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Abstract

A practical problem for energy companies is instituting a consis-

tent framework across its supply and trading activities to deliver on

all-important P&L and at-Risk reporting requirements. With a focus

on storage assets and wider natural gas market exposures, we present

a gas storage valuation methodology, which uniquely uses a flexible

multifactor Lévy process setting that allows for consistent valuation
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and risk management reporting across a general derivative book. Our

approach is capable of replicating the complex covariance structure

of the natural gas forward curve and capturing time spread volatil-

ity, a key driver of extrinsic storage value, while being simultaneously

capable of accurately calibrating to market traded options. We be-

gin by extending a single factor Mean Reverting Variance Gamma

process to an arbitrary number of dimensions and, by way of specific

examples, show how the traditional Principal Component Analysis

based view of gas forward curve dynamics can be incorporated into a

primarily market based valuation. We develop in the process an in-

novative implied moments based calibration technique, which allows

for efficient calibration of general multifactor forward curve models to

delivery period options common in energy and commodity markets.

Furthermore, to accommodate the forward curve and traded options

market consistency, we propose an appropriate joint market based

calibration and historical estimation methodology. Through a formal

model specification analysis, we provide evidence that the multifactor

Lévy models we propose provide a better joint fit to NBP natural

gas options-forward market data, relative to comparative benchmark

models. Finally, we develop a novel multidimensional fast Fourier

transform based storage valuation algorithm and provide empirical

evidence that the multifactor Lévy model suite is better specified to

more accurately capture extrinsic value.
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1 Introduction

As noted by Cummins et al. (2017), storage has become an increasingly

prominent feature of the European natural gas markets, allowing market

practitioners an effective means to manage the risk of supply distribution,

to smooth out seasonal supply-demand imbalances, and to increase overall

market liquidity. Natural gas storage contracts can refer to both capacity

in physical storage units or “virtual” storage capacity, typically sold as a

simplified tranche of physical storage. While typically of high materiality,

storage assets are but one component of the overall natural gas supply and

trading activities of energy companies and so should be valued within a con-

sistent framework, to deliver on the all-important P&L and at-Risk reporting

requirements of practitioners. While storage value is driven by time spread

volatility rather than outright volatility, such that consistency with the op-

tions market might be argued to be a secondary consideration, the business

case for pricing these risks within a consistent framework should be viewed

in the context of a wider and more general derivative book. Consider, for

example, the addition of a take-or-pay contract to a book containing storage

and option positions. These contracts benefit from outright volatility, similar

to vanilla options, and also time spread volatility, similar to storage assets.

A pre-requisite for managing this book in practice would be a model which

allows one to price all contracts in a consistent manner and quantify the ben-

efit from the associated risk aggregation. In this paper, we therefore present
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a class of finite dimensional Markov models of the entire forward curve where

the underlying state variables are driven by Lévy processes, with the explicit

aim of accurately capturing time spread volatility, which drives the storage

value, whilst maintaining consistency with the vanilla options market.

Given a liquid forward market, traders have the ability to lock in a base

or intrinsic value to the storage asset by locking in prices for future traded

volumes, while inherent extrinsic value can be extracted through dynamically

trading in the underlying forward and options market. Methods like intrinsic

basket of spread options, rolling intrinsic and rolling basket of spread options

capture in alternative ways some of the flexibility of the storage, but they fail

to capture fully the real optionality. While there is no consensus modelling

approach to the problem of gas storage valuation, the main approaches can be

broadly categorised as (i) spot based and (ii) forward curve based. Spot based

optimisation methods include those of Manoliu (2004), Boogert and De Jong

(2008), Chen and Forsyth (2009) and Felix and Weber (2012). Despite the

real option based merits of these approaches, storage traders may eschew spot

based models as they neither reflect the available range of forward contracts,

nor the multifactor structure of the forward curve dynamics. We therefore

position our multifactor Lévy model development work to align with the

forward based modelling literature referenced below.1

1While we cite a relevant selection of spot and forward curve based storage valuation
literature, a wider literature exists, a good deal of which relies on the use of industry heuris-
tics, such as futures based static or rolling intrinsic and options based basket of spreads
trading strategies. However, recent and noteworthy research has leveraged insights and
results from the extensive operations research literature (Carmona and Ludkovski 2010;
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On the use of Lévy models in the literature, one of the more notable ap-

plications of single factor Lévy driven Ornstein–Uhlenbeck processes in the

energy markets is given by Deng (2000). Benth et al. (2007) model elec-

tricity prices using a mean reverting Gamma process for modelling positive

price spikes, while Luciano (2009) utilises time-changed Brownian motions

with Lévy subordinators in the modeling of the spark spread. Attempts at

incorporating multifactor forward curve models in storage valuation include

Boogert and De Jong (2011), who propose modeling the spot price using a

three-factor Ornstein-Uhlenbeck process, capturing spot price volatility, for-

ward curve volatility and winter-summer spread volatility. Bjerksund et al.

(2008) propose a six factor forward curve model, which aims to replicate the

historical dynamics of the UK gas market to a high degree of accuracy, util-

ising though a rolling intrinsic valuation method, presumably, to overcome

the high dimensionality of the problem. Parsons (2013) includes the long-

term mean of the underlying price as an additional stochastic state variable

and uses a forest of multidimensional trinomial trees in order to optimise the

storage value. Warin (2012) investigates the valuation and hedging of storage

Lai et al., 2010; Nadarajah et al., 2015). Lai et al. (2010), among others, have recognised
the complexity of handling the trade-off between the multifactor model dimensionality,
which is a stylised fact of natural gas spot and forward dynamics, and the intractability
of stochastic dynamic programming (SDP) solution methods. Lai et al. (2010) have dealt
with the problem by benchmarking these practice based heuristics, which involve the use
of either deterministic dynamic programming or linear programming methods, against op-
timal control solutions generated by approximate stochastic dynamic programming (ADP)
methods. Interestingly, Lai et al. (2010) find that the heuristic methods used in practice
can perform reasonably well against their ADP benchmark valuation, that is, provided
they are re-optimised over time and state.
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assets under a two factor forward curve model, with the first factor chosen to

represent the short-term volatility term structure and the second, the long-

term volatility of the gas market. Our study is most closely aligned though to

the single factor mean reverting Lévy work of Cummins et al. (2017), where

we extend this framework to a multifactor setting, providing both modelling

and storage valuation solutions. In so doing, we address some shortcomings

in this literature. Most notable is that the extant models are inadequately

specified to capture well the excess kurtosis evident in natural gas market

returns, while all models are either estimated using historical data only or

calibrated using options data only.

We extend forward curve modelling methods in such a way that offers

dual benefits. First is the manner in which we cast our storage valuation

exercise within a flexible multifactor Lévy process setting and, in contrast to

much of the existing literature, demonstrate how one can construct models

with the capability of capturing excess kurtosis and time spread volatility,

whilst maintaining consistency with the vanilla options market. Specifically,

we propose a multifactor Mean Reverting Variance Gamma (MRVG) mod-

elling framework that is capable of being simultaneously forward curve con-

sistent and calibrated to market traded options and, in a similar manner to

Andersen (2010), we specify each factor to represent a latent principal com-

ponent of the underlying forward curve covariance matrix. While our use of

Lévy-driven processes is novel, it is consistent with previous literature (Deng,

2000; Benth et al., 2007; Bjerksund et al., 2008; Luciano, 2009; Warin, 2012;
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Parsons, 2013). The multifactor nature of the Lévy model setting is capable

of replicating the complex covariance structure of the natural gas forward

curve, a key driver of extrinsic storage value. In allowing for accurate cal-

ibration to market traded options, we present the first class of multifactor

storage models developed with the explicit intention of providing a link be-

tween the underlying model dynamics and the options market. To that end,

we further develop in this study an innovative implied moments based cali-

bration technique, which allows for efficient calibration of general multifactor

forward curve models. We closely follow Guillaume and Schoutens (2013),

who provide market based, and thus model free, valuation formulae for the

square, cubic, and quartic “derivative” contracts, which can then be used to

derive measures of market implied variance, skewness, and kurtosis. This ap-

proach relies upon the existence of a liquid options market on the underlying

which is being modelled. While in most natural gas markets, single delivery

options are traded in illiquid over-the-counter markets, there is however a

liquid market for options on delivery periods over a calendar month which

could be used to extract market information on the daily or spot process. Our

contribution in this methodology involves estimating the implied moments

of the monthly delivery forward price in order to calibrate an instantaneous

forward price model. This allows for efficient calibration regardless of the de-

livery tenor of the underlying forward contract as well as allowing for tenors

of variable duration. The most appealing aspect of utilising this approach

in model calibration, as we demonstrate, is that the moments of the forward

8



price can be easily derived for any reasonable forward curve model regardless

of dimensionality. Further to this, to accommodate the forward curve and

traded options market consistency of our Lévy models, we develop an ap-

propriate joint market calibration-estimation approach. The former utilises

our market implied moments procedure, while the latter is based on fitting

the model derived volatility function to the historically estimated volatility

function returned through Principle Component Analysis. Given the novelty

of the proposed Lévy model suite, we conduct a formal model specification

analysis exercise following an approach similar to that of Bakshi et al. (1997),

whereby the daily performance of the models is evaluated using an extensive

database of NBP forward and options data. For comparative purposes, we

benchmark the Lévy model suite performance against the Mean Reverting

Jump Diffusion (MRJD) model of Deng (2000) and the single factor MRVG

model of Cummins et al. (2017), which are the closest related models avail-

able in the literature. We find that the multifactor MRVG models developed

provide a better joint fit to the NBP natural gas options-forward data.

The second of the dual benefits that our work offers is our exploitation of

the power of integral transform based approaches to option pricing (Heston,

1993; Duffie et al., 2000; Lewis, 2001) and hence the design a computation-

ally efficient fast Fourier transform (FFT) based pricing methodology for gas

storage valuation, drawing on the example of the financial markets literature

(Carr and Madan, 1999; Andricopoulos et al., 2003; Chourdakis, 2004; O’Sul-

livan, 2005). Utilising the convolution method of Lord et al. (2007), combined
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with the extended Fourier time-stepping method of Jaimungal and Surkov

(2011), the storage value is derived by repeatedly evaluating the continuation

value at each point in the state space through numerical integration. The

only restriction on the associated spot price model is that it is Markov and

all one needs is the conditional characteristic function (CCF) of the tran-

sition density. We proceed to derive the analytic CCFs for the multifactor

Lévy-driven model suite considered. Kjaer (2008) notes that, in general,

the characteristic functions of mean reverting Lévy-driven models are not

available in analytical form and need to be calculated numerically, hence

reducing the appeal of computationally efficient FFT methods. Thus, the

MRJD model proposed by Deng (2000) is to date a special case of this model

class, which has an analytical solution for the CCF. We therefore add to the

availability of Lévy-driven models in the energy space with analytic CCFs,

which are more likely to be adopted in practice for the computational effi-

ciency they offer. Showcasing our proposed Lévy model set and applying our

multidimensional FFT storage valuation algorithm, we use the fitted models

obtained from the formal model specification analysis to appraise the perfor-

mance of the models in valuing an assumed storage contract with specified

physical constraints. We find the MRVG model suite offers greater flexibility

in capturing extrinsic storage value relative to the benchmark MRJD model

The remainder of the paper is organised as follows. Section 2 sets out

the development of the Lévy driven forward curve model suite. Section 3

presents the joint calibration-estimation approach taken, based respectively
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on market implied moments calibration and historical volatility function es-

timation. Given the novelty of the multifactor MRVG models proposed, we

conduct a formal model specification analysis of the competing models in

Section 4 to ascertain the improvement in capturing natural gas market dy-

namics, informed by futures and options markets. Section 5 presents the in-

novative multidimensional FFT based valuation algorithm developed to price

early exercise claims, such as storage contracts. Section 5 further presents

the results of an extensive storage valuation exercise, leveraging the model

specification analysis of Section 4, emphasising the merits of our proposed

Lévy-driven forward curve models in accurately capturing extrinsic value in

particular. Section 6 provides concluding remarks.

