f_list <- list(sample_df[r, "Mean"], sample_df[r, "Mean SD"], sample_size, fp_value, "highly 619 
significant", "unequal variances") 620 

} else if (fp_value < 0.001) { 621 

f_list <- list(sample_df[r, "Mean"], sample_df[r, "Mean SD"], sample_size, fp_value, "very 622 
highly significant", "unequal variances") 623 

} else if ((fp_value >= 0.05) & (fp_value < 0.10)) {   624 

f_list<- list(sample_df[r, "Mean"], sample_df[r, "Mean SD"], sample_size, fp_value, "trend 625 
toward significance/not significant", "equal variances")  626 

} else { 627 

    f_list <- list(sample_df[r, "Mean"], sample_df[r, "Mean SD"], sample_size, fp_value, "not 628 
significant", "equal variances")  629 

} 630 

#Construction of a variable containing the results of the F test evaluation 631 

f_list_df <- as.data.frame(f_list, stringsAsFactors = FALSE) 632 

colnames(f_list_df) <- c("Sample Mean", "Mean SD", "Sample Size", "F p-value", "Level of 633 
siginificance", "F-test conclusion") 634 

f_test_list[[r]] <- f_list_df 635 

if (fp_value >= 0.05) {#Calculation of the t statistic for equal variances 636 

s <- sqrt((df1*baseline_df[r,"Mean SD"]^2 + df2*sample_df[r,"Mean SD"]^2) / (control_size 637 
+ sample_size - 2)) 638 

t_statistic <- (baseline_df[r,"Mean"] - sample_df[r,"Mean"]) / (s * sqrt(1/control_size + 639 
1/sample_size))                                                                  640 
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dfree = control_size + sample_size - 2                                                                  641 

tp_value <- pt(t_statistic, df = dfree, lower.tail = TRUE) 642 

#Evaluation of the level of significance and decision making on the significance of the 643 
difference between the two samples  644 

if (tp_value >= 0.01 & tp_value <0.05) { 645 

t_list <- list(tp_value, "significant")  646 

}  else if (tp_value >= 0.001 & tp_value <0.01) { 647 

  t_list <- list(tp_value, "highly significant") 648 

} else if (tp_value < 0.001) { 649 

  t_list<- list(tp_value, "very highly significant") 650 

} else if (tp_value >= 0.05 & tp_value < 0.10) { 651 

  t_list <- list(tp_value, "trend toward significance") 652 

} else { 653 

    t_list <- list(tp_value, "not significant") 654 

} 655 

} else {#Calculation of the t statistic for unequal variances 656 

#T-Test for unequal variances (Satterthwaite's Method) 657 

den <- sqrt(baseline_df[r, "Mean SD"]^2/control_size + sample_df[r, "Mean 658 
SD"]^2/sample_size)   659 

t_statistic <- (baseline_df[r, "Mean"] - sample_df[r, "Mean"])/ den 660 

   661 

df_numerator <- (baseline_df[r, "Mean SD"]^2/control_size + sample_df[r, "Mean 662 
SD"]^2/sample_size)^2 663 

df_denominator <- (baseline_df[r, "Mean SD"]^2/control_size)^2/(control_size - 1) + 664 
(sample_df[r, "Mean SD"]^2/sample_size )^2/(sample_size - 1) 665 

dfree = df_numerator/df_denominator                                                                  666 

tp_value <- pt(t_statistic, df = dfree, lower.tail = TRUE) 667 

#Evaluation of the level of significance and decision making on the significance of the 668 
difference between the two samples  669 

if (tp_value >= 0.01 & tp_value <0.05) { 670 

t_list <- list(tp_value, "significant")  671 
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}  else if (tp_value >= 0.001 & tp_value <0.01) {  672 

  t_list <- list(tp_value, "highly significant") 673 

} else if (tp_value < 0.001) { 674 

  t_list<- list(tp_value, "very highly significant") 675 

} else if (tp_value >= 0.05 & tp_value < 0.10) { 676 

  t_list <- list(tp_value, "trend toward significance") 677 

} else { 678 

    t_list <- list(tp_value, "not significant") 679 

} 680 

#Adding the results of the T test evaluation to the variable created to store the data 681 

} 682 

t_list_df <- as.data.frame(t_list, stringsAsFactors = FALSE) 683 

colnames(t_list_df) <- c("T p-value", "Level of siginificance") 684 

t_test_list[[r]] <- t_list_df 685 

#Compute Power Analysis before leaving this loop 686 

c <- qnorm(0.975) 687 

k <- sample_size / control_size # equal to n2/n1, that is, sample_size = n2 and control_size = 688 
n1 689 

se <- sqrt((baseline_df[r, "Mean SD"]^2)^2 + (sample_df[r, "Mean SD"]^2)^2 / k) 690 

delta <- abs(baseline_df[r,"Mean"] - sample_df[r,"Mean"]) 691 

power <- pnorm(- c + (sqrt(control_size)*delta)/se) 692 

power_df <- as.data.frame(c(power), stringsAsFactors = FALSE) 693 

colnames(power_df) <- c("Power") 694 

power_test_list[[r]] <- power_df 695 

}  696 

#r_min and r_max foor loop 697 

}  698 

#lectin for loop 699 

for (i in 1:714) {    700 
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  if (i == 1 | i == 2) { 701 

  f_test_complete_df <- as.data.frame(rbind(f_test_list[[1]], f_test_list[[2]]), stringsAsFactors 702 
= FALSE) 703 

  t_test_complete_df  <- as.data.frame(rbind(t_test_list[[1]], t_test_list[[2]]), 704 
stringsAsFactors = FALSE) 705 

  power_test_complete_df  <- as.data.frame(rbind(power_test_list[[1]], 706 
power_test_list[[2]]), stringsAsFactors = FALSE) 707 

  } else { 708 

  f_test_complete_df <- as.data.frame(rbind(f_test_complete_df, f_test_list[[i]]), 709 
stringsAsFactors = FALSE) 710 

  t_test_complete_df  <- as.data.frame(rbind(t_test_complete_df, t_test_list[[i]]), 711 
stringsAsFactors = FALSE) 712 

  power_test_complete_df  <- as.data.frame(rbind(power_test_complete_df, 713 
power_test_list[[i]]), stringsAsFactors = FALSE)   714 

    } 715 

} 716 

f_t_power_complete_df <- as.data.frame(cbind(f_test_complete_df, t_test_complete_df, 717 
power_test_complete_df)) 718 

treatment_matrix <- as.data.frame(matrix(c(rep(treatment_vec, times = 7 * 102)), nrow = 7 719 
* 102, ncol = 1), stringsAsFactors = FALSE)  720 

colnames(treatment_matrix) <- c("Treatment") 721 

#Add the remaining lables from the baseline or sample_df 722 

baseline_channels <- as.data.frame(baseline_df[, "Channels"], stringsAsFactors = FALSE) 723 

baseline_subpopulation <- as.data.frame(baseline_df[, "Subpopulation"], stringsAsFactors = 724 
FALSE) 725 

baseline_lectin <- as.data.frame(baseline_df[, "Lectin"], stringsAsFactors = FALSE) 726 

treat_channels_Subpopulation_Lectin_f_t_power_complete_df <- 727 
as.data.frame(c(treatment_matrix, baseline_channels, baseline_subpopulation, 728 
baseline_lectin, f_t_power_complete_df), stringsAsFactors = FALSE) 729 

colnames(treat_channels_Subpopulation_Lectin_f_t_power_complete_df) <- c("Treatment", 730 
"Channels", "Subpopulation", "Lectin", "Mean", "SD", "Sample Size", "F p-value", "F 731 
significance","F test conclusion", "T p-value","T test significance", "Power") 732 

treat_channels_Subpopulation_Lectin_f_t_power_complete_df 733 

}  734 
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#End of  F_T_Power_test()  735 

#Function to create a data frame containing the data from an experiment (triplicates 736 
combined) for descriptive analysis only 737 

table_descriptive <- function(x, y, z, sample_type) { 738 

#Extracting flow data in variables     739 

gs1Alive1x  <- getData(gs1,"/NonDebris/singletsa/singletsb/Alive/1xcells") 740 

gs1AliveInt  <- getData(gs1,"/NonDebris/singletsa/singletsb/Alive/int") 741 

gs1Alive2x  <- getData(gs1,"/NonDebris/singletsa/singletsb/Alive/2xcells") 742 

gs1Dead  <- getData(gs1,"/NonDebris/singletsa/singletsb/Dead") 743 

gs1Apo <- getData(gs1, "/NonDebris/singletsa/singletsb/Apoptotic") 744 

gs1DeadApo <- getData(gs1, "/NonDebris/singletsa/singletsb/DeadApo") 745 

gs1Alive <- getData(gs1,"/NonDebris/singletsa/singletsb/Alive") 746 

gs2Alive1x  <- getData(gs2,"/NonDebris/singletsa/singletsb/Alive/1xcells") 747 

gs2AliveInt  <- getData(gs2,"/NonDebris/singletsa/singletsb/Alive/int") 748 

gs2Alive2x  <- getData(gs2,"/NonDebris/singletsa/singletsb/Alive/2xcells") 749 

gs2Dead  <- getData(gs2,"/NonDebris/singletsa/singletsb/Dead") 750 

gs2Apo<- getData(gs2, "/NonDebris/singletsa/singletsb/Apoptotic") 751 

gs2DeadApo <- getData(gs2, "/NonDebris/singletsa/singletsb/DeadApo") 752 

gs2Alive <- getData(gs2,"/NonDebris/singletsa/singletsb/Alive") 753 

gs3Alive1x  <- getData(gs3,"/NonDebris/singletsa/singletsb/Alive/1xcells") 754 

gs3AliveInt  <- getData(gs3,"/NonDebris/singletsa/singletsb/Alive/int") 755 

gs3Alive2x  <- getData(gs3,"/NonDebris/singletsa/singletsb/Alive/2xcells") 756 

gs3Dead  <- getData(gs3,"/NonDebris/singletsa/singletsb/Dead") 757 

gs3Apo<- getData(gs3, "/NonDebris/singletsa/singletsb/Apoptotic") 758 

gs3DeadApo <- getData(gs3, "/NonDebris/singletsa/singletsb/DeadApo") 759 

gs3Alive <- getData(gs3,"/NonDebris/singletsa/singletsb/Alive") 760 

#List for the contruction of the data frame containing all the information processed across 761 
each file(lectin) 762 

lectin_loop_list <- vector(mode = "list") 763 

#Vector to label the flow cytometry channels, lectins and subpopulations identified 764 
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names_vector <- c("FSC_A", "FSC_H", "FSC_W", "SSC_A", "SSC_H", "SSC_W", "7AAD_A", 765 
"7AAD_H", "7AAD_W", "DRAQ5_A", "DRAQ5_H", "DRAQ5_W", "LECTIN_A", "LECTIN_H", 766 
"LECTIN_W") 767 

lectin_names_vec <- c("AAL", "AAL-2", "MAL II", "PNA", "WGA", "LEC A", "LEC B") 768 

#Loop to iterate though the lectin files (from 5th to 11th file) 769 

for (lec in 11:17) {   770 

#Extracting the data in a data frame format   771 

gs1_Alive_1x_df <- data.frame(exprs(gs1Alive1x[[lec]])) 772 

gs2_Alive_1x_df <- data.frame(exprs(gs2Alive1x[[lec]])) 773 

gs3_Alive_1x_df <- data.frame(exprs(gs3Alive1x[[lec]])) 774 

gs1_Alive_int_df <- data.frame(exprs(gs1AliveInt[[lec]])) 775 

gs2_Alive_int_df <- data.frame(exprs(gs2AliveInt[[lec]])) 776 

gs3_Alive_int_df <- data.frame(exprs(gs3AliveInt[[lec]])) 777 

 778 

gs1_Alive_2x_df <- data.frame(exprs(gs1Alive2x[[lec]])) 779 

gs2_Alive_2x_df <- data.frame(exprs(gs2Alive2x[[lec]])) 780 

gs3_Alive_2x_df <- data.frame(exprs(gs3Alive2x[[lec]])) 781 

gs1_Dead_df <- data.frame(exprs(gs1Dead[[lec]])) 782 

gs2_Dead_df <- data.frame(exprs(gs2Dead[[lec]])) 783 

gs3_Dead_df <- data.frame(exprs(gs3Dead[[lec]])) 784 

gs1_Apo_df <- data.frame(exprs(gs1Apo[[lec]])) 785 

gs2_Apo_df <- data.frame(exprs(gs2Apo[[lec]])) 786 

gs3_Apo_df <- data.frame(exprs(gs3Apo[[lec]])) 787 

gs1_DeadApo_df <- data.frame(exprs(gs1DeadApo[[lec]])) 788 

gs2_DeadApo_df <- data.frame(exprs(gs2DeadApo[[lec]])) 789 

gs3_DeadApo_df <- data.frame(exprs(gs3DeadApo[[lec]])) 790 

gs1_Alive_df <- data.frame(exprs(gs1Alive[[lec]])) 791 

gs2_Alive_df <- data.frame(exprs(gs2Alive[[lec]])) 792 

gs3_Alive_df <- data.frame(exprs(gs3Alive[[lec]])) 793 

 794 
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#Organizing everything on a list 795 

filter_list <- list(list(gs1_Alive_1x_df, gs2_Alive_1x_df, gs3_Alive_1x_df), 796 
list(gs1_Alive_int_df, gs2_Alive_int_df, gs3_Alive_int_df), list(gs1_Alive_2x_df, 797 
gs2_Alive_2x_df, gs3_Alive_2x_df), list(gs1_Dead_df, gs2_Dead_df, gs3_Dead_df), 798 
list(gs1_Apo_df, gs2_Apo_df, gs3_Apo_df), list(gs1_DeadApo_df, gs2_DeadApo_df, 799 
gs3_DeadApo_df)) 800 

#Equalizing the sizes of sample from the repeated experiments (3 times) 801 

Alive_1x_list <- equalize_samplesize(filter_list[[1]][[1]], filter_list[[1]][[2]], filter_list[[1]][[3]])   802 

Alive_Int_list <- equalize_samplesize(filter_list[[2]][[1]], filter_list[[2]][[2]], filter_list[[2]][[3]])   803 

Alive_2x_list <- equalize_samplesize(filter_list[[3]][[1]], filter_list[[3]][[2]], filter_list[[3]][[3]]) 804 

Dead_list <- equalize_samplesize(filter_list[[4]][[1]], filter_list[[4]][[2]], filter_list[[4]][[3]])   805 

Apo_list <- equalize_samplesize(filter_list[[5]][[1]], filter_list[[5]][[2]], filter_list[[5]][[3]])   806 

DeadApo_list <- equalize_samplesize(filter_list[[6]][[1]], filter_list[[6]][[2]], 807 
filter_list[[6]][[3]])   808 

Alive_1x_df <- rbind(Alive_1x_list[[1]], Alive_1x_list[[2]], Alive_1x_list[[3]]) 809 

Alive_1x_df <- Alive_1x_df [, -16] 810 

colnames(Alive_1x_df) <- names_vector 811 

filter_label <- as.data.frame(matrix(c(rep(c("Go/G1"), times = nrow(Alive_1x_df))), nrow = 812 
nrow(Alive_1x_df), ncol = 1), stringsAsFactors = FALSE) 813 

colnames(filter_label) <- c("Subpopulation") 814 

Alive_Int_df <- rbind(Alive_Int_list[[1]], Alive_Int_list[[2]], Alive_Int_list[[3]]) 815 

Alive_Int_df <- Alive_Int_df [, -16] 816 

colnames(Alive_Int_df) <- names_vector 817 

filter_label_temp <- as.data.frame(matrix(c(rep(c("S"), times = nrow(Alive_Int_df))), nrow = 818 
nrow(Alive_Int_df), ncol = 1), stringsAsFactors = FALSE) 819 

colnames(filter_label_temp) <- c("Subpopulation") 820 

filter_label <- rbind(filter_label, filter_label_temp) 821 

Alive_2x_df <- rbind(Alive_2x_list[[1]], Alive_2x_list[[2]], Alive_2x_list[[3]]) 822 

Alive_2x_df <- Alive_2x_df [, -16] 823 

colnames(Alive_2x_df) <- names_vector 824 

filter_label_temp <- as.data.frame(matrix(c(rep(c("G2/M"), times = nrow(Alive_2x_df))), 825 
nrow = nrow(Alive_2x_df), ncol = 1), stringsAsFactors = FALSE) 826 
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colnames(filter_label_temp) <- c("Subpopulation") 827 

filter_label <- rbind(filter_label, filter_label_temp) 828 

Dead_df <- rbind(Dead_list[[1]], Dead_list[[2]], Dead_list[[3]]) 829 

Dead_df <- Dead_df [, -16] 830 

colnames(Dead_df) <- names_vector 831 

filter_label_temp <- as.data.frame(matrix(c(rep(c("Dead"), times = nrow(Dead_df))), nrow = 832 
nrow(Dead_df), ncol = 1), stringsAsFactors = FALSE) 833 

colnames(filter_label_temp) <- c("Subpopulation") 834 

filter_label <- rbind(filter_label, filter_label_temp) 835 

Apo_df <- rbind(Apo_list[[1]], Apo_list[[2]], Apo_list[[3]]) 836 

Apo_df <- Apo_df [, -16] 837 

colnames(Apo_df) <- names_vector 838 

filter_label_temp <- as.data.frame(matrix(c(rep(c("Apoptotic"), times = nrow(Apo_df))), 839 
nrow = nrow(Apo_df), ncol = 1), stringsAsFactors = FALSE) 840 

colnames(filter_label_temp) <- c("Subpopulation") 841 

filter_label <- rbind(filter_label, filter_label_temp) 842 

DeadApo_df <- rbind(DeadApo_list[[1]], DeadApo_list[[2]], DeadApo_list[[3]]) 843 

DeadApo_df <- DeadApo_df [, -16] 844 

colnames(DeadApo_df) <- names_vector 845 

filter_label_temp <- as.data.frame(matrix(c(rep(c("Dead + Apoptotic"), times = 846 
nrow(DeadApo_df))), nrow = nrow(DeadApo_df), ncol = 1), stringsAsFactors = FALSE) 847 

colnames(filter_label_temp) <- c("Subpopulation") 848 

filter_label <- rbind(filter_label, filter_label_temp) 849 

lectin_label <- as.data.frame(matrix(c(rep(c(lectin_names_vec[lec - 10]), times = 850 
nrow(filter_label))), nrow = nrow(filter_label), ncol = 1), stringsAsFactors = FALSE) 851 

colnames(lectin_label) <- c("Lectin") 852 

lectin_loop_list[[lec - 10]] <- cbind(rbind(Alive_1x_df, Alive_Int_df, Alive_2x_df, Dead_df, 853 
Apo_df, DeadApo_df), cbind(filter_label, lectin_label)) 854 

} 855 

lectins_df <- rbind(lectin_loop_list[[1]],lectin_loop_list[[2]], lectin_loop_list[[3]], 856 
lectin_loop_list[[4]], lectin_loop_list[[5]], lectin_loop_list[[6]], lectin_loop_list[[7]]) 857 
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#Add Sample Type name 858 

sample_name_matrix <- as.data.frame(matrix(c(rep(sample_type, times = 859 
nrow(lectins_df))), nrow = nrow(lectins_df), ncol = 1), stringsAsFactors = FALSE)  860 

colnames(sample_name_matrix) <- c("Sample_Type") 861 

global_df <-  as.data.frame(cbind(sample_name_matrix, lectins_df), stringsAsFactors = 862 
FALSE) 863 

global_df <- mutate(global_df, Area_den = LECTIN_A/FSC_A, Height_den = LECTIN_H/FSC_H) 864 

global_df 865 

}  866 

#End of the function table_descriptive() 867 

#Creating a function to combine data from descriptive analysis (table_descriptive()) and 868 
statistical significance levels ratios_stats_channel_choice() 869 

#Example: FSC_W_Subp_GoG1_df <- table_manipulation(media_global_descriptive_df, 870 
media_global_F_T_df, c("FSC_W"), c("FSC-W"), c("Go/G1"), c("Media"))   871 

table_manipulation <- function(df1, df2, channel1, channel2, Subpop, variable)   { 872 

lectin_names_vec <- c("AAL", "AAL-2", "MAL II", "PNA", "WGA", "LEC A", "LEC B") 873 

lectin_loop_list <- vector(mode = "list") 874 

sample_loop_list <- vector(mode = "list") 875 

if (variable == c("Media")) { 876 

Sample_Type_vec <- c("f", "e", "g", "c", "b", "a") 877 

for (i in 1:6) { 878 

for (lec in 1:7) { 879 

table_1 <- select(df1, channel1, Subpopulation, Lectin, Sample_Type) %>% filter(Lectin == 880 
lectin_names_vec[lec], Sample_Type == Sample_Type_vec[i], Subpopulation == Subpop) 881 

table_2 <- select(df2, Sample_Type, Channels, Subpopulation, Lectin, T_test_significance, 882 
Power) %>% filter(Lectin == lectin_names_vec[lec], Sample_Type == Sample_Type_vec[i], 883 
Channels == channel2, Subpopulation == Subpop) %>% select (T_test_significance) 884 

T_test_matrix <- as.data.frame(matrix(c(rep(table_2[1,1], times = nrow(table_1))), nrow = 885 
nrow(table_1), ncol = 1), stringsAsFactors = FALSE) 886 

colnames(T_test_matrix) <- c("T_test_significance") 887 

table_1_2 <- cbind(table_1, T_test_matrix) 888 

lectin_loop_list[[lec]] <- table_1_2     889 
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        }  890 

sample_loop_list[[i]]  <- rbind(lectin_loop_list[[1]], lectin_loop_list[[2]], lectin_loop_list[[3]], 891 
lectin_loop_list[[4]], lectin_loop_list[[5]], lectin_loop_list[[6]], lectin_loop_list[[7]]) 892 

    } 893 

global_table <- rbind(sample_loop_list[[1]], sample_loop_list[[2]], sample_loop_list[[3]], 894 
sample_loop_list[[4]], sample_loop_list[[5]], sample_loop_list[[6]]) 895 

    } else if (variable == c("Temp")) { 896 

Sample_Type_vec <- c("32", "33", "34", "35", "36", "38", "39", "40") 897 

for (i in 1:10) {  898 

for (lec in 1:7) { 899 

table_1 <- select(df1, channel1, Subpopulation, Lectin, Sample_Type) %>% filter(Lectin == 900 
lectin_names_vec[lec], Sample_Type == Sample_Type_vec[i], Subpopulation == Subpop) 901 

table_2  <- select(df2, Sample_Type, Channels, Subpopulation, Lectin, T_test_significance, 902 
Power) %>% filter(Lectin == lectin_names_vec[lec], Sample_Type == Sample_Type_vec[i], 903 
Channels == channel2, Subpopulation == Subpop) %>% select (T_test_significance) 904 

T_test_matrix <- as.data.frame(matrix(c(rep(table_2[1,1], times = nrow(table_1))), nrow = 905 
nrow(table_1), ncol = 1), stringsAsFactors = FALSE) 906 

colnames(T_test_matrix) <- c("T_test_significance") 907 

 table_1_2 <- cbind(table_1, T_test_matrix) 908 

 lectin_loop_list[[lec]] <- table_1_2      909 

      } 910 

 sample_loop_list[[i]]  <- rbind(lectin_loop_list[[1]], lectin_loop_list[[2]], lectin_loop_list[[3]], 911 
lectin_loop_list[[4]], lectin_loop_list[[5]], lectin_loop_list[[6]], lectin_loop_list[[7]])      912 

    } 913 

global_table <- rbind(sample_loop_list[[1]], sample_loop_list[[2]], sample_loop_list[[3]], 914 
sample_loop_list[[4]], sample_loop_list[[5]], sample_loop_list[[6]], sample_loop_list[[7]], 915 
sample_loop_list[[8]], sample_loop_list[[9]], sample_loop_list[[10]]) 916 

  } else {   917 

Sample_Type_vec <- c("a", "b", "c", "d", "f", "g", "h", "i", "j") 918 

    for (i in 1:9) { 919 

    for (lec in 1:7) { 920 

table_1 <- select(df1, channel1, Subpopulation, Lectin, Sample_Type) %>% filter(Lectin == 921 
lectin_names_vec[lec], Sample_Type == Sample_Type_vec[i], Subpopulation == Subpop) 922 
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table_2 <- select(df2, Sample_Type, Channels, Subpopulation, Lectin, T_test_significance, 923 
Power) %>% filter(Lectin == lectin_names_vec[lec], Sample_Type == Sample_Type_vec[i], 924 
Channels == channel2, Subpopulation == Subpop) %>% select (T_test_significance) 925 

 T_test_matrix <- as.data.frame(matrix(c(rep(table_2[1,1], times = nrow(table_1))), nrow = 926 
nrow(table_1), ncol = 1), stringsAsFactors = FALSE) 927 

colnames(T_test_matrix) <- c("T_test_significance") 928 

table_1_2 <- cbind(table_1, T_test_matrix) 929 

lectin_loop_list[[lec]] <- table_1_2  930 

    } 931 

sample_loop_list[[i]]  <- rbind(lectin_loop_list[[1]], lectin_loop_list[[2]], lectin_loop_list[[3]], 932 
lectin_loop_list[[4]], lectin_loop_list[[5]], lectin_loop_list[[6]], lectin_loop_list[[7]])  933 

  } 934 

global_table <- rbind(sample_loop_list[[1]], sample_loop_list[[2]], sample_loop_list[[3]], 935 
sample_loop_list[[4]], sample_loop_list[[5]], sample_loop_list[[6]], sample_loop_list[[7]], 936 
sample_loop_list[[8]], sample_loop_list[[9]])     937 

  } 938 

  global_table 939 

}  940 

#End of function table_manipulation() 941 

lectin_density_stats <- function (dataset) { 942 

dataset <- filter(dataset, Channels %in% c("Area_ratio", "Height_ratio"), Subpopulation %in% 943 
c("G2/M", "S", "Go/G1")) 944 

f_test_list <- vector(mode = "list")  945 

t_test_list <- vector(mode = "list") 946 

power_test_list <- vector(mode = "list") 947 

nr <- 1 948 

for (lec in 1:7) { 949 

  #Constructing a for a loop to go through the subpopulations (filter) 950 

  if (lec == 1) { 951 

    r_min <- 1 952 

    #r_max <- 6 953 

  } else if (lec == 2) { 954 
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    r_min <- 6 + 1 955 

