Assessing society-wide national climate change mitigation scenarios using a warming-equivalent model to aggregate greenhouse gases including methane¹

Paul Price², Barry McMullin²

 ¹ EPA Research: Climate Change Research Project 2018-CCRP-DS.14
² Insight Centre, Dublin City University, Glasnevin, Dublin 9, Ireland Corresponding Author Email Address: paul.price@dcu.ie

Global climate action is not currently aligned with staying within remaining global carbon budgets (GCBs) corresponding to the Paris Agreement temperature limits of "well below 2°C" and making efforts to limit to 1.5°C over pre-industrial. Estimated CO₂-only GCBs critically depend on achieving reductions in nitrous oxide (N_2O) and in short-lived methane (CH_4). Therefore, a nation's "low carbon transition" needs to be completed within its 'fair share' quota of the aggregate global greenhouse gas (GHG) budget. For Ireland, assessing climate action including these non-CO₂ gases is important because a comparatively large fraction of reported emissions is due to N₂O and CH₄, arising primarily from ruminant agriculture. However, the warming commitment of mitigation scenarios that include CH₄ has been difficult to evaluate as the standard GHG equivalence metric, called GWP₁₀₀, crucially fails to reflect the physical reality that sustained reductions in CH₄ flow can result in a substantial reduction in its total warming-equivalent contribution within 10 to 20 years. A new metric, called GWP*, accurately approximates changes in the warmingequivalent (CO₂-we) contribution of short-lived climate pollutants such as CH₄. Incorporating the GWP* methodology, we have developed an open source model to project GHG warming-equivalent commitments (by gas and in aggregate) of policy-relevant national mitigation scenarios to 2100, relative to a Paris-aligned national GHG quota. Comparing illustrative scenarios for effective climate change mitigation reveals significant implications for Parisaligned climate action. Complex but critical trade-offs between GHGs and sectors are clarified. Supplementing the primary requirement for radical CO_2 mitigation, substantial and sustained reduction in total national methane emissions appears to be critical to the feasibility of achieving net zero CO₂-we by 2050. In addition to radically limiting fossil fuel usage, reducing total usage of reactive nitrogen in agricultural and biogas production is argued to have a key role in overall climate mitigation for Ireland.

Keywords: climate action, Paris Agreement, transition, climate modelling, methane, GWP*.