2 Lévy Storage Model Development

A major development within the natural gas storage valuation literature in

recent years has been the need to accurately capture the covariance struc-

ture of the commodity forward curve. The price return dependency between

contracts will fully determine the extrinsic value accruing to the owner of a

storage asset. We therefore extend the forward curve modelling literature by

means of casting our storage valuation exercise within a flexible multifactor

Lévy process setting, presenting a class of finite dimensional Markov models

of the entire forward curve where the underlying state variables are driven

by Lévy processes, and which are sufficiently specified to accurately capture

11



time spread volatility, whilst maintaining consistency with the vanilla op-

tions market. This contrasts to the recent storage valuation literature, see

Boogert and De Jong (2011) and Bjerksund et al. (2008). The business case

for pricing these risks within a consistent framework has been set out in the

opening of Section 1.

The general modelling framework we utilise in constructing our Lévy

models mirrors and generalises that of Andersen (2010). Each model can be

viewed as a generalisation of the single factor MRVG model of Cummins et al.

(2017) and collectively they represent a unique family of models designed to

reflect the rich dynamics of the forward market while allowing for accurate

calibration to the option implied volatility surface. In order to price stor-

age assets, and other derivative contracts, we furthermore derive the forward

curve consistent characteristic functions associated with our proposed for-

ward curve models, which allows us to later exploit computationally efficient

transform based pricing methods within a dynamic programming setting.

Spot-based optimal control solutions generated by dynamic programming

methods, such as ours, will always result in initial storage valuations at least

as high as forward or option based trading strategies, such as rolling-intrinsic

or even the dynamic basket of spread options approach, given a consistent

market model. In order to be internally consistent with forward-based strate-

gies, the corresponding spot price model must have a rich multifactor spec-

ification and be capable of efficient calibration to both the market forward

curve and volatility term structures. Our methodology being premised on
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a multifactor forward curve modelling approach achieves this, and allows

traders to avoid locking in or financially contracting the storage asset in

the forward market, in order to keep alive the possibility of exercising into

more profitable forward spreads in the future. Furthermore, our combined

calibration-estimation approach enables the efficient estimation, and isola-

tion of the corresponding risk exposure, of the principal component volatility

function, which is the main driver of twist movements in the forward curve,

and hence allows traders to monetise the real optionality embedded in the

gas storage contract in an equivalent fashion to that implemented in a spot

price only based optimisation tool.

2.1 Single Factor Lévy Model

To begin, we provide an introduction to the Lévy framework and the single

factor MRVG model of Cummins et al. (2017), which we extend to higher

dimensions. Price discontinuities and mean reversion are accepted reali-

ties of energy and commodity markets (Nomikos and Andriosopoulos, 2012;

Maslyuka et al., 2013). In the context of storage contracts, spikes, both pos-

itive and negative, allow the owner to trade the day-ahead versus balance of

month/month ahead time spread, a strategy which can greatly enhance the

value extracted from the asset. Mean reversion has the effect of increasing

the spread variance between different points on the forward curve depending

upon their relative maturities, implying greater time spread variability and

hence extrinsic value of the storage contract. With these stylised market fea-
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tures in mind, Cummins et al. (2017) develop a single factor MRVG model

for the purposes of storage valuation.

A Lévy process is a right-continuous stochastic process possessing sta-

tionary and independent increments characterised by an infinitely divisible

distribution. The process itself is fully described by its associated triplet

(γ, σ2, µ), where γ is the drift, σ is the diffusion volatility, and µ (dj) is a

Lévy measure, satisfying R\0min(j2, 1)µ(dj)<∞, which measures the relative

frequency of different jump sizes j. A common method for constructing Lévy

processes is via subordination of simpler processes such as Brownian motion.

Intuitively, the subordinating process controls the stochastic passage of time

in the subordinated process and can be used to induce heavy tails. As such, a

subordinator can be viewed as a ‘building-block’ Lévy process, with a corre-

sponding Lévy triplet in which the Brownian part does not exist. The process

has a non-negative drift and the process is non-decreasing in the sense that

the Lévy measure which describes how jumps, and hence heavy tails, occur

is zero on the negative half-line, i.e. positive-only increments with the addi-

tional R \ {0} requirement that the corresponding Lévy density, if it exists,

must have zero mass at the origin. We refer the interested reader to Sato

(2001) and Barndorff-Nielsen et al. (2012) for a thorough introduction to the

theory of Lévy processes, while for commodity market applications, see Li

and Linetsky (2014).

For our purposes, we are interested in utilising Lévy driven Ornstein-

Uhlenbeck processes in modelling the natural gas spot price. We define x (t)
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as the log spot price, governed by

dx (t) = [α (ω − x (t))] dt+ dJ (t) (1)

where J (t) is a pure jump process defined such that

J (t) = t
s R\0 j (υ (dj, dc)− µ (j) djdc)

subject to R |j|µ (j) dj < ∞, and where υ (dj, dc) is a random measure,

or jump measure, which counts the occurrence of jumps of different sizes.

Assume a Variance Gamma process {X (t) , (θ, σ, v)}, which is an infinite

activity,2 finite variation pure jump process constructed as a time-changed

Brownian Motion with activity rate driven by a Gamma process, such that

X (t) = θΓ (t; 1, v) + σW (Γ (t; 1, v)). It follows that :

µ (j) dj =
exp

(
θj
σ2

)
v|j|

exp

−

√
2
v
+ θ2

σ2

σ
|j|

 dj.

The parameters θ and σ have the same meaning as in the diffusion context,

namely the drift and volatility respectively. The Gamma time-change has

unit mean, so that the expected increase in the process per unit time is 1 with

variance v . The skewness of the distribution is controlled by θ. However,

the implied volatility smile is generally symmetric in log-strike and as such
2A pure jump Lévy process is said to be infinitely active if R µ (x) dx = ∞, the source

of the divergence being the frequency of jumps close to zero.
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this parameter may be unnecessary. For the benefit of model parsimony, in

what follows, we explicitly set θ to zero, in which case the MRVG model will

be parameterised by (α, σ, v), where α is the mean reversion rate, σ is the

process volatility, and v controls the variance of the jump magnitudes.

The solution to Eq. (1) is then

x (t) = x (s) exp (−α (t− s)) + ω (1− exp (−α (t− s)))

+ t
s R\0 j exp (−α (t− c)) (υ (dj, dc)− µ (j) djdc)

It follows that the CCF of the log spot price x (t) driven by the MRVG

process, Φx(t) (z;x (s) , s, t), is

exp (izx (s) exp (−α (t− s)) + izω (1− exp (−α (t− s))))×

exp
(
t
s ϕ (z exp (−α (t− c))) dc

)
where ϕ (z) is the characteristic exponent of the Variance Gamma process

(with θ = 0)

ϕ (z) = −1

v
ln

(
1 +

σ2v

2
z2
)

(2)

Solving the integral in the exponent gives

exp (izx (s) exp (−α (t− s))) (3)

× exp (izω (1− exp (−α (t− s)))) exp (A (z, s, t))
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whereA (z, s, t) = 1
2vα

[Li2 (l1)− Li2 (l0)], l1 = −σ2v
2
z2, l0 = −σ2v

2
z2 exp (−2α (t− s)),

Li2 (z) is the dilogarithm function defined as,
∑∞

k=1
zk

k2
|z| < 1 and − z

0
ln(1−t)

t
dt

by analytical continuation on C \ (1,∞). For Eq. (3), the branch cut along

the positive real axis places a constraint on Im (z); namely, if z = u + iw,

we require that A (iw, s, t) is defined on the principal branch, which implies

|w| <
√

2
σ2v

.

When constructing a market model it is obviously crucial that the model

is capable of reproducing the prices of liquid traded instruments, particularly

those that are likely to form part of a hedging portfolio. At the very least,

the model should be consistent with the observed market forward curve. To

this end, an extended forward curve consistent single factor MRVG model is

developed by Cummins et al. (2017). It is readily shown that process for the

log spot price becomes:

dx (t) =

(
∂f (0, t)

∂t
− 1

2
σ2 +

1

4
σ2 (1− exp (−2αt))− κj (exp (−αt))

+αf (0, t)− α t
0 κj (exp (−α (t− s))) ds− αx (t)

)
dt

+σdW (t) + R/0 jῡ (dj, ds)

which is based off the assumption of a general Lévy driven model of the log

forward curve f (t, T ), and where ῡ ≡ v(dj, ds)−µ(dj) is the the compensated

jump measure and κj (·) is the cumulant function of the jump process. The
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CCF of the log-price, Φx(t) (z;x (s) s, t), can then be shown to be

exp
(
izx (s) exp (−α(t− s)) + iz t

s ω (c) exp (−α (t− c)) dc
)

× exp
(
t
s ϕ(iz exp (−α (t− c)))dc

)
where ω (t) is introduced to denote the time-dependent drift of the process

dx (t). Cummins et al. (2017) proceed to show how Fourier methods can be

used to price early exercise claims and consider in particular the problem of

valuing storage contracts.

2.2 Multifactor Lévy Model

While the single factor Lévy model of Cummins et al. (2017) is effective and

efficient in its approach to storage valuation, it has limitations in its one

dimensional construction. In this section, we extend the work of Cummins

et al. (2017) and present a general multifactor Lévy model that offers greater

flexibility in capturing the dynamics of the natural gas markets. We begin

by specifying the dynamics of the log-forward price f (t, T ) :

df (t, T ) =

(
−1

2
β (t, T ) β (t, T )

′ − κ~j (γ (t, T ))

)
dt (4)

+β (t, T ) d ~W (t) + RK\0 γ (t, T )~j~̄υ (dj; dt)
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where ~W (t) is a Brownian Motion of dimension (K × 1), ~J (t) ≡ RK\0~j~̄υ (dj; dt)

is a pure jump process of dimension (K × 1) with Poisson random measure

~̄υ, and κ~j (·) is the cumulant function of the jump process. The functions

β (t, T ) and γ (t, T ), of dimension (1×K), are respectively the sensitivity of

the log-return of the T -maturity forward price to the diffusion and pure-jump

stochastic drivers of forward curve returns. Given Ft, the filtration defined

on the probability space (Ω,F ,Q), if the Ft-measurable continuous differen-

tiable functions β (t, T ) and γ (t, T ) can be separated in terms of time and

maturity, such that

β (t, T ) = ς (T ) η (t) (5)

γ (t, T ) = ς (T ) θ (t) (6)

with η (t) and θ (t) both mapping R → RK×K and ς (T ) mapping R → RK ,

then the evolution of the entire forward curve can be represented via a Markov

dynamical system of K state variables. In this case, we can write Eq. (4) as

df (t, T ) =
K∑
k=1

dy(k) (t, T )
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where

dy(k) (t, T ) =

(
−1

2
β(k) (t, T ) 2 − κj(k)

(
γ(k) (t, T )

))
dt

+β(k) (t, T ) dW (k) (t)

+ R\0 γ
(k) (t, T ) jῡ(k) (dj, dt)

and the superscript indicates the kth element of a given vector. In what

follows we assume independence between the sources of randomness in our

model. While imposing dependence amongst Lévy processes is well covered

in the literature (Cont and Tankov, 2004; Marfè, 2009; Luciano and Semer-

aro, 2010), this restriction to independent processes does not prohibit us from

capturing the inter-maturity pairwise dependency of forward curve returns

to a high level of accuracy. Further, it allows us to specify the effect of

each state variable on the forward curve dynamics independently, which is

in agreement with traditional Principal Component Analysis (PCA) of for-

ward curve movements(Clewlow and Strickland, 1999, Carmona and Coulon,

2014).