    #r_max <- 6 * lec 956 

  } else if (lec == 3) { 957 

    r_min <- (6 * (lec-1)) +1 958 

    #r_max <- 6 * lec 959 

  } else if (lec == 4) { 960 

    r_min <- (6 * (lec-1)) +1 961 

    #r_max <- 6 * lec 962 

  } else if (lec == 5) { 963 

    r_min <- (6 * (lec-1)) +1 964 

    #r_max <- 6 * lec 965 

  } else if (lec == 6) { 966 

    r_min <- (6 * (lec-1)) +1 967 

    #r_max <- 6 * lec 968 

  } else { 969 

    r_min <- (6 * (lec-1)) +1 970 

    #r_max <- 6 * lec 971 

  }  972 

for (i in 1:6) { 973 

  if(i == 1 | i == 2 | i == 3 | i == 4) {  974 

size1 <- dataset[r_min, "Sample Size"] 975 

size2 <-  dataset[r_min + 2, "Sample Size"] 976 

#Calcultating the degrees of freedom 977 

df1 <- size1 - 1  978 

df2 <- size2 - 1 979 

#Calculation of the f statistic   980 

f_statistic <- ((dataset[r_min,"Mean SD"])^2) / ((dataset[r_min + 2,"Mean SD"])^2) 981 

#Computation of the p-value. lower.tail is set to TRUE as the f test is two-sided  982 

fp_value <- pf(f_statistic, df1 = df1, df2 = df2, lower.tail = TRUE) 983 
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#Evaluation of the level of significance and decision making on equality or inequality of 984 
variances 985 

if ((fp_value >= 0.01) & (fp_value < 0.05)) { 986 

f_list <- list(fp_value, "significant", "unequal variances")  987 

} else if ((fp_value >= 0.001) & (fp_value <0.01)) { 988 

f_list <- list(fp_value, "highly significant", "unequal variances") 989 

} else if (fp_value < 0.001) { 990 

f_list <- list(fp_value, "very highly significant", "unequal variances")  991 

} else if ((fp_value >= 0.05) & (fp_value < 0.10)) { 992 

f_list<- list(fp_value, "trend toward significance/not significant", "equal variances") 993 

} else { 994 

    f_list <- list(fp_value, "not significant", "equal variances") 995 

} 996 

#Construction of a variable containing the results of the F test evaluation 997 

f_list_df <- as.data.frame(f_list, stringsAsFactors = FALSE) 998 

colnames(f_list_df) <- c("F p-value", "Level of siginificance", "F-test conclusion") 999 

f_test_list[[nr]] <- f_list_df 1000 

if (fp_value >= 0.05) {#Calculation of the t statistic for equal variances 1001 

s <- sqrt((df1*dataset[r_min,"Mean SD"]^2 + df2*dataset[r_min + 2,"Mean SD"]^2) / (size1 + 1002 
size2 - 2)) 1003 

t_statistic <- (dataset[r_min,"Mean"] - dataset[r_min + 2,"Mean"]) / (s * sqrt(1/size1 + 1004 
1/size2))                                                                             1005 

dfree = size1 + size2 - 2          1006 

tp_value <- pt(t_statistic, df = dfree, lower.tail = TRUE) 1007 

#Evaluation of the level of significance and decision making on the significance of the 1008 
difference between the two samples  1009 

if (tp_value >= 0.01 & tp_value <0.05) { 1010 

t_list <- list(tp_value, "significant")  1011 

}  else if (tp_value >= 0.001 & tp_value <0.01) {  1012 

  t_list <- list(tp_value, "highly significant") 1013 

} else if (tp_value < 0.001) { 1014 
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  t_list<- list(tp_value, "very highly significant")  1015 

} else if (tp_value >= 0.05 & tp_value < 0.10) {  1016 

  t_list <- list(tp_value, "trend toward significance") 1017 

} else { 1018 

    t_list <- list(tp_value, "not significant")   1019 

} 1020 

} else {#Calculation of the t statistic for unequal variances 1021 

#T-Test for unequal variances (Satterthwaite's Method) 1022 

den <- sqrt(dataset[r_min, "Mean SD"]^2/size1 + dataset[r_min + 2, "Mean SD"]^2/size2)   1023 

t_statistic <- (dataset[r_min, "Mean"] - dataset[r_min + 2, "Mean"])/ den 1024 

df_numerator <- (dataset[r_min, "Mean SD"]^2/size1 + dataset[r_min + 2, "Mean 1025 
SD"]^2/size2)^2 1026 

df_denominator <- (dataset[r_min, "Mean SD"]^2/size1)^2/(size1 - 1) + (dataset[r_min + 2, 1027 
"Mean SD"]^2/size2 )^2/(size2 - 1) 1028 

dfree = df_numerator/df_denominator                                                                  1029 

tp_value <- pt(t_statistic, df = dfree, lower.tail = TRUE) 1030 

#Evaluation of the level of significance and decision making on the significance of the 1031 
difference between the two samples  1032 

if (tp_value >= 0.01 & tp_value <0.05) { 1033 

t_list <- list(tp_value, "significant")  1034 

}  else if (tp_value >= 0.001 & tp_value <0.01) { 1035 

  t_list <- list(tp_value, "highly significant") 1036 

} else if (tp_value < 0.001) { 1037 

t_list<- list(tp_value, "very highly significant") 1038 

} else if (tp_value >= 0.05 & tp_value < 0.10) { 1039 

t_list <- list(tp_value, "trend toward significance")   1040 

} else { 1041 

t_list <- list(tp_value, "not significant") 1042 

} 1043 

#Adding the results of the T test evaluation to the variable created to store the data 1044 
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} 1045 

t_list_df <- as.data.frame(t_list, stringsAsFactors = FALSE) 1046 

colnames(t_list_df) <- c("T p-value", "Level of siginificance") 1047 

t_test_list[[nr]] <- t_list_df 1048 

#Compute Power Analysis before leaving this loop 1049 

c <- qnorm(0.975) 1050 

k <- size2 / size1 # equal to n2/n1, that is, sample_size = n2 and control_size = n1 1051 

se <- sqrt((dataset[r_min, "Mean SD"]^2)^2 + (dataset[r_min + 2, "Mean SD"]^2)^2 / k) 1052 

delta <- abs(dataset[r_min,"Mean"] - dataset[r_min + 2,"Mean"]) 1053 

power <- pnorm(- c + (sqrt(size1)*delta)/se) 1054 

power_df <- as.data.frame(c(power), stringsAsFactors = FALSE) 1055 

colnames(power_df) <- c("Power") 1056 

power_test_list[[nr]] <- power_df 1057 

#r_min and nr increment 1058 

r_min <- r_min + 1  1059 

nr <- nr + 1 1060 

  } else { 1061 

     1062 

size1 <- dataset[r_min, "Sample Size"] 1063 

size2 <- dataset[r_min - 4, "Sample Size"] 1064 

#Calcultating the degrees of freedom 1065 

df1 <- size1 - 1  1066 

df2 <- size2 - 1 1067 

#Calculation of the f statistic  1068 

f_statistic <- ((dataset[r_min,"Mean SD"])^2) / ((dataset[r_min - 4,"Mean SD"])^2) 1069 

#Computation of the p-value. lower.tail is set to TRUE as the f test is two-sided  1070 

fp_value <- pf(f_statistic, df1 = df1, df2 = df2, lower.tail = TRUE) 1071 

#Evaluation of the level of significance and decision making on equality or inequality of 1072 
variances 1073 
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if ((fp_value >= 0.01) & (fp_value < 0.05)) { 1074 

f_list <- list(fp_value, "significant", "unequal variances")  1075 

} else if ((fp_value >= 0.001) & (fp_value <0.01)) { 1076 

f_list <- list(fp_value, "highly significant", "unequal variances")    1077 

} else if (fp_value < 0.001) {   1078 

f_list <- list(fp_value, "very highly significant", "unequal variances") 1079 

} else if ((fp_value >= 0.05) & (fp_value < 0.10)) {   1080 

f_list<- list(fp_value, "trend toward significance/not significant", "equal variances") 1081 

} else { 1082 

    f_list <- list(fp_value, "not significant", "equal variances")  1083 

} 1084 

#Construction of a variable containing the results of the F test evaluation 1085 

f_list_df <- as.data.frame(f_list, stringsAsFactors = FALSE) 1086 

colnames(f_list_df) <- c("F p-value", "Level of siginificance", "F-test conclusion") 1087 

f_test_list[[nr]] <- f_list_df 1088 

if (fp_value >= 0.05) {#Calculation of the t statistic for equal variances 1089 

s <- sqrt((df1*dataset[r_min,"Mean SD"]^2 + df2*dataset[r_min - 4,"Mean SD"]^2) / (size1 + 1090 
size2 - 2)) 1091 

t_statistic <- (dataset[r_min,"Mean"] - dataset[r_min - 4,"Mean"]) / (s * sqrt(1/size1 + 1092 
1/size2))                                                                              1093 

dfree = size1 + size2 - 2          1094 

tp_value <- pt(t_statistic, df = dfree, lower.tail = TRUE) 1095 

#Evaluation of the level of significance and decision making on the significance of the 1096 
difference between the two samples  1097 

if (tp_value >= 0.01 & tp_value <0.05) { 1098 

t_list <- list(tp_value, "significant")  1099 

}  else if (tp_value >= 0.001 & tp_value <0.01) {   1100 

t_list <- list(tp_value, "highly significant") 1101 

} else if (tp_value < 0.001) { 1102 

t_list<- list(tp_value, "very highly significant") 1103 
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} else if (tp_value >= 0.05 & tp_value < 0.10) {  1104 

t_list <- list(tp_value, "trend toward significance")  1105 

} else { 1106 

t_list <- list(tp_value, "not significant") 1107 

} 1108 

} else {#Calculation of the t statistic for unequal variances 1109 

#T-Test for unequal variances (Satterthwaite's Method) 1110 

 den <- sqrt(dataset[r_min, "Mean SD"]^2/size1 + dataset[r_min - 4, "Mean SD"]^2/size2)   1111 

t_statistic <- (dataset[r_min, "Mean"] - dataset[r_min - 4, "Mean"])/ den 1112 

df_numerator <- (dataset[r_min, "Mean SD"]^2/size1 + dataset[r_min - 4, "Mean 1113 
SD"]^2/size2)^2 1114 

df_denominator <- (dataset[r_min, "Mean SD"]^2/size1)^2/(size1 - 1) + (dataset[r_min - 4, 1115 
"Mean SD"]^2/size2 )^2/(size2 - 1) 1116 

dfree = df_numerator/df_denominator                                                                  1117 

tp_value <- pt(t_statistic, df = dfree, lower.tail = TRUE) 1118 

 1119 

#Evaluation of the level of significance and decision making on the significance of the 1120 
difference between the two samples  1121 

if (tp_value >= 0.01 & tp_value <0.05) { 1122 

t_list <- list(tp_value, "significant")  1123 

}  else if (tp_value >= 0.001 & tp_value <0.01) {  1124 

t_list <- list(tp_value, "highly significant")    1125 

} else if (tp_value < 0.001) {  1126 

t_list<- list(tp_value, "very highly significant")  1127 

} else if (tp_value >= 0.05 & tp_value < 0.10) {  1128 

t_list <- list(tp_value, "trend toward significance") 1129 

} else { 1130 

    t_list <- list(tp_value, "not significant") 1131 

} 1132 

#Adding the results of the T test evaluation to the variable created to store the data 1133 
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} 1134 

t_list_df <- as.data.frame(t_list, stringsAsFactors = FALSE) 1135 

colnames(t_list_df) <- c("T p-value", "Level of siginificance") 1136 

t_test_list[[nr]] <- t_list_df 1137 

 1138 

#Compute Power Analysis before leaving this loop 1139 

c <- qnorm(0.975) 1140 

k <- size2 / size1 # equal to n2/n1, that is, sample_size = n2 and control_size = n1 1141 

se <- sqrt((dataset[r_min, "Mean SD"]^2)^2 + (dataset[r_min - 4, "Mean SD"]^2)^2 / k) 1142 

delta <- abs(dataset[r_min,"Mean"] - dataset[r_min - 4,"Mean"]) 1143 

power <- pnorm(- c + (sqrt(size1)*delta)/se) 1144 

power_df <- as.data.frame(c(power), stringsAsFactors = FALSE) 1145 

colnames(power_df) <- c("Power") 1146 

power_test_list[[nr]] <- power_df 1147 

#r_min and nr increment  1148 

    r_min <- r_min + 1   1149 

    nr <- nr + 1  1150 

     } 1151 

  } 1152 

} 1153 

for (i in 1:42) {  1154 

  if (i == 1 | i == 2) { 1155 

  f_test_complete_df <- as.data.frame(rbind(f_test_list[[1]], f_test_list[[2]]), stringsAsFactors 1156 
= FALSE) 1157 

  t_test_complete_df  <- as.data.frame(rbind(t_test_list[[1]], t_test_list[[2]]), 1158 
stringsAsFactors = FALSE) 1159 

  power_test_complete_df  <- as.data.frame(rbind(power_test_list[[1]], 1160 
power_test_list[[2]]), stringsAsFactors = FALSE)  1161 

  } else { 1162 

  f_test_complete_df <- as.data.frame(rbind(f_test_complete_df, f_test_list[[i]]), 1163 
stringsAsFactors = FALSE) 1164 



262 
 

  t_test_complete_df  <- as.data.frame(rbind(t_test_complete_df, t_test_list[[i]]), 1165 
stringsAsFactors = FALSE) 1166 

  power_test_complete_df  <- as.data.frame(rbind(power_test_complete_df, 1167 
power_test_list[[i]]), stringsAsFactors = FALSE)   1168 

    } 1169 

} 1170 

f_t_power_complete_df <- as.data.frame(cbind(f_test_complete_df, t_test_complete_df, 1171 
power_test_complete_df)) 1172 

treatment_matrix <- as.data.frame(matrix(c(rep(dataset[1, "Sample Type"], times = 42)), 1173 
nrow = 42, ncol = 1), stringsAsFactors = FALSE)  1174 

colnames(treatment_matrix) <- c("Treatment") 1175 

comparison_type_matrix <- as.data.frame(matrix(c("B", "B", "A", "A", "C", "C"), nrow = 6, 1176 
ncol = 1), stringsAsFactors = FALSE)  1177 

#Comp_type A = Go/G1 vs S, B = S vs G2/M, and C = Go/G1 vs G2/M 1178 

comparison_type_matrix <- rbind(comparison_type_matrix, comparison_type_matrix, 1179 
comparison_type_matrix, comparison_type_matrix, comparison_type_matrix, 1180 
comparison_type_matrix, comparison_type_matrix) 1181 

colnames(comparison_type_matrix) <- c("Comp_Type") 1182 

#Add the remaining lables from the dataset 1183 

baseline_channels <- as.data.frame(dataset[, "Channels"], stringsAsFactors = FALSE) 1184 

baseline_lectin <- as.data.frame(dataset[, "Lectin"], stringsAsFactors = FALSE) 1185 

treat_channels_compType_Lectin_f_t_power_complete_df <- 1186 
as.data.frame(c(treatment_matrix, baseline_channels, baseline_lectin, 1187 
f_t_power_complete_df, comparison_type_matrix), stringsAsFactors = FALSE) 1188 

colnames(treat_channels_compType_Lectin_f_t_power_complete_df)  <- c("Treatment", 1189 
"Channels", "Lectin","Fp_value", "F_sign","F_test_con", "Tp_value","T_test_sig", "Power", 1190 
"Comp_type") 1191 

treat_channels_compType_Lectin_f_t_power_complete_df  1192 

}  1193 

#End of lectin_density_stats() function 1194 

1195 
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8.2 Spent medium data treatment and generation of plots  
 

Data obtained from cells subjected to the variation of spent medium levels are computed in 
this section. Pre built-in R functions and the functions created in the previous section are used 
here. The code for the generation of plots are demonstrated in this section as well.  

 

#Algorithm to collect gated data of the Media Variation Experiments 1196 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/Baseline") 1197 

wd <- getwd() 1198 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments 1199 
II/Baseline/Compensation Controls - WGA") 1200 

flow_gating_list <- flow_gating(wd, x_WGA) 1201 

#flow_gating_list <- flow_gating(wd) 1202 

gs1 <- flow_gating_list[[1]] 1203 

gs2 <- flow_gating_list[[2]] 1204 

gs3 <- flow_gating_list[[3]] 1205 

save_gs(gs1, path = file.path(wd, "gs1")) 1206 

save_gs(gs2, path = file.path(wd, "gs2")) 1207 

save_gs(gs3, path = file.path(wd, "gs3"))    1208 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/0 day SM") 1209 

wd <- getwd() 1210 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/0 day 1211 
SM/Compensation Controls - WGA") 1212 

flow_gating_list <- flow_gating(wd, x_WGA) 1213 

#flow_gating_list <- flow_gating(wd) 1214 

gs1 <- flow_gating_list[[1]] 1215 

gs2 <- flow_gating_list[[2]] 1216 

gs3 <- flow_gating_list[[3]] 1217 

save_gs(gs1, path = file.path(wd, "gs1")) 1218 

save_gs(gs2, path = file.path(wd, "gs2")) 1219 
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save_gs(gs3, path = file.path(wd, "gs3"))    1220 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/1 day SM") 1221 

wd <- getwd() 1222 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/1 day 1223 
SM/Compensation Controls - WGA") 1224 

flow_gating_list <- flow_gating(wd, x_WGA) 1225 

#flow_gating_list <- flow_gating(wd) 1226 

gs1 <- flow_gating_list[[1]] 1227 

gs2 <- flow_gating_list[[2]] 1228 

gs3 <- flow_gating_list[[3]] 1229 

save_gs(gs1, path = file.path(wd, "gs1")) 1230 

save_gs(gs2, path = file.path(wd, "gs2")) 1231 

save_gs(gs3, path = file.path(wd, "gs3"))    1232 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/2 day SM") 1233 

wd <- getwd() 1234 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/2 day 1235 
SM/Compensation Controls - WGA") 1236 

flow_gating_list <- flow_gating(wd, x_WGA) 1237 

#flow_gating_list <- flow_gating(wd) 1238 

gs1 <- flow_gating_list[[1]] 1239 

gs2 <- flow_gating_list[[2]] 1240 

gs3 <- flow_gating_list[[3]] 1241 

save_gs(gs1, path = file.path(wd, "gs1")) 1242 

save_gs(gs2, path = file.path(wd, "gs2")) 1243 

save_gs(gs3, path = file.path(wd, "gs3"))    1244 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/4 day SM") 1245 

wd <- getwd() 1246 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/4 day 1247 
SM/Compensation Controls - WGA") 1248 

flow_gating_list <- flow_gating(wd, x_WGA) 1249 
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#flow_gating_list <- flow_gating(wd) 1250 

gs1 <- flow_gating_list[[1]] 1251 

gs2 <- flow_gating_list[[2]] 1252 

gs3 <- flow_gating_list[[3]] 1253 

save_gs(gs1, path = file.path(wd, "gs1")) 1254 

save_gs(gs2, path = file.path(wd, "gs2")) 1255 

save_gs(gs3, path = file.path(wd, "gs3"))    1256 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/5 day SM") 1257 

wd <- getwd() 1258 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/5 day 1259 
SM/Compensation Controls - WGA") 1260 

flow_gating_list <- flow_gating(wd, x_WGA) 1261 

#flow_gating_list <- flow_gating(wd) 1262 

gs1 <- flow_gating_list[[1]] 1263 

gs2 <- flow_gating_list[[2]] 1264 

gs3 <- flow_gating_list[[3]] 1265 

save_gs(gs1, path = file.path(wd, "gs1")) 1266 

save_gs(gs2, path = file.path(wd, "gs2")) 1267 

save_gs(gs3, path = file.path(wd, "gs3"))   1268 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/6 day SM") 1269 

wd <- getwd() 1270 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/6 day 1271 
SM/Compensation Controls - WGA") 1272 

flow_gating_list <- flow_gating(wd, x_WGA) 1273 

#flow_gating_list <- flow_gating(wd) 1274 

gs1 <- flow_gating_list[[1]] 1275 

gs2 <- flow_gating_list[[2]] 1276 

gs3 <- flow_gating_list[[3]] 1277 

save_gs(gs1, path = file.path(wd, "gs1")) 1278 

save_gs(gs2, path = file.path(wd, "gs2")) 1279 
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save_gs(gs3, path = file.path(wd, "gs3"))  1280 

``` 1281 

Algorithm to retreive gated data and run the statistical analysis of the Media Variation 1282 
Experiments 1283 

```{r} 1284 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/Baseline") 1285 

wd <- getwd() 1286 

gs1 <- load_gs(file.path(wd, "gs1")) 1287 

gs2 <- load_gs(file.path(wd, "gs2")) 1288 

gs3 <- load_gs(file.path(wd, "gs3")) 1289 

media_baseline <- table_summary(gs1, gs2, gs3, c("d")) 1290 

media_baseline_descriptive <- table_descriptive(gs1, gs2, gs3, c("d")) 1291 

media_baseline_density <- lectin_density_stats(media_baseline) 1292 

 1293 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/0 day SM") 1294 

wd <- getwd() 1295 

gs1 <- load_gs(file.path(wd, "gs1")) 1296 

gs2 <- load_gs(file.path(wd, "gs2")) 1297 

gs3 <- load_gs(file.path(wd, "gs3")) 1298 

media_zero <- table_summary(gs1, gs2, gs3, c("g")) 1299 

media_zero_descriptive <- table_descriptive(gs1, gs2, gs3, c("g")) 1300 

base_zero <- F_T_Power_test(media_baseline, media_zero, c("g")) 1301 

media_zero_density <- lectin_density_stats(media_zero) 1302 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/1 day SM") 1303 

wd <- getwd() 1304 

gs1 <- load_gs(file.path(wd, "gs1")) 1305 

gs2 <- load_gs(file.path(wd, "gs2")) 1306 

gs3 <- load_gs(file.path(wd, "gs3")) 1307 

media_one <- table_summary(gs1, gs2, gs3, c("f")) 1308 
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media_one_descriptive <- table_descriptive(gs1, gs2, gs3, c("f")) 1309 

base_one <- F_T_Power_test(media_baseline, media_one, c("f")) 1310 

media_one_density <- lectin_density_stats(media_one) 1311 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/2 day SM") 1312 

wd <- getwd() 1313 

gs1 <- load_gs(file.path(wd, "gs1")) 1314 

gs2 <- load_gs(file.path(wd, "gs2")) 1315 

gs3 <- load_gs(file.path(wd, "gs3")) 1316 

media_two <- table_summary(gs1, gs2, gs3, c("e")) 1317 

media_two_descriptive <- table_descriptive(gs1, gs2, gs3, c("e")) 1318 

base_two <- F_T_Power_test(media_baseline, media_two, c("e")) 1319 

media_two_density <- lectin_density_stats(media_two) 1320 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/4 day SM") 1321 

wd <- getwd() 1322 

gs1 <- load_gs(file.path(wd, "gs1")) 1323 

gs2 <- load_gs(file.path(wd, "gs2")) 1324 

gs3 <- load_gs(file.path(wd, "gs3")) 1325 

media_four <- table_summary(gs1, gs2, gs3, c("c")) 1326 

media_four_descriptive <- table_descriptive(gs1, gs2, gs3, c("c")) 1327 

base_four <- F_T_Power_test(media_baseline, media_four, c("c")) 1328 

media_four_density <- lectin_density_stats(media_four) 1329 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/5 day SM") 1330 

wd <- getwd() 1331 

gs1 <- load_gs(file.path(wd, "gs1")) 1332 

gs2 <- load_gs(file.path(wd, "gs2")) 1333 

gs3 <- load_gs(file.path(wd, "gs3")) 1334 

media_five <- table_summary(gs1, gs2, gs3, c("b")) 1335 

media_five_descriptive <- table_descriptive(gs1, gs2, gs3, c("b")) 1336 

base_five <- F_T_Power_test(media_baseline, media_five, c("b")) 1337 
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media_five_density <- lectin_density_stats(media_five) 1338 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II/6 day SM") 1339 

wd <- getwd() 1340 

gs1 <- load_gs(file.path(wd, "gs1")) 1341 

gs2 <- load_gs(file.path(wd, "gs2")) 1342 

gs3 <- load_gs(file.path(wd, "gs3")) 1343 

media_six <- table_summary(gs1, gs2, gs3, c("a")) 1344 

media_six_descriptive <- table_descriptive(gs1, gs2, gs3, c("a")) 1345 

base_six <- F_T_Power_test(media_baseline, media_six, c("a")) 1346 

media_six_density <- lectin_density_stats(media_six) 1347 

media_global_descriptive_df <- rbind(media_baseline_descriptive, media_zero_descriptive, 1348 
media_one_descriptive, media_two_descriptive, media_four_descriptive, 1349 
media_five_descriptive, media_six_descriptive) 1350 

rm(media_baseline_descriptive, media_zero_descriptive, media_one_descriptive, 1351 
media_two_descriptive, media_four_descriptive, media_five_descriptive, 1352 
media_six_descriptive) 1353 

media_global_lectinvariation_df <- rbind(media_baseline, media_zero, media_one, 1354 
media_two, media_four, media_five, media_six) 1355 

rm(media_baseline, media_zero, media_one, media_two, media_four, media_five, 1356 
media_six) 1357 

media_global_F_T_df <- rbind(base_zero, base_one, base_two, base_four, base_five, 1358 
base_six) 1359 

rm(base_zero, base_one, base_two, base_four, base_five, base_six) 1360 

media_global_density_df <- rbind(media_baseline_density, media_zero_density, 1361 
media_two_density, media_four_density, media_five_density, media_six_density) 1362 

rm(media_baseline_density, media_zero_density, media_two_density, media_four_density, 1363 
media_five_density, media_six_density)            1364 

colnames(media_global_F_T_df) <- c("Sample_Type", "Channels", "Subpopulation", "Lectin", 1365 
"Mean", "SD", "Sample_Size","Fp_value", "F_significance", "F_test_conclusion", "Tp_value", 1366 
"T_test_significance", "Power") 1367 

colnames(media_global_lectinvariation_df) <- c("Sample_Type", "Channels", "Mean", 1368 
"Mean_SD", "CV_perc", "Subpopulation", "Sample_Size","Viability_perc", 1369 
"Viability_SD_perc", "Lectin") 1370 

``` 1371 
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Plotting pH 1372 