For the purposes of valuing storage, we next need to derive the forward

curve consistent dynamics of the log spot price process, x (t) ≡ f (t, t),

x (t) = f (0, t) +
K∑
k=1

y(k) (t) (7)

where y(k) (t) ≡ y(k) (t, t). This is crucial for the purposes of storage valuation
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as it links the general forward curve model above with the implied spot price

model used in the spot optimisation valuation approach. This pattern, of

first introducing the forward curve model and then the implied spot price

model, will therefore be repeated for each specific model introduced in this

section. The spot factor evolution is in general given by the following, where

we explicitly use the time-maturity separated terms of Eqs. (5)-(6):

dy(k) (t) =

[
−1

2
η(k) (t) 2ς(k) (t) 2 − ς(k)

′
(t) t

0 η
(k) (s) 2ς(k) (t) ds

−κj(k)
(
θ(k) (t) ς(k) (t)

)
− ς(k)

′
(t) t

0 θ
(k) (s)κ

′

j(k)

(
θ(k) (s) ς(k) (t)

)
ds

+
(
y(k) (t) + t

0 κj(k)
(
θ(k) (s) ς(k) (t)

)
ds
) ς(k)′ (t)
ς(k) (t)

]
dt

+η (t) ς (t) dW (k) (t) + R/0 θ
(k) (t) ς(k) (t) jῡ(k) (dj, dt)

=

(
ω(k) (t) +

ς(k)
′
(t)

ς(k) (t)
y(k) (t)

)
dt+ η (t) ς (t) dW (k) (t)

+ R\0 θ
(k) (t) ς(k) (t) jῡ(k) (dj, dt)

where ω(k) (t) is introduced to capture the collected terms of the drift. This

calculation of the drift adjustment, ω(k) (t) , allows one to define the char-

acteristic function of the implied spot price model and thus utilise Fourier

transform based methods.

To determine an appropriate specification for the functions β(k) (t, T ) and

γ(k) (t, T ), standard PCA shows that the first two principal components de-

scribe the usual “shift” and “twist” features of energy forward curve dy-

namics respectively, with a high degree of explanatory power. Including the
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third principal component, which describes the usual “bend” feature, is pos-

sible but its contribution to total variation in the forward curve is found to

be marginal.3 The PCA based decomposition of the forward curve returns

naturally implies a model of the log forward price equal to the sum of the

independent factors, as given by Eq. (7). Thus, these historical volatil-

ity functions are analogous to the functions β(k) (t, T ) and γ(k) (t, T ) defined

above and can be used to impose an appropriate functional form on our

model, which accurately reflects the curve dynamics. Experimentally, we

find that the first volatility function, which accounts for 90% of the total

variance (see Section 4), resembles the negative exponential volatility func-

tion associated with the traditional single factor model. Thus, we define

γ(1) (t, T ) ≡ b exp (−α (T − t)), where b is a scaling parameter and α controls

the decay of instantaneous volatility with respect to relative maturity. As

in the single factor case, with the objective being to capture this primary

source of forward curve variation, whilst also allowing one to accurately cali-

brate to the market for monthly options, the background stochastic driver of

the model we chose is again the Variance Gamma process parameterised by

Madan et al. (1998) as a time-changed Brownian Motion with the parameter

triplet (θ, ϕ, v). θ and ϕ are again the drift and volatility of the Brownian
3Furthermore, there are a number of practical considerations that require a trade off to

be made. Most notably, including this third principal component within one’s price model,
increases the computational effort needed for pricing complex derivatives, like gas storage
contracts, considerably given the higher dimensionality. For this reason, we judiciously
select to proceed with modelling just the first two principal components, recognising that
the second “twist” component in particular is a key driver of storage value, capturing the
movement of relative maturity spreads.
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Motion respectively and v is the jump variance of the subordinating Gamma

process. Again, for our purposes we explicitly set θ = 0 and ϕ = 1, such that

we have the process {dX (t) ; (0, 1, v)}.

The shape of the second volatility function, which accounts for a fur-

ther 4.81% of the curve variability (see Section 4), explains the imperfect

correlation between short and long maturities as it induces movements of

similar magnitude but with opposing directions at the near and far end of

the curve. This volatility function can be approximated as negative exponen-

tial tending to a negative asymptote (Andersen, 2010; Cheyette, 2001). We

therefore set β(2) (t, T ) ≡ exp (−ε (T − t)) (c1 − c2) + c2, with ε > 0, c1 the

sensitivity of the spot maturity (T → t) to the second principal component,

and c2 the asymptotic sensitivity of the forward curve returns to the second

principal component as T → ∞. We have chosen to model this secondary

source of variation using a diffusion process: dW (t). This will enable us

to approximate the market smile for vanilla options whilst also enforcing an

inter-maturity covariance structure on the model.

With these volatility functions specified, it is possible for us to now set

out the suite of multifactor MRVG models that we consider in our study.

The overarching multifactor MRVG model is given by the following system:

dy(1) (t, T ) =
(
−κj(1)

(
γ(1) (t, T )σ (t)

))
dt+ γ(1) (t, T )σ (t) dX (t) (8)

dy(2) (t, T ) = −1

2

(
β(2) (t, T )σ (t)

)2
dt+ β(2) (t, T )σ (t) dW (t) (9)
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with E [dXtdWt] = 0. Although the model has two stochastic drivers, due

to the form of the second volatility function, we need three factors in order

to obtain a Markovian log spot price representation. This can lead to some

confusion in the exact definition of a factor. For our purposes, a factor

will always relate to a one dimensional stochastic process with a volatility

function satisfying Eqs. (5)-(6).

The following sections outline the specific MRVG models we consider,

while we refer to the pros and cons of each.

MRVG-3 Model Specification

We specify an equivalent three-dimensional SDE system representation of

the overarching MRVG model of the log-forward price defined by Eqs. (8)-

(9), which we label MRVG-3. This is a theoretical model specification that

due to substantial computational constraints is impractical to implement

but which we reduce in dimensionality in the next section to a model speci-

fication that may be practically implemented but which retains much of the

attractiveness of the MRVG-3 model. We discuss the MRVG-3 model here to

highlight these attractive modelling features. In order to ensure the model

will be Markovian, we must first re-define the second volatility function,

β(2) (t, T ) ≡ exp (−ε (T − t)) (c1 − c2), and add a third volatility function

β(3) (t, T ) ≡ c2. The dynamics of the MRVG-3 model are then given by Eqs.

(8)-(9) augmented with a third factor, dy(3) (t, T ) = β(3) (t, T )σ (t) dW (t) .
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The associated spot price dynamics are then given by

dy(1) (t) =
(
ω(1) (t)− αy(1) (t)

)
dt+ bσ (t) dX (t)

dy(2)(t) =
(
ω(2) (t)− εy(2) (t)

)
dt+ (c1 − c2)σ (t) dW (t)

dy(3) (t) = c2σ (t) dW (t) .

where the functions ω(i) (t) , i = 1, 2, are given in Appendix A. The three

factors are required in order to obtain a Markovian log spot price represen-

tation. Note that if the percentage of spot variance explained by the two

principal components is given by s then we have b =
√
s− c21. The CCF

that would be used for pricing is given in Appendix B. The main benefit

of this model is that the factor specification allows us to match the typical

shape of the returns’ sensitivity to the first two principal components, i.e.

the “shift” and “twist” features, to a high degree of accuracy. The model

parameters may be estimated using a joint calibration-estimation procedure

on current market option prices and historical price returns. The main draw-

back though is the impractical computational burden incurred when valuing

storage. Indeed, the implementation of the FFT storage valuation algorithm

devised in Section 5.1 would in effect be impossible in this three dimensional

setting as the memory requirement would exceed that of any hardware avail-

able currently.4 We therefore proceed to the next model specification, which
4A two-dimensional FFT is implemented as part of the storage valuation algorithm (see

Section 5.1) for the two-factor MRVG model specifications to be presented in the forth-
coming sections. For a single implementation of the storage valuation algorithm under a
given two-factor MRVG model, we find experimentally that the peak memory requirement
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allows a critical reduction in dimensionality.

MRVG-3x Model Specification

We can reduce the dimensionality of the MRVG-3 model by explicitly set-

ting c2 = 0, in which case we use the label MRVG-3x.5 The model retains

many of the benefits of the MRVG-3 model, in particular the ability to match

the typical shape of the returns’ sensitivity to the first two principal compo-

nents to a high degree of accuracy and the Markovian nature of the log spot

price process. What is different is that the model approximates the second

volatility function as a negative exponential tending to zero rather than the

negative volatility asymptote under the MRVG-3 model. This is a misrepre-

sentation of the full nature of the second volatility function, which leads to a

decrease in the variability of the spread between short and long maturity for-

ward prices compared to the MRVG-3 model. A positive shock to this factor

is in the order of ∼600MB using a grid size of 256x256 for the FFT. The memory usage is
recorded by monitoring the memory display provided by Microsoft Windows’ Task Man-
ager, observed over a number of single instance runs of the storage valuation algorithm.
For the MRVG-3 model, we would need to move to a three-dimensional FFT, which if
we use a similarly sized third dimension, would require a grid size of 256x256x256. This
would scale the peak memory requirement to ∼600MB x 256 = ∼153GB of memory, which
is beyond the maximum memory capacity of currently available hardware. The largest
memory availability on commercial hardware is, for instance, 128GB. The 256x256 grid
size used in this experiment is much coarser than the grid sizes used here for the valua-
tions; for instance, under the MRVG-2x and MRVG-3x model specifications, we set the
grid sized to be 512 × 512 and 256 × 2048 respectively, in order to increase the accuracy of
the storage valuations. Hence, the ∼153GB memory requirement calculated here is likely
a conservative lower bound of what would be required.

5A note on the naming convention used here. Although the model clearly has two-
factors, we have chosen “MRVG-3x” so as to identify the model as a derivative of the
“MRVG-3” model with one parameter constrained. We also use this labelling to distinguish
it from the alternative two factor MRVG-2, which we define later.
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would typically lead to a positive return on the one-day maturity contract

and a negative return on the, for example, 200-day maturity contract, thus

widening the price spread between the two. The MRVG-3x model however,

would imply an approximately zero return on the 200 day maturity contract

thereby underestimating the price spread variability. However, the reduction

in dimensionality is justified by the significant decrease in the computational

burden when using the model to value complex derivative assets, such as in

the natural gas storage case here.

MRVG-2 Model Specification

As an alternative to the MRVG-3/MRVG-3x modelling approach, it is possi-

ble to simplify the overarching multifactor MRVG model by means of setting

ε = α in the general setting, so that the decay of both the first and second

volatility functions are equal. The model simplifies to a two factor system,

which we label MRVG-2. The associated spot price dynamics are then

dy(1) (t) =
(
ω(1) (t)− αy(1) (t)

)
dt+ bσ (t) dX (t)

+ (c1 − c2)σ (t) dW (t)

dy(2) (t) = c2σ (t) dW (t) ,

which are Markovian in nature as desired. The function ω(1) (t) is given in

Appendix A and the associated CCF in Appendix B. As with the MRVG-3x

model, the two factor dimensionality of the MRVG-2 model is computation-
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ally efficient relative to the three factor MRVG-3 model, at the expense of

constraining both factors to share a single mean reversion rate. This latter

feature constrains the MRVG-2 model in its approximation of the returns’

sensitivity to the first two principal components relative to the MRVG-3x

model.

MRVG-2x Model Specification

We further simplify the MRVG-2 model. For this, we constrain the param-

eters b, c1 and c2 such that b = 1, c1 = c2 = σL(t)
σ(t)

, where σL(t) is defined as

the long-term volatility of the spot price. This is a model we label MRVG-

2x. Unlike all models specified thus far, this two factor model is sufficiently

simplified that it can be calibrated to the options market alone and as such

should be viewed as a closely related extension of the single factor MRVG

model of Cummins et al. (2017).

3 Joint Model Calibration-Estimation

The main advantage of the model suite developed in the previous section is

the ability to accurately capture time spread volatility through replicating

as much as possible the complex covariance structure of the natural gas for-

ward curve, while maintaining consistency with the vanilla options market.

To accommodate such forward curve consistency and calibration to market

traded options, we require an appropriate joint model calibration-estimation
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approach. We first discuss calibrating the forward curve models to the mar-

ket for natural gas options, and subsequently outline the historical estimation

approach adopted for the MRVG-2 and MRVG-3x multifactor models. For

calibration purposes, we focus on monthly delivery period options, although

the proposed calibration methodology can easily be applied to swaptions

of varying delivery periods. As such, this approach can be seen as a gen-

eralisation of the methodology of Guillaume and Schoutens (2013), where

the authors focus on single day delivery options. The proposed approach is

appealing in our context as the associated computational effort is indepen-

dent of the number of dimensions in the underlying model, facilitating our

multifactor setting.

We propose a variation on the implied moments technique of Guillaume

and Schoutens (2013). Following the formulation of Bakshi and Madan

(2000), the expectation of any twice differentiable payoff function on a price

FT can be expressed as

E [v (FT )] = v (κ) + v′ (κ) (C (Ft, κ, T )− P (Ft, κ, T ))

+∞
κ v′′ (K)C (Ft, K, T ) dK

+ κ
0 v

′′ (K)P (Ft, K, T ) dK

where C (Ft, ·, T ) and P (Ft, ·, T ) respectively denote call and put prices.

Defining the payoff function as v (FT ) = ln
(

FT

Ft

)n
and setting κ = K0, the

first listed strike below the current forward price Ft, the formula for the nth
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market moment is then given by Guillaume and Schoutens (2013) as

E

[
ln

(
FT

Ft

)n]
= ln

(
K0

Ft

)n

+ n ln

(
K0

Ft

)n−1(
Ft

K0

− 1

)
+∞

K0

n

K2

[
(n− 1) ln

(
K

Ft

)n−2

− ln

(
K

Ft

)n−1
]
×

C (Ft, K, T ) dK

+K0
0

n

K2

[
(n− 1) ln

(
K

Ft

)n−2

− ln

(
K

Ft

)n−1
]
×

P (Ft, K, T ) dK (10)

Discretising using a trapezoidal rule gives

E

[
ln

(
FT

Ft

)n]
= ln

(
K0

Ft

)n

+ n ln

(
K0

Ft

)n−1(
Ft

K0

− 1

)
+

M∑
i=1

4Ki
n

K2
i

[
(n− 1) ln

(
Ki

Ft

)n−2

− ln

(
Ki

Ft

)n−1
]
Q (Ki)

whereK0 is the at-the-money strike or sup i : Ki ≤ Ft; Q (Ki) is the mid-price

of the option with strike Ki chosen such that


Q (Ki) = P (Ki) : Ki < K0

Q (Ki) =
P (Ki)+C(Ki)

2
: Ki = K0

Q (Ki) = C (Ki) : Ki > K0
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and 4Ki is the option spacing defined as


4K1 = K2 −K1

4Ki =
Ki+1−Ki−1

2
∀i 6= 1 orM

4KM = KM −KM−1

Although it would be desirable to derive the implied moments using only

market quoted options, in practice there may be valid reasons for interpolat-

ing a volatility surface from the existing quotes or a subset thereof; for exam-

ple, liquidity and arbitrage concerns. Furthermore, restricting the number of

option prices to only those quoted in the market may have a detrimental ef-

fect on the accuracy of the numerical integration needed to derive the option

implied moments. In our implementation, we take as input the quoted NBP

monthly volatility surface on a given date and begin by interpolating/extrap-

olating the volatility surface over a set of equally spaced strikes. We chose

linear interpolation of implied variance to fill in the missing points within

the original surface and linear extrapolation for points outside the original

surface.

In the context of natural gas markets, where option prices are generally

most liquid on monthly delivery period contracts, the implied moments ap-

proach allows us to calibrate an instantaneous forward price model to the

monthly implied volatilities without the need for a computationally expen-

sive pricing algorithm. As long as the moments for the instantaneous forward
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price, F (t, T ), are known, the model parameters can be fitted to the implied

moments of the monthly forward price such that

E [F (t, T1, T2)
n] = E

[(
N−1∑
j=0

1

N
F (t, T1 + j4t)

)n]
(11)

where t is the expiry date of the monthly option delivering over N periods

between times T1 and T2. The right hand side can be implied from the options

market using a simplified version of Eq. (10), which once scaled by the nth

power of the underlying forward price and discretised as before becomes:

1

F n
0

E [F n] =
Kn

0

F n
0

+ n
Kn−1

0

F n
0

(Ft −K0) +

1

F n
0

M∑
i=1

4Kin (n− 1)Kn−2
i Q (Ki) (12)

For each of the MRVG forward curve models developed in Section 2,

we assume that the spot volatility parameter is independent of time, i.e.

σ (t) = σ, when deriving the implied spot price dynamics rather than assum-

ing a particular time dependent functional form. This is done primarily to

minimise the need for numerical integration when evaluating the CCF of a

given model, which could add an additional source of error to our storage

valuation algorithm. To fit the implied moments we need the monthly for-

ward price moments under each model. For a general exponential model of

the form

F (t, T ) = F (0, T ) exp (~y (t, T ))
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the monthly price is given by

F (t, T1, T2) = E

[
1

N

N−1∑
j=0

F (0, T1 + j4t) exp (~y (t, T1 + j4t)) | ~y (0)

]

for N delivery days between times T1 and T2. We wish to calibrate the 2nd

through to the 4th moments. The general formulae are presented here, while

the exact formulae for the MRVG model suite are presented in Appendix C:

- second moment M2

1

F (0, T1, T2) 2
E

[
1

N2

N−1∑
i=0

N−1∑
j=0

F (0, T1 + i4t)F (0, T1 + j4t)×

exp (y (t, T1 + i4t) + y (t, T1 + j4t)) | ~y (0)
]
;

- third moment M3

1

F (0, T1, T2) 3
E

[
1

N3

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

F (0, T1 + i4t)F (0, T1 + j4t)F (0, T1 + k4t)×

exp (y (t, T1 + i4t) + y (t, T1 + j4t) + y (t, T1 + k4t)) |y (0)] ;

- fourth moment M4
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1

F (0, T1, T2) 4
×

. E

[
1

N4

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

N−1∑
l=0

F (0, T1 + i4t)F (0, T1 + j4t)F (0, T1 + k4t)F (0, T1 + l4t)×

exp (y (t, T1 + i4t) + y (t, T1 + j4t) + y (t, T1 + k4t) + y (t, T1 + l4t)) | ~y (0)
]

Unlike the approach specified in Guillaume and Schoutens (2013) for simple

payoffs, we fit the moments using an optimization algorithm. This is due to

the nature of the moment formula and the lack of a straightforward algebraic

solution. To obtain optimal calibrated parameters for a given model, we use

the simplex algorithm in order to minimize the objective function in question;

namely, the system equating the market and model moments:

V arianceMarket (·) = V arianceModel (·)

SkewnessMarket (·) = SkewnessModel (·)

KurtosisMarket (·) = KurtosisModel (·)

In the case of the single factor MRVG-2x model, all parameters are cal-

ibrated as per the procedure just described. However, given the lack of a

liquid market for time spread options, we need a methodology which com-

bines historical and market data in order to estimate the parameters of the

MRVG-2 and MRVG-3x models. Central to this approach is the idea out-

lined in Section 2 of firstly capturing the covariance structure through the

principal components of the forward curve returns and, secondly, expressing
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the historical volatility functions of each factor relative to the spot volatility.

This allows us to re-scale any of the factors we wish to estimate from history

by a market implied spot price volatility. The historical estimation approach

can be enumerated as follows: (i) construct the covariance matrix of historical

forward curve relative maturity returns; (ii) scale the returns by the histor-

ical spot price volatility; (iii) perform an eigenvalue decomposition on the

covariance matrix to retrieve the eigenvectors or “volatility functions”; (iv)

estimate the relevant model parameters by minimizing the sum of squared

differences between the model assumed and historically estimated volatility

functions.

4 Model Specification Analysis

To evaluate the novel multifactor MRVG model suite proposed, we first con-

duct a formal model specification analysis, following closely the pricing per-

formance approach of Bakshi et al. (1997). We collect from Bloomberg daily

calendar maturity NBP natural gas futures and delivery month options data

over the sample period 5th January 2015 – 24th December 2015. The op-

tions data, which comprises a sample of 253 trade dates, is used to conduct

daily implied moment calibrations of the model suite and evaluate pricing

performance. The overnight index swap (OIS) curve is used for derivatives

discounting purposes, with its preferred use over LIBOR recommended by, for

example, Hull and White (2012). The twelfth and sixth month expiry options
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contracts are used in our daily calibrations, spanning the following money-

ness levels, defined relative to the underlying futures price: 110%, 105%,

102.5%, 100%, 97.5%, 95%, and 90%. For historical estimation purposes,

constant maturity NBP natural gas futures quotes, derived from Bloomberg

off the calendar maturity NBP natural gas futures quotes, are used for the

PCA based volatility function fitting. The constant maturity futures curve

extends from month one (M1) through to month twelve (M12), sampled over

the period 3rd January 2012 – 31st December 2014. For our model specifica-

tion analysis, we fix this period and estimate the historical parameters of the

multifactor MRVG-2 and MRVG-3x models once, holding these parameters

fixed throughout the daily calibration period. For robustness, however, we

performed the model specification analysis again but extended recursively

the historical constant maturity futures data window on a daily basis, re-

estimating the historical parameter estimates. This robustness check con-

firmed the findings we report below.

The daily calibration exercise is conducted for each of the MRVG models.

For comparative purposes, we consider two appropriate benchmark models

from the existing literature; namely, the single factor MRVG model of Cum-

mins et al. (2017) and the single factor MRJD model of Deng (2000). The

former model is of course the basis of the extended multifactor Lévy work

conducted here and so emerges as a natural benchmark. The latter model

is driven by a standard Brownian Motion diffusion component and a com-

pound Poisson jump component described by a symmetric double exponential
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distribution. The presence of the mean reversion parameter is the primary

driver of the storage value in the MRJD model, controlling the forward curve

covariance structure. The jump diffusion specification is what allows us to

replicate the volatility smile. While not previously applied to the problem

of gas storage, we choose the MRJD model as a second benchmark as it

is the only other Lévy driven mean-reverting model in the literature with

known characteristic function and so represents a natural comparator for our

multifactor Lévy models.

Following the general approach of Bakshi et al. (1997), in-sample pricing

performance is evaluated using a mean square error (MSE) criterion between

market observed option prices and model derived option prices. Each of the

MRVG models is fitted to the options data using the modified implied mo-

ment matching calibration technique set out in Section 3 and an estimated

MSE is returned on each day. A constrained optimisation routine is utilised,

with details of the constraints provided in Table 1. While the in-sample

pricing performance analysis reveals important insights into the ability of

the models to fit the options data and allows for informal ranking of models

based on MSE, there is an inherent bias. As noted by Bakshi et al. (1997), a

proposed model may outperform another in terms of in-sample fit simply by

virtue of having more structural parameters than the other. However, this

feature may lead to a penalisation or over-fitting when tested out-of-sample,

hence resulting in poorer out-of-sample performance of this model relative

to the other. We therefore perform an out-of-sample pricing performance
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analysis to check for such bias. Christoffersen and Jacobs (2004) provide

evidence that aligning the loss function used for the estimation and evalu-

ation stages in the testing of alternative option pricing models is of critical

importance. Incorrect judgments may be made about the out-of-sample per-

formance of competing models in the case where loss function specifications

used for estimation and evaluation are inconsistent. For our out-of-sample

analysis, we therefore use the MSE criterion to evaluate the MRVG model

specifications, whereby the MSE is calculated on any given date t using the

model parameter estimates at time (t− 1)as inputs, while all other inputs

are observed at time t.