```{r} 1373 

library(readxl) 1374 

library(gridExtra) 1375 

#Read in the excel spreadsheet into R 1376 

setwd("~/Dropbox/PhD Project/PhD Project/Media Depletion Experiments II") 1377 

pH_media <- read_excel("pH.xlsx") 1378 

pH_media_df <- as.data.frame(pH_media, stringsAsFactors = FALSE)  1379 

``` 1380 

```{r} 1381 

``` 1382 

Viability and pH Plots  1383 

```{r} 1384 

#Viability across nutrient variation (line plot of individual lectin curves) 1385 

viability_plot <- mutate(media_global_lectinvariation_df, Sample_Type = 1386 
factor(Sample_Type, levels = c("6", "5", "4", "3", "2", "1", "0"))) %>% 1387 

  ggplot(aes(Sample_Type, Viability_perc)) + 1388 

  geom_smooth(aes(group = Lectin, color = Lectin), size = 1.5, se = FALSE) + 1389 

  scale_colour_manual(name = "Lectin",  values = c("#980043","#7a0177", "#08519c", 1390 
"#006d2c", "#7fcdbb",  "#ff7f00", "#993404")) + 1391 

   labs(x = "Level of Spent medium (Days)" , y = "Viability (%)", title = NULL ) + 1392 

scale_x_discrete(expand = c(0,0), breaks = c("6", "5", "4", "3", "2", "1", "0"), labels = c("-3", "-1393 
2", "-1", "0", "+1", "+2", "+3")) + 1394 

  theme_classic() + 1395 

  theme( 1396 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1397 

    legend.text = element_text(size = 15), 1398 

    legend.title = element_text(size = 15, face = "bold"), 1399 

    legend.box.background = element_blank(), 1400 

    legend.justification = "center", 1401 
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    legend.position = "right", 1402 

    #axis.text.x = element_text(size = 10, face = "bold", color = "black"), 1403 

    #axis.ticks.x = element_blank(), 1404 

    axis.title = element_text(size = 15), 1405 

    strip.text = element_text(size = 15), 1406 

    strip.background = element_rect(fill = "grey90") 1407 

  ) 1408 

#pH line plot across spent medium variation       1409 

ggplot(aes(Lectin_Concentration, Viability, group = 1)) + 1410 

  geom_point(aes(colour = Replicate), size = 3, alpha = 0.60) + 1411 

  geom_smooth(colour = "#993404", method = "lm", size = 1.5, formula = my.formula) + 1412 

  #stat_poly_eq(formula = my.formula, aes(label = paste(..eq.label.., ..rr.label.., sep = 1413 
"~~~")), parse = TRUE, label.x = 0.5, label.y = 0.2) + 1414 

   labs(x = expression(paste("Lectin concentration (", mu, "g/mL)")) , y = "Viability (%)", title = 1415 
NULL ) + 1416 

  scale_colour_brewer(palette = "Set1", name = "Replicate") +  1417 

pH_plot <- ggplot(pH_media_df, aes(Sample_Type, pH)) + 1418 

  geom_point(aes(colour = Replicate), size = 3, alpha = 0.60) + 1419 

  geom_smooth(size = 1.5) + 1420 

  labs(x = "Level of Spent medium (Days)" , y = "pH", title = NULL ) + 1421 

  scale_colour_brewer(palette = "Set1", name = "Replicate") + 1422 

    scale_x_continuous(expand = c(0, 0), breaks = c(-3, -2, -1, 0, 1, 2, 3), labels = c("-3", "-2", "-1423 
1", "0", "+1", "+2", "+3")) + 1424 

  scale_y_continuous(expand = c(0,0)) + 1425 

  theme_classic() + 1426 

  theme( 1427 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1428 

    legend.text = element_text(size = 15), 1429 

    legend.title = element_text(size = 15, face = "bold"), 1430 

    legend.box.background = element_blank(), 1431 
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    legend.justification = "center", 1432 

    legend.position = "right", 1433 

    #axis.text.x = element_text(size = 10, face = "bold", color = "black"), 1434 

    #axis.ticks.x = element_blank(), 1435 

    axis.title = element_text(size = 15), 1436 

    strip.text = element_text(size = 15), 1437 

    strip.background = element_rect(fill = "grey90") 1438 

  ) 1439 

ggplot(media_global_lectinvariation_df, aes(Sample_Type, Viability_perc)) + 1440 

  geom_point(alpha = 0.0) + 1441 

 geom_smooth(data = viabilityPNA_df, aes(colour = "A"), method = "lm", size = 1.5, formula 1442 
= y ~ splines::bs(x, 8), se = FALSE) + 1443 

  geom_smooth(data = viabilityAAL_df, aes(colour = "B"), method = "lm", size = 1.5, formula 1444 
= y ~ splines::bs(x, 7), se = FALSE) + 1445 

  geom_smooth(data = viabilityMALII_df, aes(colour = "C"), method = "lm", size = 1.5, 1446 
formula = y ~ splines::bs(x, 8), se = FALSE) + 1447 

  geom_smooth(data = viabilityLECB_df, aes(colour = "D"), method = "lm", size = 1.5, formula 1448 
= y ~ splines::bs(x, 8), se = FALSE) + 1449 

  geom_smooth(data = viabilityLECA_df, aes(colour = "E"), method = "lm", size = 1.5, formula 1450 
= y ~ splines::bs(x, 8), se = FALSE) + 1451 

  geom_smooth(data = viabilityAAL2_df, aes(colour = "F"), method = "lm", size = 1.5, formula 1452 
= y ~ splines::bs(x, 8), se = FALSE) + 1453 

  geom_smooth(data = viabilityWGA_df, aes(colour = "G"), method = "lm", size = 1.5, 1454 
formula = y ~ splines::bs(x, 6), se = FALSE) + 1455 

geom_vline(aes(xintercept = c(6.95)), color = "red", linetype = "dashed", size = 1) + 1456 

#geom_text(aes(x = 5.5, label = expression(paste("Lectin concentration level\n selected at 1457 
3.0", mu, "g/mL")) , y = 96), colour="red", angle = 0) + 1458 

  labs(x = expression(paste("Lectin concentration (", mu, "g/mL)")) , y = "Viability (%)", title = 1459 
NULL ) + 1460 

  scale_colour_manual(name = "Lectin",  values = c("#ff7f00", "#980043", "#7fcdbb", 1461 
"#006d2c", "#08519c", "#7a0177", "#993404"), breaks = c("A", "B", "C", "D", "E", "F", "G"), 1462 
labels = c("PNA", "AAL", "MALII", "LECB", "LECA", "AAL-2", "WGA")) + 1463 

scale_x_discrete(expand = c(0,0)) + 1464 

  theme_classic() + 1465 
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  theme( 1466 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1467 

    legend.text = element_text(size = 15), 1468 

    legend.title = element_text(size = 15, face = "bold"), 1469 

    legend.box.background = element_blank(), 1470 

    legend.justification = "center", 1471 

    legend.position = "right", 1472 

    #axis.text.x = element_text(size = 10, face = "bold", color = "black"), 1473 

    #axis.ticks.x = element_blank(), 1474 

    axis.title = element_text(size = 15), 1475 

    strip.text = element_text(size = 15), 1476 

    strip.background = element_rect(fill = "grey90"), 1477 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1478 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1479 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1480 

  ) 1481 

``` 1482 

Facetted plots with all lectins - Descriptive Analysis 1483 

```{r} 1484 

#FSC-A 1485 

#AAL, LECB, PNA, LECA, AAL-2, WGA, MAL II 1486 

filter(media_global_lectinvariation_df, Channels == "FSC-A", Subpopulation != "Dead + 1487 
Apoptotic") %>% 1488 

mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 1489 
"Go/G1"))) %>% 1490 

mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 1491 
"MAL II"))) %>% 1492 

mutate(Sample_Type = factor(Sample_Type, levels = c("6", "5", "4", "3", "2", "1", "0"))) %>% 1493 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 1494 

geom_point() + 1495 



273 
 

geom_line(size = 1) + 1496 

theme_classic() + 1497 

labs(x = "Level of Spent medium (Days)" , y = "FSC-A (linear scale)", title = NULL ) + 1498 

scale_colour_brewer(palette = "Dark2", name = "Subpopulation") + 1499 

scale_x_discrete(expand = c(0,0), breaks = c("6", "5", "4", "3", "2", "1", "0"), labels = c("-3", "-1500 
2", "-1", "0", "+1", "+2", "+3")) + 1501 

facet_grid(.~ Lectin) + 1502 

theme_bw() + 1503 

theme( 1504 

plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1505 

legend.text = element_text(size = 15), 1506 

legend.title = element_text(size = 15, face = "bold"), 1507 

legend.box.background = element_blank(), 1508 

legend.justification = "center", 1509 

legend.position = "bottom", 1510 

#axis.text.x = element_text(angle = 45), 1511 

#axis.ticks.x = element_blank(), 1512 

axis.title = element_text(size = 15), 1513 

strip.text = element_text(size = 15), 1514 

strip.background = element_rect(fill = "grey90"), 1515 

panel.grid = element_blank(), 1516 

panel.spacing = unit(0.75, "lines") 1517 

#panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1518 

#panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1519 

#legend.background = element_rect(fill = "grey90", colour = "grey90") 1520 

  ) 1521 

#SSC-A 1522 

#All populations 1523 

p1 <- filter(media_global_lectinvariation_df, Channels == "SSC-A", Subpopulation != "Dead + 1524 
Apoptotic") %>% 1525 
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mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 1526 
"Go/G1"))) %>% 1527 

mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 1528 
"MAL II"))) %>% 1529 

mutate(Sample_Type = factor(Sample_Type, levels = c("6", "5", "4", "3", "2", "1", "0"))) %>% 1530 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 1531 

geom_point() + 1532 

geom_line(size = 1) + 1533 

theme_classic() +  1534 

labs(x = NULL , y = "SSC-A (linear scale)", title = NULL ) + 1535 

scale_colour_brewer(palette = "Dark2", name = "Subpopulation", guide = FALSE) + 1536 

scale_x_discrete(expand = c(0,0), breaks = c("6", "5", "4", "3", "2", "1", "0"), labels = c("-3", "-1537 
2", "-1", "0", "+1", "+2", "+3")) + 1538 

facet_grid(.~ Lectin) + 1539 

theme_bw() + 1540 

theme( 1541 

plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1542 

legend.text = element_text(size = 15), 1543 

legend.title = element_text(size = 15, face = "bold"), 1544 

legend.box.background = element_blank(), 1545 

legend.justification = "center", 1546 

legend.position = "bottom", 1547 

#axis.text.x = element_text(angle = 45), 1548 

#axis.ticks.x = element_blank(), 1549 

axis.title = element_text(size = 15), 1550 

strip.text = element_text(size = 15), 1551 

strip.background = element_rect(fill = "grey90"), 1552 

panel.grid = element_blank(), 1553 

panel.spacing = unit(0.75, "lines") 1554 

#panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1555 
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#panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1556 

#legend.background = element_rect(fill = "grey90", colour = "grey90") 1557 

  ) 1558 

#SSC-A 1559 

#DNA cycle populations 1560 

p2 <- filter(media_global_lectinvariation_df, Channels == "SSC-A", Subpopulation != "Dead + 1561 
Apoptotic") %>% 1562 

mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 1563 
"Go/G1"))) %>% 1564 

mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 1565 
"MAL II"))) %>% 1566 

mutate(Sample_Type = factor(Sample_Type, levels = c("6", "5", "4", "3", "2", "1", "0"))) %>% 1567 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 1568 

geom_point() + 1569 

geom_line(size = 1) + 1570 

theme_classic() + 1571 

labs(x = "Level of Spent medium (Days)" , y = "SSC-A (linear scale)", title = NULL ) + 1572 

scale_colour_brewer(palette = "Dark2", name = "Subpopulation") + 1573 

scale_x_discrete(expand = c(0,0), breaks = c("6", "5", "4", "3", "2", "1", "0"), labels = c("-3", "-1574 
2", "-1", "0", "+1", "+2", "+3")) + 1575 

scale_y_continuous(limits = c(20000, 55000)) + 1576 

facet_grid(.~ Lectin) + 1577 

theme_bw() + 1578 

theme( 1579 

plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1580 

legend.text = element_text(size = 15), 1581 

legend.title = element_text(size = 15, face = "bold"), 1582 

legend.box.background = element_blank(), 1583 

legend.justification = "center", 1584 

legend.position = "bottom", 1585 

#axis.text.x = element_text(angle = 45), 1586 
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#axis.ticks.x = element_blank(), 1587 

axis.title = element_text(size = 15), 1588 

strip.text = element_text(size = 15), 1589 

strip.background = element_rect(fill = "grey90"), 1590 

panel.grid = element_blank(), 1591 

panel.spacing = unit(0.75, "lines") 1592 

#panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1593 

#panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1594 

#legend.background = element_rect(fill = "grey90", colour = "grey90") 1595 

  ) 1596 

grid.arrange(p1, p2, nrow = 2) 1597 

#LECTIN-A 1598 

#All populations 1599 

p1 <- filter(media_global_lectinvariation_df, Channels == "LECTIN-A", Subpopulation != 1600 
"Dead + Apoptotic") %>% 1601 

mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 1602 
"Go/G1"))) %>% 1603 

mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 1604 
"MAL II"))) %>% 1605 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 1606 

geom_point() + 1607 

geom_line(size = 1) + 1608 

theme_classic() + 1609 

labs(x = NULL , y = "LECTIN-A (linear scale)", title = NULL ) + 1610 

scale_colour_brewer(palette = "Dark2", name = "Subpopulation", guide = FALSE) + 1611 

scale_x_discrete(expand = c(0,0), breaks = c("a", "b", "c", "d", "e", "f", "g"), labels = c("-3", "-1612 
2", "-1", "0", "+1", "+2", "+3")) + 1613 

facet_grid(.~ Lectin) + 1614 

theme_bw() + 1615 

theme( 1616 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1617 
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    legend.text = element_text(size = 15), 1618 

    legend.title = element_text(size = 15, face = "bold"), 1619 

    legend.box.background = element_blank(), 1620 

    legend.justification = "center", 1621 

    legend.position = "bottom", 1622 

    #axis.text.x = element_text(angle = 45), 1623 

    #axis.ticks.x = element_blank(), 1624 

    axis.title = element_text(size = 15), 1625 

    strip.text = element_text(size = 15), 1626 

    strip.background = element_rect(fill = "grey90"), 1627 

    panel.grid = element_blank(), 1628 

    panel.spacing = unit(0.75, "lines") 1629 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1630 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1631 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1632 

  ) 1633 

#LECTIN-A 1634 

#DNA cycle populations 1635 

p2 <- filter(media_global_lectinvariation_df, Channels == "LECTIN-A", Subpopulation != 1636 
"Dead + Apoptotic") %>% 1637 

mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 1638 
"Go/G1"))) %>% 1639 

mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 1640 
"MAL II"))) %>% 1641 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 1642 

geom_point() + 1643 

geom_line(size = 1) + 1644 

theme_classic() + 1645 

labs(x = "Level of Spent medium (Days)" , y = "LECTIN-A (linear scale)", title = NULL ) + 1646 

scale_colour_brewer(palette = "Dark2", name = "Subpopulation") + 1647 
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scale_x_discrete(expand = c(0,0), breaks = c("a", "b", "c", "d", "e", "f", "g"), labels = c("-3", "-1648 
2", "-1", "0", "+1", "+2", "+3")) + 1649 

scale_y_continuous(limits = c(25, 180)) + 1650 

facet_grid(.~ Lectin) + 1651 

theme_bw() + 1652 

theme( 1653 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1654 

    legend.text = element_text(size = 15), 1655 

    legend.title = element_text(size = 15, face = "bold"), 1656 

    legend.box.background = element_blank(), 1657 

    legend.justification = "center", 1658 

    legend.position = "bottom", 1659 

    #axis.text.x = element_text(angle = 45), 1660 

    #axis.ticks.x = element_blank(), 1661 

    axis.title = element_text(size = 15), 1662 

    strip.text = element_text(size = 15), 1663 

    strip.background = element_rect(fill = "grey90"), 1664 

    panel.grid = element_blank(), 1665 

    panel.spacing = unit(0.75, "lines") 1666 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1667 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1668 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1669 

  ) 1670 

grid.arrange(p1, p2, nrow = 2) 1671 

``` 1672 

Lectin Inferential Analysis 1673 

```{r} 1674 

Lectin_A_Subp_G2M_df <- table_manipulation(media_global_descriptive_df, 1675 
media_global_F_T_df, c("LECTIN_A"), c("LECTIN-A"), c("G2/M"), c("Media"))   1676 



279 
 

Lectin_A_Subp_S_df <- table_manipulation(media_global_descriptive_df, 1677 
media_global_F_T_df, c("LECTIN_A"), c("LECTIN-A"), c("S"), c("Media")) 1678 

Lectin_A_Subp_GoG1_df <- table_manipulation(media_global_descriptive_df, 1679 
media_global_F_T_df, c("LECTIN_A"), c("LECTIN-A"), c("Go/G1"), c("Media")) 1680 

Lectin_A_df <- rbind(Lectin_A_Subp_G2M_df, Lectin_A_Subp_S_df, 1681 
Lectin_A_Subp_GoG1_df) 1682 

Lectin_A_df$Lectin_face <- factor(Lectin_A_df$Lectin, levels = c("AAL", "LEC B", "PNA", "LEC 1683 
A", "AAL-2", "WGA", "MAL II")) 1684 

Lectin_A_df$Subpopulation_face <- factor(Lectin_A_df$Subpopulation, levels = c("G2/M", 1685 
"S", "Go/G1", "Apoptotic","Dead")) 1686 

media_global_descriptive_df$Lectin_face <- factor(media_global_descriptive_df$Lectin, 1687 
levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 1688 

media_global_descriptive_df$Subpopulation_face <- 1689 
factor(media_global_descriptive_df$Subpopulation, levels = c("G2/M", "S", "Go/G1", 1690 
"Apoptotic","Dead")) 1691 

media_global_lectinvariation_df$Lectin_face <- 1692 
factor(media_global_lectinvariation_df$Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", 1693 
"AAL-2", "WGA", "MAL II")) 1694 

#Lectin_A_df$Sample_Type_face <- factor(Lectin_A_df$Sample_Type, levels = c("6", "5", 1695 
"4", "3", "2", "1", "0")) 1696 

#media_global_descriptive_df$Sample_Type_face <- 1697 
factor(media_global_descriptive_df$Sample_Type, levels = c("6", "5", "4", "3", "2", "1", 1698 
"0")) 1699 

#media_global_lectinvariation_df$Sample_Type_face <- 1700 
factor(media_global_lectinvariation_df$Sample_Type, levels = c("6", "5", "4", "3", "2", 1701 
"1", "0")) 1702 

#set fill and colour manual 1703 

#d95f02 highly significant 1704 

#1b9e77 not significant 1705 

#7570b3 trend towards significance 1706 

#e7298a very highly significant 1707 

#66a61e significant 1708 

p_G2M  <- filter(Lectin_A_df, Subpopulation == "G2/M") %>% 1709 

ggplot(aes(Sample_Type, LECTIN_A)) + 1710 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 1711 
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   geom_boxplot(data = filter(media_global_descriptive_df, Sample_Type == '3', 1712 
Subpopulation == "G2/M"), aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, 1713 
outlier.shape = NA) + 1714 

   facet_grid(Subpopulation ~ Lectin_face) + 1715 

   labs(x = "Level of Spent medium (Days)", y = "LECTIN-A (log scale)", title = NULL) + 1716 

     scale_x_discrete(breaks=c("0", "1", "2", "3", "4", "5", "6"), 1717 

                      labels=c("-3", "-2", "-1", "0", "+1", "+2", "+3")) + 1718 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#d95f02", 1719 
"#1b9e77", "#66a61e", "#7570b3", "#e7298a")) + 1720 

     scale_colour_manual(values = c("#d95f02", "#1b9e77", "#66a61e", "#7570b3", 1721 
"#e7298a"), guide = FALSE) + 1722 

     scale_y_continuous(expand = c(0,0)) + 1723 

  coord_cartesian(ylim = c(-80, 400)) + 1724 

 theme_bw() + 1725 

  theme( 1726 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1727 

    legend.text = element_text(size = 15), 1728 

    legend.title = element_text(size = 15, face = "bold"), 1729 

    legend.box.background = element_blank(), 1730 

    legend.justification = "center", 1731 

    legend.position = "bottom", 1732 

    #axis.text.x = element_text(angle = 45), 1733 

    #axis.ticks.x = element_blank(), 1734 

    axis.title = element_text(size = 15), 1735 

    strip.text = element_text(size = 15), 1736 

    strip.background = element_rect(fill = "grey90"), 1737 

    panel.grid = element_blank(), 1738 

    panel.spacing = unit(0.75, "lines") 1739 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1740 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1741 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1742 
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  ) 1743 

df1 <- filter(media_global_descriptive_df, Sample_Type == 'd', Subpopulation %in% 1744 
c("Go/G1", "S", "G2/M"))      1745 

#d95f02 highly significant 1746 

#1b9e77 not significant 1747 

#7570b3 trend towards significance 1748 

#e7298a very highly significant 1749 

#66a61e significant 1750 

filter(Lectin_A_df, Subpopulation %in% c("Go/G1", "S", "G2/M")) %>% 1751 

ggplot(aes(Sample_Type, LECTIN_A)) + 1752 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 1753 

   geom_boxplot(data = filter(media_global_descriptive_df, Sample_Type == 'd', 1754 
Subpopulation %in% c("Go/G1", "S", "G2/M")), aes(Sample_Type, LECTIN_A), fill = "grey", 1755 
size = 0.20, outlier.shape = NA) + 1756 

   facet_grid(Subpopulation_face ~ Lectin_face) + 1757 

   labs(x = "Level of Spent medium (Days)", y = "LECTIN-A (linear scale)", title = NULL) + 1758 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g"), labels = c("-3", "-2", "-1", "0", 1759 
"+1", "+2", "+3")) + 1760 

   scale_fill_manual(name = "Level of Statistical Significance", values = c("#d95f02", 1761 
"#1b9e77","#7570b3", "#e7298a")) + 1762 

     scale_colour_manual(values = c("#d95f02", "#1b9e77","#7570b3", "#e7298a"), guide = 1763 
FALSE) + 1764 

     scale_y_continuous(expand = c(0,0)) + 1765 

  coord_cartesian(ylim = c(-80, 400)) + 1766 

 theme_bw() + 1767 

  theme( 1768 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1769 

    legend.text = element_text(size = 15), 1770 

    legend.title = element_text(size = 15, face = "bold"), 1771 

    legend.box.background = element_blank(), 1772 

    legend.justification = "center", 1773 
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    legend.position = "bottom", 1774 

    #axis.text.x = element_text(angle = 45), 1775 

    #axis.ticks.x = element_blank(), 1776 

    axis.title = element_text(size = 15), 1777 

    strip.text = element_text(size = 15), 1778 

    strip.background = element_rect(fill = "grey90"), 1779 

    panel.grid = element_blank(), 1780 

    panel.spacing = unit(0.75, "lines") 1781 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1782 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1783 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1784 

  ) 1785 

plot_line_box <-  filter(Lectin_A_df, Subpopulation == "Go/G1")  %>% 1786 

ggplot(aes(Sample_Type, LECTIN_A)) + 1787 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 1788 

   geom_boxplot(data = filter(media_global_descriptive_df, Sample_Type == 'd', 1789 
Subpopulation == "Go/G1"), aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, 1790 
outlier.shape = NA) + 1791 

  #geom_point(data = filter(CO2_global_lectinvariation_df, Channels == "LECTIN-A", 1792 
Subpopulation == "Go/G1"), aes(Sample_Type, Mean, group = Subpopulation), colour = 1793 
"black", size = 0.6) + 1794 

  geom_line(data = filter(media_global_lectinvariation_df, Channels == "LECTIN-A", 1795 
Subpopulation == "Go/G1"), aes(Sample_Type, Mean, group = Subpopulation), colour = 1796 
"black", size = 0.6) + 1797 

   facet_grid(. ~ Lectin_face) + 1798 

   labs(x = "Level of Spent medium (Days)", y = "LECTIN-A (linear scale)", title = NULL) + 1799 

         scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g"), labels = c("-3", "-2", "-1", "0", 1800 
"+1", "+2", "+3")) + 1801 

       scale_fill_manual(name = "Level of Statistical Significance", values = c("#1b9e77", 1802 
"#e7298a")) + 1803 

     scale_colour_manual(values = c("#1b9e77", "#e7298a"), guide = FALSE) + 1804 

     scale_y_continuous(expand = c(0,0)) + 1805 
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 coord_cartesian(ylim = c(-50, 270)) + 1806 

 theme_bw() + 1807 

  theme( 1808 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1809 

    legend.text = element_text(size = 15), 1810 

    legend.title = element_text(size = 15, face = "bold"), 1811 

    legend.box.background = element_blank(), 1812 

    legend.justification = "center", 1813 

    legend.position = "bottom", 1814 

    #axis.text.x = element_text(angle = 45), 1815 

    #axis.ticks.x = element_blank(), 1816 

    axis.title = element_text(size = 15), 1817 

    strip.text = element_text(size = 15), 1818 

    strip.background = element_rect(fill = "grey90"), 1819 

    panel.grid = element_blank(), 1820 

    panel.spacing = unit(0.75, "lines") 1821 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1822 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1823 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1824 

  ) 1825 

df1 <- filter(media_global_descriptive_df, Sample_Type == '3', Subpopulation == "S") 1826 

p_S <- filter(Lectin_A_df, Subpopulation == "S") %>% 1827 

ggplot(aes(Sample_Type, LECTIN_A)) + 1828 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 1829 

   geom_boxplot(data = df1, aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, 1830 
outlier.shape = NA) + 1831 

   facet_grid(Subpopulation ~ Lectin_face) + 1832 

   labs(x = "Level of Spent medium (Days)", y = "LECTIN-A (log scale)", title = NULL) + 1833 

     scale_x_discrete(breaks=c("0", "1", "2", "3", "4", "5", "6"), 1834 
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                      labels=c("-3", "-2", "-1", "0", "+1", "+2", "+3")) + 1835 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#1b9e77", 1836 
"#e7298a")) + 1837 

     scale_colour_manual(values = c("#1b9e77", "#e7298a"), guide = FALSE) + 1838 

     scale_y_continuous(expand = c(0,0)) + 1839 

 coord_cartesian(ylim = c(-65, 350)) + 1840 

 theme_bw() + 1841 

  theme( 1842 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1843 

    legend.text = element_text(size = 15), 1844 

    legend.title = element_text(size = 15, face = "bold"), 1845 

    legend.box.background = element_blank(), 1846 

    legend.justification = "center", 1847 

    legend.position = "bottom", 1848 

    #axis.text.x = element_text(angle = 45), 1849 

    #axis.ticks.x = element_blank(), 1850 

    axis.title = element_text(size = 15), 1851 

    strip.text = element_text(size = 15), 1852 

    strip.background = element_rect(fill = "grey90"), 1853 

    panel.grid = element_blank(), 1854 

    panel.spacing = unit(0.75, "lines") 1855 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1856 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1857 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1858 