Table 1 summarises the results of the model specification analysis. Cal-

ibrated parameters are designated by (c) and historically estimated param-

eters are designated by (h). For the calibrated parameters, the averages of

the daily calibration estimates are reported. Average MSEs are also reported

for both the in-sample and out-of-sample analysis, where it can be seen that

there is no evidence of out-of-sample penalisation based on differences in

the number of structural parameters between models. The average MSEs

confirm, at least informally, that the two factor MRVG-3x model provides

the best joint fit to the NBP natural gas options-forward data, followed by

the MRVG-2x model. Both models outperform the benchmark MRVG and

MRJD models. Most notably though, the MRVG-2 model fails to outperform

even the benchmark MRJD model, showing an inability to match the quoted

options data sufficiently and reasonably. To understand this poor perfor-
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mance, we note that the MRVG-2 model is the only specification where the

model term structure of option volatility is entirely determined through his-

torical parameter estimation, i.e. through the α parameter, which is basically

used to match the term structure of implied volatility. It is unreasonable to

expect therefore that this model would be able to replicate the term structure

of volatility because of the use of historical data to estimate the parameters.

This example demonstrates the complexity in the relationship between model

specification and parameter estimation strategy and the potential pitfalls in

the practical application of a model. This ultimately leads to an excessively

high mean reversion α estimate for the MRVG-2 model. On this basis, we

proceed to drop the MRVG-2 model from the analysis and utilise the MRVG-

2x and MRVG-3x models in pricing the assumed storage deal set out in the

next section.

When comparing the MRVG-2x and MRVG-3x models, it is notable that

the estimated α for the latter model is considerably lower; ~40% that of

the MRVG-2x estimate. In the case of the MRVG-3x model, the ε param-

eter serves to take some of the burden off the α parameter, with the two

parameters working together to better capture the covariance structure of

the underlying forward curve data - see the discussion to follow. This is

supported by the descriptive statistics reported in Table 2 where it can be

seen that across the upper percentiles of the α implied parameter series,

the MRVG-2x estimates are higher, and often substantially higher, than the

corresponding MRVG-3x estimates.
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To complement the out-of-sample analysis above, and to consider further

the penalisation of models on the basis of increased numbers of parameters,

we move next to calculate AIC numbers for the model suite. The issue of

course with option pricing model calibration is that the error distribution is

unknown. To assign AIC numbers to the calibrated models therefore requires

an assumed distribution to be imposed. We follow the model risk study of

Detering and Packham (2016) and impose a normal distribution on the MSEs,

allowing us to calculate model AIC numbers on each day as follows:

AIC = I [1 + ln (2π) + ln (MSE)] + 2 (K + 1) ,

where I denotes the number of options used in the calculation of the MSE

and K is the number of model parameters. Detering and Packham (2016)

prove that in this setting, a (quasi-)maximum likelihood estimator (MLE) is

equivalent to minimising the MSE corresponding to a particular model family,

and as such, the MLE has the same properties as the MSE. In this context,

the AIC provides a valid approach to model ranking. Table 1 presents the

AIC results. Notably, while the out-of-sample pricing shows no evidence of

penalisation (relative to the in-sample pricing) on the basis of differences

in the numbers of structural parameters between models, the AIC differs

somewhat in its penalisation. In particular, the MRVG-2x model is penalised

on the basis of having one additional parameter relative to the MRVG model,

with the AIC ranking the latter model ahead of the former model. The
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AIC measure however aligns with the in-sample and out-of-sample MSEs in

ranking the MRVG-3x model as the top model.

While the analysis so far gives informal insights into the relative ranking

of the MRVG models, it is useful to consider the economic significance of

the model fits reported. We augment the analysis with a number of addi-

tional layers of analysis. Table 1 reports (i) average mean absolute errors

(MAEs) in price terms in order to give a monetary interpretation to the pric-

ing performance and (ii) average MAEs in implied volatility terms in order

to give a volatility interpretation to the pricing performance. For all of the

MRVG models (excluding the MRVG-2 model), the absolute error between

market and model option prices is in the order of 19p on average, while the

implied volatility error is in the order of 1.4% on average. So the MRVG,

MRVG-2x and MRVG-3x models appear to fit the options data comparably

well. Recognising that model performance may of course vary across the

moneyness-maturity dimensions, Table 3 expands on the MAE analysis. For

the most part, the MRVG-3x model can be seen to provide the better fit

across the two MAE measures, although there are areas of the moneyness-

maturity space where the best performing model alternates to either the

MRVG or MRVG-2x model.

The evidence thus far on model performance and ranking is of course

informal and suggests that the MRVG-3x model provides the best fit to

the options data, albeit that the MRVG models (with the exception of the

MRVG-2 model) appear to perform comparably well. Additionally, there are
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natural concerns over the normality assumption imposed on the MSEs in the

AIC analysis – Jarque-Bera tests, for instance, confirm the MSE series to be

non-normal under all model specifications. We therefore seek to formalise the

model comparison. To this end, we follow the approach of Huang and Wu

(2004) and implement t-testing on the in-sample MSEs to confirm whether

or not there is a statistically significant difference in the MRVG models.6

The t-statistic is specified as follows on a pairwise model comparison basis:

t-statistic=
¯MSEi − ¯MSEj

stdev
(
MSEi

t −MSEj
t

)
/
√
T
,

where ¯MSEi and ¯MSEj are the mean MSEs for models i and j respectively,

stdev() is the standard deviation function, and T = 253 is the number of

days in the estimation period. Table 4 presents the t-statistics for the pair-

wise MRVG model comparisons (excluding the MRVG-2 model), where it

can be seen quite clearly that there is no evidence of a statistically signifi-

cance difference between the MRVG model specifications, or indeed, for that

matter, the benchmark MRJD. While this showcases the comparable abil-

ity of the alternative MRVG models to capture the smile dynamics in the

NBP options markets, for the purposes of storage valuation, the ability of a

model to represent the covariance structure of the underlying NBP forward

curve is central to accurately determining the extrinsic value of a storage
6The implementation of t-testing on the out-of-sample MSEs follows the same proce-

dure, where the results are found to be consistent with the analysis on in-sample MSEs
presented here.

42



contract. We therefore need to consider how the MRVG models perform

in this respect. To this end, we explicitly derive the model implied covari-

ance structure under each of the MRVG model specifications, emphasising

the role of the structural parameters. We then proceed to explore the abil-

ity of each specification to model the historical covariance structure. The

evidence shows that, in general, the MRVG-3x model more accurately rep-

resents the co-movement observed in the forward curve than either the two

factor MRVG-2x or single factor MRVG models and so can more accurately

value extrinsic storage value. It is this feature of the MRVG-3x model in

particular that offers practitioner appeal.

We begin first with the derivation of the covariance structure function

under the single factor MRVG model. The model is specified such that

the instantaneous variance of different maturities along the forward curve

shows exponential decay as time to maturity increases. This property is

the well-established Samuelson Effect (Serletis, 1992), a stylised feature of

many commodity markets and particularly natural gas. For two log-forward

prices, f (t, T1) and f (t, T2), the instantaneous covariance of returns under

this model can be shown to be given by

E [(df (t, T1)− E [df (t, T1)]) (df (t, T2)− E [df (t, T2)])]

= exp (−α (T1 + T2 − 2t))σ2dt.
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Therefore, the mean reversion rate of the process, α, which captures the

exponential decay of forward price volatility with respect to maturity, fully

controls the structure of the forward curve covariance matrix. This results

in non-parallel shifts in the forward curve due to changes in the underlying

stochastic driver. It is this dynamic forward curve movement that is crucial

for storage valuation as it motivates the operator to exercise their optionality

to switch planned injection and withdrawals, thus creating extrinsic value.

It should be noted that the variance of the jump magnitudes, ν, controls the

implied volatility smile attenuation and ensures that the model is consistent

with the initial volatility surface.

For the MRVG-2x model, the instantaneous covariance of returns is quite

similar in form but also features the long-term volatility level. The instan-

taneous covariance of returns for the MRVG-2x model can be shown to be

given by

E [(df (t, T1)− E [df (t, T1)]) (df (t, T2)− E [df (t, T2)])]

= exp (−α (T1 + T2 − 2t))σ2dt+ σ2
Ldt.

where again, the mean reversion rate of the process, α, is the primary driver

of extrinsic storage value.

In contrast, the two-factor MRVG-3x model offers much more flexibil-
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ity. The first factor, which accounts for the majority of the forward curve

variability, is an MRVG process and the main parameters for this factor can

be calibrated to the options market. The parameters b and c1 represent the

proportion of total variance attributed to the first and second factors re-

spectively and would need to be estimated from historical data. The second

factor is specified such that it approximates the typical shape of the sensitiv-

ity, which we refer to as the volatility function, of the forward curve to the

second principal component of the forward curve returns covariance matrix.

The parameters relating to the second factor can be estimated directly from

the eigenvector values. The parameter ε controls the decay of the volatil-

ity function as maturity increases. The slope of the volatility function will

have a direct impact on the covariance of different maturities along the for-

ward curve. A sharply decaying curve will decrease the covariance between

prompt forward prices and the back of the curve, which will lead to greater

time spread variance and thus higher storage value. The instantaneous re-

turns covariance for two log forward prices f (t, T1) and f (t, T2) in the case

of the MRVG-3x model can be shown to be given by

E [(df (t, T1)− E [df (t, T1)]) (df (t, T2)− E [df (t, T2)])]

= exp (−α (T1 + T2 − 2t)) b2σ2dt+ exp (−ε (T1 + T2 − 2t)) c21σ
2dt.
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With ε � α (as we estimate here), the MRVG-3x model, as it encompasses

the one factor MRVG model, will attribute more value to a storage asset

through this additional decorrelation of the forward curve returns. Appendix

D provides full derivation details of the model implied covariance structures

just presented.

With the model implied covariance structures now derived, we proceed

to examine how well the MRVG model specifications fit the observed his-

torical covariance structure. In calculating the model implied covariance

matrices, we use the parameter estimates for the MRVG, MRVG-2x and

MRVG-3x models as reported in Table 1. To showcase the respective fits

to the historical covariance matrix, we present two heat maps in Figure 1;

one (panel (a)) comparing the fit of the MRVG and MRVG-3x models to

the historical covariance matrix, and the other (panel (b)) comparing the

fit of the MRVG-2x and MRVG-3x models to the historical covariance ma-

trix. To interpret the heat maps, negative values (black-green areas) show

that the MRVG-3x model fits the historical covariance structure better than

the MRVG (panel (a)) and MRVG-2x (panel (b)) models. The x- and y-

axes label the twelve monthly forward maturities M1-M12. The construc-

tion of the heat maps proceeds as follows: calculate the historical covari-

ance matrix, as used in the estimation of the MRVG-3x model; calculate

the MRVG/MRVG-2x/MRVG-3x model implied covariance matrices (as per

the derivations above) using the parameter estimates reported in Table 1,

discretised over a single day period ∆t = 1/253; calculate the absolute error
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on an element-by-element basis between the historical covariance matrix and

each of the model implied covariance matrices; for the heat map in panel (a),

subtract the historical-MRVG absolute errors from the historical-MRVG-3x

absolute errors on an element-by-element basis, such that a negative value

indicates that the MRVG-3x model fits a given covariance matrix element

better than the competing MRVG model; for the heat map in panel (b), sub-

tract the historical-MRVG-2x absolute errors from the historical-MRVG3x

absolute errors on an element-by-element basis, such that a negative value

therefore indicates that the MRVG-3x model fits a given covariance matrix

element better than the competing MRVG-2x model.

The MRVG-3x model clearly outperforms, almost entirely, the MRVG

model in fitting the historical covariance matrix, except for a segment of

the long dated maturities’ co-movement. The MRVG-3x model also outper-

forms the MRVG-2x model for most of the medium-long dated maturities’

co-movement, although the MRVG-2x model does seem to capture the co-

variance structure better for the short dated maturities’ co-movement. In

the round though, it can be concluded that the MRVG3x is better specified

to represent the forward curve covariance structure and so is more flexible

in accurately capturing extrinsic value. The MRVG-3x model specification

therefore offers the most in this regard. To examine this further, the next

section proceeds with a comprehensive storage valuation analysis across the

MRVG model suite, first deriving a novel multidimensional Fourier based

valuation algorithm.
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MRVG Models

Parameter MRVG MRVG-2x MRVG-2 MRVG-3x

α 0.6365(c) 1.6164(c) 10.5668(h) 0.6459(c)

σ 0.2922(c) 0.2907(c) 0.8506(c) 0.3120(c)

ν 0.1130(c) 0.1935(c) 0.5993(c) 0.1103(c)

σL - 0.1228(c) - -

b - ≡ 1 0.9367(h) 0.9367(h)

ε - ≡ α ≡ α 10.2613(h)

c1 - ≡ σL
σ

0.2860(h) 0.2860(h)

c2 - ≡ σL
σ

−0.1022(h) ≡ 0

Avg. MSE (in-samp) 0.90% 0.87% 16.14% 0.83%

Avg. MSE (out-samp) 0.90% 0.87% 16.16% 0.83%

Avg. MAE (price) 0.1959 0.1928 1.1276 0.1906

Avg. MAE (imp vol) 1.44% 1.39% 8.40% 1.38%

Avg. AIC -11.2717 -9.5919 +12.5139 -11.6487

Benchmark MRJD

Avg. MSE (in-samp) 1.24% Avg. MSE (out-samp) 1.25%

Avg. MAE (price) 0.2287 Avg. MAE (imp vol) 1.65%

Avg. AIC -8.8113

The table presents the results of the model specification analysis on the multifactor Mean Reverting
Variance Gamma (MRVG) model suite, as defined in Section 2. The market implied moments
calibration procedure detailed in Section 3 is applied to estimate the parameters of the MRJD, MRVG
and MRVG-2x models, using market options data only. The joint calibration-estimation procedure of
Section 3, which incorporates calibration using the market implied moments procedure and historical
estimation based on fitting the historical volatility functions, is applied to estimate the parameters of the
MRVG-2 and MRVG-3x models. MSE is Mean Square Error, MAE is Mean Absolute Error and AIC is
Akaike Information Criterion. MSEs are reported from the in-sample and out-of-sample analysis. MAEs
are reported in price terms in order to give a monetary interpretation to the pricing performance and in
implied volatility terms in order to give a volatility interpretation to the pricing performance. We use
“(c)” to denote parameters that are calibrated, while we use “(h)” to denote parameters that are
historically estimated. The calibrated parameters reported are averages of the parameters estimated
from the daily calibrations conducted across the sample period, 5th January 2015 – 24th December 2015.
We use “≡” to denote parameters that are constrained and set to the values described in Section 2. A
constrained optimisation routine is used, where for consistency the same upper and lower bounds are
used on all overlapping parameters between the MRVG models. For the parameter set {α, σ, v, σL}, we
set the upper bound constraints to be {4, 0.5, 1, 0.3} and the lower bound constraints to be {0, 0, 0, 0},
with starting values {0.5, 0.25, 0.4, 0.1}.

Table 1: Model specification analysis on the MRVG model suite
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(a)
<< INSERT FIGURE 1 - PANEL (a) >>

(b)
<< INSERT FIGURE 1 - PANEL (b) >>

The figure presents two heat maps; panel (a) comparing the fit of the MRVG and MRVG-3x model implied
covariance matrices to the historical covariance matrix, and panel (b) comparing the fit of the MRVG-2x
and MRVG-3x model implied covariance matrices to the historical covariance matrix. To interpret the
heat maps, negative values (black-green areas) show that the MRVG-3x model fits the historical covariance
structure better than the MRVG (panel (a)) and MRVG-2x (panel (b)) models. The x- and y-axes label
the twelve monthly forward maturities M1-M12. The construction of the heat maps proceeds as follows:
calculate the historical covariance matrix, as used in the estimation of the MRVG-3x model; calculate
the MRVG/MRVG-2x/MRVG-3x model implied covariance matrices (as per the derivations described in
Section 4 and detailed in Appendix D) using the average parameters reported in Table 1, discretised over
a single day period ∆t = 1/253; calculate the absolute error on an element-by-element basis between
the historical covariance matrix and each of the model implied covariance matrices; for the heat map
in panel (a), subtract the historical-MRVG absolute errors from the historical-MRVG-3x absolute errors
on an element-by-element basis, such that a negative value indicates that the MRVG-3x model fits a
given covariance matrix element better than the competing MRVG model; for the heat map in panel
(b), subtract the historical-MRVG-2x absolute errors from the historical-MRVG3x absolute errors on an
element-by-element basis, such that a negative value therefore indicates that the MRVG-3x model fits a
given covariance matrix element better than the competing MRVG-2x model.

Figure 1: Heat maps for historical-model implied covariance structure fits

5 Storage Valuation

We proceed next to valuing an assumed storage deal with physical constraints

under the estimated MRVG-2x and MRVG-3x models as outlined and fitted

in the previous sections. A core contribution of this section is the devel-

opment of a multidimensional algorithm, exploiting the power of the FFT

for the purposes of storage valuation. The approach represents a generalisa-

tion of the single factor FFT based valuation algorithm of Cummins et al.

(2017) to an arbitrary number of dimensions. Although the emphasis here

is on storage valuation, the algorithm could easily be altered to price other

path dependent options, such as take-or-pay contracts. Further, valuations

which depend on multiple underlying assets could also be easily incorporated
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within this framework. One relevant example of interest being storage con-

tracts with location flexibility, e.g. a German storage with the option to

inject/withdraw to both NCG and Gaspool.

5.1 Multidimensional Valuation Algorithm

We will begin by introducing the valuation problem with reference to the

standard physical constraints and operating characteristics of the assumed

gas storage unit. We denote the current gas inventory level as I∈ [Imin, Imax].

The amount of gas that can be injected or withdrawn from the storage asset

in a given period is typically constrained and may be dependent upon both

the time period and current inventory level. We denote the injection and

withdrawal rates as i (t, I) and w (t, I) respectively. Given a valuation period

of length T, we note the following constraints on the operation of the storage:

(i) the allowed injection/withdrawal nomination times over the valuation

period belong to a discrete set {tj}; and (ii) for a given time step tj and

inventory level I, the range of attainable storage levels is given as

[ max (I − w (tj, I) , Imin) ,min (I + i (tj, I) , Imax) ]

We assume that when operating a storage asset the objective is to maximize

the expected discounted cashflows arising from one’s injection/withdrawal

policy. If we denote the log gas price at nomination time tj as xtj , and the

cash flow from moving to inventory level I∗ from I as θ
(
xtj , I

∗; I
)

then the
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storage value is derived through backward stochastic dynamic programming,

where the value function is given by

V
(
xtj−1

(
~ytj−1

)
, I
)
) = sup

I∗
θ
(
xtj−1

(
~ytj−1

)
, I∗; I

)
+ E

[
V
(
xtj , I

∗) |~ytj−1

]
(13)

and where, in our multidimensional setting, ~yt ∈ RK . We therefore simply

need to solve the expectation in Eq. (13) at each time-step and for each

combination of
(
xtj , I

∗). Firstly, E
[
V
(
xtj , I

∗) |~ytj−1

]
may be written as

R ..... R V

(
f(0, tj) +

K∑
k=1

y
(k)
tj , I

∗

)
×

f
(
y
(1)
tj , y

(2)
tj , ...., y

(K)
tj |y(1)tj−1

, y
(2)
tj−1

, ...., y
(K)
tj−1

)
dy

(1)
tj dy

(2)
tj .....dy

(K)
tj

where the application of Fubini’s Theorem requires the mild technical re-

striction that E
[∣∣V (xtj , I∗)∣∣ |~ytj−1

]
< ∞. Applying Parseval’s Theorem,

E
[
V
(
xtj , I

∗) |~ytj−1

]
becomes

(
1

2π

)K

C ..... C ṽ (~z; I
∗) Φ~ytj

(
~z; ~ytj−1

, tj−1, tj
)
dz(1)dz(2).....dz(K) (14)

where

ṽ (~z; I∗) = Rn exp
(
−i~zᵀ · ~ytj

)
V

(
f (0, tj) +

K∑
i=1

y
(i)
tj , I

∗

)
d ~ytj
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with ~z ∈ Cn : ~u+ iŵ. The vector ŵ is defined such that

Rn

∣∣∣∣∣exp (~wᵀ · ~ytj
)
V

(
f (0, tj) +

K∑
k=1

y
(k)
tj , I

∗

)∣∣∣∣∣ d ~ytj <∞.

The associated CCF is of the form

Φ~ytj
= exp

(
i ~azᵀ · ~ytj−1

)
exp (ψ (~z, tj−1, tj))

where ~az is used to denote the element wise multiplication of the vector ~z

and ~a =
{
a(1) (tj−1, tj) , a

(2) (tj−1, tj) , . . . , a
(K) (tj−1, tj)

}
. Therefore, we can

rewrite Eq.(14) to get the following form for E
[
V
(
xtj , I

∗) |~ytj−1

]
:

(
1

2π

)K

C ..... C ṽ(~z; I
∗) exp

(
i ~azᵀ · ~ytj−1

)
exp (ψ (~z, tj−1, tj)) dz

(1)dz(2).....dz(K)

Applying the substitution ~z′ = ~az gives us the following simplification for

E
[
V
(
xtj , I

∗) |~ytj−1

]
:

(
K∏
k=1

1

a(k) (tj−1, tj)

)(
1

2π

)K

C ..... C ṽ

(
~z′

a
; I∗

)
(15)

× exp
(
i~z′

ᵀ · ~ytj−1

)
exp

(
ψ

(
~z′

a
, tj−1, tj

))
dz′(1)dz′(2).....dz′(K)

We then apply the scaling property of the Fourier transform to derive ṽ
(
~z′
a
; I∗
)

:

(
K∏
k=1

a(k) (tj−1, tj)

)
F

[
V

(
f (0, tj) +

K∑
k=1

a(k) (tj−1, tj) y
(k)
tj , I

∗

)]
(16)
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This lends itself to efficient evaluation using a multidimensional FFT algo-

rithm. The next section discusses discretising the expectation given in Eq.

(15) and recasting it in a form suitable for evaluation using the FFT.

Discretisation & Solution

To solve for Eq. (15) we first truncate and discretise the domains of ~y

and ~z′ such that y(k) ∈ [y
(k)
0 , ..., y

(k)

N(k)−1
], where y(k)n = y

(k)
0 + n(k)4y(k) for

n(k) = 1......N (k), and N (k) is the number of grid points for the kth factor.

Similarly, for each z′(k) = u(k) + iw(k) we have

u(k) ∈ [u
(k)
0 , ....., u

(k)

M(k)−1
]

where u(k)m = u
(k)
0 +m(k)4u(k) andM (k) is the number of grid points. Applying

a composite trapezoidal product rule Eq. (16) then becomes

(
K∏
k=1

a(k) (tj−1, tj)

)
N(1)−1∑
n(1)=0

l
(1)

n(1) .....
N(K)−1∑
n(K)=0

l
(K)

n(K) exp
(
−iz′(1)y(1)

n(1) ....− iz′(K)y
(K)

n(K)

)
×

V

(
f (0, tj) +

K∑
k=1

a(k) (tj−1, tj) y
(k)

n(k) , I
∗

)
4y(K).....4y(1)
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where l(k)
n(k) = 1

2
for n(k) = 0, N (k) − 1 and l

(k)

n(k) = 1 elsewhere. Each term

exp
(
−iz′(k)y(k)

n(k)

)
can now be expanded as follows:

exp
(
−iu(k)0 n(k)4y(k) − im(k)4u(k)n(k)4y(k) − iu

(k)
0 y

(k)
0

−im(k)4u(k)y(k)0 + w(k)n(k)4y(k) + w(k)y
(k)
0

)

Terms which are independent of n(k) can be factored out to give the following

expression for ṽ
(
~z′
a
; I∗
)
:

exp

(
K∑
k=1

−iu(k)0 y
(k)
0 + w(k)y

(k)
0

)
exp

(
K∑
k=1

−im(k)4u(k)y(k)0

)(
K∏
k=1

a(k) (tj−1, tj)

)
×

N(1)−1∑
n(1)=0

l
(1)

n(1) .....
N(K)−1∑
n(K)=0

l
(K)

n(K) exp

(
K∑
k=1

−im(k)4u(k)n(k)4y(k)
)

×

exp

(
K∑
k=1

−iu(k)0 n(k)4y(k) + w(k)n(k)4y(k)
)

×

V

(
f (0, tj) +

K∑
k=1

a(k) (tj−1, tj) y
(k)

n(k) , I
∗

)
4y(K).....4y(1)
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Similarly, we discretise Eq. (15) to get the following expression for E
[
V
(
xtj , I

∗) |~ytj−1

]
:

(
1

2π

)K
(

K∏
k=1

1

a(k) (tj−1, tj)

)
M(1)−1∑
m(1)=0

l
(1)

m(1) .....