  ) 1859 

df1 <- filter(media_global_descriptive_df, Sample_Type == '3', Subpopulation == "Go/G1") 1860 

p_Go <- filter(Lectin_A_df, Subpopulation == "Go/G1") %>% 1861 

ggplot(aes(Sample_Type, LECTIN_A)) + 1862 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 1863 
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   geom_boxplot(data = df1, aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, 1864 
outlier.shape = NA) + 1865 

  facet_grid(Subpopulation ~ Lectin_face) + 1866 

   labs(x = "Level of Spent medium (Days)", y = "LECTIN-A (log scale)", title = NULL) + 1867 

     scale_x_discrete(breaks=c("0", "1", "2", "3", "4", "5", "6"), 1868 

                      labels=c("-3", "-2", "-1", "0", "+1", "+2", "+3")) + 1869 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#1b9e77", 1870 
"#e7298a")) + 1871 

     scale_colour_manual(values = c("#1b9e77", "#e7298a"), guide = FALSE) + 1872 

     scale_y_continuous(expand = c(0,0)) + 1873 

 coord_cartesian(ylim = c(-50, 280)) + 1874 

 theme_bw() + 1875 

  theme( 1876 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1877 

    legend.text = element_text(size = 15), 1878 

    legend.title = element_text(size = 15, face = "bold"), 1879 

    legend.box.background = element_blank(), 1880 

    legend.justification = "center", 1881 

    legend.position = "bottom", 1882 

    #axis.text.x = element_text(angle = 45), 1883 

    #axis.ticks.x = element_blank(), 1884 

    axis.title = element_text(size = 15), 1885 

    strip.text = element_text(size = 15), 1886 

    strip.background = element_rect(fill = "grey90"), 1887 

    panel.grid = element_blank(), 1888 

    panel.spacing = unit(0.75, "lines") 1889 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1890 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1891 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1892 

  ) 1893 
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``` 1894 

Lectin Power Analysis 1895 

```{r} 1896 

#fd8d3c G2/M 1897 

#f03b20 S 1898 

#bd0026 Go/G1 1899 

media_global_F_T_df$Lectin_face <- factor(media_global_F_T_df$Lectin, levels = c("AAL", 1900 
"LEC B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 1901 

filter(media_global_F_T_df, Channels == "LECTIN-A", Subpopulation %in% c("G2/M", "S", 1902 
"Go/G1")) %>%  1903 

  mutate(Subpopulation = factor(Subpopulation, levels = c("G2/M", "S", "Go/G1"))) %>% 1904 

  mutate(Power = Power * 100) %>%  1905 

   ggplot(aes(Sample_Type, Power, fill = Subpopulation)) + 1906 

   geom_bar(stat = "identity", colour = NA) + 1907 

   facet_grid(Subpopulation ~ Lectin_face) + 1908 

   labs(x = "Level of Spent medium (Days)", y = "Power (%)", title = NULL) + 1909 

  #scale_fill_brewer(palette = "RdBu", guide = FALSE) + 1910 

    scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g"), labels = c("-3", "-2", "-1", "0", 1911 
"+1", "+2", "+3")) + 1912 

   scale_fill_manual(values = c("#fd8d3c", "#f03b20", "#bd0026"), guide = FALSE) + 1913 

   scale_colour_manual(values = c("#fd8d3c", "#f03b20", "#bd0026"), guide = FALSE) + 1914 

   scale_y_continuous(expand = c(0,0), limits = c(0,100)) + 1915 

   theme_bw() + 1916 

  theme( 1917 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1918 

    legend.text = element_text(size = 15), 1919 

    legend.title = element_text(size = 15, face = "bold"), 1920 

    legend.box.background = element_blank(), 1921 

    legend.justification = "center", 1922 

    legend.position = "bottom", 1923 
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    #axis.text.x = element_text(angle = 45), 1924 

    #axis.ticks.x = element_blank(), 1925 

    axis.title = element_text(size = 15), 1926 

    strip.text = element_text(size = 15), 1927 

    strip.background = element_rect(fill = "grey90"), 1928 

    panel.grid = element_blank(), 1929 

    panel.spacing = unit(0.75, "lines") 1930 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1931 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1932 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1933 

  ) 1934 

filter(media_global_F_T_df, Channels == "LECTIN-A", Subpopulation %in% c("G2/M", "S", 1935 
"Go/G1")) %>%  1936 

  mutate(Subpopulation = factor(Subpopulation, levels = c("G2/M", "S", "Go/G1"))) %>% 1937 

   ggplot(aes(Sample_Type, Sample_Size, fill = Subpopulation)) + 1938 

   geom_bar(stat = "identity", colour = NA) + 1939 

   facet_grid(Subpopulation ~ Lectin_face) + 1940 

   labs(x = "Level of Spent medium (Days)", y = "Sample size (number of cells)", title = NULL) + 1941 

  #scale_fill_brewer(palette = "RdBu", guide = FALSE) + 1942 

  scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g"), labels = c("-3", "-2", "-1", "0", 1943 
"+1", "+2", "+3")) + 1944 

   scale_fill_manual(values = c("#41b6c4", "#2c7fb8", "#253494"), guide = FALSE) + 1945 

   scale_colour_manual(values = c("#41b6c4", "#2c7fb8", "#253494"), guide = FALSE) + 1946 

   scale_y_continuous(expand = c(0,0)) + 1947 

   theme_bw() + 1948 

  theme( 1949 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1950 

    legend.text = element_text(size = 15), 1951 

    legend.title = element_text(size = 15, face = "bold"), 1952 

    legend.box.background = element_blank(), 1953 
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    legend.justification = "center", 1954 

    legend.position = "bottom", 1955 

    #axis.text.x = element_text(angle = 45), 1956 

    #axis.ticks.x = element_blank(), 1957 

    axis.title = element_text(size = 15), 1958 

    strip.text = element_text(size = 15), 1959 

    strip.background = element_rect(fill = "grey90"), 1960 

    panel.grid = element_blank(), 1961 

    panel.spacing = unit(0.75, "lines") 1962 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1963 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1964 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1965 

  ) 1966 

 1967 

filter(media_global_F_T_df, Subpopulation =='S', Channels == "LECTIN-A") %>%  1968 

   mutate(Power = Power * 100) %>%  1969 

   ggplot(aes(Sample_Type, Power)) + 1970 

   geom_bar(stat = "identity" , colour = NA, fill = "#e7298a", alpha = 0.70) + 1971 

   facet_grid(Subpopulation ~ Lectin_face) + 1972 

   labs(x = "Level of Spent medium (Days)", y = "Power (%)", title = NULL) + 1973 

  #scale_fill_brewer(palette = "RdBu", guide = FALSE) + 1974 

  scale_x_discrete(breaks=c("0", "1", "2", "4", "5", "6"), 1975 

                      labels=c("-3", "-2", "-1", "+1", "+2", "+3")) + 1976 

  scale_y_continuous(expand = c(0,0), limits = c(0,100)) + 1977 

   theme_bw() + 1978 

  theme( 1979 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 1980 

    legend.text = element_text(size = 15), 1981 

    legend.title = element_text(size = 15, face = "bold"), 1982 
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    legend.box.background = element_blank(), 1983 

    legend.justification = "center", 1984 

    legend.position = "bottom", 1985 

    #axis.text.x = element_text(angle = 45), 1986 

    #axis.ticks.x = element_blank(), 1987 

    axis.title = element_text(size = 15), 1988 

    strip.text = element_text(size = 15), 1989 

    strip.background = element_rect(fill = "grey90"), 1990 

    panel.grid = element_blank(), 1991 

    panel.spacing = unit(0.75, "lines") 1992 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  1993 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 1994 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 1995 

  ) 1996 

  geom_text(data = filter(media_global_F_T_df, Subpopulation =='Go/G1', Channels == 1997 
"LECTIN-A") %>%  1998 

mutate(Power = Power * 100) %>% mutate_if(is.numeric, round, 1), aes(Sample_Type, 1999 
Power, label = Power), position = position_dodge(width = 0.8), size = 4, vjust = -0.5) + 2000 

dataMedian_PNA <- summarise(group_by(dfPNA, Sample), MD = median(Pacific.Blue.A)) 2001 
%>% mutate_if(is.numeric, round, 1) 2002 

#fd8d3c G2/M 2003 

#f03b20 S 2004 

#bd0026 Go/G1 2005 

bar_plot <- filter(media_global_F_T_df, Subpopulation =='Go/G1', Channels == "LECTIN-A") 2006 
%>%  2007 

   mutate(Power = Power * 100) %>%  2008 

   ggplot(aes(Sample_Type, Power)) + 2009 

   geom_rect(aes(xmin = 0.4, xmax = 3.5, ymin = 0, ymax = Inf), fill = "#bd0026", alpha = 2010 
0.025) + 2011 

   geom_rect(aes(xmin = 3.5, xmax = Inf, ymin = 0, ymax = Inf), fill = "#bd0026", alpha = 0.07) 2012 
+ 2013 
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   geom_bar(stat = "identity" , colour = NA, fill = "#bd0026") + 2014 

   #geom_hline(aes(yintercept = c(25)), color = "grey70", linetype = "dashed", size = 1) + 2015 

   #geom_hline(aes(yintercept = c(50)), color = "grey50", linetype = "dashed", size = 1) + 2016 

   #geom_hline(aes(yintercept = c(75)), color = "grey30", linetype = "dashed", size = 1) + 2017 

   #geom_hline(aes(yintercept = c(90)), color = "black", linetype = "dotted", size = 1) + 2018 

  geom_text(data = filter(media_global_F_T_df, Subpopulation =='Go/G1', Channels == 2019 
"LECTIN-A") %>%  2020 

   mutate(Power = Power * 100) %>% mutate_if(is.numeric, round, 0), aes(Sample_Type, 2021 
Power, label = Power), position = position_dodge(width = 0.8), size = 4, vjust = -0.5) + 2022 

   facet_grid(.~ Lectin_face) + 2023 

   labs(x = NULL, y = "Power (%)", title = NULL) + 2024 

  #scale_fill_brewer(palette = "RdBu", guide = FALSE) + 2025 

    scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g"), labels = c("-3", "-2", "-1", "0", 2026 
"+1", "+2", "+3")) + 2027 

  scale_y_continuous(expand = c(0,0), limits = c(0,110), breaks = c(0, 25, 50, 75, 100)) + 2028 

   theme_bw() + 2029 

  theme( 2030 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2031 

    legend.text = element_text(size = 15), 2032 

    legend.title = element_text(size = 15, face = "bold"), 2033 

    legend.box.background = element_blank(), 2034 

    legend.justification = "center", 2035 

    legend.position = "bottom", 2036 

    #axis.text.x = element_text(angle = 45), 2037 

    #axis.ticks.x = element_blank(), 2038 

    axis.title = element_text(size = 15), 2039 

    strip.text = element_text(size = 15), 2040 

    strip.background = element_rect(fill = "grey90"), 2041 

    panel.grid = element_blank(), 2042 

    panel.spacing = unit(0.75, "lines") 2043 
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    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  2044 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 2045 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 2046 

  ) 2047 

grid.arrange(bar_plot, plot_line_box, nrow = 2) 2048 

filter(media_global_F_T_df, Channels == "LECTIN-A", Subpopulation %in% c("Go/G1", "S", 2049 
"G2/M")) %>%  2050 

   mutate(Power = Power * 100) %>%  2051 

   ggplot(aes(Sample_Type, Power, fill = Subpopulation)) + 2052 

   geom_bar(stat = "identity", position = "dodge") + 2053 

   facet_grid(. ~ Lectin_face) + 2054 

   labs(x = "Level of Spent medium (Days)", y = "Power (%)", title = NULL) + 2055 

  #scale_fill_brewer(palette = "RdBu", guide = FALSE) + 2056 

  scale_x_discrete(breaks=c("0", "1", "2", "3", "4", "5", "6"), 2057 

                      labels=c("-3", "-2", "-1","P", "+1", "+2", "+3")) + 2058 

  scale_y_continuous(expand = c(0,0), limits = c(0,100)) + 2059 

   theme_bw() + 2060 

  theme( 2061 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2062 

    legend.text = element_text(size = 15), 2063 

    legend.title = element_text(size = 15, face = "bold"), 2064 

    legend.box.background = element_blank(), 2065 

    legend.justification = "center", 2066 

    legend.position = "bottom", 2067 

    #axis.text.x = element_text(angle = 45), 2068 

    #axis.ticks.x = element_blank(), 2069 

    axis.title = element_text(size = 15), 2070 

    strip.text = element_text(size = 15), 2071 

    strip.background = element_rect(fill = "grey90"), 2072 
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    panel.grid = element_blank(), 2073 

    panel.spacing = unit(0.75, "lines") 2074 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  2075 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 2076 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 2077 

  ) 2078 

filter(media_global_ratios_df, Dimension %in% c('area', 'height', 'width')) %>%  2079 

  mutate(Level_of_sig_T = factor(Level_of_sig_T, levels = c("not significant", "trend toward 2080 
significance", "significant", "highly significant", "very highly significant"))) %>% 2081 

   ggplot(aes(Sample_Type, Level_of_sig_T, fill = Comp_type)) + 2082 

   geom_bar(stat = "identity", position = "dodge") + 2083 

   facet_grid(Dimension ~ Lectin_face) + 2084 

   labs(x = "Media Depletion Levels (Days)", y = "Levels of Statistical significance", title = 2085 
"Levels of Statistical Significance of SSC difference readings of G0/G1 cells across Media 2086 
Depletion levels") + 2087 

  scale_fill_brewer(palette = "Dark2", name = "Levels of Statistical Significance") + 2088 

 2089 

filter(media_global_F_T_df, Subpopulation =='Go/G1', Channels == "LECTIN-A") %>%  2090 

   mutate(Power = Power * 100) %>%  2091 

   group_by(Lectin) %>% 2092 

   summarise(Power_ave = mean(Power)) %>% 2093 

   mutate(Sample_Type = 3) 2094 

``` 2095 

Analysis of Relative Lectin signal density 2096 

```{r} 2097 

library(gridExtra) 2098 

media_global_lectinvariation_df$Subpopulation_face <- 2099 
factor(media_global_lectinvariation_df$Subpopulation, levels = c("Go/G1", "S", "G2/M", 2100 
"Apoptotic","Dead")) 2101 

media_global_lectinvariation_df$Lectin_face <- 2102 
factor(media_global_lectinvariation_df$Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", 2103 
"AAL-2", "WGA", "MAL II")) 2104 
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p1 <- filter(media_global_lectinvariation_df, Channels %in% c("Area_ratio"), 2105 
Subpopulation_face %in% c("G2/M", "S", "Go/G1"), Lectin_face %in% c("AAL", "LEC B", 2106 
"PNA", "LEC A")) %>% 2107 

  ggplot(aes(Sample_Type, Mean, fill = Subpopulation_face, ymin = Mean - Mean_SD, ymax = 2108 
Mean + Mean_SD, group = Subpopulation_face)) + 2109 

  geom_bar(stat = "identity", position = "dodge") + 2110 

  geom_errorbar(size = 0.15, position = "dodge") + 2111 

   facet_grid(.~ Lectin_face) + 2112 

   labs(x = "Level of Spent medium (Day)", y = "LECTIN-A/FSC-A (linear scale)", title = NULL) + 2113 

   scale_fill_manual(values = c("#b2e2e2", "#66c2a4", "#238b45"), guide = FALSE) + 2114 

   scale_y_continuous(expand = c(0,0), limits = c(0,0.0025)) + 2115 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g"), labels = c("-3", "-2", "-1", "0", 2116 
"+1", "+2", "+3")) + 2117 

   theme_bw() + 2118 

  theme( 2119 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2120 

    legend.text = element_text(size = 15), 2121 

    legend.title = element_text(size = 15, face = "bold"), 2122 

    legend.box.background = element_blank(), 2123 

    legend.justification = "center", 2124 

    legend.position = "bottom", 2125 

    axis.text.x = element_text(size = 10, colour = "black"), 2126 

    #axis.ticks.x = element_blank(), 2127 

    axis.title = element_text(size = 15), 2128 

    strip.text = element_text(size = 15), 2129 

    strip.background = element_rect(fill = "grey90"), 2130 

    panel.grid = element_blank() 2131 

    #panel.spacing = unit(0.75, "lines") 2132 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  2133 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 2134 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 2135 
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  ) 2136 

p2 <- filter(media_global_lectinvariation_df, Channels %in% c("Area_ratio"), 2137 
Subpopulation_face %in% c("G2/M", "S", "Go/G1"), Lectin_face %in% c("AAL-2", "WGA", 2138 
"MAL II")) %>% 2139 

  ggplot(aes(Sample_Type, Mean, fill = Subpopulation_face, ymin = Mean - Mean_SD, ymax = 2140 
Mean + Mean_SD, group = Subpopulation_face)) + 2141 

  geom_bar(stat = "identity", position = "dodge") + 2142 

  geom_errorbar(size = 0.15, position = "dodge") + 2143 

   facet_grid(.~ Lectin_face) + 2144 

   labs(x = "Level of Spent medium (Day)", y = "LECTIN-A/FSC-A (linear scale)", title = NULL) + 2145 

  scale_fill_manual(values = c("#b2e2e2", "#66c2a4", "#238b45"), name = "Subpopulation") + 2146 

   scale_y_continuous(expand = c(0,0), limits = c(0,0.0025)) + 2147 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g"), labels = c("-3", "-2", "-1", "0", 2148 
"+1", "+2", "+3")) + 2149 

   theme_bw() + 2150 

  theme( 2151 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2152 

    legend.text = element_text(size = 15), 2153 

    legend.title = element_text(size = 15, face = "bold"), 2154 

    legend.box.background = element_blank(), 2155 

    legend.justification = "center", 2156 

    legend.position = "right", 2157 

    axis.text.x = element_text(size = 10, colour = "black"), 2158 

    #axis.ticks.x = element_blank(), 2159 

    axis.title = element_text(size = 15), 2160 

    strip.text = element_text(size = 15), 2161 

    strip.background = element_rect(fill = "grey90"), 2162 

    panel.grid = element_blank() 2163 

    #panel.spacing = unit(0.75, "lines") 2164 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  2165 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 2166 
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    #legend.background = element_rect(fill = "grey90", colour = "grey90") 2167 

  ) 2168 

grid.arrange(p1, p2, nrow = 2) 2169 

 

8.3 Temperature data treatment and generation of plots  
 

Data obtained from cells subjected to the variation of temperature levels are computed in this 
section. Pre built-in R functions and the functions created in Section 8.1 are used here. The 
code for the generation of plots are demonstrated in this section as well.  

 

#Algorithm to collect and save gated data of Temperature Variation Experiments 2170 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp & CO2 baseline") 2171 

wd <- getwd() 2172 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp & CO2 2173 
baseline/Compensation Controls - WGA") 2174 

flow_gating_list <- flow_gating(wd, x_WGA) 2175 

#flow_gating_list <- flow_gating(wd) 2176 

gs1 <- flow_gating_list[[1]] 2177 

gs2 <- flow_gating_list[[2]] 2178 

gs3 <- flow_gating_list[[3]] 2179 

save_gs(gs1, path = file.path(wd, "gs1")) 2180 

save_gs(gs2, path = file.path(wd, "gs2")) 2181 

save_gs(gs3, path = file.path(wd, "gs3"))  2182 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 32 C") 2183 

wd <- getwd() 2184 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 32 C/Compensation 2185 
Controls - WGA") 2186 

flow_gating_list <- flow_gating(wd, x_WGA) 2187 

#flow_gating_list <- flow_gating(wd) 2188 

gs1 <- flow_gating_list[[1]] 2189 

gs2 <- flow_gating_list[[2]] 2190 



296 
 

gs3 <- flow_gating_list[[3]] 2191 

save_gs(gs1, path = file.path(wd, "gs1")) 2192 

save_gs(gs2, path = file.path(wd, "gs2")) 2193 

save_gs(gs3, path = file.path(wd, "gs3"))  2194 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 33 C") 2195 

wd <- getwd() 2196 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 33 C/Compensation 2197 
Controls - WGA") 2198 

flow_gating_list <- flow_gating(wd, x_WGA) 2199 

#flow_gating_list <- flow_gating(wd) 2200 

gs1 <- flow_gating_list[[1]] 2201 

gs2 <- flow_gating_list[[2]] 2202 

gs3 <- flow_gating_list[[3]] 2203 

save_gs(gs1, path = file.path(wd, "gs1")) 2204 

save_gs(gs2, path = file.path(wd, "gs2")) 2205 

save_gs(gs3, path = file.path(wd, "gs3"))  2206 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 34 C") 2207 

wd <- getwd() 2208 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 34 C/Compensation 2209 
Controls - WGA") 2210 

flow_gating_list <- flow_gating(wd, x_WGA) 2211 

#flow_gating_list <- flow_gating(wd) 2212 

gs1 <- flow_gating_list[[1]] 2213 

gs2 <- flow_gating_list[[2]] 2214 

gs3 <- flow_gating_list[[3]] 2215 

save_gs(gs1, path = file.path(wd, "gs1")) 2216 

save_gs(gs2, path = file.path(wd, "gs2")) 2217 

save_gs(gs3, path = file.path(wd, "gs3"))  2218 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 35 C") 2219 

wd <- getwd() 2220 
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x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 35 C/Compensation 2221 
Controls - WGA") 2222 

flow_gating_list <- flow_gating(wd, x_WGA) 2223 

#flow_gating_list <- flow_gating(wd) 2224 

gs1 <- flow_gating_list[[1]] 2225 

gs2 <- flow_gating_list[[2]] 2226 

gs3 <- flow_gating_list[[3]] 2227 

save_gs(gs1, path = file.path(wd, "gs1")) 2228 

save_gs(gs2, path = file.path(wd, "gs2")) 2229 

save_gs(gs3, path = file.path(wd, "gs3"))  2230 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 36 C") 2231 

wd <- getwd() 2232 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 36 C/Compensation 2233 
Controls - WGA") 2234 

flow_gating_list <- flow_gating(wd, x_WGA) 2235 

#flow_gating_list <- flow_gating(wd) 2236 

gs1 <- flow_gating_list[[1]] 2237 

gs2 <- flow_gating_list[[2]] 2238 

gs3 <- flow_gating_list[[3]] 2239 

save_gs(gs1, path = file.path(wd, "gs1")) 2240 

save_gs(gs2, path = file.path(wd, "gs2")) 2241 

save_gs(gs3, path = file.path(wd, "gs3"))  2242 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 38 C") 2243 

wd <- getwd() 2244 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 38 C/Compensation 2245 
Controls - WGA") 2246 

flow_gating_list <- flow_gating(wd, x_WGA) 2247 

#flow_gating_list <- flow_gating(wd) 2248 

gs1 <- flow_gating_list[[1]] 2249 

gs2 <- flow_gating_list[[2]] 2250 
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gs3 <- flow_gating_list[[3]] 2251 

save_gs(gs1, path = file.path(wd, "gs1")) 2252 

save_gs(gs2, path = file.path(wd, "gs2")) 2253 

save_gs(gs3, path = file.path(wd, "gs3"))  2254 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 39 C") 2255 

wd <- getwd() 2256 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 39 C/Compensation 2257 
Controls - WGA") 2258 

flow_gating_list <- flow_gating(wd, x_WGA) 2259 

#flow_gating_list <- flow_gating(wd) 2260 

gs1 <- flow_gating_list[[1]] 2261 

gs2 <- flow_gating_list[[2]] 2262 

gs3 <- flow_gating_list[[3]] 2263 

save_gs(gs1, path = file.path(wd, "gs1")) 2264 

save_gs(gs2, path = file.path(wd, "gs2")) 2265 

save_gs(gs3, path = file.path(wd, "gs3"))  2266 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 40 C") 2267 

wd <- getwd() 2268 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 40 C/Compensation 2269 
Controls - WGA") 2270 

flow_gating_list <- flow_gating(wd, x_WGA) 2271 

#flow_gating_list <- flow_gating(wd) 2272 

gs1 <- flow_gating_list[[1]] 2273 

gs2 <- flow_gating_list[[2]] 2274 

gs3 <- flow_gating_list[[3]] 2275 

save_gs(gs1, path = file.path(wd, "gs1")) 2276 

save_gs(gs2, path = file.path(wd, "gs2")) 2277 

save_gs(gs3, path = file.path(wd, "gs3"))  2278 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 41 C") 2279 

wd <- getwd() 2280 
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x_WGA <- c("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 41 C/Compensation 2281 
Controls - WGA") 2282 

flow_gating_list <- flow_gating(wd, x_WGA) 2283 

#flow_gating_list <- flow_gating(wd) 2284 

gs1 <- flow_gating_list[[1]] 2285 

gs2 <- flow_gating_list[[2]] 2286 

gs3 <- flow_gating_list[[3]] 2287 

save_gs(gs1, path = file.path(wd, "gs1")) 2288 

save_gs(gs2, path = file.path(wd, "gs2")) 2289 

save_gs(gs3, path = file.path(wd, "gs3"))  2290 