M(K)−1∑
m(K)=0

l
(K)

m(K) ṽ

(
~z′

a
; I∗

)
×

exp
(
iz′m(1)

(1)y
(1)

n(1) + ....+ iz′
(K)

m(K)y
(K)

n(K)

)
ψ

(
~z′

a
, tj, tj−1

)
4u(K).....4u(1)

(
1

2π

)K
(

K∏
k=1

1

a(k) (tj−1, tj)

)
M(1)−1∑
m(1)=0

l
(1)

m(1) .....

M(K)−1∑
m(K)=0

l
(K)

m(K) ×

exp

(
K∑
k=1

iu
(k)
0 n(k)4y(k) + iu

(k)
0 y

(k)
0

)
exp

(
K∑
k=1

−w(k)n(k)4y(k) − w(k)y
(k)
0

)
×

exp

(
K∑
k=1

im(k)4u(k)n(k)4y(k)
)
exp

(
K∑
k=1

im(k)4u(k)y(k)0

)
×

ψ

(
~z′

a
, tj−1, tj

)
ṽ

(
~z′

a
; I∗

)
4u(K).....4u(1)

(
1

2π

)K
(

K∏
k=1

1

a(k) (tj−1, tj)

)
exp

(
K∑
k=1

iu
(k)
0 n(k)4y(k) + iu

(k)
0 y

(k)
0

)
×

exp

(
K∑
k=1

−w(k)n(k)4y(k) − w(k)y
(k)
0

)
×

M(1)−1∑
m(1)=0

l
(1)

m(1) .....
M(K)−1∑
m(K)=0

l
(K)

m(K) exp

(
K∑
k=1

im(k)4u(k)n(k)4y(k)
)
ψ

(
~z′

a
, tj−1, tj

)
×

exp

(
K∑
k=1

im(k)4u(k)y(k)0

)
ṽ

(
~z′

a
; I∗

)
4u(K).....4u(1)
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Expanding ṽ
(
~z′
a
; I∗
)

we finally get:

(
K∏
k=1

4u(k)4y(k)

2π

)
exp

(
K∑
k=1

iu
(k)
0 n(k)4y(k) − w(k)n(k)4y(k)

)
×

M(1)−1∑
M(1)=0

l
(1)

m(1) .....
M(K)−1∑
m(K)=0

l
(K)

m(K) exp

(
K∑
k=1

im(k)4u(k)n(k)4y(k)
)
ψ

(
~z′

a
, tj−1, tj

)
×

N(1)−1∑
n(1)=0

l
(1)

n(1) .....

N(K)−1∑
n(K)=0

l
(K)

n(K) exp

(
K∑
k=1

−im(k)4u(k)n(k)4y(k)
)

×

exp

(
K∑
k=1

−iu(k)0 n(k)4y(k) + w(k)n(k)4y(k)
)
V

(
f (0, tj) +

K∑
k=1

a(k) (tj−1, tj) y
(k)

n(k) , I
∗

)

In order to utilise the multidimensional FFT to solve for the above, we need

to enforce the restriction that M (k) = N (k) for k = 1, ....K and also

4u(k)4y(k) = 2π

N (k)

In implementing this Fourier based storage valuation algorithm, we ex-

ploit the FFT-m approach of Cummins et al. (2017), which is a modification

that leads to an increase in valuation convergence. Note that for the MRVG-

2x and MRVG-3x models, grid sizes of 512 × 512 and 256 × 2048 are used

respectively. For the single factor MRVG and MRJD benchmark models, the

number of grid points used in the FFT-m implementation is 4026.
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5.2 Storage Valuation Example

Here we apply the multidimensional valuation algorithm derived in the pre-

vious section to an assumed storage contact with physical constraints. We

value the storage contract using the daily estimated MRVG-2x and MRVG-

3x models, determined in Section 4, while for comparative purposes we ad-

ditionally value the same contract under the MRVG and MJRD benchmark

models. In order to allow us focus on the relationship between model spec-

ification and storage value, we have chosen a straightforward, yet realistic

storage contract. The deal parameters are as follows:

• Tenor: 1 year;

• Capacity: 29.3 GWh;

• Max Injection/Withdrawal: 1.465 GWh per day;

• Underlying Gas Price: NBP (National Balancing Point) in pence/therm.

We assume the same deal parameters on each day in our sample period of

5th January 2015 – 24th December 2015 but use the fitted model on each

day for the valuation exercise. Therefore, on each day we are valuing a

storage contract with a one year tenor from that date. Table 5 presents the

average storage values for each model considered. The average intrinsic value

calculated across the sample period is also reported so that we can appraise

the ability of the models in capturing extrinsic value.
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Notably, the results show that on average the MRVG-2x and MRVG-3x

models assign considerably higher value to the storage contract than the

benchmark models, at 9.5540 pence/therm and 9.0853 pence/therm respec-

tively. These represent increases of approximately 260% and 192% respec-

tively in extrinsic value over the MRJD model. The average storage value

assigned by the MRVG-2x model is higher than the MRVG-3x case by some

0.47 pence/therm but it should be noted from Section 4 that MRVG-3x is

established as being better specified to represent the forward curve covari-

ance structure and so more flexible in accurately capturing extrinsic value.

The results overall though highlight the sensitivity of the storage asset to

the model implied time spread price variability. Recall that both models

incorporate exponentially decaying positive or negative shifts in the forward

curve, which add a certain degree of time spread price variability. However,

the inclusion of the rapidly decaying second factor on the MRVG-3x acts to

more accurately represent this variability and avoid the potential for resulting

misvaluation.

Incorporating an accurate representation of the forward curve dynamics

in conjunction with a market based calibration of the general level of curve

variability is an important feature of modelling storage value. This is of

course due entirely to market incompleteness with respect to time spread

optionality. As such, a model which is capable of representing the dynamics

observable from historical returns gives traders at least some comfort in the

level of extrinsic value being bid/offered. Not only does the MRVG-3x model
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meet this requirement, the parsimony of the model allows one to adjust one’s

price levels significantly by adjusting a single parameter, ε, without signifi-

cantly impacting the ability of the model to calibrate to market. Given the

growing liquidity observable in the over-the-counter storage and 100% take-

or-pay markets however, this requirement of utilising historical information

may not be necessary in coming years. Even in such a situation, a model

which can easily and quickly be calibrated to market prices for storage and

take-or-pay contracts would allow a trader to infer the price of time spread

optionality directly from these products. Again, the MRVG-3x, where the

entire curve covariance structure is controlled by two parameters, would be

considerably more suited for this purpose. Indeed, this feature means the

MRVG-3x model offers potential as a dynamic model outside of the natu-

ral gas markets, in energy and commodity markets where greater levels of

market liquidity may be observed.

6 Conclusion

We extend the existing range of gas storage valuation methods uniquely

within a flexible multifactor Lévy process setting. Specifically, we develop

a family of multifactor Mean Reverting Variance Gamma (MRVG) models,

which are forward curve consistent, while also being broadly consistent with

the options market, and so more reflective of the statistical dynamics of the

NBP gas forward curve returns we examine. We extend the single factor
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MRVG process of Cummins et al. (2017), set out in Section 2.1, to an arbi-

trary number of dimensions and by way of specific examples show how the

traditional Principal Component Analysis based view of gas forward curve

dynamics can be incorporated into a primarily market based valuation. This

methodological approach allows for consistent valuation and risk manage-

ment reporting across an energy trading firm; a practitioner problem of real

relevance for industry. We demonstrate how to construct models with the

capability of accurately capturing the time spread volatility, whilst maintain-

ing consistency with the vanilla options market. We present the first class

of multifactor storage models developed with the explicit intention of pro-

viding a link between the model and the options market, developing in the

process an innovative implied moments based calibration technique, which

allows for efficient calibration of general multifactor forward curve models.

Due to concerns surrounding the efficiency of calibrating directly to market

option prices, we extend previous work utilising market implied moments

to incorporate general instantaneous forward curve models. This innovative

approach allows one to calibrate to options on forwards of varying contract

delivery periods, where the computational effort is broadly independent of

the number of factors in the underlying model. To accommodate forward

curve and traded options market consistency, we go further and develop

an appropriate joint market based calibration and historical estimation ap-

proach. A formal model specification analysis provides evidence that the two

factor MRVG-2x and MRVG-3x models we propose, set out in Section 2.2,
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provide a better fit to the natural gas options-futures markets relative to the

benchmark MRVG model of Cummins et al. (2017) and the Mean Reverting

Jump-Diffusion (MRJD) model of Deng (2000). Finally, we present empirical

valuation results for a stylised storage deal under selected specifications from

the multifactor Lévy model framework, which showcases the merits of the

models. We develop a novel multidimensional fast Fourier transform (FFT)

based early exercise claim valuation algorithm and showcase its application

to valuing natural gas storage. We leverage the model fitting performed as

part of the formal model specification analysis to investigate the performance

of the MRVG model suite in terms of storage valuation, identifying that the

two factor MRVG models generally capture higher levels, and more accurate

levels, of extrinsic value. We discuss the dependence of the resulting storage

values on the model specification and calibrated/estimated parameter values.

One issue when valuing the storage deal is the computational burden

of the algorithm in higher dimensions, such as the overarching MRVG-3

model. As identified in Section 2.2, the memory requirement to implement

the MRVG-3 model under a three-dimensional version of the FFT algorithm

would exceed that limits of modern hard ware. We therefore see the need for

optimisation of the algorithm as a key area for future research, with potential

to explore cloud based parallel computing solutions.

Finally, whilst we have demonstrated the additional theoretical value of

the storage asset under our enhanced suite of multifactor models, a full back-

testing of the model "greeks" ability to protect this value through dynamic
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hedging in both the forward and options market would be needed before

drawing any firm conclusions on which model is best in practice. Such a

study though is out of scope for this paper and left for future research. How-

ever, by way of laying a blue print for this work, the following is important

to note. While there is no industry standard approach to model backtesting,

we would see value in carrying out a model value attribution analysis where

the ability of the first and higher order derivatives of the model inputs are

used to explain the daily changes in the model value with respect to changes

in these inputs. The exact steps in carrying out this type of analysis would

be as follows: (1) select several time periods, each spanning at least one

year, which represent different market regimes and ideally include a number

of extreme short-term macro events, so as to cover low and high volatility

environments; (2) for each day in the sample, calibrate/estimate the model

parameters using all necessary market and historical information available

as of that day; (3) on the first day of the time period being studied, run the

storage valuation and record the value and model parameter "greeks"; (4)

on the next business day in the time period, repeat step (3) and determine

the ability of the model "greeks" to explain the change in storage value us-

ing a Taylor Series type analysis of the change in model value with respect

to actual changes in the model inputs, the main metric to be recorded is

the unattributed value change defined as the difference between actual and

predicted model value; and (5) repeat step (4) for each day in the period

and collect a sample of daily unattributed value changes, which can then be
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analysed to infer the stability of the model under real world conditions. We

would consider the model specification and parameter estimation to be sat-

isfactory if the daily unattributed value change has a statistically significant

zero sample mean and low sample variance. Two key challenges to be consid-

ered in future work are: the time required to evaluate the required number of

model value derivatives with respect to the model parameters via numerical

differentiation for each day in a sufficiently sized sample would not be prac-

tical; and the impact of numerical error on the robustness of these estimates

for higher order "greeks" would likely invalidate any conclusion which one

could draw from the analysis.
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A Drift Corrections: MRVG Spot Dynamics

It can be readily shown from a simplification of the spot dynamics of the state

variables, while setting σ(t) = σ, that the drift corrections for the MRVG-3

are
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w(1) (t) =
(
−κj (exp (−α (t)) bσ)− α t

0 (κj (exp (−α (t− c)) bσ)) dc
)

ω(2)(t) = −1

2
(c1σ)

2 +
1

4
(1− exp (−2εt)) (c1 − c2)

2 σ2 − ε

2
c22σ

2t

Following similar derivations, it can be shown for the MRVG-2 model that

the drift correction is given by

w(1) (t) =
(
−κj (exp (−α (t)) bσ)− α t

0 (κj (exp (−α (t− c)) bσ)) dc

−1

2
(c1σ)

2 +
1

4
(1− exp (−2αt)) (c1 − c2)

2 σ2 − α

2
c22σ

2t

)

Finally, for the abridged MRVG-2x model, we have

w(1) (t) =
(
−κj (exp (−α (t))σ)− α t

0 (κj (exp (−α (t− c))σ)) dc
)
.