``` 2291 

#Algorithm to retrieve gated data and run the statistical analysis of the Temperature 2292 
Variation Experiments 2293 

```{r} 2294 

#Algorithm to process Temperature Variation Experiments 2295 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp & CO2 baseline") 2296 

wd <- getwd() 2297 

gs1 <- load_gs(file.path(wd, "gs1")) 2298 

gs2 <- load_gs(file.path(wd, "gs2")) 2299 

gs3 <- load_gs(file.path(wd, "gs3")) 2300 

temp_baseline <- table_summary(gs1, gs2, gs3, c("37")) 2301 

temp_baseline_descriptive <- table_descriptive(gs1, gs2, gs3, c("37")) 2302 

temp_baseline_density <- lectin_density_stats(temp_baseline) 2303 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 32 C") 2304 

wd <- getwd() 2305 

gs1 <- load_gs(file.path(wd, "gs1")) 2306 

gs2 <- load_gs(file.path(wd, "gs2")) 2307 

gs3 <- load_gs(file.path(wd, "gs3")) 2308 

temp_32 <- table_summary(gs1, gs2, gs3, c("32")) 2309 

temp_32_descriptive <- table_descriptive(gs1, gs2, gs3, c("32")) 2310 
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base_32 <- F_T_Power_test(temp_baseline, temp_32, c("32")) 2311 

temp_32_density <- lectin_density_stats(temp_32) 2312 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 33 C") 2313 

wd <- getwd() 2314 

gs1 <- load_gs(file.path(wd, "gs1")) 2315 

gs2 <- load_gs(file.path(wd, "gs2")) 2316 

gs3 <- load_gs(file.path(wd, "gs3")) 2317 

temp_33 <- table_summary(gs1, gs2, gs3, c("33")) 2318 

temp_33_descriptive <- table_descriptive(gs1, gs2, gs3, c("33")) 2319 

base_33 <- F_T_Power_test(temp_baseline, temp_33, c("33")) 2320 

temp_33_density <- lectin_density_stats(temp_33) 2321 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 34 C") 2322 

wd <- getwd() 2323 

gs1 <- load_gs(file.path(wd, "gs1")) 2324 

gs2 <- load_gs(file.path(wd, "gs2")) 2325 

gs3 <- load_gs(file.path(wd, "gs3")) 2326 

temp_34 <- table_summary(gs1, gs2, gs3, c("34")) 2327 

temp_34_descriptive <- table_descriptive(gs1, gs2, gs3, c("34")) 2328 

base_34 <- F_T_Power_test(temp_baseline, temp_34, c("34")) 2329 

temp_34_density <- lectin_density_stats(temp_34) 2330 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 35 C") 2331 

wd <- getwd() 2332 

gs1 <- load_gs(file.path(wd, "gs1")) 2333 

gs2 <- load_gs(file.path(wd, "gs2")) 2334 

gs3 <- load_gs(file.path(wd, "gs3")) 2335 

temp_35 <- table_summary(gs1, gs2, gs3, c("35")) 2336 

temp_35_descriptive <- table_descriptive(gs1, gs2, gs3, c("35")) 2337 

base_35 <- F_T_Power_test(temp_baseline, temp_35, c("35")) 2338 

temp_35_density <- lectin_density_stats(temp_35) 2339 
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setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 36 C") 2340 

wd <- getwd() 2341 

gs1 <- load_gs(file.path(wd, "gs1")) 2342 

gs2 <- load_gs(file.path(wd, "gs2")) 2343 

gs3 <- load_gs(file.path(wd, "gs3")) 2344 

temp_36 <- table_summary(gs1, gs2, gs3, c("36")) 2345 

temp_36_descriptive <- table_descriptive(gs1, gs2, gs3, c("36")) 2346 

base_36 <- F_T_Power_test(temp_baseline, temp_36, c("36")) 2347 

temp_36_density <- lectin_density_stats(temp_36) 2348 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 38 C") 2349 

wd <- getwd() 2350 

gs1 <- load_gs(file.path(wd, "gs1")) 2351 

gs2 <- load_gs(file.path(wd, "gs2")) 2352 

gs3 <- load_gs(file.path(wd, "gs3")) 2353 

temp_38 <- table_summary(gs1, gs2, gs3, c("38")) 2354 

temp_38_descriptive <- table_descriptive(gs1, gs2, gs3, c("38")) 2355 

base_38 <- F_T_Power_test(temp_baseline, temp_38, c("38")) 2356 

temp_38_density <- lectin_density_stats(temp_38) 2357 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 39 C") 2358 

wd <- getwd() 2359 

gs1 <- load_gs(file.path(wd, "gs1")) 2360 

gs2 <- load_gs(file.path(wd, "gs2")) 2361 

gs3 <- load_gs(file.path(wd, "gs3")) 2362 

temp_39 <- table_summary(gs1, gs2, gs3, c("39")) 2363 

temp_39_descriptive <- table_descriptive(gs1, gs2, gs3, c("39")) 2364 

base_39 <- F_T_Power_test(temp_baseline, temp_39, c("39")) 2365 

temp_39_density <- lectin_density_stats(temp_39) 2366 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation/Temp 40 C") 2367 

wd <- getwd() 2368 
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gs1 <- load_gs(file.path(wd, "gs1")) 2369 

gs2 <- load_gs(file.path(wd, "gs2")) 2370 

gs3 <- load_gs(file.path(wd, "gs3")) 2371 

temp_40 <- table_summary(gs1, gs2, gs3, c("40")) 2372 

temp_40_descriptive <- table_descriptive(gs1, gs2, gs3, c("40")) 2373 

base_40 <- F_T_Power_test(temp_baseline, temp_40, c("40")) 2374 

temp_40_density <- lectin_density_stats(temp_40) 2375 

temp_global_descriptive_df <- rbind(temp_baseline_descriptive, temp_32_descriptive, 2376 
temp_33_descriptive, temp_34_descriptive, temp_35_descriptive, temp_36_descriptive, 2377 
temp_38_descriptive, temp_39_descriptive, temp_40_descriptive) 2378 

rm(temp_baseline_descriptive, temp_32_descriptive, temp_33_descriptive, 2379 
temp_34_descriptive, temp_35_descriptive, temp_36_descriptive, temp_38_descriptive, 2380 
temp_39_descriptive, temp_40_descriptive) 2381 

temp_global_lectinvariation_df <- rbind(temp_baseline, temp_32, temp_33, temp_34, 2382 
temp_35, temp_36, temp_38, temp_39, temp_40) 2383 

rm(temp_baseline, temp_32, temp_33, temp_34, temp_35, temp_36, temp_38, temp_39, 2384 
temp_40) 2385 

temp_global_F_T_df <- rbind(base_32, base_33, base_34, base_35, base_36, base_38, 2386 
base_39, base_40) 2387 

rm(base_32, base_33, base_34, base_35, base_36, base_38, base_39, base_40) 2388 

temp_global_density_df <- rbind(temp_baseline_density, temp_32_density, 2389 
temp_33_density, temp_34_density, temp_35_density, temp_36_density, 2390 
temp_38_density, temp_39_density, temp_40_density) 2391 

rm(temp_baseline_density, temp_32_density, temp_33_density, temp_34_density, 2392 
temp_35_density, temp_36_density, temp_38_density, temp_39_density, 2393 
temp_40_density) 2394 

colnames(temp_global_F_T_df) <- c("Sample_Type", "Channels", "Subpopulation", "Lectin", 2395 
"Mean", "SD", "Sample_Size","Fp_value", "F_significance", "F_test_conclusion", "Tp_value", 2396 
"T_test_significance", "Power") 2397 

colnames(temp_global_lectinvariation_df) <- c("Sample_Type", "Channels", "Mean", 2398 
"Mean_SD", "CV_perc", "Subpopulation", "Sample_Size","Viability_perc", 2399 
"Viability_SD_perc", "Lectin") 2400 

``` 2401 

```{r} 2402 

library(readxl) 2403 
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library(gridExtra) 2404 

#Read in the excel spreadsheet into R 2405 

setwd("~/Dropbox/PhD Project/PhD Project/Temp Variation") 2406 

pH_temp <- read_excel("pH.xlsx") 2407 

pH_temp_df <- as.data.frame(pH_temp, stringsAsFactors = FALSE)  2408 

``` 2409 

Viability and pH Plots  2410 

```{r} 2411 

#Viability across temperature variation (line plot of individual lectin curves) 2412 

viability_plot <- ggplot(temp_global_lectinvariation_df, aes(Sample_Type, Viability_perc)) + 2413 

  geom_smooth(aes(group = Lectin, color = Lectin), size = 1.5, se = FALSE) + 2414 

  scale_colour_manual(name = "Lectin",  values = c("#980043","#7a0177", "#08519c", 2415 
"#006d2c", "#7fcdbb",  "#ff7f00", "#993404")) + 2416 

   labs(x = "Temperature (ºC)" , y = "Viability (%)", title = NULL ) + 2417 

scale_x_discrete(expand = c(0,0), breaks = c("32", "33", "34", "35", "36", "37", "38", "39", 2418 
"40"), labels = c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2419 

  theme_classic() + 2420 

  theme( 2421 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2422 

    legend.text = element_text(size = 15), 2423 

    legend.title = element_text(size = 15, face = "bold"), 2424 

    legend.box.background = element_blank(), 2425 

    legend.justification = "center", 2426 

    legend.position = "right", 2427 

    #axis.text.x = element_text(size = 10, face = "bold", color = "black"), 2428 

    #axis.ticks.x = element_blank(), 2429 

    axis.title = element_text(size = 15), 2430 

    strip.text = element_text(size = 15), 2431 

    strip.background = element_rect(fill = "grey90") 2432 

  ) 2433 



304 
 

#pH line plot across temperature variation       2434 

pH_plot <- ggplot(pH_temp_df, aes(Sample_Type, pH)) + 2435 

  geom_point(aes(colour = Replicate), size = 3, alpha = 0.60) + 2436 

  geom_smooth(size = 1.5) + 2437 

  labs(x = "Temperature (ºC)" , y = "pH", title = NULL ) + 2438 

  scale_colour_brewer(palette = "Set1", name = "Replicate") + 2439 

  scale_x_continuous(expand = c(0,0), breaks = c(32, 33, 34, 35, 36, 37, 38, 39, 40), labels = 2440 
c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2441 

  scale_y_continuous(expand = c(0,0), limits = c(6.8, 8)) + 2442 

  theme_classic() + 2443 

  theme( 2444 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2445 

    legend.text = element_text(size = 15), 2446 

    legend.title = element_text(size = 15, face = "bold"), 2447 

    legend.box.background = element_blank(), 2448 

    legend.justification = "center", 2449 

    legend.position = "right", 2450 

    #axis.text.x = element_text(size = 10, face = "bold", color = "black"), 2451 

    #axis.ticks.x = element_blank(), 2452 

    axis.title = element_text(size = 15), 2453 

    strip.text = element_text(size = 15), 2454 

    strip.background = element_rect(fill = "grey90") 2455 

  ) 2456 

ggplot(media_global_lectinvariation_df, aes(Sample_Type, Viability_perc)) + 2457 

  geom_point(alpha = 0.0) + 2458 

 geom_smooth(data = viabilityPNA_df, aes(colour = "A"), method = "lm", size = 1.5, formula 2459 
= y ~ splines::bs(x, 8), se = FALSE) + 2460 

  geom_smooth(data = viabilityAAL_df, aes(colour = "B"), method = "lm", size = 1.5, formula 2461 
= y ~ splines::bs(x, 7), se = FALSE) + 2462 

  geom_smooth(data = viabilityMALII_df, aes(colour = "C"), method = "lm", size = 1.5, 2463 
formula = y ~ splines::bs(x, 8), se = FALSE) + 2464 
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  geom_smooth(data = viabilityLECB_df, aes(colour = "D"), method = "lm", size = 1.5, formula 2465 
= y ~ splines::bs(x, 8), se = FALSE) + 2466 

  geom_smooth(data = viabilityLECA_df, aes(colour = "E"), method = "lm", size = 1.5, formula 2467 
= y ~ splines::bs(x, 8), se = FALSE) + 2468 

  geom_smooth(data = viabilityAAL2_df, aes(colour = "F"), method = "lm", size = 1.5, formula 2469 
= y ~ splines::bs(x, 8), se = FALSE) + 2470 

  geom_smooth(data = viabilityWGA_df, aes(colour = "G"), method = "lm", size = 1.5, 2471 
formula = y ~ splines::bs(x, 6), se = FALSE) + 2472 

geom_vline(aes(xintercept = c(6.95)), color = "red", linetype = "dashed", size = 1) + 2473 

#geom_text(aes(x = 5.5, label = expression(paste("Lectin concentration level\n selected at 2474 
3.0", mu, "g/mL")) , y = 96), colour="red", angle = 0) + 2475 

  labs(x = expression(paste("Lectin concentration (", mu, "g/mL)")) , y = "Viability (%)", title = 2476 
NULL ) + 2477 

  scale_colour_manual(name = "Lectin",  values = c("#ff7f00", "#980043", "#7fcdbb", 2478 
"#006d2c", "#08519c", "#7a0177", "#993404"), breaks = c("A", "B", "C", "D", "E", "F", "G"), 2479 
labels = c("PNA", "AAL", "MALII", "LECB", "LECA", "AAL-2", "WGA")) + 2480 

scale_x_discrete(expand = c(0,0)) + 2481 

  theme_classic() + 2482 

  theme( 2483 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2484 

    legend.text = element_text(size = 15), 2485 

    legend.title = element_text(size = 15, face = "bold"), 2486 

    legend.box.background = element_blank(), 2487 

    legend.justification = "center", 2488 

    legend.position = "right", 2489 

    #axis.text.x = element_text(size = 10, face = "bold", color = "black"), 2490 

    #axis.ticks.x = element_blank(), 2491 

    axis.title = element_text(size = 15), 2492 

    strip.text = element_text(size = 15), 2493 

    strip.background = element_rect(fill = "grey90"), 2494 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  2495 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 2496 
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    #legend.background = element_rect(fill = "grey90", colour = "grey90") 2497 

  ) 2498 

``` 2499 

``` 2500 

Facetted plots with all lectins - Descriptive Analysis 2501 

```{r} 2502 

#FSC-A 2503 

#AAL, LECB, PNA, LECA, AAL-2, WGA, MAL II 2504 

filter(temp_global_lectinvariation_df, Channels == "FSC-A", Subpopulation != "Dead + 2505 
Apoptotic") %>% 2506 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 2507 
"Go/G1"))) %>% 2508 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 2509 
"MAL II"))) %>% 2510 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 2511 

  geom_point() + 2512 

  geom_line(size = 1) + 2513 

  theme_classic() + 2514 

  labs(x = "Temperature (ºC)"  , y = "FSC-A (linear scale)", title = NULL ) + 2515 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation") + 2516 

scale_x_discrete(expand = c(0,0), breaks = c("32", "33", "34", "35", "36", "37", "38", "39", 2517 
"40"), labels = c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2518 

  facet_grid(.~ Lectin) + 2519 

  theme_bw() + 2520 

  theme( 2521 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2522 

    legend.text = element_text(size = 15), 2523 

    legend.title = element_text(size = 15, face = "bold"), 2524 

    legend.box.background = element_blank(), 2525 

    legend.justification = "center", 2526 

    legend.position = "bottom", 2527 
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    #axis.text.x = element_text(angle = 45), 2528 

    #axis.ticks.x = element_blank(), 2529 

    axis.title = element_text(size = 15), 2530 

    strip.text = element_text(size = 15), 2531 

    strip.background = element_rect(fill = "grey90"), 2532 

    panel.grid = element_blank(), 2533 

    panel.spacing = unit(0.75, "lines") 2534 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  2535 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 2536 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 2537 

  ) 2538 

#SSC-A 2539 

#All populations 2540 

p1 <- filter(temp_global_lectinvariation_df, Channels == "SSC-A", Subpopulation != "Dead + 2541 
Apoptotic") %>% 2542 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 2543 
"Go/G1"))) %>% 2544 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 2545 
"MAL II"))) %>% 2546 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 2547 

  geom_point() + 2548 

  geom_line(size = 1) + 2549 

  theme_classic() + 2550 

  labs(x = NULL , y = "SSC-A (linear scale)", title = NULL ) + 2551 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation", guide = FALSE) + 2552 

scale_x_discrete(expand = c(0,0), breaks = c("32", "33", "34", "35", "36", "37", "38", "39", 2553 
"40"), labels = c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2554 

  facet_grid(.~ Lectin) + 2555 

  theme_bw() + 2556 

  theme( 2557 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2558 
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    legend.text = element_text(size = 15), 2559 

    legend.title = element_text(size = 15, face = "bold"), 2560 

    legend.box.background = element_blank(), 2561 

    legend.justification = "center", 2562 

    legend.position = "bottom", 2563 

    #axis.text.x = element_text(angle = 45), 2564 

    #axis.ticks.x = element_blank(), 2565 

    axis.title = element_text(size = 15), 2566 

    strip.text = element_text(size = 15), 2567 

    strip.background = element_rect(fill = "grey90"), 2568 

    panel.grid = element_blank(), 2569 

    panel.spacing = unit(0.75, "lines") 2570 

    #panel.grid.major = element_line(size = 0.25, linetype = 'solid', colour = "grey90"),  2571 

    #panel.grid.minor = element_line(size = 0.125, linetype = 'solid', colour = "grey90") 2572 

    #legend.background = element_rect(fill = "grey90", colour = "grey90") 2573 

  ) 2574 

#SSC-A 2575 

#DNA cycle populations 2576 

p2 <- filter(temp_global_lectinvariation_df, Channels == "SSC-A", Subpopulation != "Dead + 2577 
Apoptotic") %>% 2578 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 2579 
"Go/G1"))) %>% 2580 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 2581 
"MAL II"))) %>% 2582 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 2583 

  geom_point() + 2584 

  geom_line(size = 1) + 2585 

  theme_classic() + 2586 

  labs(x = "Temperature (ºC)" , y = "SSC-A (linear scale)", title = NULL ) + 2587 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation") + 2588 
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scale_x_discrete(expand = c(0,0), breaks = c("32", "33", "34", "35", "36", "37", "38", "39", 2589 
"40"), labels = c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2590 

  scale_y_continuous(limits = c(20000, 55000)) + 2591 

  facet_grid(.~ Lectin) + 2592 

  theme_bw() + 2593 

  theme( 2594 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2595 

    legend.text = element_text(size = 15), 2596 

    legend.title = element_text(size = 15, face = "bold"), 2597 

    legend.box.background = element_blank(), 2598 

    legend.justification = "center", 2599 

    legend.position = "bottom", 2600 

    axis.title = element_text(size = 15), 2601 

    strip.text = element_text(size = 15), 2602 

    strip.background = element_rect(fill = "grey90"), 2603 

    panel.grid = element_blank(), 2604 

    panel.spacing = unit(0.75, "lines") 2605 

   ) 2606 

grid.arrange(p1, p2, nrow = 2) 2607 

#LECTIN-A 2608 

#All populations 2609 

p1 <- filter(temp_global_lectinvariation_df, Channels == "LECTIN-A", Subpopulation != "Dead 2610 
+ Apoptotic") %>% 2611 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 2612 
"Go/G1"))) %>% 2613 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 2614 
"MAL II"))) %>% 2615 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 2616 

  geom_point() + 2617 

  geom_line(size = 1) + 2618 

  theme_classic() + 2619 
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  labs(x = NULL , y = "LECTIN-A (linear scale)", title = NULL ) + 2620 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation", guide = FALSE) + 2621 

 scale_x_discrete(expand = c(0,0), breaks = c("32", "33", "34", "35", "36", "37", "38", "39", 2622 
"40"), labels = c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2623 

  facet_grid(.~ Lectin) + 2624 

  theme_bw() + 2625 

  theme( 2626 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2627 

    legend.text = element_text(size = 15), 2628 

    legend.title = element_text(size = 15, face = "bold"), 2629 

    legend.box.background = element_blank(), 2630 

    legend.justification = "center", 2631 

    legend.position = "bottom", 2632 

    axis.title = element_text(size = 15), 2633 

    strip.text = element_text(size = 15), 2634 

    strip.background = element_rect(fill = "grey90"), 2635 

    panel.grid = element_blank(), 2636 

    panel.spacing = unit(0.75, "lines") 2637 

   ) 2638 

#LECTIN-A 2639 

#DNA cycle populations 2640 

p2 <- filter(temp_global_lectinvariation_df, Channels == "LECTIN-A", Subpopulation != "Dead 2641 
+ Apoptotic") %>% 2642 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 2643 
"Go/G1"))) %>% 2644 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 2645 
"MAL II"))) %>% 2646 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 2647 

  geom_point() + 2648 

  geom_line(size = 1) + 2649 

  theme_classic() + 2650 
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  labs(x = "Temperature (ºC)", y = "LECTIN-A (linear scale)", title = NULL ) + 2651 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation") + 2652 

  scale_x_discrete(expand = c(0,0), breaks = c("32", "33", "34", "35", "36", "37", "38", "39", 2653 
"40"), labels = c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2654 

  scale_y_continuous(limits = c(40, 240)) + 2655 

  facet_grid(.~ Lectin) + 2656 

  theme_bw() + 2657 

  theme( 2658 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2659 

    legend.text = element_text(size = 15), 2660 

    legend.title = element_text(size = 15, face = "bold"), 2661 

    legend.box.background = element_blank(), 2662 

    legend.justification = "center", 2663 

    legend.position = "bottom", 2664 

    axis.title = element_text(size = 15), 2665 

    strip.text = element_text(size = 15), 2666 

    strip.background = element_rect(fill = "grey90"), 2667 

    panel.grid = element_blank(), 2668 

    panel.spacing = unit(0.75, "lines") 2669 

   ) 2670 

grid.arrange(p1, p2, nrow = 2) 2671 

``` 2672 

Lectin Inferential Analysis 2673 

```{r} 2674 

Lectin_A_Subp_G2M_df <- table_manipulation(temp_global_descriptive_df, 2675 
temp_global_F_T_df, c("LECTIN_A"), c("LECTIN-A"), c("G2/M"), c("Temp"))   2676 

Lectin_A_Subp_S_df <- table_manipulation(temp_global_descriptive_df, 2677 
temp_global_F_T_df, c("LECTIN_A"), c("LECTIN-A"), c("S"), c("Temp")) 2678 

Lectin_A_Subp_GoG1_df <- table_manipulation(temp_global_descriptive_df, 2679 
temp_global_F_T_df, c("LECTIN_A"), c("LECTIN-A"), c("Go/G1"), c("Temp")) 2680 



312 
 

Lectin_A_df <- rbind(Lectin_A_Subp_G2M_df, Lectin_A_Subp_S_df, 2681 
Lectin_A_Subp_GoG1_df) 2682 

Lectin_A_df$Lectin_face <- factor(Lectin_A_df$Lectin, levels = c("AAL", "LEC B", "PNA", "LEC 2683 
A", "AAL-2", "WGA", "MAL II")) 2684 

Lectin_A_df$Subpopulation_face <- factor(Lectin_A_df$Subpopulation, levels = c("G2/M", 2685 
"S", "Go/G1", "Apoptotic","Dead")) 2686 

temp_global_descriptive_df$Lectin_face <- factor(temp_global_descriptive_df$Lectin, levels 2687 
= c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 2688 

temp_global_descriptive_df$Subpopulation_face <- 2689 
factor(temp_global_descriptive_df$Subpopulation, levels = c("G2/M", "S", "Go/G1", 2690 
"Apoptotic","Dead")) 2691 

temp_global_lectinvariation_df$Lectin_face <- 2692 
factor(temp_global_lectinvariation_df$Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", 2693 
"AAL-2", "WGA", "MAL II")) 2694 