B Characteristic Functions

Beginning with the MRVG-3 model, we have
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Φ~y(t) (~z; ~y(s), s, t) = exp
(
iz(1)y(1) (s) exp (−α (t− s)) + iz(2)y(2) (s) exp (−ε (t− s))

)
×

exp
(
izy(3) (s) + iz(1) ts ω

(1) (c) exp (−α (t− c)) dc
)
×

exp
(
iz(2) ts ω

(2) (c) exp (−ε (t− c)) dc
)
×

exp
(
t
s ϕvg (z exp (−α (t− c)) bσ)

)
×

exp

[(
−σ

2

2

)(
1

2ε

(
z(2)
)2

(c1 − c2)
2×

(1− exp (−2ε (t− s))) +
2

ε
z(2) (1− exp (−ε (t− s)))×

(c1 − c2) z
(3)c2 +

(
z(3)
)2
c22 (t− s)

)]

for ~z ∈ Sy ∪ C2, Sy :=
{
z = u+ iw;w ∈

(
−
√

2
(bσ)2v

,
√

2
(bσ)2v

)}
. ϕvg is the

characteristic function of the Variance-Gamma process, and the solution to
t
s ϕvg (z exp (−α (t− c)) bσ) is given in Kiely et al. (2015).

The characteristic function reduced MRVG-2 model is given by

Φ~y(t) (~z; ~y(s), s, t) = exp
(
iz(1)y(1) (s) exp (−α (t− s)) + iz(2)y(2) (s)

)
×

exp
(
iz(1) ts ω

(1) (c) exp (−α (t− c)) dc
)
×

exp
(
t
s ϕvg (z exp (−α (t− c)) bσ)

)
×

exp

[(
−σ

2

2

)(
1

2α

(
z(1)
)2

(c1 − c2)
2×

(1− exp (−2α (t− s))) +
2

α
z(1) (1− exp (−α (t− s)))×

(c1 − c2) z
(2)c2 +

(
z(2)
)2
c22 (t− s)

)]
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for ~z ∈ Sy ∪ C.

Finally, for the MRVG-2x we have

Φ~y(t) (~z; ~y(s)s, t) = exp
(
iz(1)y(1)(s) exp (−α(t− s)) + iz(2)y(2)(s)

)
×

exp
(
iz(1) ts ω

(1)(c) exp (−α(t− c)) dc
)
×

exp

(
−iz(2)1

2
t
s σ

2
Ldc

)
×

exp
(
t
s ϕvg (z exp (−α (t− c))σ)

)
×

exp

(
−
(
z(2)σL

)2
2

)

for ~z ∈ Sy ∪ C.

C Moment Formulae

We will begin by deriving the relevant expression for the most general model

of interest, the MRVG-3 forward curve model. By placing the necessary re-

strictions on the model parameters we can then easily use these results to

derive the moment formulae of the MRVG-2 and MRVG-2x models. Be-

ginning with the second moment, recall that we need to derive a solution

for

1

F (0, T1, T2) 2
×

E

[
1

N2

N−1∑
i=0

N−1∑
j=0

F (0, T1 + i4t)F (0, T1 + j4t) exp (y (t, T1 + i4t) + y (t, T1 + j4t)) | ~y (0)

]
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Taking the expectation operator inside the summation, the only difficulty is

in evaluating the following

E [exp (y (t, T1 + i4t) + y (t, T1 + j4t)) |y (0)] (17)

For the MRVG-3 process the function y (t, Ti) is given by

y (t, Ti) = y1 (t, Ti) + y2 (t, Ti) + y3 (t, Ti)

From the dynamics of the MRVG-3 model, we know that

y(1)(t, Ti) = y(1)(s, Ti)− t
s (κj (b exp (−α (Ti − c))σ)) dc

+exp (−α (Ti − t))
(
y(1)(t, t)− y(1)(s, t)

)
+exp (−α (Ti − t))ϕ (−i, s, t)

where ϕ is the characteristic exponent of the single factor MRVG model,

y(2)(t, Ti) = y(2)(s, Ti) + exp (−ε (Ti − t))
(
y(2)(t, t)− y(2)(s, t)

)
−σ

2

4ε
exp (−2ε (Ti − t)) (c1 − c2)

2 ×

((1− exp (ε (Ti − t))) (1− exp (−2ε (t− s))))

−σ
2

2
c22 (t− s) (1− exp (−ε (Ti − t)))
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and

y(3)(t, Ti) = y(3)(s, Ti) +
t
s c2σ(c)dW (c)

= y(3)(s, Ti) + y(3)(t, t)− y(3)(s, t)

Setting s = 0, y(k)(0, Ti) = 0 for all k, and using the shorthand
∑

x∈{i,j} fx =

fi + fj, we can write the exponent term in the expectation of Eq. (17), i.e.

y (t, Ti) + y (t, Tj) as

y(1)(t, t)
∑

x∈{i,j}

exp (−α (Tx − t)) + y(2)(t, t)
∑

x∈{i,j}

exp (−ε (Tx − t)) + 2y(3)(t, t)

+
∑

x∈{i,j}

− t
0 (κj (b exp (−α (Tx − c))σ)) dc+ exp (−α (Tx − t))ϕ (−i, 0, t)

+
∑

x∈{i,j}

−σ
2

4ε
exp (−2ε (Tx − t)) (c1 − c2)

2 ((1− exp (ε (Tx − t))) (1− exp (−2εt)))

+
∑

x∈{i,j}

−σ
2

2
c22t (1− exp (−ε (Tx − t)))

Focusing on the non-deterministic part of the above and noticing that

E

exp
y(1)(t, t) ∑

x∈{i,j}

exp (−α (Tx − t)) + y(2)(t, t)
∑

x∈{i,j}

exp (−ε (Tx − t)) + 2y(3)(t, t)
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is equal to Φ~y(t) (~z; ~y(0), 0, t) with

~z =


−i
∑

x∈{i,j} exp (−α (Tx − t))

−i
∑

x∈{i,j} exp (−ε (Tx − t))

−2i


we obtain the second moment of the forward price for the MRVG-3 model as

1

F (0, T1, T2) 2

[
1

N2

N−1∑
i=0

N−1∑
j=0

F (0, Ti)F (0, Tj) Φ~y(t) (~z; ~y(0), 0, t) exp (A)

]

where Tx = T1 + x4t

A =
∑

x∈{i,j}

− t
0 (κj (b exp (−α (Tx − c))σ)) dc+ exp (−α (Tx − t))ϕ (−i, 0, t)

+
∑

x∈{i,j}

−σ
2

4ε
exp (−2ε (Tx − t)) (c1 − c2)

2 ((1− exp (ε (Tx − t))) (1− exp (−2εt)))

+
∑

x∈{i,j}

−σ
2

2
c22t (1− exp (−ε (Tx − t)))

Similarly, the third moment is given by

1

F (0, T1, T2) 3

[
1

N3

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

F (0, Ti)F (0, Tj)F (0, Tk) Φ~y(t) (~z; ~y(0), 0, t) exp (A)

]
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where

~z =


−i
∑

x∈{i,j,k} exp (−α (Tx − t))

−i
∑

x∈{i,j,k} exp (−ε (Tx − t))

−3i


and

A =
∑

x∈{i,j,k}

− t
0 (κj (b exp (−α (Tx − c))σ)) dc+ exp (−α (Tx − t))ϕ (−i, 0, t)

+
∑

x∈{i,j,k}

−σ
2

4ε
exp (−2ε (Tx − t)) (c1 − c2)

2 ((1− exp (ε (Tx − t))) (1− exp (−2εt)))

+
∑

x∈{i,j,k}

−σ
2

2
c22t (1− exp (−ε (Tx − t)))

Finally, the fourth moment is given by

1

F (0, T1, T2) 4
×[

1

N4

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

N−1∑
l=0

F (0, Ti)F (0, Tj)F (0, Tk)F (0, Tl) Φ~y(t) (~z; ~y(0), 0, t) exp (A)

]

where

~z =


−i
∑

x∈{i,j,k,l} exp (−α (Tx − t))

−i
∑

x∈{i,j,k,l} exp (−ε (Tx − t))

−4i
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and

A =
∑

x∈{i,j,k,l}

− t
0 (κj (b exp (−α (Tx − c))σ)) dc+ exp (−α (Tx − t))ϕ (−i, 0, t)

+
∑

x∈{i,j,k,l}

−σ
2

4ε
exp (−2ε (Tx − t)) (c1 − c2)

2 ((1− exp (ε (Tx − t))) (1− exp (−2εt)))

+
∑

x∈{i,j,k,l}

−σ
2

2
c22t (1− exp (−ε (Tx − t)))

D Model Implied Covariance Matrices

Firstly, recall that the log dynamics of a forward price at maturity T under

the MRVG-3 model, as described in Section 2.2, are given by

df(t, T ) =
3∑

k=1

dy(k)(t, T ),

dy(1)(t, T ) = (−κj (exp (−α (T − t)) bσ(t))) dt+ exp (−α (T − t)) bσ(t)dX(t)

dy(2)(t, T ) = −1

2
((exp (−ε (T − t)) (c1 − c2) + c2)σ(t))

2 dt

+(exp (−ε (T − t)) (c1 − c2))σ(t)dW (t)

dy(3)(t, T ) = c2σ(t)dW (t)
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Now assuming constant σ, and taking two maturities Ts and Tl, the instan-

taneous covariance of the log forward price returns are given by

Cov [t;Ts, Tl] = E

[(
K∑
k=1

dy(k)(t, Ts)− E

[
K∑
k=1

dy(k)(t, Ts)

])

×

(
K∑
k=1

dy(k)(t, Tl)− E

[
K∑
k=1

dy(k)(t, Tl)

])]
= E [exp (−α (Ts − t)) bσdX(t) exp (−α (Tl − t)) bσdX(t)]

+E [((exp (−ε (Ts − t)) (c1 − c2)) + c2)σdW (t)×

((exp (−ε (Tl − t)) (c1 − c2)) + c2)σdW (t)]

= exp (−α (Tl + Ts − 2t)) b2σ2dt+
(
exp (−ε (Tl + Ts − 2t)) (c1 − c2)

2)σ2dt

+c2 (c1 − c2)
(
exp (−ε (Tl − t))σ2dt+ exp (−ε (Ts − t))

)
+ c22σ

2dt

Setting c2 = 0 gives the MRVG-3x model equivalent

Cov [t;Ts, Tl] = exp (−α (Tl + Ts − 2t)) b2σ2dt

+exp (−ε (Tl + Ts − 2t)) c21σ
2dt

For the MRVG-2 model we have

Cov [t;Ts, Tl] = exp (−α (Tl + Ts − 2t)) b2σ2dt+
(
exp (−α (Tl + Ts − 2t)) (c1 − c2)

2)σ2dt

+c2 (c1 − c2)
(
exp (−α (Tl − t))σ2dt+ exp (−α (Ts − t))

)
+ c22σ

2dt
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and for the MRVG-2x model,

Cov [t;Ts, Tl] = exp (−α (Tl + Ts − 2t))σ2dt+ σ2
Ldt
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