#set fill and colour manual 2695 

#d95f02 highly significant 2696 

#1b9e77 not significant 2697 

#7570b3 trend towards significance 2698 

#e7298a very highly significant 2699 

#66a61e significant 2700 

p_G2M  <- filter(Lectin_A_df, Subpopulation == "G2/M") %>% 2701 

ggplot(aes(Sample_Type, LECTIN_A)) + 2702 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 2703 

   geom_boxplot(data = filter(temp_global_descriptive_df, Sample_Type == '37', 2704 
Subpopulation == "G2/M"), aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, 2705 
outlier.shape = NA) + 2706 

   facet_grid(.~ Lectin_face) + 2707 

   labs(x = "Temperature (ºC)", y = "LECTIN-A (log scale)", title = NULL) + 2708 

    scale_x_discrete(expand = c(0,0), breaks = c("32", "33", "34", "35", "36", "37", "38", "39", 2709 
"40"), labels = c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2710 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#1b9e77", 2711 
"#e7298a")) + 2712 

     scale_colour_manual(values = c("#1b9e77", "#e7298a"), guide = FALSE) + 2713 

     scale_y_continuous(expand = c(0,0)) + 2714 
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  coord_cartesian(ylim = c(-50, 480)) + 2715 

 theme_bw() + 2716 

  theme( 2717 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2718 

    legend.text = element_text(size = 15), 2719 

    legend.title = element_text(size = 15, face = "bold"), 2720 

    legend.box.background = element_blank(), 2721 

    legend.justification = "center", 2722 

    legend.position = "bottom", 2723 

    axis.title = element_text(size = 15), 2724 

    strip.text = element_text(size = 15), 2725 

    strip.background = element_rect(fill = "grey90"), 2726 

    panel.grid = element_blank(), 2727 

    panel.spacing = unit(0.75, "lines") 2728 

   ) 2729 

 2730 

df1 <- filter(media_global_descriptive_df, Sample_Type == '37', Subpopulation %in% 2731 
c("Go/G1", "S", "G2/M"))  2732 

filter(Lectin_A_df, Subpopulation %in% c("Go/G1", "S", "G2/M")) %>% 2733 

ggplot(aes(Sample_Type, LECTIN_A)) + 2734 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 2735 

   geom_boxplot(data = filter(temp_global_descriptive_df, Sample_Type == '37', 2736 
Subpopulation %in% c("Go/G1", "S", "G2/M")), aes(Sample_Type, LECTIN_A), fill = "grey", 2737 
size = 0.20, outlier.shape = NA) + 2738 

   facet_grid(Subpopulation_face ~ Lectin_face) + 2739 

   labs(x = "Temperature (ºC)", y = "LECTIN-A (linear scale)", title = NULL) + 2740 

    scale_x_discrete(breaks = c("32", "33", "34", "35", "36", "37", "38", "39", "40"), labels = 2741 
c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2742 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#1b9e77", 2743 
"#e7298a")) + 2744 

     scale_colour_manual(values = c("#1b9e77", "#e7298a"), guide = FALSE) + 2745 
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     scale_y_continuous(expand = c(0,0)) + 2746 

 coord_cartesian(ylim = c(-80, 480)) + 2747 

 theme_bw() + 2748 

  theme( 2749 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2750 

    legend.text = element_text(size = 15), 2751 

    legend.title = element_text(size = 15, face = "bold"), 2752 

    legend.box.background = element_blank(), 2753 

    legend.justification = "center", 2754 

    legend.position = "bottom", 2755 

    axis.title = element_text(size = 15), 2756 

    strip.text = element_text(size = 15), 2757 

    strip.background = element_rect(fill = "grey90"), 2758 

    panel.grid = element_blank(), 2759 

    panel.spacing = unit(0.75, "lines") 2760 

   ) 2761 

plot_line_box <-  filter(Lectin_A_df, Subpopulation == "Go/G1")  %>% 2762 

ggplot(aes(Sample_Type, LECTIN_A)) + 2763 

geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 2764 

geom_boxplot(data = filter(temp_global_descriptive_df, Sample_Type == '37', 2765 
Subpopulation == "Go/G1"), aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, 2766 
outlier.shape = NA) + 2767 

  geom_line(data = filter(temp_global_lectinvariation_df, Channels == "LECTIN-A", 2768 
Subpopulation == "Go/G1"), aes(Sample_Type, Mean, group = Subpopulation), colour = 2769 
"black", size = 0.6) + 2770 

   facet_grid(.~ Lectin_face) + 2771 

   labs(x = "Temperature (ºC)", y = "LECTIN-A (linear scale)", title = NULL) + 2772 

    scale_x_discrete(breaks = c("32", "33", "34", "35", "36", "37", "38", "39", "40"), labels = 2773 
c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2774 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#1b9e77", 2775 
"#e7298a")) + 2776 
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     scale_colour_manual(values = c("#1b9e77", "#e7298a"), guide = FALSE) + 2777 

     scale_y_continuous(expand = c(0,0)) + 2778 

coord_cartesian(ylim = c(-30, 350)) + 2779 

 theme_bw() + 2780 

  theme( 2781 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2782 

    legend.text = element_text(size = 15), 2783 

    legend.title = element_text(size = 15, face = "bold"), 2784 

    legend.box.background = element_blank(), 2785 

    legend.justification = "center", 2786 

    legend.position = "bottom", 2787 

    axis.title = element_text(size = 15), 2788 

    strip.text = element_text(size = 15), 2789 

    strip.background = element_rect(fill = "grey90"), 2790 

    panel.grid = element_blank(), 2791 

    panel.spacing = unit(0.75, "lines") 2792 

   ) 2793 

df1 <- filter(media_global_descriptive_df, Sample_Type == '3', Subpopulation == "S") 2794 

p_S <- filter(Lectin_A_df, Subpopulation == "S") %>% 2795 

ggplot(aes(Sample_Type, LECTIN_A)) + 2796 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 2797 

   geom_boxplot(data = df1, aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, 2798 
outlier.shape = NA) + 2799 

   facet_grid(Subpopulation ~ Lectin_face) + 2800 

   labs(x = "Level of Spent medium (Days)", y = "LECTIN-A (log scale)", title = NULL) + 2801 

     scale_x_discrete(breaks=c("0", "1", "2", "3", "4", "5", "6"), 2802 

                      labels=c("-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2803 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#1b9e77", 2804 
"#e7298a")) + 2805 

     scale_colour_manual(values = c("#1b9e77", "#e7298a"), guide = FALSE) + 2806 
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     scale_y_continuous(expand = c(0,0)) + 2807 

 coord_cartesian(ylim = c(-65, 350)) + 2808 

 theme_bw() + 2809 

  theme( 2810 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2811 

    legend.text = element_text(size = 15), 2812 

    legend.title = element_text(size = 15, face = "bold"), 2813 

    legend.box.background = element_blank(), 2814 

    legend.justification = "center", 2815 

    legend.position = "bottom", 2816 

    axis.title = element_text(size = 15), 2817 

    strip.text = element_text(size = 15), 2818 

    strip.background = element_rect(fill = "grey90"), 2819 

    panel.grid = element_blank(), 2820 

    panel.spacing = unit(0.75, "lines") 2821 

   ) 2822 

#d95f02 highly significant 2823 

#1b9e77 not significant 2824 

#7570b3 trend towards significance 2825 

#e7298a very highly significant 2826 

#66a61e significant 2827 

``` 2828 

Lectin Power Analysis 2829 

```{r} 2830 

#fd8d3c G2/M 2831 

#f03b20 S 2832 

#bd0026 Go/G1 2833 

temp_global_F_T_df$Lectin_face <- factor(temp_global_F_T_df$Lectin, levels = c("AAL", 2834 
"LEC B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 2835 
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bar_plot <- filter(temp_global_F_T_df, Subpopulation =='Go/G1', Channels == "LECTIN-A") 2836 
%>%  2837 

   mutate(Power = Power * 100) %>%  2838 

   ggplot(aes(Sample_Type, Power)) + 2839 

   geom_rect(aes(xmin = 0.4, xmax = 5.5, ymin = 0, ymax = Inf), fill = "#bd0026", alpha = 2840 
0.025) + 2841 

   geom_rect(aes(xmin = 5.5, xmax = Inf, ymin = 0, ymax = Inf), fill = "#bd0026", alpha = 0.07) 2842 
+ 2843 

   geom_bar(stat = "identity" , colour = NA, fill = "#bd0026") + 2844 

   #geom_hline(aes(yintercept = c(25)), color = "grey70", linetype = "dashed", size = 1) + 2845 

   #geom_hline(aes(yintercept = c(50)), color = "grey50", linetype = "dashed", size = 1) + 2846 

   #geom_hline(aes(yintercept = c(75)), color = "grey30", linetype = "dashed", size = 1) + 2847 

   #geom_hline(aes(yintercept = c(90)), color = "black", linetype = "dotted", size = 1) + 2848 

  geom_text(data = filter(temp_global_F_T_df, Subpopulation =='Go/G1', Channels == 2849 
"LECTIN-A") %>%  2850 

   mutate(Power = Power * 100) %>% mutate_if(is.numeric, round, 0), aes(Sample_Type, 2851 
Power, label = Power), position = position_dodge(width = 0.8), size = 4, vjust = -0.5) + 2852 

   facet_grid(.~ Lectin_face) + 2853 

   labs(x = NULL, y = "Power (%)", title = NULL) + 2854 

    scale_x_discrete(breaks = c("32", "33", "34", "35", "36", "37", "38", "39", "40"), labels = 2855 
c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2856 

  scale_y_continuous(expand = c(0,0), limits = c(0,110), breaks = c(0, 25, 50, 75, 100)) + 2857 

   theme_bw() + 2858 

  theme( 2859 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2860 

    legend.text = element_text(size = 15), 2861 

    legend.title = element_text(size = 15, face = "bold"), 2862 

    legend.box.background = element_blank(), 2863 

    legend.justification = "center", 2864 

    legend.position = "bottom", 2865 

    axis.title = element_text(size = 15), 2866 
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    strip.text = element_text(size = 15), 2867 

    strip.background = element_rect(fill = "grey90"), 2868 

    panel.grid = element_blank(), 2869 

    panel.spacing = unit(0.75, "lines") 2870 

   ) 2871 

grid.arrange(bar_plot, plot_line_box, nrow = 2) 2872 

filter(temp_global_F_T_df, Channels == "LECTIN-A", Subpopulation %in% c("G2/M", "S", 2873 
"Go/G1")) %>%  2874 

  mutate(Subpopulation = factor(Subpopulation, levels = c("G2/M", "S", "Go/G1"))) %>% 2875 

  mutate(Power = Power * 100) %>%  2876 

   ggplot(aes(Sample_Type, Power, fill = Subpopulation)) + 2877 

   geom_bar(stat = "identity", colour = NA) + 2878 

   facet_grid(Subpopulation ~ Lectin_face) + 2879 

 labs(x = "Temperature (ºC)", y = "Power (%)", title = NULL) + 2880 

    scale_x_discrete(expand = c(0,0), breaks = c("32", "33", "34", "35", "36", "37", "38", "39", 2881 
"40"), labels = c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2882 

   scale_fill_manual(values = c("#fd8d3c", "#f03b20", "#bd0026"), guide = FALSE) + 2883 

   scale_colour_manual(values = c("#fd8d3c", "#f03b20", "#bd0026"), guide = FALSE) + 2884 

   scale_y_continuous(expand = c(0,0), limits = c(0,100)) + 2885 

   theme_bw() + 2886 

  theme( 2887 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2888 

    legend.text = element_text(size = 15), 2889 

    legend.title = element_text(size = 15, face = "bold"), 2890 

    legend.box.background = element_blank(), 2891 

    legend.justification = "center", 2892 

    legend.position = "bottom", 2893 

    axis.title = element_text(size = 15), 2894 

    strip.text = element_text(size = 15), 2895 

    strip.background = element_rect(fill = "grey90"), 2896 
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    panel.grid = element_blank(), 2897 

    panel.spacing = unit(0.75, "lines") 2898 

   ) 2899 

filter(temp_global_F_T_df, Channels == "LECTIN-A", Subpopulation %in% c("G2/M", "S", 2900 
"Go/G1")) %>%  2901 

  mutate(Subpopulation = factor(Subpopulation, levels = c("G2/M", "S", "Go/G1"))) %>% 2902 

   ggplot(aes(Sample_Type, Sample_Size, fill = Subpopulation)) + 2903 

   geom_bar(stat = "identity", colour = NA) + 2904 

   facet_grid(Subpopulation ~ Lectin_face) + 2905 

   labs(x = "Temperature (ºC)", y = "Sample size (number of cells)", title = NULL) + 2906 

  #scale_fill_brewer(palette = "RdBu", guide = FALSE) + 2907 

  scale_x_discrete(expand = c(0,0), breaks = c("32", "33", "34", "35", "36", "37", "38", "39", 2908 
"40"), labels = c("-5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2909 

   scale_fill_manual(values = c("#41b6c4", "#2c7fb8", "#253494"), guide = FALSE) + 2910 

   scale_colour_manual(values = c("#41b6c4", "#2c7fb8", "#253494"), guide = FALSE) + 2911 

   scale_y_continuous(expand = c(0,0)) + 2912 

   theme_bw() + 2913 

  theme( 2914 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2915 

    legend.text = element_text(size = 15), 2916 

    legend.title = element_text(size = 15, face = "bold"), 2917 

    legend.box.background = element_blank(), 2918 

    legend.justification = "center", 2919 

    legend.position = "bottom", 2920 

    axis.title = element_text(size = 15), 2921 

    strip.text = element_text(size = 15), 2922 

    strip.background = element_rect(fill = "grey90"), 2923 

    panel.grid = element_blank(), 2924 

    panel.spacing = unit(0.75, "lines") 2925 

   ) 2926 
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``` 2927 

Analysis of Relative Lectin signal density 2928 

```{r} 2929 

library(gridExtra) 2930 

temp_global_lectinvariation_df$Subpopulation_face <- 2931 
factor(temp_global_lectinvariation_df$Subpopulation, levels = c("Go/G1", "S", "G2/M", 2932 
"Apoptotic","Dead")) 2933 

temp_global_lectinvariation_df$Lectin_face <- 2934 
factor(temp_global_lectinvariation_df$Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", 2935 
"AAL-2", "WGA", "MAL II")) 2936 

#b2e2e2 Go/G1 2937 

#66c2a4 S 2938 

#238b45 G2/M 2939 

p1 <- filter(temp_global_lectinvariation_df, Channels %in% c("Area_ratio"), 2940 
Subpopulation_face %in% c("G2/M", "S", "Go/G1"), Lectin_face %in% c("AAL", "LEC B", 2941 
"PNA", "LEC A")) %>% 2942 

  ggplot(aes(Sample_Type, Mean, fill = Subpopulation_face, ymin = Mean - Mean_SD, ymax = 2943 
Mean + Mean_SD, group = Subpopulation_face)) + 2944 

  geom_bar(stat = "identity", position = "dodge") + 2945 

  geom_errorbar(size = 0.15, position = "dodge") + 2946 

   facet_grid(.~ Lectin_face) + 2947 

   labs(x = "Temperature (ºC)", y = "LECTIN-A/FSC-A (linear scale)", title = NULL) + 2948 

   scale_fill_manual(values = c("#b2e2e2", "#66c2a4", "#238b45"), guide = FALSE) + 2949 

   scale_y_continuous(expand = c(0,0), limits = c(0,0.0025)) + 2950 

 scale_x_discrete(breaks = c("32", "33", "34", "35", "36", "37", "38", "39", "40"), labels = c("-2951 
5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2952 

   theme_bw() + 2953 

  theme( 2954 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2955 

    legend.text = element_text(size = 15), 2956 

    legend.title = element_text(size = 15, face = "bold"), 2957 

    legend.box.background = element_blank(), 2958 
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    legend.justification = "center", 2959 

    legend.position = "bottom", 2960 

    axis.text.x = element_text(size = 10, colour = "black"), 2961 

    axis.title = element_text(size = 15), 2962 

    strip.text = element_text(size = 15), 2963 

    strip.background = element_rect(fill = "grey90"), 2964 

    panel.grid = element_blank() 2965 

  2966 

   ) 2967 

p2 <- filter(temp_global_lectinvariation_df, Channels %in% c("Area_ratio"), 2968 
Subpopulation_face %in% c("G2/M", "S", "Go/G1"), Lectin_face %in% c("AAL-2", "WGA", 2969 
"MAL II")) %>% 2970 

  ggplot(aes(Sample_Type, Mean, fill = Subpopulation_face, ymin = Mean - Mean_SD, ymax = 2971 
Mean + Mean_SD, group = Subpopulation_face)) + 2972 

  geom_bar(stat = "identity", position = "dodge") + 2973 

  geom_errorbar(size = 0.15, position = "dodge") + 2974 

   facet_grid(.~ Lectin_face) + 2975 

   labs(x = "Temperature (ºC)", y = "LECTIN-A/FSC-A (linear scale)", title = NULL) + 2976 

  scale_fill_manual(values = c("#b2e2e2", "#66c2a4", "#238b45"), name = "Subpopulation") + 2977 

   scale_y_continuous(expand = c(0,0), limits = c(0,0.0030)) + 2978 

 scale_x_discrete(breaks = c("32", "33", "34", "35", "36", "37", "38", "39", "40"), labels = c("-2979 
5", "-4", "-3", "-2", "-1", "0", "+1", "+2", "+3")) + 2980 

   theme_bw() + 2981 

  theme( 2982 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 2983 

    legend.text = element_text(size = 15), 2984 

    legend.title = element_text(size = 15, face = "bold"), 2985 

    legend.box.background = element_blank(), 2986 

    legend.justification = "center", 2987 

    legend.position = "right", 2988 

    axis.text.x = element_text(size = 10, colour = "black"), 2989 
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    axis.title = element_text(size = 15), 2990 

    strip.text = element_text(size = 15), 2991 

    strip.background = element_rect(fill = "grey90"), 2992 

    panel.grid = element_blank() 2993 

   ) 2994 

grid.arrange(p1, p2, nrow = 2) 2995 

``` 2996 

 

8.4 CO2 data treatment and generation of plots  
 

Data obtained from cells subjected to the variation of CO2 levels are computed in this section. 
Pre built-in R functions and the functions created in Section 8.1 are used here. The code for 
the generation of plots are demonstrated in this section as well.  

 

```{r} 2997 

#Algorithm to collect and store gated data of the CO2 Variation Experiments 2998 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/Temp & CO2 baseline") 2999 

wd <- getwd() 3000 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/Temp & CO2 3001 
baseline/Compensation Controls - WGA") 3002 

flow_gating_list <- flow_gating(wd, x_WGA) 3003 

#flow_gating_list <- flow_gating(wd) 3004 

gs1 <- flow_gating_list[[1]] 3005 

gs2 <- flow_gating_list[[2]] 3006 

gs3 <- flow_gating_list[[3]] 3007 

save_gs(gs1, path = file.path(wd, "gs1")) 3008 

save_gs(gs2, path = file.path(wd, "gs2")) 3009 

save_gs(gs3, path = file.path(wd, "gs3"))  3010 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 1%") 3011 

wd <- getwd() 3012 
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x_WGA <- c("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 1%/Compensation 3013 
Controls - WGA") 3014 

flow_gating_list <- flow_gating(wd, x_WGA) 3015 

#flow_gating_list <- flow_gating(wd) 3016 

gs1 <- flow_gating_list[[1]] 3017 

gs2 <- flow_gating_list[[2]] 3018 

gs3 <- flow_gating_list[[3]] 3019 

save_gs(gs1, path = file.path(wd, "gs1")) 3020 

save_gs(gs2, path = file.path(wd, "gs2")) 3021 

save_gs(gs3, path = file.path(wd, "gs3")) 3022 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 2%") 3023 

wd <- getwd() 3024 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 2%/Compensation 3025 
Controls - WGA") 3026 

flow_gating_list <- flow_gating(wd, x_WGA) 3027 

#flow_gating_list <- flow_gating(wd) 3028 

gs1 <- flow_gating_list[[1]] 3029 

gs2 <- flow_gating_list[[2]] 3030 

gs3 <- flow_gating_list[[3]] 3031 

save_gs(gs1, path = file.path(wd, "gs1")) 3032 

save_gs(gs2, path = file.path(wd, "gs2")) 3033 

save_gs(gs3, path = file.path(wd, "gs3")) 3034 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 3%") 3035 

wd <- getwd() 3036 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 3%/Compensation 3037 
Controls - WGA") 3038 

flow_gating_list <- flow_gating(wd, x_WGA) 3039 

#flow_gating_list <- flow_gating(wd) 3040 

gs1 <- flow_gating_list[[1]] 3041 

gs2 <- flow_gating_list[[2]] 3042 
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gs3 <- flow_gating_list[[3]] 3043 

save_gs(gs1, path = file.path(wd, "gs1")) 3044 

save_gs(gs2, path = file.path(wd, "gs2")) 3045 

save_gs(gs3, path = file.path(wd, "gs3")) 3046 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 4%") 3047 

wd <- getwd() 3048 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 4%/Compensation 3049 
Controls - WGA") 3050 

flow_gating_list <- flow_gating(wd, x_WGA) 3051 

#flow_gating_list <- flow_gating(wd) 3052 

gs1 <- flow_gating_list[[1]] 3053 

gs2 <- flow_gating_list[[2]] 3054 

gs3 <- flow_gating_list[[3]] 3055 

save_gs(gs1, path = file.path(wd, "gs1")) 3056 

save_gs(gs2, path = file.path(wd, "gs2")) 3057 

save_gs(gs3, path = file.path(wd, "gs3")) 3058 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 6%") 3059 

wd <- getwd() 3060 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 6%/Compensation 3061 
Controls - WGA") 3062 

flow_gating_list <- flow_gating(wd, x_WGA) 3063 

#flow_gating_list <- flow_gating(wd) 3064 

gs1 <- flow_gating_list[[1]] 3065 

gs2 <- flow_gating_list[[2]] 3066 

gs3 <- flow_gating_list[[3]] 3067 

save_gs(gs1, path = file.path(wd, "gs1")) 3068 

save_gs(gs2, path = file.path(wd, "gs2")) 3069 

save_gs(gs3, path = file.path(wd, "gs3")) 3070 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 7%") 3071 

wd <- getwd() 3072 
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x_WGA <- c("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 7%/Compensation 3073 
Controls - WGA") 3074 

flow_gating_list <- flow_gating(wd, x_WGA) 3075 

#flow_gating_list <- flow_gating(wd) 3076 

gs1 <- flow_gating_list[[1]] 3077 

gs2 <- flow_gating_list[[2]] 3078 

gs3 <- flow_gating_list[[3]] 3079 

save_gs(gs1, path = file.path(wd, "gs1")) 3080 

save_gs(gs2, path = file.path(wd, "gs2")) 3081 

save_gs(gs3, path = file.path(wd, "gs3")) 3082 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 8%") 3083 

wd <- getwd() 3084 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 8%/Compensation 3085 
Controls - WGA") 3086 

flow_gating_list <- flow_gating(wd, x_WGA) 3087 

#flow_gating_list <- flow_gating(wd) 3088 

gs1 <- flow_gating_list[[1]] 3089 

gs2 <- flow_gating_list[[2]] 3090 

gs3 <- flow_gating_list[[3]] 3091 

save_gs(gs1, path = file.path(wd, "gs1")) 3092 

save_gs(gs2, path = file.path(wd, "gs2")) 3093 

save_gs(gs3, path = file.path(wd, "gs3")) 3094 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 9%") 3095 

wd <- getwd() 3096 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 9%/Compensation 3097 
Controls - WGA") 3098 

flow_gating_list <- flow_gating(wd, x_WGA) 3099 

#flow_gating_list <- flow_gating(wd) 3100 

gs1 <- flow_gating_list[[1]] 3101 

gs2 <- flow_gating_list[[2]] 3102 
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gs3 <- flow_gating_list[[3]] 3103 

save_gs(gs1, path = file.path(wd, "gs1")) 3104 

save_gs(gs2, path = file.path(wd, "gs2")) 3105 

save_gs(gs3, path = file.path(wd, "gs3")) 3106 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 10%") 3107 

wd <- getwd() 3108 

x_WGA <- c("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 10%/Compensation 3109 
Controls - WGA") 3110 

flow_gating_list <- flow_gating(wd, x_WGA) 3111 

#flow_gating_list <- flow_gating(wd) 3112 

gs1 <- flow_gating_list[[1]] 3113 

gs2 <- flow_gating_list[[2]] 3114 

gs3 <- flow_gating_list[[3]] 3115 

save_gs(gs1, path = file.path(wd, "gs1")) 3116 

save_gs(gs2, path = file.path(wd, "gs2")) 3117 

save_gs(gs3, path = file.path(wd, "gs3")) 3118 

 3119 

``` 3120 

Algorithm to retrieve and to statistically treat the data of CO2 Variation Experiments 3121 

```{r } 3122 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/Temp & CO2 baseline") 3123 

wd <- getwd() 3124 

gs1 <- load_gs(file.path(wd, "gs1")) 3125 

gs2 <- load_gs(file.path(wd, "gs2")) 3126 

gs3 <- load_gs(file.path(wd, "gs3")) 3127 

CO2_baseline <- table_summary(gs1, gs2, gs3, c("e")) 3128 

CO2_baseline_descriptive <- table_descriptive(gs1, gs2, gs3, c("e")) 3129 

CO2_baseline_density <- lectin_density_stats(CO2_baseline) 3130 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 1%") 3131 
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wd <- getwd() 3132 

gs1 <- load_gs(file.path(wd, "gs1")) 3133 

gs2 <- load_gs(file.path(wd, "gs2")) 3134 

gs3 <- load_gs(file.path(wd, "gs3")) 3135 

CO2_1 <- table_summary(gs1, gs2, gs3, c("a")) 3136 

CO2_1_descriptive <- table_descriptive(gs1, gs2, gs3, c("a")) 3137 

base_1 <- F_T_Power_test(CO2_baseline, CO2_1, c("a")) 3138 

CO2_1_density <- lectin_density_stats(CO2_1) 3139 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 2%") 3140 

wd <- getwd() 3141 

gs1 <- load_gs(file.path(wd, "gs1")) 3142 

gs2 <- load_gs(file.path(wd, "gs2")) 3143 

gs3 <- load_gs(file.path(wd, "gs3")) 3144 

CO2_2 <- table_summary(gs1, gs2, gs3, c("b")) 3145 

CO2_2_descriptive <- table_descriptive(gs1, gs2, gs3, c("b")) 3146 

base_2 <- F_T_Power_test(CO2_baseline, CO2_2, c("b")) 3147 

CO2_2_density <- lectin_density_stats(CO2_2) 3148 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 3%") 3149 

wd <- getwd() 3150 

gs1 <- load_gs(file.path(wd, "gs1")) 3151 

gs2 <- load_gs(file.path(wd, "gs2")) 3152 

gs3 <- load_gs(file.path(wd, "gs3")) 3153 

CO2_3 <- table_summary(gs1, gs2, gs3, c("c")) 3154 

CO2_3_descriptive <- table_descriptive(gs1, gs2, gs3, c("c")) 3155 

base_3 <- F_T_Power_test(CO2_baseline, CO2_3, c("c")) 3156 

CO2_3_density <- lectin_density_stats(CO2_3) 3157 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 4%") 3158 

wd <- getwd() 3159 

gs1 <- load_gs(file.path(wd, "gs1")) 3160 
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gs2 <- load_gs(file.path(wd, "gs2")) 3161 

gs3 <- load_gs(file.path(wd, "gs3")) 3162 

CO2_4 <- table_summary(gs1, gs2, gs3, c("d")) 3163 

CO2_4_descriptive <- table_descriptive(gs1, gs2, gs3, c("d")) 3164 

base_4 <- F_T_Power_test(CO2_baseline, CO2_4, c("d")) 3165 

CO2_4_density <- lectin_density_stats(CO2_4) 3166 

 3167 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 6%") 3168 

wd <- getwd() 3169 

gs1 <- load_gs(file.path(wd, "gs1")) 3170 

gs2 <- load_gs(file.path(wd, "gs2")) 3171 

gs3 <- load_gs(file.path(wd, "gs3")) 3172 

CO2_6 <- table_summary(gs1, gs2, gs3, c("f")) 3173 

CO2_6_descriptive <- table_descriptive(gs1, gs2, gs3, c("f")) 3174 

base_6 <- F_T_Power_test(CO2_baseline, CO2_6, c("f")) 3175 

CO2_6_density <- lectin_density_stats(CO2_6) 3176 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 7%") 3177 

wd <- getwd() 3178 

gs1 <- load_gs(file.path(wd, "gs1")) 3179 

gs2 <- load_gs(file.path(wd, "gs2")) 3180 

gs3 <- load_gs(file.path(wd, "gs3")) 3181 

CO2_7 <- table_summary(gs1, gs2, gs3, c("g")) 3182 

CO2_7_descriptive <- table_descriptive(gs1, gs2, gs3, c("g")) 3183 

base_7 <- F_T_Power_test(CO2_baseline, CO2_7, c("g")) 3184 

CO2_7_density <- lectin_density_stats(CO2_7) 3185 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 8%") 3186 

wd <- getwd() 3187 

gs1 <- load_gs(file.path(wd, "gs1")) 3188 

gs2 <- load_gs(file.path(wd, "gs2")) 3189 
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gs3 <- load_gs(file.path(wd, "gs3")) 3190 

CO2_8 <- table_summary(gs1, gs2, gs3, c("h")) 3191 

CO2_8_descriptive <- table_descriptive(gs1, gs2, gs3, c("h")) 3192 

base_8 <- F_T_Power_test(CO2_baseline, CO2_8, c("h")) 3193 

CO2_8_density <- lectin_density_stats(CO2_8) 3194 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 9%") 3195 

wd <- getwd() 3196 

gs1 <- load_gs(file.path(wd, "gs1")) 3197 

gs2 <- load_gs(file.path(wd, "gs2")) 3198 

gs3 <- load_gs(file.path(wd, "gs3")) 3199 

CO2_9 <- table_summary(gs1, gs2, gs3, c("i")) 3200 

CO2_9_descriptive <- table_descriptive(gs1, gs2, gs3, c("i")) 3201 

base_9 <- F_T_Power_test(CO2_baseline, CO2_9, c("i")) 3202 

CO2_9_density <- lectin_density_stats(CO2_9) 3203 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II/CO2 10%") 3204 

wd <- getwd() 3205 

gs1 <- load_gs(file.path(wd, "gs1")) 3206 

gs2 <- load_gs(file.path(wd, "gs2")) 3207 

gs3 <- load_gs(file.path(wd, "gs3")) 3208 

CO2_10 <- table_summary(gs1, gs2, gs3, c("j")) 3209 

CO2_10_descriptive <- table_descriptive(gs1, gs2, gs3, c("j")) 3210 

base_10 <- F_T_Power_test(CO2_baseline, CO2_10, c("j")) 3211 

CO2_10_density <- lectin_density_stats(CO2_10) 3212 

CO2_global_descriptive_df <- rbind(CO2_baseline_descriptive, CO2_1_descriptive, 3213 
CO2_2_descriptive, CO2_3_descriptive, CO2_4_descriptive, CO2_6_descriptive, 3214 
CO2_7_descriptive, CO2_8_descriptive, CO2_9_descriptive, CO2_10_descriptive) 3215 

rm(CO2_baseline_descriptive, CO2_1_descriptive, CO2_2_descriptive, CO2_3_descriptive, 3216 
CO2_4_descriptive, CO2_6_descriptive, CO2_7_descriptive, CO2_8_descriptive, 3217 
CO2_9_descriptive, CO2_10_descriptive) 3218 

CO2_global_lectinvariation_df <- rbind(CO2_baseline, CO2_1, CO2_2, CO2_3, CO2_4, 3219 
CO2_6, CO2_7, CO2_8, CO2_9, CO2_10) 3220 



330 
 

rm(CO2_baseline, CO2_1, CO2_2, CO2_3, CO2_4, CO2_6, CO2_7, CO2_8, CO2_9, CO2_10) 3221 

CO2_global_F_T_df <- rbind(base_1, base_2, base_3, base_4, base_6, base_7, base_8, 3222 
base_9, base_10) 3223 

rm(base_1, base_2, base_3, base_4, base_6, base_7, base_8, base_9, base_10) 3224 

CO2_global_density_df <- rbind(CO2_baseline_density, CO2_1_density, CO2_2_density, 3225 
CO2_3_density, CO2_4_density, CO2_6_density, CO2_7_density, CO2_8_density, 3226 
CO2_9_density, CO2_10_density) 3227 

rm(CO2_baseline_density, CO2_1_density, CO2_2_density, CO2_3_density, CO2_4_density, 3228 
CO2_6_density, CO2_7_density, CO2_8_density, CO2_9_density, CO2_10_density) 3229 

ratio_matrix_a <- as.data.frame(matrix(c(rep("area", times = 3230 
nrow(CO2_global_ratios_a_df))), nrow = nrow(CO2_global_ratios_a_df), ncol = 1), 3231 
stringsAsFactors = FALSE) 3232 

ratio_matrix_h <- as.data.frame(matrix(c(rep("height", times = 3233 
nrow(CO2_global_ratios_h_df))), nrow = nrow(CO2_global_ratios_h_df), ncol = 1), 3234 
stringsAsFactors = FALSE) 3235 

ratio_matrix_w <- as.data.frame(matrix(c(rep("width", times = 3236 
nrow(CO2_global_ratios_w_df))), nrow = nrow(CO2_global_ratios_w_df), ncol = 1), 3237 
stringsAsFactors = FALSE) 3238 

CO2_global_ratios_df <- rbind(ratio_matrix_a, ratio_matrix_h, ratio_matrix_w)     3239 

CO2_global_ratios_df <- cbind(rbind(CO2_global_ratios_a_df, CO2_global_ratios_h_df, 3240 
CO2_global_ratios_w_df), CO2_global_ratios_df) 3241 

rm(ratio_matrix_a, ratio_matrix_h, ratio_matrix_w, CO2_global_ratios_a_df, 3242 
CO2_global_ratios_h_df, CO2_global_ratios_w_df) 3243 

colnames(CO2_global_ratios_df) <- c("Sample_Type", "Comp_type", "Ratio1_Mean", 3244 
"Ratio1_SD", "Sample_size1", "Ratio2_Mean", "Ratio2_SD","Sample_size2", "Fp_value", 3245 
"Level_of_sig_F", "F_test_conclusion", "Tp_value", "Level_of_sig_T", "Power", 3246 
"Ascending_order", "Lectin", "Dimension") 3247 

colnames(CO2_global_F_T_df) <- c("Sample_Type", "Channels", "Subpopulation", "Lectin", 3248 
"Mean", "SD", "Sample_Size","Fp_value", "F_significance", "F_test_conclusion", "Tp_value", 3249 
"T_test_significance", "Power") 3250 

colnames(CO2_global_lectinvariation_df) <- c("Sample_Type", "Channels", "Mean", 3251 
"Mean_SD", "CV_perc", "Subpopulation", "Sample_Size","Viability_perc", 3252 
"Viability_SD_perc", "Lectin") 3253 

``` 3254 

```{r} 3255 

library(readxl) 3256 

library(gridExtra) 3257 
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#Read in the excel spreadsheet into R 3258 

setwd("~/Dropbox/PhD Project/PhD Project/CO2 Variation II") 3259 

pH_CO2 <- read_excel("pH.xlsx") 3260 

pH_CO2_df <- as.data.frame(pH_CO2, stringsAsFactors = FALSE)  3261 

``` 3262 

Viability and pH Plots  3263 

```{r} 3264 

#Viability across nutrient variation (line plot of individual lectin curves) 3265 

viability_plot <- mutate(CO2_global_lectinvariation_df, Sample_Type = factor(Sample_Type, 3266 
levels = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"))) %>% 3267 

  ggplot(aes(Sample_Type, Viability_perc)) + 3268 

  geom_smooth(aes(group = Lectin, color = Lectin), size = 1.5, se = FALSE) + 3269 

  scale_colour_manual(name = "Lectin",  values = c("#980043","#7a0177", "#08519c", 3270 
"#006d2c", "#7fcdbb",  "#ff7f00", "#993404")) + 3271 

   labs(x = "Level of carbon dioxide (%)" , y = "Viability (%)", title = NULL ) + 3272 

   scale_x_discrete(expand = c(0,0), breaks = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"), 3273 
labels = c("-4", "-3", "-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3274 

  theme_classic() + 3275 

  theme( 3276 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3277 

    legend.text = element_text(size = 15), 3278 

    legend.title = element_text(size = 15, face = "bold"), 3279 

    legend.box.background = element_blank(), 3280 

    legend.justification = "center", 3281 

    legend.position = "right", 3282 

    axis.title = element_text(size = 15), 3283 

    strip.text = element_text(size = 15), 3284 

    strip.background = element_rect(fill = "grey90") 3285 

  ) 3286 

#pH line plot across nutrient variation      3287 
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pH_plot <- ggplot(pH_CO2_df, aes(Sample_Type, pH)) + 3288 

  geom_point(aes(colour = Replicate), size = 3, alpha = 0.60) + 3289 

  geom_smooth(size = 1.5) + 3290 

  labs(x = "Level of carbon dioxide (%)" , y = "pH", title = NULL ) + 3291 

  scale_colour_brewer(palette = "Set1", name = "Replicate") + 3292 

  scale_x_continuous(expand = c(0,0), breaks = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), labels = c("-4", "-3293 
3", "-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3294 

  scale_y_continuous(expand = c(0,0)) + 3295 

  theme_classic() + 3296 

  theme( 3297 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3298 

    legend.text = element_text(size = 15), 3299 

    legend.title = element_text(size = 15, face = "bold"), 3300 

    legend.box.background = element_blank(), 3301 

    legend.justification = "center", 3302 

    legend.position = "right", 3303 

    axis.title = element_text(size = 15), 3304 

    strip.text = element_text(size = 15), 3305 

    strip.background = element_rect(fill = "grey90") 3306 

  ) 3307 

ggplot(media_global_lectinvariation_df, aes(Sample_Type, Viability_perc)) + 3308 

  geom_point(alpha = 0.0) + 3309 

 geom_smooth(data = viabilityPNA_df, aes(colour = "A"), method = "lm", size = 1.5, formula 3310 
= y ~ splines::bs(x, 8), se = FALSE) + 3311 

  geom_smooth(data = viabilityAAL_df, aes(colour = "B"), method = "lm", size = 1.5, formula 3312 
= y ~ splines::bs(x, 7), se = FALSE) + 3313 

  geom_smooth(data = viabilityMALII_df, aes(colour = "C"), method = "lm", size = 1.5, 3314 
formula = y ~ splines::bs(x, 8), se = FALSE) + 3315 

  geom_smooth(data = viabilityLECB_df, aes(colour = "D"), method = "lm", size = 1.5, formula 3316 
= y ~ splines::bs(x, 8), se = FALSE) + 3317 
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  geom_smooth(data = viabilityLECA_df, aes(colour = "E"), method = "lm", size = 1.5, formula 3318 
= y ~ splines::bs(x, 8), se = FALSE) + 3319 

  geom_smooth(data = viabilityAAL2_df, aes(colour = "F"), method = "lm", size = 1.5, formula 3320 
= y ~ splines::bs(x, 8), se = FALSE) + 3321 

  geom_smooth(data = viabilityWGA_df, aes(colour = "G"), method = "lm", size = 1.5, 3322 
formula = y ~ splines::bs(x, 6), se = FALSE) + 3323 

geom_vline(aes(xintercept = c(6.95)), color = "red", linetype = "dashed", size = 1) + 3324 

   labs(x = expression(paste("Lectin concentration (", mu, "g/mL)")) , y = "Viability (%)", title = 3325 
NULL ) + 3326 

  scale_colour_manual(name = "Lectin",  values = c("#ff7f00", "#980043", "#7fcdbb", 3327 
"#006d2c", "#08519c", "#7a0177", "#993404"), breaks = c("A", "B", "C", "D", "E", "F", "G"), 3328 
labels = c("PNA", "AAL", "MALII", "LECB", "LECA", "AAL-2", "WGA")) + 3329 

scale_x_discrete(expand = c(0,0)) + 3330 

  theme_classic() + 3331 

  theme( 3332 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3333 

    legend.text = element_text(size = 15), 3334 

    legend.title = element_text(size = 15, face = "bold"), 3335 

    legend.box.background = element_blank(), 3336 

    legend.justification = "center", 3337 

    legend.position = "right", 3338 

    axis.title = element_text(size = 15), 3339 

    strip.text = element_text(size = 15), 3340 

    strip.background = element_rect(fill = "grey90"), 3341 

   ) 3342 

``` 3343 

Facetted plots with all lectins - Descriptive Analysis 3344 

```{r} 3345 

#FSC-A 3346 

#AAL, LECB, PNA, LECA, AAL-2, WGA, MAL II 3347 

viability_plot <- mutate(CO2_global_lectinvariation_df, Sample_Type = factor(Sample_Type, 3348 
levels = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"))) %>% 3349 
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  ggplot(aes(Sample_Type, Viability_perc)) + 3350 

  geom_smooth(aes(group = Lectin, color = Lectin), size = 1.5, se = FALSE) + 3351 

  scale_colour_manual(name = "Lectin",  values = c("#980043","#7a0177", "#08519c", 3352 
"#006d2c", "#7fcdbb",  "#ff7f00", "#993404")) + 3353 

   labs(x = "Level of carbon dioxide (%)" , y = "Viability (%)", title = NULL ) + 3354 

   scale_x_discrete(expand = c(0,0), breaks = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"), 3355 
labels = c("-4", "-3", "-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3356 

filter(CO2_global_lectinvariation_df, Channels == "FSC-A", Subpopulation != "Dead + 3357 
Apoptotic") %>% 3358 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 3359 
"Go/G1"))) %>% 3360 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 3361 
"MAL II"))) %>% 3362 

  mutate(Sample_Type = factor(Sample_Type, levels = c("1", "2", "3", "4", "5", "6", "7", "8", 3363 
"9", "10"))) %>% 3364 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 3365 

  geom_point() + 3366 

  geom_line(size = 1) + 3367 

  theme_classic() + 3368 

  labs(x = "Level of carbon dioxide (%)" , y = "FSC-A (linear scale)", title = NULL ) + 3369 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation") + 3370 

 scale_x_discrete(expand = c(0,0), breaks = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"), 3371 
labels = c("-4", "-3", "-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3372 

  facet_grid(.~ Lectin) + 3373 

  theme_bw() + 3374 

  theme( 3375 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3376 

    legend.text = element_text(size = 15), 3377 

    legend.title = element_text(size = 15, face = "bold"), 3378 

    legend.box.background = element_blank(), 3379 

    legend.justification = "center", 3380 

    legend.position = "bottom", 3381 
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    axis.title = element_text(size = 15), 3382 

    strip.text = element_text(size = 15), 3383 

    strip.background = element_rect(fill = "grey90"), 3384 

    panel.grid = element_blank(), 3385 

    panel.spacing = unit(0.75, "lines") 3386 

   ) 3387 

#SSC-A 3388 

#All populations 3389 

p1 <- filter(CO2_global_lectinvariation_df, Channels == "SSC-A", Subpopulation != "Dead + 3390 
Apoptotic") %>% 3391 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 3392 
"Go/G1"))) %>% 3393 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 3394 
"MAL II"))) %>% 3395 

  mutate(Sample_Type = factor(Sample_Type, levels = c("1", "2", "3", "4", "5", "6", "7", "8", 3396 
"9", "10"))) %>% 3397 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 3398 

  geom_point() + 3399 

  geom_line(size = 1) + 3400 

  theme_classic() + 3401 

  labs(x = NULL , y = "SSC-A (linear scale)", title = NULL ) + 3402 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation", guide = FALSE) + 3403 

  scale_x_discrete(expand = c(0,0), breaks = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"), 3404 
labels = c("-4", "-3", "-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3405 

  facet_grid(.~ Lectin) + 3406 

  theme_bw() + 3407 

  theme( 3408 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3409 

    legend.text = element_text(size = 15), 3410 

    legend.title = element_text(size = 15, face = "bold"), 3411 

    legend.box.background = element_blank(), 3412 
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    legend.justification = "center", 3413 

    legend.position = "bottom", 3414 

    axis.title = element_text(size = 15), 3415 

    strip.text = element_text(size = 15), 3416 

    strip.background = element_rect(fill = "grey90"), 3417 

    panel.grid = element_blank(), 3418 

    panel.spacing = unit(0.75, "lines") 3419 

   ) 3420 

#SSC-A 3421 

#DNA cycle populations 3422 

p2 <- filter(CO2_global_lectinvariation_df, Channels == "SSC-A", Subpopulation != "Dead + 3423 
Apoptotic") %>% 3424 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 3425 
"Go/G1"))) %>% 3426 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 3427 
"MAL II"))) %>% 3428 

  mutate(Sample_Type = factor(Sample_Type, levels = c("1", "2", "3", "4", "5", "6", "7", "8", 3429 
"9", "10"))) %>% 3430 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 3431 

  geom_point() + 3432 

  geom_line(size = 1) + 3433 

  theme_classic() + 3434 

  labs(x = "Level of carbon dioxide (%)"  , y = "SSC-A (linear scale)", title = NULL ) + 3435 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation") + 3436 

   scale_x_discrete(expand = c(0,0), breaks = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"), 3437 
labels = c("-4", "-3", "-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3438 

  scale_y_continuous(limits = c(15000, 50000)) + 3439 

  facet_grid(.~ Lectin) + 3440 

  theme_bw() + 3441 

  theme( 3442 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3443 
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    legend.text = element_text(size = 15), 3444 

    legend.title = element_text(size = 15, face = "bold"), 3445 

    legend.box.background = element_blank(), 3446 

    legend.justification = "center", 3447 

    legend.position = "bottom", 3448 

    axis.title = element_text(size = 15), 3449 

    strip.text = element_text(size = 15), 3450 

    strip.background = element_rect(fill = "grey90"), 3451 

    panel.grid = element_blank(), 3452 

    panel.spacing = unit(0.75, "lines") 3453 

   ) 3454 

grid.arrange(p1, p2, nrow = 2) 3455 

#LECTIN-A 3456 

#All populations 3457 

p1 <- filter(CO2_global_lectinvariation_df, Channels == "LECTIN-A", Subpopulation != "Dead 3458 
+ Apoptotic") %>% 3459 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead", "Apoptotic", "G2/M", "S", 3460 
"Go/G1"))) %>% 3461 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 3462 
"MAL II"))) %>% 3463 

ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 3464 

  geom_point() + 3465 

  geom_line(size = 1) + 3466 

  theme_classic() + 3467 

  labs(x = NULL , y = "LECTIN-A (linear scale)", title = NULL ) + 3468 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation", guide = FALSE) + 3469 

scale_x_discrete(expand = c(0,0), breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels 3470 
= c("-4", "-3", "-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3471 

  facet_grid(.~ Lectin) + 3472 

  theme_bw() + 3473 

  theme( 3474 
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    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3475 

    legend.text = element_text(size = 15), 3476 

    legend.title = element_text(size = 15, face = "bold"), 3477 

    legend.box.background = element_blank(), 3478 

    legend.justification = "center", 3479 

    legend.position = "bottom", 3480 

    axis.title = element_text(size = 15), 3481 

    strip.text = element_text(size = 15), 3482 

    strip.background = element_rect(fill = "grey90"), 3483 

    panel.grid = element_blank(), 3484 

    panel.spacing = unit(0.75, "lines") 3485 

   ) 3486 

#LECTIN-A 3487 

#1b9e77 Dead 3488 

#d95f02 Apoptotic 3489 

#7570b3 G2/M 3490 

#e7298a S 3491 

#66a61e Go/G1 3492 

#DNA cycle populations 3493 

df1 <- filter(CO2_global_lectinvariation_df, Channels == "LECTIN-A", Subpopulation == 3494 
"Apoptotic") %>% 3495 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead","Apoptotic", "G2/M", "S", 3496 
"Go/G1"))) %>% 3497 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 3498 
"MAL II")))  3499 

p2 <- filter(CO2_global_lectinvariation_df, Channels == "LECTIN-A", Subpopulation != "Dead 3500 
+ Apoptotic") %>% 3501 

  mutate(Subpopulation = factor(Subpopulation, levels = c("Dead","Apoptotic", "G2/M", "S", 3502 
"Go/G1"))) %>% 3503 

  mutate(Lectin = factor(Lectin, levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", 3504 
"MAL II"))) %>% 3505 
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ggplot(aes(Sample_Type, Mean, group = Subpopulation, colour = Subpopulation)) + 3506 

  geom_point() + 3507 

  geom_line(size = 1) + 3508 

  theme_classic() + 3509 

  labs(x = "Level of carbon dioxide (%)", y = "LECTIN-A (linear scale)", title = NULL ) + 3510 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation") + 3511 

  geom_line(data = df1, colour = "white", size = 2) + 3512 

   geom_point(data = df1, colour = "white", size = 2) + 3513 

scale_x_discrete(expand = c(0,0), breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels 3514 
= c("-4", "-3", "-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3515 

  scale_y_continuous(limits = c(30, 350)) + 3516 

  facet_grid(.~ Lectin) + 3517 

  theme_bw() + 3518 

  theme( 3519 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3520 

    legend.text = element_text(size = 15), 3521 

    legend.title = element_text(size = 15, face = "bold"), 3522 

    legend.box.background = element_blank(), 3523 

    legend.justification = "center", 3524 

    legend.position = "bottom", 3525 

    axis.title = element_text(size = 15), 3526 

    strip.text = element_text(size = 15), 3527 

    strip.background = element_rect(fill = "grey90"), 3528 

    panel.grid = element_blank(), 3529 

    panel.spacing = unit(0.75, "lines") 3530 

   ) 3531 

grid.arrange(p1, p2, nrow = 2) 3532 

``` 3533 

Lectin Inferential Analysis 3534 
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```{r} 3535 

Lectin_A_Subp_G2M_df <- table_manipulation(CO2_global_descriptive_df, 3536 
CO2_global_F_T_df, c("LECTIN_A"), c("LECTIN-A"), c("G2/M"), c("CO2"))   3537 

Lectin_A_Subp_S_df <- table_manipulation(CO2_global_descriptive_df, CO2_global_F_T_df, 3538 
c("LECTIN_A"), c("LECTIN-A"), c("S"), c("CO2")) 3539 

Lectin_A_Subp_GoG1_df <- table_manipulation(CO2_global_descriptive_df, 3540 
CO2_global_F_T_df, c("LECTIN_A"), c("LECTIN-A"), c("Go/G1"), c("CO2")) 3541 

Lectin_A_df <- rbind(Lectin_A_Subp_G2M_df, Lectin_A_Subp_S_df, 3542 
Lectin_A_Subp_GoG1_df) 3543 

Lectin_A_df$Lectin_face <- factor(Lectin_A_df$Lectin, levels = c("AAL", "LEC B", "PNA", "LEC 3544 
A", "AAL-2", "WGA", "MAL II")) 3545 

Lectin_A_df$Subpopulation_face <- factor(Lectin_A_df$Subpopulation, levels = c("G2/M", 3546 
"S", "Go/G1", "Apoptotic","Dead")) 3547 

CO2_global_descriptive_df$Lectin_face <- factor(CO2_global_descriptive_df$Lectin, levels = 3548 
c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 3549 

CO2_global_descriptive_df$Subpopulation_face <- 3550 
factor(CO2_global_descriptive_df$Subpopulation, levels = c("G2/M", "S", "Go/G1", 3551 
"Apoptotic","Dead")) 3552 

CO2_global_lectinvariation_df$Lectin_face <- factor(CO2_global_lectinvariation_df$Lectin, 3553 
levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 3554 

#Lectin_A_df$Sample_Type_face <- factor(Lectin_A_df$Sample_Type, levels = c("1", "2", 3555 
"3", "4", "5", "6", "7", "8", "9", "10"))                                                           3556 

#CO2_global_descriptive_df$Sample_Type_face <- 3557 
factor(CO2_global_descriptive_df$Sample_Type, levels = c("1", "2", "3", "4", "5", "6", "7", 3558 
"8", "9", "10")) 3559 

#set fill and colour manual        3560 

#d95f02 highly significant 3561 

#1b9e77 not significant 3562 

#7570b3 trend towards significance 3563 

#e7298a very highly significant 3564 

#66a61e significant 3565 

# plot facetted by lectin and subpopulation 3566 

df1 <- filter(CO2_global_descriptive_df, Sample_Type == 'e', Subpopulation %in% c("Go/G1", 3567 
"S", "G2/M"))  3568 

filter(Lectin_A_df, Subpopulation %in% c("Go/G1", "S", "G2/M")) %>% 3569 
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ggplot(aes(Sample_Type, LECTIN_A)) + 3570 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 3571 

   geom_boxplot(data = filter(CO2_global_descriptive_df, Sample_Type == 'e', Subpopulation 3572 
%in% c("Go/G1", "S", "G2/M")), aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, 3573 
outlier.shape = NA) + 3574 

   facet_grid(Subpopulation_face~ Lectin_face) + 3575 

  labs(x = "Level of carbon dioxide (%)", y = "LECTIN-A (linear scale)", title = NULL) + 3576 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels = c("-4", "-3", 3577 
"-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3578 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#d95f02", 3579 
"#1b9e77", "#e7298a")) + 3580 

     scale_colour_manual(values = c("#d95f02", "#1b9e77", "#e7298a"), guide = FALSE) + 3581 

     scale_y_continuous(expand = c(0,0)) + 3582 

 coord_cartesian(ylim = c(-80, 700)) + 3583 

 theme_bw() + 3584 

  theme( 3585 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3586 

    legend.text = element_text(size = 15), 3587 

    legend.title = element_text(size = 15, face = "bold"), 3588 

    legend.box.background = element_blank(), 3589 

    legend.justification = "center", 3590 

    legend.position = "bottom", 3591 

    axis.title = element_text(size = 15), 3592 

    strip.text = element_text(size = 15), 3593 

    strip.background = element_rect(fill = "grey90"), 3594 

    panel.grid = element_blank(), 3595 

    panel.spacing = unit(0.75, "lines") 3596 

   ) 3597 

df1 <-  filter(CO2_global_lectinvariation_df, Channels == "LECTIN-A", Subpopulation == 3598 
"Go/G1") %>% 3599 

ggplot(aes(Sample_Type, Mean, colour = "#66a61e")) + 3600 
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  geom_point() + 3601 

  geom_line(size = 1) + 3602 

  labs(x = NULL , y = "LECTIN-A (log scale)", title = NULL ) + 3603 

  scale_colour_brewer(palette = "Dark2", name = "Subpopulation", guide = FALSE) + 3604 

  scale_x_discrete(expand = c(0,0), breaks = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"), 3605 
labels = c("-4", "-3", "-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3606 

  facet_grid(.~ Lectin) + 3607 

  theme_bw() + 3608 

  theme( 3609 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3610 

    legend.text = element_text(size = 15), 3611 

    legend.title = element_text(size = 15, face = "bold"), 3612 

    legend.box.background = element_blank(), 3613 

    legend.justification = "center", 3614 

    legend.position = "bottom", 3615 

    axis.title = element_text(size = 15), 3616 

    strip.text = element_text(size = 15), 3617 

    strip.background = element_rect(fill = "grey90"), 3618 

    panel.grid = element_blank(), 3619 

    panel.spacing = unit(0.75, "lines") 3620 

   ) 3621 

plot_line_box <-  filter(Lectin_A_df, Subpopulation == "Go/G1")  %>% 3622 

ggplot(aes(Sample_Type, LECTIN_A)) + 3623 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 3624 

   geom_boxplot(data = filter(CO2_global_descriptive_df, Sample_Type == 'e', Subpopulation 3625 
== "Go/G1"), aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, outlier.shape = NA) + 3626 

  #geom_point(data = filter(CO2_global_lectinvariation_df, Channels == "LECTIN-A", 3627 
Subpopulation == "Go/G1"), aes(Sample_Type, Mean, group = Subpopulation), colour = 3628 
"black", size = 0.6) + 3629 



343 
 

  geom_line(data = filter(CO2_global_lectinvariation_df, Channels == "LECTIN-A", 3630 
Subpopulation == "Go/G1"), aes(Sample_Type, Mean, group = Subpopulation), colour = 3631 
"black", size = 0.6) + 3632 

   facet_grid(~ Lectin_face) + 3633 

  labs(x = "Level of carbon dioxide (%)", y = "LECTIN-A (linear scale)", title = NULL) + 3634 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels = c("-4", "-3", 3635 
"-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3636 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#d95f02", 3637 
"#1b9e77", "#e7298a")) + 3638 

     scale_colour_manual(values = c("#d95f02", "#1b9e77", "#e7298a"), guide = FALSE) + 3639 

     scale_y_continuous(expand = c(0,0)) + 3640 

coord_cartesian(ylim = c(-50, 460)) + 3641 

 theme_bw() + 3642 

  theme( 3643 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3644 

    legend.text = element_text(size = 15), 3645 

    legend.title = element_text(size = 15, face = "bold"), 3646 

    legend.box.background = element_blank(), 3647 

    legend.justification = "center", 3648 

    legend.position = "bottom", 3649 

    axis.title = element_text(size = 15), 3650 

    strip.text = element_text(size = 15), 3651 

    strip.background = element_rect(fill = "grey90"), 3652 

    panel.grid = element_blank(), 3653 

    panel.spacing = unit(0.75, "lines") 3654 

   ) 3655 

df1 <- filter(CO2_global_descriptive_df, Sample_Type == 'e', Subpopulation == "G2/M")  3656 

p_G2M  <- filter(Lectin_A_df, Subpopulation == "G2/M") %>% 3657 

   ggplot(aes(Sample_Type, LECTIN_A)) + 3658 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 3659 
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   geom_boxplot(data = df1, aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, 3660 
outlier.shape = NA) + 3661 

   facet_grid(Subpopulation ~ Lectin_face) + 3662 

   labs(x = "Level of carbon dioxide (%)", y = "LECTIN-A (log scale)", title = NULL) + 3663 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels = c("-4", "-3", 3664 
"-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3665 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#1b9e77", 3666 
"#e7298a")) + 3667 

     scale_colour_manual(values = c("#1b9e77", "#e7298a"), guide = FALSE) + 3668 

     scale_y_continuous(expand = c(0,0)) + 3669 

coord_cartesian(ylim = c(-50, 460)) + 3670 

 theme_bw() + 3671 

  theme( 3672 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3673 

    legend.text = element_text(size = 15), 3674 

    legend.title = element_text(size = 15, face = "bold"), 3675 

    legend.box.background = element_blank(), 3676 

    legend.justification = "center", 3677 

    legend.position = "bottom", 3678 

    axis.title = element_text(size = 15), 3679 

    strip.text = element_text(size = 15), 3680 

    strip.background = element_rect(fill = "grey90"), 3681 

    panel.grid = element_blank(), 3682 

    panel.spacing = unit(0.75, "lines") 3683 

   ) 3684 

#d95f02 highly significant 3685 

#1b9e77 not significant 3686 

#7570b3 trend towards significance 3687 

#e7298a very highly significant 3688 

#66a61e significant 3689 
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df1 <- filter(CO2_global_descriptive_df, Sample_Type == 'e', Subpopulation == "S") 3690 

p_S <- filter(Lectin_A_df, Subpopulation == "S") %>% 3691 

   ggplot(aes(Sample_Type, LECTIN_A)) + 3692 

   geom_boxplot(aes(fill = T_test_significance), size = 0.20, outlier.shape = NA) + 3693 

   geom_boxplot(data = df1, aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.20, 3694 
outlier.shape = NA) + 3695 

   facet_grid(Subpopulation ~ Lectin_face) + 3696 

  labs(x = "Level of carbon dioxide (%)", y = "LECTIN-A (log scale)", title = NULL) + 3697 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels = c("-4", "-3", 3698 
"-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3699 

     scale_fill_manual(name = "Level of Statistical Significance", values = c("#1b9e77", 3700 
"#e7298a")) + 3701 

     scale_colour_manual(values = c("#1b9e77", "#e7298a"), guide = FALSE) + 3702 

     scale_y_continuous(expand = c(0,0)) + 3703 

 coord_cartesian(ylim = c(-65, 600)) + 3704 

 theme_bw() + 3705 

  theme( 3706 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3707 

    legend.text = element_text(size = 15), 3708 

    legend.title = element_text(size = 15, face = "bold"), 3709 

    legend.box.background = element_blank(), 3710 

    legend.justification = "center", 3711 

    legend.position = "bottom", 3712 

    axis.title = element_text(size = 15), 3713 

    strip.text = element_text(size = 15), 3714 

    strip.background = element_rect(fill = "grey90"), 3715 

    panel.grid = element_blank(), 3716 

    panel.spacing = unit(0.75, "lines") 3717 

   ) 3718 

 3719 
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#d95f02 highly significant 3720 

#1b9e77 not significant 3721 

#7570b3 trend towards significance 3722 

#e7298a very highly significant 3723 

#66a61e significant 3724 

df1 <- filter(CO2_global_descriptive_df, Sample_Type == 'e', Subpopulation == "Go/G1") 3725 

p_Go <- filter(Lectin_A_df, Subpopulation == "Go/G1") %>% 3726 

   ggplot(aes(Sample_Type, LECTIN_A)) + 3727 

   geom_boxplot(aes(fill = T_test_significance), size = 0.2, outlier.shape = NA) + 3728 

   geom_boxplot(data = df1, aes(Sample_Type, LECTIN_A), fill = "grey", size = 0.2, 3729 
outlier.shape = NA) + 3730 

   facet_grid(Subpopulation ~ Lectin_face) + 3731 

   labs(x = "Level of carbon dioxide (%)", y = "LECTIN-A (log scale)", title = NULL) + 3732 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels = c("-4", "-3", 3733 
"-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3734 

   scale_fill_manual(name = "Level of Statistical Significance", values = c("#1b9e77", 3735 
"#66a61e", "#e7298a")) + 3736 

   scale_colour_manual(values = c("#1b9e77", "#66a61e", "#e7298a"), guide = FALSE) + 3737 

   scale_y_continuous(expand = c(0,0)) + 3738 

   coord_cartesian(ylim = c(-50, 460)) + 3739 

   theme_bw() + 3740 

   theme( 3741 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3742 

    legend.text = element_text(size = 15), 3743 

    legend.title = element_text(size = 15, face = "bold"), 3744 

    legend.box.background = element_blank(), 3745 

    legend.justification = "center", 3746 

    legend.position = "bottom", 3747 

    axis.title = element_text(size = 15), 3748 

    strip.text = element_text(size = 15), 3749 
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    strip.background = element_rect(fill = "grey90"), 3750 

    panel.grid = element_blank(), 3751 

    panel.spacing = unit(0.75, "lines") 3752 

   ) 3753 

``` 3754 

Lectin Power Analysis 3755 

```{r} 3756 

#fd8d3c G2/M 3757 

#f03b20 S 3758 

#bd0026 Go/G1 3759 

CO2_global_F_T_df$Lectin_face <- factor(CO2_global_F_T_df$Lectin, levels = c("AAL", "LEC 3760 
B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 3761 

filter(CO2_global_F_T_df, Channels == "LECTIN-A", Subpopulation %in% c("G2/M", "S", 3762 
"Go/G1")) %>%  3763 

  mutate(Subpopulation = factor(Subpopulation, levels = c("G2/M", "S", "Go/G1"))) %>% 3764 

  mutate(Power = Power * 100) %>%  3765 

   ggplot(aes(Sample_Type, Power, fill = Subpopulation)) + 3766 

   geom_bar(stat = "identity", colour = NA) + 3767 

   facet_grid(Subpopulation ~ Lectin_face) + 3768 

   labs(x = "Level of carbon dioxide (%)", y = "Power (%)", title = NULL) + 3769 

  #scale_fill_brewer(palette = "RdBu", guide = FALSE) + 3770 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels = c("-4", "-3", 3771 
"-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3772 

   scale_fill_manual(values = c("#fd8d3c", "#f03b20", "#bd0026"), guide = FALSE) + 3773 

   scale_colour_manual(values = c("#fd8d3c", "#f03b20", "#bd0026"), guide = FALSE) + 3774 

   scale_y_continuous(expand = c(0,0), limits = c(0,100)) + 3775 

   theme_bw() + 3776 

  theme( 3777 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3778 

    legend.text = element_text(size = 15), 3779 
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    legend.title = element_text(size = 15, face = "bold"), 3780 

    legend.box.background = element_blank(), 3781 

    legend.justification = "center", 3782 

    legend.position = "bottom", 3783 

    axis.title = element_text(size = 15), 3784 

    strip.text = element_text(size = 15), 3785 

    strip.background = element_rect(fill = "grey90"), 3786 

    panel.grid = element_blank(), 3787 

    panel.spacing = unit(0.75, "lines") 3788 

   ) 3789 

bar_plot <- filter(CO2_global_F_T_df, Subpopulation =='Go/G1', Channels == "LECTIN-A") 3790 
%>%  3791 

   mutate(Power = Power * 100) %>%  3792 

   ggplot(aes(Sample_Type, Power)) + 3793 

   geom_rect(aes(xmin = 0.4, xmax = 4.5, ymin = 0, ymax = Inf), fill = "#bd0026", alpha = 3794 
0.025) + 3795 

   geom_rect(aes(xmin = 4.5, xmax = Inf, ymin = 0, ymax = Inf), fill = "#bd0026", alpha = 0.07) 3796 
+ 3797 

   geom_bar(stat = "identity" , colour = NA, fill = "#bd0026") + 3798 

   geom_text(data = filter(CO2_global_F_T_df, Subpopulation =='Go/G1', Channels == 3799 
"LECTIN-A") %>%  3800 

   mutate(Power = Power * 100) %>% mutate_if(is.numeric, round, 0), aes(Sample_Type, 3801 
Power, label = Power), position = position_dodge(width = 0.8), size = 4, vjust = -0.5) + 3802 

   facet_grid(.~ Lectin_face) + 3803 

   labs(x = NULL, y = "Power (%)", title = NULL) + 3804 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels = c("-4", "-3", 3805 
"-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3806 

  scale_y_continuous(expand = c(0,0), limits = c(0,110), breaks = c(0, 25, 50, 75, 100)) + 3807 

   theme_bw() + 3808 

  theme( 3809 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3810 
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    legend.text = element_text(size = 15), 3811 

    legend.title = element_text(size = 15, face = "bold"), 3812 

    legend.box.background = element_blank(), 3813 

    legend.justification = "center", 3814 

    legend.position = "bottom", 3815 

    axis.title = element_text(size = 15), 3816 

    strip.text = element_text(size = 15), 3817 

    strip.background = element_rect(fill = "grey90"), 3818 

    panel.grid = element_blank(), 3819 

    panel.spacing = unit(0.75, "lines") 3820 

   ) 3821 

grid.arrange(bar_plot, plot_line_box, nrow = 2) 3822 

``` 3823 

Sample Size 3824 

```{r} 3825 

#41b6c4 3826 

#2c7fb8 3827 

#253494 3828 

filter(CO2_global_F_T_df, Channels == "LECTIN-A", Subpopulation %in% c("G2/M", "S", 3829 
"Go/G1")) %>%  3830 

  mutate(Subpopulation = factor(Subpopulation, levels = c("G2/M", "S", "Go/G1"))) %>% 3831 

   ggplot(aes(Sample_Type, Sample_Size, fill = Subpopulation)) + 3832 

   geom_bar(stat = "identity", colour = NA) + 3833 

   facet_grid(Subpopulation ~ Lectin_face) + 3834 

   labs(x = "Level of carbon dioxide (%)", y = "Sample size (number of cells)", title = NULL) + 3835 

   scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels = c("-4", "-3", 3836 
"-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3837 

   scale_fill_manual(values = c("#41b6c4", "#2c7fb8", "#253494"), guide = FALSE) + 3838 

   scale_colour_manual(values = c("#41b6c4", "#2c7fb8", "#253494"), guide = FALSE) + 3839 

   scale_y_continuous(expand = c(0,0)) + 3840 
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   theme_bw() + 3841 

  theme( 3842 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3843 

    legend.text = element_text(size = 15), 3844 

    legend.title = element_text(size = 15, face = "bold"), 3845 

    legend.box.background = element_blank(), 3846 

    legend.justification = "center", 3847 

    legend.position = "bottom", 3848 

    axis.title = element_text(size = 15), 3849 

    strip.text = element_text(size = 15), 3850 

    strip.background = element_rect(fill = "grey90"), 3851 

    panel.grid = element_blank(), 3852 

    panel.spacing = unit(0.75, "lines") 3853 

   ) 3854 

``` 3855 

Analysis of Relative Lectin signal density 3856 

```{r} 3857 

library(gridExtra) 3858 

CO2_global_lectinvariation_df$Subpopulation_face <- 3859 
factor(CO2_global_lectinvariation_df$Subpopulation, levels = c("Go/G1", "S", "G2/M", 3860 
"Apoptotic","Dead")) 3861 

CO2_global_lectinvariation_df$Lectin_face <- factor(CO2_global_lectinvariation_df$Lectin, 3862 
levels = c("AAL", "LEC B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 3863 

#b2e2e2 Go/G1 3864 

#66c2a4 S 3865 

#238b45 G2/M 3866 

p1 <- filter(CO2_global_lectinvariation_df, Channels %in% c("Area_ratio"), 3867 
Subpopulation_face %in% c("G2/M", "S", "Go/G1"), Lectin_face %in% c("AAL", "LEC B", 3868 
"PNA", "LEC A")) %>% 3869 

  ggplot(aes(Sample_Type, Mean, fill = Subpopulation_face, ymin = Mean - Mean_SD, ymax = 3870 
Mean + Mean_SD, group = Subpopulation_face)) + 3871 
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  geom_bar(stat = "identity", position = "dodge") + 3872 

  geom_errorbar(size = 0.15, position = "dodge") + 3873 

   facet_grid(.~ Lectin_face) + 3874 

   labs(x = "Level of carbon dioxide (%)", y = "LECTIN-A/FSC-A (linear scale)", title = NULL) + 3875 

   scale_fill_manual(values = c("#b2e2e2", "#66c2a4", "#238b45"), guide = FALSE) + 3876 

   scale_y_continuous(expand = c(0,0), limits = c(0,0.0025)) + 3877 

 scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels = c("-4", "-3", 3878 
"-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3879 

   theme_bw() + 3880 

  theme( 3881 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3882 

    legend.text = element_text(size = 15), 3883 

    legend.title = element_text(size = 15, face = "bold"), 3884 

    legend.box.background = element_blank(), 3885 

    legend.justification = "center", 3886 

    legend.position = "bottom", 3887 

    axis.text.x = element_text(size = 10, colour = "black"), 3888 

    axis.title = element_text(size = 15), 3889 

    strip.text = element_text(size = 15), 3890 

    strip.background = element_rect(fill = "grey90"), 3891 

    panel.grid = element_blank() 3892 

  ) 3893 

p2 <- filter(CO2_global_lectinvariation_df, Channels %in% c("Area_ratio"), 3894 
Subpopulation_face %in% c("G2/M", "S", "Go/G1"), Lectin_face %in% c("AAL-2", "WGA", 3895 
"MAL II")) %>% 3896 

  ggplot(aes(Sample_Type, Mean, fill = Subpopulation_face, ymin = Mean - Mean_SD, ymax = 3897 
Mean + Mean_SD, group = Subpopulation_face)) + 3898 

  geom_bar(stat = "identity", position = "dodge") + 3899 

  geom_errorbar(size = 0.15, position = "dodge") + 3900 

   facet_grid(.~ Lectin_face) + 3901 

   labs(x = "Level of carbon dioxide (%)", y = "LECTIN-A/FSC-A (linear scale)", title = NULL) + 3902 
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  scale_fill_manual(values = c("#b2e2e2", "#66c2a4", "#238b45"), name = "Subpopulation") + 3903 

   scale_y_continuous(expand = c(0,0), limits = c(0,0.0035)) + 3904 

 scale_x_discrete(breaks = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"), labels = c("-4", "-3", 3905 
"-2", "-1", "0", "+1", "+2", "+3", "+4", "+5")) + 3906 

   theme_bw() + 3907 

  theme( 3908 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3909 

    legend.text = element_text(size = 15), 3910 

    legend.title = element_text(size = 15, face = "bold"), 3911 

    legend.box.background = element_blank(), 3912 

    legend.justification = "center", 3913 

    legend.position = "right", 3914 

    axis.text.x = element_text(size = 10, colour = "black"), 3915 

    axis.title = element_text(size = 15), 3916 

    strip.text = element_text(size = 15), 3917 

    strip.background = element_rect(fill = "grey90"), 3918 

    panel.grid = element_blank() 3919 

  ) 3920 

grid.arrange(p1, p2, nrow = 2) 3921 

``` 3922 

``` 3923 

Averaging power 3924 

```{r} 3925 

#By Lectin 3926 

#LECA – blue or #08519c, #3182bd, #6baed6, #9ecae1, #c6dbef, #eff3ff (single hue) 3927 

#LECB – green or #006d2c, #2ca25f, #66c2a4, #99d8c9, #ccece6, #edf8fb (multi-hue) 3928 

#AAL2 – violet or #7a0177, #c51b8a, #f768a1, #fa9fb5, #fcc5c0, #feebe2 (multi-hue) 3929 

#AAL – red or #980043, #dd1c77, #df65b0, #c994c7, #d4b9da, #f1eef6 (multi-hue) 3930 

#PNA – orange #ff7f00 get shades from alpha levels 3931 
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#WGA – brown or #993404,  #d95f0e, #fe9929, #fed98e, #ffffd4 (multi-hue) 3932 

#MALII – #7fcdbb get shades from alpha levels 3933 

#Spent medium 3934 

media_global_F_T_df$Lectin_face <- factor(media_global_F_T_df$Lectin, levels = c("AAL", 3935 
"LEC B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 3936 

df1 <- filter(media_global_F_T_df, Subpopulation == "Go/G1", Channels == "LECTIN-A") %>% 3937 

group_by(Lectin_face) %>% 3938 

  mutate(Power = Power *100) %>% 3939 

  summarise(P_mean = mean(Power)) 3940 

filter(media_global_F_T_df, Subpopulation == "Go/G1", Channels == "LECTIN-A") %>% 3941 

group_by(Lectin_face) %>% 3942 

  mutate(Power = Power *100) %>% 3943 

  summarise(P_mean = mean(Power)) %>% 3944 

ggplot(aes(Lectin_face, P_mean)) + 3945 

 geom_bar(aes(colour = NULL, fill = Lectin_face), stat = "identity", alpha = 0.70) + 3946 

  geom_text(data = mutate_if(df1, is.numeric, round, 2), aes(Lectin_face, P_mean, label = 3947 
P_mean), position = position_dodge(width = 0.8), size = 5, vjust = -0.5) + 3948 

   labs(x =  NULL, y = "Power (%)", title = NULL) + 3949 

  scale_fill_manual(values = c("#980043", "#006d2c", "#ff7f00", "#08519c", "#7a0177", 3950 
"#993404","#7fcdbb"), guide = FALSE) + 3951 

  scale_y_continuous(expand = c(0,0), limits = c(0, 100)) + 3952 

   theme_classic() + 3953 

  theme( 3954 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3955 

    legend.text = element_text(size = 15), 3956 

    legend.title = element_text(size = 15, face = "bold"), 3957 

    legend.box.background = element_blank(), 3958 

    legend.justification = "center", 3959 

    legend.position = "bottom", 3960 

    axis.text.x = element_text(size = 12, colour = "black"), 3961 
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    axis.title = element_text(size = 15), 3962 

    strip.text = element_text(size = 15), 3963 

    strip.background = element_rect(fill = "grey90"), 3964 

    panel.grid = element_blank() 3965 

  ) 3966 

#Temperature 3967 

temp_global_F_T_df$Lectin_face <- factor(temp_global_F_T_df$Lectin, levels = c("AAL", 3968 
"LEC B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 3969 

df2 <- filter(temp_global_F_T_df, Subpopulation == "Go/G1", Channels == "LECTIN-A") %>% 3970 

group_by(Lectin_face) %>% 3971 

  mutate(Power = Power *100) %>% 3972 

  summarise(P_mean = mean(Power)) 3973 

filter(temp_global_F_T_df, Subpopulation == "Go/G1", Channels == "LECTIN-A") %>% 3974 

group_by(Lectin_face) %>% 3975 

  mutate(Power = Power *100) %>% 3976 

  summarise(P_mean = mean(Power)) %>% 3977 

ggplot(aes(Lectin_face, P_mean)) + 3978 

 geom_bar(aes(colour = NULL, fill = Lectin_face), stat = "identity", alpha = 0.70) + 3979 

  geom_text(data = mutate_if(df2, is.numeric, round, 2), aes(Lectin_face, P_mean, label = 3980 
P_mean), position = position_dodge(width = 0.8), size = 5, vjust = -0.5) + 3981 

   labs(x =  NULL, y = "Power (%)", title = NULL) + 3982 

  scale_fill_manual(values = c("#980043", "#006d2c", "#ff7f00", "#08519c", "#7a0177", 3983 
"#993404","#7fcdbb"), guide = FALSE) + 3984 

  scale_y_continuous(expand = c(0,0), limits = c(0, 100)) + 3985 

   theme_classic() + 3986 

  theme( 3987 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 3988 

    legend.text = element_text(size = 15), 3989 

    legend.title = element_text(size = 15, face = "bold"), 3990 

    legend.box.background = element_blank(), 3991 
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    legend.justification = "center", 3992 

    legend.position = "bottom", 3993 

    axis.text.x = element_text(size = 12, colour = "black"), 3994 

    axis.title = element_text(size = 15), 3995 

    strip.text = element_text(size = 15), 3996 

    strip.background = element_rect(fill = "grey90"), 3997 

    panel.grid = element_blank() 3998 

  ) 3999 

#CO2 4000 

CO2_global_F_T_df$Lectin_face <- factor(CO2_global_F_T_df$Lectin, levels = c("AAL", "LEC 4001 
B", "PNA", "LEC A", "AAL-2", "WGA", "MAL II")) 4002 

df3 <- filter(CO2_global_F_T_df, Subpopulation == "Go/G1", Channels == "LECTIN-A") %>% 4003 

group_by(Lectin_face) %>% 4004 

  mutate(Power = Power *100) %>% 4005 

  summarise(P_mean = mean(Power)) 4006 

filter(CO2_global_F_T_df, Subpopulation == "Go/G1", Channels == "LECTIN-A") %>% 4007 

group_by(Lectin_face) %>% 4008 

  mutate(Power = Power *100) %>% 4009 

  summarise(P_mean = mean(Power)) %>% 4010 

ggplot(aes(Lectin_face, P_mean)) + 4011 

 geom_bar(aes(colour = NULL, fill = Lectin_face), stat = "identity", alpha = 0.70) + 4012 

  geom_text(data = mutate_if(df3, is.numeric, round, 2), aes(Lectin_face, P_mean, label = 4013 
P_mean), position = position_dodge(width = 0.8), size = 5, vjust = -0.5) + 4014 

   labs(x =  NULL, y = "Power (%)", title = NULL) + 4015 

  scale_fill_manual(values = c("#980043", "#006d2c", "#ff7f00", "#08519c", "#7a0177", 4016 
"#993404","#7fcdbb"), guide = FALSE) + 4017 

  scale_y_continuous(expand = c(0,0), limits = c(0, 100)) + 4018 

   theme_classic() + 4019 

  theme( 4020 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 4021 
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    legend.text = element_text(size = 15), 4022 

    legend.title = element_text(size = 15, face = "bold"), 4023 

    legend.box.background = element_blank(), 4024 

    legend.justification = "center", 4025 

    legend.position = "bottom", 4026 

    axis.text.x = element_text(size = 12, colour = "black"), 4027 

    axis.title = element_text(size = 15), 4028 

    strip.text = element_text(size = 15), 4029 

    strip.background = element_rect(fill = "grey90"), 4030 

    panel.grid = element_blank() 4031 

  ) 4032 

#By cell culture parameter 4033 

p_media <- filter(media_global_F_T_df, Subpopulation == "Go/G1", Channels == "LECTIN-A") 4034 
%>% 4035 

  mutate(Power = Power *100) %>% 4036 

  summarise(mean(Power))  4037 

p_temp <- filter(temp_global_F_T_df, Subpopulation == "Go/G1", Channels == "LECTIN-A") 4038 
%>% 4039 

  mutate(Power = Power *100) %>% 4040 

  summarise(mean(Power))  4041 

p_CO2 <- filter(CO2_global_F_T_df, Subpopulation == "Go/G1", Channels == "LECTIN-A") 4042 
%>% 4043 

  mutate(Power = Power *100) %>% 4044 

  summarise(mean(Power))  4045 

power_df <- rbind(p_media, p_temp, p_CO2) 4046 

parameter_matrix <- as.data.frame(matrix(c("Spent medium", "Temperature", "Carbon 4047 
dioxide")), nrow = 3, ncol = 1, stringsAsFactors = FALSE) 4048 

power_df <- cbind(power_df, parameter_matrix) 4049 

colnames(power_df) <- c("Power", "Treatment") 4050 

ggplot(power_df, aes(Treatment, Power)) + 4051 

geom_bar(aes(colour = Treatment, fill = Treatment), stat = "identity") + 4052 
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geom_text(data = mutate_if(power_df, is.numeric, round, 2), aes(Treatment, Power, label = 4053 
Power), position = position_dodge(width = 0.8), size = 8, vjust = -0.5) + 4054 

  labs(x =  NULL, y = "Power (%)", title = NULL) + 4055 

  scale_fill_brewer(palette = "Dark2", guide = FALSE) + 4056 

  scale_colour_brewer(palette = "Dark2", guide = FALSE) + 4057 

    #scale_x_discrete(breaks = c("Carbon", "b", "c", "d", "e", "f", "g"), labels = c("-3", "-2", "-4058 
1", "0", "+1", "+2", "+3")) + 4059 

  scale_y_continuous(expand = c(0,0), limits = c(0, 100)) + 4060 

   theme_classic() + 4061 

  theme( 4062 

    plot.title = element_text(face = "bold", size = 18, hjust = 0.5), 4063 

    legend.text = element_text(size = 15), 4064 

    legend.title = element_text(size = 15, face = "bold"), 4065 

    legend.box.background = element_blank(), 4066 

    legend.justification = "center", 4067 

    legend.position = "bottom", 4068 

    axis.text.x = element_text(size = 12, colour = "black"), 4069 

    axis.title = element_text(size = 15), 4070 

    strip.text = element_text(size = 15), 4071 

    strip.background = element_rect(fill = "grey90"), 4072 

    panel.grid = element_blank()   4073 

) 4074 


